Techniques for workforce management in a task assignment system

Information

  • Patent Grant
  • 11972376
  • Patent Number
    11,972,376
  • Date Filed
    Monday, January 10, 2022
    3 years ago
  • Date Issued
    Tuesday, April 30, 2024
    a year ago
  • Inventors
  • Original Assignees
  • Examiners
    • Hassan; Abdallah A El-Hage
    Agents
    • Rothwell, Figg, Ernst & Manbeck, P.C.
Abstract
Techniques for workforce management in a task assignment system are disclosed. In one particular embodiment, the techniques may be realized as a method for workforce management in a task assignment system comprising: determining, by at least one computer processor configured to operate in the task assignment system, a first efficiency level of a first task assignment strategy for a first number of agents to be employed in the task assignment system; determining, by the at least one computer processor, a second efficiency level of a second task assignment strategy for a second number of agents to be employed in the task assignment system; comparing, by the at least one computer processor, the first and second efficiency levels; and selecting, by the at least one computer processor, one of the first and second numbers of agents having the higher of the first and second efficiency levels.
Description
FIELD OF THE DISCLOSURE

This disclosure generally relates to pairing tasks and agents in a task assignment system and, more particularly, to techniques for workforce management in a task assignment system.


BACKGROUND OF THE DISCLOSURE

A typical task assignment system algorithmically assigns tasks (or contacts) arriving at the task assignment system to agents available to handle those tasks. At times, the task assignment system may have agents available and waiting for assignment to inbound or outbound tasks (e.g., telephone calls, Internet chat sessions, email). At other times, the task assignment system may have tasks waiting in one or more queues for an agent to become available for assignment.


In some typical task assignment systems, tasks are assigned to agents based on time of arrival, and agents receive tasks based on the time when those agents became available. This strategy may be referred to as a “first-in, first-out,” “FIFO,” or “round-robin” strategy. In other typical task assignment systems, other strategies may be used, such as “performance-based routing,” or a “PBR,” strategy.


Typical task assignment systems preferentially minimize overall agent idle time and overall task waiting time. To that end, if tasks are waiting in a queue, a task will be assigned to an agent soon after an agent becomes available for assignment. Similarly, if agents are idle, waiting for tasks to arrive, an agent will be assigned to a task soon alter a task becomes available for assignment.


In typical a task assignment system, managers generally try to staff queues with the exact number of agents needed to handle forecasted volume of tasks no more, no less. This approach tends to maximize 1-to-1 (i.e., one task to one agent) routing as much as possible, minimizing the number of agents waiting idle and the number of tasks waiting in a queue.


However, a workforce management that strives for 1-to-1 routing does not allow a task assignment system to improve or maximize its benefits by using a pairing strategy that is designed to choose among multiple possible pairings.


In view of the foregoing, it may be understood that there may be a need for a workforce management in a task assignment system that improves the efficiency and performance of pairing strategies that are designed to choose among multiple possible pairings.


SUMMARY OF THE DISCLOSURE

Techniques for workforce management in a task assignment system are disclosed. In one particular embodiment, the techniques may be realized as a method for workforce management in a task assignment system comprising: determining, by at least one computer processor configured to operate in the task assignment system, a first efficiency level of a first task assignment strategy for a first number of agents to be employed in the task assignment system; determining, by the at least one computer processor, a second efficiency level of a second task assignment strategy for a second number of agents to be employed in the task assignment system; comparing, by the at least one computer processor, the first and second efficiency levels; and selecting, by the at least one computer processor, one of the first and second numbers of agents having the higher of the first and second efficiency levels.


In accordance with other aspects of this particular embodiment, the task assignment system may be a contact center system, and wherein the first and second task assignment strategies may assign contacts to contact center s stern agents.


In accordance with other aspects of this particular embodiment, the first task assignment strategy may be a first-in first-out (FIFO) strategy, and wherein the second task assignment strategy may be a behavioral pairing (BP) strategy.


In accordance with other aspects of this particular embodiment, determining the second efficiency level may be based on an expected gain of using the second task assignment strategy with the second number of agents overusing the first task assignment strategy with the first number of agents.


In accordance with other aspects of this particular embodiment, determining the second efficiency level may be based on a cost of using the second task assignment strategy instead of the first task assignment strategy.


In accordance with other aspects of this particular embodiment, the second number of agents may be less than the first number of agents, and determining the second efficiency level may be based on a savings of using the second number of agents instead of the first number of agents.


In accordance with other aspects of this particular embodiment, determining the second efficiency level may further comprise determining, by the at least one computer processor, a cost of losing a portion of a plurality of tasks by estimating an expected loss of each task out of the portion of the plurality of tasks,


In accordance with other aspects of this particular embodiment, determining the second efficiency level may further comprise applying, by the at least one computer processor, a statistical analysis on historical data recorded by the task assignment system.


In another particular embodiment, the techniques may be realized as a system for workforce management in a task assignment system comprising at least one computer processor configured to operate in the task assignment system, wherein the at least one computer processor is further configured to perform the above method steps:


In another particular embodiment, the techniques may be realized as an article of manufacture for workforce management in a task assignment system comprising a non-transitory computer processor readable medium, and instructions stored on the medium, wherein the instructions may be configured to be readable from the medium by at least one computer processor configured to operate in the task assignment system and thereby cause the at least one computer processor to operate so as to perform the above method steps.


The present disclosure will now be described in more detail with reference to particular embodiments thereof as shown in the accompanying drawings. While the present disclosure is described below with reference to particular embodiments, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to facilitate a fuller understanding of the present disclosure, reference is now made to the accompanying drawings, in which like elements are referenced with like numerals. These drawings should not be construed as limiting the present disclosure, but are intended to be illustrative only.



FIG. 1 shows a block diagram of a task assignment system according to embodiments of the present disclosure.



FIG. 2 depicts a schematic representation of a task assignment system timeline according to embodiments of the present disclosure.



FIG. 3 depicts a schematic representation of a choice-based pairing strategy according to embodiments of the present disclosure.



FIG. 4 depicts a schematic representation of timeline of a risk of abandonment of a task according to embodiments of the present disclosure



FIG. 5 shows a flow diagram of a workforce management method according to embodiments of the present disclosure.





DETAILED DESCRIPTION


FIG. 1 shows a block diagram of a task assignment system 100 according to embodiments of the present disclosure. The description herein describes network elements, computers, and/or components of a system and method for benchmarking pairing strategies in a task assignment system that may include one or more modules. As used herein, the term “module” may be understood to refer to computing software, firmware, hardware, and/or various combinations thereof. Modules, however, are not to be interpreted as software which is not implemented on hardware, firmware, or recorded on a non-transitory processor readable recordable storage medium (i.e., modules are not software per se). It is noted that the modules are exemplary. The modules may be combined, integrated, separated, and/or duplicated to support various applications. Also, a function described herein as being performed at a particular module may be performed at one or more other modules and/or by one or more other devices instead of or in addition to the function performed at the particular module. Further, the modules may be implemented across multiple devices and/or other components local or remote to one another. Additionally, the modules may be moved from one device and added to another device, and/or may be included in both devices.


As shown in FIG. 1, the task assignment system 100 may include a task assignment module 110. The task assignment module 110 may include a switch or other type of routing hardware and software for helping to assign tasks among various agents, including queuing or switching components or other Internet-, cloud-, or network-based hardware or software solutions.


The task assignment module 110 may receive incoming tasks. In the example of FIG. 1, the task assignment system 100 receives in tasks over a given period, tasks 130A-130m. Each of the in tasks may be assigned to an agent of the task assignment system 100 for servicing or other types of task processing. In the example of FIG. 1, n agents are available during the given period, agents 120A-120n. m and n may be arbitrarily large finite integers greater than or equal to one. In a real-world task assignment system, such as a contact center, there may be dozens, hundreds, etc. of agents logged into the contact center to interact with contacts during a shift, and the contact center may receive dozens, hundreds, thousands, etc, of contacts (e.g., calls) during the shift.


In some embodiments, a task assignment strategy module 140 may be communicatively coupled to and/or configured to operate in the task assignment system 100. The task assignment strategy module 140 may implement one or more task assignment strategies (or “pairing strategies”) for assigning individual tasks to individual agents (e.g., pairing contacts with contact center agents).


A variety of different task assignment strategies may be devised and implemented by the task assignment strategy module 140. In some embodiments, a first-in/first-out (“FIFO”) strategy may be implemented in which, for example, the longest-waiting agent receives the next available task (in L1 environments) or the longest-waiting task is assigned to the next available task (in L2 environments). Other FIFO and FIFO-like strategies may make assignments without relying on information specific to individual tasks or individual agents,


In other embodiments, a performance-based routing (PBR) strategy may be used for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task. Other PBR and PBR-like strategies may make assignments using information about specific agents but without necessarily relying on information about specific tasks or agents.


In yet other embodiments, a BP strategy may be used for optimally assigning tasks to agents using information about both specific tasks and specific agents. Various BP strategies may be used, such as a diagonal model BP strategy or a network flow BP strategy. These task assignment strategies and others are described in detail for the contact center context in, e.g., U.S. Pat. Nos. 9,300,802 and 9,930,180, which are hereby incorporated by reference herein.


In some embodiments, a historical task module 150 may be communicatively coupled to and/or configured to operate in the task assignment system 100 via other modules such as the task assignment module 110 and/or the task assignment strategy module 140. The historical task module 150 may be responsible for various functions such as monitoring, storing, retrieving, and/or outputting information about agent task assignments that have already been made. For example, the historical task module 150 may monitor the task assignment module 110 to collect information about task assignments in a given period. Each record of a historical task assignment may include information such as an agent identifier, a task or task type identifier, outcome information, or a pairing strategy identifier (i.e., an identifier indicating whether a task assignment was made using a BP pairing strategy or some other pairing strategy such as a FIFO or PBR pairing strategy).


In some embodiments and for some contexts, additional information may be stored, For example, in a call center context, the historical task module 150 may also store information about the time a call started, the time a call ended, the phone number dialed, and the caller's phone number. For another example, in a dispatch center (e.g., “truck roll”) context, the historical task module 150 may also store information about the time a driver (i.e., field agent) departs from the dispatch center, the route recommended, the route taken, the estimated travel time, the actual travel time, the amount of time spent at the customer site handling the customer's task, etc.


The historical task module 150 may also store information about abandoned tasks, which expired or otherwise became abandoned or inoperable prior to assignment to an agent. For example, in a call center context, a caller on hold may decide to hang up and terminate a call before it is answered by an agent. The historical task module 150 may store information about the time a call arrived, the time a call was abandoned, the caller's menu or interactive voice response (IVR) selections, the caller's phone number, etc.


In some embodiments, the historical task module 150 may generate a pairing model or similar computer processor-generate model based on a set of historical assignments or other data, such as lost task data, for a period of time (the past week, the past month, the past year, etc.), which may be used by the task assignment strategy module 140 to make task assignment recommendations or instructions to the task assignment module 110. In other embodiments, the historical task module 150 may send historical assignment information to another module such as the task assignment strategy module 140 or the benchmarking module 160.


In some embodiments, a benchmarking, module 160 may be communicatively coupled to and/or configured to operate in the task assignment system 100 via other modules such as the task assignment module 110 and/or the historical task module 150, The benchmarking module 160 may benchmark the relative performance of two or more pairing strategies (e.g., FIFO, PBR, BP, etc.) using historical assignment information, which may be received from, for example, the historical task module 150. In some embodiments, the benchmarking module 160 may perform other functions, such as establishing a benchmarking schedule for cycling among various pairing strategies, tracking cohorts (e.g., base and measurement groups of historical assignments), etc. The techniques for benchmarking and other functionality performed by the benchmarking module 160 for various task assignment strategies and various contexts are described in later sections throughout the present disclosure. Benchmarking is described in detail for the contact center context in, e.g., U.S. Pat. No. 9,712,676, which is hereby incorporated by reference herein.


In some embodiments, the benchmarking module 160 may output or otherwise report or use the relative performance measurements. The relative performance measurements may be used to assess the quality of the task assignment strategy to determine, for example, whether a different task assignment strategy (or a different pairing model) should be used, or to measure the overall performance (or performance gain) that was achieved within the task assignment system 100 while it was optimized or otherwise configured to use one task assignment strategy instead of another.



FIG. 2 depicts a schematic representation of a task assignment system timeline according to embodiments of the present disclosure. In a given period of time (e.g., over several minutes, several hours, a day), the number of agents free or available to connect to tasks, or the number of tasks waiting in queue, will vary continuously as tasks arrive and depart the task assignment system. The example of FIG. 2 depicts the capacity of a task assignment system over a period of time along the x-axis from time “0” to time “50” (e.g., 0 minutes to 50 minutes). The y-axis depicts the number of free agents or the number of tasks in queue above and below the x-axis, respectively.


At time 0 (e.g., when the task assignment system first opens at the beginning of the day), there are 10 agents available and waiting for tasks to arrive. Periods of time when a task assignment system has a surplus of available agents are referred to as “L1” environments. If a choice-based pairing strategy such as BP is used, the choice-based pairing strategy may choose from among any (or a subset) of the available agents when a task arrives.


As tasks arrive, and agents become occupied while communicating with those tasks, the number of available agents may decrease, as shown in FIG. 2 from time 0 to approximately time 5, The task assignment system is operating in an L1 environment for this entire duration, but the choice available to BP or another choice-based pairing strategy becomes increasingly limited instead of having as many as ten (or more) agents available to choose among, by about time 5 there are only two or three agents to choose among.


At other periods of time, there may be a shortage of agents, and tasks begin to queue, waiting for agents to become available for connection, as shown in FIG. 2 from about time 7 to about time 21. Periods of time when a task assignment system has a shortage of available agents are referred to as “L2” environments. if a choice-based pairing strategy such as BP is used, the choice-based pairing strategy may choose from among any (or a subset) of the waiting tasks when an agent becomes available.


As agents become available to connect with tasks waiting in the queue, the size of the queue may decrease, as shown in FIG. 2 from approximately time 14 to about time 21. The task assignment system is operating in an L2 environment for this entire duration, but the choice available to BP or another choice-based pairing strategy becomes increasingly limited instead of having as many as ten (or more) tasks available to choose among at about time 14, by about time 21 there are only two or three tasks in queue to choose among.


At some points in time, a task assignment system will transition from an L1 state to an L2 state (e.g., point 210A at about time 6 and point 210C at about time 40) or vice versa, from an L2 state to an L1 state (e.g., point 210B at about time 23). These crossover points along the x-axis (labeled the “1:1” line) occur when no choice is available to BP or another choice-based pairing strategy. For example, there may be a single task waiting in queue, which may be paired with whichever agent happens to become free next. Or there may be a single agent waiting idle, which may be paired with whichever task happens to arrive at the task assignment system next. In some situations (not shown), a task assignment system may reach the “1:1” line and then bounce back up into L1 (or bounce back down into L2). No L1-to-L2 or L2-to-L1 transition occurs, but there is still a time at which no choice is available to BP.


In some situations (not shown), a task assignment system may remain along the “1:1” line for an extended period of time. In fact, a typical task assignment system may consider this line to indicate when the task assignment system is operating at a “perfect” capacity, with neither a surplus nor a shortage of agents for the given level of demand (e.g., number, frequency, and duration of tasks arriving at the task assignment system). In these situations, a BP strategy could go for an extended period of time with no choices available other than the “1 agent:1 task” default choice.


These points in time (or periods of time) when the task assignment system is operating along the “1:1” line, when a task assignment system has neither a surplus nor a shortage of available agents, are referred to as “L0” environments.



FIG. 3 depicts a schematic representation of a choice-based pairing strategy according to embodiments of the present disclosure. When choice is limited, choice-based pairing strategies may suffer from suboptimal performance. FIG. 3 shows an example of a performance estimate or performance simulation of a choice-based pairing strategy. When there are many tasks in queue (“many calls in queue” as in FIG. 3) e.g., at point 320), or when there are many agents free (e.g., at point 330), BP or another choice-based pairing strategy may perform optimally (e.g., at or near “100%” instant performance or efficiency).


However, as the number of tasks in queue or free agents dwindle, there are fewer choices available to BP, and the performance or efficiency of BP could drop. In an L0 environment (e.g., at point 310), the instant performance or efficiency of BP is considered to be 0%, insofar as BP (without L3 pairing) is incapable of making a choice different from the pairing that any other non-L3 pairing strategy could make. In other words, if there is only one task waiting for an agent, and only one agent waiting for a task, both FIFO and BP will pair that one task with that one agent, with no other choice to make. As choice increases, either as tasks fill a queue in an L2 environment, or more agents become available in an L1 environment, performance steadily increases toward optimal instant performance.


In the example of FIG. 3, 50 calls in queue and 50 agents free are the points 320 and 330 at which this pairing strategy is expected to reach peak performance. However, in other embodiments or real-world task assignment systems, peak performance may be reached at varying levels of agent shortage or surplus (e.g., greater than 3 choices available, greater than 7 choices available, greater than 20 choices available, etc.),


In situations such as L0 environments in which the choice available to BP is too limited, it may be advantageous to delay or otherwise postpone connecting an agent to a task. Introducing a delay could allow time for another agent or another task to become available. If a task assignment system is operating in L0, and another agent arrives, the task assignment system will enter an L1 environment with two agents to choose between instead of being forced into the default selection. Similarly, if a task assignment system is operating in L0, and another task arrives, the task assignment system will enter an L2 environment with two tasks to choose between instead of being forced into the default selection.


In some embodiments, it may be desirable to delay even if the task assignment system already has some choice (e.g., already operating in L1 or L2), but the choice is limited. For example, if only ten tasks are waiting in queue when an agent becomes available, the pairing strategy of FIG. 3 is expected to have an instant performance of only 60%. It may be desirable to delay until closer to twenty tasks are waiting, at which point the expected instant performance would be closer to 80%.


When a delay is permitted, it is possible to enter a hybrid environment that is neither pure L1 nor pure L2. For example, consider a task assignment system in which there are two tasks in queue, and only one agent is available. Following a delay, a second agent could become available, resulting in an environment in which there are multiple tasks in queue and multiple agents available for connection. Periods of time when a task assignment system has multiple tasks in queue and multiple free agents are referred to as “L3” environments.


It is possible for a pairing module to perform or otherwise emulate a FIFO or FIFO-like pairing strategy while the task assignment system is in a L1 (agent surplus), L2 (task surplus), or L3 (multiple agents and multiple tasks) state. In these situations, the pairing module may always pair, for example, the longest-waiting task (or the higher-priority task) at the head of the queue with, for example, the longest-waiting agent, regardless of the other tasks in queue and available agents. In this sense, a FIFO pairing strategy is indifferent to L1, L2, and L3 environments, operating no snore or less efficiently as in an L0 state. However, a choice-based pairing strategy such as BP can operate at higher average performance/efficiency when L1/L2/L3 states, with increased choice, are possible.


In some embodiments, a pairing module (e.g., task assignment strategy module 140) or a similar module may be capable of making an automated workforce management recommendation or decision within the task assignment system. For example, instead of preferentially trying to minimize task hold time and agent free time, which causes the task assignment system to hover around L0 or in periods of L1 and L2 with limited amounts of choice, the task assignment system could be advised or instructed to use a certain number of agents that is likely to keep the task assignment system in high-choice environments. In some situations, the recommendation could be to staff additional agents (e.g., 10 additional agents, 100 additional agents, etc.) to increase the expected amount of time spent in high-choice L1. In other situations, the recommendation could be to staff fewer agents (e.g., 10 fewer agents, 100 fewer agents, etc.) to increase the expected amount of time spent in high-choice L2.


In some embodiments, the workforce management instruction or recommendation may balance the cost of employing additional agents and increasing agent free time against the benefit of reducing task wait time, or balancing the cost-savings of employing fewer agents and decreasing agent free time against the cost of increasing task wait time. These recommendations may take into account the desired metric to optimize. For example, if the task assignment system management desires to optimize customer satisfaction, it may be desirable to make a recommendation that errs on being in high-choice L1 (agent surplus) rather than high-choice L2 (agent shortage). In either case, the recommendation or instruction may balance the cost of increasing agent free time or increasing task wait time against the improved performance/efficiency of BIP or another choice-based pairing strategy operating in higher-choice L1, L2, or L3 environments, and avoiding inefficient L0 environments in which only a default choice is available.


In some embodiments, the workforce management instruction or recommendation may be in the form of an estimated return on investment (ROI) of either employing additional agents or employing fewer agents. In a task assignment system, an ROI may be viewed as a monetary efficiency level. The estimated ROI may be defined by the following formulas:







Estimated


R

O

I

=


(





Profit


with


B

P


and


more



(

or


fewer

)



agents

-






Profit


without


B

P


and


more



(

or


fewer

)



agents




)


Costs


of


B

P


technology


and


more



(

or


fewer

)



agents









Profit


without


B

P


and


more



(

or


fewer

)



agents

=


Potential


benefits


from


all


tasks


-

Harm


from


lost


tasks

-

Costs


of


agents









Profit


without


B

P


and


more



(

or


fewer

)



agents

=


Potential


benefits


from


all


tasks


+

Gain


from


B

P

-

Harm


from


lost


tasks

-

Costs


of


agents






In the above formulas, the potential benefits from all tasks may be treated as being fixed, regardless of the number of agents. However, in some embodiments using BP strategies, the benefits from all tasks may be different due to optimized task-agent pairing.


The harm from lost tasks, which depends on the number of agents, may be estimated from a survival/hazard analysis or a conversion rate analysis.


In a survival/hazard analysis, a hazard function may be used to determine the expected loss of each task. An example of a hazard function is illustrated in FIG. 4. As shown in this example, the risk of abandonment of each task (e.g., a caller hanging up and terminating a call) may depend on how long the task has been waiting in queue. In this example, the risk of abandonment during the first seconds after the task arrived is high. The risk begins to drop and then rises again on average around the 13th second.


Different queues in different task assignment systems may exhibit hazard functions with different characteristics. Hazard functions may be generated from historical information (e.g., starting times and ending times of calls) recorded by the task assignment systems. The time window for the hazard function may be chosen based on a task frequency rate (e.g., calls arrive about once every five seconds).


Given a hazard function, the expected loss of each task may be determined according to the following formula:

Expected loss=Risk of abandonment×Expected outcome


In this formula, the expected outcome of each task may be known or estimated based on outcomes of historical task-agent assignments in a task assignment system. For example, if the tasks are sales calls, each sales call may have an expected outcome, which may depend on the caller or type of caller, the item being sold, and the likelihood of the agent making the sale. The harm from lost tasks thus may be estimated from the expected losses of tasks in queue.


In a conversion rate analysis, the harm from lost tasks may be estimated from conversion rates of tasks based on historical data recorded by a task assignment system. For each task, an expected conversion rate may be a function of the task waiting in queue. In some environments, conversion rate may be directly correlated with waiting time. For example, in a sales queue of a contact center, a contact may be more likely to wait in queue if the contact has a strong intention to buy or order an item.


The gain from BP may be determined from historical data recorded by a task assignment system and a statistical analysis (e.g., a Bayesian analysis) to establish a dependence between task-agent pairing choices which depend on the number of agents) and gain in L1, L2, and/or L3 environments (e.g., FIG. 3), Alternatively, a task assignment system may be simulated using a simulator to estimate such a dependence.


A pairing module (e.g., task assignment strategy module 140) or a similar module may estimate a plurality of ROIs for a plurality of numbers of agents—more or fewer than the number of agents typically employed. The highest (positive) estimated ROI may then inform the task assignment system of the optimal number of agents to employ in order to maximize the benefits of using a BP strategy. In some instances, the recommended number of agents may be higher than the number of agents typically employed, and the task assignment system may operate in a higher-choice L1 (agent-surplus) environment more often, in other instances, the recommended number of agents may be lower than the number of agents typically employed, and the task assignment system may operate in a higher-choice L2 (task-surplus) environment more often.


In a task assignment system, the ROI may be estimated by a calculator. The calculator may be implemented as a web-based, app-based, etc. user interface. The calculator may generate reports (e.g., PDF, Word, spreadsheets, etc.), which may be used for workforce management, sales, account management, or further statistical analysis.



FIG. 5 shows a flow diagram of a workforce management method 500 according to embodiments of the present disclosure. Workforce management method 500 may begin at block 510. At block 510, a set of a plurality of (integer) numbers (e.g., {10, 11, 12, . . . , 1000}) may be considered. Each number in the set may represent a number of agents to be employed in a task assignment system. Workforce management method 500 may then proceed to block 520. At block 520, for each number in the set, an estimated ROI may be generated, as described above. At block 530, workforce management method 500 may select the number in the set that results in a highest estimated ROI. Workforce management method 500 may proceed to block 540, where the task assignment system may be staffed with the selected number of agents.


At this point it should be noted that estimating ROI in a task assignment system in accordance with the present disclosure as described above may involve the processing of input data and the generation of output data to some extent. This input data processing and output data generation may be implemented in hardware or software. For example, specific electronic components may be employed in a pairing module or similar or related circuitry for implementing the functions associated with estimating ROI in a task assignment system in accordance with the present disclosure as described above. Alternatively, one or more processors operating in accordance with instructions may implement the functions associated with estimating ROI in a task assignment system in accordance with the present disclosure as described above. If such is the case, it is within the scope of the present disclosure that such instructions may be stored on one or more non-transitory processor readable storage media (e.g., a magnetic disk or other storage medium), or transmitted to one or more processors via one or more signals embodied in one or more carrier waves.


The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of at least one particular implementation in at least one particular environment for at least one particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.

Claims
  • 1. A method for workforce management in a task assignment system, the method comprising: determining, by at least one computer processor configured to perform workforce management operations in the task assignment system, a first number of agents to be employed in the task assignment system; calculating, by the at least one computer processor, a first performance level of a first task assignment strategy for the first number of agents to be employed in the task assignment system; determining, by the at least one computer processor, a second number of agents to be employed in the task assignment system; calculating, by the at least one computer processor, a second performance level of a second task assignment strategy for the second number of agents to be employed in the task assignment system; comparing, by the at least one computer processor, the first and second performance levels; and selecting, by the at least one computer processor, one of the first and second numbers of agents having the higher of the first and second performance levels, wherein the selection of one of the first and second numbers of agents causes an expected frequency of the task assignment system entering a particular pairing state to change thereby changing a choice of agents to be connected in the task assignment system; and establishing a connection between an agent and a task in a switch of the task assignment system based upon the selected one of the first and second numbers of agents and a corresponding task assignment strategy.
  • 2. The method of claim 1, wherein the first performance level of the first task assignment strategy for the first number of agents to be employed in the task assignment system is a first efficiency level, the second performance level of the second task assignment strategy for the second number of agents to be employed in the task assignment system is a second efficiency level, and the particular pairing state is an LO state.
  • 3. The method of claim 1, wherein the first task assignment strategy is a first-in first-out (FIFO) strategy, and the second task assignment strategy is a behavioral pairing (BP) strategy.
  • 4. The method of claim 1, wherein calculating the second performance level is based on: an expected gain of using the second task assignment strategy with the second number of agents over using the first task assignment strategy with the first number of agents, or a cost of using the second task assignment strategy instead of the first task assignment strategy.
  • 5. The method of claim 1, wherein the second number of agents is less than the first number of agents, and calculating the second performance level is based on a savings of using the second number of agents instead of the first number of agents.
  • 6. The method of claim 1, wherein calculating the second performance level further comprises: calculating, by the at least one computer processor, a cost of losing a portion of a plurality of tasks by estimating an expected loss of each task out of the portion of the plurality of tasks, or applying, by the at least one computer processor, a statistical analysis on historical data recorded by the task assignment system.
  • 7. A system for workforce management in a task assignment system comprising: at least one computer processor configured to perform workforce management operations in the task assignment system, wherein the at least one computer processor is further configured to: determine a first number of agents to be employed in the task assignment system; calculate a first performance level of a first task assignment strategy for the first number of agents to be employed in the task assignment system; determine a second number of agents to be employed in the task assignment system; calculate a second performance level of a second task assignment strategy for the second number of agents to be employed in the task assignment system; compare the first and second performance levels; and select one of the first and second numbers of agents having the higher of the first and second performance levels, wherein the selection of one of the first and second numbers of agents causes an expected frequency of the task assignment system entering a particular pairing state to change thereby changing a choice of agents to be connected in the task assignment system; and a connection between an agent and a task is established in a switch of the task assignment system based upon the selected one of the first and second numbers of agents and a corresponding task assignment strategy.
  • 8. The system of claim 7, wherein the first performance level of the first task assignment strategy for the first number of agents to be employed in the task assignment system is a first efficiency level, the second performance level of the second task assignment strategy for the second number of agents to be employed in the task assignment system is a second efficiency level, and the particular pairing state is an LO state.
  • 9. The system of claim 7, wherein the first task assignment strategy is a first-in first-out (FIFO) strategy, and the second task assignment strategy is a behavioral pairing (BP) strategy.
  • 10. The system of claim 7, wherein the second performance level is calculated based on: an expected gain of using the second task assignment strategy with the second number of agents over using the first task assignment strategy with the first number of agents, or a cost of using the second task assignment strategy instead of the first task assignment strategy.
  • 11. The system of claim 7, wherein the second number of agents is less than the first number of agents, and the second performance level is calculated based on a savings of using the second number of agents instead of the first number of agents.
  • 12. The system of claim 7, wherein the at least one computer processor is further configured to calculate: the second performance level further by calculating a cost of losing a portion of a plurality of tasks by estimating an expected loss of each task out of the portion of the plurality of tasks, or the second performance level by applying a statistical analysis on historical data recorded by the task assignment system.
  • 13. An article of manufacture for workforce management in a task assignment system comprising: a non-transitory computer processor readable medium; and instructions stored on the medium; wherein the instructions are configured to be readable from the medium by at least one computer processor configured to perform workforce management operations in the task assignment system and thereby cause the at least one computer processor to operate so as to: determine a first number of agents to be employed in the task assignment system; calculate a first performance level of a first task assignment strategy for the first number of agents to be employed in the task assignment system; determine a second number of agents to be employed in the task assignment system; calculate a second performance level of a second task assignment strategy for the second number of agents to be employed in the task assignment system; compare the first and second performance levels; and select one of the first and second numbers of agents having the higher of the first and second performance levels, wherein the selection of one of the first and second numbers of agents causes an expected frequency of the task assignment system entering a particular pairing state to change thereby changing a choice of agents to be connected in the task assignment system; and establish a connection between an agent and a task in a switch of the task assignment system based upon the selected one of the first and second numbers of agents and a corresponding task assignment strategy.
  • 14. The article of manufacture of claim 13, wherein the first performance level of the first task assignment strategy for the first number of agents to be employed in the task assignment system is a first efficiency level, the second performance level of the second task assignment strategy for the second number of agents to be employed in the task assignment system is a second efficiency level, and the particular pairing state is an LO state.
  • 15. The article of manufacture of claim 13, wherein the first task assignment strategy is a first-in first-out (FIFO) strategy, and the second task assignment strategy is a behavioral pairing (BP) strategy.
  • 16. The article of manufacture of claim 13, wherein the second performance level is calculated based on: an expected gain of using the second task assignment strategy with the second number of agents over using the first task assignment strategy with the first number of agents, or a cost of using the second task assignment strategy instead of the first task assignment strategy.
  • 17. The article of manufacture of claim 13, wherein the second number of agents is less than the first number of agents, and the second performance level is calculated based on a savings of using the second number of agents instead of the first number of agents.
  • 18. The article of manufacture of claim 13, wherein the at least one computer processor further operates so as to calculate: the second performance level further by calculating a cost of losing a portion of a plurality of tasks by estimating an expected loss of each task out of the portion of the plurality of tasks, or the second performance level by applying a statistical analysis on historical data recorded by the task assignment system.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims priority to U.S. patent application Ser. No. 15/993,498, filed May 30. 2018, which is hereby incorporated by reference herein in its entirety. This patent application is related to U.S. patent application Ser. No. 15/395,469, filed Dec. 30, 2016, and co-pending U.S. patent application Ser. No. 15/993,496, filed May 30, 2018, which are hereby incorporated by reference herein in their entirety.

US Referenced Citations (266)
Number Name Date Kind
5155763 Bigus et al. Oct 1992 A
5206903 Kohler et al. Apr 1993 A
5327490 Cave Jul 1994 A
5537470 Lee Jul 1996 A
5702253 Bryce et al. Dec 1997 A
5825869 Brooks et al. Oct 1998 A
5903641 Tonisson May 1999 A
5907601 David et al. May 1999 A
5926538 Deryugin et al. Jul 1999 A
6049603 Schwartz et al. Apr 2000 A
6052460 Fisher et al. Apr 2000 A
6064731 Flockhart et al. May 2000 A
6088444 Walker et al. Jul 2000 A
6163607 Bogart et al. Dec 2000 A
6222919 Hollatz et al. Apr 2001 B1
6292555 Okamoto Sep 2001 B1
6324282 Mclllwaine et al. Nov 2001 B1
6333979 Bondi et al. Dec 2001 B1
6389132 Price May 2002 B1
6389400 Bushey et al. May 2002 B1
6408066 Andruska et al. Jun 2002 B1
6411687 Bohacek et al. Jun 2002 B1
6424709 Doyle et al. Jul 2002 B1
6434230 Gabriel Aug 2002 B1
6496580 Chack Dec 2002 B1
6504920 Okon et al. Jan 2003 B1
6519335 Bushnell Feb 2003 B1
6535600 Fisher et al. Mar 2003 B1
6535601 Flockhart et al. Mar 2003 B1
6570980 Baruch May 2003 B1
6587556 Judkins et al. Jul 2003 B1
6603854 Judkins et al. Aug 2003 B1
6639976 Shellum et al. Oct 2003 B1
6661889 Flockhart et al. Dec 2003 B1
6704410 McFarlane et al. Mar 2004 B1
6707904 Judkins et al. Mar 2004 B1
6714643 Gargeya et al. Mar 2004 B1
6763104 Judkins et al. Jul 2004 B1
6774932 Ewing et al. Aug 2004 B1
6775378 Villena et al. Aug 2004 B1
6798876 Bala Sep 2004 B1
6829348 Schroeder et al. Dec 2004 B1
6832203 Villena et al. Dec 2004 B1
6859529 Duncan et al. Feb 2005 B2
6922466 Peterson et al. Jul 2005 B1
6937715 Delaney Aug 2005 B2
6956941 Duncan et al. Oct 2005 B1
6970821 Shambaugh et al. Nov 2005 B1
6978006 Polcyn Dec 2005 B1
7023979 Wu et al. Apr 2006 B1
7039166 Peterson et al. May 2006 B1
7050566 Becerra et al. May 2006 B2
7050567 Jensen May 2006 B1
7062031 Becerra et al. Jun 2006 B2
7068775 Lee Jun 2006 B1
7092509 Mears et al. Aug 2006 B1
7103172 Brown et al. Sep 2006 B2
7158628 McConnell et al. Jan 2007 B2
7184540 Dezonno et al. Feb 2007 B2
7209549 Reynolds et al. Apr 2007 B2
7231032 Nevman et al. Jun 2007 B2
7231034 Rikhy et al. Jun 2007 B1
7236584 Torba Jun 2007 B2
7245716 Brown et al. Jul 2007 B2
7245719 Kawada et al. Jul 2007 B2
7266251 Rowe Sep 2007 B2
7269253 Wu et al. Sep 2007 B1
7353388 Gilman et al. Apr 2008 B1
7372952 Wu et al. May 2008 B1
7398224 Cooper Jul 2008 B2
7593521 Becerra et al. Sep 2009 B2
7676034 Wu et al. Mar 2010 B1
7725339 Aykin May 2010 B1
7734032 Kiefhaber et al. Jun 2010 B1
7798876 Mix Sep 2010 B2
7826597 Berner et al. Nov 2010 B2
7864944 Khouri et al. Jan 2011 B2
7899177 Bruening et al. Mar 2011 B1
7916858 Heller et al. Mar 2011 B1
7940917 Lauridsen et al. May 2011 B2
7961866 Boutcher et al. Jun 2011 B1
7995717 Conway et al. Aug 2011 B2
8000989 Kiefhaber et al. Aug 2011 B1
8010607 McCormack et al. Aug 2011 B2
8094790 Conway et al. Jan 2012 B2
8126133 Everingham et al. Feb 2012 B1
8140441 Cases et al. Mar 2012 B2
8175253 Knott et al. May 2012 B2
8229102 Knott et al. Jul 2012 B2
8234141 Flockhart Jul 2012 B1
8249245 Jay et al. Aug 2012 B2
8295471 Spottiswoode et al. Oct 2012 B2
8300798 Wu et al. Oct 2012 B1
8306212 Arora Nov 2012 B2
8359219 Chishti et al. Jan 2013 B2
8433597 Chishti et al. Apr 2013 B2
8472611 Chishti Jun 2013 B2
8565410 Chishti et al. Oct 2013 B2
8612272 Aykin Dec 2013 B1
8634542 Spottiswoode et al. Jan 2014 B2
8644490 Stewart Feb 2014 B2
8670548 Xie et al. Mar 2014 B2
8699694 Chishti et al. Apr 2014 B2
8712821 Spottiswoode Apr 2014 B2
8718271 Spottiswoode May 2014 B2
8724797 Chishti et al. May 2014 B2
8731178 Chishti et al. May 2014 B2
8737595 Chishti et al. May 2014 B2
8750488 Spottiswoode et al. Jun 2014 B2
8761380 Kohler et al. Jun 2014 B2
8781100 Spottiswoode et al. Jul 2014 B2
8781106 Afzal Jul 2014 B2
8787552 Zhao Jul 2014 B1
8792630 Chishti et al. Jul 2014 B2
8824658 Chishti Sep 2014 B2
8831207 Agarwal Sep 2014 B1
8879715 Spottiswoode et al. Nov 2014 B2
8903079 Xie et al. Dec 2014 B2
8913736 Kohler et al. Dec 2014 B2
8929537 Chishti et al. Jan 2015 B2
8995647 Li et al. Mar 2015 B2
9020137 Chishti et al. Apr 2015 B2
9025757 Spottiswoode et al. May 2015 B2
9215323 Chishti Dec 2015 B2
9277055 Spottiswoode et al. Mar 2016 B2
9300802 Chishti Mar 2016 B1
9313332 Kumar et al. Apr 2016 B1
9426296 Chishti et al. Aug 2016 B2
9692898 Chishti Jun 2017 B1
9712676 Chishti Jul 2017 B1
9712679 Chishti et al. Jul 2017 B2
9824130 Korshunov Nov 2017 B1
9930180 Kan et al. Mar 2018 B1
9942405 Kan et al. Apr 2018 B1
10135987 Chishti et al. Nov 2018 B1
20010032120 Stuart et al. Oct 2001 A1
20020018554 Jensen et al. Feb 2002 A1
20020046030 Haritsa et al. Apr 2002 A1
20020059164 Shtivelman May 2002 A1
20020082736 Lech et al. Jun 2002 A1
20020110234 Walker et al. Aug 2002 A1
20020111172 DeWolf et al. Aug 2002 A1
20020131399 Philonenko Sep 2002 A1
20020138285 DeCotiis et al. Sep 2002 A1
20020143599 Nourbakhsh et al. Oct 2002 A1
20020161765 Kundrot et al. Oct 2002 A1
20020184069 Kosiba et al. Dec 2002 A1
20020196845 Richards et al. Dec 2002 A1
20030002653 Uckun Jan 2003 A1
20030081757 Mengshoel et al. May 2003 A1
20030095652 Mengshoel et al. May 2003 A1
20030169870 Stanford Sep 2003 A1
20030174830 Boyer et al. Sep 2003 A1
20030217016 Pericle Nov 2003 A1
20040028211 Culp et al. Feb 2004 A1
20040057416 McCormack Mar 2004 A1
20040096050 Das et al. May 2004 A1
20040098274 Dezonno et al. May 2004 A1
20040101127 Dezonno et al. May 2004 A1
20040109555 Williams Jun 2004 A1
20040133434 Szlam et al. Jul 2004 A1
20040210475 Starnes et al. Oct 2004 A1
20040230438 Pasquale et al. Nov 2004 A1
20040267816 Russek Dec 2004 A1
20050013428 Walters Jan 2005 A1
20050043986 McConnell et al. Feb 2005 A1
20050047581 Shaffer et al. Mar 2005 A1
20050047582 Shaffer et al. Mar 2005 A1
20050071223 Jain et al. Mar 2005 A1
20050129212 Parker Jun 2005 A1
20050135593 Becerra et al. Jun 2005 A1
20050135596 Zhao Jun 2005 A1
20050187802 Koeppel Aug 2005 A1
20050195960 Shaffer et al. Sep 2005 A1
20050286709 Horton et al. Dec 2005 A1
20060098803 Bushey et al. May 2006 A1
20060110052 Finlayson May 2006 A1
20060124113 Roberts Jun 2006 A1
20060184040 Keller et al. Aug 2006 A1
20060222164 Contractor et al. Oct 2006 A1
20060233346 McIlwaine et al. Oct 2006 A1
20060262918 Karnalkar et al. Nov 2006 A1
20060262922 Margulies et al. Nov 2006 A1
20070036323 Travis Feb 2007 A1
20070071222 Flockhart et al. Mar 2007 A1
20070121602 Sin et al. May 2007 A1
20070121829 Tal et al. May 2007 A1
20070136342 Singhai et al. Jun 2007 A1
20070153996 Hansen Jul 2007 A1
20070154007 Bernhard Jul 2007 A1
20070174111 Anderson et al. Jul 2007 A1
20070198322 Bourne et al. Aug 2007 A1
20070219816 Van Luchene et al. Sep 2007 A1
20070274502 Brown Nov 2007 A1
20080002823 Fama et al. Jan 2008 A1
20080008309 Dezonno et al. Jan 2008 A1
20080046386 Pieraccinii et al. Feb 2008 A1
20080065476 Klein et al. Mar 2008 A1
20080118052 Houmaidi et al. May 2008 A1
20080152122 Idan et al. Jun 2008 A1
20080181389 Bourne et al. Jul 2008 A1
20080199000 Su et al. Aug 2008 A1
20080205611 Jordan et al. Aug 2008 A1
20080267386 Cooper Oct 2008 A1
20080273687 Knott et al. Nov 2008 A1
20090043670 Johansson et al. Feb 2009 A1
20090086933 Patel et al. Apr 2009 A1
20090190740 Chishti et al. Jul 2009 A1
20090190743 Spottiswoode Jul 2009 A1
20090190744 Xie et al. Jul 2009 A1
20090190745 Xie et al. Jul 2009 A1
20090190746 Chishti et al. Jul 2009 A1
20090190747 Spottiswoode Jul 2009 A1
20090190748 Chishti et al. Jul 2009 A1
20090190749 Xie et al. Jul 2009 A1
20090190750 Xie et al. Jul 2009 A1
20090232294 Xie et al. Sep 2009 A1
20090234710 Belgaied Hassine et al. Sep 2009 A1
20090245493 Chen et al. Oct 2009 A1
20090304172 Becerra et al. Dec 2009 A1
20090305172 Tanaka et al. Dec 2009 A1
20090318111 Desai et al. Dec 2009 A1
20090323921 Spottiswoode et al. Dec 2009 A1
20100020959 Spottiswoode Jan 2010 A1
20100020961 Spottiswoode Jan 2010 A1
20100054431 Jaiswal et al. Mar 2010 A1
20100054452 Afzal Mar 2010 A1
20100054453 Stewart Mar 2010 A1
20100086120 Brussat et al. Apr 2010 A1
20100111285 Chishti May 2010 A1
20100111286 Chishti May 2010 A1
20100111287 Xie et al. May 2010 A1
20100111288 Afzal et al. May 2010 A1
20100142689 Hansen et al. Jun 2010 A1
20100142698 Spottiswoode et al. Jun 2010 A1
20100158238 Saushkin Jun 2010 A1
20100183138 Spottiswoode et al. Jul 2010 A1
20100303225 Shashkov Dec 2010 A1
20110022357 Vock et al. Jan 2011 A1
20110031112 Birang et al. Feb 2011 A1
20110069821 Korolev et al. Mar 2011 A1
20110125048 Causevic et al. May 2011 A1
20110310773 Iyengar et al. Dec 2011 A1
20120051536 Chishti et al. Mar 2012 A1
20120051537 Chishti et al. Mar 2012 A1
20120224680 Spottiswoode et al. Sep 2012 A1
20120278136 Flockhart et al. Nov 2012 A1
20130003959 Nishikawa et al. Jan 2013 A1
20130022195 Nimmagadda Jan 2013 A1
20130251137 Chishti et al. Sep 2013 A1
20130287202 Flockhart et al. Oct 2013 A1
20140044246 Klemm et al. Feb 2014 A1
20140079210 Kohler et al. Mar 2014 A1
20140119531 Tuchman et al. May 2014 A1
20140119533 Spottiswoode et al. May 2014 A1
20140334619 Placiakis Nov 2014 A1
20140341370 Li et al. Nov 2014 A1
20150055772 Klemm et al. Feb 2015 A1
20150237209 Chishti Aug 2015 A1
20150281448 Putra et al. Oct 2015 A1
20160080573 Chishti Mar 2016 A1
20160295020 Shaffer Oct 2016 A1
20170064080 Chishti et al. Mar 2017 A1
20170064081 Chishti et al. Mar 2017 A1
20180054525 Mezhibovsky Feb 2018 A1
20200014801 Mohiuddin Jan 2020 A1
Foreign Referenced Citations (65)
Number Date Country
2008349500 May 2014 AU
2009209317 May 2014 AU
2009311534 Aug 2014 AU
2015203175 Jul 2015 AU
2015243001 Nov 2015 AU
101093590 Dec 2007 CN
102164073 Aug 2011 CN
102390184 Mar 2012 CN
102555536 Jul 2012 CN
202965525 Jun 2013 CN
203311505 Nov 2013 CN
102301688 May 2014 CN
102017591 Nov 2014 CN
0493292 Jul 1992 EP
0863651 Sep 1998 EP
0949793 Oct 1999 EP
1011974 Jun 2000 EP
1032188 Aug 2000 EP
1107557 Jun 2001 EP
1335572 Aug 2003 EP
2339643 Feb 2000 GB
11-098252 Apr 1999 JP
2000-069168 Mar 2000 JP
2000-078291 Mar 2000 JP
2000-078292 Mar 2000 JP
2000-092213 Mar 2000 JP
2000-507420 Jun 2000 JP
2000-236393 Aug 2000 JP
2000-253154 Sep 2000 JP
2001-292236 Oct 2001 JP
2001-518753 Oct 2001 JP
2002-297900 Oct 2002 JP
3366565 Jan 2003 JP
2003-187061 Jul 2003 JP
2004-056517 Feb 2004 JP
2004-227228 Aug 2004 JP
2006-345132 Dec 2006 JP
2007-324708 Dec 2007 JP
2009-081627 Apr 2009 JP
2011-511533 Apr 2011 JP
2011-511536 Apr 2011 JP
2012-075146 Apr 2012 JP
5421928 Feb 2014 JP
5631326 Nov 2014 JP
5649575 Jan 2015 JP
2015-514371 May 2015 JP
316118 Dec 2013 MX
322251 Jul 2014 MX
587100 Oct 2013 NZ
587101 Oct 2013 NZ
591486 Jan 2014 NZ
592781 Mar 2014 NZ
1-2010-501704 Feb 2014 PH
1-2010-501705 Feb 2015 PH
WO-199917517 Apr 1999 WO
WO-0070849 Nov 2000 WO
WO-2001063894 Aug 2001 WO
WO-2006124113 Nov 2006 WO
WO-2008124113 Oct 2008 WO
WO-2009097018 Aug 2009 WO
WO-2009097210 Aug 2009 WO
WO-2010053701 May 2010 WO
WO-2011081514 Jul 2011 WO
WO-2013148453 Oct 2013 WO
WO-2016048290 Mar 2016 WO
Non-Patent Literature Citations (16)
Entry
D. Shukla, “A Markov Chain Model for the Analysis of Round-Robin Scheduling Scheme”, Journal of Advanced Networking and Applicationsvol. 01 No. 01 pp. 1-7 (2009) (Year: 2009).
Gans, N., & Zhou, Y., “Call-Routing Schemes for Call-Center Outsourcing”, Manufacturing & Service Operations Management, 9 (1), 33-50. http://dx.doi.org/10.1287/msom. 1060.0119, University of Pennsylvania. 2005. (Year: 2005).
Mor Armo, “Fair Dynamic Routing in Large-Scale Heterogeneous-Server Systems” Informs, Operations Research vol. 58, No. 3, May-Jun. 2010, pp. 624-637 ISSN 0030-364X | eissn 1526-5463 1 10 1 5803 1 0624. (Year: 2010).
Anonymous. (2006) “Performance Based Routing in Profit Call Centers,” The Decision Makers' Direct, located at www.decisioncraft.com, Issue Jun. 2002 (3 pages).
Cleveland, William S., “Robust Locally Weighted Regression and Smoothing Scatterplots,” Journal of the American Statistical Association, vol. 74, No. 368, pp. 829-836 (Dec. 1979) (8 pages).
Cormen, T. H., et al., “Introduction to Algorithms,” 3rd Edition, Chapter 26 Maximum Flow, pp. 708-766 and Chapter 29 Linear Programming, pp. 843-897 (2009) (116 pages).
D. Shukla, “A Markov Chain Model for the Analysis of Round-Robin Scheduling Scheme”, Journal of Advanced Networking and Applications, vol. 1, No. 1, pp. 1-7 (2009) (Year: 2009).
Gans, N. & Zhou, Y., “Call-Routing Schemes for Call-Center Outsourcing”, Manufacturing & Service Operations Management, 9(1) , pp. 33-50. http://dx.doi.org/10.1287/msom.1060.0119, University of Pennsylvania. 2005 (Year: 2005).
Gans, N. et al., “Telephone Call Centers: Tutorial, Review and Research Prospects,” Manufacturing & Service Operations Management, vol. 5, No. 2, 2003, pp. 79-141, (84 pages).
Koole, G. (2004). “Performance Analysis and Optimization in Customer Contact Centers,” Proceedings of the Quantitative Evaluation of Systems, First International Conference, Sep. 27-30, 2004 (4 pages).
Koole, G. et al., “An Overview of Routing and Staffing Algorithms in Multi-Skill Customer Contact Centers,” Manuscript, Mar. 6, 2006, (42 pages).
Nocedal, J. and Wright, S. J., “Numerical Optimization,” Chapter 16 Quadratic Programming, pp. 448-496 (2006) 50 pages.
Ntzoufras, “Bayesian Modeling Using Winbugs”. Wiley Interscience, Chapter 5, Normal Regression Models, Oct. 18, 2007, Redacted version, pp. 155-220 (67 pages).
Press, W. H. and Rybicki, G. B., “Fast Algorithm for Spectral Analysis of Unevenly Sampled Data,” The Astrophysical Journal, vol. 338, pp. 277-280 (Mar. 1, 1989) (4 pages).
Riedmiller, M. et al. (1993). “A Direct Adaptive Method for Faster Back Propagation Learning: The RPROP Algorithm,” 1993 IEEE International Conference on Neural Networks, San Francisco, CA, Mar. 28-Apr. 1, 1993, 1:586-591 (8 pages).
Stanley et al., “Improving Call Center Operations Using Performance-Based Routing Strategies,” California Journal of Operations Management, 6(1), 24-32, Feb. 2008; retrieved from http://userwww.sfsu.edu/saltzman/Publist.html (9 pages).
Related Publications (1)
Number Date Country
20220129827 A1 Apr 2022 US
Continuations (1)
Number Date Country
Parent 15993498 May 2018 US
Child 17572030 US