The present disclosure relates to a telescopic axle assembly for a driven steerable wheel.
Tractors are used in North America for row crop farming. Such a tractor should be able to have wheel tread spacings to accommodate crops grown in 30 inch row spacings, such as corn and soybeans. Larger and more powerful tractors require larger tire sizes to support the increased weight and to prevent soil compaction. As front tires increase in diameter on the steerable front axle, the maximum tractor turn angle decreases because the tire will contact the chassis of the tractor when adjusted to a 60 inch tread setting. In such cases, the maximum turn angle can be increased by moving the tires outwardly and away the tractor chassis. But, this results in a larger wheel spacing, and such a larger wheel spacing may make the tractor too wide for transporting along a road or highway. Thus, it is desired to provide a mechanism which can temporarily increase the maximum turn angle by increasing wheel spacing, such as during a turn.
According to an aspect of the present disclosure, a telescopic axle assembly is provided for a driven steerable wheel. The axle assembly includes a knuckle housing pivotally mounted to a vehicle frame. A drive shaft is rotatably received by the knuckle housing. The drive shaft extends through the knuckle housing. A first wheel hub housing is slidably coupled to the knuckle housing. A second wheel hub housing is rotatably mounted to the first wheel hub housing. A transmission transmits torque between the drive shaft and the second wheel hub housing. An actuator axially moves the wheel hub housings with respect to the knuckle housing and the drive shaft.
The actuator includes a plurality of hydraulic cylinders which are coupled between the knuckle housing and the first wheel hub housing. Each hydraulic cylinder includes a hollow piston sleeve which projects from the knuckle housing, and a piston shaft which is slidably and sealingly received by the piston sleeve. Each piston shaft projects from the first wheel hub housing.
A hollow shaft is axially fixed with respect to the wheel hub housings. The hollow shaft has a sun gear formed on an outer surface thereof. The hollow shaft slidably receives the drive shaft, and the hollow shaft has inner splines which slidably and meshingly engage outer gear teeth formed on the drive shaft. A ring gear is supported on the first wheel hub housing. A planet gear is meshingly coupled with the ring gear and with the sun gear.
The hub assembly can be extended to provide a wider wheel tread spacing during a turn which allows more clearance between the tires and the vehicle body. This permits a greater wheel turn angle, and therefore a shorter turn radius for the vehicle. In row crop farming the operator begins to turn the tractor and reverse direction at the field headland. The wider front wheel tread should occur at the headland when the operator is crossing turn rows. This extension should be initiated when the turn angle exceeds a value where beyond this value interference would occur. As the tractor completes the turn and is headed back in the opposite direction the front wheels should be returned to their original narrower spacing to fit between the spaced row crops. A linear position sensor can be placed on each telescopic hub for feedback and control of the hydraulic cylinders used to extend it. Since resistance force to extending the two telescopic hubs may vary, control logic can be used to compare the position of each and use a flow divider in the hydraulic circuit to ‘pulse’ hydraulic flow to the hub which is not in ‘sync’ with the other.
At least one example embodiment of the subject matter of this disclosure is understood by referring to
Referring to
Referring to
The wheel hub assembly 10 also includes a non-rotating generally cylindrical hollow first wheel hub housing 30 and a rotating generally cylindrical hollow second wheel hub housing 32. The first wheel hub housing 30 includes a generally cylindrical main housing 31 and a plurality of piston members 34, 36 and 38 which are arranged around the outer periphery of the main housing 31. Each piston member 34, 36 and 38 is slidably received by a corresponding one of the cylinder housings 24, 26 and 28. The wheel hub housing 32 is adapted to mount to a wheel and tire assembly (not shown).
Referring now to
The first wheel hub housing 30 includes a hollow central hub 56 and an outer flange 58. A central bore 60 extends axially through the hub 56 which slidably receives the sleeve 54.
The second wheel hub housing 32 includes a hollow first part 62 fixed to a hollow second part 64. The first part 62 is supported for rotation on the hub 56 by bearing 66. The first part 62 is also supported for rotation by bearing 68. The second part 64 has a circular end plate 70 and an outer rim 72. A hollow ring gear hub 65 has a hollow hub 67 and a circular plate 69. Hub 67 is non-rotatably mounted or splined to the hub 56 and supports bearing 68. The outer portion of plate 69 is splined to the non-rotating ring gear 74. A sun gear 76 is trapped to move axially with the planet gears 86 due to the bolt 78 and washer 106 at its outboard end and the shoulder 107 on its inboard side. A hollow sun gear shaft 80 extends axially away from the sun gear 76 and towards the drive shaft 50. Internal splines or gear teeth 82 are formed on an inner surface of sun gear shaft 80. Splines 82 slidingly and meshingly engage outer splines 84 formed on an outer surface of the drive shaft 50. Planet gears 86 are mounted for rotation on planet shafts 88 which protrude from the end plate 70. The planet gears 86 engage the non-rotating ring gear 74. The planet gears 86 are prevented from sliding off the ends of the planet shafts 88 by retainers 108 and screws 109. Thus, rotation of the drive shaft 50 also causes the planet gears 86 to orbit, and causes rotation of the wheel hub housing 32.
As best seen in
The result is a hydraulically actuated telescopic wheel hub assembly which may be attached to the ends of a mechanically driven steerable front axle with independent suspension for a vehicle. The hub can be extended to provide a wider spacing of the wheels which in turn allows a larger wheel turn angle and smaller vehicle turn radius. Thus, with this invention the maximum turn angle can be increased by extending the telescopic wheel hub to increase wheel spacing only during a turn to provide clearance with respect to the chassis. This wheel spacing increase can be initiated when the turn angle exceeds the angle at which interference would otherwise occur. The telescopic wheel hub can be retracted to decrease the wheel spacing and decrease turn clearance when the turn angle decreases below the initiation value. This invention may also be used to increase wheel spacing to improve the stability of a tractor with any tread spacing.
Two of these wheel hub assemblies may be mounted on the ends of a steerable mechanical front wheel drive axle. The extension of the hub assembly may be initiated by a rotary potentiometer (not shown) which measures the wheel position or turn angle. During the extension of the hub housing 32 must extend. This is done by having the sun gear 76 extend with the hub housing 32 on the splined driveshaft 50. The position of the CV joint 52 of the drive line 12 is held fixed with respect to the axis of the kingpin 18. The tractor weight at each wheel is supported by three piston shafts 34, 36 and 38 which are received by cylinder housings 24, 26 and 28 which are part of the knuckle housing 16. Thus, the steering cylinder and tie rods do not have to change length as the hubs (wheels) are extended and steered.
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such illustration and description is to be considered as exemplary and not restrictive in character, it being understood that illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected. It will be noted that alternative embodiments of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations that incorporate one or more of the features of the present disclosure and fall within the spirit and scope of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2151045 | Ploehn | Mar 1939 | A |
4986386 | Iwamoto | Jan 1991 | A |
5121808 | Visentini | Jun 1992 | A |
5236059 | Overocker | Aug 1993 | A |
5464243 | Maiwald | Nov 1995 | A |
5489114 | Ward | Feb 1996 | A |
6199769 | Weddle | Mar 2001 | B1 |
6206125 | Weddle | Mar 2001 | B1 |
6386554 | Weddle | May 2002 | B1 |
6715576 | Filho | Apr 2004 | B2 |
8398179 | Mackin et al. | Mar 2013 | B2 |
9156312 | Ruggeri | Oct 2015 | B1 |
20010054525 | Honzek | Dec 2001 | A1 |
20030020324 | Radke | Jan 2003 | A1 |
20040130114 | Weichholdt | Jul 2004 | A1 |
20100075727 | Coers | Mar 2010 | A1 |
20110133416 | Hiddema | Jun 2011 | A1 |
20110272905 | Mackin | Nov 2011 | A1 |
20110273003 | Mackin | Nov 2011 | A1 |
20160096407 | Dames | Apr 2016 | A1 |
20160096547 | Dames | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2005068278 | Jul 2005 | WO |