1. Field of the Invention
The present invention relates to a temperature-compensated crystal oscillator (TCXO) which is incorporated in devices such as portable telephones, and more particularly to a temperature-compensated crystal oscillator which reduces fluctuation in the oscillated frequency which is caused by an electromagnetic field produced at an antenna.
2. Description of the Related Art
Temperature-compensated crystal oscillators, in which variation in oscillation frequency that arises from the frequency-temperature characteristic of the quartz-crystal unit is compensated, find particularly wide use in devices such as portable telephones used in a mobile environment. In such devices, temperature-compensated crystal oscillators are used as, for example, the reference frequency sources of PLL (Phase Locked Loop) circuits which output the communication frequency signal. In such applications, the occurrence of phase error in the communication frequency or carrier frequency between base station and portable telephone causes breakdowns of communication, and the frequency stability of a temperature-compensated crystal oscillator is therefore crucial.
Referring to
Crystal unit 1 uses, for example, an AT-cut quartz-crystal blank. Crystal unit 1 which employs an AT-cut crystal blank has a frequency-temperature characteristic which can be represented by a cubic function having an inflection point in the vicinity of normal temperature, as shown in
IC 2, on the other hand, is a device in which are integrated voltage-controlled crystal oscillator 3, temperature compensation circuit 4, and AFC (automatic frequency control) input circuit 5 that receives as input an AFC voltage. Voltage-controlled crystal oscillator 3 includes crystal unit 1, oscillation circuit 7 which uses crystal unit 1, and voltage-variable capacitance element 6 which is inserted in an oscillation closed-loop. Crystal unit 1 is provided outside IC 2, i.e., independent of IC 2. Oscillation circuit 7 is provided with an oscillation capacitor (not shown in the figure) which forms a resonance circuit (i.e., the oscillation closed loop) together with crystal unit 1, and an oscillation amplifier (not shown in the figure) which feeds back and amplifies the resonant frequency component of the resonance circuit. As will be explained hereinbelow, a control voltage is applied to the cathode of voltage-variable capacitance element 6.
Temperature compensation circuit 4 is provided with temperature sensor 8 which detects the ambient temperature and outputs the temperature information as an electrical signal, and voltage generation circuit 9 which generates a temperature-compensation voltage based on the signal from temperature sensor 8. The temperature-compensation voltage is a voltage which varies as a cubic function with respect to the ambient temperature. The temperature-compensation voltage is applied to the cathode of voltage-variable capacitance element 6 by way of high-frequency blocking resistor 15. As a result, the equivalent serial capacitance of the oscillation closed-loop varies as seen from crystal unit 1 in accordance with the temperature-compensation voltage, the oscillation frequency of crystal oscillator 3 varies, the temperature dependence of the oscillation frequency of crystal oscillator 3 is compensated, and the oscillation frequency is kept uniform with respect to changes in the ambient temperature. The oscillation frequency of crystal oscillator 3 is dependent upon crystal unit 1 and therefore has a cubic function frequency-temperature characteristic similar to that of crystal unit 1 (see
This temperature-compensated crystal oscillator is loaded by, for example, surface mounting on the printed wiring board of a portable telephone, but various other communication circuits are loaded on this printed wiring board in addition to the temperature-compensated crystal oscillator. Of these communication circuits, the AFC circuit supplies the AFC voltage to AFC input circuit 5 of the temperature-compensated crystal oscillator. AFC input circuit 5 applies a voltage that accords with the supplied AFC voltage to voltage-variable capacitance element 6 by way of high-frequency blocking resistor 15 as with the case for the temperature-compensation voltage. Further, of the communication circuits, the AFC circuit receives radio waves from a relay base station, compares the frequency of these radio waves with the oscillation frequency of the temperature-compensated crystal oscillator, and controls the reference oscillation frequency (i.e., nominal frequency) of the temperature-compensated crystal oscillator, for example, the oscillation frequency at 25° C., such that it corresponds with the radio waves from the base station.
In IC 2, voltage-controlled crystal oscillator 3, temperature-compensation circuit 4, and AFC input circuit 5 are driven by a voltage that is obtained from a power supply voltage by way of constant voltage circuit 10 in IC 2. In addition, power supply terminal Vcc, output terminal Vo, AFC voltage input terminal Vf, and ground terminal GND are formed so as to be exposed on one principal-surface of IC 2.
IC 2 is normally provided with protection circuit 11 for preventing electrostatic breakdown of IC 2 due to the application of surge voltage, i.e., an instantaneous high voltage, to the various terminals other than the ground terminal. Protection circuit 11 is a circuit in which, for example, the midpoint of a pair of protection diodes 22a and 22b connected in series is connected to a corresponding terminal and which has its anode connected to the grounding point and its cathode connected to the power supply line, as shown in
IC 2, in which each of these circuits is integrated as described in the foregoing explanation, and crystal unit 1 are accommodated in, for example, a container for surface mounting and constitute a practical temperature-compensated crystal oscillator. As shown in
However, when the temperature-compensated crystal oscillator of the above-described configuration is mounted on a printed wiring board in a portable telephone and put into use, the phenomenon occurs that the frequency stability of the reference oscillation frequency deteriorates. Regarding this point, we investigated the portable telephone as the cause of the problem and found that, although no abnormality occurred during oscillation of the temperature-compensated crystal oscillator while the operation of the portable telephone was halted, the frequency stability deteriorated when the portable telephone was placed in operation and high-level radio waves were radiated from the antenna. Further, when the oscillation frequency of the temperature-compensated crystal oscillator changes, the output frequency (i.e., communication frequency) of a PLL circuit which is set as a multiple n (n being an integer) of this reference signal source also changes, imitating the frequency fluctuation of the reference signal source. Although the AFC circuit in the portable telephone changes the AFC voltage Vf in the direction of oscillation frequency with the reference frequency of the base station to thereby correct the output frequency of the temperature-compensated crystal oscillator when such variation occurs, transitory phase change, i.e., phase error, still occurs. The occurrence of phase error has the unwanted effect of preventing communication, and the occurrence of phase error must therefore be suppressed.
It is an object of the present invention to provide a temperature-compensated crystal oscillator that effectively maintains frequency stability and that thereby suppresses the occurrence of phase error.
The object of the present invention is achieved by arranging, in an IC in a temperature-compensated crystal oscillator according to the foregoing explanation, a damping resistor connected to at least one of the power supply terminal, the output terminal and the automatic frequency control voltage input terminal for reducing a Q factor of a parasitic resonance circuit which includes the corresponding terminal. This damping resistor is preferably inserted between a protection diode for preventing electrostatic breakdown which is provided connected to each respective terminal of the IC and the corresponding terminal.
Explanation next regards the results of an investigation conducted by us for achieving the object of the present invention. We have searched for the causes of deterioration in frequency stability as described hereinabove, and as a result of continued research, have come to the following conclusions, whereby the present invention was completed.
When a temperature-compensated crystal oscillator is mounted by securing with solder to a printed wiring board, wiring paths on the wiring board as shown in
The communication frequency of a portable telephone that is outputted from the PLL circuit that takes a temperature-compensated crystal oscillator as the reference signal source is, for example, a high frequency in 900 MHz band or 1.9 GHz band. The electromagnetic field that is thus excited by the portable telephone antenna for radiating radio waves causes resonance with the terminal resonance circuit and thus induces a high-frequency current i0 which penetrates into IC 2 from each terminal. The letters A and B in the figure indicate the directions of the electromagnetic field. According to our views, the high-frequency current i0 which resonates with the terminal resonance circuits influences components in IC 2 such as power supply circuit including constant-voltage circuit 10, oscillation circuit 7 including an oscillation amplifier, temperature-compensation circuit 4 and AFC input circuit 5, and therefore causes deterioration of frequency stability. In particular, the high-frequency current i0 is rectified by nonlinear elements such as diodes and transistors in IC 2 and generates a dc component. This dc component is then applied to, for example, voltage-variable capacitance element 6, and this input is believed to cause the reference oscillation frequency to change.
Based on this study, we believe that decreasing the acuteness of resonance (i.e., Q factor) of the terminal resonance circuit can prevent penetration into IC 2 by the high-frequency current that is caused by the electromagnetic field, can relatively reduce the resonance level, and can mitigate the influence upon each circuit in IC 2 and thus effectively maintain the frequency stability. We have therefore arrived at the present invention in which damping resistors are provided at each terminal in IC 2 to reduce the Q factor of the parasitic resonance circuits.
As described in the foregoing explanation, according to the present invention, connecting a damping resistor to at least one terminal of the power supply terminal, output terminal, and AFC input terminal of an IC reduces the acuteness of resonance of the parasitic resonance circuits of the terminal and prevents a high-frequency current that is caused by the electromagnetic field from the antenna of a portable telephone from penetrating into the IC. As a result, the present invention can provide a temperature-compensated crystal oscillator that effectively maintains frequency stability.
Referring now to
The temperature-compensated crystal oscillator shown in
Explanation next regards the improvement in the frequency stability of the temperature-compensated crystal oscillator that is realized by this provision of damping resistors 16. Here, the characteristics of frequency change were investigated for each of the temperature-compensated crystal oscillator of the configuration shown in
Furthermore, as shown in
As shown in
As is obvious from the results of this comparative experiment, the frequency change characteristic in the temperature-compensated crystal oscillator of the prior art is a shape having a maximum at 1.6 GHz in the range from 1.4 up to 1.8 GHz, and these results indicate the existence of some type of resonance phenomenon. In other words, as previously explained, it is inferred that the stray capacitance in the vicinity of each of the terminals (e.g., power supply terminal Vcc, output terminal Vo, and AFC input terminal Vf) of IC 2 and the inductance component produced by mounting the temperature-compensated crystal oscillator form a terminal resonance circuit. It is considered that when the antenna frequency approaches the resonance frequency that is produced by the terminal resonance circuits, the electromagnetic field that is produced by the high-frequency power supplied to the antenna invades the interior of IC 2 from each of the terminals of IC 2 by way of the terminal resonance circuits and is rectified by nonlinear elements in IC 2, following which the resulting dc component is added to, for example, the temperature-compensated voltage. It is considered that, compared to the temperature-compensated voltage that is applied to the voltage-variable capacitance element during the oscillation at the reference oscillation frequency, an excessive voltage is applied to the voltage variable capacitance element, thereby bringing about frequency change.
In the experiment shown here, the resonant frequency of the terminal resonance circuits is 1.8 GHz, and this differs from 900 MHz or 1.9 GHz, which are the actual communication frequencies in a portable telephone. Although it is considered that the influence exercised by the high-frequency power which is supplied to the antenna upon the oscillation frequency is reduced when the communication frequency diverges from the resonance frequency of the terminal resonance circuits, it is considered that a large amount of frequency change is produced in the configuration of the prior art when the resonant frequency matches or approaches the antenna frequency because the resonant frequency of the terminal resonance circuits changes randomly according to the state of mounting or the wiring pattern and wiring length on the printed wiring board.
In the temperature-compensated crystal oscillator of the present embodiment, damping resistors 16 are connected between each of the terminals (power supply terminal Vcc, output terminal Vo, and AFC input terminal Vf) of IC 2 and protection circuits 11 made up by protection diodes, whereby damping resistors 16 are equivalently inserted between the parasitic capacitance C22 of protection diodes 22 and inductance L due to the mounting as shown in
These factors result in excellent frequency stability and phase characteristics in the communication frequency, which is the output from the PLL circuit that takes the oscillation frequency from the temperature-compensated crystal oscillator of the present embodiment as the reference signal source, and phase error with the base station is therefore prevented. Here,
Although damping resistors 16 were provided at all terminals other than the ground terminal GND of IC 2, i.e., power supply terminal Vcc, output terminal Vo, and AFC input terminal Vf, in the temperature-compensated crystal oscillator according to the above-described preferable embodiment of the present invention, the present invention is not limited to this form. The effects of the present invention are exhibited even when damping resistor 16 is connected at only one of these terminals.
When damping resistor 16 was connected to only one terminal as shown in
Although only the parasitic capacitance of protection diodes was shown as the capacitance component that constitutes the terminal resonance circuit in the foregoing explanation, it should be obvious that other stray capacitance may be included in the capacitance component of the terminal resonance circuits. Further, although damping resistors 16 were formed inside IC 2 in the above-described embodiment, a similar effect can be obtained by connecting damping resistors outside the IC as long as the damping resistors are within the range of resonance circuits that are parasitic to the terminals of IC 2.
Number | Date | Country | Kind |
---|---|---|---|
2001-319773 | Oct 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4048584 | Ulmer | Sep 1977 | A |
6147564 | Nakamiya et al. | Nov 2000 | A |
Number | Date | Country | |
---|---|---|---|
20030071696 A1 | Apr 2003 | US |