Temperature control system

Abstract
A system including: (i) a semiconductor device; (ii) a thermoelectric controller for controlling the temperature of the semiconductor device; (iii) an electrical power supply for powering the thermoelectric controller; (iv) a first device capable of determining both a direction and a magnitude of current through the thermoelectric controller; (v) a second device also capable of determining a magnitude of current through the thermoelectric controller; and (vi) a controller for controlling the first and second devices on the basis of an electrical indicator of the temperature of the semiconductor device so as to achieve a desired direction and magnitude of current through the thermoelectric controller at a level of power consumption lower than could be achieved using the first device alone.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention and to show how the same may be put into effect, reference will now be made, by way of example, to the following drawings in which:



FIG. 1 shows a known TEC control system; and



FIG. 2 shows a laser system according to an embodiment of the present invention.


Claims
  • 1. A system including: (i) a semiconductor device; (ii) a thermoelectric controller for controlling the temperature of the semiconductor device; (iii) an electrical power supply for powering the thermoelectric controller; (iv) a first device capable of determining both a direction and a magnitude of current through the thermoelectric controller; (v) a second device also capable of determining a magnitude of current through the thermoelectric controller; and (vi) a controller for controlling the first and second devices on the basis of an electrical indicator of the temperature of the semiconductor device so as to achieve a desired direction and magnitude of current through the thermoelectric controller at a level of power consumption lower than could be achieved using the first device alone.
  • 2. A system according to claim 1, wherein the semiconductor device is a laser.
  • 3. A system according to claim 1, wherein the second device is a DC-DC converter.
  • 4. A system according claim 1, wherein the first device comprises first, second, third and fourth transistors; said first and second transistors are connected in parallel to the power supply in parallel with the third and fourth transistors; and wherein the first and third transistors are connected in series to the thermoelectric controller and the second and fourth transistors are also connected in series to the thermoelectric controller.
  • 5. A system according to claim 4, wherein the controller is a microprocessor and controls the second device and the first, second, third and fourth transistors via respective digital-analogue converters.
  • 6. A method for controlling the temperature of a semiconductor device using a thermoelectric controller, using a first device capable of determining both a magnitude and a direction of current through the thermoelectric controller; the method including the steps of providing a second device also capable of determining a magnitude of current through the thermoelectric controller, and controlling the first and second devices to achieve a desired direction and magnitude of current through the thermoelectric controller at a level of electric power consumption lower than could be achieved using the first device alone.
  • 7. A system including: (i) a semiconductor device; (ii) a thermoelectric controller for controlling the temperature of the semiconductor device; (iii) an electrical power supply for powering the thermoelectric controller; (iv) a first device capable of determining the direction of current through the thermoelectric controller; (v) a second device separate from the first device and capable of determining a magnitude of current through the thermoelectric controller; and a controller for controlling the first and second devices on the basis of an electrical indicator of the temperature of the semiconductor device.
  • 8. A controller for controlling the temperature of a semiconductor device using a thermoelectric controller, wherein said controller is arranged to control a first device capable of determining both a magnitude and a direction of current through the thermoelectric controller and a second device also capable of determining a magnitude of current through the thermoelectric controller, on the basis of an electrical indicator of the temperature of the semiconductor device so as to achieve a desired direction and magnitude of current through the thermoelectric controller at a level of power consumption lower than could be achieved using the first device alone.
  • 9. An electronic circuit for controlling the temperature of a semiconductor device using a thermoelectric controller, the electronic circuit including: a first device capable of determining both a direction and a magnitude of current through the thermoelectric controller; a second device also capable of determining a magnitude of current through the thermoelectric controller; and a controller for controlling the first and second devices on the basis of an electrical indicator of the temperature of the semiconductor device so as to achieve a desired direction and magnitude of current through the thermoelectric controller at a level of power consumption lower than could be achieved using the first device alone.
  • 10. A computer program product comprising program code means which when loaded into a computer controls the computer to carry out the method step of claim 6 of controlling the first and second devices to achieve a desired direction and magnitude of current through the thermoelectric controller at a level of electric power consumption lower than could be achieved using the first device alone.
Priority Claims (1)
Number Date Country Kind
0600766.0 Jan 2006 GB national