A portable container including an integral controlled evaporative cooling system, can include: an internal storage container wall sealed to an internal storage container bottom, the internal storage container wall and the internal storage container bottom positioned to form a storage container with an access aperture; an external storage container wall sealed to an external storage container bottom, the external storage container wall positioned adjacent to the internal storage container wall and the external storage container bottom positioned adjacent to the internal storage container bottom, an edge of the exterior storage container wall sealed to the internal storage container wall to form a vapor-sealed evaporative region between the external storage container wall and the external storage container bottom and the internal storage container wall and the internal storage container bottom; a first insulation wall sealed to a first insulation bottom of a size and shape to be positioned adjacent to an exterior surface of the external storage container wall and the external storage container bottom; a second insulation wall sealed to a second insulation bottom of a size and shape to be positioned adjacent to the first insulation wall, the second insulation wall sealed to the first insulation wall to form an insulation region between the first and second insulation walls and the first and second insulation bottoms; a desiccant region wall sealed to a desiccant region bottom of a size and shape to be positioned adjacent to an exterior surface of the second insulation wall and the second insulation bottom to form an exterior surface of the portable container, the desiccant region wall sealed to the exterior surface of the insulation wall to form a vapor-sealed desiccant region; a vapor conduit with a first end positioned within the vapor-sealed evaporative region, and a second end positioned within the vapor-sealed desiccant region; and a vapor control unit attached to the vapor conduit.
Components of a portable container including an integral controlled evaporative cooling system can include: a storage container with an internal evaporative region, including; an internal storage container wall sealed to an internal storage container bottom, the internal storage container wall and the internal storage container bottom positioned to form a storage container with an access aperture, an external storage container wall sealed to an external storage container bottom, the external storage container wall positioned adjacent to the internal storage container wall and the external storage container bottom positioned adjacent to the internal storage container bottom, an edge of the exterior storage container wall sealed to the internal storage container wall to form an evaporative region between the external storage container wall and the external storage container bottom and the internal storage container wall and the internal storage container bottom, a vapor conduit with a first end positioned within the vapor-sealed evaporative region, and a second end positioned adjacent to the external storage container wall in the exterior of the evaporative region, and a vapor control unit attached to the first end of the vapor conduit; and a desiccant container with an insulation region, including; a first insulation wall sealed to a first insulation bottom of a size and shape to be positioned adjacent to an exterior surface of the storage container with minimal space between the containers, a second insulation wall sealed to a second insulation bottom of a size and shape to be positioned adjacent to the first insulation wall, the second insulation wall sealed to the first insulation wall to form an insulation region between the first and second insulation walls and the first and second insulation bottoms, a desiccant region wall sealed to a desiccant region bottom of a size and shape to be positioned adjacent to an exterior surface of the second insulation wall and the second insulation bottom to form an exterior surface of the portable container, the desiccant region wall sealed to the exterior surface of the insulation wall to form a desiccant region, and an aperture in the desiccant container, the aperture of a size, shape and position to mate with the exterior of the second end of the vapor conduit.
A method of manufacture of a portable container including an integral controlled evaporative cooling system can include the steps of: positioning a storage container with an internal evaporative region, including; an internal storage container wall sealed to an internal storage container bottom, the internal storage container wall and the internal storage container bottom positioned to form a storage container with an access aperture, an external storage container wall sealed to an external storage container bottom, the external storage container wall positioned adjacent to the internal storage container wall and the external storage container bottom positioned adjacent to the internal storage container bottom, an edge of the exterior storage container wall sealed to the internal storage container wall to form an evaporative region between the external storage container wall and the external storage container bottom and the internal storage container wall and the internal storage container bottom, a vapor conduit with a first end positioned within the evaporative region, and a second end positioned adjacent to the external storage container wall in the exterior of the evaporative region, and a vapor control unit attached to the first end of the vapor conduit, within a desiccant container with an insulation region, including; a first insulation wall sealed to a first insulation bottom of a size and shape to be positioned adjacent to an exterior surface of the storage container with minimal space between the containers, a second insulation wall sealed to a second insulation bottom of a size and shape to be positioned adjacent to the first insulation wall, the second insulation wall sealed to the first insulation wall to form an insulation region between the first and second insulation walls and the first and second insulation bottoms, a desiccant region wall positioned adjacent to an exterior surface of the second insulation wall and sealed to the exterior surface of the insulation wall to form a desiccant region, the desiccant region wall positioned to form an exterior surface of the portable container, and an aperture in the desiccant container, the aperture of a size, shape and position to mate with the exterior of the second end of the vapor conduit; sealing the second end of the vapor conduit to the aperture in the desiccant container with a gas-impermeable seal; and evacuating the interior of a space within the container defined by the evaporative region, an interior of the vapor conduit, and an interior of the desiccant region.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar or identical components, unless context dictates otherwise. Features of the drawings are presented for purposes of illustration and may not be drawn to scale. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
Portable containers described herein include controlled evaporative cooling systems integral to the container. The portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range over a period of time, measured in days or weeks. Portable containers with integrated evaporative cooling systems may be suitable, for example, for use with medicinal agents such as vaccines, where the storage temperature must be held in a temperature range above 0 degrees Centigrade to prevent freezing of the stored material, but below a maximum temperature required for a specific medicinal agent (e.g. 8 degrees C., 10 degrees C. or 15 degrees C.). For example, in an embodiment, a portable container with an integrated evaporative cooling system can be calibrated and controlled to maintain the interior storage region in the approved temperature range for vaccine storage (e.g. between 2 degrees C. and 8 degrees C.) for the time required to carry out an outreach medical trip in a remote region (e.g. 5 days) in an ambient temperature varying in a range between 25 degrees C. and 43 degrees C.
In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for at least one day (e.g. at least 24 hours). In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for at least 2 days (e.g. at least 48 hours). In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for at least 3 days (e.g. at least 72 hours). In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for at least 4 days (e.g. at least 96 hours). In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for at least 5 days (e.g. at least 120 hours). In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for at least 6 days (e.g. at least 144 hours). In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for at least 7 days (e.g. at least 168 hours). In some embodiments, an evaporative cooling system is calibrated to maintain the interior storage region of a container in a predetermined temperature range between 0 degrees Centigrade and 10 degrees Centigrade. In some embodiments, an evaporative cooling system is calibrated to maintain the interior storage region of a container in a predetermined temperature range between 2 degrees Centigrade and 8 degrees Centigrade. Portable containers with integrated evaporative cooling systems may be suitable, for example, for use with medicinal agents such as vaccines, where the storage temperature must be held in a temperature range above 0 degrees Centigrade to prevent freezing of the stored material, but below a maximum temperature required for a specific medicinal agent (e.g. 8 degrees C., 10 degrees C. or 15 degrees C.). In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for a period of time when the external ambient temperature has an expected high point of 25 degrees C. In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for a period of time when the external ambient temperature has an expected high point of 37 degrees C. In some embodiments, portable containers include evaporative cooling systems that are calibrated and controlled to maintain the interior storage regions of the containers within a predetermined temperature range for a period of time when the external ambient temperature has an expected high point of 43 degrees C.
Portable containers including controlled evaporative cooling systems, such as those described herein, do not require ice or other phase change material to maintain the interior storage region of the containers and, therefore, can be configured to operate in a range of conditions. In some embodiments, the portable container requires no external power to operate the integral controlled evaporative cooling system. In some embodiments, the portable container requires minimal power to operate and control the rate of evaporative cooling, such as a power requirement that is less than the power requirement of a standard refrigeration unit. For example, a portable container can include an electrically-operated valve or an electrical switch system. In some embodiments, the portable container includes a battery. The portable containers including controlled evaporative cooling systems, such as those described herein, can be stored for an extended period of time at ambient temperatures, and then activated or started when needed to provide controlled cooling to the interior storage region of the portable container. For example, a portable container including a controlled evaporative cooling system can be of a size and shape to be easily carried throughout a day as part of a medicinal outreach campaign, and to contain the expected number of vaccine vial doses to be used by a vaccinator during a routine session of the outreach campaign. For example, a portable container including a controlled evaporative cooling system can be of a size and shape to be easily carried throughout a day as part of a medical outreach campaign, and to contain the expected number of vaccine and medicinal treatment doses to be used by medical personnel during a scheduled day of the medicinal outreach campaign. The exterior of a portable container including a controlled evaporative cooling system can be of a size and shape to facilitate transport, such as carrying by an individual person. The interior storage region of a portable container which is maintained in a predetermined temperature range with a controlled evaporative cooling system can be of a size and shape as appropriate for one or more intended use cases. For example, in some embodiments the interior storage region has a size and shape configured to store medicinals administered by a medical outreach campaigner during an average day. For example, in some embodiments the interior storage region has a size and shape configured to store vaccines administered by a medical outreach campaigner during an average day. For example, in some embodiments the interior storage region has a volume between 1 liter and 5 liters. For example, in some embodiments the interior storage region has a volume between 1 liter and 3 liters. For example, in some embodiments the interior storage region has a volume between 2 liters and 5 liters.
The portable containers described herein are configured and fabricated to be portable, such as to be hand-carried by a single individual over a period of several hours or days. For example, in some embodiments a portable container including a controlled evaporative cooling system has a total mass less than 10 kg. For example, in some embodiments a portable container including an evaporative cooling system has a total mass less than 9 kg. For example, in some embodiments a portable container including a controlled evaporative cooling system has a total mass less than 8 kg. For example, in some embodiments a portable container including an evaporative cooling system has a total mass less than 7 kg. For example, in some embodiments a portable container including a controlled evaporative cooling system has a total mass less than 6 kg. For example, in some embodiments a portable container including a controlled evaporative cooling system has a total mass less than 5 kg.
The portable containers described herein are configured for minimal mass while maintaining functionality. For example, some embodiments of the portable containers described herein include internal walls that are positioned and configured to minimize mass. A portable container including an integral controlled evaporative cooling system is configured with a radial design to maximize the cooling effect of the evaporative region surrounding a central storage region while minimizing mass in insulation and efficiently utilizing the surface area of the exterior of the portable container to disperse heat from the exothermic reaction in the desiccant region.
In some embodiments, a portable container including an integral controlled evaporative cooling system includes: a storage container wall sealed to a storage container bottom, the storage container wall and storage container bottom positioned to form a storage container with an access aperture; an evaporative region wall sealed to an evaporative region bottom, the evaporative region wall positioned adjacent to an exterior of the storage container wall and the evaporative region bottom positioned adjacent to an exterior of the storage container bottom, a top edge of the evaporative region wall sealed to the exterior of the storage container wall at a position below a top edge of the storage container wall to form a vapor-sealed evaporative region between the evaporative region wall and the evaporative region bottom and the storage container wall and the storage container bottom; an insulation wall positioned adjacent to an exterior surface of the evaporative region wall and the storage container wall, a top of the insulation wall sealed to the exterior surface of the storage container wall at a position above the evaporative region wall to form a vapor-sealed insulation region external to the storage container and to the evaporative region; a desiccant region wall positioned adjacent to an exterior surface of the insulation wall and sealed to the exterior surface of the insulation wall to form a vapor-sealed desiccant region, the desiccant region wall positioned to form an exterior surface of the portable container; a vapor conduit with a first end positioned within the vapor-sealed evaporative region and a second end positioned within the vapor-sealed insulation region; and a vapor control unit attached to the vapor conduit.
The portable container with an integral controlled evaporative cooling system is configured with a radial design, the central storage region at the core, an evaporative region external to the storage region, an insulation region external to the evaporative region, and a desiccant region external to the insulation region. The portable container with an integral controlled evaporative cooling system includes internal structures in a radial design relative to each other. For example, in a horizontal cross-section, the walls forming the regions create successively-sized rings of regions around the central storage region, with correspondingly successively-sized circumferences and surface areas. The exterior wall of the desiccant region forms an exterior of the portable container, thereby maximizing the external surface area of the desiccant region relative to the other regions of the container, and maximizing the surface area available for thermal radiation to and from the desiccant region. Correspondingly, the evaporative region encircles the central storage region and therefore maximizes the surface area available for cooling of the central storage region through the integral controlled evaporative cooling system of the container.
In some embodiments, a portable container including an integral controlled evaporative cooling system includes multiple access apertures, for example access apertures of a size, shape and position for insertion and removal of materials of particular sizes and shapes within a storage region. In some embodiments, a portable container including an integral controlled evaporative cooling system includes a single access aperture. In some embodiments, a portable container includes an access aperture of a size and shape to permit a human hand to access an interior of the storage container. The portable container 100 with an integral controlled evaporative cooling system includes a storage container wall 115 sealed to a storage container bottom 117, the storage container wall 115 and storage container bottom 117 positioned to form a storage container with an access aperture 105 at the top of the storage region 110 of the storage container. The storage container wall 115 is sealed to a storage container bottom 117 with a gas-impermeable seal.
The portable container 100 illustrated in
An evaporative liquid 123 is positioned within the evaporative region 120. The evaporative region includes a partial gas pressure less than the ambient gas pressure as well as the evaporative liquid. In some embodiments, the vapor-sealed evaporative region includes: an evaporative liquid; a wick structure for the evaporative liquid; and a gas pressure less than the ambient gas pressure.
An “evaporative liquid,” a used herein, is a liquid with evaporative properties under the expected temperatures and gas pressures of the interior region of an evaporative region during use of a portable container with an integral controlled evaporative cooling system. For example, in some embodiments the interior evaporative region includes a partial gas pressure of approximately 5% of atmospheric pressure external to the portable container, and the evaporative liquid within the interior evaporative region includes water. For example, in some embodiments the interior evaporative region includes a partial gas pressure of approximately 10% of atmospheric pressure external to the portable container, and the evaporative liquid within the interior evaporative region includes methanol. For example, in some embodiments the interior evaporative region includes a partial gas pressure of approximately 15% of atmospheric pressure external to the portable container, and the evaporative liquid within the interior evaporative region includes ammonia. For example, in some embodiments the evaporative liquid can include additional agents to promote or reduce the evaporative potential of the evaporative liquid.
In some embodiments, the evaporative region includes a wick structure, such as a mesh or a three-dimensional porous structure with pores of a size and shape to permit the evaporative liquid to wick throughout the structure. For example, in some embodiments an evaporative region includes a metal mesh with pores of an appropriate size for the evaporative liquid in question. For example, in some embodiments an evaporative region includes a felted material with pores of an appropriate size for the evaporative liquid in question. The wick structure can be positioned and/or affixed to one or more interior surfaces of the walls forming the evaporative region.
In the embodiment illustrated in
The space between the walls and bottoms forms an insulation region 130 that surrounds the storage region 110 and the evaporative region 120. Depending on the embodiment, an insulation region is of a thickness (e.g. the space between point A and point B in
The portable container 100 with an integral controlled evaporative cooling system shown in
A desiccant material is fabricated from at least one material with desiccant properties, or the ability to remove liquid from a liquid vapor in the surrounding space. Units of desiccant material can operate, for example, through the absorption or adsorption of water from the water vapor in the surrounding space. One or more units of desiccant material selected will depend on the specific embodiment, particularly the volume required of a sufficient quantity of desiccant material to absorb liquid for the estimated time period required to operate a specific evaporative cooling unit integral to a specific container. In some embodiments, the units of desiccant material selected will be a solid material under routine operating conditions. One or more units of desiccant material can include non-desiccant materials, for example binding materials, scaffolding materials, or support materials. One or more units of desiccant material can include desiccant materials of two or more types. The portable cooling units described herein are intended for use with evaporative cooling for days or weeks, and sufficient desiccant material and corresponding evaporative liquid is included for those time periods in any given embodiment. For more information on liquid-desiccant material pairs, see: Saha et al., “A New Generation Cooling Device Employing CaCl2-in-silica Gel-water System,” International Journal of Heal and AMass Transfer, 52: 516-524 (2009), which is incorporated by reference. The selection of one or more desiccant materials for use in a specific embodiment will also depend on the target cooling temperature range in a specific embodiment. For example, in some embodiments the desiccant material can include calcium carbonate. For example, in some embodiments, the desiccant material can include lithium chloride. For example, in some embodiments, the desiccant material can include liquid ammonia. For example, in some embodiments, the desiccant material can include zeolite. For example, in some embodiments, the desiccant material can include silica. More information regarding desiccant materials is available in: Dawoud and Aristov, “Experimental Study on the Kinetics of Water Vapor Sorption on Selective Water Sorbents, Silica Gel and Alumina Under Typical Operating Conditions of Sorption Heat Pumps,” International Journal of Heat and Mass Transfer, 46: 273-281 (2004); Conde-Petit, “Aqueous Solutions of Litium and Calcium Chlorides:—Property Formulations for Use in Air Conditioning Equipment Design,” M. Conde Engineering, (2009); “Zeolite/Water Refrigerators,” BINE Informationsdienst, projektinfo 16/10; “Calcium Chloride Handbook: A Guide to Properties, Forms, Storage and Handling,” Dow Chemical Company, (August, 2003); “Calcium Chloride, A Guide to Physical Properties,” Occidental Chemical Corporation, Form No. 173-01791-0809P&M; and Restuccia et al., “Selective Water Sorbent for Solid Sorption Chiller: Experimental Results and Modelling,” International Journal of Refrigeration 27:284-293 (2004), which are each incorporated herein by reference. In some embodiments, a desiccant material is considered non-toxic under routine handling precautions. The selection of a desiccant material is also dependent on any exothermic properties of the material, in order to retain the thermal properties of the entire portable cooling unit desired in a specific embodiment.
The portable container 100 with an integral controlled evaporative cooling system shown in
A “vapor conduit,” as used herein, refers to a conduit configured for gas, including evaporative liquid in a vapor form, to move through the conduit. The vapor conduit, including the vapor control unit, is configured to control vapor flow between the interior desiccant region and the interior evaporative region. In some embodiments the vapor conduit is configured as a tubular structure traversing between adjacent units. The size, shape and placement of the vapor conduit will depend on factors including the size of the container, the temperature ranges desired for the container, the level of reversible control of vapor movement within the vapor conduit, and the physical properties of the desiccant material and the evaporative liquid utilized in a particular embodiment. The evaporative rate will depend on the configuration of the embodiment and the use case. Some embodiments include a sensor within the vapor control unit, operably connected to the controller with a wire connection. The sensor can include, for example, a temperature or pressure sensor. Some embodiments include a plurality of temperature sensors. Sensors can be, for example, affixed to a wall or bottom of the storage container, within the vapor conduit, and/or affixed to a wall or bottom of the desiccant region.
For example, in some embodiments the target temperature range of the storage region is between 0 and 10 degrees Centigrade, and the portable container with an integral controlled evaporative cooling system includes approximately 1 liter of liquid water as an evaporative liquid and a corresponding volume of desiccant material including calcium chloride to absorb greater than 1 liter of water. See “The Calcium Chloride Handbook, A Guide to Properties, Forms, Storage and Handling,” DOW Chemical Company, dated August 2003, which is incorporated by reference herein. As an example, for an embodiment of a portable container with an integral controlled evaporative cooling system with water as an evaporative liquid and calcium chloride as a desiccant material, wherein the portable container begins with a substantially evacuated vapor conduit (i.e. less than or equal to 300 mTorr of pressure), it is estimated that approximately 1 gram of water will evaporate for every hour that the valve is in a fully open position. Therefore, 1 liter of water and 1.5 kg of calcium chloride can maintain the evaporative cooling unit between approximately 6 degrees Centigrade and 9 degrees Centigrade for approximately a month with an external ambient temperature of approximately 25 degrees Centigrade. As an example, for some embodiments of a portable container with water as an evaporative liquid and calcium chloride as a desiccant material, wherein the internal gas-sealed region included within the evaporative region, the vapor conduit and the desiccant region begins with a substantially evacuated interior (i.e. less than or equal to 300 mTorr of pressure), it is estimated that approximately 2-5 grams of water will evaporate for every hour that the valve is in a fully open position.
The portable container including the integral controlled evaporative cooling system includes an internal space wherein gas, vapor and liquid can reversibly move between the desiccant region and the evaporative region through the vapor conduit in a controlled manner in order to cause the appropriate cooling effect within the storage region of the container. Within the portable container, the desiccant region, the evaporative region and the vapor conduit are sealed together with a continuous vapor-sealed interior region. Gas, vapor and liquid flow through the continuous vapor-sealed interior region is controlled through a vapor control unit. The continuous vapor-sealed interior region includes a gas pressure less than the ambient gas pressure adjacent to an exterior of the portable container. The gas pressure utilized in an embodiment depends on factors including the evaporative liquid and desiccant used in the embodiment, the cooling temperature desired and the materials used in fabrication of the portable container.
A valve within the vapor conduit is configured to reversibly control the flow of gas, including vapor, through the vapor conduit. In some embodiments, the vapor control unit includes a valve configured to restrict the transfer of gas between the first end of the vapor conduit and the second end of the vapor conduit. In some embodiments, the valve includes at least one movable valve with at least a first position substantially closing the at least one movable valve to vapor flow through the at least one movable valve, and a second position substantially opening the at least one movable valve to vapor flow through the at least one movable valve. Some embodiments include a movable valve with at least a first position substantially closing vapor flow through the vapor control unit, at least one second position substantially permitting flow of vapor through the vapor control unit to the maximum permitted by the diameter of the vapor control unit, and at least one third position restricting vapor flow through the vapor control unit. In some embodiments, the valve includes a mechanical valve. In some embodiments, the valve includes a gate valve. In some embodiments, the valve includes rotary valve, such as a butterfly valve. In some embodiments, the valve includes a ball valve. In some embodiments, the valve includes a piston valve. In some embodiments, the valve includes a globe valve. In some embodiments, the valve includes a plurality of valves operating in tandem with each other. In some embodiments, the valve includes an electronically-controlled valve. In some embodiments, the valve includes a mechanically-controlled valve.
The selection of the valve in a given embodiment depends on, for example, cost, weight, the sealing properties of a type of valve, the estimated failure rate of a type of valve, the durability of a type of valve under expected use conditions, and the power consumption requirements for a type of valve. The selection of the valve in a given embodiment also depends on the level of restriction of gas flow, including vapor flow, through a particular type of valve when the valve is in a fully open position. Some embodiments include an on-off valve positioned and oriented to block the flow of gas through the vapor conduit for an extended period of time (e.g. during storage of the device) and then to permit the flow of gas in response to input from a user (e.g. pushing a button). The on-off valve can be a manual valve with two possible states, open and closed. Some embodiments include a vapor control unit with a mechanical valve, such as one operably linked to a mechanical thermostat, such as a bimetallic coil. Some embodiments include a vapor control unit with an electronically controlled valve.
Some embodiments include a controller with the vapor control unit. For example, the embodiment illustrated in
Different types of controllers can be utilized, depending on the embodiment. For example, a controller can be an electronic controller. In some embodiments, a controller is an electronic controller that accepts data from a plurality of temperature sensors and initiates action by the valve after determination of an average temperature from the accepted data. An electronic controller can include logic and/or circuitry configured to create a bounded or threshold system around a particular range of values from one or more sensors, such as a bounded system around a range of 3 degrees Centigrade to 7 degrees Centigrade, responsive to data from one or more temperature sensors. For example, in some embodiments a controller is a “bang-bang”controller operably attached the valve and configured to be responsive to a temperature sensor that includes a thermocouple. An electronic controller can include logic and/or circuitry configured to create a feedback system around a particular range of values from one or more sensors, such as a feedback system around a range of 2 degrees Centigrade to 8 degrees Centigrade, responsive to data from one or more temperature sensors. In some embodiments, a battery is attached to an electronic controller. In some embodiments, an external power source, such as a solar panel affixed to the exterior of the container, is attached to an electronic controller. In some embodiments, a controller is an electronic controller that accepts data from a plurality of temperature sensors and initiates action by the valve after determination of an average temperature from the accepted data. In some embodiments a controller is a mechanical controller. For example, in some embodiments the controller is attached to a Bourdon tube operably connected to the valve, and configured to respond to changes in vapor pressure associated with temperature differences. Embodiments including a mechanical controller can also include a connector that forms an operable connection between the controller and the valve that is a mechanical connector. For example, a mechanical connector can be a connector configured to transmit physical pressure, such as through operation of one or more rods or cogs, between the controller and the valve.
During use of the container, a temperature sensor can transmit data to the controller via a wire. The controller is configured to operably control the vapor control unit in response to the received data. In embodiments including an electronic controller, the electronic controller receives data from one or more temperature sensors and/or gas pressure sensors, and determines if the detected values are outside or inside of a predetermined range. Depending on the determination, the electronic controller can initiate the valve to open or close to return the temperature or pressure to the predetermined range of values. For example, in some embodiments, if the electronic temperature sensor sends a signal including temperature data at 9 degrees Centigrade, the controller will determine that the received temperature data is outside of the predetermined range of 3 degrees Centigrade to 7 degrees Centigrade. In response to the determination, the controller will send a signal to a motor attached to a valve within the vapor control unit, the signal of a type to initiate the motor to open the valve. As another example, in some embodiments, if the electronic temperature sensor sends a signal including temperature data at 1 degree Centigrade, the controller will determine that the received temperature data is outside of the predetermined range of 3 degrees Centigrade to 7 degrees Centigrade. In response to the determination, the controller will send a signal to a motor attached to a valve within the vapor control unit, the signal of a type to initiate the motor to close the valve.
In some embodiments, an electronic controller can accept a plurality of gas pressure data points from one or more gas pressure sensors, and calculate a gas pressure result, such as an average gas pressure, or a mean gas pressure, from the accepted data. The electronic controller can then determine if the gas pressure result is outside or inside of a predetermined gas pressure range for the specific portable cooling unit. For example, gas pressure out of a specific, predetermined range can indicate an excess of evaporation of the evaporative liquid, resulting in excess evaporative cooling for the specific portable cooling unit. For example, gas pressure out of a specific, predetermined range can indicate a lack of absorption or adsorption by the desiccant material, indicating that the desiccant material needs to be refreshed or renewed. The gas pressure range is relative to the internal dimensions of the evaporative cooling unit, the conduits, the vapor control unit and the desiccant region for an embodiment. The gas pressure range is also relative to the type of evaporative liquid, the type of desiccant material, and the predetermined temperature range for cooling in an embodiment. See: Dawoud and Aristov, “Experimental Study on the Kinetics of Water Vapor Sorption on Selective Water Sorbents, Silica Gel and Alumina Under Typical Operating Conditions of Sorption Heat Pumps,” International Journal of Heat and Mass Transfer, 46: 273-281 (2004); Marquardt, “Introduction to the Principles of Vacuum Physics,” CERN Accelerator School, (1999); Kozubal et al., “Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning,” NREL Technical Report NREIJTP-5500-49722 (January 2011); Conde-Petit, “Aqueous Solutions of Litium and Calcium Chlorides:—Property Formulations for Use in Air Conditioning Equipment Design,” M. Conde Engineering, (2009); “Zeolite/Water Refrigerators,” BINE Informationsdienst, projektinfo 16/10; “Calcium Chloride Handbook: A Guide to Properties, Forms, Storage and Handling,” Dow Chemical Company, (August, 2003); “Introduction of Zeolite Technology into Refrigeration Systems: Layman's Report,” Dometic project LIFE04 ENV/LU/000829; Rezk and Al-Dadah, “Physical and Operating Conditions Effects on Silica Gel/Water Adsorption Chiller Performance,” Applied Energy 89: 142-149 (2012); Saha et al., “A New Generation Cooling Device Employing CaCl2-in-silica Gel-water System,” International Journal of Heat and Mass Transfer 52: 516-524 (2009); “An Introduction to Zeolite Molecular Sieves,” UOP Company Brochure 0702 A 2.5; and “Vacuum and Pressure Systems Handbook,” Gast Manufacturing, Inc., which are each incorporated by reference. An equation to calculate the pressure loss in vacuum lines with water vapor is available from GEA Wiegand, a copy accessed at the company website (http://produkte.gea-wiegand.de/GEA/GEACategory/139/index_en.html) on Mar. 13, 2013 is incorporated herein by reference.
Although a connection is not illustrated in
In some embodiments, the vapor control unit is connected to a visible indicator of information from the controller on the outside of the portable container. For example, in some embodiments the vapor control unit includes a controller connected to an external dial, the dial configured to indicate the temperature reading from the sensor. For example, some embodiments include an exterior light connected to the controller, wherein the controller turns the light on and off in combination with sending a control signal to the valve within the vapor control unit. For example, some embodiments include a light connected to the controller, wherein the controller turns the light on and off in response to data from a pressure sensor attached to the controller. For example, the controller can include circuitry that initiates the light to turn on when information from the pressure sensor indicates that the pressure inside the evaporative cooling system is within a preset range (e.g. to indicate to a user that the internal gas pressure is within a preset acceptable operating range, and therefore is operational, or to indicate to a user that the internal gas pressure is outside of the preset acceptable operating range, and therefore requires maintenance).
Some embodiments include a display unit operably attached to the vapor conduit, such as directly to a sensor within the vapor conduit. A display unit can include, for example, a light, a screen display, an e-ink display or a similar device affixed to the exterior of the portable container. The display unit can, for example, be operably connected to the controller and configured to receive signals from the controller indicating conditions regarding the interior of the portable container. For example, in embodiments including a light as a display unit, the controller can be configured to make a transmission to the light, initiating the light to switch on when data accepted from the temperature sensor indicates that the interior temperature of the storage region within a portable container is within a preset temperature range. For example, in embodiments including a screen display, the controller can be configured to transmit data regarding the conditions of the portable container to the screen display, such as the most recent internal temperature reading(s), or the position of the valve. Some embodiments include a user input device, such as a push-button, a touch sensor, or a keypad. The user input device can be operably attached to the controller. For example, the controller may be configured to respond to a specific user input, as transmitted by a user input device, by opening the valve within the vapor conduit. For example, the controller may be configured to respond to a specific user input, as transmitted by a user input device, by initiating a display of the most recent temperature data on an attached screen display.
In some embodiments, a portable container including the integral controlled evaporative cooling system includes an on-off or shutoff switch positioned and configured to permit a user of the portable container to turn the integral controlled evaporative cooling system on and off as required. For example, a portable container including the integral controlled evaporative cooling system can include: a shutoff valve of a size, shape and position to reversibly fully inhibit flow of gas through the vapor conduit; and a switch operably attached to the valve, the switch positioned to cause the valve to fully open and fully close in response to an external action on the switch. For example, a shutoff switch may be useful in embodiments wherein the portable container is intended for storage over prolonged periods of time between uses, such as months or years. A user can place the portable container including an integral controlled evaporative cooling system in storage for period of time, such as weeks, months or years, with the vapor conduit closed by the shutoff valve to turn off the controlled evaporative cooling system within the container. The user can switch on the integral controlled evaporative system on with the on-off switch when the user has need of the container, thereby opening the shutoff valve and restarting the controlled evaporative cooling system within the container. In the embodiment illustrated in
The portable container 100 illustrated in
In some embodiments, a portable container includes handles of a size and shape to improve portability for a user of the container. In some embodiments, a portable container includes external features to improve durability, such as shock-dampening bumpers or edge covers.
An insulation wall 135 and an insulation bottom 137 are positioned adjacent to the storage container wall 115 and the storage container bottom 117 as well as the evaporative region wall 125 and evaporative region bottom 127 in the embodiment of
The embodiment of a portable container 100 including an integral controlled evaporative cooling system shown in
The vapor conduit 150 includes a vapor control unit 140 positioned in a central location along the length of the vapor conduit 150. The vapor control unit 140 includes a valve 147 of a size, shape and position to reversibly completely inhibit gas flow through the vapor conduit 150, and to incrementally control gas flow through the vapor conduit 150 by opening and closing in response to signals received from the controller 143. In the embodiment illustrated, a temperature sensor 300 is affixed to the storage container wall 115, the temperature sensor 300 operably connected to the controller 143. The controller can, for example, include circuitry configured to send a signal to the valve within the vapor control unit in response to signals received from a temperature sensor. For example, a controller can be configured to send a signal for opening completely or partially to the valve in response to the receipt of a signal from a temperature sensor that is above a preset value. For example, a controller can be configured to send a signal for closing completely or partially to the valve in response to the receipt of a signal from a temperature sensor that is below a preset value. In some embodiments, a controller is operably attached to a valve and/or one or more sensors with a wired connection. In some embodiments, a controller is operably attached to a valve and/or one or more sensors with a wireless connection.
The temperature sensor 300 is affixed to the storage container wall 115, at a position to evaluate the temperature of the storage region 110. In some embodiments, a temperature sensor is affixed to the storage container wall at a position within the evaporative region and adjacent to the storage region. Some embodiments include a pressure sensor positioned within one or more of the evaporative region, the vapor conduit, and/or the desiccant region, the pressure sensor operably connected to a controller within a vapor control unit.
Some embodiments include a sensor that is a temperature sensor. A temperature sensor can include, for example, a mechanical temperature sensor. A temperature sensor can include, for example, an electronic temperature sensor. By way of example, some embodiments include a sensor that is a temperature sensor including one or more of: a thermocouple, a bimetallic temperature sensor, an infrared thermometer, a resistance thermometer, or a silicon bandgap temperature sensor.
Some embodiments include a sensor that is a gas pressure sensor. A gas pressure sensor can include, for example, a mechanical gas pressure sensor, such as a Bourdon tube. A gas pressure sensor can include an expansion valve with a capillary tube. A gas pressure sensor can include, for example, an electronic gas pressure sensor. By way of example, some embodiments include a sensor that is a vacuum sensor. For example, the interior of a vapor conduit can be substantially evacuated, or at a low gas pressure relative to atmospheric pressure, before use of a container and then the vacuum reduced during evaporation from the evaporative liquid. Data from a vacuum sensor can, therefore, be indicative of the rate of evaporation, or the total level of evaporation of the evaporative liquid within the container. In some embodiments, a gas pressure sensor can include a piezoresistive strain gauge, a capacitive gas pressure sensor, or an electromagnetic gas pressure sensor. In some embodiments, a pressure sensor includes a capacitance pressure sensor.
Some embodiments include: a temperature sensor attached to the storage container; a heating element positioned adjacent to the storage container wall or the storage container bottom; and a controller connected to the temperature sensor, the vapor control unit, and the heating element. For example, in some situations a portable container including an integral controlled evaporative cooling system may be stored in a location that has an ambient temperature below the expected use of a storage region, and the storage container wall and/or bottom will need to be heated to the appropriate minimum temperature prior to use. For example, a portable container may be stored in an unheated storage building during winter (e.g. ambient temperature −5 degrees C. to −10 degrees C.), while the container can be calibrated with a storage region in the 2 degree C. to 8 degree C. range.
Some embodiments include an internal recharging system including: a temperature sensor affixed to the portable container; a heating element positioned within or adjacent to the vapor-sealed desiccant region; and a controller connected to the temperature sensor and the heating element. The controller can also, in some embodiments, be attached to the vapor control unit. As discussed further herein, the portable container is designed to be rechargeable, such as through heating the desiccant within the desiccant region to release the evaporative liquid in vapor form back through the vapor conduit to the evaporative region. This heating should be to a predetermined temperature for a predetermined period of time, depending on the desiccant and the evaporative liquid in use in an embodiment. In some embodiments, there is an external recharging device, as described further herein. In some embodiments, there is an internal recharging system, including a temperature sensor, a heating element positioned within or adjacent to the vapor-sealed desiccant region, and a controller connected to the temperature sensor and the heating element. The controller can, for example, include circuitry to activate a predetermined sequence of events when recharging is warranted. The controller can be attached and responsive to a user interface, such as a touchscreen or switch to activate the recharging sequence of events. In some embodiments, a controller includes circuitry to initiate a recharging sequence in response to a signal from the user interface. A recharging sequence can include, for example, the controller sending an activation signal to the heating element, and receiving a signal with temperature information from the temperature sensor. The controller can also, in response to the temperature data received from the temperature sensor, send a further activation or deactivation signal to the heating element. The controller can further send a signal to a user interface, such as a signal of a type to turn on a warning light or display on a user interface.
Some embodiments include a set of portable container sections for assembly, including: a storage container with an integrated evaporative cooler, including an interior storage container positioned with an access aperture at an upper region of the interior storage container, an outer storage container positioned with an access aperture at an upper region of the interior storage container, the outer storage container sealed to the interior storage container at a position adjacent to the access aperture to form an vapor-sealed evaporative region between the interior storage container and the outer storage container, and an evaporative section of a vapor conduit, the evaporative section including a first end positioned within the vapor-sealed evaporative region and a second end positioned at an upper region of the storage container with an aperture external to the storage container; a desiccant section including an insulation unit with an interior surface of a size and shape to mate with an exterior surface of the storage container, and of a size and shape to extend beyond the access aperture of the storage container, a desiccant region wall encircling the insulation unit, the desiccant region wall sealed to an exterior of the insulation unit with a vapor-impermeable seal to form a desiccant region exterior to the insulation unit, and a desiccant section of a vapor conduit, the desiccant section including a first end positioned within the desiccant region and a second end positioned at an upper region of the desiccant section with an aperture external to the desiccant section; and a central vapor conduit section, including a first end of a size and shape to mate and seal with the second end of the evaporative section of the vapor conduit, a second end of a size and shape to mate and seal with the second end of the desiccant section of the vapor conduit, and a connector section of the central vapor conduit positioned between the first end of the central vapor conduit and the second end of the central vapor conduit, the connector section of a size and shape to position the first end to mate and seal with the second end of the evaporative section and position the second end to mate and seal with the second end of the desiccant section; wherein the vapor conduit includes an attached vapor control unit and wherein the evaporative section, the desiccant section and the central vapor conduit section are each of a size and shape to fit together into a continuous vapor-sealed interior region of an integrated portable container including a controlled integral controlled evaporative cooling system.
At the center region of the cross-section view shown in
In some embodiments, the storage container with an integrated evaporative cooler is cylindrical with an open top region forming an access aperture. See, e.g.
In the embodiment illustrated in
The embodiment illustrated in
As shown in
The embodiment shown in
In some embodiments, the vapor control unit is positioned within the evaporative region of the container and operably attached to the evaporative section of the vapor conduit. In some embodiments, the vapor control unit is operably attached to the central vapor conduit connector section. Some embodiments also include a valve control and a shutoff valve positioned for accessibility to a user, for example operably connected to the central vapor conduit connector section. Some embodiments include a central vapor conduit connector section including: a valve of a size, shape and position to reversibly inhibit flow of gas through the vapor conduit; and a controller operably attached to the valve. Some embodiments include a central vapor conduit connector section including: a valve of a size, shape and position to reversibly inhibit flow of gas through the vapor conduit; and a binary switch operably attached to the valve, the switch positioned to cause the valve to fully open and fully close in response to an external action on the switch.
In some embodiments, a set of portable container sections for assembly includes a lid of a size and shape to reversibly mate with an edge of the portable container adjacent to the access aperture. The lid can include insulation sufficient to maintain the storage region of the container within the predetermined temperature range during use in combination with the insulation within the insulation section. In some embodiments, a portable container includes a display, which can be affixed to an outer facing surface of a lid.
In some embodiments, a set of portable container sections for assembly includes: a temperature sensor attached to the storage container; a heating element positioned adjacent to the storage container wall or the storage container bottom; and a controller connected to the temperature sensor, the vapor control unit, and the heating element. For example, the controller can be pre-set to send an activating signal to the heating element after receipt of data from the temperature sensor that indicates that the storage region of the storage container has dropped below the use range of the container. For example, a container may be stored in a place with an ambient temperature below the use case of the assembled portable container.
In some embodiments, a set of portable container sections for assembly includes an internal recharging system including: a temperature sensor affixed to the desiccant section; a heating element affixed to the desiccant section; and a controller connected to the temperature sensor and the heating element. In some embodiments, the controller is attached to the vapor control unit. In some embodiments, the controller is attached to a user interface. The controller can, for example, include circuitry configured to initiate and maintain a preset recharging sequence in response to a signal received from the user interface. The controller can, for example, include circuitry configured to initiate a signal to the user interface in response to a signal received from the heating element (e.g. a “Caution: Hot” warning).
A method of assembly of a set of portable container sections, such as those described above, includes: positioning a storage container including an integral controlled evaporative cooling system and an evaporative section of a vapor conduit with an aperture external to the storage container within a desiccant section including an internal insulation unit and an outer desiccant region and a desiccant section of a vapor conduit with an aperture external to the desiccant section so that an exterior surface of the storage container is positioned within the insulation unit and the aperture of the evaporative section of the vapor conduit and the aperture of the desiccant section of the vapor conduit are aligned with each other; positioning a central vapor conduit section with a first end and a second end adjacent to the evaporative section and the desiccant section so that the first end of the central vapor conduit connects to the aperture of the evaporative section of the vapor conduit and the second end of the central vapor conduit connects to the aperture of the desiccant section of the vapor conduit; sealing the first end of the central vapor conduit to the aperture of the evaporative section of the vapor conduit with a gas-impermeable seal; sealing the second end of the central vapor conduit to the aperture of the desiccant section of the vapor conduit with a gas-impermeable seal; and substantially evacuating a continuous vapor-sealed interior region within the storage container, the desiccant section and the connected vapor conduit sections.
For example,
In some embodiments, the positioning of the storage container includes: positioning the storage container entirely within the desiccant section. In some embodiments, the positioning of the storage container includes: positioning the storage container so that a storage region of the storage container is at the center, with the storage container surrounding the storage region, the insulation unit surrounding the storage container, and the desiccant region surrounding an exterior of the storage container.
In some embodiments, positioning the central vapor conduit section includes: positioning the central vapor conduit section to traverse an exterior top surface of the storage container and the desiccant section. In some embodiments, substantially evacuating a continuous vapor-sealed interior region within the storage container, the desiccant section and the connected vapor conduit sections includes: evacuating the internal space to a gas pressure below 10−3 Torr. As discussed further herein, the evaporative cooling system operates most effectively when the internal gas pressure of the interior space of the cooling system is below ambient gas pressure to an amount dependent on the specific embodiment, including the desiccant and evaporative liquid used.
In some embodiments, the method also includes: adding an evaporative liquid to the integrated evaporative cooler prior to sealing the first end of the central vapor conduit to the aperture of the evaporative section of the vapor conduit. In some embodiments, the method also includes: adding a desiccant to the outer desiccant region prior to sealing the second end of the central vapor conduit to the aperture of the desiccant section of the vapor conduit. For example, an evaporative liquid and desiccant selected to work together for a specific use case can be placed in their respective regions of the storage container prior to reducing the gas pressure within the continuous vapor-sealed interior region.
In some embodiments, a portable container including an integral controlled evaporative cooling system includes: an insulated storage compartment including at least one wall forming sides and a bottom of an interior of a storage container with an access aperture, at least one wall forming sides and a bottom of an exterior of the storage container, wherein the exterior is positioned adjacent to the interior and there is a gap between the exterior and the interior, a seal between the at least one wall forming the sides and the bottom of the interior and the at least one wall forming the sides and the bottom of the exterior, the seal forming a gas-impermeable gap between the walls; and a lid of a size and shape to match the insulated storage compartment, including at least one wall forming sides and a bottom of the lid, the sides and bottom of a size and shape to reversibly mate with the interior of the storage container at a position adjacent to the access aperture, at least one wall forming a top of the lid, the top of the lid affixed to the sides of the lid, an evaporative compartment positioned within the lid at a position adjacent to the bottom of the lid, the evaporative compartment including an internal evaporative region, the evaporative compartment including an aperture at a position distal to the bottom of the lid, a desiccant compartment within the lid at a position adjacent to the top of the lid, the desiccant compartment including an internal desiccant region, the desiccant compartment including an aperture at a position distal to the top of the lid, and a vapor conduit affixed at a first end to the aperture in the evaporative compartment and affixed at a second end to the aperture in the desiccant compartment, the combination of the vapor conduit, the evaporative region and the desiccant region with the vapor conduit forming a gas-sealed and liquid-sealed region within the lid.
In some embodiments, the insulated storage compartment includes a single access aperture positioned at the top of the storage compartment. For example, the insulated storage compartment 800 shown in
Some embodiments include a gas-impermeable gap between the walls of the insulated storage container including substantially evacuated space. Some embodiments include a gas-impermeable gap between the walls of the insulated storage container including space with a gas pressure below 10−3 Torr. Some embodiments include a gas-impermeable gap between the walls of the insulated storage container including space with a gas pressure below 10−5 Torr.
The embodiment illustrated in
As illustrated in the embodiment of
The embodiment shown in
In some embodiments, the lid also includes: a valve of a size, shape and position to reversibly inhibit flow of gas through the vapor conduit; and a binary switch operably attached to the valve, the switch positioned to cause the valve to fully open and fully close in response to an external action on the switch. For example, the valve can be a binary open/closed valve, and the switch can be positioned to reversibly cause the valve to open and close under the control of a user of the container. In some embodiments, the lid also includes a display unit. For example, a display unit can include information about the use of the container, the internal temperature, and/or the status of a valve within the vapor conduit. A display unit can be operably attached to the controller.
In some embodiments, a portable container including an integral controlled evaporative cooling system includes: a temperature sensor attached to the storage container; a heating element positioned adjacent to the storage container wall or the storage container bottom; and a controller connected to the temperature sensor, a vapor control unit attached to the vapor conduit, and the heating element. For example, the controller can be preset to send an activation or “turn on” signal to the heating element in response to receiving data from the temperature sensor at a temperature below a minimum temperature. For example, the controller can be preset to send a de-activation or “turn off” signal to the heating element in response to receiving data from the temperature sensor at a temperature above a minimum temperature.
In some embodiments, a portable container including an integral controlled evaporative cooling system further includes an internal recharging system including: a temperature sensor attached to the storage container; a heating element attached to the desiccant compartment within the lid; and a controller connected to the temperature sensor and the heating element. In some embodiments, the controller is connected to the vapor control unit. In some embodiments, the controller is connected to a user interface. The controller can include circuitry with predetermined control routines for recharging a specific portable container.
In some embodiments, a portable container including an integral controlled evaporative cooling system includes: at least one storage container wall configured to form a storage container with an access aperture; at least one insulation wall positioned adjacent to an exterior surface of the storage container wall, and affixed to the exterior surface to form a vapor-sealed insulation region external to a storage region; at least one desiccant region wall positioned adjacent to an exterior surface of the at least one insulation wall and sealed to the exterior surface of the at least one insulation wall to form a vapor-sealed desiccant region at least partially surrounding an exterior of the portable container; a lid for the portable container of a size and shape to reversibly mate with an interior surface of the at least one storage container wall, the lid including an internal vapor-sealed evaporative compartment, the lid including a bendable section positioned and configured to allow reversible access to the storage container; a vapor conduit with a first end positioned within the vapor-sealed evaporative region and a second end positioned within the vapor-sealed desiccant region, the vapor conduit including a bendable section aligned with the bendable section of the lid; and a vapor control unit attached to the vapor conduit.
The embodiment illustrated in
In some embodiments, the internal vapor-sealed evaporative compartment of the lid includes: an evaporative liquid; a wick structure for the evaporative liquid; and a gas pressure less than the ambient gas pressure. In the embodiment shown in
As shown in
The evaporative cooling system within the portable container can be recharged, repaired or refreshed to allow reuse of the portable container with its integrated controlled evaporative cooling system multiple times. For example, in some embodiments a portable container includes an evaporative cooling system that is fabricated with a goal of recharging the integrated controlled evaporative cooling system at least 100 times (e.g. cycles). For example, in some embodiments a portable container includes an integrated controlled evaporative cooling system that is fabricated with a goal of recharging the evaporative cooling system at least 150 times (e.g. cycles). For example, in some embodiments a portable container includes an integrated controlled evaporative cooling system that is fabricated with a goal of recharging the evaporative cooling system at least 200 times (e.g. cycles). In some embodiments, a portable container includes an integrated controlled evaporative cooling system that is designed to be used for at least one day per average month and to be rechargeable for at least 5 years. In some embodiments, a portable container includes an integrated controlled evaporative cooling system that is designed to be used for at least one day per average month and to be rechargeable for at least 10 years.
Over time, part of the mass of evaporative liquid initially present in the evaporative region will be transferred to the interior of the desiccant region as vapor moving through the vapor conduit. The portable container will periodically, therefore, require a recharging of the evaporative liquid from the desiccant region through the vapor conduit in order to maintain the functionality of the container. Since the interior of the evaporative region, the vapor conduit, and the desiccant region are a gas-sealed and liquid-sealed continuous region, the evaporative liquid can be returned to the evaporative region, as vapor, to recharge the system. Some embodiments include an integrated, internal recharging system. Some embodiments rely on external heat, such as from an external recharging device, to recharge the portable container.
It is expected that the recharge system can operate many times over the lifetime use of the portable container without replacement of the desiccant or evaporative liquid. For example, assuming that a portable container will have monthly recharging and be in operational use for 10 years, a container will include a desiccant and evaporative liquid in a configuration of the container that is expected to be rechargeable for reuse at least 120 times (12 times per year for 10 years). For example, assuming that a portable container will have bi-weekly recharging and be in operational use for 5 years, a container will include a desiccant and evaporative liquid in a configuration of the container that is expected to be rechargeable for reuse at least 130 times (26 times per year for 5 years). In some embodiments, a portable container is configured for recharging at least 200 times over the multi-year use of the container without replacement of the desiccant or evaporative liquid.
In some embodiments, a recharging device for a portable container including an integral controlled evaporative cooling system includes: a frame of a size and shape to secure a portable container including an integral controlled evaporative cooling system; at least one heating unit positioned adjacent to the exterior of the portable container including an integral controlled evaporative cooling system; at least one fan affixed to the frame, the fan oriented to direct air against an internal surface of the portable container including an integral controlled evaporative cooling system; and a controller operably connected to the at least one heating unit and the at least one fan, the controller capable of sending control signals to both the least one heating unit and the at least one fan.
In some embodiments, a recharging device is integral to the portable container including an integral controlled evaporative cooling system. For example, in some embodiments a recharging device includes: a heating element positioned within the interior of the desiccant region, the heating element positioned to supply thermal energy to the interior of the desiccant region; and a controller connected to the heating element. For example, a heating element positioned within the interior of the desiccant region can be an electrical heating element. For example, in some embodiments a recharging device includes: a heating element affixed to the exterior surface of a wall of the desiccant region of a portable container; and a controller connected to the heating element. For example, a heating element affixed to the exterior surface of a wall of the desiccant region can be an electrical heating element embedded within a thin film coating affixed to the exterior of the wall, such as a ceramic thin film enclosing an electric heating element.
The controller of the recharging device activates the recharge cycle for the system based on factors predetermined for a particular embodiment, including the ambient temperature, the temperature of the evaporative liquid currently present in the evaporative region, and input from a user. During recharge, the controller of the recharging device initiates heating of at least one heating unit. The heating unit is activated to a predetermined temperature for a preset period of time. The time and temperature settings for the heating unit depend on the embodiment, for example the type of desiccant and evaporative liquid present in the container, and the size and shape of the desiccant region, the vapor conduit and the evaporative region of the container. For example, in some embodiments, a heating unit is held at 300 degrees Centigrade for at least 30 minutes during the recharge cycle. For example, in some embodiments, a heating unit is held at 250 degrees Centigrade for at least 60 minutes during the recharge cycle. For example, in some embodiments, a heating unit is held in the temperature range between 250 and 300 degrees Centigrade for a predetermined period of time during the recharge cycle. During the time when the heating unit is hot, the evaporative liquid associated with the desiccant within the desiccant region converts into vapor. The vapor moves through the vapor conduit and condenses within the relatively cool interior evaporative region of the container. After the heating unit is turned off, the desiccant region can cool down, for example through radiant cooling, and the recharge cycle is completed. In some embodiments, the desiccant wall includes a one-way blow valve configured to open in case the gas pressure within the desiccant region exceeds a threshold level.
In some embodiments, a recharging device includes: at least one insulated wall positioned exterior to the at least one heating unit; at least one aperture at a top end of the recharging unit, the at least one aperture positioned to permit air flow to a bottom region of the secured portable container; and at least one aperture at a bottom end of the recharging unit, the at least one aperture positioned to permit air flow to a top region of the secured portable container. The recharging device 1000 for a portable container 100 including an integral controlled evaporative cooling system shown in
The recharging device 1000 includes heating units 1005 positioned adjacent to the exterior of the portable container 100. In the embodiment shown in
In some embodiments, a heating element includes: a radiative heating element; a cavity positioned between the heating element and a wall of a secured portable container; and a fan within the cavity, the fan positioned to move air to the wall of the secured portable container. For example,
Some embodiments include a fan positioned to increase air flow within a storage region of a secured portable container. For example, the embodiment illustrated in
The embodiment shown in
Some embodiments of a recharging device include a temperature sensor positioned within the frame, the temperature sensor operably attached to the controller. For example, the embodiment illustrated in
Some embodiments of a recharging device include a display unit. For example, a recharging device can include an external indicator that the device is hot, to provide a caution warning to a user. For example, a recharging device can include a display unit that displays a red light when a temperature sensor of the recharging device is above a predetermined temperature (e.g. 100 degrees C.). For example, a recharging device can include a display unit that illustrates a text or numerical indicator, such as a temperature readout or a warning (e.g. “Caution, HOT”). Some embodiments of a recharging device include a user interface. For example, a recharging device can include an on-off switch. For example, a recharging device can include an interface configured to accept temperature and time ranges from a user to direct operation of the heating unit through the controller.
The embodiment illustrated in
In some embodiments, a portable container including an integral controlled evaporative cooling system includes: an internal storage container wall sealed to an internal storage container bottom, the internal storage container wall and the internal storage container bottom positioned to form a storage container with an access aperture; an external storage container wall sealed to an external storage container bottom, the external storage container wall positioned adjacent to the internal storage container wall and the external storage container bottom positioned adjacent to the internal storage container bottom, an edge of the exterior storage container wall sealed to the internal storage container wall to form a vapor-sealed evaporative region between the external storage container wall and the external storage container bottom and the internal storage container wall and the internal storage container bottom; a first insulation wall sealed to a first insulation bottom of a size and shape to be positioned adjacent to an exterior surface of the external storage container wall and the external storage container bottom; a second insulation wall sealed to a second insulation bottom of a size and shape to be positioned adjacent to the first insulation wall, the second insulation wall sealed to the first insulation wall to form an insulation region between the first and second insulation walls and the first and second insulation bottoms; a desiccant region wall sealed to a desiccant region bottom of a size and shape to be positioned adjacent to an exterior surface of the second insulation wall and the second insulation bottom to form an exterior surface of the portable container, the desiccant region wall sealed to the exterior surface of the insulation wall to form a vapor-sealed desiccant region; a vapor conduit with a first end positioned within the vapor-sealed evaporative region, and a second end positioned within the vapor-sealed desiccant region; and a vapor control unit attached to the vapor conduit.
In some embodiments, such as the one illustrated in
In some embodiments, a container includes a vapor-sealed evaporative region including: an evaporative liquid; a wick structure for the evaporative liquid; and a gas pressure less than the ambient gas pressure. For example, in some embodiments the evaporative liquid is water, and the wick structure is a fleece or foam material with sufficient surface properties and pore sizes to wick the water throughout the vapor-sealed evaporative region adjacent to the interior wall and bottom. In some embodiments, the wick is fabricated from a cotton material. In some embodiments, the wick is fabricated from a fiberglass material. The wick can be fabricated of a size smaller than the interior of the vapor-sealed evaporative region, with space for fluid and gas flow around the wick. There may also be a gap in the wick adjacent to the first end of the vapor conduit positioned within the vapor-sealed evaporative region, the gap of a size and shape to permit gas flow to the first end of the vapor conduit. In some embodiments, the vapor-sealed evaporative region is substantially isothermal. There is a vapor-sealed junction 1370 around a region of the vapor conduit 150, the vapor conduit 150 traversing the wall of the vapor-sealed evaporative region 120.
An insulation region can include insulation appropriate to the expected use of the container, for example considering qualities such as temperature profiles, ruggedness, cost, weight and dimensions. In some embodiments, an insulation region includes substantially evacuated space. In some embodiments, an insulation region includes: a thermally-reflective film; and substantially evacuated space. For example the thermally reflective film can include a metal film. In some embodiments, an insulation region includes space with a gas pressure below 10−1 Torr, space with a gas pressure below 10−3 Torr, or space with a gas pressure below 10−5 Torr.
The portable container 100 includes a desiccant region wall 1340 sealed to a desiccant region bottom 1345 of a size and shape to be positioned adjacent to an exterior surface of the second insulation wall 1330 and the second insulation bottom 1335 to form an exterior surface of the portable container 100. In some embodiments, the desiccant region wall encircles the exterior surface of the second insulation wall. The desiccant region wall 1340 is sealed to the exterior surface of the insulation wall 1330 to form a vapor-sealed desiccant region 160. In some embodiments, the seal between the desiccant region wall 1340 and the insulation wall 1330 includes a flange or bridge. For example the embodiment illustrated in FIG. 13 includes a flange 1385 attached at a first side to the top edge of the desiccant region wall 1340 and at a second side to the exterior surface of the insulation wall 1330. The seal can be a vacuum seal. The desiccant region 160 includes desiccant material.
The portable container illustrated in
The portable container 100 includes a vapor control unit 140 attached to the vapor conduit 150. The vapor control unit 140 illustrated is attached to the first end 1360 of the vapor conduit 150. The vapor control unit 140 is positioned substantially centrally within the evaporative region 120. Some embodiments include a temperature sensor 143 within the vapor control unit 140, and a valve 147 of a size, shape and position to reversibly inhibit flow of gas through the vapor conduit 150 in a continual manner. For example the vapor control unit can include a mechanical thermostat affixed to a valve that reversibly opens and closes to reversibly increase and decrease gas flow through the vapor conduit.
In some embodiments, components of a portable container including an integral controlled evaporative cooling system include: an internal storage container wall sealed to an internal storage container bottom, the internal storage container wall and the internal storage container bottom positioned to form a storage container with an access aperture, an external storage container wall sealed to an external storage container bottom, the external storage container wall positioned adjacent to the internal storage container wall and the external storage container bottom positioned adjacent to the internal storage container bottom, an edge of the exterior storage container wall sealed to the internal storage container wall to form an evaporative region between the external storage container wall and the external storage container bottom and the internal storage container wall and the internal storage container bottom, a vapor conduit with a first end positioned within the vapor-sealed evaporative region, and a second end positioned adjacent to the external storage container wall in the exterior of the evaporative region, and a vapor control unit attached to the first end of the vapor conduit; and a desiccant container with an insulation region, including; a first insulation wall sealed to a first insulation bottom of a size and shape to be positioned adjacent to an exterior surface of the storage container with minimal space between the containers, a second insulation wall sealed to a second insulation bottom of a size and shape to be positioned adjacent to the first insulation wall, the second insulation wall sealed to the first insulation wall to form an insulation region between the first and second insulation walls and the first and second insulation bottoms, a desiccant region wall sealed to a desiccant region bottom of a size and shape to be positioned adjacent to an exterior surface of the second insulation wall and the second insulation bottom to form an exterior surface of the portable container, the desiccant region wall sealed to the exterior surface of the insulation wall to form a desiccant region, and an aperture in the desiccant container, the aperture of a size, shape and position to mate with the exterior of the second end of the vapor conduit.
A method of manufacture of a portable container including an integral controlled evaporative cooling system can include the steps of: positioning a storage container with an internal evaporative region, including; an internal storage container wall sealed to an internal storage container bottom, the internal storage container wall and the internal storage container bottom positioned to form a storage container with an access aperture, an external storage container wall sealed to an external storage container bottom, the external storage container wall positioned adjacent to the internal storage container wall and the external storage container bottom positioned adjacent to the internal storage container bottom, an edge of the exterior storage container wall sealed to the internal storage container wall to form an evaporative region between the external storage container wall and the external storage container bottom and the internal storage container wall and the internal storage container bottom, a vapor conduit with a first end positioned within the evaporative region, and a second end positioned adjacent to the external storage container wall in the exterior of the evaporative region, and a vapor control unit attached to the first end of the vapor conduit, within a desiccant container with an insulation region, including a first insulation wall sealed to a first insulation bottom of a size and shape to be positioned adjacent to an exterior surface of the storage container with minimal space between the containers, a second insulation wall sealed to a second insulation bottom of a size and shape to be positioned adjacent to the first insulation wall, the second insulation wall sealed to the first insulation wall to form an insulation region between the first and second insulation walls and the first and second insulation bottoms, a desiccant region wall positioned adjacent to an exterior surface of the second insulation wall and sealed to the exterior surface of the insulation wall to form a desiccant region, the desiccant region wall positioned to form an exterior surface of the portable container, and an aperture in the desiccant container, the aperture of a size, shape and position to mate with the exterior of the second end of the vapor conduit; sealing the second end of the vapor conduit to the aperture in the desiccant container with a gas-impermeable seal; and evacuating the interior of a space within the container defined by the evaporative region, an interior of the vapor conduit, and an interior of the desiccant region.
For example, the first component 1400 and the second component 1410 can be positioned so that the external storage container wall 1310 and external storage container bottom 1315 are positioned adjacent to the first insulation wall 1320 and bottom 1325. The second end 1365 of the vapor conduit 150 is positioned within the aperture 1420 in the desiccant container of the second component. (e.g. see down arrow in
Aspects of the subject matter described herein are set out in the following numbered clauses:
In some implementations described herein, logic and similar implementations may include computer programs or other control structures. Electronic circuitry, for example, may have one or more paths of electrical current constructed and arranged to implement various functions as described herein. In some implementations, one or more media may be configured to bear a device-detectable implementation when such media hold or transmit device detectable instructions operable to perform as described herein. In some variants, for example, implementations may include an update or modification of existing software or firmware, or of gate arrays or programmable hardware, such as by performing a reception of or a transmission of one or more instructions in relation to one or more operations described herein. Alternatively or additionally, in some variants, an implementation may include special-purpose hardware, software, firmware components, and/or general-purpose components executing or otherwise invoking special-purpose components.
The subject matter described herein may be implemented in an analog or digital fashion or some combination thereof. In a general sense, some aspects described herein can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, and/or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.).
Alternatively or additionally, implementations may include executing a special-purpose instruction sequence or invoking circuitry for enabling, triggering, coordinating, requesting, or otherwise causing one or more occurrences of virtually any functional operation described herein. In some variants, operational or other logical descriptions herein may be expressed as source code and compiled or otherwise invoked as an executable instruction sequence. In some contexts, for example, implementations may be provided, in whole or in part, by source code, such as C++, or other code sequences. In other implementations, source or other code implementation, using commercially available and/or techniques in the art, may be compiled//implemented/translated/converted into a high-level descriptor language (e.g., initially implementing described technologies in C or C++ programming language and thereafter converting the programming language implementation into a logic-synthesizable language implementation, a hardware description language implementation, a hardware design simulation implementation, and/or other such similar mode(s) of expression). For example, some or all of a logical expression (e.g., computer programming language implementation) may be manifested as a Verilog-type hardware description (e.g., via Hardware Description Language (HDL) and/or Very High Speed Integrated Circuit Hardware Descriptor Language (VHDL)) or other circuitry model which may then be used to create a physical implementation having hardware (e.g., an Application Specific Integrated Circuit).
In a general sense, various aspects of the embodiments described herein can be implemented, individually and/or collectively, by various types of electro-mechanical systems having a wide range of electrical components such as hardware, software, firmware, and/or virtually any combination thereof, limited to patentable subject matter under 35 U.S.C. 101; and a wide range of components that may impart mechanical force or motion such as rigid bodies, spring or torsional bodies, hydraulics, electro-magnetically actuated devices, and/or virtually any combination thereof. Consequently, as used herein “electro-mechanical system” includes, but is not limited to, electrical circuitry operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, a Micro Electro Mechanical System (MEMS), etc.), electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.), and/or any non-electrical analog thereto, such as optical or other analogs (e.g., graphene based circuitry). Examples of electro-mechanical systems include, but are not limited to, a variety of consumer electronics systems, medical devices, as well as other systems such as motorized transport systems, factory automation systems, security systems, and/or communication/computing systems.
At least a portion of the devices and/or processes described herein can be integrated into a data processing system. A data processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non-volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A data processing system may be implemented utilizing suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
The state of the art has progressed to the point where there is little distinction left between hardware, software, and/or firmware implementations of aspects of systems; the use of hardware, software, and/or firmware is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency tradeoffs. There are various vehicles by which processes and/or systems and/or other technologies described herein can be effected (e.g., hardware, software, and/or firmware), and the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware in one or more machines, compositions of matter, and articles of manufacture, limited to patentable subject matter under 35 USC 101. Hence, there are several possible vehicles by which the processes and/or devices and/or other technologies described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality.
In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components. In some instances, one or more components may be referred to herein as “configured to,” “configured by,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Such terms (e.g. “configured to”) generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
The herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
While particular aspects of the present subject matter described herein have been shown and described, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. In general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). If a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”): the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended as “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc. In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended as “a system having at least one of A, B, or C” that would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc. Typically, a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in any ADS, are incorporated herein by reference, to the extent not inconsistent herewith.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
If an Application Data Sheet (ADS) has been filed on the filing date of this application, it is incorporated by reference herein. Any applications claimed on the ADS for priority under 35 U.S.C. §§ 119, 120, 121, or 365(c), and any and all parent, grandparent, great-grandparent, etc. applications of such applications, are also incorporated by reference, including any priority claims made in those applications and any material incorporated by reference, to the extent such subject matter is not inconsistent herewith. The present application claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Priority Applications”), if any, listed below (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC § 119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Priority Application(s)). The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 14/885,043, entitled Temperature-Controlled Portable Cooling Units, naming Fong-Li Chou, Philip A. Eckhoff, Lawrence Morgan Fowler, Shieng Liu, Peter K. Maier-Laxhuber, Nels R. Peterson, Ralf W. Schmidt, Clarence T. Tegreene, Lowell L. Wood, Jr., Reiner M. Wort, and David J. Yager as inventors, filed 16 Oct. 2015. The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 14/454,899, entitled Temperature-Controlled Medicinal Storage Devices, naming Fong-Li Chou, Philip A. Eckhoff, Lawrence Morgan Fowler, Fridrik Larusson, Shieng Liu, Nels R. Peterson, Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 8 Aug. 2014. The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 13/853,277, now U.S. Pat. No. 9,170,053, entitled Temperature-Controlled Portable Cooling Units, naming Philip A. Eckhoff, Nels R. Peterson, Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 29 Mar. 2013. The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 14/885,043, entitled Temperature-Controlled Portable Cooling Units, naming Fong-Li Chou, Philip A. Eckhoff, Lawrence Morgan Fowler, Shieng Liu, Peter K. Maier-Laxhuber, Nels R. Peterson, Ralf W. Schmidt, Clarence T. Tegreene, Lowell L. Wood, Jr., Reiner M. Wörz, and David J. Yager as inventors, filed 16 Oct. 2015. The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 14/454,899, entitled Temperature-Controlled Medicinal Storage Devices, naming Fong-Li Chou, Philip A. Eckhoff, Lawrence Morgan Fowler, Fridrik Larusson, Shieng Liu, Nels R. Peterson, Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 8 Aug. 2014. The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 13/853,277, entitled Temperature-Controlled Portable Cooling Units, naming Philip A. Eckhoff. Nels R. Peterson, Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 29 Mar. 2013. If the listings of applications provided above are inconsistent with the listings provided via an ADS, it is the intent of the Applicant to claim priority to each application that appears in the Domestic Benefit/National Stage Information section of the ADS and to each application that appears in the Priority Applications section of this application. All subject matter of the Priority Applications and of any and all applications related to the Priority Applications by priority claims (directly or indirectly), including any priority claims made and subject matter incorporated by reference therein as of the filing date of the instant application, is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.
Number | Name | Date | Kind |
---|---|---|---|
1862330 | Chapin et al. | Jun 1932 | A |
1955723 | Alex | Apr 1934 | A |
2871674 | Koivisto et al. | Feb 1959 | A |
3642059 | Greiner | Feb 1972 | A |
3953983 | Sander | May 1976 | A |
4001601 | Schuster | Jan 1977 | A |
4007601 | Webbon | Feb 1977 | A |
4048810 | Zeilon | Sep 1977 | A |
4057029 | Seiter | Nov 1977 | A |
4205531 | Brunberg | Jun 1980 | A |
4718020 | Duich et al. | Jan 1988 | A |
4846257 | Wallace et al. | Jul 1989 | A |
4924676 | Maier-Laxhuber et al. | May 1990 | A |
5186020 | Rockenfeller et al. | Feb 1993 | A |
5207073 | Maier-Laxhuber et al. | May 1993 | A |
5359861 | Maier-Laxhuber et al. | Nov 1994 | A |
5415012 | Maier-Laxhuber et al. | May 1995 | A |
5440896 | Maier-Laxhuber et al. | Aug 1995 | A |
5444223 | Blama | Aug 1995 | A |
5518069 | Maier-Laxhuber | May 1996 | A |
5600071 | Sooriakumar et al. | Feb 1997 | A |
5709472 | Prusik et al. | Jan 1998 | A |
5740680 | Lee | Apr 1998 | A |
5816069 | Ebbeson | Oct 1998 | A |
5816089 | Marando | Oct 1998 | A |
5900554 | Baba et al. | May 1999 | A |
6042264 | Prusik et al. | Mar 2000 | A |
6349560 | Maier-Laxhuber et al. | Feb 2002 | B1 |
6378326 | Maier-Laxhuber | Apr 2002 | B2 |
6389839 | Sabin | May 2002 | B1 |
6438992 | Smith et al. | Aug 2002 | B1 |
6584797 | Smith et al. | Jul 2003 | B1 |
6688132 | Smith et al. | Feb 2004 | B2 |
6701724 | Smith et al. | Mar 2004 | B2 |
6820441 | Maier-Laxhuber et al. | Nov 2004 | B2 |
6955196 | Giudici et al. | Oct 2005 | B2 |
7213403 | Maier-Laxhuber et al. | May 2007 | B2 |
7213411 | Maier-Laxhuber et al. | May 2007 | B2 |
7240507 | Jeuch | Jul 2007 | B2 |
7726139 | Maier-Laxhuber | Jun 2010 | B2 |
20010025510 | Maier-Laxhuber et al. | Oct 2001 | A1 |
20030230092 | Lowenstein et al. | Dec 2003 | A1 |
20040031282 | Kopko | Feb 2004 | A1 |
20060248910 | Smolko et al. | Nov 2006 | A1 |
20090049845 | McStravick et al. | Feb 2009 | A1 |
20100213200 | Deane et al. | Aug 2010 | A1 |
20110127273 | Deane et al. | Jun 2011 | A1 |
20120000918 | Deane et al. | Jan 2012 | A1 |
20130306656 | Eckhoff et al. | Nov 2013 | A1 |
20150027157 | Chou et al. | Jan 2015 | A1 |
20160084577 | Chou et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
10 2007 010 981 | Sep 2008 | DE |
1143210 | Oct 2001 | EP |
2 447 624 | May 2012 | EP |
02-078281 | Mar 1990 | JP |
10-029457 | Feb 1998 | JP |
10-238918 | Sep 1998 | JP |
2004294023 | Oct 2004 | JP |
WO2013001390 | Jan 2013 | WO |
Entry |
---|
PCT International Search Report; International App. No. PCT/US2018/021379; dated Jun. 18, 2018; pp. 1-4. |
Japan Patent Office, First Office Action, App. No. 2016-505559 (based on PCT Patent Application No. PCT/US2014/031965); dated Mar. 20, 2018; pp. 1-6. |
European Patent Office; Extended European Search Report, Pursuant to Rule 62 EPC; App. No. EP 15 830 436; dated Mar. 2, 2018; pp. 1-9. |
Pakistani Examination Report; 1 page total (dated Aug. 5, 2018). |
3M Monitor Mark™; “Time Temperature Indicators—Providing a visual history of time temperature exposure”; 3M Microbiology; 2006; pp. 1-4; located at http://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSufSevTsZxtUMx_9nxtBevUqevTSevTSevTSeSSSSSS--&fn=78-6901-2024-7.pdf. |
BINE Informationsdienst; “Zeolite/water refrigerators, Projektinfo 16/10”; BINE Information Service; printed on Feb. 12, 2013; pp. 1-4; FIZ Karlsruhe, Germany; located at: http://www.bine.info/fileadmin/content/Publikationen/Englische_Infos/projekt_1610_engl_internets.pdf. |
Cole-Parmer; “Temperature Labels and Crayons”; printed on Sep. 27, 2007; p. 1; located at: www.coleparmer.com. |
Conde-Petit, Manuel R.; “Aqueous solutions of lithium and calcium chlorides:—Property formulations for use in air conditioning equipment design”; 2009; pp. 1-27 plus two cover pages; M. Conte Engineering, Zurich, Switzerland. |
Cool-System Keg GMBH; “Cool-System presents: CoolKeg® The world's first self-chilling Keg!”; printed on Feb. 6, 2013; pp. 1-5; located at: http://www.cool.system.de/. |
Dawoud, et al.; “Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps”; International Journal of Heat and Mass Transfer; 2003; pp. 273-281; vol. 46; Elsevier Science Ltd. |
Dometic S.A.R.L.; “Introduction of Zeolite Technology into refrigeration systems, LIFE04 ENV/LU/000829, Layman's Report”; printed on Feb. 6, 2013; pp. 1-10; located at: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file & fil=LIFE04_ENV_LU_000829_LAYMAN.pdf. |
Dow Chemical Company; “Calcium Chloride Handbook: A Guide to Properties, Forms, Storage and Handling”; Aug. 2003; pp. 1-28. |
European Patent Office; Supplementary European Search Report; Pursuant to Rule 62 EPC; App. No. EP 14773074.1; dated Feb. 20, 2017; pp. 1-10. |
European Patent Office, Supplementary European Search Report, Pursuant to Rule 164 EPC; App. No. EP 14773074.1; dated Oct. 14, 2016; pp. 1-8. |
Fesmire, James E.; “Standardization in cryogenic insulation systems testing and performance data”; Physics Procedia; 2015; pp. 1089-1097; vol. 67; Elsevier B.V. |
Gast Manufacturing, Inc.; “Vacuum and Pressure Systems Handbook”; printed on Jan. 3, 2013; pp. 1-20; located at: http://www.gastmfg.com/vphb/vphb_sl.pdf. |
Gea Wiegand; “Pressure loss in vacuum lines with water vapour”; printed on Mar. 13, 2013; pp. 1-2; located at: http://produkte.gea-wiegand.de/GEA/GEACategory/139/index_en.html. |
Hall, Larry D.; “Building Your Own Larry Hall Icyball”; printed on Mar. 27, 2013; pp. 1-4; located at: http://crosleyautoclub.com/IcyBall/HomeBuilt/HallPlans/IB_Directions.html. |
Kozubal, et al.; “Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ulta Efficient Air Conditioning, Technical Report NREL/TP-5500-49722”; National Renewable Energy Laboratory; Jan. 2011; pp. i-vii, 1-60, plus three cover pages and Report Documentation Page. |
machine-history.com; “Refrigeation Machines”; printed on Mar. 27, 2013; pp. 1-10; located at: http://www.machine-history.com/Refrigeration%20Machines. |
Marquardt, Niels; “Introduction to the Principles of Vacuum Physics”; 1999; pp. 1-24; located at: http://www.cientificosaficionados.com/libros/CERN/vaciol-CERN.pdf. |
Modern Mechanix; “Icyball Is Practical Refrigerator for Farm or Camp Use (Aug. 1930)”; bearing a date of Aug. 1930; printed on Mar. 27, 2013; pp. 1-3; located at: http://blog.modernmechanix.com/icyball-is-practical-refrigerator-for-farm-or-camp-use/. |
Oxychem; “Calcium Chloride, A Guide to Physical Properties”; printed on Jan. 3, 2013; pp. 1-9, plus two cover pages and back page; Occidental Chemical Corporation. located at: http://www.cal-chlor.com/PDF/GUIDE-physical-properties.pdf. |
PCT International Search Report; International App. No. PCT/US2016/056785; dated Jan. 26, 2017; pp. 1-3. |
Pilatowsky, I., Romero, R.J., Isaza, C.A., Gamboa, S.A., Sebastian, P.J., and Rivera, W.; “Chapter 5: Sorption Refrigeration Systems”; Cogeneration Fuel Cell-Sorption Air Conditioning Systems; Green Energy and Technology; 2011; pp. 75-102; Springer; ISBN 978-1 84996-027-4. |
Restuccia, et al.; “Selective water sorbent for solid sorption chiller: experimental results and modeling”; International Journal of Refrigeration; 2004; pp. 284-293; vol. 27; Elsevier Ltd and IIR. |
Rezk, et al.; “Physical and operating conditions effects on silica gel/water adsorption chiller performance”; Applied Energy; 2012; pp. 142-149; vol. 89; Elsevier Ltd. |
Rietschle Thomas: “Calculating Pipe Size & Pressure Drops in Vacuum Systems, Section 9—Technical Reference”; printed on Jan. 3, 2013; pp. 9-5 through 9-7; located at: http://www.ejglobalinc.com/Tech.htm. |
Saha, et al.; “A new generation of cooling device employing CaCl2-in-silica gel-water system”; International Journal of Heat and Mass Transfer; 2009; pp. 516-524; vol. 52; Elsevier Ltd. |
Shockwatch; “Environmental indicators”; printed on Sep. 27, 2007; pp. 1-2; located at: www.shockwatch.com. |
State Intellectual Property Office of P.R.C.; First Office Action; Application No. 201480019305.5; dated Dec. 6, 2016; pp. 1-10 (machine translation provided). |
UOP; “An Introduction to Zeolite Molecular Sieves”; printed on Jan. 10, 2013; pp. 1-20; located at: http://www.eltrex.pl/pdf/karty/adsorbenty/ENG-Introduction%20to%20%Zeolite%20Molecular%20Sieves.pdf. |
Wang, et al.; “Study of a novel silica gel-water adsorption chiller. Part I. Design and performance prediction”; International Journal of Refrigeration; 2005; pp. 1073-1083; vol. 28; Elsevier Ltd and IIR. |
Wikipedia; “Icyball”; Mar. 14, 2013; printed on Mar. 27, 2013; pp. 1-4; located at: http://en.wikipedia.org/wiki/Icyball. |
Yong et al.; “Adsorption Refrigeration: A Survey of Novel Technologies”; Recent Patents on Engineering: 2007; pp. 1-21; vol. 1. No. 1; Bentham Science Publishers Ltd. |
Chinese State Intellectual Property Office, Notification of the First Office Action, App. No. 201680058168.5 (based on PCT App. No. PCT/US2016/056785); dated Aug. 14, 2019 (received by our Agent on Aug. 22, 2019); pp. 1-19 (machine translation provided). |
Intellectual Property Office of Singapore, Notification of Examiners Report, App. No. 11201802112T (based on PCT App. No. PCT/US2016/056785); dated Sep. 3, 2019 (received by our Agent on Sep. 18, 2019); pp. 1-8 (machine translation provided). |
Chinese State Intellectual Property Office; Notification of the First Office Action, App. No. 201580053956.0 (Based on PCT Patent Application No. PCT/US2015/043808); dated Feb. 11, 2019; pp. 1-4 (machine translation provided). |
Number | Date | Country | |
---|---|---|---|
20170198960 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14885043 | Oct 2015 | US |
Child | 15468457 | US | |
Parent | 14454899 | Aug 2014 | US |
Child | 14885043 | US | |
Parent | 13853277 | Mar 2013 | US |
Child | 14454899 | US |