TEMPERATURE REGULATION APPARATUS AND METHOD

Information

  • Patent Application
  • 20110232303
  • Publication Number
    20110232303
  • Date Filed
    June 07, 2011
    13 years ago
  • Date Published
    September 29, 2011
    13 years ago
Abstract
A temperature regulation apparatus includes a dry ice module that encloses dry ice so that the module's outside surface is not hazardous to touch. Insulation, breathable material, or a combination of insulating and breathable materials, allows dry ice sublimation at a sufficiently slow rate within the attached dry ice module to control the ambient temperature in the area to be cooled. The dry ice module can be attached in a location that maximizes the dry ice cooling properties, typically at or near the top of the area to be cooled. Since sublimated carbon dioxide is heavier than normal air, it falls to the bottom of the area to be cooled and builds up. The venting placement in the dry ice module is based upon the make up of the dry ice module and the breathable materials inside of it.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to an apparatus and method for regulating the temperature in an enclosed area. In one particular embodiment of the invention, the apparatus comprises a dry ice module that can be adapted or retrofitted to various items that need temperature regulating. The invention provides an apparatus for effectively utilizing dry ice as a temperature lowering means in any situation requiring the temperature to be controlled at a desired temperature. The dry ice module eliminates problems associated with the use of gel packs or wet ice (H2O) as the cooling vehicle when trying to maintain a consistently low temperature. By arranging various layers of insulation materials, such as THINSULATE®, TYVEK®, and a polyethylene foam enclosed in a reflective foil, such as the product sold under the name PRODEX® FfmF insulation by Insulation 4 Less, separately or in conjunction with the other, and the dry ice, the user of the dry ice module can effectively regulate the temperature of any items requiring controlled cooling for extended periods of time by controlling the rate at which dry ice sublimates.


Due to the wide range of temperature regulation that can be achieved using dry ice, one has greater flexibility over extended periods of time when using dry ice as a means of a cooling vehicle from above freezing (greater than 32 .degree. F.), down to sub-zero temperatures, and other temperatures in between. One embodiment of the invention includes an anti-freeze bag made out of breathable material, such as a spun bonded olefin, spun bonded-melt blown-spun bonded (SMS) polyethylene, or other materials with similar properties and characteristics available today or in the future, can assist in regulating the temperature. For example, different liquids freeze at varying temperatures and when kept in a cooling compartment that is just below 32 .degree. F., water tends to freeze first. As such, water bottles can be encapsulated in an anti-freeze bag allowing them to remain liquid, while other drinks that do not freeze at temperatures just below 32 .degree. F. remain in the liquid state as well.


Preferred embodiments of the invention include a vented module that houses dry ice while encapsulated in insulating and breathable materials, or a combination of such materials, allowing for the regulation of temperature to be regulated within a particular temperature range targeted for maintaining the particular items in a cooled but unfrozen state, while also allowing individuals to safely touch the dry ice module without getting injured.


Dry ice is made of carbon dioxide gas (CO2), the sublimation of which is a cooling vehicle in the present invention. Further, because of its molecular make-up CO2 is heavier than atmospheric air, and therefore falls to the lowest point possible. Accordingly, a dry ice module of the present invention is preferably positioned proximate the top of an enclosed body so that the CO2 gas falls downward. When the insulating and breathable materials comprising the dry ice module are assembled in a manner to achieve a desirable temperature, and the module is contained within an enclosed closed body, such as a cooler, the build up of pressure from the CO2 gas accumulated within the enclosed body is typically minimal, even when the lid is not opened for an extended period of time.


2. Description of the Related Art


Portable devices have been used for cooling food, beverages, medications and other items. In addition, portable coolers have been used in commercial applications, such as the shipment of perishable cargo, the transport of temperature sensitive medicines, laboratory samples, and transport of donor organs to medical facilities. Such coolers are typically non-electric, and configured to use water (H2O) in a frozen solid state (“wet ice”). However, to ensure adequate temperature regulations, one must repeatedly drain a large majority of the surplus water created from the melted wet ice, and add a fresh supply of wet ice. This process is time consuming, messy, does not provide a uniform temperature over an extended period of time, has the potential to soak and ruin inadequately protected items that are adversely affected by water, and requires a renewable source of wet ice. Although wet ice is widely available in gas stations, motels, convenience stores, restaurants, and similar commercial establishments, when temperatures surrounding the temperature sensitive materials are significantly elevated, additional supplies of wet ice may be needed more than once a day to maintain the temperature below a desired level for optimal consumption and/or spoilage prevention.


Alternatively, gel packs and other refreezable pre-packaged products are available for use instead of wet ice, or in combination therewith. However, to be reused, they have the disadvantage of requiring refreezing in something such as a household freezer, which is not typically available during travel away from home, and other environments in which the cooler is to be used. In addition, the amount of cooling time provided depends upon their size, and they are rigid which takes up valuable space that otherwise could be devoted to items requiring cooling. Further, although the gel packs and other refreezable pre-packaged products are commonly available and eliminate the messiness associated with wet ice, they are not typically large enough to provide temperature regulation for periods longer than are possible with wet ice. It would therefore be useful to have a method of temperature regulation that can maintain lowered temperatures for extended periods of time without replenishment, maintain a temperature range to protect things from spoilage, offer an alternative to current cooling methods used by individuals wearing protective body suits, and provide temperature regulation without the mess associated with wet ice and other liquid media, while also providing the ability to cool or freeze contents at a level far below conventional cooling means.


BRIEF SUMMARY OF THE INVENTION

Therefore it is an object of the present invention to provide a method for temperature regulation that can be adapted to a variety of applications.


Another object of the present invention is to provide an apparatus that can maintain lowered temperatures for extended periods of time without the mess associated with wet ice and other liquid media.


Another object of the present invention is to provide a temperature regulation apparatus that can be used to maintain the temperatures of temperature sensitive materials at temperatures at or just above freezing.


Another object of the present invention is to provide a temperature regulation apparatus that can maintain a narrow range of temperatures during the entire time of its use to protect temperature sensitive materials from spoilage.


Another object of the present invention is to provide a temperature regulation apparatus that is user friendly, environmentally friendly, and requires little monitoring or replenishment by the user during use.


Another object of the present invention is to provide a temperature regulation apparatus that can be made from durable materials, and can be subjected to repeated long-term use.


Another objective of the present invention is to provide a temperature regulation apparatus that is economically priced for a one time use/disposable product.


Another object of the invention is to provide a temperature regulation apparatus that can be permanently built into or easily retrofitted to existing coolers.


These and other objects of the invention can be achieved in the preferred embodiments of the invention disclosed below. One preferred embodiment of the invention includes at least one dry ice module containing a quantity of dry ice, with vents incorporated into the dry ice module and venting means between the dry ice module and the space in which items needing temperature regulation are stored. The dry ice module can be a combination of different layers assembled to achieve a desired and regulated temperature for prolonged periods of time for any situation requiring dependable cooling capabilities without the continuous replenishment of a cooling vehicle, such as wet ice.


According to another embodiment of the invention, multiple dry ice modules can be utilized with multiple cooling compartments, and each can be maintained at independent temperatures, if needed. With a combination of rigid or flexible insulation and single or multiple layers of polyethylene foam enclosed in a reflective foil, THINSULATE® and TYVEK®, the sublimation of dry ice is slow and the temperature is maintained in a narrow range. The outside surface of the dry ice module, used in the present invention is safe for a user to touch. Any form of dry ice can be used with the present invention, including, but not limited to, block, pellets, cryo and/or any new form of dry ice that may be developed in the future.


According to another embodiment of the invention, an apparatus for maintaining a controlled range of temperature for extended periods of time, comprises a temperature regulation module comprising an inner envelope for receiving a temperature regulating element producing a temperature regulating gas. The inner envelope can be made of a breathable thermal insulating material. A flexible outer envelope encloses the inner envelope, and can be made of a non-breathable thermal insulating material. The outer envelope has at least one opening for venting of the temperature regulating gas produced by the temperature regulating element.


According to another embodiment of the invention, the temperature regulating element is comprised of solid carbon dioxide, which produces cooling gas during sublimation of the solid carbon dioxide.


According to another embodiment of the invention, the temperature regulating module includes a removable middle envelope for positioning intermediate the inner envelope and the outer envelope. The middle envelope encloses the inner envelope and the outer envelope encloses the middle envelope, whereby a rate of sublimation of the carbon dioxide can be increased by removing the middle envelope.


According to another embodiment of the invention, a temperature regulating apparatus includes a container for containing perishable goods, and the temperature regulation module is positioned within the container.


According to another embodiment of the invention, the temperature regulation module includes attachment means positioned on the outer envelope for attaching the module to the container.


According to another embodiment of the invention, a first partition can be positioned in the container between the module and the perishable goods.


According to another embodiment of the invention, a second partition can be positioned in the container between the module and the first partition.


According to another embodiment of the invention, the first partition comprises a platform, and the second partition comprises a dome.


According to another embodiment of the invention, a kit for maintaining a controlled range of temperature for extended periods of time comprises a container for containing an item therein to be maintained in a controlled range of temperature, and a temperature regulation module positioned within the container. The temperature regulation module comprises an inner layer for receiving a temperature altering vehicle that produces a temperature altering gas, and can be made of a breathable thermal insulating material. A middle layer comprising a breathable thermal insulating material encloses the inner layer, and an outer layer encloses the middle layer. The outer layer is comprised of a non-breathable thermal insulating material, and has at least one opening for venting the cooling gas into the container.


According to another embodiment of the invention, the item contained in the container can be food, beverage, cooling pads, heating pads, and/or medications.


According to another embodiment of the invention, the temperature altering vehicle is comprised of solid carbon dioxide that produces a cooling gas upon sublimation. A divider is positioned within the container that defines first and second stowage areas within the container. One temperature regulation module is positioned within the first stowage area, and a second temperature regulation module is positioned within the second stowage area. The second temperature regulation module is adapted to release more cooling gas than the first temperature regulation module in the first stowage area. As such, the second storage area is maintained at a lower temperature than the first stowage area.


According to another embodiment of the invention, a platform can be positioned in the container between the module and the item contained in the container.


According to another embodiment of the invention, the item contained in the container can be positioned on the base of the container, the platform can be positioned over the item contained in the container, and the module can be positioned on the platform with the vent opening of the outer layer of the module positioned face down on the platform.


According to another embodiment of the invention, a dome can be positioned in the container between the module and the platform.


According to another embodiment of the invention, the module can be positioned on the base of the container, with the vent opening of the outer layer of the module positioned face down on the platform. The dome can be positioned over the module, the platform can be positioned on top of the module, and the item contained in the container can be positioned on the top surface of the platform.


According to another embodiment of the invention, the kit can be arranged in a first configuration in which the item contained in the container is positioned on the base of the container, the platform is positioned over the item contained in the container, and the module is positioned on the platform with vent opening of the module positioned face down on the platform. The kit can also be arranged in a second configuration in which the module is positioned on a base of the container, with the vent opening positioned face down on the platform, the dome is positioned over the module, the platform is positioned on top of the module, and the item contained in the container is positioned on a top surface of the platform.


According to another embodiment of the invention, the inner layer of the module comprises spun bonded olefin, the middle layer of the module comprises a blend of olefin and polyester fibers, and the outer layer of the module comprises polyethylene foam enclosed in a reflective foil.


According to another embodiment of the invention, a method for maintaining a controlled range of temperature for extended periods of time comprises providing a container having a base and at least one sidewall, an item to be maintained in a controlled range of temperature, and a temperature regulation module. The module comprises an inner layer for receiving a temperature altering vehicle that produces a temperature altering gas, the inner layer comprising a breathable thermal insulating material, and an outer layer enclosing the inner layer comprised of a non-breathable thermal insulating material. The outer layer has at least one opening for venting the cooling gas into the container. The item and module are positioned in the container, and a platform can be positioned between the module and the item.


According to another embodiment of the invention, the item can be positioned on the base of the container, the platform can be positioned above the item in the container, and the module can be positioned on the top surface of the platform, with vent openings of the module face down on the top surface of the platform.


According to another embodiment of the invention, the module can be positioned on the base of the container with the vent openings of the module face down on the base. A dome can be positioned over the module, the platform can be positioned over the dome, and the item can be positioned on a top surface of the platform.





BRIEF DESCRIPTION OF THE DRAWINGS

Some of the objects of the invention have been set forth above. Other objects and advantages of the invention will appear as the description proceeds when taken in conjunction with the following drawings, in which:



FIG. 1A is a front perspective view of a dry ice module according to a preferred embodiment of the invention;



FIG. 1B is a rear view of the dry ice module of FIG. 1A;



FIG. 1C is a cross-sectional view of the dry ice module of FIG. 1A;



FIG. 2 is a perspective view of a cooling compartment according to a preferred embodiment of the invention;



FIG. 3 is a perspective view of a cooling compartment according to another preferred embodiment of the invention;



FIG. 4 is a schematic view of a dry ice module according to another preferred embodiment of the invention;



FIG. 5 is a perspective view of the dry ice module of FIG. 4;



FIG. 6 is a perspective view of the dry ice module of FIG. 4 and a cooling compartment according to another preferred embodiment of the invention;



FIG. 7 is another perspective view of the dry ice module of FIG. 4 and cooling compartment of FIG. 6;



FIG. 8 is schematic view of a temperature regulation kit according to another preferred embodiment of the invention; and



FIG. 9 is a schematic view of a temperature regulation kit according to another preferred embodiment of the invention.





DESCRIPTION OF PREFERRED EMBODIMENTS AND BEST MODE

Referring now to the drawings, wherein identical reference numerals denote the same elements throughout the various views, a temperature regulation apparatus according to a preferred embodiment of the invention is illustrated in FIGS. 1A, 1B and 1C, and shown generally at reference numeral 1. The temperature regulation apparatus comprises a dry ice module 1, which can be made from or lined with at least one insulating material 2, 3, 4 that encloses a cooling vehicle such as dry ice 7. The insulating materials 2, 3, 4 can slow down the rate of sublimation of the dry ice 7, and prevent the exterior surface of the dry ice module 1 from becoming too cold to touch.


The insulating materials 2, 3, 4 can comprise a combination of rigid insulating board or lightweight flexible insulating material, but is not limited thereto. The dry ice module 1 can made from a single insulating material 2 or a combination of materials, such as the outer layer 2, middle layer 3, and inner layer 4 shown in FIG. 1C.


In a preferred embodiment, the outer layer of insulating material 2 comprises a non-breathable material such as a polyethylene foam enclosed in a reflective foil sold under the name PRODEX® FfmF insulation by Insulation 4 Less. The middle layer of insulating material 3 comprises a breathable thermal insulating material such as a blend of superfine olefin and polyester fibers sold under the name THINSULATE® by 3M. The inner layer of insulating material 4 comprises a breathable thermal insulating material, such as a spun bonded olefin sold under the name TYVEK® by DuPont.


The dry ice module 1 can include a lid or flap 6 that can be opened for introduction of a new supply of dry ice 7 when the previously used supply of dry ice 7 is spent. The dry ice module 1 can be positioned external to or within a space requiring a controlled and or prolonged temperature. As shown in FIG. 1A, the outer layer 2 of the dry ice module 1 includes a plurality of vent holes 5 to allow for movement of the sublimated dry ice into the area needed to be cooled. The dry ice module includes attachment means, such as male couplings 8 shown in FIG. 1B, for attaching the dry ice module 1 to an enclosed structure, such as the cooling compartments 10, 10′ shown in FIGS. 2 and 3.


A cooling compartment according to a preferred embodiment of the invention is illustrated in FIG. 2, and shown generally at reference numeral 10. The cooling compartment 10 includes four side walls, a bottom wall and a dividing wall defining cooling stowage areas 15, 16 for storing items to be cooled. As shown in FIG. 2, the dry ice module 1 is attached to the underside surface of a one-piece lid 11, and configured for transferring sublimated gas from dry ice module 1 into the cooling stowage area 16 below it. Likewise, a second dry ice module 1 is attached to the underside of a second lid 12 in order to supply sublimated gas into the second cooling stowage area 15. The stowage areas 15, 16 can be maintained at different temperatures depending on the rate of sublimation maintained by each of the dry ice modules 1, which can be adjusted by varying the insulating materials 2, 3, 4. For example, stowage area 16 can be maintained at freezing temperature for items that are to be kept frozen, and stowage area 15 can be maintained at a higher temperature for items that are typically kept refrigerated. As such, the cooling container 10 can provide a refrigerator section and a freezer section.


The dry ice modules 1 are attached to the underside of the lids 11, 12 by mating the male couplings 8 of the dry ice modules 1 with female couplings 9 in the lids 11, 12, as shown in FIG. 2. The dry ice module 1 can be removable or permanent and a part of a newly manufactured cooling compartment 10 or retrofitted to an existing cooling compartment 10 having a rigid outer surface construction or a resilient outer surface construction.


An alternative cooling compartment 10′ is shown is illustrated in FIG. 3. The cooling compartment 10′ is similar to the previously described cooling compartment 10, except that it has two divider walls defining three equally sized cooling stowage areas 16, 16′, 16″, and just one lid 11 covering all three stowage areas 16, 16′, 16″.


The insulating materials 2, 3, 4 allow dry ice 7 to sublimate at a sufficiently slow rate for the regulation of the ambient temperature within an enclosed space, such as a cooling stowage area 16, requiring a controlled and prolonged temperature at a desired temperature or within a specified temperature range. The venting of sublimated CO2 gas should be conducted in such a manner as to allow it to enter the area being cooled at or near the top thereof. Because CO2 from sublimated dry ice is heavier than air, it will fall to the bottom. By using different wrapping and insulating materials 2, 3, 4, (or others not shown), both alone or in combination, it is possible to slow the sublimation of dry ice 7 to the point that items inside the area being cooled can exist in a temperature regulated environment that ranges from sub-zero to above freezing and can be easily changed to meet application requirements. This allows for the maximum use of dry ice 7 as a cooling medium without worrying about freezing items unless one is trying to make or keep things frozen.


In addition to controlling the sublimation process, by layering or wrapping items one can further control the temperature. For example, an “anti-freeze” bag 14, shown in FIG. 1C, made out of a spun bonded olefin, spun bonded-melt blown-spun bonded (SMS) polyethylene, or any other material with similar properties and characteristics such as breathable material 4 in FIG. 1C, can ensure that water bottles (not shown) do not freeze if the temperature inside the area being cooled is maintained just below freezing.


The dry ice module 1 is made with insulating materials 2, 3, 4 that control the sublimation rate of dry ice 7, and to prevent outer surface of dry ice module 1 from injuring human skin that comes into direct contact with it. The dry ice module 1 may be attached in such a manner that allows for the sublimation of dry ice 7 to effectively cool a specific area or items. It is contemplated for the dry ice module 1 to be removable or permanent and a part of newly manufactured item, such as a cooler or cooling device (not shown) or retrofitted to an existing item, such as a cooler or cooling device having a rigid outer surface construction or a resilient outer surface construction. In addition, although not shown in FIGS. 1A, 1B, 1C herein, any of the preferred embodiments of the present invention can have more than one area of vent holes 5 in the dry ice module 1 for movement of the sublimated dry ice into the area needed to be cooled. Different adaptation and variations can be used in the present invention for reducing the temperature, including variation in the dry ice module's 1 insulating materials 2, insulating/breathable materials 3, breathable materials 4, and other breathable materials (not shown) which directly encapsulate the dry ice 7.


Alternatively, the dry ice module 1 can comprise a soft-sided bag made from breathable material that contains dry ice 7. The dry ice module 1 is placed in an area needed to be cooled. Such a multi-layer bag may be used alone in an area needed to be cooled without any dry ice module 1 or other cooling means, due to the ever-evolving technological advances of the breathable materials, such as breathable material 4. When a multi-layer bag is used, depending upon the accuracy needed for the temperature control and what other cooling means are used, if any, the multi-layer bag used may include one or more layers of an outer insulating material, like the insulating materials 2 and 3 used to construct the dry ice module 1 shown in FIG. 1C. Therefore, for the cooling of sodas, water, and bottled fruit juices that are pasteurized and not readily prone to spoilage during an evening meal, a multi-layer bag may provide sufficient cooling without any need for maintenance or refurbishment. For daytime cooling purposes relating to pre-packaged beverages and food that does not readily spoil, a dry ice module 1 with outer insulating material 2 and single or multiple layers of breathable material 4 and/or breathable/insulating material 3 can be used. However, for medical applications relating to the transport of medications, test samples, blood supplies, and/or donor organs, a properly insulated dry ice module 1 configured with the appropriate outer insulating material 2 and single or multiple breathable/insulating material 3 and other breathable materials 4 would be required to maintain a narrow range of temperature for maximizing the usable life of stored items. The transport of poultry and other perishable meats would also benefit from the aforementioned dry ice module 1 configuration of the present invention.


As previously mentioned, in any preferred embodiment of the present invention, the dry ice 7 can be in any form and include, one or more large blocks, small chips, irregularly shaped broken pieces, small cubes, pellets, or any form that will easily fit within the targeted dry ice module 1. “Anti-freeze” bags 14 can also be used to assist in controlling the temperature of contents with a propensity toward freezing at temperatures below 320 degrees. Further, the dry ice module 1 can be permanently installed or retrofitted for existing portable or non portable units used in the regulation and the controlling of temperature wherein the dry ice module 1 is either permanently or temporarily added thereto.


When the user has items that require different temperatures, the user may employ multiple dry ice modules 1, as show in FIGS. 2 and 3, for things such as, but not limited too, drinks sandwiches or frozen treats. When the insulating and breathable materials 2, 3, 4, and/or other similar materials (not shown) that make-up dry ice module 1 are assembled in a manner to achieve a desirable temperature, the build up of pressure from the CO2 gas may accumulate but is typically inconsequential, even if the storage area remains closed for extended periods of time.


It should be noted that the location of the dry ice module 1 relative to what is being cooled is not limited to one set positioning, rather placement should be determined by the place that achieves the most regulated and controlled temperature. Also, although it is contemplated for the dry ice module 1 to be secured in an elevated position to the underside surface of the cooling area's structure or in relation to the individual or individuals being cooled the positioning and orientation of dry ice module can be varied. Further, although not shown, the number and configuration of ventilation holes 5 and the male couplings 8 may be different or even absent from that shown in FIGS. 1A and 1B. Also in the alternative, the dry ice module lid 6 may be detachable, hinged, snap-fit, threaded, or have other attachment means to dry ice module 1. One factor in the selection of the size, number, and configuration of venting holes 5 and location of dry ice module 1 is the size of the dry ice module 1 and the cooling results trying to be achieved.


The dry ice modules 1 can be attached permanently, be a non-permanent fixture, or a removable fixture, and can be attached to any area needing controlled and prolonged cooling. The dry ice modules 1 can be adapted for achieving temperatures below freezing, and can be made from insulating materials 2, such as two layers of reflective foil surrounding a closed cell polyethylene foam center sold under the name PRODEX® FfmF insulation by Insulation 4 Less. The thickness of the polyethylene foam center is dependent on the results that are trying to be achieved.


The dry ice modules can be made from a combination of rigid and non-rigid insulating materials 2, be made at least in part from breathable single or multiple layered materials 3 (THINSULATE®) or 4 Non-Woven Breathable Material 4, (spun bonded olefin, SMS, or any other material with similar properties and characteristics, at present or new products in the future), be retrofitted to an existing area to be cooled, be part of the original manufacturing of such cooling units or systems or adapted for achieving and maintaining a predetermined temperature for extended periods of time. The present invention configuration and non-liquid function makes it suited for use in motorized vehicles, including but not limited to automobiles, sport-utility vehicles, vans, boats, and airplanes, where it may be permanently or temporarily secured in a designated recess in the trunk, a rear storage area, or any other suitable space.


The rectangular configuration of the dry ice module 1 shown in FIGS. 1A, 1B, 1C is not limiting, and it is contemplated for other configurations to be used, such as bag-like modules, cylindrical modules, spherical modules and the like. Further, the outer surface construction of the dry ice module may be rigid or resilient.


For example, a dry ice module according to an alternative embodiment of the invention is illustrated in FIGS. 4-7, and shown generally at reference numeral 101. The dry ice module 101 comprises a multi-layered envelope, in which a cooling vehicle such as dry ice 7 is placed in an inner envelope 104 formed of breathable insulating material such as TYVEK®. As shown in FIGS. 4 and 5, the inner envelope 104 is positioned within a middle envelope 103 formed of a breathable insulating material such as THINSULATE®, and the middle envelope 103 is positioned within an outer envelope 102 formed of a non-breathable insulating material such as a polyethylene foam enclosed in reflective foil. As shown in FIG. 4, the middle envelope 104 and inner envelope 104 have flaps for closing the open ends of the envelopes 103, 104.


The dry ice module 101 has two hook and loop patches 108 for attaching to complementary patches 109 on an enclosed structure such as cooling compartment 100, as shown in FIGS. 6 and 7. Attachment means other than hook and loop fasteners can be used. The opposite side of the dry ice module 101 has two vent openings 105 for releasing sublimated CO2 gas into the cooling compartment 100. If a faster rate of sublimation is desired, the middle bag 103 can be removed.


In an alternative embodiment, the cooling compartment 100 can have a divider (not shown) that defines first and second stowage areas. One dry ice module 101 can be positioned in the first stowage area, and a second dry ice module 101 can be positioned in the second stowage area. The second dry ice module 101 can be constructed to release more sublimated CO2 gas than the first dry ice module 101. For example, the middle bag of the second dry ice module 101 can be removed, and/or the vent openings 105 of the second dry ice module 101 can be larger and/or in greater quantity. As such, the cooling compartment 100 can provide an area having a refrigerator like temperature, and an area having a freezer like temperature.


A temperature regulation kit according to another embodiment of the invention is illustrated in FIGS. 8 and 9, and shown generally at reference numeral 200. The kit 200 comprises a container 210, such as a rectangular cooling compartment having a base 212, four side walls 214, and a lid 216. The container 210 can be made of foam, or other suitable insulating material. The kit 200 comprises a temperature regulation module, such as the dry ice module 101 described above, and a platform 220 having a top 222, and four downwardly folding side walls 224 that can support the top 222 in an elevated position. The platform 220 can be made of cardboard or other suitable material.


When the ambient temperature is hot and humidity is relatively high, an item to be temperature regulated, such as perishable food 300, is positioned on the base 212 of the cooling compartment 210, and the platform 220 is positioned over the perishable food 300, as shown in FIG. 8. The dry ice module 101 is positioned on the top 222 of the platform 220, with the vent openings 105 facing down on the platform 220. As such, the platform 220 acts as a barrier between the module 101 and the perishable food 300. The container lid 216 is positioned over the perishable food 300 to close container 210, and the closed container 210 can be placed within a plastic bag (not shown). The kit 200 is now ready for transporting to a desired location.


The kit 200 can include an anti-freeze dome 230, shown in FIG. 9. The dome can be made of cardboard or other suitable material. When the ambient temperature is cold, the module 101 is positioned on the base 212 of the container 210, with the vents 105 facing downward on the base 212. The dome 230 is positioned over the module 101, and the platform 220 is positioned over the dome 230. The perishable food 300 is positioned on top of the top 222 of the platform. As such, the platform 220 and the dome 230 provide two barriers between the perishable food 300 and the module 101.


By having only the one barrier, the platform 220, between the food 300 and the module 101 in the hot weather configuration shown in FIG. 8, more sublimated CO2 gas is exposed to the food 300, than in the cold weather configuration, shown in FIG. 9, in which there are two barriers, platform 220 and dome 230. This provides the user with a convenient means for varying the level of exposure of sublimated CO2 gas to the perishable food 300. In addition, the kit 200 allows for the user to vary the position of the food 300 within the container 210. Since heat rises, the food 300 can be positioned at the base 212 of the container 200 in the hot weather configuration, shown in FIG. 8. The food 300 can be positioned in an elevated position within the container proximate the lid 216 in the cold weather configuration, shown in FIG. 9.


A temperature regulation apparatus, kit and methods of using same are described above. Various details of the invention may be changed without departing from its scope. For example, variations in the size, configuration, and location of features of the invention, such as the size and material construction of any liners or dry ice module used, the type of dry ice used, and the number of dry ice modules or cooling storage areas used, can be made without departing from the scope of the invention. The foregoing description of the preferred embodiments of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation—the invention being defined by the claims and equivalents thereof.

Claims
  • 1. An apparatus for maintaining a controlled range of temperature for extended periods of time, comprising a temperature regulation module comprising: (a) an inner envelope for receiving a temperature regulating element producing a temperature regulating gas, the inner envelope comprising a breathable thermal insulating material; and(b) a flexible outer envelope enclosing the inner envelope comprising a non-breathable thermal insulating material and having at least one opening for venting of the temperature regulating gas produced by the temperature regulating element.
  • 2. An apparatus according to claim 1, wherein the temperature regulating element comprises solid carbon dioxide producing cooling gas during sublimation of the solid carbon dioxide.
  • 3. An apparatus according to claim 2, wherein the module further comprises a removable middle envelope for positioning intermediate the inner envelope and the outer envelope, wherein the middle envelope encloses the inner envelope and the outer envelope encloses the middle envelope, whereby a rate of sublimation of the carbon dioxide can be increased by removing the middle envelope.
  • 4. An apparatus according to claim 1, further comprising a container for containing perishable goods, and wherein the temperature regulation module is positioned within the container.
  • 5. An apparatus according to claim 4, wherein the temperature regulation module includes attachment means positioned on the outer envelope for attaching the module to the container.
  • 6. An apparatus according to claim 4, further comprising a first partition positioned in the container between the module and the perishable goods.
  • 7. An apparatus according to claim 6, further comprising a second partition positioned in the container between the module and the first partition.
  • 8. An apparatus according to claim 7, wherein the first partition comprises a platform, and the second partition comprises a dome.
  • 9. A kit for maintaining a controlled range of temperature for extended periods of time, comprising: (a) a container for containing an item therein to be maintained in a controlled range of temperature; and(b) a first temperature regulation module positioned within the container and comprising: (i) an inner layer for receiving a temperature altering vehicle that produces a temperature altering gas, the inner layer comprising a breathable thermal insulating material,(ii) a middle layer enclosing the inner layer comprising a breathable thermal insulating material, and(iii) an outer layer enclosing the middle layer comprising a non-breathable thermal insulating material and having at least one opening for venting the cooling gas into an enclosed structure.
  • 10. A kit according to claim 9, wherein the item contained in the container comprises one or more selected from the group consisting of food, beverage, cooling pads, heating pads, and medications.
  • 11. A kit according to claim 9, wherein: (a) the temperature altering vehicle comprises solid carbon dioxide producing a cooling gas upon sublimation;(b) a divider is positioned within the container and defines first and second stowage areas within the container;(c) the first temperature regulation module is positioned within the first stowage area; and(d) a second temperature regulation module is positioned within the second stowage area and is adapted to release more cooling gas than the first temperature regulation module whereby the second storage area is maintained at a lower temperature than the first stowage area.
  • 12. A kit according to claim 9, further comprising a platform for positioning in the container between the module and the item contained in the container.
  • 13. A kit according to claim 12, wherein: (a) the item contained in the container is positioned on a base of the container;(b) the platform is positioned over the item contained in the container; and(c) the module is positioned on the platform with the at least one opening of the outer later of the module positioned face down on the platform.
  • 14. A kit according to claim 12, further comprising a dome for positioning in the container between the module and the platform.
  • 15. A kit according to claim 14, wherein: (a) the module is positioned on a base of the container, with the at least one opening of the outer later of the module positioned face down on the platform;(b) the dome is positioned over the module;(c) the platform is positioned on top of the module; and(d) the item contained in the container is positioned on a top surface of the platform.
  • 16. A kit according to claim 14, wherein the kit can be selectively arranged in a first configuration wherein the item contained in the container is positioned on a base of the container, the platform is positioned over the item contained in the container, and the module is positioned on the platform with the at least one opening of the outer later of the module positioned face down on the platform; and a second configuration wherein the module is positioned on a base of the container, with the at least one opening of the outer later of the module positioned face down on the platform, the dome is positioned over the module, the platform is positioned on top of the module, and the item contained in the container is positioned on a top surface of the platform.
  • 17. An kit according to claim 9, wherein: (a) the inner layer of the module comprises spun bonded olefin;(b) the middle layer of the module comprises a blend of olefin and polyester fibers; and(c) the outer layer of the module comprises polyethylene foam enclosed in a reflective foil.
  • 18. A method for maintaining a controlled range of temperature for extended periods of time, comprising: (a) providing a container having a base, at least one sidewall and a lid;(b) providing an item to be maintained in a controlled range of temperature;(c) providing a temperature regulation module comprising: (i) an inner layer for receiving a temperature altering vehicle that produces a temperature altering gas, the inner layer comprising a breathable thermal insulating material, and(ii) an outer layer enclosing the inner layer comprising a non-breathable thermal insulating material and having at least one opening for venting the cooling gas into an enclosed structure;(d) positioning the item and module in the container; and(e) providing a platform positioned between the module and the item.
  • 19. A method according to claim 18, further comprising: (a) positioning the item on the base of the container;(b) positioning the platform above the item in the container;(c) positioning the module on a top surface of the platform with the at least one opening of the module face down on the top surface of the platform;(d) positioning the lid on a top of the container; and(e) positioning the container within a plastic bag.
  • 20. A method according to claim 18, further comprising: (a) positioning the module on the base of the container with the at least one opening of the module face down on the base;(b) providing a dome, and positioning the dome over the module;(c) positioning the platform over the dome; and(d) positioning the item on a top surface of the platform.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 11/686,080, filed Mar. 14, 2007, which is a continuation-in-part of U.S. application Ser. No. 11/253,348, filed Oct. 19, 2005, which is incorporated herein by reference and now abandoned.

Continuation in Parts (2)
Number Date Country
Parent 11686080 Mar 2007 US
Child 13154512 US
Parent 11253348 Oct 2005 US
Child 11686080 US