Temperature sensor and method for the production of a temperature sensor

Information

  • Patent Grant
  • 10345156
  • Patent Number
    10,345,156
  • Date Filed
    Tuesday, June 14, 2016
    7 years ago
  • Date Issued
    Tuesday, July 9, 2019
    4 years ago
Abstract
A temperature sensor including a mineral-insulated supply line, a bottomed metal tube and a temperature sensing element secured in a support structure. An open end part of the bottomed metal tube is connected mechanically to the mineral-insulated supply line. A wire connection mechanically and electrically couples the temperature sensing element to the mineral-insulated supply line. The support structure is moveable in axial direction of the bottomed metal tube in a bottom end part of the bottomed metal tube.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to and the benefit of European Patent Application No. EP15174727 filed Jul. 1, 2015, which is incorporated herein by reference.


TECHNICAL FIELD

The subject technology relates to temperature sensors and, more particularly to high-temperature sensors, e.g. an exhaust gas temperature sensor. The subject technology further relates to a method for the production of a temperature sensor.


BACKGROUND

Most of the time high temperature sensors consist of an outer sheeting which is exposed to the medium to be measured. More specifically, this is the case with exhaust gas temperature sensors where the outer sheet is in contact with the exhaust gas while the internal temperature sensing element is in contact with an internal medium conducting and transferring the heat-flux from the outside to the inside. The internal temperature sensing element could be a positive temperature coefficient (PTC) thermistor or negative temperature coefficient (NTC) thermistor.


High temperature sensors are affected by very high heating and cooling gradients. The gradients lead to excessive compressive and tensile stresses between several materials of the internal components, connections and leads. The stresses could lead to damage of the internal components and conductors carrying the output signal representing the temperature sensed by the internal temperature sensing element.


U.S. Pat. No. 6,639,505 B2 discloses a temperature sensor wherein the distance between a thermistor element and a metal enclosure is not larger than 0.3 mm and the thermistor element and metal enclosure are in contact with each other via an insulating member. The insulating member may be a crystallized glass or a ceramic. The insulating member eliminates undesired gaps among the thermistor element and metal enclosure.


U.S. Pat. No. 6,829,820 B2 discloses a method of manufacturing a temperature sensor. A thermistor element is inserted into a bottomed metal tube while filling an inside of the metal tube with a filler material, preferably of silicone oil, to reduce a sliding resistance between the thermistor element and the metal tube as an integral temperature sensing structure which is then mounted in a housing. The metal tube is heated after insertion of the thermistor element there in so as to volatize an oil component of the silicone oil. The method reduces the defects due to bending of the electrode wires of the thermistor during placement of the thermistor in the metal tube.


In the temperature sensors described above stresses on the conductors caused by changes in temperature and vibrations between the measurement resistor and the supply-line cable lead to wear on the conductors. In U.S. Pat. No. 8,328,419 B2, a solution to this problem is disclosed. Heat-decoupling wires are arranged between the measurement resistor and strands of the supply-line cable. The heat decoupling wires are stuck as spiral springs on the strands of the mineral insulated supply line cable and connect elastically the measurement resistor to the supply-line cable.


SUMMARY

It is an object of the present technology to provide an improved temperature sensor which is at least one of: reliable; cheaper to manufacture; producible in high volume by means of semi- or full automatic production processes; long lasting; and withstanding of the high temperature and vibration typical of an internal combustion engine.


According to a first aspect of the subject technology, at least one of these objects is achieved by a temperature sensor having the features of claim 1. Advantageous embodiments and further ways of carrying out the subject technology may be attained by the measures mentioned in the dependent claims.


A temperature sensor according to the subject technology includes a mineral-insulated supply line, a bottomed metal tube and a temperature sensing element contained in said bottomed metal tube. The bottomed metal tube comprises a bottom end part and an open end part. The open end part is connected mechanically to the mineral-insulated supply line. The temperature sensing element is secured in a support structure. The support structure is permanently moveable in the bottom end part in an axial direction of the bottomed metal tube. A wire connection may mechanically and electrically couple the temperature sensing element to the mineral-insulated supply line.


The basic idea is to reduce the stress in the wire connection due to the very high heating and cooling gradients which leads to excessive compressive and tensile stresses between several materials of the internal components and connection leads between the mineral insulate supply line and the temperature sensing element. The stress is reduced by mechanically decoupling of the sensing element and the bottom end part of the bottomed metal tube. Due to the different coefficients of thermal expansion (CTE) of the material of the bottomed metal tube and the connection leads and the temperature difference between the bottomed metal tube and the connections leads during rapid temperature changes of the medium to be measured, the temperature sensing element moves in axial direction of the bottomed metal tube in the bottomed metal tune. The forces acting on the connection leads are now limited to the frictional forces between the temperature sensing element and the bottom metal tube. If the temperature sensing element is fixedly put in the bottomed metal tube, the connection leads could be stretched and/or bended with much greater forces each temperature cycle from 200° C. to 850° C. back to 200° C. Over time, these greater forces leads to breakage of a connection leads and reduces the product life time.


In an embodiment, a cross section of the support structure has an outer periphery with a shape similar to an inner periphery of a cross section of a bottom end part of the bottomed metal tube, wherein the outer periphery of the support structure is smaller than the inner periphery of the bottom end part. This feature provides a structure allowing the support structure to move in an axial direction with limited frictional forces and providing sufficient thermal contact between the bottomed metal tube and the support structure for transferring the heat-flux from the outside to the inside due to a predefined maximal gap between the support structure and the bottomed metal tube.


In another embodiment, in axial direction of the bottom end part, a bottom gap is provided between the bottom of the bottomed metal tube and the support structure. The gap ensures that the support structure can move in the axial direction in all circumstances. If the support structure would be forced to the bottom of the tube, the connection leads would be bent resulting in greater compression forces acting on the leads than the frictional forces between support structure and bottomed metal tube. As a result of the greater compression forces, the leads will bent each temperature cycle which will weaken connection leads.


In one embodiment, the support structure comprises a metal cup filled with potting material and the temperature sensing element is positioned in the potting material. Having a metal cup and bottomed metal tube with almost the same coefficient of thermal expansion (CTE) ensures that the frictional forces between the metal cup and bottomed metal tube does not change much over the temperature range.


In another embodiment, the support structure comprises a metal cup filled with potting material and the temperature sensing element is positioned in the potting material. These features provide a simple way to embed the temperature sensing element in a support structure so that outer dimensions to fit in the bottomed metal tube can very accurately be defined.


The support structure may be a body made from a ceramic or cement-compound, which requires fewer components to manufacture the support structure with embedded temperature sensing element.


In still another embodiment, a distal end of the support structure touches a side wall of the bottomed metal tube at a first distance from the bottom of the bottomed metal tube and a proximal end of the support structure touches an opposite side wall of the bottomed metal tube at a second distance from the bottom of the bottomed metal tube. By positioning the support structure at an angle in the end part of the bottom end part, the frictional forces to move the support structure in the axial direction are limited by the stiffness of the connection leads. Furthermore, the support structure has good thermal contact with the bottomed metal tube and the support structure cannot move freely laterally.


In one embodiment, an open end part of the bottomed metal tube is attached to a mineral insulated supply line, the temperature sensing element is connected with a wire connection to strands of the supply line, the support structure is movable in axial direction of the bottomed metal tube with a force of friction, and the wire connection has a stiffness such that the wire connection does not deform when the force of friction is acting in axial direction of the bottomed metal tube on the wire connection. As a result of these features, damage of the wire connection due to the stress in the wire connection caused by the force of friction to move the support structure in axial direction is reduced significantly.


The sensor may include a sliding gap between the support structure and the bottom part of the bottomed metal tube. The sliding gap ensures that the support structure does not get stuck in the bottom end part due to different thermal expansion of the support structure and bottom end part. In a further embodiment, the sliding gap is filled with a non-curing viscous substance. In this way, the wear due to friction between the support structure and the metal bottomed tube is reduced.


In another embodiment, the subject technology is directed to a method for the production of a temperature sensor. The method includes the steps of: embedding a temperature sensing element in a support structure; mechanically coupling the temperature sensing element to strands of a mineral-insulated supply line; positioning the support structure in a bottom end part of a bottomed metal tube; and mechanically connecting the mineral-insulated supply line to an open end part of the bottomed metal tube.


It should be appreciated that the subject technology can be implemented and utilized in numerous ways, including without limitation as a process, an apparatus, a system, a device, and a method for applications now known and later developed. Other features and advantages will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, various features of embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects, properties and advantages will be explained hereinafter based on the following description with reference to the drawings, wherein like reference numerals denote like or comparable parts, and in which:



FIG. 1 is a schematic sectional view of a first embodiment of a high temperature sensor in accordance with the subject technology;



FIG. 2 is a schematic sectional view of a second embodiment of a high temperature sensor in accordance with the subject technology;



FIG. 3 is a schematic sectional view of a temperature sensor during a state of assembly in accordance with the subject technology; and



FIG. 4 is a schematic sectional view of the temperature sensor in FIG. 3 after assembly in accordance with the subject technology.





DESCRIPTION OF EMBODIMENTS

The subject technology overcomes many of the prior art problems associated with high-temperature sensors. The advantages, and other features of the technology disclosed herein, will become more readily apparent to those having ordinary skill in the art from the following detailed description of certain preferred embodiments taken in conjunction with the drawings which set forth representative embodiments of the present technology and wherein like reference numerals identify similar structural elements. Directional indications such as upward, downward, right, left and the like are used with respect to the figures and not meant in a limiting manner.



FIG. 1 shows a schematic sectional view of a tip 100 of a first embodiment of a temperature sensor 10. The temperature sensor 10 is especially suitable for measuring high temperatures such as up to 900° C. The temperature sensor 10 could be an exhaust gas temperature sensor. The subject technology discloses a solution to increase the lifetime on closed housing sensors on thermal cycling. The temperature in an exhaust pipe can vary quickly between 200° C.-900° C.


The temperature sensor 10 includes a bottomed metal tube 102 with a bottom end part 102A having a closed bottom 105 and an open end part 102B. The bottomed metal tube 102 forms an outer sheeting shape that is exposed to the medium to be measured. The bottomed metal tube 102 forms an interior in which a temperature sensing element 104 is provided. The temperature sensing element 104 could be a PTC or NTC device. The temperature sensing element 104 is positioned in a metal cup 106A. The space between the metal cup 106A and the temperature sensing element 104 is filled with a potting material 106B to form a support structure 106. Any material that has a good heat transfer characteristic to transfer the heat-flux from outside to the inside could be used as the potting material 106B. The potting material 106B can fix the sensing element 104 in the metal cup 106A. Examples of suitable potting material 106B are alumina, zirconia, magnesia or other metal oxides, ceramics and/or cement-compounds.


The conductors 104A of the temperature sensing element 104 are electrically and mechanically coupled to strands 108A of a mineral-insulated supply line 108 by means of a wire connection. The conductors 104A and strands 108A could be coupled by soldering. In one embodiment, the conductors 104A of the temperature sensing element 104 are plated wires with a diameter in the range of 0.2-0.3 mm. In FIG. 1, a conductive tube-shaped structure 110 is used on each conductor 104a to couple the conductors 104A of the temperature sensing element 104 to the strands 108A of the supply line 108. At one end of the conductive tube-shaped structure 110, a conductor 104A of the temperature sensing element 104 is affixed to the conductive tube-shaped structure 110. The conductor 104A is slid in the opening of the structure 110 and subsequently affixed by for example crimping or welding. In a similar way, a strand 108A of the mineral-insulated supply line 108 is affixed to the conductive tube shaped structure 110. Preferably, an empty space 110A in each tube-shaped structure 110 extends between the conductors 104A and the strands 108A for separation.


Mineral-insulated supply lines or strands are commonly known to the person skilled in the art. A mineral insulated supply strand 108 for example comprises strands 108A made of alloy 601 (60% wt. % Nickel, 21 wt. % Chromium, 15 wt. % Iron, and 1.2 wt. % Aluminium) or other Nickel alloys. The strands 108 can be embedded in a highly compacted mineral powder 108B that is surrounded by a protective metal sleeve 108C made of alloy 601 (60% wt. % Nickel, 21 wt. % Chromium, 15 wt. % Ferro, and 1.2 wt. % Aluminium) or other Stainless Steel alloys like 310H.


The open end 1028 of the bottomed metal tube 102 is connected to the metal sleeve 108C of the mineral-insulated supply line 108 such as by crimping, welding and/or other techniques.


The metal cup 104 and the potting material 106B form a support structure 106 in which the temperature sensing element 104 is secured. The metal cup 104 has a cross section with an outer periphery with a shape similar to an inner periphery of a cross section of the bottom end part 102A of the bottomed metal tube 102. The outer periphery of the support structure is smaller than the inner periphery of the bottom end part 102A. In this way, the support structure 106 is permanently moveable in the bottom end part 102a along an axis 120 of the elongated bottomed metal tube 102 because of a sliding gap 103 between the metal cup 106A and the bottom end part 102A. Preferably, the bottomed metal tube 102 narrows toward the bottom end part 102A.


The sliding gap between the support structure 106 and bottomed metal tube 102 is an expansion/contraction gap which absorbs coefficient of thermal expansion (CTE) mismatch and non-isothermal heating during heating or cooling phases. The sliding gap allows movement of the support structure 106 in the bottom end part 102a along the body axis 120 of the bottomed metal tube 102. For example, when the bottomed metal tube 102 heats more quickly than the connections 108A, 110, etc., the support structure 106 will move upward in the bottom end part 102A and a bottom of the bottomed metal tube 102 may move away from a distal tip of the support structure 106. As a result, a bottom gap 112A increases between the bottom of the bottomed metal tube 102 and the distal tip of the support structure 106. The bottom gap 112A ensures that the wire connection is not subjected to compressive stress when the temperature of the medium rapidly cools down and the temperature of the wire connection is much higher than the temperature of the bottomed metal tube 102.


By means of the sliding gap and the bottom gap 112A, the support structure 106 is a “floating” body in the bottomed metal tube 102. This construction wherein the outside sheeting of the metal tube 102 is decoupled from the support structure 106 reduces compressive and tensile stresses in the wire connection with first order exposure to the fluctuating temperature shocks of the measured medium (in one specific case, the exhaust gas) compared with embodiments wherein a temperature sensing element is affixed in a bottomed metal tube. The sliding gap and the bottom gap could be an air gap. However, the gaps could also be filled with a high temperature inert material or a coating like zirconia, alumina, magnesia, or with a gas.



FIG. 2 illustrates a sectional view of a second embodiment of a tip 100 of a temperature sensor 100. The tip 100 differs from the first embodiment in FIG. 1 in that the temperature sensing element 104 is embedded in a ceramic or cement structure 106′. The ceramic or cement structure 106′ forms in this embodiment a support structure. Any high temperature resistant refractory material could be used as cement structure. Examples of suitable material for the structure 106′ are alumina, zirconia, magnesia or other metal oxides, ceramics or cement-compounds. The inner side of bottomed metal tube 102 is covered with a coating 114, which decreases the friction between support structure 106′ and the bottomed metal tube 102. An example of material of the coating is Magnesium Stearate. Furthermore, there could be a small sliding gap between the coating and the support structure 106′.


With a sliding gap, the support structure 106′ can move laterally in the bottomed metal tube 102. A body axis of the support structure coinciding with the body axis 120 of the bottomed metal tube 102 facilitates the lateral movement and in particular, the body axes coinciding in the bottom end part 102A, which may be relatively narrower. The lateral movement of the support structure 106′ could result in wear of the support structure 106′ and/or bottomed metal tube 102 and wire connection (e.g., the conductors 104A, the strands 108A, the conductive tubes 110, the joint between the conductors and the temperature sensing element 104 etc.). To reduce the lateral movement of the support structure 106′ in the bottomed metal tube 102, before, when or after positioning the support structure 106′ in the bottomed metal tube 102, all or a part of the wire connection is slightly bent. As a result of this bending, the support structure 106′ is slightly pressed to an inner side of the bottomed metal tube 102.


Such bending may be applied to the first embodiment of FIG. 1, FIG. 2 and variations thereof. FIGS. 3 and 4 illustrate an embodiment of how this bending can be achieved.



FIG. 3 illustrates the assembly of mineral-insulated supply line 108, the conductive tube shaped structure 110, the temperature sensing element 104 and the support structure 106 prior to inserting the support structure in the bottom part 102A of the bottomed metal tube 102. At positioning the support structure 102 in the bottom part 102A, the end of the metal-insulated supply line 108 has a body axis 116 which is in line with the body axis 120 of the bottomed metal tube 102. After insertion and connecting the bottomed metal tube 102 to the mineral-insulated supply line 108, it is assumed that the body axis 116, 120 of the bottomed metal tube 102 and mineral-insulated supply line 108 are in line.


However, the support structure 106 has a lower body axis 118, which does not coincide both the body axis 116 of the mineral-insulated supply line 108 or the body axis 120 of the bottomed metal tube 102. In the example of FIG. 3, the lower body axis 118 of the support structure 106 is angled with respect the body axis 116 of the mineral-insulated supply line 108 by a bend 107 in the wire connection. The temperature sensing element 104 is positioned straight in the support structure 106. It might also be possible to have a straight wire connection and to position the temperature sensing element angled in the support structure. In one embodiment, the angle is in the range of 1-5 degrees but not limited thereto.


When inserting the support structure 106 in the bottom part 102A, the support structure 106 will be forced to have its body axis 118 more in line with the body axis 120 of the bottomed metal tube 102. This is possible by bending the wire connection. It is envisioned that the support structure 106 will slide against the inner sidewall 109 of the bottomed metal tube 102. FIG. 4 illustrates the temperature sensor element 104 after positioning the support structure 106 in the bottomed metal tube 102. A distal end 122A of the support structure 106 touches a side wall of the bottomed metal tube 102 at a first distance d1 from the bottom of the bottomed metal tube 102. A proximal end 1228 of the support structure touches an opposing portion of the side wall of the bottomed metal tube 102 at a second distance d2 from the bottom of the bottomed metal tube 102. The lower body axis 118 of the support structure 106 is now almost in line with the body axis 116, 120 of the bottomed metal tube 102 and the mineral-insulated supply line 108. In this way, the support structure 106 is fixed to prevent lateral movement but the support structure 106 still can move axially in the bottomed metal tube 102. The stiffness of the wire connection defines the friction force between support structure 106 and bottomed metal tube 102 and thus the force acting on the wire connection to move the support structure 106 in axial direction in the bottomed metal tube 102.


Preferably, as long as the body axis 118 of the support structure 106 deviates from the body axis 116 of the mineral-insulated supply line 108, the support structure 106 will be positioned in the bottomed metal tube 102 with some limited friction force. The support structure 106 is movable in axial direction of the bottomed metal tube 102 with a force of friction. The wire connection has a stiffness such that the wire connection does not deform when the force of friction is acting on the wire connection.


A method for the production of the temperature sensor described above comprises the following actions: embedding a temperature sensing element in a support structure; mechanically coupling the temperature sensing element to strands of a mineral-insulated supply line to obtain an assembly part; positioning the support structure in a bottom end part of a bottomed metal tube; and, mechanically connecting the mineral-insulated supply line to an open end part of the bottomed metal tube. Preferably, before connecting the bottomed metal tube to the mineral-insulated supply line, the support structure has a body axis which does not coincide with a body axis of a proximal end of the mineral-insulated supply line. After coupling the assembly part to the bottomed metal tube, a body axis of the proximal end of the supply line substantially coincides with a body axis of the bottom metal tube. Before insertion, the body axis of the support structure may be at an angle with respect to the body axis of the proximal end of the supply line.


It will be appreciated by those of ordinary skill in the pertinent art that the functions of several elements may, in alternative embodiments, be carried out by fewer elements, or a single element. Similarly, in some embodiments, any functional element may perform fewer, or different, operations than those described with respect to the illustrated embodiment. Also, functional elements (e.g., tubes, strands, sleeves, coatings and the like) shown as distinct for purposes of illustration may be incorporated within other functional elements in a particular implementation. Further, the floating tip/body can be composed of several materials and take many desirable shapes. The subject technology assembles a temperature sensing element in a bottomed metal tube with reduced compressive and tensile stresses by having the support structure decoupled from the bottomed metal tube which forms the outside sheeting of the temperature sensor. The stresses are reduced with first order exposure to the fluctuating temperature shocks of the measured medium. It is envisioned that the subject technology is particularly applicable to an exhaust gas temperature sensor (EGTS) and other fields and applications. The reduced stress very effectively increases the lifetime of an EGTS.


The disclosed embodiments have all a cylindrical shape. It is envisioned that any other shape might be used which allows axial movement of the support structure in the outer sheet which outer surface will be in contact with the measured medium.


All patents and other references disclosed herein are hereby expressly incorporated in their entireties by reference. While the subject technology has been described in terms of several embodiments, it is contemplated that alternatives, modifications, permutations and equivalents thereof will become apparent to those skilled in the art upon reading the specification and upon study of the drawings. The invention is not limited to the illustrated embodiments, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. An assembled temperature sensor comprising: a supply line; an elongated bottomed metal tube with a bottom end part and an open end part, the open end part is connected mechanically to the supply line, wherein a first axis extends from the bottom end part to the open end part; a temperature sensing element being secured in a support structure, contained in said bottomed metal tube, wherein the support structure has a distal end and a proximal end and a second axis extending axially from the distal end to the proximal end, the second axis has an angle with respect to the first axis, and the support structure is capable of moving along the first axis in the bottom end part of the bottomed metal tube; and wherein the distal end of the support structure touches a first point on a first side wall of the bottomed metal tube at a first distance from the bottom of the bottomed metal tube and the proximal end of the support structure touches an opposite second point on a second side wall of the bottomed metal tube at a second distance from the bottom of the bottomed metal tube due to the angle of the second axis with respect to the first axis; wherein the first and second distances are different; and a wire connection mechanically and electrically coupling the temperature sensing element to the supply line.
  • 2. The temperature sensor according to claim 1, wherein a cross section of the support structure has an outer periphery with a shape identical to an inner periphery of a cross section of a bottom end part of the bottomed metal tube; wherein the outer periphery of the support structure is smaller than the inner periphery of the bottom end part.
  • 3. The temperature sensor according to claim 1, wherein in axial direction of the bottom end part, a bottom gap is provided between a bottom of the bottomed metal tube and the support structure.
  • 4. The temperature sensor according to claim 1, wherein the support structure comprises a metal cup filled with potting material and the temperature sensing element is positioned in the potting material.
  • 5. The temperature sensor according to claim 1, wherein the support structure is a body made from a ceramic or cement-compound.
  • 6. The temperature sensor according to claim 1, wherein the open end part of the bottomed metal tube is attached to the supply line, the wire connection is connected to strands of the supply line, the support structure is movable in axial direction of the bottomed metal tube with a force of friction, the wire connection has a stiffness such that the wire connection does not deform when the force of friction is acting on the wire connection.
  • 7. The temperature sensor according to claim 1, wherein a sliding gap is provided between the support structure and the bottom part of the bottomed metal tube.
  • 8. The temperature sensor according to claim 7, wherein the sliding gap is filled with a coating.
Priority Claims (1)
Number Date Country Kind
15174727 Jul 2015 EP regional
US Referenced Citations (162)
Number Name Date Kind
3691842 Akeley Sep 1972 A
4080027 Benasutti Mar 1978 A
4131088 Reddy Dec 1978 A
4274125 Vogel Jun 1981 A
4347745 Singh Sep 1982 A
4716492 Charboneau et al. Dec 1987 A
4875135 Bishop et al. Oct 1989 A
4955380 Edell Sep 1990 A
4984461 Haynes Jan 1991 A
5000048 Kordts Mar 1991 A
5189591 Bernot Feb 1993 A
5193912 Saunders Mar 1993 A
5231301 Peterson et al. Jul 1993 A
5259248 Ugai et al. Nov 1993 A
5308249 Renn et al. May 1994 A
5388997 Grange et al. Feb 1995 A
5388998 Grange et al. Feb 1995 A
5427553 Tsuji Jun 1995 A
5443394 Billman et al. Aug 1995 A
5625151 Yamaguchi Apr 1997 A
5676559 Laub et al. Oct 1997 A
5800186 Ramirez et al. Sep 1998 A
5974893 Balcarek et al. Nov 1999 A
6003379 Ichikawa et al. Dec 1999 A
6050862 Ishii Apr 2000 A
6182644 Kotwicki et al. Feb 2001 B1
6313523 Morris et al. Nov 2001 B1
6341962 Sinclair Jan 2002 B1
6363922 Romzek et al. Apr 2002 B1
6412977 Black et al. Jul 2002 B1
6418793 Pechoux et al. Jul 2002 B1
6473711 Sittler et al. Oct 2002 B1
6625029 Bernini Sep 2003 B2
6639505 Murata et al. Oct 2003 B2
6666691 Ikeya Dec 2003 B2
6701790 Fortner et al. Mar 2004 B2
6746150 Wienand et al. Jun 2004 B2
6776668 Scyoc et al. Aug 2004 B1
6790065 Fukunaga Sep 2004 B2
6829820 Adachi et al. Dec 2004 B2
6848928 Ikeya et al. Feb 2005 B2
6880969 Adachi Apr 2005 B2
6952042 Stratton et al. Oct 2005 B2
7000478 Zwollo et al. Feb 2006 B1
7073375 Parker et al. Jul 2006 B2
7077008 Pham et al. Jul 2006 B2
7197936 Baba Apr 2007 B2
7270011 Vossenberg Sep 2007 B2
7288005 Nagahashi Oct 2007 B2
7316164 Toyoda et al. Jan 2008 B2
7434470 Engelhardt et al. Oct 2008 B2
7464604 Takeuchi et al. Dec 2008 B2
7467891 Gennissen et al. Dec 2008 B2
7507024 Takahashi Mar 2009 B2
7513806 Noda et al. Apr 2009 B2
7568835 Pils et al. Aug 2009 B2
7578194 Hadjiloucas et al. Aug 2009 B1
7591186 Boyer Sep 2009 B1
7597668 Yarden Oct 2009 B2
7628078 Matsui et al. Dec 2009 B2
7651366 Ringler et al. Jan 2010 B2
7666000 Hsiao et al. Feb 2010 B1
7666016 Kobayashi Feb 2010 B2
7695285 Sugiura et al. Apr 2010 B2
7743662 Kurtz Jun 2010 B2
7762140 Girroir et al. Jul 2010 B2
7887355 Watanabe Feb 2011 B2
7938783 Fraden May 2011 B2
7946855 Osato May 2011 B2
7976326 Stoner Jul 2011 B2
7992445 Kobayashi et al. Aug 2011 B2
8038345 Stoll et al. Oct 2011 B2
8069729 Dannhauer et al. Dec 2011 B2
8109250 Ramond et al. Feb 2012 B2
8132464 Broden et al. Mar 2012 B2
8161820 Yoneda et al. Apr 2012 B2
8171800 Chiou May 2012 B1
8192078 Gebauer et al. Jun 2012 B2
8215176 Ding et al. Jul 2012 B2
8234927 Schulte et al. Aug 2012 B2
8263879 Hougham et al. Sep 2012 B2
8328419 Wienand et al. Dec 2012 B2
8373430 Sochor Feb 2013 B1
8385080 Kim et al. Feb 2013 B2
8388365 Takahashi et al. Mar 2013 B2
8474322 Shapiro Jul 2013 B1
8505386 Colombo et al. Aug 2013 B2
8523432 Mujumdar et al. Sep 2013 B2
8535079 Wang et al. Sep 2013 B2
8545240 Casher et al. Oct 2013 B2
8556638 Tsubaki et al. Oct 2013 B2
8671765 Tokuda et al. Mar 2014 B2
8734190 Schlitzkus et al. May 2014 B2
8758067 Rathburn Jun 2014 B2
8764464 Buck et al. Jul 2014 B2
8887580 Nishikawa et al. Nov 2014 B2
8893562 Barraco et al. Nov 2014 B2
8919656 Eckerdt Dec 2014 B2
20020029639 Wagner et al. Mar 2002 A1
20020071475 Betzner et al. Jun 2002 A1
20020189334 Ford et al. Dec 2002 A1
20030109163 Shimada Jun 2003 A1
20030147452 Adachi Aug 2003 A1
20040020300 Boehler et al. Feb 2004 A1
20040114664 Park Jun 2004 A1
20040182145 Okazaki et al. Sep 2004 A1
20050061063 Haussner et al. Mar 2005 A1
20050150301 Skinner et al. Jul 2005 A1
20050233614 Gattuso et al. Oct 2005 A1
20060053875 Haussner et al. Mar 2006 A1
20060090566 Oda May 2006 A1
20060214202 Zorich et al. Sep 2006 A1
20060218997 Yamada et al. Oct 2006 A1
20060278012 Fujimoto et al. Dec 2006 A1
20070071065 Pils et al. Mar 2007 A1
20070110124 Shiraki et al. May 2007 A1
20070113660 Matsui May 2007 A1
20070148788 Hsieh et al. Jun 2007 A1
20070193362 Ferguson Aug 2007 A1
20070203650 Jensen et al. Aug 2007 A1
20070237205 Hayashi Oct 2007 A1
20080053237 Matsui et al. Mar 2008 A1
20080083283 Takeuchi et al. Apr 2008 A1
20080112462 Sisk et al. May 2008 A1
20080149079 Jefford et al. Jun 2008 A1
20080205484 Toudou Aug 2008 A1
20080216786 Ramond et al. Sep 2008 A1
20080219319 Buckalew Sep 2008 A1
20090008092 Haeberle et al. Jan 2009 A1
20090080492 Takeuchi Mar 2009 A1
20090095059 Matsui et al. Apr 2009 A1
20090110029 Bradley Apr 2009 A1
20090194831 Casey et al. Aug 2009 A1
20090279586 Suzuki Nov 2009 A1
20090320576 Borgers et al. Dec 2009 A1
20100002745 Stoll et al. Jan 2010 A1
20100147822 Burrows et al. Jun 2010 A1
20100284437 Stoll Nov 2010 A1
20110019373 Ryhanen et al. Jan 2011 A1
20110019714 Perry Jan 2011 A1
20110032971 Reiter Feb 2011 A1
20110101844 Glaser et al. May 2011 A1
20110201221 Kobayashi Aug 2011 A1
20110290539 Willner et al. Dec 2011 A1
20120006119 Broden et al. Jan 2012 A1
20120063488 Nakayama Mar 2012 A1
20130004116 Ruggiero et al. Jan 2013 A1
20130201230 Sugahara et al. Aug 2013 A1
20130264664 Nimura et al. Oct 2013 A1
20130317388 Bieberich et al. Nov 2013 A1
20140060015 Yan et al. Mar 2014 A1
20140165735 Kurtz et al. Jun 2014 A1
20140216173 Chana Aug 2014 A1
20140260648 Aoyama et al. Sep 2014 A1
20140324323 Gates et al. Oct 2014 A1
20140341255 Kaiser et al. Nov 2014 A1
20140345374 Morselli et al. Nov 2014 A1
20150045971 Endel et al. Feb 2015 A1
20150072543 Willner et al. Mar 2015 A1
20150192478 Rueth et al. Jul 2015 A1
20150204733 Newell et al. Jul 2015 A1
20160195415 Lull Jul 2016 A1
Foreign Referenced Citations (23)
Number Date Country
103454032 Dec 2013 CN
102004048367 Apr 2006 DE
350612 Jan 1990 EP
893676 Jan 1999 EP
1074827 Feb 2001 EP
2075557 Jul 2009 EP
2138819 Dec 2009 EP
2410306 Jan 2012 EP
3035500 Oct 2016 FR
1461574 Jan 1977 GB
2001093634 Apr 2001 JP
2002014113 Jan 2002 JP
2002170617 Jun 2002 JP
2003100375 Apr 2003 JP
2010153321 Jul 2010 JP
2010256187 Nov 2010 JP
4854612 Jan 2012 JP
WO-9508758 Mar 1995 WO
WO-2004066194 Aug 2004 WO
WO-2005052535 Jun 2005 WO
WO-2006102460 Sep 2006 WO
WO-2011094753 Aug 2011 WO
WO-2014042264 Mar 2014 WO
Non-Patent Literature Citations (1)
Entry
European Search Report for European Patent Application No. 15174727.6 dated Dec. 21, 2015, 8 pages.
Related Publications (1)
Number Date Country
20170003174 A1 Jan 2017 US