There are numerous types of sensors for measuring temperature, including thermistor based sensors, thermocouple based sensors, diode based sensors, etc. One relative advantage of a diode based temperature sensor is that it can part of an integrated circuit (IC) formed on a semiconductor die at very low cost. Another advantage is that it occupies very little space on a semiconductor die. Still another advantage is that it can be placed on the die at a position very close to a target electronic component to be monitored, which means the diode based temperature sensor can provide a very accurate measure of the component's temperature.
A semiconductor diode, the most common type today, is a piece of semiconductor material with a p-n junction connected between two electrical terminals. A diode conducts current primarily in one direction; it has low (ideally zero) resistance to the current in one direction, and high (ideally infinite) resistance in the other. Semiconductor diodes begin conducting electricity only if a certain threshold voltage is present in the forward direction (a state in which the diode is said to be forward-biased). The voltage drop across a forward-biased diode varies little with current. By comparison the voltage drop varies substantially with temperature, and this effect can be used to measure temperature.
A temperature sensor is disclosed. In one embodiment, the temperature sensor takes form in an integrated circuit that includes a plurality of first diodes connected in series between a first node and another node, and a plurality of second diodes connected in series between a second node and the other node. A first current source provides a constant first current, wherein the first current or substantially all of the first current passes through the plurality of first diodes. A second current source provides a constant second current, wherein the second current or substantially all of the second current passes through the plurality of second diodes. The integrated circuit also includes a sub circuit coupled to the first and second nodes. The sub circuit the circuit is configured to generate an output voltage that depends on first and second voltages at the first and second nodes, respectively. The plurality of first and second diodes are arranged on the integrated circuit so that they operate at a substantially equal temperature T.
In order that the advantages of the invention will be readily understood, a more particular description of the invention briefly summarized above will be rendered by reference to specific embodiments that are illustrated in the appended figures. Understanding that these figures depict only some embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying figures.
The use of the same reference symbols in different drawings indicates similar or identical items.
It will be readily understood that components of the invention, as generally described and illustrated in the figures herein, may be designed and arranged in a wide variety of different configurations. Thus, the following detailed description of the embodiments of the apparatus, system, and method of the invention, as represented in the attached figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of selected embodiments of the invention.
The features, structures, or characteristics of the invention described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, reference throughout this specification to “an embodiment,” “some embodiments,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, appearances of the phrases “in one embodiment,” “in other embodiments,” or similar language throughout this specification do not necessarily all refer to the same group of embodiments, and the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
A bandgap temperature sensor is a common form of diode-based temperature sensor that can be used in ICs to measure temperature therein. The principle of the bandgap sensor is that the forward voltage of a diode is temperature dependent. Diode-connected transistors can be employed as bandgap temperature sensors (i.e., one form of diode-based temperature sensors). A diode-connected transistor is two-terminal diode made out of a three-terminal transistor. A diode-connected bipolar junction transistor (BJT) is made by connecting the base and collector of a BJT. One characteristic of a diode-connected BJT is that it operates in the active region. The present invention will be described with reference to diode-connected BJTs, it being understood the present invention could employ p-n junction diodes or other devices (e.g., body diodes of MOSFETs).
Sensor circuit 100 includes current sources 112 and 114, which supply known constant currents I1 and I2 to diode-connected BJTs 102 and 104, respectively. The base-emitter voltage drops VBE1 and VBE2 across each of diode-connected BJTs 102 and 104, respectively, will vary in a predictable manner with changes in temperature T according to the following equations:
VBE1≅(kT/q)·ln(I1/(A1Is))
and
VBE2≅(kT/q)·ln(I2/(A2Is))
where k=Boltzmann's constant,
T=temperature in Kelvin,
q=charge on an electron,
A1 is the area of the emitter in diode-connected BJT 102,
A2 is the area of the emitter in diode-connected BJT 104, and
Is is a saturation current constant.
One of ordinary skill understands that with emitter p-n junction areas A1=A2, but with I1≠I2, the difference in voltages VBE1−VBE2 yields:
VBE1−VBE2=ΔVBE=(kT/q)·ln(I1/I2) (1)
And one of ordinary skill understands that with different emitter p-n junction areas A1≠A2, but with I1=I2, VBE1−VBE2 yields:
VBE1−VBE2=ΔVBE=(kT/q)·ln(A2/A1) (2)
Importantly, both equations (1) and (2) lack Is, whose value is very sensitive to the semiconductor manufacturing process variables. The other constants (i.e., k and q) are well known and do not vary with the semiconductor manufacturing process.
With continuing reference to
Several problems exist with sensor circuit 100. While ΔVBE is linear with a change of T, the range in which ΔVBE is linear, can be small. Perhaps more importantly, the rate at which ΔVBE changes with temperature (e.g., ΔVBE=0.2 mV/° C. with A2/A1=10 or I1/I2=10) can be very small in ΔVBE's linear range, which leads to small values for ΔVBE. Because ΔVBE is small, ΔVBE is susceptible to ground noise and/or leakage current, which means that sensor circuit may not be accurate enough for some temperature monitoring applications by itself. Additional components (e.g., chopper amplifier employing switched capacitor technology) can be used to enhance the accuracy of the sensor circuit, but these additional components are expensive to include, and they occupy valuable area on the semiconductor die. On the other hand, the adverse effects of ground noise and/or leakage current on T may be ameliorated if the ratio A2/A1 or I1/I2, and thus ΔVBE, is increased. For example, with I1=200.0 μA and I2=2.7 μA, or with I1=1.48 mA and I2=20.0 μA, ΔVBE=0.4 mV/° C. While ΔVBE=0.4 mV/° C. is less susceptible to ground noise and/or leakage current, employing a current source with I2=2.7 μA or I1=1.48 mA in an IC, however, presents engineering challenges. For example, too much power may be consumed with I1=1.48 mA, or leakage current issues may become more attenuated with I2=2.7 μA.
The present invention addresses the foregoing deficiencies of sensor circuit 100, and provides a diode-based temperature sensor circuit that uses one or more stacks of diode-connected BJTs (or similar devices) to measure temperature. Each stack employed in the present invention contains two or more diodes, two or more diode-connected BJTs, etc., coupled in series. The present invention will be described with reference to stacks of two or more diode-connected BJTs, it being understood the present invention should not be limited thereto. Each stack provides a temperature dependent voltage that is less susceptible to ground noise and/or leakage current when compared to a single diode-connected BJT, and as a result each stack provides for a more accurate measurement of temperature for a target electronic component.
Current source 202 provides a constant current I to stack 204. Diode-connected BJTs 206 are biased forward, and as a result current I or substantially all of current I flows through stack 204 to ground. This produces a voltage V≅N·(kT/q)·ln(I/(AIs)) at node 208, where N is the number of diode-connected BJTs 206 in stack 204, and A is the area of the emitter p-n junctions in diode-connected BJTs 206. One of ordinary skill in the art understands that voltage V is linearly dependent upon temperature T for a range of voltages. The remaining disclosure will describe stacks containing two diode-connected BJTs, it being understood the present invention should not be limited thereto.
Diode-connected BJTs 206 are arranged on a semiconductor die so that they operate at substantially the same temperature T. Diode-connected BJTs 206 should be placed on the die in close proximity to a target electronic component so that diode-connected BJTs 206 and the component have substantially the same temperature. Although not shown in
Current I1 or substantially all of current I1 flows through stack 306 of diode-connected BJTs, while current I2 or substantially all of current I2 flows through the stack 308 of diode-connect BJTs. Voltages V1 and V2 are generated at nodes 310 and 312, respectively, and can be approximated to be equal to 2·(kT/q)·ln(I1/(AIs)) and 2·(kT/q)·ln(I2/(AIs)), respectively, where A is the area of the junction at the emitter of diode-connected BJTs 206. Because I1 is different in magnitude than I2, the voltages V1 and V2 should be different. However, one of ordinary skill understands that the difference between V1 and V2 can be represented as:
ΔV=V1−V2=2·(kT/q)·ln(I1/I2) ( 3)
Comparing equations (1) and (3) shows that both ΔVBE and ΔV are linearly dependent on T. ΔV, however, is two times greater than ΔVBE. Because ΔV is two times greater, ΔV is more sensitive than ΔVBE to a change in temperature T, and accordingly less susceptible to ground noise and/or leakage current. ΔV can be used to provide a relatively more accurate measurement of T.
Voltages V1 and V2 are generated at nodes 410 and 412, respectively, and should be approximately equal to 2·(kT/q)·ln(I/(A1Is)) and 2·(kT/q)·ln(I/(A2Is)). With A1≠A2, the voltages V1 and V2 will not be the same.
However, one of ordinary skill understands that the difference between V1 and V2 can be represented as:
ΔV=V1−V2=2·(kT/q)·ln(A2/A1) (4)
Comparing equations (2) and (4) shows that both ΔVBE and ΔV are linearly dependent on T. However ΔV in equation (4) is two times greater than ΔVBE in equation (2). Because ΔV is two times greater, ΔV is more sensitive than ΔVBE to a change in temperature T, and accordingly less susceptible to ground noise and/or leakage current problems.
Although not shown in
Circuit 502 may take many different forms. Circuit 502 may include components that condition (e.g. filter) and/or amplify ΔV. Although not shown in
The magnitudes of I2 and I1 should be substantially different. Current flow through diode stack 702 creates a voltage V at node 710 that approximately equals either 2·(kT/q)·ln(I1/(AIs)) or 2·(kT/q)·ln(I2/(AIs)) depending on whether switch 704 or switch 706 is closed. Circuit 703 generates an output voltage Vout as a function of the voltage at node 710. In one embodiment, Vout may be an analog signal. In another embodiment, Vout may be a digital value. In either embodiment Vout represents the difference between the voltage sampled at node 710 when switch 704 is closed and the voltage sampled at node 710 when switch 706 is closed. The difference ΔV in voltages should be proportional to 2·(kT/q)·ln(I1/I2).
In the digital version, circuit 703 includes an ADC for converting the voltages sampled at node 710, and a memory for storing the digital equivalents of the sampled voltages. A device such as CPU can subtract the digital equivalents stored in memory to yield Vout. This CPU can also be configured to process digital Vout based on equation (3) above to yield a digital equivalent for T. In the analog version, circuit 703 may include sample and hold capacitors and a differential amplifier. In this embodiment, a first switch is closed to connect a first sample and hold capacitor to node 710 while switch 704 is closed. The first sample and hold capacitor is charged to the voltage at node 710 while the first switch and switch 704 are closed. The first switch and switch 704 are then opened. A second switch is closed to connect a second sample and hold capacitor to node 710 while switch 706 is closed. The second sample and hold capacitor is charged to the voltage at node 710 while the second switch and switch 706 are closed. In this manner the first and second sample and hold capacitors are charged to the voltages at node 710 when currents I1 and I2 flow through stand 702, respectively. The first and second sample and hold capacitors can be connected to respective inputs of the differential amplifier, so that the differential amplifier generates analog Vout as a difference between the voltages held by the first and second sample and hold capacitors, respectively. An ADC can be provided that generates a digital equivalent of Vout for subsequent processing by a CPU to yield a digital value for T based on equation (3) above.
Although the present invention has been described in connection with several embodiments, the invention is not intended to be limited to the specific forms set forth herein. On the contrary, it is intended to cover such alternatives, modifications, and equivalents as can be reasonably included within the scope of the invention as defined by the appended claims.
The present application claims priority to U.S. Provisional Patent Application No. 62/573,844, filed Oct. 18, 2017, the contents of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62573844 | Oct 2017 | US |