The present disclosure relates to a terahertz device.
Recent advances in electronic devices such as transistors have reduced the size of electronic devices to nanoscale, so that there have been observations of a phenomenon called a quantum effect. The quantum effect is used to develop an ultra-speed processing device and a device having a new function.
In such environment, in particular, the range of frequencies of 0.1 THz to 10 THz, which is called a terahertz band, is used in attempts to perform high capacity communication, information processing, imaging, and measurements. The range of frequencies has characteristics of both light and radio waves. If a device operating in this frequency band is realized, the device may be used in many applications such as measurements in various fields such as physical field, astronomical filed, and biological field in addition to imaging, high capacity communication, and information processing, which are described above.
A known element that oscillates a high-frequency electromagnetic wave having a frequency in the terahertz band has a structure integrating a resonant tunneling diode and a fine slot antenna (refer to, for example, Patent Document 1).
In a terahertz device including a terahertz element as described above, there may be a need to improve the gain.
It is an objective of the present disclosure to provide a terahertz device that improves gain.
To achieve the above objective, a terahertz device includes a base member, a terahertz element mounted on the base member and configured to generate an electromagnetic wave, an antenna base located opposing the base member and including an antenna surface, and a reflection film formed on the antenna surface to reflect at least part of the electromagnetic wave generated by the terahertz element in one direction. With this structure, electromagnetic waves generated by the terahertz element are reflected by the reflection film in one direction. This increases the output of the electromagnetic waves emitted from the terahertz device. Thus, the gain of the terahertz device is improved.
To achieve the above objective, a terahertz device includes a terahertz element configured to generate an electromagnetic wave, a base member including a reflector located opposing the terahertz element to reflect at least part of the electromagnetic wave generated by the terahertz element, an antenna base located opposing the base member and including an antenna surface, and a reflection film formed on the antenna surface to reflect at least part of the electromagnetic wave reflected by the reflector in one direction. With this structure, electromagnetic waves generated by the terahertz element are reflected by the reflector, and the electromagnetic waves are further reflected by the reflection film in one direction. This increases the output of the electromagnetic waves emitted from the terahertz device. Thus, the gain of the terahertz device is improved.
To achieve the above objective, a terahertz device includes a base member, a terahertz element mounted on the base member and configured to receive an electromagnetic wave, an antenna base located opposing the base member and including an antenna surface, and a reflection film formed on the antenna surface to reflect an incident electromagnetic wave toward the terahertz element. With this structure, incident electromagnetic waves of the reflection film are reflected by the reflection film toward the terahertz element. This increases the reception strength of the terahertz device. Thus, the gain of the terahertz device is improved.
To achieve the above objective, a terahertz device includes a terahertz element configured to receive an electromagnetic wave, a base member including a reflector located opposing the terahertz element to reflect at least part of an incident electromagnetic wave toward the terahertz element, an antenna base located opposing the base member and including an antenna surface, and a reflection film formed on the antenna surface to reflect at least part of an incident electromagnetic wave toward the reflector. With this structure, incident electromagnetic waves of the reflection film is reflected toward the reflector, and the electromagnetic waves are further reflected by the reflector toward the terahertz element. This increases the reception strength of the terahertz device. Thus, the gain of the terahertz device is improved.
To achieve the above objective, a terahertz device includes a base member, a terahertz element mounted on the base member and configured to generate an electromagnetic wave, an antenna base opposed to the base member and including an antenna surface, a reflection film formed on the antenna surface to reflect at least part of the electromagnetic wave generated by the terahertz element in one direction, and an electrode used for electrical connection with an external device. The electrode projects sideward relative to the antenna base as viewed in an opposing direction of the base member and the antenna base.
With this structure, electromagnetic waves generated by the terahertz element are reflected by the reflection film in one direction. This increases the output of the electromagnetic waves emitted from the terahertz device. Thus, the gain of the terahertz device is improved.
In addition, since the electrode projects sideward relative to the antenna base, the terahertz device is mountable on a circuit substrate having a hole when the antenna base is inserted into the hole. Thus, when the terahertz device is mounted on the circuit substrate, the terahertz device has a low profile.
To achieve the above objective, a terahertz device includes a base member, a terahertz element mounted on the base member and configured to receive an electromagnetic wave, an antenna base located opposing the base member and including an antenna surface, a reflection film formed on the antenna surface to reflect an incident electromagnetic wave toward the terahertz element, and an electrode used for electrical connection with an external device. The electrode projects sideward relative to the antenna base as viewed in an opposing direction of the base member and the antenna base.
With this structure, incident electromagnetic waves of the reflection film are reflected by the reflection film toward the terahertz element. This increases the reception strength of the terahertz device. Thus, the gain of the terahertz device is improved.
In addition, since the electrode projects sideward relative to the antenna base, the terahertz device is mountable on a circuit substrate having a hole when the antenna base is inserted into the hole. Thus, when the terahertz device is mounted on the circuit substrate, the terahertz device has a low profile.
The terahertz device described above improves gain.
Embodiments of a terahertz device will now be described with reference to the drawings. The embodiments described below exemplify configurations and methods for embodying a technical concept and are not intended to limit the material, shape, structure, layout, dimensions, and the like of each component to those described below. The embodiments described below may undergo various modifications. Portions of the drawings are shown schematically.
The mount plate 11 is formed of a material transmissive to electromagnetic waves generated by the terahertz element 20. In the present embodiment, the mount plate 11 is formed of a dielectric material, for example, a synthetic resin such as an epoxy resin or an intrinsic semiconductor such as a single crystal of silicon (Si). An example of the epoxy resin is a glass epoxy resin. However, the material of the mount plate 11 is not limited to those described above and may be any material, for example, Teflon (registered trademark) or glass. The mount plate 11 is insulative.
The mount plate 11 is, for example, rectangular. For the sake of brevity, the thickness-wise direction of the mount plate 11 is referred to as the z-direction. Two directions that are orthogonal to each other and the z-direction are referred to as the x-direction and the y-direction.
As shown in
As shown in
The terahertz element 20 converts electromagnetic waves in the terahertz band and electrical energy to and from each other. It is considered that the electromagnetic wave includes concepts of one or both of light and radio waves. The terahertz element 20 converts received electrical energy into electromagnetic waves in the terahertz band. Thus, the terahertz element 20 oscillates the electromagnetic waves (i.e., terahertz waves). The frequency of the electromagnetic waves generated by the terahertz element 20 is, for example, 0.1 Thz to 10 Thz.
As shown in
The terahertz element 20 includes an element main surface 21 and an element back surface 22. The element main surface 21 and the element back surface 22 intersect the z-direction. In the present embodiment, the element main surface 21 and the element back surface 22 are orthogonal to the z-direction. The element main surface 21 and the element back surface 22 are rectangular, for example, square, as viewed in the z-direction. However, the shape of the element main surface 21 and the element back surface 22 is not limited to this and may be any shape.
As shown in
The terahertz element 20 includes two first element side surfaces 23, which are opposite end surfaces in the x-direction, and two second element side surfaces 24, which are opposite end surfaces in the y-direction. The first element side surfaces 23 intersect the x-direction. In the present embodiment, the first element side surfaces 23 are orthogonal to the x-direction. The second element side surfaces 24 intersect the y-direction. In the present embodiment, the second element side surfaces 24 are orthogonal to the y-direction. The first element side surfaces 23 are orthogonal to the second element side surfaces 24.
As shown in
The element substrate 31 is formed of a semiconductor and is semi-insulating. The semiconductor forming the element substrate 31 is, for example, InP (indium phosphide) but may be a semiconductor other than InP. When the element substrate 31 is formed of InP, the refractive index (absolute refractive index) is approximately 3.4. In the present embodiment, the element substrate 31 is rectangular and is, for example, square in plan view. The element main surface 21 and the element back surface 22 are the main surface and the back surface of the element substrate 31. The element side surfaces 23 and 24 are side surfaces of the element substrate 31.
The active element 32 converts electromagnetic waves in the terahertz band and electrical energy to and from each other. The active element 32 is formed on the element substrate 31. The active element 32 is typically a resonant tunneling diode (RTD).
The active element 32 may be, for example, a tunnel injection transit time (TUNNETT) diode, an impact ionization avalanche transit time (IMPATT) diode, a GaAs-base field effect transistor (FET), a GaN-base FET, a high electron mobility transistor (HEMT), or a heterojunction bipolar transistor (HBT).
An example of obtaining the active element 32 will be described.
A semiconductor layer 41a is formed on the element substrate 31. The semiconductor layer 41a is formed of, for example, GaInAs. The semiconductor layer 41a is doped with an n-type impurity at a high concentration.
A GaInAs layer 42a is stacked on the semiconductor layer 41a. The GaInAs layer 42a is doped with an n-type impurity. For example, the impurity concentration of the GaInAs layer 42a is lower than the impurity concentration of the semiconductor layer 41a.
A GaInAs layer 43a is stacked on the GaInAs layer 42a. The GaInAs layer 43a is not doped with impurities.
An AlAs layer 44a is stacked on the GaInAs layer 43a. An InGaAs layer 45 is stacked on the AlAs layer 44a. An AlAs layer 44b is stacked on the InGaAs layer 45. The AlAs layer 44a, the InGaAs layer 45, and the AlAs layer 44b form an RTD unit.
A GaInAs layer 43b is not doped with impurities and is stacked on the AlAs layer 44b. A GaInAs layer 42b is doped with an n-type impurity and is stacked on the GaInAs layer 43b. A GaInAs layer 41b is stacked on the GaInAs layer 42b. The GaInAs layer 41b is doped with an n-type impurity at a high concentration. For example, the impurity concentration of the GaInAs layer 41b is higher than the impurity concentration of the GaInAs layer 42b.
The active element 32 may have any specific structure configured to generate electromagnetic waves (or receive electromagnetic waves or both generate and receive electromagnetic waves). In other words, the active element 32 may be configured to oscillate in electromagnetic waves of the terahertz band.
As shown in
In the present embodiment, the oscillation point P1 (the active element 32) is disposed at the center of the element main surface 21. However, the position of the oscillation point P1, that is, the position of the active element 32 on the element main surface 21, is not limited to the center of the element main surface 21 and may be any position.
In the present embodiment, it is preferred that a first perpendicular distance x1 between the oscillation point P1 and each first element side surface 23 is (λ′InP/2)+((λ′InP/2)×N) (N is an integer that is greater than or equal to 0: N=0, 1, 2, 3, . . . ).
λ′InP denotes an effective wavelength of an electromagnetic wave that transmits through the terahertz element 20. When n1 denotes the refractive index of the terahertz element 20 (the element substrate 31), c denotes the speed of light, and fc denotes the center frequency of electromagnetic waves, λ′InP is (1/n1)×(c/fc). When the first perpendicular distance x1 is set as described above, an electromagnetic wave oscillated by the terahertz element 20 performs a free end reflection on the first element side surface 23. Thus, the terahertz element 20 itself is designed as a resonator (primary resonator/one-dimensional resonator) of the terahertz device 10.
In the same manner, it is preferred that a second perpendicular distance y1 between the oscillation point P1 and each second element side surface 24 is (λ′InP/2)+((λ′InP/2)×N) (N is an integer that is greater than or equal to 0: N=0, 1, 2, 3, . . . ).
The perpendicular distances x1 and y1 may have different values for each of the element side surfaces 23 and 24 as long as the values are calculated by the above equation. Further, in
The dimension of the terahertz element 20 in the z-direction may be designed in accordance with, for example, the frequency of an oscillated electromagnetic wave. More specifically, the dimension of the terahertz element 20 in the z-direction is an integer multiple of ½ times a wavelength λ of the electromagnetic wave (i.e., λ/2). The electromagnetic wave performs free end reflection in the interface between the element substrate 31 and air. When the dimension of the terahertz element 20 in the z-direction is set as described above, standing waves having an aligned phase are excited in the terahertz element 20. The dimension of the terahertz element 20 in the z-direction is decreased as the frequency of the electromagnetic wave becomes higher. The dimension in the z-direction is increased as the frequency of the electromagnetic wave becomes lower.
The structure of the terahertz element 20 is not limited to that described above. For example, a back reflector metal layer may be disposed on the element back surface 22, which is located at the opposite side of the element substrate 31 from the element main surface 21 on which the active element 32 is disposed. In this case, the back reflector metal layer reflects an electromagnetic wave (electromagnetic wave) emitted from the active element 32.
When the back reflector metal layer is arranged, the electromagnetic wave performs a fixed end reflection in the interface between the element substrate 31 and the back reflector metal layer. This results in a π phase shift. In this case, the dimension of the terahertz element 20 in the z-direction may be designed to be (λ/4)+(integer multiple of λ/2) using the wavelength λ of the electromagnetic wave.
In the present embodiment, electromagnetic waves generated from the oscillation point P1 have directivity. As shown in
The first conductive layer 33 and the second conductive layer 34 are formed on the element main surface 21. The first conductive layer 33 and the second conductive layer 34 are insulated from each other. Each of the first conductive layer 33 and the second conductive layer 34 has a stacked structure of metals. The stacked structure of each of the first conductive layer 33 and the second conductive layer 34 is obtained by stacking, for example, gold (Au), palladium (Pd), and titanium (Ti). In another example, the stacked structure of each of the first conductive layer 33 and the second conductive layer 34 is obtained by stacking Au and Ti. The first conductive layer 33 and the second conductive layer 34 are formed through vacuum vapor deposition or sputtering.
As shown in
The semiconductor layer 41a extends further than other layers such as the GaInAs layer 42a toward the second conductive layer 34 in the x-direction. The second conductive layer 34 includes a second connection region 34a stacked on part of the semiconductor layer 41a where the GaInAs layer 42a and other layers are not stacked. Thus, the active element 32 is electrically connected to the first conductive layer 33 and the second conductive layer 34. The second connection region 34a is spaced from the GaInAs layer 42a and other layers in the x-direction.
Although not shown in
As shown in
In the present embodiment, the terahertz element 20 includes a metal insulator metal (MIM) reflector 35. The MIM reflector 35 is formed by holding an insulator between part of the first conductive layer 33 and part of the second conductive layer 34 in the z-direction. The MIM reflector 35 is configured to short the part of the first conductive layer 33 and the part of the second conductive layer 34 at a high frequency. The MIM reflector 35 reflects a high-frequency electromagnetic wave. However, the MIM reflector 35 is not necessary and may be omitted.
As shown in
As shown in
The antenna base 50 is disposed on the mount plate 11 at the mount main surface 12, which is opposite the mount back surface 13. The antenna base 50 is located opposing the mount plate 11. Specifically, the antenna base 50 is opposed to the mount plate 11 via the lead frame 60 in the z-direction. The z-direction may be referred to as the opposing direction of the antenna base 50 and the mount plate 11.
The antenna base 50 includes a base main surface 50a opposed to the mount main surface 12, a base back surface 50b opposite the base main surface 50a, and base side surfaces 51.
The base main surface 50a and the base back surface 50b intersect the z-direction. In the present embodiment, the element main surface 21 and the element back surface 22 are orthogonal to the z-direction. The base main surface 50a and the base back surface 50b are, for example, rectangular (e.g., square). The base back surface 50b defines the bottom surface of the terahertz device 10.
In the present embodiment, the base side surfaces 51 are surfaces of the terahertz device 10 (the antenna base 50) facing sideward. The base side surfaces 51 may be referred to as the end surfaces of the antenna base 50 facing in directions orthogonal to the opposing direction of the base main surface 50a and the base back surface 50b. The base side surfaces 51 joins the base main surface 50a and the base back surface 50b.
The present embodiment includes four base side surfaces 51. Specifically, the base side surfaces 51 include a first base side surface 51a and a second base side surface 51b, which are opposite end surfaces of the antenna base 50 in the x-direction, and a third base side surface 51c and a fourth base side surface 51d, which are opposite end surfaces of the antenna base 50 in the y-direction. The first base side surface 51a and the second base side surface 51b intersect the x-direction. In the present embodiment, the first base side surface 51a and the second base side surface 51b are orthogonal to the x-direction. The third base side surface 51c and the fourth base side surface 51d intersect the y-direction. In the present embodiment, the third base side surface 51c and the fourth base side surface 51d are orthogonal to the y-direction. The first base side surface 51a and the second base side surface 51b are orthogonal to the third base side surface 51c and the fourth base side surface 51d.
The antenna base 50 includes a recess 52 recessed with respect to the base main surface 50a in a direction away from the mount main surface 12. The recess 52 is recessed from the base main surface 50a in a direction away from the mount main surface 12, that is, downward. In the present embodiment, the recess 52 is semispherical as a whole. The recess 52 is filled with air.
The recess 52 is open upward. The opening of the recess 52 is circular as viewed in the z-direction. The opening of the recess 52 is closed by the mount plate 11. In the present embodiment, the terahertz element 20 is accommodated in the recess 52.
The recess 52 includes an antenna surface 53. The antenna surface 53 is, for example, a curved surface projecting downward. The antenna surface 53 is formed in conformance with the shape of an antenna. For example, the antenna surface 53 is curved to be parabolic-antenna-shaped. The antenna surface 53 is circular as viewed from above.
As shown in
The reflection film 54 is configured to reflect at least part of the electromagnetic waves received from the terahertz element 20 in one direction. In the present embodiment, the reflection film 54 reflects the electromagnetic waves received from the terahertz element 20 in the z-direction (specifically, upward). In other words, when electromagnetic waves are radiated in the range of the opening angle θ, the reflection film 54 is configured to guide the electromagnetic waves in one direction.
Specifically, the reflection film 54 is antenna-shaped. In the present embodiment, the antenna surface 53 is curved in conformance with the shape of an antenna. Accordingly, the reflection film 54 that is formed on the antenna surface 53 is shaped in conformance with the antenna. In the present embodiment, the reflection film 54 is parabolic-antenna-shaped. In other words, the reflection film 54 is a parabolic reflector. The reflection film 54 is circular as viewed in the z-direction.
The reflection film 54 and the mount plate 11 are opposed to each other in the z-direction. In other words, the mount plate 11 is located opposing the reflection film 54. In the present embodiment, the mount plate 11 is located above the reflection film 54. Thus, the electromagnetic waves reflected by the reflection film 54 are emitted upward transmitting through the mount plate 11.
The reflection film 54 is not disposed at the side of the element back surface 22 but at the side of the element main surface 21, where the oscillation point P1 exists, and is opposed to the terahertz element 20 (in the present embodiment, the element main surface 21). The reflection film 54 is disposed, for example, so that the focal point of the reflection film 54 is the oscillation point P1. In the present embodiment, the reflection film 54 has a center point P2 that coincides with the oscillation point P1 as viewed in the z-direction. In the present embodiment, the center point P2 is the center of the circular reflection film 54 as viewed in the z-direction.
It is preferred that the antenna surface 53 is curved so that the condition Z=(1/(4z1))X2 is satisfied when the perpendicular distance from the oscillation point P1 to the reflection film 54 is referred to as a specified distance z1, the coordinate of the reflection film 54 in the z-direction is denoted by Z, and the position of the reflection film 54 in the x-direction is denoted by X. However, the curving aspect of the antenna surface 53 is not limited to this and may be any curving aspect.
The z-direction may be referred to as the opposing direction of the reflection film 54 and the terahertz element 20 (the element main surface 21) or the output direction of the electromagnetic waves of the terahertz device 10. Further, the z-direction may be referred to as the opposing direction of the center point P2 of the reflection film 54 and the oscillation point P1. The specified distance z1 may be refer to as the distance between the oscillation point P1 and the center point P2.
The reflection film 54 is disposed at a position corresponding to the frequency of electromagnetic waves generated from the terahertz element 20 so that the electromagnetic waves resonate. Specifically, the specified distance z1 may be, for example, (λ′A/4)+((λ′A/2)×N) (N is an integer greater than or equal to 0) so that the resonance condition of the electromagnetic waves generated by the terahertz element 20 is satisfied. λ′A is (1/nA)(c/fc) (c: speed of light, fc: center frequency of oscillation) where nA represents the refractive index of an object intervening between the oscillation point P1 and the reflection film 54. For example, when air is present between the oscillation point P1 and the reflection film 54, nA is 1. fc may be a target frequency of the terahertz element 20 or the frequency having the maximum output among the electromagnetic waves generated from the terahertz element 20.
As viewed in the z-direction, the distance between opposite ends of the reflection film 54 in the x-direction or the y-direction is referred to as the opening width of the reflection film 54. In the present embodiment, since the reflection film 54 is formed on the entire antenna surface 53, the opening width of the reflection film 54 is equal to the opening width of the recess 52. The opening width of the recess 52 may be referred to as the diameter of the opening of the circular recess 52.
The reflection film 54 is formed, for example, over an angle that is greater than or equal to the opening angle θ of the oscillation point P1. More specifically, when the oscillation point P1 is the vertex, the antenna surface 53 is formed over an angle that is greater than or equal to the opening angle θ. As described above, in the present embodiment, the reflection film 54 is formed on the entire antenna surface 53. In the present embodiment, the angle over which the reflection film 54 is formed with the oscillation point P1 is greater than 180°. Therefore, in the present embodiment, the reflection film 54 reflects all of the electromagnetic waves emitted from the oscillation point P1 within the range of the opening angle θ.
In the present embodiment, the dimension of the antenna base 50 in the z-direction is greater than the dimension of the mount plate 11 in the z-direction, that is, the thickness of the mount plate 11. The dimension of the antenna base 50 in the x-direction is set to be equal to the dimension of the mount plate 11 in the x-direction. The dimension of the antenna base 50 in the y-direction is set to be equal to the dimension of the mount plate 11 in the y-direction. However, the antenna base 50 and the mount plate 11 may have any dimensional relationship.
As shown in
The lead frame 60 has the shape of, for example, a rectangular plate, the thickness-wise direction of which conforms to the z-direction. In the present embodiment, the lead frame 60 has a greater thickness than the mount plate 11. In other words, in the present embodiment, the mount plate 11 has a smaller thickness than the lead frame 60.
The lead frame 60 includes a first lead part 61 and a second lead part 71 that are insulated from each other. The first lead part 61 and the second lead part 71 are, for example, separated and opposed to each other in the x-direction and respectively include a first lead opposing surface 62 and a second lead opposing surface 72 that are separated and opposed to each other in the x-direction. In the present embodiment, the lead opposing surfaces 62 and 72 are orthogonal to the x-direction. In the present embodiment, the first lead part 61 and the second lead part 71 correspond to “first conductor” and “second conductor”.
As viewed in the z-direction, the first lead part 61 and the second lead part 71 extend sideward, in the present embodiment, in the x-direction, beyond the mount plate 11. The dimension of the two lead parts 61 and 71 in the y-direction is set to be slightly less than the dimension of the mount plate 11 in the y-direction, for example, equal to the dimension of the antenna base 50 in the y-direction. In the present embodiment, the lead frame 60 is less likely to extend beyond the mount plate 11 in the y-direction.
The lead frame 60 is formed so as to avoid overlapping with the reflection film 54 (the recess 52) in the z-direction. More specifically, the lead frame 60 includes an opening 80 that overlaps at least a portion of the reflection film 54 as viewed in the z-direction.
The opening 80 includes, for example, a gap 81 extending between the two lead parts 61 and 71, a first part opening 63 formed in the first lead part 61, and a second part opening 73 formed in the second lead part 71.
The gap 81 is slit-shaped and extends in the y-direction and includes a space between the lead opposing surfaces 62 and 72 and a space between the part openings 63 and 73.
The first part opening 63 is formed in a portion of the first lead part 61 that overlaps the reflection film 54 as viewed in the z-direction. The second part opening 73 is formed in a portion of the second lead part 71 that overlaps the reflection film 54 in the z-direction.
The first part opening 63 and the second part opening 73 extend through in the z-direction to be continuous with the recess 52. The first part opening 63 and the second part opening 73 are separated by the gap 81 and opposed to each other in the x-direction. The two part openings 63 and 73 are open in the x-direction. The first part opening 63 is open toward the second lead part 71. The second part opening 73 is open toward the first lead part 61. Thus, the two part openings 63 and 73 are continuous with the gap 81.
Each of the first part opening 63 and the second part opening 73 is semicircular as viewed in the z-direction. The first part opening 63 and the second part opening 73 form a single circular hole. In other words, the terahertz element 20 is located in the center of the circle formed by the part openings 63 and 73. The diameter of the circle formed by the part openings 63 and 73 may be, for example, greater than or equal to the opening width of the reflection film 54.
The first lead part 61 includes a first inner surface 64, which is the wall surface of the first part opening 63. The first inner surface 64 is recessed from the first lead opposing surface 62 in a direction away from the second lead opposing surface 72.
The second lead part 71 includes a second inner surface 74, which is the wall surface of the second part opening 73. The second inner surface 74 is recessed from the second lead opposing surface 72 in a direction away from the first lead opposing surface 62.
The first inner surface 64 and the second inner surface 74 are curved to project away from each other. The two inner surfaces 64 and 74, for example, extend along the outer side of an end 54a of the reflection film 54, that is, the opening edge of the recess 52, to avoid overlapping of the two lead parts 61 and 71 with the reflection film 54.
As shown in
In the present embodiment, the projection dimension of the first connector 65 from the first inner surface 64 is less than the length of the first wire W1 as viewed in the z-direction. The projection dimension is, for example, less than ¼ of the opening width of the reflection film 54.
In the same manner, in the present embodiment, the second lead part 71 includes a second connector 75 configured to be electrically connected to the terahertz element 20. In the present embodiment, the second connector 75 is a portion of the second lead part 71 that projects toward the terahertz element 20 from where the second lead part 71 does not overlap the recess 52 (i.e., the reflection film 54) as viewed in the z-direction. More specifically, the second connector 75 is a projection piece projecting from the second inner surface 74 toward the terahertz element 20. The second connector 75 overlaps the recess 52 (i.e., the reflection film 54) as viewed in the z-direction. The second connector 75 and the second pad 34b are connected by a second wire W2. Thus, the second lead part 71 is electrically connected to the terahertz element 20.
In the present embodiment, the projection dimension of the second connector 75 from the second inner surface 74 is less than the length of the second wire W2 as viewed in the z-direction. The projection dimension is, for example, less than ¼ of the opening width of the reflection film 54.
In the present embodiment, the first connector 65 and the second connector 75 are opposed to each other at opposite sides of the terahertz element 20. For example, the two connectors 65 and 75 are symmetrically arranged in the x-direction. In other words, the two connectors 65 and 75 are shifted 180° from each other as viewed in the z-direction.
As shown in
The adhesive layer 90 is disposed between the reflection film 54 and the lead frame 60. The adhesive layer 90 hinders electrical connection of the reflection film 54 with the lead frame 60. As described above, the reflection film 54 is not electrically connected to the antenna base 50 and the lead frame 60 and is electrically isolated.
In particular, in the present embodiment, the inner peripheral end of the adhesive layer 90 extends inward (i.e., toward the terahertz element 20) beyond the reflection film 54. Thus, the reflection film 54 is less likely to circumvent the adhesive layer 90 and contact the lead frame 60. The inner peripheral end of the adhesive layer 90 may be referred to as the end of the adhesive layer 90 located close to the terahertz element 20. The inner peripheral end of the adhesive layer 90 is, for example, circular in conformance with the recess 52 as viewed in the z-direction. However, the inner peripheral end of the adhesive layer 90 may have any shape and may be rectangular.
The terahertz element 20 and the reflection film 54 are accommodated in an accommodation space A1 defined by the mount plate 11 and the recess 52. In the present embodiment, the accommodation space A1 is defined by the mount main surface 12 and the antenna surface 53. In the present embodiment, the accommodation space A1 is hermetically sealed by the adhesive layer 90 and other components. Air exists in the accommodation space A1.
As shown in
More specifically, the first lead part 61 extends from the first base side surface 51a to an outer side of the antenna base 50 and is bent along the antenna base 50 to reach the base back surface 50b. The first electrode 94 is formed by the above-described bent portion of the first lead part 61.
The first electrode 94 includes a first proximal portion 94a, a first bent portion 94b (or curved portion), and a first distal portion 94c. The first proximal portion 94a is bent toward the first base side surface 51a at the corner of the first base side surface 51a and the base main surface 50a. The first bent portion 94b is bent at the corner of the first base side surface 51a and the base back surface 50b. The first distal portion 94c is disposed on the base back surface 50b. The first electrode 94 is L-shaped as viewed in the y-direction and extends over the first base side surface 51a and the base back surface 50b.
The first electrode 94 includes a first side electrode 95 formed on the first base side surface 51a and a first back electrode 93 formed on the base back surface 50b. The first side electrode 95 is part of the first electrode 94 extending from the first proximal portion 94a to the first bent portion 94b and is formed on the entire first base side surface 51a. The first back electrode 93 is part of the first electrode 94 extending from the first bent portion 94b to the first distal portion 94c.
In the same manner, the second lead part 71 extends from the second base side surface 51b to an outer side of the antenna base 50 and is bent along the antenna base 50 to reach the base back surface 50b. The second electrode 101 is formed by the above-described bent portion of the second lead part 71.
The second electrode 101 includes a second proximal portion 101a, a second bent portion 101b (or curved portion), and a second distal portion 101c. The second proximal portion 101a is bent toward the second base side surface 51b at the corner of the second base side surface 51b and the base main surface 50a. The second bent portion 101b is bent at the corner of the second base side surface 51b and the base back surface 50b. The second distal portion 101c is disposed on the base back surface 50b. The second electrode 101 is L-shaped as viewed in the y-direction and extends over the second base side surface 51b and the base back surface 50b.
The second electrode 101 includes a second side electrode 102 formed on the second base side surface 51b and a second back electrode 103 formed on the base back surface 50b. The second side electrode 102 is part of the second electrode 101 extending from the second proximal portion 101a to the second bent portion 101b and is formed on the entire second base side surface 51b. The second back electrode 103 is part of the second electrode 101 extending from the second bent portion 101b to the second distal portion 101c.
In the present embodiment, the two electrodes 94 and 101 are symmetrically at the left side and the right side. The first distal portion 94c and the second distal portion 101c are separated in the x-direction. This ensures insulation between the electrodes 94 and 101.
Each of the two electrodes 94 and 101 has a width in the y-direction that is set to be equal to the dimension of the antenna base 50 in the y-direction. However, the width of the two electrodes 94 and 101 is not limited to this and may be changed in any manner. For example, the width of the two electrodes 94 and 101 may be less than the dimension of the antenna base 50 in the y-direction.
As described above, the dimension of the antenna base 50 in the z-direction is greater than the thickness of the mount plate 11. In addition, the dimension of the antenna base 50 in the z-direction is greater than the sum of the thickness of the mount plate 11 and the thickness of the lead frame 60. The lead frame 60, which is disposed between the antenna base 50 and the mount plate 11, is disposed at an upper part of the terahertz device 10. Thus, the first proximal portion 94a and the second proximal portion 101a are disposed at an upper part of the terahertz device 10.
More specifically, when the z-direction is the thickness-wise direction of the terahertz device 10, the first proximal portion 94a and the second proximal portion 101a are located upward from the center of the terahertz device 10 in the thickness-wise direction (in other words, toward the mount plate 11 or at the side where electromagnetic waves are output).
As shown in
A method for manufacturing the terahertz device 10 of the present embodiment will now be described. To simplify the description, a method for manufacturing one terahertz device 10 will first be described.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The step of forming the metal film is not limited to the above-described steps. For example, the method for manufacturing the terahertz device 10 may include a step of masking the base main surface 50a and a step of forming a metal film on the antenna surface 53 by vapor deposition using electron beams. This case eliminates the need for the step of removing the metal film from the base main surface 50a.
As shown in
As shown in
As shown in
To simplify the description, the method for manufacturing one terahertz device 10 has been described above. However, practically, a plurality of terahertz devices 10 may be simultaneously manufactured.
For example, as shown in
Meanwhile, as shown in
The metal plate 111 may include first positioning portions 111b, and the base body 112 may include second positioning portions 112b. When adhering the metal plate 111 to the base body 112, the metal plate 111 and the base body 112 may be positioned so that the first positioning portions 111b overlap the second positioning portions 112b.
Operation of the present embodiment will now be described.
When electromagnetic waves are generated from the oscillation point P1 of the terahertz element 20, the reflection film 54 reflects and emits the electromagnetic waves in one direction.
In addition, in the present embodiment, the two electrodes 94 and 101 are formed on the base back surface 50b, which defines the bottom surface of the terahertz device 10. This allows the terahertz device 10 to be mounted on the circuit substrate 113 with an orientation so that the base back surface 50b faces the circuit substrate 113. Thus, the terahertz device 10 is readily mounted on the circuit substrate 113.
The present embodiment, which has been described above, has the following advantages.
(1-1) The terahertz device 10 includes the mount plate 11 used as the base member, the terahertz element 20 mounted on the mount plate 11, the antenna base 50 located opposing the mount plate 11 and including the antenna surface 53, and the reflection film 54 formed on the antenna surface 53. The reflection film 54 reflects at least part of electromagnetic waves generated by the terahertz element 20 in one direction (for example, upward). With this structure, electromagnetic waves generated by the terahertz element are emitted in one direction. This increases the output of the electromagnetic waves emitted from the terahertz device 10. Thus, the gain of the terahertz device 10 is improved.
(1-2) The terahertz device 10 includes the electrodes 94 and 101 used for electrical connection with an external device. The electrodes 94 and 101 include the side electrodes 95 and 102, which are formed on the base side surfaces 51a and 51b, and the back electrodes 93 and 103, which are formed on the base back surface 50b. With this structure, the side electrodes 95 and 102 or the back electrodes 93 and 103 are electrically connected to the wiring pattern 114 of the circuit substrate 113 in a relatively easy manner. Thus, the terahertz device 10 is readily mounted on the circuit substrate 113.
(1-3) The electrodes 94 and 101 are obtained by bending the lead frame 60 along the antenna base 50. In this structure, the lead frame 60, which is relatively easy to bend, is used as the electrodes 94 and 101. Thus, the side electrodes 95 and 102 and the back electrodes 93 and 103 are readily formed. In addition, the bending of the lead frame 60 along the antenna base 50 limits sideward projection of the lead frame 60. As a result, the terahertz device 10 is reduced in size in the x-direction.
(1-4) The first electrode 94 includes the first proximal portion 94a, the first bent portion 94b, and the first distal portion 94c. The first proximal portion 94a is bent toward the first base side surface 51a at the corner of the first base side surface 51a and the base main surface 50a. The first bent portion 94b is bent at the corner of the first base side surface 51a and the base back surface 50b. The first distal portion 94c is disposed on the base back surface 50b. The first side electrode 95 extends from the first proximal portion 94a to the first bent portion 94b. The first back electrode 93 extends from the first bent portion 94b to the first distal portion 94c.
In the same manner, the second electrode 101 includes the second proximal portion 101a, the second bent portion 101b, and the second distal portion 101c. The second proximal portion 101a is bent toward the second base side surface 51b at the corner of the second base side surface 51b and the base main surface 50a. The second bent portion 101b is bent at the corner of the second base side surface 51b and the base back surface 50b. The second distal portion 101c is disposed on the base back surface 50b. The second side electrode 102 extends from the second proximal portion 101a to the second bent portion 101b. The second back electrode 103 extends from the second bent portion 101b to the second distal portion 101c.
With this structure, the side electrodes 95 and 102 and the back electrodes 93 and 103 are obtained by bending the lead frame 60 at each corner of the antenna base 50 used as a support point. Thus, the side electrodes 95 and 102 and the back electrodes 93 and 103 are relatively easily formed.
(1-5) The two distal portions 94c and 101c are separate from each other in the x-direction. This structure ensures insulation of the two electrodes 94 and 101.
(1-6) The terahertz element 20 includes the element main surface 21, which includes the oscillation point P1 configured to generate electromagnetic waves, and the element back surface 22, which is opposite the element main surface 21. The reflection film 54 is disposed at the side of the element main surface 21, not at the side of the element back surface 22. In this structure, electromagnetic waves readily reach the reflection film 54. Thus, the reflection film 54 is appropriately used to reflect electromagnetic waves generated from the oscillation point P1.
(1-7) The terahertz element 20 radiates electromagnetic waves from the oscillation point P1 in the range of the opening angle θ. The reflection film 54 is formed over an angle that is greater than or equal to the opening angle θ of the oscillation point P1. With this structure, the electromagnetic waves radiated from the oscillation point P1 in the range of the opening angle θ are reflected by the reflection film 54. This reduces electromagnetic waves that are not reflected by the reflection film 54, thereby improving the gain.
(1-8) The reflection film 54 is parabolic-antenna-shaped. With this structure, electromagnetic waves are appropriately reflected in one direction.
(1-9) The reflection film 54 is disposed so that the focal point of the reflection film 54 is located at the oscillation point P1. With this structure, electromagnetic waves generated from the oscillation point P1 are guided in one direction by the reflection film 54. This reduces electromagnetic waves that are not reflected in one direction by the reflection film 54, thereby improving the gain.
(1-10) The reflection film 54 is disposed at a position corresponding to the frequency of electromagnetic waves generated by the terahertz element 20 so that the electromagnetic waves resonate. In an example, the specified distance z1, which is the perpendicular distance from the oscillation point P1 toward the reflection film 54, is set to satisfy the resonance condition of the electromagnetic waves, for example, (λ′A/4)+((λ′A/2)×N). This structure improves the gain of the terahertz device 10.
(1-11) The reflection film 54 is electrically isolated. This structure obviates disadvantages such as absorption of electromagnetic waves by the reflection film 54.
(1-12) The antenna base 50 is formed of an insulative material. This structure limits electrical connection of the reflection film 54 with another member via the antenna base 50.
(1-13) The mount plate 11, which is used as the base member, includes the mount main surface 12 on which the terahertz element 20 is mounted. The antenna base 50 includes the base main surface 50a, which is opposed to the mount main surface 12, and the recess 52, which is recessed from the base main surface 50a and includes the antenna surface 53. The terahertz element 20 and the reflection film 54 are disposed in the accommodation space A1 defined by the mount main surface 12 and the antenna surface 53. This structure reduces external effects on the terahertz element 20 and the reflection film 54.
(1-14) The reflection film 54 is formed on the antenna surface 53 but is not formed on the base main surface 50a. This structure obviates reflection of electromagnetic waves by the reflection film 54 formed on the base main surface 50a. Thus, disadvantages caused by unwanted reflection waves, for example, the occurrence of standing waves, are limited.
(1-15) The lead frame 60, which is used as a conductive member, is disposed on the mount main surface 12. The antenna base 50 is adhered to the lead frame 60 by the adhesive layer 90. The adhesive layer 90 is formed from an insulative material and is disposed between the reflection film 54 and the lead frame 60. In this structure, the adhesive layer 90 restricts contact of the reflection film 54 with the lead frame 60. Thus, electrical connection of the reflection film 54 with the lead frame 60 is hindered.
(1-16) The lead frame 60 includes the opening 80 overlapping at least a portion of the reflection film 54 as viewed in the z-direction. In this structure, electromagnetic waves reflected by the reflection film 54 are output through the opening 80. This limits interruption of electromagnetic waves by the lead frame 60.
(1-17) The lead frame 60 includes the first lead part 61 and the second lead part 71, which are separated and opposed to each other. The opening 80 includes the gap 81 between the two lead parts 61 and 71. This structure limits interruption (blocking) of electromagnetic waves by the lead frame 60 while ensuring the insulation properties of the two lead parts 61 and 71.
(1-18) The opening 80 includes the first part opening 63 formed in a portion of the first lead part 61 that overlaps the reflection film 54 as viewed in the z-direction and is continuous with the gap 81. The opening 80 includes the second part opening 73 formed in a portion of the second lead part 71 that overlaps the reflection film 54 as viewed in the z-direction and is continuous with the gap 81. In this structure, the interruption of electromagnetic waves by the lead frame 60 is further limited.
(1-19) The first lead part 61 includes the first connector 65 configured to be electrically connected to the terahertz element 20. The first connector 65 projects from the first inner surface 64, which is the wall surface of the first part opening 63, toward the terahertz element 20 and overlaps the reflection film 54 as viewed in the z-direction. The second lead part 71 includes the second connector 75 configured to be electrically connected to the terahertz element 20. The second connector 75 projects from the second inner surface 74, which is the wall surface of the second part opening 73, toward the terahertz element 20 and overlaps the reflection film 54 as viewed in the z-direction. In this structure, while limiting interruption of electromagnetic waves by the lead frame 60, the two lead parts 61 and 71 are electrically connected to the terahertz element 20.
(1-20) The terahertz device 10 includes the first wire W1 and the second wire W2. The first wire W1 connects the first connector 65 to the first pad 33b formed on the terahertz element 20, The second wire W2 connects the second connector 75 to the second pad 34b formed on the terahertz element 20. As viewed in the z-direction, the projection dimension of the first connector 65 from the first inner surface 64 is less than the length of the first wire W1. With this structure, interruption of electromagnetic waves by the first connector 65 is limited as the projection dimension of the first connector 65 is decreased. In the same manner, as viewed in the z-direction, the projection dimension of the second connector 75 from the second inner surface 74 may be less than the length of the second wire W2.
(1-21) The two connectors 65 and 75 are opposed to each other at opposite sides of the terahertz element 20. In this structure, the two wires W1 and W2 are less likely to interfere with each other. Thus, contact of the two wires W1 and W2 is avoided.
As shown in
For example, the reflection reduction film 120 may be formed on at least a portion of the part of the mount back surface 13 overlapping the lead frame 60 as viewed in the z-direction. In an example, the reflection reduction film 120 is formed on the entirety of the part of the mount back surface 13 overlapping the lead frame 60 as viewed in the z-direction. This limits the occurrence of standing waves caused by reflection of electromagnetic waves at the lead frame 60. Any specific structure of the reflection reduction film 120 may be used as long as reflection of electromagnetic waves in at least the terahertz band is reduced.
As shown in
The specific element is not limited to the protection diodes 131 and 132 and may be a control integrated circuit (IC) (e.g., application-specific integrated circuit (ASIC)). The control IC may be configured to, for example, detect current flowing to the terahertz element 20, serve as an amplifier, supply power to the terahertz element 20, or process signals. The specific element may be connected to the terahertz element 20 in any mode and may be, for example, connected in series.
As shown in
More specifically, the first protection diode 131 is disposed on the first lead part 61 and electrically connected to the first lead part 61. The first protection diode 131 is disposed, for example, near the first part opening 63 on the first lead part 61. In the present embodiment, the first protection diode 131 is disposed in a region surrounded by the first inner surface 64, the first lead opposing surface 62, and the end surface of the first lead part 61 in the y-direction.
The first protection diode 131 and the second lead part 71 are electrically connected by a first diode wire W3. Thus, the first protection diode 131 is electrically connected to the two electrodes 94 and 101.
The first diode wire W3 is bonded to the second lead part 71 at a position close to the first protection diode 131, that is, a region defined by the second inner surface 74, the second lead opposing surface 72, and the end surface of the second lead part 71 in the y-direction. This reduces the length of the first diode wire W3.
In the same manner, the second protection diode 132 is disposed on the second lead part 71 and electrically connected to the second lead part 71. The second protection diode 132 is disposed, for example, near the second part opening 73 on the second lead part 71. In the present embodiment, the second protection diode 132 is disposed in a region surrounded by the second inner surface 74, the second lead opposing surface 72, and the end surface of the second lead part 71 in the y-direction.
The second protection diode 132 and the first lead part 61 are electrically connected by a second diode wire W4. Thus, the second protection diode 132 is electrically connected to the two electrodes 94 and 101.
The second diode wire W4 is bonded to the first lead part 61 at a position closet to the second protection diode 132, that is, a region surrounded by the first inner surface 64, the first lead opposing surface 62, and the end surface of the first lead part 61 in the y-direction. This reduces the length of the second diode wire W4.
As shown in
The present embodiment, which has been described above, has the following operational advantages.
(2-1) The terahertz device 10 includes the protection diodes 131 and 132 connected to the terahertz element 20 in parallel. With this structure, for example, when static electricity causes to a high voltage to be applied to opposite ends of the terahertz element 20, current flows through the protection diodes 131 and 132. Thus, an excessive current flowing to the terahertz element 20 is limited, so that the terahertz element 20 is protected.
(2-2) The two protection diodes 131 and 132 are connected to the terahertz element 20 in opposite directions. With this structure, the terahertz element 20 is protected from a high voltage produced in each direction.
(2-3) The antenna base 50 includes the receptacles 141 and 142 recessed from the base main surface 50a. The protection diodes 131 and 132 are accommodated in the receptacles 141 and 142. This structure limits increases in the size of the terahertz device 10 caused by arrangement of the protection diodes 131 and 132.
In each embodiment, the terahertz device 10 may be modified, for example, as follows. The modified examples described below may be combined with one another as long as there is no technical inconsistency. For the sake of convenience, the following modified examples will be basically described using the first embodiment. However, other embodiments may be used as long as there is no technical inconsistency.
As shown in
In this configuration, contact of the reflection film 54 with the lead frame 60 is restricted by the spacer 200 and the adhesive layer 90. Thus, the contact of the reflection film 54 with the lead frame 60 is further restricted.
As shown in
In addition, as viewed in the z-direction, the length of the first wire W1 may be less than the projection dimension of the first connector 65 from the first inner surface 64. In the same manner, the length of the second wire W2 may be less than the projection dimension of the second connector 75 from the second inner surface 74. In this structure, the length of the wires W1 and W2 is decreased, thereby limiting adverse effects on the responsiveness caused by the wires W1 and W2.
As shown in
The first connector 65 and the second connector 75 may be omitted.
As shown in
In addition, the lead frame 60 may include a first curved portion 213 extending from the first connector 211 along the outer side of the opening edge of the recess 52 and a second curved portion 214 extending from the second connector 212 along the outer side of the opening edge of the recess 52.
In this modified example, as shown in
As shown in
As shown in
The shape of the reflection film may be changed. For example, the reflection film is not limited to a single film and may include a plurality of separate parts. For example, a slit and/or a hole may be formed in the reflection film.
As shown in
As shown in
In this structure, when the protection diodes 131 and 132 are arranged as in the second embodiment, at least a portion of the first protection diode 131 may be disposed between the first inner surface 64 and the first lead opposing surface 62. Also, at least a portion of the second protection diode 132 may be disposed between the second inner surface 74 and the second lead opposing surface 72.
As shown in
As shown in
Specifically, the terahertz device 10 includes the reflector 300 in addition to the reflection film 54. More specifically, the mount main surface 12 includes a reflection protrusion 301, and a metal film is formed on the surface of the reflection protrusion 301 to form the reflector 300. In accordance with the curve of the reflection protrusion 301 protruding toward the reflection film 54, the reflector 300 is curved to protrude toward the reflection film 54. The reflector 300 and the reflection film 54 are radially opposed to each other. Electromagnetic waves reflected by the reflector 300 are emitted toward the reflection film 54.
In the present modified example, the terahertz element 20 is located opposing the reflector 300. In other words, the mount plate 11, which is used as the base member including the reflector 300, is located opposing the terahertz element 20.
The terahertz device 10 includes, for example, mount poles 302 and 303. The mount poles 302 and 303 are formed of, for example, a conductive material. The mount poles 302 and 303 extend through the antenna base 50 and the reflection film 54 from below and enter the accommodation space A1. The terahertz element 20 is mounted on the mount poles 302 and 303. The terahertz element 20 is electrically connected to the mount poles 302 and 303.
The terahertz element 20 may be bonded to the mount poles 302 and 303 directly or by a conductive bonding member. In addition, to avoid contact of the mount poles 302 and 303 with the reflection film 54, an insulator (e.g., insulation coating) may be disposed on side surfaces of the mount poles 302 and 303. In this modified example, the mount poles 302 and 303 are two. However, the number of mount poles 302 and 303 may be any number.
In this modified example, the terahertz device 10 includes electrodes 304 and 305 electrically connected to the mount poles 302 and 303. The electrodes 304 and 305 are formed on the base back surface 50b, which is a side of the antenna base 50 opposite from the base main surface 50a, and are joined to the mount poles 302 and 303.
In this modified example, when a voltage is applied from the both electrodes 304 and 305, electromagnetic waves are generated by the terahertz element 20. The electromagnetic waves are reflected by the reflector 300 and then further reflected by the reflection film 54 and are emitted upward, which corresponds to one direction. That is, the electromagnetic waves generated by the terahertz element 20 are emitted to the reflection film 54 via the reflector 300 and further reflected by the reflection film 54.
More specifically, the reflector 300 is configured to receive electromagnetic waves generated by the terahertz element 20 and reflect at least part of the electromagnetic waves. The reflection film 54 is configured to receive the electromagnetic waves reflected by the reflector 300 and reflect at least part of the electromagnetic waves in one direction (upward).
In this modified example, the lead frame 60 and the two wires W1 and W2 are not formed on the mount plate 11. The reflector 300 may be disposed, for example, within a projection range of the terahertz element 20 as viewed from above. This limits interruption (blocking) of the electromagnetic waves.
As shown in
The shape of the antenna base 50 may be changed. For example, as shown in
In this case, the first electrode 94 may be formed along the first base side surface 51a, the first inclined surface 311, and the base back surface 50b. The second electrode 101 may be formed along the second base side surface 51b, the second inclined surface 312, and the base back surface 50b.
As shown in
As shown in
When the terahertz device 10 is electrically connected to the wiring pattern 114 using the side electrodes 95 and 102, the terahertz device 10 may be mounted on the circuit substrate 113. Specifically, the conductive bonding member 115 may be arranged to connect the side electrodes 95 and 102 to the wiring pattern 114.
The electrodes 94 and 101 may be formed using a conductive member other than the lead frame 60.
Inclined surfaces may be arranged between the base main surface 50a and the base side surfaces 51a and 51b. In this case, the inclined surfaces correspond to the corners between the base main surface 50a and the base side surfaces 51a and 51b.
The terahertz element 20 may be disposed so that the element back surface 22 faces the reflection film 54. That is, the reflection film 54 may be disposed at the side of the element back surface 22 of the terahertz element 20, not at the side of the element main surface 21.
The reflection film 54 does not have to be electrically isolated.
The reflection film 54 may be formed on the base main surface 50a. In this case, for example, a reflection reduction film may be located opposing the base main surface 50a.
The gas existing in the accommodation space A1 is not limited to air and may be changed in any manner. Moreover, the accommodation space A1 may be vacuum.
The antenna base 50 and the lead frame 60 may be unitized by a process other than adhesion.
The shape of the opening 80 may be changed in any manner. For example, one of the part openings 63 and 73 may be omitted. The part openings 63 and 73 may be smaller than the reflection film 54.
The mount plate 11, which is used as the base member, may have any shape. For example, the mount plate 11 may have a greater thickness than the lead frame 60.
The electrodes 94 and 101 may extend from the proximity of the center of the terahertz device 10 in the z-direction or may extend from below the center of the terahertz device 10. The side electrodes 95 and 102 are not limited to the disposition on the first base side surface 51a and the second base side surface 51b and may be disposed on the third base side surface 51c and the fourth base side surface 51d.
In other words, the two electrodes 94 and 101 may be disposed on opposite sides of the antenna base 50 in the x-direction or the y-direction. The first electrode 94 may be formed over the first base side surface 51a and the third base side surface 51c. The second electrode 101 may be formed in the same manner.
The specific structure of the terahertz element 20 may be changed. For example, the position and size of the two pads 33b and 34b may be changed. The oscillation point P1 may be located at a position other than the center.
The terahertz element 20 may be configured to receive electromagnetic waves and convert the received electromagnetic waves into electrical energy. Specifically, the terahertz element 20 receives electromagnetic waves, for example, in the range of the opening angle θ of the oscillation point P1. In this case, the oscillation point P1 may be referred to as a reception point that receives electromagnetic waves.
In this structure, the reflection film may reflect the incident electromagnetic waves toward the terahertz element 20 (preferably, the reception point). This increases the reception strength of the terahertz device 10, thereby improving the gain related to reception.
Moreover, the terahertz element 20 may be configured to oscillate and receive electromagnetic waves. That is, the oscillation point P1 may perform at least one of oscillation and reception of electromagnetic waves.
When the terahertz element 20 is configured to receive electromagnetic waves, the reflector 300 of the modified example reflects electromagnetic waves reflected by the reflection film 54 toward the terahertz element 20. In this structure, the electromagnetic waves reflected by the reflection film 54 are emitted via the reflector 300 to the terahertz element 20. More specifically, the reflection film 54 is configured to reflect at least part of the incident electromagnetic waves toward the reflector 300. The reflector 300 is configured to receive the electromagnetic waves reflected by the reflection film 54 and emit at least part of the electromagnetic waves toward the terahertz element 20.
The mount plate 11 is formed of a material transmissive to electromagnetic waves generated by the terahertz element 20. In the present embodiment, the mount plate 11 is formed of a dielectric material, for example, a synthetic resin such as an epoxy resin or an intrinsic semiconductor such as a single crystal of silicon (Si). An example of the epoxy resin is a glass epoxy resin. However, the material of the mount plate 11 is not limited to those described above and may be any material, for example, Teflon (registered trademark) or glass. The mount plate 11 is insulative.
The mount plate 11 is, for example, rectangular. For the sake of brevity, the thickness-wise direction of the mount plate 11 is referred to as the z-direction. Two directions that are orthogonal to each other and the z-direction are referred to as the x-direction and the y-direction.
As shown in
As shown in
The terahertz element 20 converts electromagnetic waves in the terahertz band and electrical energy to and from each other. It is considered that the electromagnetic wave includes concepts of one or both of light and radio waves. The terahertz element 20 converts received electrical energy into electromagnetic waves in the terahertz band. Thus, the terahertz element 20 oscillates the electromagnetic waves (i.e., terahertz waves). The frequency of the electromagnetic waves generated by the terahertz element 20 is, for example, 0.1 Thz to 10 Thz.
As shown in
The terahertz element 20 includes an element main surface 21 and an element back surface 22. The element main surface 21 and the element back surface 22 intersect the z-direction. In the present embodiment, the element main surface 21 and the element back surface 22 are orthogonal to the z-direction. The element main surface 21 and the element back surface 22 are rectangular, for example, square, as viewed in the z-direction. However, the shape of the element main surface 21 and the element back surface 22 is not limited to this and may be any shape.
As shown in
The terahertz element 20 includes two first element side surfaces 23, which are opposite end surfaces in the x-direction, and two second element side surfaces 24, which are opposite end surfaces in the y-direction. The first element side surfaces 23 intersect the x-direction. In the present embodiment, the first element side surfaces 23 are orthogonal to the x-direction. The second element side surfaces 24 intersect the y-direction. In the present embodiment, the second element side surfaces 24 are orthogonal to the y-direction. The first element side surfaces 23 are orthogonal to the second element side surfaces 24.
As shown in
The element substrate 31 is formed of a semiconductor and is semi-insulating. The semiconductor forming the element substrate 31 is, for example, InP (indium phosphide) but may be a semiconductor other than InP. When the element substrate 31 is formed of InP, the refractive index (absolute refractive index) is approximately 3.4. In the present embodiment, the element substrate 31 is rectangular and is, for example, square in plan view. The element main surface 21 and the element back surface 22 are the main surface and the back surface of the element substrate 31. The element side surfaces 23 and 24 are side surfaces of the element substrate 31.
The active element 32 converts electromagnetic waves in the terahertz band and electrical energy to and from each other. The active element 32 is formed on the element substrate 31. The active element 32 is typically a resonant tunneling diode (RTD).
The active element 32 may be, for example, a tunnel injection transit time (TUNNETT) diode, an impact ionization avalanche transit time (IMPATT) diode, a GaAs-base field effect transistor (FET), a GaN-base FET, a high electron mobility transistor (HEMT), or a heterojunction bipolar transistor (HBT).
An example of obtaining the active element 32 will be described. A semiconductor layer 41a is formed on the element substrate 31. The semiconductor layer 41a is formed of, for example, GaInAs. The semiconductor layer 41a is doped with an n-type impurity at a high concentration.
A GaInAs layer 42a is stacked on the semiconductor layer 41a. The GaInAs layer 42a is doped with an n-type impurity. For example, the impurity concentration of the GaInAs layer 42a is lower than the impurity concentration of the semiconductor layer 41a.
A GaInAs layer 43a is stacked on the GaInAs layer 42a. The GaInAs layer 43a is not doped with impurities.
An AlAs layer 44a is stacked on the GaInAs layer 43a. An InGaAs layer 45 is stacked on the AlAs layer 44a. An AlAs layer 44b is stacked on the InGaAs layer 45. The AlAs layer 44a, the InGaAs layer 45, and the AlAs layer 44b form an RTD unit.
A GaInAs layer 43b is not doped with impurities and is stacked on the AlAs layer 44b. A GaInAs layer 42b is doped with an n-type impurity and is stacked on the GaInAs layer 43b. A GaInAs layer 41b is stacked on the GaInAs layer 42b. The GaInAs layer 41b is doped with an n-type impurity at a high concentration. For example, the impurity concentration of the GaInAs layer 41b is higher than the impurity concentration of the GaInAs layer 42b.
The active element 32 may have any specific structure configured to generate electromagnetic waves (or receive electromagnetic waves or both generate and receive electromagnetic waves). In other words, the active element 32 may be configured to oscillate in electromagnetic waves of the terahertz band.
As shown in
In the present embodiment, the oscillation point P1 (the active element 32) is disposed at the center of the element main surface 21. However, the position of the oscillation point P1, that is, the position of the active element 32 on the element main surface 21, is not limited to the center of the element main surface 21 and may be any position.
In the present embodiment, it is preferred that a first perpendicular distance x1 between the oscillation point P1 and each first element side surface 23 is (λ′InP/2)+((λ′InP/2)×N) (N is an integer that is greater than or equal to 0: N=0, 1, 2, 3, . . . ).
λ′InP denotes an effective wavelength of an electromagnetic wave that transmits through the terahertz element 20. When n1 denotes the refractive index of the terahertz element 20 (the element substrate 31), c denotes the speed of light, and fc denotes the center frequency of electromagnetic waves, λ′InP is (1/n1)×(c/fc). When the first perpendicular distance x1 is set as described above, an electromagnetic wave oscillated by the terahertz element 20 performs a free end reflection on the first element side surface 23. Thus, the terahertz element 20 itself is designed as a resonator (primary resonator/one-dimensional resonator) of the terahertz device 10.
In the same manner, it is preferred that a second perpendicular distance y1 between the oscillation point P1 and each second element side surface 24 is (λ′InP/2)+((λ′InP/2)×N) (N is an integer that is greater than or equal to 0: N=0, 1, 2, 3, . . . ).
The perpendicular distances x1 and y1 may have different values for each of the element side surfaces 23 and 24 as long as the values are calculated by the above equation. Further, in
The dimension of the terahertz element 20 in the z-direction may be designed in accordance with, for example, the frequency of an oscillated electromagnetic wave. More specifically, the dimension of the terahertz element 20 in the z-direction is an integer multiple of ½ times a wavelength λ of the electromagnetic wave (i.e., λ/2). The electromagnetic wave performs free end reflection in the interface between the element substrate 31 and air. When the dimension of the terahertz element 20 in the z-direction is set as described above, standing waves having an aligned phase are excited in the terahertz element 20. The dimension of the terahertz element 20 in the z-direction is decreased as the frequency of the electromagnetic wave becomes higher. The dimension in the z-direction is increased as the frequency of the electromagnetic wave becomes lower.
The structure of the terahertz element 20 is not limited to that described above. For example, a back reflector metal layer may be disposed on the element back surface 22, which is located at the opposite side of the element substrate 31 from the element main surface 21 on which the active element 32 is disposed. In this case, the back reflector metal layer reflects an electromagnetic wave (electromagnetic wave) emitted from the active element 32.
When the back reflector metal layer is arranged, the electromagnetic wave performs a fixed end reflection in the interface between the element substrate 31 and the back reflector metal layer. This results in a π phase shift. In this case, the dimension of the terahertz element 20 in the z-direction may be designed to be (λ/4)+(integer multiple of λ/2) using the wavelength λ of the electromagnetic wave.
In the present embodiment, electromagnetic waves generated from the oscillation point P1 have directivity. As shown in
The first conductive layer 33 and the second conductive layer 34 are formed on the element main surface 21. The first conductive layer 33 and the second conductive layer 34 are insulated from each other. Each of the first conductive layer 33 and the second conductive layer 34 has a stacked structure of metals. The stacked structure of each of the first conductive layer 33 and the second conductive layer 34 is obtained by stacking, for example, gold (Au), palladium (Pd), and titanium (Ti). In another example, the stacked structure of each of the first conductive layer 33 and the second conductive layer 34 is obtained by stacking Au and Ti. The first conductive layer 33 and the second conductive layer 34 are formed through vacuum vapor deposition or sputtering.
As shown in
The semiconductor layer 41a extends further than other layers such as the GaInAs layer 42a toward the second conductive layer 34 in the x-direction. The second conductive layer 34 includes a second connection region 34a stacked on part of the semiconductor layer 41a where the GaInAs layer 42a and other layers are not stacked. Thus, the active element 32 is electrically connected to the first conductive layer 33 and the second conductive layer 34. The second connection region 34a is spaced from the GaInAs layer 42a and other layers in the x-direction.
Although not shown in
As shown in
In the present embodiment, the terahertz element 20 includes a metal insulator metal (MIM) reflector 35. The MIM reflector 35 is formed by holding an insulator between part of the first conductive layer 33 and part of the second conductive layer 34 in the z-direction. The MIM reflector 35 is configured to short the part of the first conductive layer 33 and the part of the second conductive layer 34 at a high frequency. The MIM reflector 35 reflects a high-frequency electromagnetic wave. However, the MIM reflector 35 is not necessary and may be omitted.
As shown in
As shown in
The antenna base 50 is disposed on the mount plate 11 at the mount main surface 12, which is opposite the mount back surface 13. The antenna base 50 is located opposing the mount plate 11. Specifically, the antenna base 50 is opposed to the mount plate 11 via the lead frame 60 in the z-direction. The z-direction may be referred to as the opposing direction of the antenna base 50 and the mount plate 11.
The antenna base 50 includes a base main surface 50a opposed to the mount main surface 12, a base back surface 50b opposite the base main surface 50a, and base side surfaces 51.
The base main surface 50a and the base back surface 50b intersect the z-direction. In the present embodiment, the element main surface 21 and the element back surface 22 are orthogonal to the z-direction. The base main surface 50a and the base back surface 50b are, for example, rectangular (e.g., square). The base back surface 50b defines the bottom surface of the terahertz device 10.
In the present embodiment, the base side surfaces 51 are surfaces of the terahertz device 10 (the antenna base 50) facing sideward. The base side surfaces 51 may be referred to as the end surfaces of the antenna base 50 facing in directions orthogonal to the opposing direction of the base main surface 50a and the base back surface 50b. The base side surfaces 51 joins the base main surface 50a and the base back surface 50b.
The present embodiment includes four base side surfaces 51. Specifically, the base side surfaces 51 include a first base side surface 51a and a second base side surface 51b, which are opposite end surfaces of the antenna base 50 in the x-direction, and a third base side surface 51c and a fourth base side surface 51d, which are opposite end surfaces of the antenna base 50 in the y-direction. The first base side surface 51a and the second base side surface 51b intersect the x-direction. In the present embodiment, the first base side surface 51a and the second base side surface 51b are orthogonal to the x-direction. The third base side surface 51c and the fourth base side surface 51d intersect the y-direction. In the present embodiment, the third base side surface 51c and the fourth base side surface 51d are orthogonal to the y-direction. The first base side surface 51a and the second base side surface 51b are orthogonal to the third base side surface 51c and the fourth base side surface 51d.
The antenna base 50 includes a recess 52 recessed with respect to the base main surface 50a in a direction away from the mount main surface 12. The recess 52 is recessed from the base main surface 50a in a direction away from the mount main surface 12, that is, downward. In the present embodiment, the recess 52 is semispherical as a whole. The recess 52 is filled with air.
The recess 52 is open upward. The opening of the recess 52 is circular as viewed in the z-direction. The opening of the recess 52 is closed by the mount plate 11. In the present embodiment, the terahertz element 20 is accommodated in the recess 52.
The recess 52 includes an antenna surface 53. The antenna surface 53 is, for example, a curved surface projecting downward. The antenna surface 53 is formed in conformance with the shape of an antenna. For example, the antenna surface 53 is curved to be parabolic-antenna-shaped. The antenna surface 53 is circular as viewed from above.
As shown in
The reflection film 54 is configured to reflect at least part of the electromagnetic waves received from the terahertz element 20 in one direction. In the present embodiment, the reflection film 54 reflects the electromagnetic waves received from the terahertz element 20 in the z-direction (specifically, upward). In other words, when electromagnetic waves are radiated in the range of the opening angle θ, the reflection film 54 is configured to guide the electromagnetic waves in one direction.
Specifically, the reflection film 54 is antenna-shaped. In the present embodiment, the antenna surface 53 is curved in conformance with the shape of an antenna. Accordingly, the reflection film 54 that is formed on the antenna surface 53 is shaped in conformance with the antenna. In the present embodiment, the reflection film 54 is parabolic-antenna-shaped. In other words, the reflection film 54 is a parabolic reflector. The reflection film 54 is circular as viewed in the z-direction.
The reflection film 54 and the mount plate 11 are opposed to each other in the z-direction. In other words, the mount plate 11 is located opposing the reflection film 54. In the present embodiment, the mount plate 11 is located above the reflection film 54. Thus, the electromagnetic waves reflected by the reflection film 54 are emitted upward transmitting through the mount plate 11.
The reflection film 54 is not disposed at the side of the element back surface 22 but at the side of the element main surface 21, where the oscillation point P1 exists, and is opposed to the terahertz element 20 (in the present embodiment, the element main surface 21). The reflection film 54 is disposed, for example, so that the focal point of the reflection film 54 is the oscillation point P1. In the present embodiment, the reflection film 54 has a center point P2 that coincides with the oscillation point P1 as viewed in the z-direction. In the present embodiment, the center point P2 is the center of the circular reflection film 54 as viewed in the z-direction.
It is preferred that the antenna surface 53 is curved so that the condition Z=(1/(4z1))X2 is satisfied when the perpendicular distance from the oscillation point P1 to the reflection film 54 is referred to as a specified distance z1, the coordinate of the reflection film 54 in the z-direction is denoted by Z, and the position of the reflection film 54 in the x-direction is denoted by X. However, the curving aspect of the antenna surface 53 is not limited to this and may be any curving aspect.
The z-direction may be referred to as the opposing direction of the reflection film 54 and the terahertz element 20 (the element main surface 21) or the output direction of the electromagnetic waves of the terahertz device 10. Further, the z-direction may be referred to as the opposing direction of the center point P2 of the reflection film 54 and the oscillation point P1. The specified distance z1 may be refer to as the distance between the oscillation point P1 and the center point P2.
The reflection film 54 is disposed at a position corresponding to the frequency of electromagnetic waves generated from the terahertz element 20 so that the electromagnetic waves resonate. Specifically, the specified distance z1 may be, for example, (λ′A/4)+((λ′A/2)×N) (N is an integer greater than or equal to 0) so that the resonance condition of the electromagnetic waves generated by the terahertz element 20 is satisfied. λ′A is (1/nA)(c/fc) (c: speed of light, fc: center frequency of oscillation) where nA represents the refractive index of an object intervening between the oscillation point P1 and the reflection film 54. For example, when air is present between the oscillation point P1 and the reflection film 54, nA is 1. fc may be a target frequency of the terahertz element 20 or the frequency having the maximum output among the electromagnetic waves generated from the terahertz element 20.
As viewed in the z-direction, the distance between opposite ends of the reflection film 54 in the x-direction or the y-direction is referred to as the opening width of the reflection film 54. In the present embodiment, since the reflection film 54 is formed on the entire antenna surface 53, the opening width of the reflection film 54 is equal to the opening width of the recess 52. The opening width of the recess 52 may be referred to as the diameter of the opening of the circular recess 52.
The reflection film 54 is formed, for example, over an angle that is greater than or equal to the opening angle θ of the oscillation point P1. More specifically, when the oscillation point P1 is the vertex, the antenna surface 53 is formed over an angle that is greater than or equal to the opening angle θ. As described above, in the present embodiment, the reflection film 54 is formed on the entire antenna surface 53. In the present embodiment, the angle over which the reflection film 54 is formed with the oscillation point P1 is greater than 180°. Therefore, in the present embodiment, the reflection film 54 reflects all of the electromagnetic waves emitted from the oscillation point P1 within the range of the opening angle θ.
In the present embodiment, the dimension of the antenna base 50 in the z-direction is greater than the dimension of the mount plate 11 in the z-direction, that is, the thickness of the mount plate 11. The dimension of the antenna base 50 in the x-direction is set to be equal to the dimension of the mount plate 11 in the x-direction. The dimension of the antenna base 50 in the y-direction is set to be equal to the dimension of the mount plate 11 in the y-direction. However, the antenna base 50 and the mount plate 11 may have any dimensional relationship.
As shown in
The lead frame 60 has the shape of, for example, a rectangular plate, the thickness-wise direction of which conforms to the z-direction. In the present embodiment, the lead frame 60 has a greater thickness than the mount plate 11. In other words, in the present embodiment, the mount plate 11 has a smaller thickness than the lead frame 60.
The lead frame 60 includes a first lead part 61 and a second lead part 71 that are insulated from each other. The first lead part 61 and the second lead part 71 are, for example, separated and opposed to each other in the x-direction and respectively include a first lead opposing surface 62 and a second lead opposing surface 72 that are separated and opposed to each other in the x-direction. In the present embodiment, the lead opposing surfaces 62 and 72 are orthogonal to the x-direction. In the present embodiment, the first lead part 61 and the second lead part 71 correspond to “first conductor” and “second conductor”.
As viewed in the z-direction, the first lead part 61 and the second lead part 71 extend sideward, in the present embodiment, in the x-direction, beyond the mount plate 11. The dimension of the two lead parts 61 and 71 in the y-direction is set to be slightly less than the dimension of the mount plate 11 in the y-direction, for example, equal to the dimension of the antenna base 50 in the y-direction. In the present embodiment, the lead frame 60 is less likely to extend beyond the mount plate 11 in the y-direction.
The lead frame 60 is formed so as to avoid overlapping with the reflection film 54 (the recess 52) in the z-direction. More specifically, the lead frame 60 includes an opening 80 that overlaps at least a portion of the reflection film 54 as viewed in the z-direction.
The opening 80 includes, for example, a gap 81 extending between the two lead parts 61 and 71, a first part opening 63 formed in the first lead part 61, and a second part opening 73 formed in the second lead part 71.
The gap 81 is slit-shaped and extends in the y-direction and includes a space between the lead opposing surfaces 62 and 72 and a space between the part openings 63 and 73.
The first part opening 63 is formed in a portion of the first lead part 61 that overlaps the reflection film 54 as viewed in the z-direction. The second part opening 73 is formed in a portion of the second lead part 71 that overlaps the reflection film 54 in the z-direction.
The first part opening 63 and the second part opening 73 extend through in the z-direction to be continuous with the recess 52. The first part opening 63 and the second part opening 73 are separated by the gap 81 and opposed to each other in the x-direction. The two part openings 63 and 73 are open in the x-direction. The first part opening 63 is open toward the second lead part 71. The second part opening 73 is open toward the first lead part 61. Thus, the two part openings 63 and 73 are continuous with the gap 81.
Each of the first part opening 63 and the second part opening 73 is semicircular as viewed in the z-direction. The first part opening 63 and the second part opening 73 form a single circular hole. In other words, the terahertz element 20 is located in the center of the circle formed by the part openings 63 and 73. The diameter of the circle formed by the part openings 63 and 73 may be, for example, greater than or equal to the opening width of the reflection film 54.
The first lead part 61 includes a first inner surface 64, which is the wall surface of the first part opening 63. The first inner surface 64 is recessed from the first lead opposing surface 62 in a direction away from the second lead opposing surface 72.
The second lead part 71 includes a second inner surface 74, which is the wall surface of the second part opening 73. The second inner surface 74 is recessed from the second lead opposing surface 72 in a direction away from the first lead opposing surface 62.
The first inner surface 64 and the second inner surface 74 are curved to project away from each other. The two inner surfaces 64 and 74, for example, extend along the outer side of an end 54a of the reflection film 54, that is, the opening edge of the recess 52, to avoid overlapping of the two lead parts 61 and 71 with the reflection film 54.
As shown in
In the present embodiment, the projection dimension of the first connector 65 from the first inner surface 64 is less than the length of the first wire W1 as viewed in the z-direction. The projection dimension is, for example, less than ¼ of the opening width of the reflection film 54.
In the same manner, in the present embodiment, the second lead part 71 includes a second connector 75 configured to be electrically connected to the terahertz element 20. In the present embodiment, the second connector 75 is a portion of the second lead part 71 that projects toward the terahertz element 20 from where the second lead part 71 does not overlap the recess 52 (i.e., the reflection film 54) as viewed in the z-direction. More specifically, the second connector 75 is a projection piece projecting from the second inner surface 74 toward the terahertz element 20. The second connector 75 overlaps the recess 52 (i.e., the reflection film 54) as viewed in the z-direction. The second connector 75 and the second pad 34b are connected by a second wire W2. Thus, the second lead part 71 is electrically connected to the terahertz element 20.
In the present embodiment, the projection dimension of the second connector 75 from the second inner surface 74 is less than the length of the second wire W2 as viewed in the z-direction. The projection dimension is, for example, less than ¼ of the opening width of the reflection film 54.
In the present embodiment, the first connector 65 and the second connector 75 are opposed to each other at opposite sides of the terahertz element 20. For example, the two connectors 65 and 75 are symmetrically arranged in the x-direction. In other words, the two connectors 65 and 75 are shifted 180° from each other as viewed in the z-direction.
As shown in
The adhesive layer 90 is disposed between the reflection film 54 and the lead frame 60. The adhesive layer 90 hinders electrical connection of the reflection film 54 with the lead frame 60. As described above, the reflection film 54 is not electrically connected to the antenna base 50 and the lead frame 60 and is electrically isolated.
In particular, in the present embodiment, the inner peripheral end of the adhesive layer 90 extends inward (i.e., toward the terahertz element 20) beyond the reflection film 54. Thus, the reflection film 54 is less likely to avoid/circumvent/evade the adhesive layer 90 and contact the lead frame 60. The inner peripheral end of the adhesive layer 90 may be referred to as the end of the adhesive layer 90 located close to the terahertz element 20. The inner peripheral end of the adhesive layer 90 is, for example, circular in conformance with the recess 52 as viewed in the z-direction. However, the inner peripheral end of the adhesive layer 90 may have any shape and may be rectangular.
The terahertz element 20 and the reflection film 54 are accommodated in an accommodation space A1 defined by the mount plate 11 and the recess 52. In the present embodiment, the accommodation space A1 is defined by the mount main surface 12 and the antenna surface 53. In the present embodiment, the accommodation space A1 is hermetically sealed by the adhesive layer 90 and other components. Air exists in the accommodation space A1.
As shown in
More specifically, in the present embodiment, part of the first lead part 61 and part of the second lead part 71 project sideward relative to the antenna base 50. The first electrode 91 is formed by a portion of the first lead part 61 projecting sideward relative to the antenna base 50. The first electrode 91 projects from the first base side surface 51a.
In the same manner, the second electrode 92 is formed by a portion of the second lead part 71 projecting sideward relative to the antenna base 50. The second electrode 92 projects from the second base side surface 51b.
In the present embodiment, the first electrode 91 and the second electrode 92 are separate from each other in the x-direction. The first electrode 91 and the second electrode 92 extend in opposite directions from the antenna base 50. In the present embodiment, the first electrode 91 and the second electrode 92 extend in the x-direction. The first electrode 91 and the second electrode 92 are orthogonal to the z-direction. In other words, the first electrode 91 and the second electrode 92 are flat plates extending horizontally.
As described above, the dimension of the antenna base 50 in the z-direction is greater than the thickness of the mount plate 11. In addition, the dimension of the antenna base 50 in the z-direction is greater than the sum of the thickness of the mount plate 11 and the thickness of the lead frame 60. The lead frame 60, which is disposed between the antenna base 50 and the mount plate 11, is disposed at an upper part of the terahertz device 10. Thus, the first electrode 91 and the second electrode 92, which are formed of part of the lead frame 60, are disposed at an upper side of the terahertz device 10.
More specifically, when the z-direction is the thickness-wise direction of the terahertz device 10, the first electrode 91 and the second electrode 92 are located upward from the center of the terahertz device 10 in the thickness-wise direction (in other words, toward the mount plate 11 or at the side where electromagnetic waves are output). In other words, the electrodes 91 and 92 project sideward from portions of the base side surfaces 51a and 51b located toward the base main surface 50a from the center. The projection direction is not limited to the direction orthogonal to the base side surfaces 51a and 51b and may be inclined from the direction orthogonal to the base side surfaces 51a and 51b.
A method for manufacturing the terahertz device 10 of the present embodiment will now be described. To simplify the description, a method for manufacturing one terahertz device 10 will first be described.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The step of forming the metal film is not limited to the above-described steps. For example, the method for manufacturing the terahertz device 10 may include a step of masking the base main surface 50a and a step of forming a metal film on the antenna surface 53 by vapor deposition using electron beams. This case eliminates the need for the step of removing the metal film from the base main surface 50a.
As shown in
To simplify the description, the method for manufacturing one terahertz device 10 has been described above. However, practically, a plurality of terahertz devices 10 may be simultaneously manufactured.
For example, as shown in
Meanwhile, as shown in
The metal plate 104 may include first positioning portions 104b, and the base body 105 may include second positioning portions 105b. When adhering the metal plate 104 to the base body 105, the metal plate 104 and the base body 105 may be positioned so that the first positioning portions 104b overlap the second positioning portions 105b.
Operation of the present embodiment will now be described.
When electromagnetic waves are generated from the oscillation point P1 of the terahertz element 20, the reflection film 54 reflects and emits the electromagnetic waves in one direction.
The two electrodes 91 and 92 of the terahertz device 10 project sideward relative to the antenna base 50 as viewed in the z-direction. As shown in
The present embodiment, which has been described above, has the following advantages.
(3-1) The terahertz device 10 includes the mount plate 11 used as the base member, the terahertz element 20 mounted on the mount plate 11, the antenna base 50 located opposing the mount plate 11 and including the antenna surface 53, and the reflection film 54 formed on the antenna surface 53. The reflection film 54 reflects at least part of electromagnetic waves generated by the terahertz element 20 in one direction (for example, upward). With this structure, electromagnetic waves generated by the terahertz element are emitted in one direction. This increases the output of the electromagnetic waves emitted from the terahertz device 10. Thus, the gain of the terahertz device 10 is improved.
(3-2) The terahertz device 10 includes the first electrode 91 and the second electrode 92 as electrodes used for electrical connection with an external device. The electrodes 91 and 92 project sideward relative to the antenna base 50 as viewed in the z-direction, that is, the opposing direction of the mount plate 11 and the antenna base 50. This structure allows for the mounting on the circuit substrate 110 when the antenna base 50 is inserted into the hole 116 of the circuit substrate 110. Thus, when the terahertz device 10 is mounted on the circuit substrate 110, the projection of the terahertz device 10 from the circuit substrate 110 in the z-direction is limited, thereby achieving a low profile structure.
More specifically, when the terahertz device 10 includes the antenna base 50 including the reflection film 54, the terahertz device 10 is increased in size in the z-direction corresponding to the antenna base 50, while improving the gain. This may be a disadvantage such that the terahertz device 10 interferes with the mounting on the circuit substrate 110.
In this regard, when the electrodes 91 and 92 project sideward, the terahertz device 10 may be mounted on the circuit substrate 110 with the antenna base 50 inserted into the hole 116 as described above. More specifically, the antenna base 50 may be inserted into the hole 116 to a position where the electrodes 91 and 92 contact the circuit substrate 110. This reduces the amount of projection of the terahertz device 10 from the circuit substrate 110, thereby reducing the disadvantage of including the antenna base 50.
(3-3) The electrodes 91 and 92 are located toward the mount plate 11 from the center of the terahertz device 10 in the z-direction. This structure allows for an increase in the size of the antenna base 50, which is inserted into the hole 116, thereby achieving a further low profile structure.
(3-4) The electrodes 91 and 92 extend in a direction (the x-direction) orthogonal to the thickness-wise direction of the terahertz device 10 (the z-direction). In this structure, the length of the electrodes 91 and 92 are decreased as compared to in a structure in which the electrodes 91 and 92 are bent. Accordingly, inductance of the electrodes 91 and 92 is decreased. In addition, adverse effects produced by the bending of the electrodes 91 and 92 on high frequency response are limited.
(3-5) The electrodes 91 and 92 are separated and face each other. In this structure, contact of the electrodes 91 and 92 is avoided. The two electrodes 91 and 92 support the terahertz device 10 on the circuit substrate 110.
(3-6) The terahertz element 20 includes the element main surface 21, which includes the oscillation point P1 configured to generate electromagnetic waves, and the element back surface 22, which is opposite the element main surface 21. The reflection film 54 is disposed at the side of the element main surface 21, not at the side of the element back surface 22. In this structure, electromagnetic waves readily reach the reflection film 54. Thus, the reflection film 54 is appropriately used to reflect electromagnetic waves generated from the oscillation point P1.
(3-7) The terahertz element 20 radiates electromagnetic waves from the oscillation point P1 in the range of the opening angle θ. The reflection film 54 is formed over an angle that is greater than or equal to the opening angle θ of the oscillation point P1. With this structure, the electromagnetic waves radiated from the oscillation point P1 in the range of the opening angle θ are reflected by the reflection film 54. This reduces electromagnetic waves that are not reflected by the reflection film 54, thereby improving the gain.
(3-8) The reflection film 54 is parabolic-antenna-shaped. With this structure, electromagnetic waves are appropriately reflected in one direction.
(3-9) The reflection film 54 is disposed so that the focal point of the reflection film 54 is located at the oscillation point P1. With this structure, electromagnetic waves generated from the oscillation point P1 are guided in one direction by the reflection film 54. This reduces electromagnetic waves that are not reflected in one direction by the reflection film 54, thereby improving the gain.
(3-10) The reflection film 54 is disposed at a position corresponding to the frequency of electromagnetic waves generated from the terahertz element 20 so that the electromagnetic waves resonate. In an example, the specified distance z1, which is the perpendicular distance from the oscillation point P1 toward the reflection film 54, is set to satisfy the resonance condition of the electromagnetic waves, for example, (λ′A/4)+((λ′A/2)×N). This structure improves the gain of the terahertz device 10.
(3-11) The reflection film 54 is electrically isolated. This structure obviates disadvantages such as absorption of electromagnetic waves by the reflection film 54.
(3-12) The antenna base 50 is formed of an insulative material. This structure limits electrical connection of the reflection film 54 with another member via the antenna base 50.
(3-13) The mount plate 11, which is used as the base member, includes the mount main surface 12 on which the terahertz element 20 is mounted. The antenna base 50 includes the base main surface 50a, which is opposed to the mount main surface 12, and the recess 52, which is recessed from the base main surface 50a and includes the antenna surface 53. The terahertz element 20 and the reflection film 54 are disposed in the accommodation space A1 defined by the mount main surface 12 and the antenna surface 53. This structure reduces external effects on the terahertz element 20 and the reflection film 54.
(3-14) The reflection film 54 is formed on the antenna surface 53 but is not formed on the base main surface 50a. This structure obviates reflection of electromagnetic waves by the reflection film 54 formed on the base main surface 50a. Thus, disadvantages caused by unwanted reflection waves, for example, occurrence of standing waves, are limited.
(3-15) The lead frame 60, which is used as a conductive member, is disposed on the mount main surface 12. The antenna base 50 is adhered to the lead frame 60 by the adhesive layer 90. The adhesive layer 90 is formed from an insulative material and is disposed between the reflection film 54 and the lead frame 60. In this structure, the adhesive layer 90 restricts contact of the reflection film 54 with the lead frame 60. Thus, electrical connection of the reflection film 54 with the lead frame 60 is hindered.
(3-16) The lead frame 60 includes the opening 80 overlapping at least a portion of the reflection film 54 as viewed in the z-direction. In this structure, electromagnetic waves reflected by the reflection film 54 are output through the opening 80. This limits interruption of electromagnetic waves by the lead frame 60.
(3-17) The lead frame 60 includes the first lead part 61 and the second lead part 71, which are separated and opposed to each other. The opening 80 includes the gap 81 between the two lead parts 61 and 71. This structure limits interruption (blocking) of electromagnetic waves by the lead frame 60 while ensuring the insulation properties of the two lead parts 61 and 71.
(3-18) The opening 80 includes the first part opening 63 formed in a portion of the first lead part 61 that overlaps the reflection film 54 as viewed in the z-direction and is continuous with the gap 81. The opening 80 includes the second part opening 73 formed in a portion of the second lead part 71 that overlaps the reflection film 54 as viewed in the z-direction and is continuous with the gap 81 In this structure, the interruption of electromagnetic waves by the lead frame 60 is further limited.
(3-19) The first lead part 61 includes the first connector 65 configured to be electrically connected to the terahertz element 20. The first connector 65 projects from the first inner surface 64, which is the wall surface of the first part opening 63, toward the terahertz element 20 and overlaps the reflection film 54 as viewed in the z-direction. The second lead part 71 includes the second connector 75 configured to be electrically connected to the terahertz element 20. The second connector 75 projects from the second inner surface 74, which is the wall surface of the second part opening 73, toward the terahertz element 20 and overlaps the reflection film 54 as viewed in the z-direction. In this structure, while limiting interruption of electromagnetic waves by the lead frame 60, the two lead parts 61 and 71 are electrically connected to the terahertz element 20.
(3-20) The terahertz device 10 includes the first wire W1 and the second wire W2. The first wire W1 connects the first connector 65 to the first pad 33b formed on the terahertz element 20, The second wire W2 connects the second connector 75 to the second pad 34b formed on the terahertz element 20. As viewed in the z-direction, the projection dimension of the first connector 65 from the first inner surface 64 is less than the length of the first wire W1. With this structure, interruption of electromagnetic waves by the first connector 65 is limited as the projection dimension of the first connector 65 is decreased. In the same manner, as viewed in the z-direction, the projection dimension of the second connector 75 from the second inner surface 74 may be less than the length of the second wire W2.
(3-21) The two connectors 65 and 75 are opposed to each other at opposite sides of the terahertz element 20. In this structure, the two wires W1 and W2 are less likely to interfere with each other. Thus, contact of the two wires W1 and W2 is avoided.
As shown in
For example, the reflection reduction film 120 may be formed on at least a portion of the part of the mount back surface 13 overlapping the lead frame 60 as viewed in the z-direction. In an example, the reflection reduction film 120 is formed on the entirety of the part of the mount back surface 13 overlapping the lead frame 60 as viewed in the z-direction. This limits occurrence of standing waves caused by reflection of electromagnetic waves at the lead frame 60. Any specific structure of the reflection reduction film 120 may be used as long as reflection of electromagnetic waves in at least the terahertz band is reduced.
As shown in
The specific element is not limited to the protection diodes 131 and 132 and may be a control integrated circuit (IC) (e.g., application-specific integrated circuit (ASIC)). The control IC may be configured to, for example, detect current flowing to the terahertz element 20, serve as an amplifier, supply power to the terahertz element 20, or process signals. The specific element may be connected to the terahertz element 20 in any mode and may be, for example, connected in series.
As shown in
More specifically, the first protection diode 131 is disposed on the first lead part 61 and electrically connected to the first lead part 61. The first protection diode 131 is disposed, for example, near the first part opening 63 on the first lead part 61. In the present embodiment, the first protection diode 131 is disposed in a region surrounded by the first inner surface 64, the first lead opposing surface 62, and the end surface of the first lead part 61 in the y-direction.
The first protection diode 131 and the second lead part 71 are electrically connected by a first diode wire W3. Thus, the first protection diode 131 is electrically connected to the two electrodes 91 and 92.
The first diode wire W3 is bonded to the second lead part 71 at a position close to the first protection diode 131, that is, a region defined by the second inner surface 74, the second lead opposing surface 72, and the end surface of the second lead part 71 in the y-direction. This reduces the length of the first diode wire W3.
In the same manner, the second protection diode 132 is disposed on the second lead part 71 and electrically connected to the second lead part 71. The second protection diode 132 is disposed, for example, near the second part opening 73 on the second lead part 71. In the present embodiment, the second protection diode 132 is disposed in a region surrounded by the second inner surface 74, the second lead opposing surface 72, and the end surface of the second lead part 71 in the y-direction.
The second protection diode 132 and the first lead part 61 are electrically connected by a second diode wire W4. Thus, the second protection diode 132 is electrically connected to the two electrodes 91 and 92.
The second diode wire W4 is bonded to the first lead part 61 at a position closet to the second protection diode 132, that is, a region surrounded by the first inner surface 64, the first lead opposing surface 62, and the end surface of the first lead part 61 in the y-direction. This reduces the length of the second diode wire W4.
As shown in
The present embodiment, which has been described above, has the following operational advantages.
(4-1) The terahertz device 10 includes the protection diodes 131 and 132 connected to the terahertz element 20 in parallel. With this structure, for example, when static electricity causes to a high voltage to be applied to opposite ends of the terahertz element 20, current flows through the protection diodes 131 and 132. Thus, an excessive current flowing to the terahertz element 20 is limited, so that the terahertz element 20 is protected.
(4-2) The two protection diodes 131 and 132 are connected to the terahertz element 20 in opposite directions. With this structure, the terahertz element 20 is protected from a high voltage produced in each direction.
(4-3) The antenna base 50 includes the receptacles 141 and 142 recessed from the base main surface 50a. The protection diodes 131 and 132 are accommodated in the receptacles 141 and 142. This structure limits increases in the size of the terahertz device 10 caused by arrangement of the protection diodes 131 and 132.
As shown in
The support substrate 150 is plate-shaped and, in the present embodiment, is rectangular-plate-shaped. The support substrate 150 includes a first extension 151 and a second extension 152 that are longer than the antenna base 50 in a predetermined direction as viewed in the z-direction and extend sideward (e.g., the x-direction) beyond the antenna base 50 as viewed in the z-direction. The two extensions 151 and 152 are separated and opposed to each other in the x-direction.
The support substrate 150 includes plate surfaces defining a mount main surface 153 and a mount back surface 154. The mount main surface 153 and the mount back surface 154 intersect the z-direction and, in an example, are orthogonal to the z-direction. The terahertz element 20 is mounted on the mount main surface 153. The mount main surface 153 and the reflection film 54 are opposed to each other.
The terahertz device 10 includes a wiring pattern 160 and an adhesive layer 170. The wiring pattern 160 is formed on the mount main surface 153 and used as a conductive member and an electrode. The adhesive layer 170 adheres the wiring pattern 160 to the antenna base 50.
The wiring pattern 160 is a conductive layer formed on the mount main surface 153 and is formed of, for example, Cu. The thickness of the support substrate 150, that is, the dimension of the support substrate 150 in the z-direction, is greater than the thickness of the wiring pattern 160. The wiring pattern 160 includes a first pattern 161 and a second pattern 162. The specific layout of the first pattern 161 and the second pattern 162 is basically the same as that of the first lead part 61 and the second lead part 71. In the present embodiment, the first pattern 161 and the second pattern 162 correspond to “first conductor” and “second conductor”.
The adhesive layer 170 is formed of an insulative material. The adhesive layer 170 is disposed between the base main surface 50a and the wiring pattern 160 and between the reflection film 54 and the wiring pattern 160.
In the present embodiment, the wiring pattern 160 includes electrodes 171 and 172. For example, the electrodes 171 and 172 are formed of the wiring pattern 160 that is formed on the extensions 151 and 152 of the support substrate 150. The first electrode 171 is formed of a portion of the first pattern 161 extending from the antenna base 50 (the first base side surface 51a) in the x-direction. The second electrode 172 is formed of a portion of the second pattern 162 extending from the antenna base 50 (the second base side surface 51b) in the x-direction. Thus, in the same manner as the third embodiment, the electrodes 171 and 172 project sideward relative to the antenna base 50. In other words, the support substrate 150 supports the electrodes 171 and 172.
An example of a method for manufacturing the method for manufacturing the terahertz device 10 of the present embodiment will now be described.
As shown in
The present embodiment, which has been described above, has the following operational advantages.
(5-1) The terahertz device 10 includes the support substrate 150, which is used as the base member, and the wiring pattern 160, which is used the conductive members. In this structure, instead of the lead frame 60, the wiring pattern 160 is used as the conductive members. Thus, micromachining may be performed and readily form a signal path corresponding to high-speed signal transmission.
(5-2) The support substrate 150 includes the first extension 151 and the second extension 152 extending sideward relative to the antenna base 50 as viewed in the z-direction. The two electrodes 171 and 172 are formed of the wiring pattern 160 that is formed on the two extensions 151 and 152. In this structure, the electrodes 171 and 172 project sideward relative to the antenna base 50, and the advantage (3-2) is obtained.
As shown in
In the present embodiment, as shown in
The first connection pattern 191 is obtained by forming a wiring pattern on the mount main surface 153. The first connection pattern 191 is formed on a portion of the mount main surface 153 faced toward the recess 52. The first connection pattern 191 is disposed in the accommodation space A1. The first connection pattern 191 is separate from the end 54a of the reflection film 54, so that the first connection pattern 191 does not contact the reflection film 54. The first wire W1 is bonded to the first connection pattern 191.
The first electrode 192 is obtained by forming a wiring pattern on the mount main surface 153. The first electrode 192 is disposed outside the accommodation space A1. The first electrode 192 is formed on a portion of the mount main surface 153 corresponding to the first extension 151 and projects sideward relative to the antenna base 50.
The first back pattern 193 is obtained by forming a wiring pattern on the mount back surface 154. The first back pattern 193 extends over the first connection pattern 191 and the first electrode 192 and overlaps the first connection pattern 191 and the first electrode 192 as viewed in the z-direction.
The first through vias 194 and 195 extend through the support substrate 150 in the thickness-wise direction. One of the first through vias denoted by 194 connects the first connection pattern 191 to the first back pattern 193. The other one of the first through vias denoted by 195 connects the first electrode 192 to the first back pattern 193. Thus, the first electrode 192 is electrically connected to the terahertz element 20.
The terahertz device 10 includes, for example, a second connection pattern 201 and a second electrode 202 that are formed on the mount main surface 153, a second back pattern 203 formed on the mount back surface 154, and second through vias 204 and 205 that electrically connect the second connection pattern 201 and the second electrode 202 to the second back pattern 203. The second connection pattern 201, the second electrode 202, the second back pattern 203, and the second through vias 204 and 205 are the same as the first connection pattern 191, the first electrode 192, the first back pattern 193, and the first through vias 194 and 195 except being symmetrical with respect to the x-direction and thus will not be described in detail. In the present embodiment, the first connection pattern 191 corresponds to “first connector”. The second connection pattern 201 corresponds to “second connector”.
In the present embodiment, the antenna base 50 is attached to the mount main surface 153 by the adhesive layer 170. In this case, the connection patterns 191 and 201 are disposed toward the terahertz element 20 from the end 54a of the reflection film 54. In contrast, the electrodes 192 and 202 are disposed sideward relative to the end 54a of the reflection film 54. That is, as viewed in the z-direction, the end 54a of the reflection film 54 (and the base main surface 50a) is disposed between the connection patterns 191 and 201 and the electrodes 192 and 202 and separated from the connection patterns 191 and 201 and the electrodes 192 and 202. This ensures the insulation of the reflection film 54 from the electrodes 192 and 202 and the insulation of the reflection film 54 from the connection patterns 191 and 201.
The present embodiment, which has been described above, has the following operational advantages.
(6-1) The terahertz device 10 includes the support substrate 150 as a base member including the mount main surface 153 and the mount back surface 154, the connection patterns 191 and 201 and the electrodes 192 and 202 formed on the mount main surface 153 of the support substrate 150, the back patterns 193 and 203 formed on the mount back surface 154, and the through vias 194, 195, 204, and 205. The connection patterns 191 and 201 are connected to the terahertz element 20 by the wires W1 and W2. The through vias 194, 195, 204, and 205 extend through the circuit substrate 110 to connect the connection patterns 191 and 201 and the electrodes 192 and 202 to the back patterns 193 and 203. The end 54a of the reflection film 54 is disposed between the connection patterns 191 and 201 and the electrodes 192 and 202 and separated from the connection patterns 191 and 201 and the electrodes 192 and 202. In this structure, while avoiding contact of the connection patterns 191 and 201 and the electrodes 192 and 202 with the reflection film 54, the electrodes 192 and 202 are electrically connected to the terahertz element 20.
As shown in
However, the specific elements 216 and 217 are not limited to those described above and may be changed in any manner. For example, each of the specific elements 216 and 217 may be a control IC (e.g., ASIC). The control IC may be configured to, for example, detect current flowing to the terahertz element 20, serve as an amplifier, supply power to the terahertz element 20, or process signals.
For example, when the specific elements 216 and 217 are electrically connected to the terahertz element 20, the specific elements 216 and 217 may be mounted on the mount back surface 154. For example, the specific elements 216 and 217 are not limited to being mounted on the back patterns 193 and 203 as described above and may be mounted on a portion of the mount back surface 154 where the back patterns 193 and 203 are not formed. In this case, the specific elements 216 and 217 may be electrically connected to the back patterns 193 and 203 by conductors.
As shown in
As shown in
In the present embodiment, a reflection film 233 is formed on at least the antenna surface 231. In an example, the reflection film 233 is formed over the antenna surface 231 and the flange surface 232. In the present embodiment, the support substrate 150 and the antenna base 230 are disposed between the terahertz element 20 and the reflection film 233.
In the present embodiment, it is preferred that the support substrate 150 and the antenna base 230 are formed of a material transmissive to electromagnetic waves generated by the terahertz element 20 and may be formed of, for example, a dielectric. The dielectric may be, for example, Si, resin, Teflon, or glass. The support substrate 150 and the antenna base 230 may be formed of the same material or different materials. For example, when the support substrate 150 and the antenna base 230 are formed of the same material, the refractive index is less likely change, so that reflection in the interface between the support substrate 150 and the antenna base 230 is reduced.
The support substrate 150 and the antenna base 230 may be adhered to each other or may be formed integrally.
In the present embodiment, the terahertz device 10 includes a first connection pattern 241 formed on the mount main surface 153, a first electrode 242 formed on the mount back surface 154, and a first through via 243 connecting the first connection pattern 241 to the first electrode 242. The first electrode 242 is disposed at a position projecting sideward (e.g., the x-direction) relative to the antenna base 230 as viewed in the z-direction. The first electrode 242 and the reflection film 233 are separate in the x-direction.
The terahertz device 10 includes a second connection pattern 251 formed on the mount main surface 153, a second electrode 252 formed on the mount back surface 154, and a second through via 253 connecting the second connection pattern 251 to the second electrode 252. The second electrode 252 is disposed at a position projecting sideward (e.g., the x-direction) relative to the antenna base 230 as viewed in the z-direction. The second electrode 252 and the reflection film 233 are separate in the x-direction.
In the present embodiment, the terahertz element 20 is disposed so that the element main surface 21 faces the reflection film 233. More specifically, when the element main surface 21 is faced toward the mount main surface 153, the terahertz element 20 is mounted on the support substrate 150. In this case, conductive bonding members 244 and 245 such as solder may be used to electrically connect the two pads 33b and 34b to the connection patterns 241 and 251. The shape and positional relationship of the antenna surface 231 with respect to the oscillation point P1 is the same as those of the third embodiment.
In the present embodiment, the terahertz device 10 is mounted on the circuit substrate 110 from the mount back surface 154. As a result, at least a portion of the antenna base 230 is inserted into the hole 116. The electrodes 242 and 252 are faced toward the circuit substrate 110 and thus are electrically connected by the conductive bonding member 117.
The present embodiment, which has been described above, has the following operational advantages.
(7-1) The terahertz device 10 includes the antenna base 230, which is convex-lens-shaped and curved to project in a direction away from the terahertz element 20. The antenna surface 231 corresponds to the lens surface of the antenna base 230. With this structure, for example, the advantage (3-1) is obtained.
(7-2) The antenna base 230 is disposed at the side of the mount back surface 154. The terahertz element 20 and the reflection film 233 are opposed to each other at opposite sides of the support substrate 150 and the antenna base 230. This structure eliminates the need for forming a recess accommodating the terahertz element 20 in the antenna base 230, thereby simplifying the structure of the antenna base 230.
In each embodiment, the terahertz device 10 may be modified, for example, as follows. The modified examples described below may be combined with one another as long as there is no technical inconsistency. For the sake of convenience, the following modified examples will be basically described using the third embodiment. However, other embodiments may be used as long as there is no technical inconsistency.
As shown in
In this configuration, contact of the reflection film 54 with the lead frame 60 is restricted by the spacer 260 and the adhesive layer 90. Thus, the contact of the reflection film 54 with the lead frame 60 is further restricted.
As shown in
In addition, as viewed in the z-direction, the length of the first wire W1 may be less than the projection dimension of the first connector 65 from the first inner surface 64. In the same manner, the length of the second wire W2 may be less than the projection dimension of the second connector 75 from the second inner surface 74. In this structure, the length of the wires W1 and W2 is decreased, thereby limiting adverse effects on the responsiveness caused by the wires W1 and W2.
As shown in
The first connector 65 and the second connector 75 may be omitted.
As shown in
In addition, the lead frame 60 may include a first curved portion 273 extending from the first connector 271 along the outer side of the opening edge of the recess 52 and a second curved portion 274 extending from the second connector 272 along the outer side of the opening edge of the recess 52.
In this modified example, as shown in
As shown in
As shown in
The shape of the reflection film may be changed. For example, the reflection film is not limited to a single film and may include a plurality of separate parts. For example, a slit and/or a hole may be formed in the reflection film.
As shown in
As shown in
In this structure, when the protection diodes 131 and 132 are arranged as in the fourth embodiment, at least a portion of the first protection diode 131 may be disposed between the first inner surface 64 and the first lead opposing surface 62. Also, at least a portion of the second protection diode 132 may be disposed between the second inner surface 74 and the second lead opposing surface 72.
As shown in
As shown in
Specifically, the terahertz device 10 includes the reflector 300 in addition to the reflection film 54. More specifically, the mount main surface 12 includes a reflection protrusion 301, and a metal film is formed on the surface of the reflection protrusion 301 to form the reflector 300. In accordance with the curve of the reflection protrusion 301 protruding toward the reflection film 54, the reflector 300 is curved to protrude toward the reflection film 54. The reflector 300 and the reflection film 54 are radially faced to each other. Electromagnetic waves reflected by the reflector 300 are emitted toward the reflection film 54.
In the present modified example, the terahertz element 20 is located opposing the reflector 300. In other words, the mount plate 11, which is used as the base member including the reflector 300, is located opposing the terahertz element 20.
The terahertz device 10 includes, for example, mount poles 302 and 303. The mount poles 302 and 303 are formed of, for example, a conductive material. The mount poles 302 and 303 extend through the antenna base 50 and the reflection film 54 from below and enter the accommodation space A1. The terahertz element 20 is mounted on the mount poles 302 and 303. The terahertz element 20 is electrically connected to the mount poles 302 and 303.
The terahertz element 20 may be bonded to the mount poles 302 and 303 directly or by a conductive bonding member. In addition, to avoid contact of the mount poles 302 and 303 with the reflection film 54, an insulator (e.g., insulation coating) may be disposed on side surfaces of the mount poles 302 and 303. In this modified example, the mount poles 302 and 303 are two. However, the number of mount poles 302 and 303 may be any number.
In this modified example, the terahertz device 10 includes electrodes 304 and 305 electrically connected to the mount poles 302 and 303. The electrodes 304 and 305 are formed on the base back surface 50b, which is a side of the antenna base 50 opposite from the base main surface 50a, and are joined to the mount poles 302 and 303.
In this modified example, when a voltage is applied from the both electrodes 304 and 305, electromagnetic waves are generated by the terahertz element 20. The electromagnetic waves are reflected by the reflector 300 and then further reflected by the reflection film 54 and are emitted upward, which corresponds to one direction. That is, the electromagnetic waves generated by the terahertz element 20 are emitted to the reflection film 54 via the reflector 300 and further reflected by the reflection film 54.
More specifically, the reflector 300 is configured to receive electromagnetic waves generated by the terahertz element 20 and reflect at least part of the electromagnetic waves. The reflection film 54 is configured to receive the electromagnetic waves reflected by the reflector 300 and reflect at least part of the electromagnetic waves in one direction (upward).
In this modified example, the lead frame 60 and the two wires W1 and W2 are not formed on the mount plate 11. The reflector 300 may be disposed, for example, within a projection range of the terahertz element 20 as viewed from above. This limits interruption (blocking) of the electromagnetic waves.
As shown in
The shape of the antenna base 50 may be changed. For example, as shown in
As shown in
As shown in
In the same manner, the second electrode 92 may be crank-shaped and include a second proximal portion 92b extending from the antenna base 50 (the second base side surface 51b) in the x-direction, a second distal portion 92c located sideward and downward relative to the second proximal portion 92b, and a second inclined portion 92a joined to the second proximal portion 92b and the second distal portion 92c.
In this structure, when part of the antenna base 50 is inserted in the hole 116, the two distal portions 91c and 92c may be bonded to the circuit substrate 110 by the conductive bonding member 117 so that the terahertz device 10 is mounted on the circuit substrate 110. This limits downward projection of the terahertz device 10 from the circuit substrate 110 even when the circuit substrate 110 has a smaller thickness than the terahertz device 10. The first proximal portion 91b and the second proximal portion 92b may be omitted.
As shown in
As shown in
The electrodes 91 and 92 may project in the y-direction instead of the x-direction. The electrodes 91 and 92 may project in both the x-direction and the y-direction.
The terahertz element 20 may be disposed so that the element back surface 22 faces the reflection film 54. That is, the reflection film 54 may be disposed at the side of the element back surface 22 of the terahertz element 20, not at the side of the element main surface 21.
The reflection film 54 does not have to be electrically isolated.
The reflection film 54 may be formed on the base main surface 50a. In this case, for example, a reflection reduction film may be located opposing the base main surface 50a.
The gas existing in the accommodation space A1 is not limited to air and may be changed in any manner. Moreover, the accommodation space A1 may be vacuum.
The antenna base 50 and the lead frame 60 may be unitized by a process other than adhesion.
The shape of the opening 80 may be changed in any manner. For example, one of the part openings 63 and 73 may be omitted. The part openings 63 and 73 may be smaller than the reflection film 54.
The mount plate 11 and the support substrate 150, which are used as the base member, may have any shape. For example, the mount plate 11 may have a greater thickness than the lead frame 60.
The electrodes 91 and 92 may be disposed in the proximity of the center of the terahertz device 10 in the z-direction or disposed downward from the center.
The specific structure of the terahertz element 20 may be changed. For example, the position and size of the two pads 33b and 34b may be changed. The oscillation point P1 may be located at a position other than the center.
The terahertz element 20 may be configured to receive electromagnetic waves and convert the received electromagnetic waves into electrical energy. Specifically, the terahertz element 20 receives electromagnetic waves, for example, in the range of the opening angle θ of the oscillation point P1. In this case, the oscillation point P1 may be referred to as a reception point that receives electromagnetic waves.
In this structure, the reflection film may reflect the incident electromagnetic waves toward the terahertz element 20 (preferably, the reception point). This increases the reception strength of the terahertz device 10, thereby improving the gain related to reception.
Moreover, the terahertz element 20 may be configured to oscillate and receive electromagnetic waves. That is, the oscillation point P1 may perform at least one of oscillation and reception of electromagnetic waves.
When the terahertz element 20 is configured to receive electromagnetic waves, the reflector 300 of the modified example reflects electromagnetic waves reflected by the reflection film 54 toward the terahertz element 20. In this structure, the electromagnetic waves reflected by the reflection film 54 are emitted via the reflector 300 to the terahertz element 20. More specifically, the reflection film 54 is configured to reflect at least part of the incident electromagnetic waves toward the reflector 300. The reflector 300 is configured to receive the electromagnetic waves reflected by the reflection film 54 and emit at least part of the electromagnetic waves toward the terahertz element 20.
The technical aspects will be described below based on the embodiments and the modified examples described above.
1. A terahertz device, including:
2. The terahertz device according to clause 1, in which
3. The terahertz device according to clause 2, in which the electrode includes a lead frame bent along the antenna base.
4. The terahertz device according to clause 3, in which
5. The terahertz device according to any one of clauses 1 to 4, in which
6. The terahertz device according to clause 5, in which
7. The terahertz device according to clause 5 or 6, in which the reflection film is parabolic-antenna-shaped.
8. The terahertz device according to clause 7, in which the reflection film is disposed so that a focal point of the reflection film is located on the oscillation point.
9. The terahertz device according to clause 7, in which a center point of the reflection film coincides with the oscillation point as viewed in an opposing direction of the base member and the antenna base.
10. The terahertz device according to any one of clauses 7 to 9, in which the reflection film is disposed at a position corresponding to a frequency of an electromagnetic wave generated by the terahertz element so that the electromagnetic wave resonates.
11. The terahertz device according to clause 7, in which the terahertz element is disposed at a position so that a center point of the reflection film and the oscillation point are located at different positions as viewed in an opposing direction of the base member and the antenna base.
12. The terahertz device according to any one of clauses 1 to 11, in which the reflection film is electrically isolated.
13. The terahertz device according to any one of clauses 1 to 12, in which the antenna base is formed of an insulative material.
14. The terahertz device according to any one of clauses 1 to 13, in which the base member is located opposing the reflection film and is formed of a material transmissive to an electromagnetic wave.
15. The terahertz device according to clause 14, in which the base member is formed of a dielectric.
16. The terahertz device according to any one of clauses 1 to 15, in which
17. The terahertz device according to clause 16, in which the reflection film is formed on the antenna surface and is not formed on the base main surface.
18. The terahertz device according to clause 16 or 17, in which
19. The terahertz device according to any one of clauses 16 to 18, further including:
20. The terahertz device according to clause 19, further including an insulative spacer disposed between the reflection film and the conductive member, in which the spacer is different from the adhesive layer.
21. The terahertz device according to clause 19 or 20, in which
22. The terahertz device according to any one of clauses 19 to 21, in which
23. The terahertz device according to any one of clauses 1 to 22, in which
24. The terahertz device according to clause 23, in which
25. The terahertz device according to clause 24, in which
26. The terahertz device according to clause 25, in which
27. The terahertz device according to clause 26, further including a first wire connecting the first connector to a first pad formed on the terahertz element, in which as viewed in the opposing direction, a projection dimension of the first connector from the first wall surface is less than a length of the first wire.
28. The terahertz device according to clause 27, further including a second wire connecting the second connector to a second pad formed on the terahertz element, in which as viewed in the opposing direction, a projection dimension of the second connector from the second wall surface is less than a length of the second wire.
29. The terahertz device according to clause 26, further including a first wire connecting the first connector to a first pad formed on the terahertz element, in which as viewed in the opposing direction, a length of the first wire is less than a projection dimension of the first connector from the first wall surface.
30. The terahertz device according to clause 29, further including a second wire connecting the second connector to a second pad formed on the terahertz element, in which as viewed in the opposing direction, a length of the second wire is less than a projection dimension of the second connector from the second wall surface.
31. The terahertz device according to any one of clauses 26 to 30, in which the first connector and the second connector are opposed to each other at opposite sides of the terahertz element.
32. The terahertz device according to any one of clauses 26 to 30, in which the first connector and the second connector are disposed parallel to each other.
33. The terahertz device according to any one of clauses 23 to 32, in which
34. The terahertz device according to clause 33, in which the base member is plate-shaped and has a thickness that is less than a thickness of the lead frame.
35. The terahertz device according to clause 1, further including a lead frame as the base member, in which the lead frame includes
36. The terahertz device according to clause 1, in which
37. A terahertz device, including:
38. A terahertz device, including:
39. The terahertz device according to clause 38, in which
40. The terahertz device according to clause 39, in which the electrode includes a lead frame bent along the antenna base.
41. The terahertz device according to clause 40, in which
42. The terahertz device according to any one of clauses 38 to 41, in which
43. The terahertz device according to clause 42, in which
44. The terahertz device according to clause 42 or 43, in which the reflection film is parabolic-antenna-shaped.
45. The terahertz device according to clause 44, in which the reflection film is disposed so that a focal point of the reflection film is located on the reception point.
46. The terahertz device according to clause 44, in which a center point of the reflection film coincides with the reception point as viewed in an opposing direction of the base member and the antenna base.
47. The terahertz device according to any one of clauses 44 to 46, in which the reflection film is disposed at a position corresponding to a frequency of an electromagnetic wave received by the terahertz element so that the electromagnetic wave resonates.
48. The terahertz device according to clause 44, in which the terahertz element is disposed at a position so that a center point of the reflection film and the reception point are located at different positions as viewed in an opposing direction of the base member and the antenna base.
49. The terahertz device according to any one of clauses 38 to 48, in which the reflection film is electrically isolated.
50. The terahertz device according to any one of clauses 38 to 49, in which the antenna base is formed of an insulative material.
51. The terahertz device according to any one of clauses 38 to 50, in which the base member is located opposing the reflection film and is formed of a material transmissive to an electromagnetic wave.
52. The terahertz device according to clause 51, in which the base member is formed of a dielectric.
53. The terahertz device according to any one of clauses 38 to 52, in which
54. The terahertz device according to clause 53, in which the reflection film is formed on the antenna surface and is not formed on the base main surface.
55. The terahertz device according to clause 53 or 54, in which
56. The terahertz device according to any one of clauses 53 to 55, further including:
57. The terahertz device according to clause 56, further including an insulative spacer disposed between the reflection film and the conductive member, in which the spacer is different from the adhesive layer.
58. The terahertz device according to clause 56 or 57, in which
59. The terahertz device according to any one of clauses 56 to 58, in which
60. The terahertz device according to any one of clauses 38 to 59, in which
61. The terahertz device according to clause 60, in which
62. The terahertz device according to clause 61, in which
63. The terahertz device according to clause 62, in which
64. The terahertz device according to clause 63, further including a first wire connecting the first connector to a first pad formed on the terahertz element, in which as viewed in the opposing direction, a projection dimension of the first connector from the first wall surface is less than a length of the first wire.
65. The terahertz device according to clause 64, further including a second wire connecting the second connector to a second pad formed on the terahertz element, in which as viewed in the opposing direction, a projection dimension of the second connector from the second wall surface is less than a length of the second wire.
66. The terahertz device according to clause 63, further including a first wire connecting the first connector to a first pad formed on the terahertz element, in which as viewed in the opposing direction, a length of the first wire is less than a projection dimension of the first connector from the first wall surface.
67. The terahertz device according to clause 66, further including a second wire connecting the second connector to a second pad formed on the terahertz element, in which as viewed in the opposing direction, a length of the second wire is less than a projection dimension of the second connector from the second wall surface.
68. The terahertz device according to any one of clauses 63 to 67, in which the first connector and the second connector are opposed to each other at opposite sides of the terahertz element.
69. The terahertz device according to any one of clauses 63 to 67, in which the first connector and the second connector are disposed parallel to each other.
70. The terahertz device according to any one of clauses 60 to 69, in which
71. The terahertz device according to clause 70, in which the base member is plate-shaped and has a thickness that is less than that of the lead frame.
72. The terahertz device according to clause 38, further including a lead frame as the base member, in which the lead frame includes
73. The terahertz device according to clause 38, in which
74. A terahertz device, including:
75. A terahertz device, including:
76. The terahertz device according to clause 75, in which the electrode is located toward the base member from a central portion of the terahertz device in the opposing direction.
77. The terahertz device according to clause 75 or 76, in which the electrode is formed of a lead frame.
78. The terahertz device according to clause 77, in which the electrode includes an inclined portion inclined in a direction away from the base member as the electrode extends away from the antenna base.
79. The terahertz device according to clause 77 or 78, in which the electrode is crank-shaped.
80. The terahertz device according to clause 75 or 76, in which
81. The terahertz device according to clause 80, in which
82. The terahertz device according to any one of clauses 75 to 81, in which
83. The terahertz device according to clause 82, in which
84. The terahertz device according to clause 82 or 83, in which the reflection film is parabolic-antenna-shaped.
85. The terahertz device according to clause 84, in which the reflection film is disposed so that a focal point of the reflection film is located on the oscillation point.
86. The terahertz device according to clause 84, in which a center point of the reflection film coincides with the oscillation point as viewed in an opposing direction of the base member and the antenna base.
87. The terahertz device according to any one of clauses 84 to 86, in which the reflection film is disposed at a position corresponding to a frequency of an electromagnetic wave generated by the terahertz element so that the electromagnetic wave resonates.
88. The terahertz device according to clause 84, in which the terahertz element is disposed at a position so that a center point of the reflection film and the oscillation point are located at different positions as viewed in an opposing direction of the base member and the antenna base.
89. The terahertz device according to any one of clauses 75 to 88, in which the reflection film is electrically isolated.
90. The terahertz device according to any one of clauses 75 to 89, in which the antenna base is formed of an insulative material.
91. The terahertz device according to any one of clauses 75 to 90, in which the base member is located opposing the reflection film and is formed of a material transmissive to an electromagnetic wave.
92. The terahertz device according to clause 91, in which the base member is formed of a dielectric.
93. The terahertz device according to any one of clauses 75 to 92, in which
94. The terahertz device according to clause 93, in which the reflection film is formed on the antenna surface and is not formed on the base main surface.
95. The terahertz device according to clause 93 or 94, in which
96. The terahertz device according to any one of clauses 93 to 95, further including:
97. The terahertz device according to clause 96, further including an insulative spacer disposed between the reflection film and the conductive member, in which the spacer is different from the adhesive layer.
98. The terahertz device according to clause 96 or 97, in which
99. The terahertz device according to any one of clauses 96 to 98, in which
100. The terahertz device according to any one of clauses 65 to 99, in which
101. The terahertz device according to clause 100, in which
102. The terahertz device according to clause 101, in which
103. The terahertz device according to clause 102, in which
104. The terahertz device according to clause 103, further including a first wire connecting the first connector to a first pad formed on the terahertz element, in which as viewed in the opposing direction, a projection dimension of the first connector from the first wall surface is less than a length of the first wire.
105. The terahertz device according to clause 104, further including a second wire connecting the second connector to a second pad formed on the terahertz element, in which as viewed in the opposing direction, a projection dimension of the second connector from the second wall surface is less than a length of the second wire.
106. The terahertz device according to clause 103, further including a first wire connecting the first connector to a first pad formed on the terahertz element, in which as viewed in the opposing direction, a length of the first wire is less than a projection dimension of the first connector from the first wall surface.
107. The terahertz device according to clause 106, further including a second wire connecting the second connector to a second pad formed on the terahertz element, in which as viewed in the opposing direction, a length of the second wire is less than a projection dimension of the second connector from the second wall surface.
108. The terahertz device according to any one of clauses 103 to 107, in which the first connector and the second connector are faced to each other at opposite sides of the terahertz element.
109. The terahertz device according to any one of clauses 103 to 107, in which the first connector and the second connector are disposed parallel to each other.
110. The terahertz device according to any one of clauses 96 to 109, in which
111. The terahertz device according to clause 110, in which the base member is plate-shaped and has a thickness that is less than that of the lead frame.
112. The terahertz device according to any one of clauses 96 to 109, in which
113. The terahertz device according to clause 75, further including a lead frame as the base member, in which the lead frame includes
114. The terahertz device according to clause 75, in which
115. The terahertz device according to clause 75, in which
116. The terahertz device according to clause 115, in which
117. A terahertz device, including:
118. The terahertz device according to clause 117, in which the electrode is located toward the base member from a central portion of the terahertz device in the opposing direction.
119. The terahertz device according to clause 117 or 118, in which the electrode is formed of a lead frame.
120. The terahertz device according to clause 119, in which the electrode includes an inclined portion inclined in a direction away from the base member as the electrode extends away from the antenna base.
121. The terahertz device according to clause 119 or 120, in which the electrode is crank-shaped.
122. The terahertz device according to clause 117 or 118, in which
123. The terahertz device according to clause 122, in which
124. The terahertz device according to any one of clauses 117 to 123, in which
125. The terahertz device according to clause 124, in which
126. The terahertz device according to clause 124 or 125, in which the reflection film is parabolic-antenna-shaped.
127. The terahertz device according to clause 126, in which the reflection film is disposed so that a focal point of the reflection film is located on the reception point.
128. The terahertz device according to clause 126, in which a center point of the reflection film coincides with the reception point as viewed in an opposing direction of the base member and the antenna base.
129. The terahertz device according to any one of clauses 126 to 128, in which the reflection film is disposed at a position corresponding to a frequency of an electromagnetic wave received by the terahertz element so that the electromagnetic wave resonates.
130. The terahertz device according to clause 126, in which the terahertz element is disposed at a position so that a center point of the reflection film and the reception point are located at different positions as viewed in an opposing direction of the base member and the antenna base.
131. The terahertz device according to any one of clauses 117 to 130, in which the reflection film is electrically isolated.
132. The terahertz device according to any one of clauses 117 to 131, in which the antenna base is formed of an insulative material.
133. The terahertz device according to any one of clauses 117 to 132, in which the base member is located opposing the reflection film and is formed of a material transmissive to an electromagnetic wave.
134. The terahertz device according to clause 133, in which the base member is formed of a dielectric.
135. The terahertz device according to any one of clauses 117 to 134, in which
136. The terahertz device according to clause 135, in which the reflection film is formed on the antenna surface and is not formed on the base main surface.
137. The terahertz device according to clause 135 or 136, in which
138. The terahertz device according to any one of clauses 135 to 137, further including:
139. The terahertz device according to clause 138, further including an insulative spacer disposed between the reflection film and the conductive member, in which the spacer is different from the adhesive layer.
140. The terahertz device according to clause 138 or 139, in which
141. The terahertz device according to any one of clauses 138 to 140, in which
142. The terahertz device according to any one of clauses 117 to 141, in which
143. The terahertz device according to clause 142, in which
144. The terahertz device according to clause 143, in which
145. The terahertz device according to clause 144, in which
146. The terahertz device according to clause 145, further including a first wire connecting the first connector to a first pad formed on the terahertz element, in which as viewed in the opposing direction, a projection dimension of the first connector from the first wall surface is less than a length of the first wire.
147. The terahertz device according to clause 146, further including a second wire connecting the second connector to a second pad formed on the terahertz element, in which as viewed in the opposing direction, a projection dimension of the second connector from the second wall surface is less than a length of the second wire.
148. The terahertz device according to clause 145, further including a first wire connecting the first connector to a first pad formed on the terahertz element, in which as viewed in the opposing direction, a length of the first wire is less than a projection dimension of the first connector from the first wall surface.
149. The terahertz device according to clause 148, further including a second wire connecting the second connector to a second pad formed on the terahertz element, in which as viewed in the opposing direction, a length of the second wire is less than a projection dimension of the second connector from the second wall surface.
150. The terahertz device according to any one of clauses 145 to 149, in which the first connector and the second connector are faced to each other at opposite sides of the terahertz element.
151. The terahertz device according to any one of clauses 145 to 149, in which the first connector and the second connector are disposed parallel to each other.
152. The terahertz device according to any one of clauses 138 to 151, in which
153. The terahertz device according to clause 152, in which the base member is plate-shaped and has a thickness that is less than that of the lead frame.
154. The terahertz device according to any one of clauses 138 to 151, in which
155. The terahertz device according to clause 117, further including a lead frame as the base member, in which the lead frame includes
156. The terahertz device according to clause 117, in which
157. The terahertz device according to clause 117, in which
158. The terahertz device according to clause 157, in which
159. The antenna base may include a receptacle arranged separately from the recess to accommodate a specific element, the specific element being electrically connected to the terahertz element.
160. The specific element may be an integrated circuit (IC).
161. A terahertz device, including:
162. A terahertz device, including:
163. A terahertz device, including:
164. A terahertz device, including:
165. The antenna base may include a receptacle arranged separately from the recess to accommodate a specific element, the specific element being electrically connected to the terahertz element.
166. A specific element that is mounted on the mount back surface when the specific element is electrically connected to the terahertz element may be included.
167. The specific element may be an IC.
10) terahertz device; 11) mount plate (base member); 12) mount main surface; 13) mount back surface; 20) terahertz element; 21) element main surface; 22) element back surface; 33b) first pad; 34b) second pad; 50) antenna base; 50a) base main surface; 50b) base back surface; 51a) first base side surface; 51b) second base side surface; 52) recess; 53) antenna surface; 54, 223, 224) reflection film; 54a) end of reflection film; 60) lead frame; 61) first lead part; 63) first part opening; 64) first inner surface; 65, 211) first connector; 71) second lead part; 73) second part opening; 74) second inner surface; 75, 212) second connector; 80) opening; 81) gap; 90) adhesive layer; 94, 101, 304, 305) electrode; 94a, 101a) proximal portion; 94b, 101b) bent portion; 94c, 101c) distal portion; 95, 102) side electrode; 93, 103) back electrode; 110) circuit substrate; 120) reflection reduction film; 131, 132) protection diode; 141, 142) receptacle; 200) spacer; 210) mount base; 221) large diameter surface; 222) stepped surface; 300) reflector; 301) reflection protrusion; A1) accommodation space; P1) oscillation point; P2) center point of reflection film; W1) first wire; W2) second wire; θ) opening angle; 153) mount main surface; 154) mount back surface; 230) antenna base; 231) antenna surface; 233, 283, 290) reflection film; 170) adhesive layer; 91, 171, 192, 242) first electrode (electrode); 92, 172, 202, 252) second electrode (electrode); 91a, 92a) inclined portion; 116) hole; 180, 220) reflection reduction film; 150) support substrate (base member); 151, 152) extension; 160) wiring pattern; 191, 201, 241, 251) connection pattern; 193, 203) back pattern; 194, 195, 204, 205) through via; 260) spacer; 270) mount base; 281) large diameter surface; 282) stepped surface
Number | Date | Country | Kind |
---|---|---|---|
2019-126200 | Jul 2019 | JP | national |
2019-126201 | Jul 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/025601 | 6/30/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/006105 | 1/14/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
11335653 | Tsuruda | May 2022 | B2 |
11569184 | Tsuruda | Jan 2023 | B2 |
20060164836 | Suehiro | Jul 2006 | A1 |
20150034825 | Debray et al. | Feb 2015 | A1 |
20160036122 | Debray | Feb 2016 | A1 |
20170271774 | Mukai et al. | Sep 2017 | A1 |
20190131704 | Urzhumov | May 2019 | A1 |
Number | Date | Country |
---|---|---|
H10-335706 | Dec 1998 | JP |
2002-344025 | Nov 2002 | JP |
2007-129043 | May 2007 | JP |
2009-026840 | Feb 2009 | JP |
2016-111542 | Jun 2016 | JP |
2005043637 | May 2005 | WO |
Entry |
---|
International Search Report of PCT/JP2020/025601, Sep. 15, 2020, 3 pages. |
International Preliminary Report on Patentability issued for International Patent Application No. PCT/JP2020/025601, Date of mailing: Jan. 20, 2022, 13 pages including English translation. |
Notice of Reasons for Refusal issued for Japanese Patent Application No. 2021-530618, Dispatch date: Jul. 16, 2024, 16 pages including English machine translation. |
Number | Date | Country | |
---|---|---|---|
20220236178 A1 | Jul 2022 | US |