The present application is directed to a terrestrial solar tracking photovoltaic array and, more particularly, to a modular array with solar cell modules that are simultaneously movable about first and second orthogonal axes to maintain the solar cell modules aligned with the sun.
Terrestrial solar tracking photovoltaic arrays are used for various applications. The arrays are designed for a specific output capacity and cannot be modified in a convenient manner for different capacities. The set capacity of the arrays may vary from being relatively small, such as a few kilowatts, to relatively large in excess of hundreds of kilowatts. The arrays may be installed at various locations that have exposure to the sun for adequate periods of time to produce the required power capacity.
The photovoltaic arrays generally include a frame with one or more solar cell modules in the form of panels. The frame may be adjustable to position the solar cell modules towards the sun. The frame may adjust the position of the solar cell modules throughout the day to ensure they remain directed to the sun to maximize the power capacity.
Many existing photovoltaic arrays include large frames that support the solar cell modules. The size of the frames and installation requirements often result in their costs being substantial. Initially, the frames are moved by large trucks or other like equipment to the installation site. Cranes or other like lifting equipment are necessary to lift the frames from the trucks and position them at the correct location. This installation process often requires a large workforce due to the extensive moving and assembly requirements of mounting the frame and attaching the associated solar cell modules. These prior designs did not allow for a single person or just a few persons to install the frame and solar cell modules.
These prior frames also provide for mounting a predetermined number of solar cell modules. There was no ability to modify the number of solar cell modules to accommodate the specific needs of the array. Particularly, there is no manner of modifying the design out in the field during or after the installation.
The present application is directed to a terrestrial solar tracking photovoltaic array. The array may include a modular design that is sized and weighted to facilitate installation with a small amount of manpower. The array further is adapted to be adjusted during or after installation to accommodate the necessary power requirements.
The present application includes a terrestrial solar tracking photovoltaic array with a longitudinal support extending over the surface of the earth substantially in a north-south direction and including a longitudinally-extending string of spaced apart planar solar cell modules mounted thereon. The longitudinal support is journalled for rotation so as to allow the modules to simultaneously track the elevation of the sun during the course of a day. A pivotable coupling may be located between each of the modules and the longitudinal support so as to allow each module to simultaneously rotate along an axis substantially orthogonal to the longitudinal axis of said longitudinal support and track the azimuthal position of the sun during the course of the day.
The application also includes a terrestrial concentrator photovoltaic solar cell array for producing energy from the sun. The array uses a plurality of sun-tracking concentrator solar cell modules each comprising a substantially planar solar cell subarray including a plurality of triple junction III-V compound semiconductor solar cell receivers. The solar cell modules are arranged substantially linearly along the longest dimension of a central rotating axle that is secured to a surface of the earth by one or more supports. The supports are arranged to orient the longest dimension of the central rotating axle approximately in the north to south direction. The central rotating axle is also adapted to rotate the modules about a first axis substantially parallel to the surface of the earth and defined by the longest dimension of the central rotating axle. The array may include rotatable mounts each of which attaches a respective group of modules to the central rotating axle and allows rotation of the group about a respective second axis substantially perpendicular to the first axis. The array may also include a control system to control rotation of the modules about the first axis to track the azimuth of the sun and to control rotation of the modules about the respective second axes to track the elevation of the sun. The control system is arranged to control rotation of the modules about the first and second axes so that the solar cell modules are maintained substantially orthogonal to incoming rays from the sun.
The various aspects of the various embodiments may be used alone or in any combination, as is desired.
The present application is directed to a terrestrial solar tracking photovoltaic array.
Frame 110 positions the solar cell modules 200 to track the movement of the sun. Frame 110 includes a longitudinal support 120 that is positioned above a surface 300 by spaced-apart vertical supports 130. In one embodiment, the longitudinal support 120 is a single continuous piece. In one specific embodiment, the longitudinal support 120 is a pipe with a diameter of about 4 inches and includes a thickness of about 0.167 inches. The pipe includes a length of about 192″ and weighs about 110 lbs.
In another embodiment, the longitudinal support 120 may be constructed from a number of discrete sections 121 that are connected together in an end-to-end arrangement. The lengths and construction of each section 121 may be the same or may be different. In one embodiment, each section 121 is sized to mount a pair of solar cell array modules 200. The modular design provides for a user to construct the longitudinal support 120 to a length needed to support a necessary number of solar cell modules 200. Sections 121 may be added to an existing array 100 to accommodate additional solar cell modules 200 as is necessary for the array 100 to produce the desired power output.
Mounts 160 are connected to the longitudinal support 120 to support the solar cell modules 200. Mounts 160 may include a base 161 that is connected to the longitudinal support 120 as illustrated in
Mounts 160 may also include a pivot member 165 that is connected to the platforms 164. The pivot member 165 facilitates pivoting motion of the solar cell modules 200 about second axes B as will be explained in detail below. Pivot member 165 may extend through the base 161, or may be located away from the base 161.
The vertical supports 130 are spaced apart along the length of the longitudinal support 120. The vertical supports 130 include a length adequate to position the solar cell modules 120 above the surface 300 for rotation about the first axis A. Therefore, the vertical supports 130 are longer than a height of the platforms 164 and the solar cell modules 200.
The vertical supports 130 are positioned along the longitudinal support 120 away from the mounts 160 to prevent interference with the movement of the solar cell modules 200. As illustrated in
A motor 170 is connected to the longitudinal support 120 to provide a force to rotate the longitudinal support 120 about axis A. In one embodiment, motor 170 may be positioned at an end of the longitudinal support 120. Motor 170 may include one or more gears that engage with the longitudinal support 120. Additional motors 170 may be connected along the length of the longitudinal support 120 to provide additional rotational force.
A coupling 150 is attached to each mount 160 to enable the mount 160 and attached solar cell modules 200 to rotate about the second axis B. As illustrated in
The couplings 150 are connected to the platforms 164 of the mounts 160. This connection causes the coupling 150 to rotate about the first axis A during rotation of the longitudinal support 120. Coupling 150 is also attached in a manner to rotate about the second axis B with the platforms 164. Because the arms 151, 152 are not connected to the base 161, the coupling 150 moves relative to the base 161 and longitudinal support 120 during rotation about the second axis B. In one embodiment, the arms 151, 152 are connected to the pivot member 165 that extends along a rear of the platforms 164.
Linkages 140 are connected to the mounts 160 for rotating the solar cell modules 200 about the second axes B. Each linkage 140 includes a first end 141 connected to a first coupling 150 and a second end 142 connected to an adjacent coupling 150. As best illustrated in
A motor 180 is attached to a drive linkage 144 as illustrated in
In one embodiment, the solar cell modules 200 are each about 43″ by 67″. The solar cell modules 200 include an aluminum frame and plastic or corrugated plastic sides that reduce the overall weight to about 70 pounds. In one embodiment, each solar cell module 200 includes a 3×5 array of lenses that are positioned over corresponding receivers. Each of the lenses is about 13″ square. Further, the focal length between the lenses and the receivers is about 20″.
When mounted on the surface 300, the longitudinal support 120 may be positioned in a north N-south S orientation as illustrated in
In addition to the rotation of the longitudinal support 120, the one or more motors 180 move the linkages 140 to further maintain the solar cell modules 200 aligned with the sun. The motor(s) 180 are periodically activated to move the first linkage 140a and attached string of linkages 140. This movement causes the couplings 150 and attached platforms 164 and solar cell modules 200 to pivot about the various axes B. These axes B may be orthogonal to the axis A. The string of linkages 140 provides for each of the solar cell modules 200 to again move in unison about their respective axis B. The movement about the B axes may allow the solar cell modules 200 to track the azimuthal position of the sun during the course of the day.
A controller 190 may control the movement of the terrestrial solar tracking array 100. The controller 190 may include a microcontroller with associated memory. In one embodiment, controller 190 includes a microprocessor, random access memory, read only memory, and in input/output interface. The controller 190 controls operation of the one or more motors 170 for rotating the longitudinal support 120 and the solar cell modules 200 about the first axis A. The controller 190 further controls the one or more motors 180 for driving the linkages 140 and rotating the solar cell modules about the second axes B. The controller 190 may include an internal timing mechanism such that the operation of the motors corresponds to the time of day for the solar cell modules 200 to track the azimuth and elevation of the sun.
The shadow cast by a given solar cell module 200 depends on its size and shape, and also on its location relative to the location of the sun in the sky. In the East-West direction, the sun location can vary by up to 150°. In this connection, it should be noted that it is generally accepted that, where the elevation of the sun is below 15° above the horizon, its rays are of insufficient strength to generate a useful amount of electricity. The latitude at which the solar cell array 100 is positioned is, therefore, of little influence.
In the North-South direction, the sun location varies by 46°, given that the earth's axis is tilted at an angle of 23° with respect to its orbit around the sun. In this connection, it will be appreciated that latitudes below 23° are subject to different conditions, and that latitudes above 45° are probably not relevant due to poor direct normal insolation (DNI) levels.
The solar cell array 100 is constructed in a manner to eliminate or minimize shadowing problems between solar cell modules 200. In one embodiment, the longitudinal support 120 and the individual sections 121 of the solar cell modules 200 are sized to space apart each module 200 such that it is fully illuminated for positions where the sun is 15° above the horizon, and that there is no shadowing of any given module 200 by any other module 200.
U.S. Pat. No. 7,381,886 assigned to Emcore Corporation the assignee of the present application discloses solar cell arrays and positioning relative to the sun path and is herein incorporated by reference in its entirety.
In one embodiment, the terrestrial solar tracking array 100 can be installed in a straight-forward manner. The various components are sized to fit within a standard vehicle and are light-weight to allow installation by a single person or limited number of persons. Further, the modular aspect of the array 100 facilitates modifications after the initial installation. Additional sections 121 and vertical supports 130 may be added to the frame 110 to accommodate a desired number of additional solar cell modules 200. Further, the size of the array 100 may be reduced after installation by removing one or more solar cell modules 200.
Spatially relative terms such as “under”, “below”, “lower”, “over”, “upper”, and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc and are also not intended to be limiting. Like terms refer to like elements throughout the description.
As used herein, the terms “having”, “containing”, “including”, “comprising” and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
The present invention may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
4031385 | Zerlaut et al. | Jun 1977 | A |
4172739 | Tassen | Oct 1979 | A |
4345582 | Aharon | Aug 1982 | A |
4425904 | Butler | Jan 1984 | A |
4440465 | Elliott et al. | Apr 1984 | A |
4585318 | Seifert | Apr 1986 | A |
4586488 | Noto | May 1986 | A |
4628142 | Hashizume | Dec 1986 | A |
4832001 | Baer | May 1989 | A |
4888340 | Neh et al. | Dec 1989 | A |
4989124 | Shappell | Jan 1991 | A |
4995377 | Eiden | Feb 1991 | A |
5169456 | Johnson | Dec 1992 | A |
5600124 | Berger | Feb 1997 | A |
5798517 | Berger | Aug 1998 | A |
6058930 | Shingleton | May 2000 | A |
6079408 | Fukuda | Jun 2000 | A |
6123067 | Warrick | Sep 2000 | A |
6465725 | Shibata et al. | Oct 2002 | B1 |
6552257 | Hart et al. | Apr 2003 | B1 |
6563040 | Hayden et al. | May 2003 | B2 |
6722357 | Shingleton | Apr 2004 | B2 |
6960717 | Stuart et al. | Nov 2005 | B2 |
7252084 | Pawlenko et al. | Aug 2007 | B2 |
7381886 | Aiken et al. | Jun 2008 | B1 |
7795568 | Sherman | Sep 2010 | B2 |
20040112373 | Djeu | Jun 2004 | A1 |
20070089777 | Johnson, Jr. et al. | Apr 2007 | A1 |
20070101738 | Akei et al. | May 2007 | A1 |
20070188876 | Hines et al. | Aug 2007 | A1 |
20070193620 | Hines et al. | Aug 2007 | A1 |
20080128586 | Johnson et al. | Jun 2008 | A1 |
20080135087 | Anikara | Jun 2008 | A1 |
20080178867 | DiDomenico | Jul 2008 | A1 |
20080236567 | Hayden | Oct 2008 | A1 |
20080258051 | Heredia et al. | Oct 2008 | A1 |
20090000662 | Harwood et al. | Jan 2009 | A1 |
20090032014 | Meydbray | Feb 2009 | A1 |
20090032084 | Aiken et al. | Feb 2009 | A1 |
20090032086 | Kats et al. | Feb 2009 | A1 |
20090032090 | Kats et al. | Feb 2009 | A1 |
20100011565 | Zawadzki et al. | Jan 2010 | A1 |
20100018570 | Cashion et al. | Jan 2010 | A1 |
20100032004 | Baker et al. | Feb 2010 | A1 |
20100101625 | Kats et al. | Apr 2010 | A1 |
20100101630 | Kats et al. | Apr 2010 | A1 |
20100101632 | Kats et al. | Apr 2010 | A1 |
20100102202 | Sherman | Apr 2010 | A1 |
20100108860 | Sherman et al. | May 2010 | A1 |
20100258110 | Krabbe et al. | Oct 2010 | A1 |
20100294337 | Sherman et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
10 2004 018 151 | Oct 2005 | DE |
20 2006 003 476 | Dec 2006 | DE |
2 268 938 | Mar 2007 | ES |
2000196127 | Jul 2000 | JP |
2000223730 | Aug 2000 | JP |
2002202817 | Jul 2002 | JP |
WO 0155651 | Aug 2001 | WO |
WO 02079793 | Oct 2002 | WO |
2008008023 | Jan 2008 | WO |
WO 2008090241 | Jul 2008 | WO |
WO 2008154945 | Dec 2008 | WO |
WO 2009048879 | Apr 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100102200 A1 | Apr 2010 | US |