Information
-
Patent Grant
-
6378091
-
Patent Number
6,378,091
-
Date Filed
Monday, June 21, 199925 years ago
-
Date Issued
Tuesday, April 23, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Ton; David
- Torres; Joseph D.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 714 724
- 714 718
- 714 733
-
International Classifications
-
Abstract
In a test mode circuit, a latch circuit latches a test enable signal and address signals, and a decoder circuit decodes the address signals latched in the latch circuit in response to the test enable signal latched in the latch circuit to generate one of the test mode signals. A data mask terminal is connected to an input circuit for inputting a signal at the data mask terminal and generating a mask signal. A gate circuit is connected to the latch circuit or the decoder circuit and the input circuit. The gate circuit passes the test enable signal and the address signals or the test mode signals when the mask signal is inactive, and masks the same signals when the mask signal is active.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a test mode circuit incorporated into a semiconductor memory device such as synchronous dynamic random access memory (SDRAM) device.
2. Description of the Related Art
In a test mode circuit incorporated into a SDRAM device, a latch circuit latches a test enable signal and address signals, and a decoder circuit decodes the address signals latched in the latch circuit in response to the test enable signal latched in the latch circuit to generate one of test mode signals. Also, a power on reset signal generating circuit is provided. A gate circuit controlled by the power on reset signal generating circuit is connected between the latch circuit and the decoder circuit. Therefore, when the power on reset signal is generated from the power on reset signal generating circuit, the gate circuit stops the transfer of the test enable signal and the address signals from the latch circuit to the decoder circuit, thus resetting the test mode signals. This will be explained later in detail.
In the above-described prior art test mode circuit, whether or not the power on reset signal is generated depends on the rising waveform of the power supply voltage. Therefore, even if the power is turned ON, the power on reset signal generating circuit does not surely generate a power-on-reset signal. As a result, even after the power is turned ON, the device may enter a normal operation mode without resetting the test mode signals. In this case, the normal operation mode becomes erroneous. In addition, since it is impossible for the user to reset the test modes from the exterior of the device, the device can never enter a normal operation mode.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a test mode circuit capable of surely resetting test mode signals.
According to the present invention, in a test mode circuit, a latch circuit latches a test enable signal and address signals, and a decoder circuit decodes the address signals latched in the latch circuit in response to the test enable signal latched in the latch circuit to generate one of the test mode signals. A data mask terminal is connected to an input circuit for inputting a signal at the data mask terminal and generating a mask signal. A gate circuit is connected to the latch circuit or the decoder circuit and the input circuit. The gate circuit passes the test enable signal and the address signals or the test mode signals when the mask signal is inactive, and masks the same signals when the mask signal is active.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be more clearly understood from the description set forth below, as compared with the prior art, with reference to the accompanying drawings, wherein:
FIG. 1
is a block circuit diagram illustrating a prior art test mode circuit;
FIG. 2
is a block circuit diagram illustrating a first embodiment of the test mode circuit according to the present invention; and
FIG. 3
is a block circuit diagram illustrating a second embodiment of the test mode circuit according to the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Before the description of the preferred embodiments, a prior art test mode circuit will be explained with reference to FIG.
1
. The prior art test mode circuit is incorporated into an SDRAM device, for example.
In
FIG. 1
, a test mode circuit is constructed by a latch circuit
11
for latching a test enable signal TE for enabling a test mode entry and internal address signals IA
1
, IA
2
, . . . , IA
n
in response to an internal clock signal ICLK, and a decoder circuit
12
for decoding the internal address signals latched in the latch circuit
11
to generate test mode signals TST
1
, TST
2
, . . . , TST
n
in response to the test enable signal TE latched in the latch circuit
11
. That is, when one of the test mode signals TST
1
, TST
2
, . . . , TST
n
is generated, the device enters a predetermined test mode which is different from a normal operation mode.
Note that the internal clock signal ICLK is generated by a latch circuit (not shown) for latching an external clock signal CLK (not shown).
Also, interposed between the latch circuit
11
and the decoder circuit
12
are NOR circuits
13
0
,
13
1
,
13
2
, . . . ,
13
n
for transmitting the internal address signals from the latch circuit
11
to the decoder circuit
12
. The NOR circuits
13
0
,
13
1
,
13
2
, . . . ,
13
n
are controlled by a power on reset (PON) signal generating circuit
14
. That is, when the power is turned ON to increase a power supply voltage V
cc
, the power on reset signal generating circuit
14
generates a power on reset signal PON having a predetermined time duration. As a result, the power on reset signal PON makes all the output signals of the NOR circuits
13
0
,
13
1
,
13
2
, . . . ,
13
n
low (=GND), thus resetting all the test mode signals TST
1
, TST
2
, . . . , TST
n
. Thereafter, the device enters a normal operation mode. Note that, if at least one of the test mode signals TST
1
, TST
2
, . . . , TST
n
is not reset, the normal operation mode may become erroneous.
In the test mode circuit of
FIG. 1
, whether or not the power on reset signal PON is generated depends on the rising waveform of the power supply voltage V
cc
. Therefore, even if the power is turned ON, the power on reset signal generating circuit
14
does not surely generate a power-on-reset signal PON. As a result, even after the power is turned ON, the device may enter a normal operation mode without resetting the test mode signals. In this case, however, the, normal operation mode becomes erroneous. In addition, since it is impossible for the user to reset the test modes from the exterior of the device, the device can never enter a normal operation mode.
In
FIG. 2
, which illustrates a first embodiment of the present invention, a latch circuit
15
is provided instead of the power on reset signal generating circuit
14
of FIG.
1
. The latch circuit
15
latches a signal at a data mask terminal DQM in response to the internal clock signal ICLK to generate an output enable mask signal OEMSK which is supplied to the NOR circuits
13
0
,
13
1
,
13
2
, . . . ,
13
m
.
The operation of the test mode circuit of
FIG. 2
is explained next. In this case, the data mask terminal DQM is connected to a central processing unit (CPU) (not shown).
In a normal operation mode, the CPU makes the signal at the data mask terminal DQM high (=V
cc
) in a power on sequence. As a result, all the output signals of the NOR circuits
13
0
,
13
1
,
13
2
,
13
m
are made low, so that the decoder circuit
12
surely resets all the test mode signals TST
1
, TST
2
, . . . , TST
n
. Thereafter, the device can enter a normal operation mode.
On the other hand, in a test entry mode, the CPU makes the signal at the data mask terminal DQM low (=GND). As a result, the decoder circuit
12
decodes the internal address signals IA
1
, IA
2
, . . . , IA
m
latched in the latch circuit
11
in response to the test enable signal TE latched in the latch circuit
11
, so that the decoder circuit
12
,generates one of the test mode signals TST
1
, TST
2
, . . . , TST
n
in accordance with the internal address signals IA
1
, IA
2
, . . . , IA
m
, thus entering a predetermined test mode.
In
FIG. 3
, which illustrates a second embodiment of the present invention, NOR circuits
13
1
′,
13
2
′, . . . ,
13
n
′ are provided instead of the NOR circuits
13
1
,
13
2
, . . . ,
13
m
of FIG.
2
. The NOR circuit
13
1
′,
13
2
′, . . . ,
13
n
′ are connected to the post stage of the decoder circuit
12
and are controlled by the output enable mask signal OEMSK of the latch circuit
15
.
The operation of the test mode circuit of
FIG. 3
is explained next. Also, in this case, the data mask terminal DQM is connected to a central processing unit (CPU) (not shown).
In a normal operation mode, the CPU makes the signal at the data mask terminal DQM high(=V
cc
) in a power on sequence. As a result, in spite of the operation of the decoder circuit
12
, all the output signals of the NOR circuits
13
1
′,
13
2
′, . . . ,
13
n
′ are made low, so that all the test mode signals TST
1
, TST
2
, . . . , TST
n
are surely reset. Thereafter, the device can enter a normal operation mode.
On the other hand, in a test entry mode, the CPU makes the signal at the data mask terminal DQM low (=GND). As a result, the NOR circuits
13
1
′,
13
2
′, . . . ,
13
n
′ are in a through state. Therefore, when the decoder circuit
12
decodes the internal address signals IA
1
, IA
2
, . . . , IA
n
latched in the latch circuit
11
in response to the test enable signal TE latched in the latch circuit
11
, the decoder circuit
12
generates one of the test mode signals TST
1
, TST
2
, . . . , TST
n
in accordance with the internal address signals IA
1
, IA
2
, . . . , IA
m
. Thus, the one of the test mode signals TST
1
, TST
2
, . . . , TST
n
is substantially generated through the NOR circuits
13
1
′,
13
2
′, . . . ,
13
n
′ thus entering a predetermined test mode.
In the above-mentioned embodiments, although the latch circuit
15
is operated in response to the internal clock signal, the latch circuit
15
can be of a non-synchronization type.
As explained hereinabove, according to the present invention, the test mode state of a device can be surely reset by incorporating a test mode circuit according to the present invention, which stabilizes the operation of the device and improves the reliability of the device.
Claims
- 1. A test mode circuit comprising:a first latch circuit for latching a test enable signal and address signals in response to an internal clock; a data mask terminal; a second latch circuit, connected to said data mask terminal, for latching a signal at said data mask terminal in response to said internal clock signal to generate a mask signal; a gate circuit, connected to said first and second latch circuits, for passing said test enable signal and said address signals latched in said first latch circuit when said mask signal is at a first level, and masking said test enable signal and said address signals latched in said latch circuit to generate low logic outputs when said mask signal is at a second level; and a decoder circuit, connected to said gate circuit, for decoding said address signals passed through said gate circuit in response to said test enable signal passed through said gate circuit to generate one of test mode signals, said decoder circuit resetting said test mode signals when said gate circuit generates said low logic output signals.
- 2. The test mode circuit as set forth in claim 1, wherein said gate circuit comprises:a first NOR circuit for receiving said test enable signal latched in said first latch circuit and said mask signal; and a plurality of second NOR circuits each for receiving one of said address signals latched in said first latch circuit and said mask signal, said mask signal being low and high logic signals, when said mask signal is at said first and second levels, respectively.
- 3. A test mode circuit comprising:a first latch circuit for latching a test enable signal and address signals in response to an internal clock signal; a decoder circuit, connected to said first latch circuit, for decoding said address signals latched in said first latch circuit in response to said test enable signal latched in said first latch circuit to generate one of test mode signals; a data mask terminal; a second latch circuit, connected to said data mask terminal, for latching a signal at said data mask terminal in response to said internal clock signal to generate a mask signal; and a gate circuit, connected to said decoder circuit and said second latch circuit, for passing said test mode signals when said mask signal is at a first level, and masking said test mode signals to generate low logic outputs when said mask signal is at a second level.
- 4. The test mode circuit as set forth in claim 3, wherein said gate circuit comprises a plurality of NOR circuits each for receiving one of said test mode signals and said mask signal,said mask signal being low and high logic signals, when said mask signal is at said first and second levels, respectively.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-180334 |
Jun 1998 |
JP |
|
US Referenced Citations (13)
Foreign Referenced Citations (6)
Number |
Date |
Country |
03-194799 |
Aug 1991 |
JP |
5-233099 |
Sep 1993 |
JP |
5-266695 |
Oct 1993 |
JP |
5-274898 |
Oct 1993 |
JP |
7-134661 |
May 1995 |
JP |
8-185331 |
Jul 1996 |
JP |