Therapeutic epitopes and uses thereof

Information

  • Patent Application
  • 20060178299
  • Publication Number
    20060178299
  • Date Filed
    June 05, 2003
    21 years ago
  • Date Published
    August 10, 2006
    18 years ago
Abstract
The invention herein disclosed is related to epitopes useful in methods of diagnosing, treating, and preventing coeliac disease. Therapeutic compositions which comprise at least one epitope are provided.
Description

The invention relates to epitopes useful in the diagnosis and therapy of coeliac disease, including diagnostics, therapeutics, kits, and methods of using the foregoing.


An immune reaction to gliadin (a component of gluten) in the diet causes coeliac disease. It is known that immune responses in the intestinal tissue preferentially respond to gliadin which has been modified by an intestinal transglutaminase. Coeliac disease is diagnosed by detection of anti-endomysial antibodies, but this requires confirmation by the finding of a lymphocytic inflammation in intestinal biopsies. The taking of such a biopsy is inconvenient for the patient.


Investigators have previously assumed that only intestinal T cell responses provide an accurate indication of the immune response against gliadins. Therefore they have concentrated on the investigation of T cell responses in intestinal tissue1. Gliadin epitopes which require transglutaminase modification (before they are recognised by the immune system) are known2.


The inventors have found the immunodominant T cell A-gliadin epitope recognised by the immune system in coeliac disease, and have shown that this is recognised by T cells in the peripheral blood of individuals with coeliac disease (see WO 01/25793). Such T cells were found to be present at high enough frequencies to be detectable without restimulation (i.e. a ‘fresh response’ detection system could be used). The epitope was identified using a non-T cell cloning based method which provided a more accurate reflection of the epitopes being recognised. The immunodominant epitope requires transglutaminase modification (causing substitution of a particular glutamine to glutamate) before immune system recognition.


Based on this work the inventors have developed a test which can be used to diagnose coeliac disease at an early stage. The test may be carried out on a sample from peripheral blood and therefore an intestinal biopsy is not required. The test is more sensitive than the antibody tests which are currently being used.


The invention thus provides a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising:


(a) contacting a sample from the host with an agent selected from (i) the epitope comprising sequence which is: SEQ ID NO:1 (PQPELPY) or SEQ ID NO:2 (QLQPFPQPELPYPQPQS), or an equivalent sequence from a naturally occurring homologue of the gliadin represented by SEQ ID NO:3, (ii) an epitope comprising sequence comprising: SEQ ID NO:1, or an equivalent sequence from a naturally occurring homologue of the gliadin represented by SEQ ID NO:3 (shown in Table 1), which epitope is an isolated oligopeptide derived from a gliadin protein, (iii) an analogue of (i) or (ii) which is capable of being recognised by a T cell receptor that recognises (i) or (ii), which in the case of a peptide analogue is not more than 50 id amino acids in length, or (iv) a product comprising two or more agents as defined in (i), (ii) or (iii), and (b) determining in vitro whether T cells in the sample recognise the agent, recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.


Through comprehensive mapping of wheat gliadin T cell epitopes (see Example 13), the inventors have also found epitopes bioactive in coeliac disease in HLA-DQ2+ patients in other wheat gliadins, having similar core sequences (e.g., SEQ ID NOS:18-22) and similar full length sequences (e.g., SEQ ID NOS:31-36), as well as in rye secalins and barley hordeins (e.g., SEQ ID NOS:3941); see also Tables 20 and 21. Additionally, several epitopes bioactive in coeliac disease in HLA-DQ8+ patients have been identified (e.g., SEQ ID NOS:42-44, 46). This comprehensive mapping thus provides the dominant epitopes recognized by T cells in coeliac patients. Thus, the above-described method and other methods of the invention described herein may be performed using any of these additional identified epitopes, and analogues and equivalents thereof; (i) and (ii) herein include these additional epitopes. That is, the agents of the invention also include these novel epitopes.


The invention also provides use of the agent for the preparation of a diagnostic means for use in a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual, said method comprising determining whether T cells of the individual recognise the agent, recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.


The finding of an immunodominant epitope which is modified by transglutaminase (as well as the additional other epitopes defined herein) also allows diagnosis of coeliac disease based on determining whether other types of immune response to this epitope are present. Thus the invention also provides a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising determining the presence of an antibody that binds to the epitope in a sample from the individual, the presence of the antibody indicating that the individual has, or is susceptible to, coeliac disease.


The invention additionally provides the agent, optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by tolerising T cells which recognise the agent. Also provided is an antagonist of a T cell which has a T cell receptor that recognises (i) or (ii), optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by antagonising such T cells. Additionally provided is the agent or an analogue that binds an antibody (that binds the agent) for use in a method of treating or preventing coeliac disease in an individual by tolerising the individual to prevent the production of such an antibody.


The invention provides a method of determining whether a composition is capable of causing coeliac disease comprising determining whether a protein capable of being modified by a transglutaminase to an oligopeptide sequence as defined above is present in the composition, the presence of the protein indicating that the composition is capable of causing coeliac disease.


The invention also provides a mutant gliadin protein whose wild-type sequence can be modified by a transglutaminase to a sequence that comprises an epitope comprising sequence as defined above, but which mutant gliadin protein has been modified in such a way that it does not contain sequence which can be modified by a transglutaminase to a sequence that comprises such an epitope comprising sequence; or a fragment of such a mutant gliadin protein which is at least 15 amino acids long and which comprises sequence which has been modified in said way.


The invention also provides a protein that comprises a sequence which is able to bind to a T cell receptor, which T cell receptor recognises the agent, and which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.


Additionally the invention provides a food that comprises the proteins defined above.


SUMMARY OF THE INVENTION

The present invention provides methods of preventing or treating coeliac disease comprising administering to an individual at least one agent selected from: a) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of SEQ ID NOs:18-22, 31-36, 39-44, and 46, and equivalents thereof; and b) an analogue of a) which is capable of being recognised by a T cell receptor that recognises the peptide of a) and which is not more than 50 amino acids in length; and c) optionally, in addition to the agent selected from a) and b), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NO:1 and SEQ ID NO:2. In some embodiments, the agent is HLA-DQ2-restricted, HLA-DQ8-restricted or one agent is HLA-DQ2-restricted and a second agent is HLA-DQ8-restricted. In some embodiments, the agent comprises a wheat epitope, a rye epitope, a barley epitope or any combination thereof either as a single agent or as multiple agents.


The present invention also provides methods of preventing or treating coeliac disease comprising administering to an individual a pharmaceutical composition comprising an agent above and pharmaceutically acceptable carrier or diluent.


The present invention also provides methods of preventing or treating coeliac disease comprising administering to an individual a pharmaceutical composition comprising an antagonist of a T cell which has a T cell receptor as defined above, and a pharmaceutically acceptable carrier or diluent.


The present invention also provides methods of preventing or treating coeliac disease comprising administering to an individual a composition for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined above, which composition comprises an agent as defined above.


The present invention also provides methods of preventing or treating coeliac disease by 1) diagnosing coeliac disease in an individual by either: a) contacting a sample from the host with at least one agent selected from: i) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of: SEQ ID NOS:18-22, 31-36, 39-44, and 46, and equivalents thereof; and ii) an analogue of i) which is capable of being recognised by a T cell receptor that recognises i) and which is not more than 50 amino acids in length; and iii) optionally, in addition to the agent selected from i) and ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS:1 and 2; and determining in vitro whether T cells in the sample recognise the agent, recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease; or b) administering an agent as defined above and determining in vivo whether T cells in the individual recognise the agent, recognition of the agent indicating that the individual has or is susceptible to coeliac disease; and 2) administering to an individual diagnosed as having, or being susceptible to, coeliac disease a therapeutic agent for preventing or treating coeliac disease.


The present invention also provides-agents as defined above, optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by tolerising T cells which recognise the agent.


The present invention also provides antagonists of a T cell which has a T cell receptor as defined above, optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by antagonising such T cells.


The present invention also provides proteins that comprises a sequence which is able to bind to a T cell receptor, which T cell receptor recognises an agent as defined above, and which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.


The present invention also provides pharmaceutical compositions comprising an agent or antagonist as defined and a pharmaceutically acceptable carrier or diluent.


The present invention also provides compositions for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined above, which composition comprises an agent as defined above.


The present invention also provides compositions for antagonising a T cell response to an agent as defined above, which composition comprises an antagonist as defined above.


The present invention also provides mutant gliadin proteins whose wild-type sequence can be modified by a transglutaminase to a sequence which is an agent as defined in claim 1, which mutant gliadin protein comprises a mutation which prevents its modification by a transglutaminase to a sequence which is an agent as defined above; or a fragment of such a mutant gliadin protein which is at least 15 amino acids long and which comprises the mutation.


The present invention also provides polynucleotides that comprises a coding sequence that encodes a protein or fragment as defined above.


The present invention also provides cells comprising a polynucleotide as defined above or which has been transformed with such a polynucleotide.


The present invention also provides mammals that expresses a T cell receptor as defined above.


The present invention also provides methods of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising: a) contacting a sample from the host with at least one agent selected from i) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of: SEQ ID NOS:18-22, 31-36, 39-44, and 46, and equivalents thereof; and ii) an analogue of i) which is capable of being recognised by a T cell receptor that recognises i) and which is not more than 50 amino acids in length; and iii) optionally, in addition to the agent selected from i) and ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS:1 and 2; and b) determining in vitro whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.


The present invention also provides methods of determining whether a composition is capable of causing coeliac disease comprising determining whether a protein capable of being modified by a transglutaminase to an oligopeptide sequence is present in the composition, the presence of the protein indicating that the composition is capable of causing coeliac disease.


The present invention also provides methods of identifying an antagonist of a T cell, which T cell recognises an agent as defined above, comprising contacting a candidate substance with the T cell and detecting whether the substance causes a decrease in the ability of the T cell to undergo an antigen specific response, the detecting of any such decrease in said ability indicating that the substance is an antagonist.


The present invention also provides kits for carrying out any of the method described above comprising an agent as defined above and a means to detect the recognition of the peptide by the T cell.


The present invention also provides methods of identifying a product which is therapeutic for coeliac disease comprising administering a candidate substance to a mammal as defined above which has, or which is susceptible to, coeliac disease and determining whether substance prevents or treats coeliac disease in the mammal, the prevention or treatment of coeliac disease indicating that the substance is a therapeutic product.


The present invention also provides processes for the production of a protein encoded by a coding sequence as defined above which process comprises: a) cultivating a cell described above under conditions that allow the expression of the protein; and optionally b) recovering the expressed protein.


The present invention also provides methods of obtaining a transgenic plant cell comprising transforming a plant cell with a vector as described above to give a transgenic plant cell.


The present invention also provides methods of obtaining a first-generation transgenic plant comprising regenerating a transgenic plant cell transformed with a vector as described above to give a transgenic plant.


The present invention also provides methods of obtaining a transgenic plant seed comprising obtaining a transgenic seed from a transgenic plant obtainable as described above.


The present invention also provides methods of obtaining a transgenic progeny plant comprising obtaining a second-generation transgenic progeny plant from a first-generation transgenic plant obtainable by a method as described above, and optionally obtaining transgenic plants of one or more further generations from the second-generation progeny plant thus obtained.


The present invention also provides transgenic plant cells, plants, plant seeds or progeny plants obtainable by any of the methods described above.


The present invention also provides transgenic plants or plant seeds comprising plant cells as described above.


The present invention also provides transgenic plant cell calluses comprising plant cells as described above obtainable from a transgenic plant cell first-generation plant, plant seed or progeny as defined above.


The present invention also provides methods of obtaining a crop product comprising harvesting a crop product from a plant according to any method described above and optionally further processing the harvested product.


The present invention also provides food that comprises a protein as defined above.




BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by the accompanying drawings in which:



FIG. 1 shows freshly isolated PBMC (peripheral blood mononuclear cell) IFNγ ELISPOT responses (vertical axis shows spot forming cells per 106 PBMC) to transglutaminase (tTG)-treated and untreated peptide pool 3 (each peptide 10 μg/ml) including five overlapping 15mers spanning A-gliadin 51-85 (see Table 1) and a-chymotrypsin-digested gliadin (40 μg/ml) in coeliac disease Subject 1, initially in remission following a gluten free diet then challenged with 200 g bread daily for three days from day 1 (a). PBMC IFNγ ELISPOT responses by Subject 2 to tTG-treated A-gliadin peptide pools 1-10 spanning the complete A-gliadin protein during ten day bread challenge (b). The horizontal axis shows days after commencing bread.



FIG. 2 shows PBMC IFNγ ELISPOT responses to tTG-treated peptide pool 3 (spanning A-gliadin 51-85) in 7 individual coeliac disease subjects (vertical axis shows spot forming cells per 106 PBMC), initially in remission on gluten free diet, challenged with bread for three days (days 1 to 3). The horizontal axis shows days after commencing bread. (a). PBMC IFNγ Elispot responses to tTG-treated overlapping 15mer peptides included in pool 3; bars represent the mean (±SEM) response to individual peptides (10 μg/ml) in 6 Coeliac disease subjects on day 6 or 7(b). (In individual subjects, ELISPOT responses to peptides were calculated as a % of response elicited by peptide 12—as shown by the vertical axis.)



FIG. 3 shows PBMC IFNγ ELISPOT responses to tTG-treated truncations of A-gliadin 56-75 (0.1 μM). Bars represent the mean (±SEM) in 5 Coeliac disease subjects. (In individual subjects, responses were calculated as the % of the maximal response elicited by any of the peptides tested.)



FIG. 4 shows how the minimal structure of the dominant A-gliadin epitope was mapped using tTG-treated 7-17mer A-gliadin peptides (0.1 μM) including the sequence, PQPQLPY (SEQ ID NO:4) (A-gliadin 62-68) (a), and the same peptides without tTG treatment but with the substitution Q→E65 (b). Each line represents PBMC IFNγ ELISPOT responses in each of three Coeliac disease subjects on day 6 or 7 after bread was ingested on days 1-3. (In individual subjects, ELISPOT responses were calculated as a % of the response elicited by the 17mer, A-gliadin 57-73.)



FIG. 5 shows the amino acids that were deamidated by tTG. A-gliadin 56-75 LQLQPFPQPQLPYPQPQSFP (SEQ ID NO:5) (0.1) was incubated with tTG (50 μg/ml) at 37° C. for 2 hours. A single product was identified and purified by reverse phase HPLC. Amino acid analysis allowed % deamidation (Q→E) of each Gln residue in A-gliadin 56-75 attributable to tTG to be calculated (vertical axis).



FIG. 6 shows the effect of substituting Q→E in A-gliadin 57-73 at other positions in addition to Q65 using the 17mers: QLQPFPQPELPYPQPES (SEQ ID NO:6) (E57,65), QLQPFPQPELPYPQPES (SEQ ID NO:7) (E65,72), ELQPFPQPELPYPQPES (SEQ ID NO:8) (E57, 65, 72), and QLQPFPQPELPYPQPQS (SEQ ID NO:2) (E65) in three Coeliac disease subjects on day 6 or 7 after bread was ingested on days 1-3. Vertical axis shows % of the E65 response.



FIG. 7 shows that tTG treated A-gliadin 56-75 (0.1 μM) elicited IFN-g ELISPOT responses in (a) CD4 and CD8 magnetic bead depleted PBMC. (Bars represent CD4 depleted PBMC responses as a % of CD8 depleted PBMC responses; spot forming cells per million CD8 depleted PBMC were: Subject 4: 29, and Subject 6: 535). (b) PBMC IFNγ ELISPOT responses (spot forming cells/million PBMC) after incubation with monoclonal antibodies to HLA-DR (L243), -DQ (L2) and -DP (B7.21) (10 μg/ml) 1 h prior to tTG-treated 56-75 (0.1 μM) in two coeliac disease subjects homozygous for HLA-DQ a1*0501, b1*0201.



FIG. 8 shows the effect of substituting Glu at position 65 for other amino acids in the immunodominant epitope. The vertical axis shows the % response in the 3 subjects in relation to the immunodominant epitope.



FIG. 9 shows the immunoreactivity of naturally occurring gliadin peptides (measuring responses from 3 subjects) which contain the sequence PQLPY (SEQ ID NO:12) with (shaded) and without (clear) transglutaminase treatment.



FIG. 10 shows CD8, CD4, β7, and αE-specific immunomagnetic bead depletion of peripheral blood mononuclear cells from two coeliac subjects 6 days after commencing gluten challenge followed by interferon gamma ELISpot. A-gliadin 57-73 QE65 (25 mcg/ml), tTG-treated chymotrypsin-digested gliadin (100 mcg/ml) or PPD (10 mcg/ml) were used as antigen.



FIG. 11 shows the optimal T cell epitope length.



FIG. 12 shows a comparison of A-gliadin 57-73 QE65 with other peptides in a dose response study.



FIG. 13 shows a comparison of gliadin and A-gliadin 57-73 QE65 specific responses.



FIG. 14 shows the bioactivity of gliadin polymorphisms in coeliac subjects.



FIGS. 15 and 16 show the defining of the core epitope sequence.


FIGS. 17 to 27 show the agonist activity of A-gliadin 57-73 QE65 variants.



FIG. 28 shows responses in different patient groups.



FIG. 29 shows bioactivity of prolamin homologues of A-gliadin 57-73.



FIG. 30 shows, for healthy HLA-DQ2 subjects, the change in IFN-gamma ELISpot responses to tTG-deamidated gliadin peptide pools.



FIG. 31 shows, for coeliac HLA-DQ2 subjects, the change in IFN-gamma ELISpot responses to tTG-deamidated gliadin peptide pools.



FIG. 32 shows individual peptide contributions to “summed” gliadin peptide response.



FIG. 33 shows, for coeliac HLA-DQ2/8 subject C08, gluten challenge induced IFNγ ELISpot responses to tTG-deamidated gliadin peptide pools.



FIG. 34 shows, for coeliac HLA-DQ2/8 subject C07, gluten challenge induced IFNγ ELISpot responses to tTG-deamidated gliadin peptide pools.



FIG. 35 shows, for coeliac HLA-DQ8/7 subject C12, gluten challenge induced IFNγ ELISpot responses to tTG-deamidated gliadin peptide pools.



FIG. 36 shows, for coeliac HLA-DQ6/8 subject C11, gluten challenge induced IFNγ ELISpot responses to tTG-deamidated gliadin peptide pools.




DETAILED DESCRIPTION OF THE INVENTION

The term “coeliac disease” encompasses a spectrum of conditions caused by varying degrees of gluten sensitivity, including a severe form characterised by a flat small intestinal mucosa (hyperplastic villous atrophy) and other forms characterised by milder symptoms.


The individual mentioned above (in the context of diagnosis or therapy) is human. They may have coeliac disease (symptomatic or asymptomatic) or be suspected of having it. They may be on a gluten free diet. They may be in an acute phase response (for example they may have coeliac disease, but have only ingested gluten in the last 24 hours before which they had been on a gluten free diet for 14 to 28 days).


The individual may be susceptible to coeliac disease, such as a genetic susceptibility (determined for example by the individual having relatives with coeliac disease or possessing genes which cause predisposition to coeliac disease).


The Agent


The agent is typically a peptide, for example of length 7 to 50 amino acids, such as 10 to 40, or 15 to 30 amino acids in length.


SEQ ID NO:1 is PQPELPY. SEQ ID NO:2 is QLQPFPQPELPYPQPQS. SEQ ID NO:3 is shown in Table 1 and is the sequence of a whole A-gliadin. The glutamate at position 4 of SEQ ID NO:1 (equivalent to position 9 of SEQ ID NO:2) is generated by transglutaminase treatment of A-gliadin.


The agent may be the peptide represented by SEQ ID NO:1 or 2 or an epitope comprising sequence that comprises SEQ ID NO:1 which is an isolated oligopeptide derived from a gliadin protein; or an equivalent of these sequences from a naturally occurring gliadin protein which is a homologue of SEQ ID NO:3. Thus the epitope may be a derivative of the protein represented by SEQ ID NO:3. Such a derivative is typically a fragment of the gliadin, or a mutated derivative of the whole protein or fragment. Therefore the epitope of the invention does not include this naturally occurring whole gliadin protein, and does not include other whole naturally occurring gliadins.


The epitope may thus be a fragment of A-gliadin (e.g. SEQ ID NO:3), which comprises the sequence of SEQ ID NO:1, obtainable by treating (fully or partially) with transglutaminase, i.e. with 1, 2, 3 or more glutamines substituted to glutamates (including the substitution within SEQ ID-NO: 1).


Such fragments may be OF may include the sequences represented by positions 55 to 70, 58 to 73, 61 to 77 of SEQ ID NO:3 shown in Table 1. Typically such fragments will be recognised by T cells to at least the same extent that the peptides represented by SEQ ID NO:1 or 2 are recognised in any of the assays described herein using samples from coeliac disease patients.


Additionally, the agent may be the peptide represented by any of SEQ ID NOS:18-22, 31-36, 39-44, and 46 or a protein comprising a sequence corresponding to any of SEQ ID NOS:18-22, 31-36, 39-44, and 46 (such as fragments of a gliadin comprising any of SEQ ID NOS:18-22, 31-36, 39-44, and 46, for example after the gliadin has been treated with transglutaminase). Bioactive fragments of such sequences are also agents of the invention. Sequences equivalent to any of SEQ ID NOS:18-22, 31-36, 39-44, and 46 or analogues of these sequences are also agents of the invention.


In the case where the epitope comprises a sequence equivalent to the above epitopes (including fragments) from another gliadin protein (e.g. any of the gliadin proteins mentioned herein or any gliadins which cause coeliac disease), such equivalent sequences will correspond to a fragment of a gliadin protein typically treated (partially or fully) with transglutaminase. Such equivalent peptides can be determined by aligning the sequences of other gliadin proteins with the gliadin from which the original epitope derives, such as with SEQ ID NO:3 (for example using any of the programs mentioned herein). Transglutaminase is commercially available (e.g. Sigma T-5398). Table 4 provides a few examples of suitable equivalent sequences.


The agent which is an analogue is capable of being recognised by a TCR which recognises (i) or (ii). Therefore generally when the analogue is added to T cells in the presence of (i) or (ii), typically also in the presence of an antigen presenting cell (APC) (such as any of the APCs mentioned herein), the analogue inhibits the recognition of (i) or (ii), i.e. the analogue is able to compete with (i) or (ii) in such a system.


The analogue may be one which is capable of binding the TCR which recognises (i) or (ii). Such binding can be tested by standard techniques. Such TCRs can be isolated from T cells which have been shown to recognise (i) or (ii) (e.g. using the method of the invention). Demonstration of the binding of the analogue to the TCRs can then shown by determining whether the TCRs inhibit the binding of the analogue to a substance that binds the analogue, e.g. ail antibody to the analogue. Typically the analogue is bound to a class II MAC molecule (e.g. HLA-DQ2) in such an inhibition of binding assay.


Typically the analogue inhibits the binding of (i) or (ii) to a TCR In this case the amount of (i) or (ii) which can bind the TCR in the presence of the analogue is decreased. This is because the analogue is able to bind the TCR and therefore competes with (i) or (ii) for binding to the TCR T cells for use in the above binding experiments can be isolated from patients with coeliac disease, for example with the aid of the method of the invention.


Other binding characteristics of the analogue may also be the same as (i) or (ii), and thus typically the analogue binds to the same MHC class II molecule to which the peptide binds (HLA-DQ2 or -DQ8). The analogue typically binds to antibodies specific for (i) or (ii), and thus inhibits binding of (i) or (ii) to such antibodies.


The analogue is typically a peptide. It may have homology with (i) or (ii), typically at least 70% homology, preferably at least 80, 90%, 95%, 97% or 99% homology with (i) or (ii), for example over a region of at least 15 more (such as the entire length of the analogue and/or (i) or (ii), or across the region which contacts the TCR or binds the MHC molecule) contiguous amino acids. Methods of measuring protein homology are well known in the art and it will be understood by those of skill in the art that in the present context, homology is calculated on the basis of amino acid identity (sometimes referred to as “hard homology”).


For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology (for example used on its default settings) (Devereux et al (1984) Nucleic Acids Research 12, p 387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (typically on their default settings), for example as described in Altschul S. F. (1993) J Mol Evol 36:290-300; Altschul, S, F et al (1990) J Mol Biol 215:403-10.


Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information on the world wide web through the internet at, for example, “www.ncbi.nlm.nih.gov/”. This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold (Altschul et al, supra). These initial neighbourhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extensions for the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1992) Proc. Natl. Acad. Sci. USA 89:10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.


The BLAST algorithm performs a statistical analysis of the similarity between two sequences; see e.g., Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5787. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.


The homologous peptide analogues typically differ from (i) or (ii) by 1, 2, 3, 4, 5, 6, 7, 8 or more mutations (which may be substitutions, deletions or insertions). These mutations may be measured across any of the regions mentioned above in relation to calculating homology. The substitutions are preferably ‘conservative’. These are defined according to the following Table. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATICNon-polarG A PI L VPolar - unchargedC S T MN QPolar - chargedD EK RAROMATICH F W Y


Typically the amino acids in the analogue at the equivalent positions to amino acids in (i) or (ii) that contribute to binding the MHC molecule or are responsible for the recognition by the TCR, are the same or are conserved.


Typically the analogue peptide comprises one or more modifications, which may be natural post-translation modifications or artificial modifications. The modification may provide a chemical moiety (typically by substitution of a hydrogen, e.g. of a C—H bond), such as an amino, acetyl, hydroxy or halogen (e.g. fluorine) group or carbohydrate group. Typically the modification is present on the N or C terminus.


The analogue may comprise one or more non-natural amino acids, for example amino acids with a side chain different from natural amino acids. Generally, the non-natural amino acid will have an N terminus and/or a C terminus. The non-natural amino acid may be an L- or a D-amino acid.


The analogue typically has a shape, size, flexibility or electronic configuration that is substantially similar to (i) or (ii). It is typically a derivative of (i) or (ii). In one embodiment the analogue is a fusion protein comprising the sequence of SEQ ID NO:1 or 2, or any of the other peptides mentioned herein; and non-gliadin sequence.


In one embodiment the analogue is or mimics (i) or (ii) bound to a MHC class II molecule. 2, 3, 4 or more of such complexes may be associated or bound to each other, for example using a biotin/streptavidin based system, in which typically 2, 3 or 4 biotin labelled MHC molecules bind to a streptavidin moiety. This analogue typically inhibits the binding of the (i) or (ii)/MHC Class II complex to a TCR or antibody which is specific for the complex.


The analogue is typically an antibody or a fragment of an antibody, such as a Fab or (Fab)2 fragment The analogue may be immobilised on a solid support, particularly an analogue that mimics peptide bound to a MHC molecule.


The analogue is typically designed by computational means and then synthesised using methods known in the art. Alternatively the analogue can be selected from a library of compounds. The library may be a combinatorial library or a display library, such as a phage display library. The library of compounds may be expressed in the display library in the form of being bound to a SMC class II molecule, such as HLA-DQ2 or -DQ8. Analogues are generally selected from the library based on their ability to mimic the binding characteristics (i) or (ii). Thus they may be selected based on ability to bind a TCR or antibody which recognises (i) or (ii).


Typically analogues will be recognised by T cells to at least the same extent as any of the agents (i) or (ii), for example at least to the same extent as the equivalent epitope and preferably to the same extent as the peptide represented by SEQ ID NO:2, is recognised in any of the assays described herein, typically using T cells from coeliac disease patients. Analogues may be recognised to these extents in vivo and thus may be able to induce coeliac disease symptoms to at least the same extent as any of the agents mentioned herein (e.g. in a human patient or animal model).


Analogues may be identified in a method comprising determining whether a candidate substance is recognised by a T cell receptor that recognises an epitope of the invention, recognition of the substance indicating that the substance is an analogue. Such TCRs may be any of the TCRs mentioned herein, and may be present on T cells. Any suitable assay mentioned herein can be used to identify the analogue. In one embodiment this method is carried out in vivo. As mentioned above preferred analogues are recognised to at least the same extent as the peptide SEQ ID NO:2, and so the method may be used to identify analogues which are recognised to this extent.


In one embodiment the method comprises determining whether a candidate substance is able to inhibit the recognition of an epitope of the invention, inhibition of recognition indicating that the substance is an analogue.


The agent may be a product comprising at least 2, 5, 10 or 20 agents as defined by (i), (ii) or (iii). Typically the composition comprises epitopes of the invention (or equivalent analogues) from different gliadins, such as any of the species or variety of or types of gliadin mentioned herein. Preferred compositions comprise at least one epitope of the invention, or equivalent analogue, from all of the gliadins present in any of the species or variety mentioned herein, or from 2, 3, 4 or more of the species mentioned herein (such as from the panel of species consisting of wheat, rye, barley, oats and triticale). Thus, the agent may be monovalent or multivalent.


Diagnosis


As mentioned above the method of diagnosis of the invention may be based on the detection of T cells that bind the agent or on the detection of antibodies that recognise the agent.


The T cells that recognise the agent in the method (which includes the use mentioned above) are generally T cells that have been pre-sensitised in vivo to gliadin. As mentioned above such antigen-experienced T cells have been found to be present in the peripheral blood.


In the method the T cells can be contacted with the agent in vitro or in vivo, and determining whether the T cells recognise the agent can be performed in vitro or in vivo. Thus the invention provides the agent for use in a method of diagnosis practiced on the human body. Different agents are provided for simultaneous, separate or sequential use in such a method.


The in vitro method is typically carried out in aqueous solution into which the agent is added. The solution will also comprise the T cells (and in certain embodiments the APCs discussed below). The term ‘contacting’ as used herein includes adding the particular substance to the solution.


Determination of whether the T cells recognise the agent is generally accomplished by detecting a change in the state of the T cells in the presence of the agent or determining whether the T cells bind the agent. The change in state is generally caused by antigen specific functional activity of the T cell after the TCR binds the agent. The change of state may be measured inside (e.g. change in intracellular expression of proteins) or outside (e.g. detection of secreted substances) the T cells.


The change in state of the T cell may be the start of or increase in secretion of a substance from the T cell, such as a cytokine, especially IFN-γ, IL-2 or TNF-α. Determination of IFN-γ secretion is particularly preferred. The substance can typically be detected by allowing it to bind to a specific binding agent and then measuring the presence of the specific binding agent/substance complex. The specific binding agent is typically an antibody, such as polyclonal or monoclonal antibodies. Antibodies to cytokines are commercially available, or can be made using standard techniques.


Typically the specific binding agent is immobilised on a solid support. After the substance is allowed to bind the solid support can optionally be washed to remove material which is not specifically bound to the agent. The agent/substance complex may be detected by using a second binding agent that will bind the complex. Typically the second agent binds the substance at a site which is different from the site which binds the first agent. The second agent is preferably an antibody and is labelled directly or indirectly by a detectable label.


Thus the second agent may be detected by a third agent that is typically labelled directly or indirectly by a detectable label. For example the second agent may comprise a biotin moiety, allowing detection by a third agent which comprises a streptavidin moiety and typically alkaline phosphatase as a detectable label.


In one embodiment the detection system which is used is the ex-vivo ELISPOT assay described in WO 98/23960. In that assay IFNγ secreted from the T cell is bound by a first IFNγ specific antibody that is immobilised on a solid support. The bound IFNγ is then detected using a second IFNγ specific antibody which is labelled with a detectable label. Such a labelled antibody can be obtained from MABTECH (Stockholm, Sweden). Other detectable labels which can be used are discussed below.


The change in state of the T cell that can be measured may be the increase in the uptake of substances by the T cell, such as the uptake of thymidine. The change in state may be an increase in the size of the T cells, or proliferation of the T cells, or a change in cell surface markers on the T cell.


In one embodiment the change of state is detected by measuring the change in the intracellular expression of proteins, for example the increase in intracellular expression of any of the cytokines mentioned above. Such intracellular changes may be detected by contacting the inside of the T cell with a moiety that binds the expressed proteins in a specific manner and which allows sorting of the T cells by flow cytometry.


In one embodiment when binding the TCR the agent is bound to an MHC class II molecule (typically HLA-DQ2 or -DQ8), which is typically present on the surface of an antigen presenting cell (APC). However as mentioned herein other agents can bind a TCR without the need to also bind an MHC molecule.


Generally the T cells which are contacted in the method are taken from the individual in a blood sample, although other types of samples which contain T cells can be used. The sample may be added directly to the assay or may be processed first. Typically the processing may comprise diluting of the sample, for example with water or buffer. Typically the sample is diluted from 1.5 to 100 fold, for example 2 to 50 or 5 to 10 fold.


The processing may comprise separation of components of the sample. Typically mononuclear cells (MCs) are separated from the samples. The MCs will comprise the T cells and APCs. Thus in the method the APCs present in the separated MCs can present the peptide to the T cells. In another embodiment only T cells, such as only CD4 T cells, can be purified from the sample. PBMCs, MCs and T cells can be separated from the sample using techniques known in the art, such as those described in Lalvani et al (1997) J. Exp. Med. 186, p 859-865.


In one embodiment, the T cells used in the assay are in the form of unprocessed or diluted samples, or are freshly isolated T cells (such as in the form of freshly isolated MCs or PBMCs) which are used directly ex vivo, i.e. they are not cultured before being used in the method. Thus the T cells have not been restimulated in an antigen specific manner in vitro. However the T cells can be cultured before use, for example in the presence of one or more of the agents, and generally also exogenous growth promoting cytokines. During culturing the agent(s) are typically present on the surface of APCs, such as the APC used in the method. Pre-culturing of the T cells may lead to an increase in the sensitivity of the method. Thus the T cells can be converted into cell lines, such as short term cell lines (for example as described in Ota et al (1990) Nature 346, p 183-187).


The APC that is typically present in the method may be from the same individual as the T cell or from a different host The APC may be a naturally occurring APC or an artificial APC. The APC is a cell that is capable of presenting the peptide to a T cell. It is typically a B cell, dendritic cell or macrophage. It is typically separated from the same sample as the T cell and is typically co-purified with the T cell. Thus the APC may be present in MCs or PBMCs: The APC is typically a freshly isolated ex vivo cell or a cultured cell. It may be in the form of a cell line, such as a short term or immortalised cell line. The APC may express empty MHC class II molecules on its surface.


In the method one or more (different) agents may be used. Typically the T cells derived from the sample can be placed into an assay with all the agents which it is intended to test or the T cells can be divided and placed into separate assays each of which contain one or more of the agents.


The invention also provides the agents such as two or more of any of the agents mentioned herein (e.g. the combinations of agents which are present in the composition agent discussed above) for simultaneous separate or sequential use (eg. for in vivo use).


In one embodiment agent per se is added directly to an assay comprising T cells and APCs. As discussed above the T cells and APCs in such an assay could be in the form of MCs. When agents that can be recognised by the T cell without the need for presentation by APCs are used then APCs are not required. Analogues which mimic the original (i) or (in) bound to a MHC molecule are an example of such an agent.


In one embodiment the agent is provided to the APC in the absence of the T cell. The APC is then provided to the T cell, typically after being allowed to present the agent on its surface. The peptide may have been taken up inside the APC and presented, or simply be taken up onto the surface without entering inside the APC.


The duration for which the agent is contacted with the T cells will vary depending on the method used for determining recognition of the peptide. Typically 105 to 107, preferably 5×105 to 106 PBMCs are added to each assay. In the case where agent is added directly to the assay its concentration is from 10−1 to 103 μg/ml, preferably 0.5 to 50 μg/ml or 1 to 10 μg/ml.


Typically the length of time for which the T cells are incubated with the agent is from 4 to 24 hours, preferably 6 to 16 hours. When using ex vivo PBMCs it has been found that 0.3×106 PBMCs can be incubated in 10 μg/ml of peptide for 12 hours at 37° C.


The determination of the recognition of the agent by the T cells may be done by measuring the binding of the agent to the T cells (this can be carried out using any suitable binding assay format discussed herein). Typically T cells which bind the agent can be sorted based on this binding, for example using a FACS machine. The presence of T cells that recognise the agent will be deemed to occur if the frequency of cells sorted using the agent is above a “control” value. The frequency of antigen-experienced T cells is generally 1 in 106 to 1 in 103, and therefore whether or not the sorted cells are antigen-experienced T cells can be determined.


The determination of the recognition of the agent by the T cells may be measured in vivo. Typically the agent is administered to the host and then a response which indicates recognition of the agent may be measured. The agent is typically administered intradermally or epidermally. The agent is typically administered by contacting with the outside of the skin, and may be retained at the site with the aid of a plaster or dressing. Alternatively the agent may be administered by needle, such as by injection, but can also be administered by other methods such as ballistics (e.g. the ballistics techniques which have been used to deliver nucleic acids). EP-A-0693119 describes techniques that can typically be used to administer the agent. Typically from 0.001 to 1000 μg, for example from 0.01 to 100 μg or 0.1 to 10 μg of agent is administered.


In one embodiment a product can be administered which is capable of providing the agent in vivo. Thus a polynucleotide capable of expressing the agent can be administered, typically in any of the ways described above for the administration of the agent. The polynucleotide typically has any of the characteristics of the polynucleotide provided by the invention which is discussed below. The agent is expressed from the polynucleotide in vivo. Typically from 0.001 to 1000 μg, for example from 0.01 to 100 μg or 0.1 to 10 μg of polynucleotide is administered.


Recognition of the agent administered to the skin is typically indicated by the occurrence of inflammation (e.g. induration, erythema or oedema) at the site of administration. This is generally measured by visual examination of the site.


The method of diagnosis based on the detection of an antibody that binds the agent is typically carried out by contacting a sample from the individual (such as any of the samples mentioned here, optionally processed in any manner mentioned herein) with the agent and determining whether an antibody in the sample binds the agent, such a binding indicating that the individual has, or is susceptible to coeliac disease. Any suitable format of binding assay may be used, such as any such format mentioned herein.


Therapy


The identification of the immunodominant epitope and other epitopes described herein allows therapeutic products to be made which target the T cells which recognise this epitope (such T cells being ones which participate in the immune response against gliadin). These findings also allow the prevention or treatment of coeliac disease by suppressing (by tolerisation) an antibody or T cell response to the epitope(s).


Certain agents of the invention bind the TCR that recognises the epitope of the invention (as measured using any of the binding assays discussed above) and cause tolerisation of the T cell that carries the TCR. Such agents, optionally in association with a carrier, can therefore be used to prevent or treat coeliac disease.


Generally tolerisation can be caused by the same peptides which can (after being recognised by the TCR) cause antigen specific functional activity of the T cell (such as any such activity mentioned herein, e.g. secretion of cytokines). Such agents cause tolerisation when they are presented to the immune system in a ‘tolerising’ context.


Tolerisation leads to a decrease in the recognition of a T cell or antibody epitope by the immune system. In the case of a T cell epitope this can be caused by the deletion or anergising of T cells that recognise the epitope. Thus T cell activity (for example as measured in suitable assays mentioned herein) in response to the epitope is decreased. Tolerisation of an antibody response means that a decreased amount of specific antibody to the epitope is produced when the epitope is administered.


Methods of presenting antigens to the immune system in such a context are known and are described for example in Yoshida et al. Clin. Immunol. Immunopathol. 82, 207-215 (1997), Thurau et al. Clin. Exp. Immunol. 109, 370-6 (1997), and Weiner et al. Res. Immunol. 148, 528-33 (1997). In particular certain routes of administration can cause tolerisation, such as oral, nasal or intraperitoneal. Tolerisation may also be accomplished via dendritic cells and tetramers presenting peptide. Particular products which cause tolerisation may be administered (e.g. in a composition that also comprises the agent) to the individual. Such products include cytokines, such as cytokines that favour a Th2 response (e.g. IL-4, TGF-β or IL-10). Products or agent may be administered at a dose that causes tolerisation.


The invention provides a protein that comprises a sequence able to act as an antagonist of the T cell (which T cell recognises the agent). Such proteins and such antagonists can also be used to prevent or treat coeliac disease. The antagonist will cause a decrease in the T cell response. In one embodiment, the antagonist binds the TCR of the T cell (generally in the form of a complex with HLA-DQ2 or -DQ8) but instead of causing normal functional activation causing an abnormal signal to be passed through the TCR intracellular signalling cascade, which causes the T cell to have decreased function activity (e.g. in response to recognition of an epitope, typically as measured by any suitable assay mentioned herein).


In one embodiment the antagonist competes with epitope to bind a component of MHC processing and presentation pathway, such as an MHC molecule (typically HLA-DQ2 or -DQ8). Thus the antagonist may bind HLA-DQ2 or -DQ8 (and thus be a peptide presented by this MHC molecule), such as peptide TP (Table 10) or a homologue thereof.


Methods of causing antagonism are known in the art. In one embodiment the antagonist is a homologue of the epitopes mentioned above and may have any of the sequence, binding or other properties of the agent (particularly analogues). The antagonists typically differ from any of the above epitopes (which are capable of causing a normal antigen specific function in the T cell) by 1, 2, 3, 4 or more mutations (each of which may be a substitution, insertion or deletion). Such antagonists are termed “altered peptide ligands” or “APL” in the art. The mutations are typically at the amino acid positions that contact the TCR.


The antagonist may differ from the epitope by a substitution within the sequence that is equivalent to the sequence represented by amino acids 65 to 67 of A-gliadin (such antagonists are shown in Table 9). Thus preferably the antagonist has a substitution at the equivalent of position 64, 65 or 67. Preferably the substitution is 64W, 67W, 67M or 65T.


Since the T cell immune response to the epitope of the invention in an individual is polyclonal, more than one antagonist may need to be administered to cause antagonism of T cells of the response which have different TCRs. Therefore the antagonists may be administered in a composition which comprises at least 2, 4, 6 or more different antagonists, which each antagonise different T cells.


The invention also provides a method of identifying an antagonist of a T cell (which recognises the agent), comprising contacting a candidate substance with the T cell and detecting whether the substance causes a decrease in the ability of the T cell to undergo an antigen specific response (e.g. using any suitable assay mentioned herein), the detecting of any such decrease in said ability indicating that the substance is an antagonist.


In one embodiment, the antagonists (including combinations of antagonists to a particular epitope) or tolerising (T cell and antibody tolerising) agents are present in a composition comprising at least 2, 4, 6 or more antagonists or agents which antagonise or tolerise to different epitopes of the invention, for example to the combinations of epitopes discussed above in relation to the agents which are a product comprising more than one substance.


Testing Whether a Composition is Capable of Causing Coeliac Disease


As mentioned above the invention provides a method of determining whether a composition is capable of causing coeliac disease comprising detecting the presence of a protein sequence which is capable of being modified by a transglutaminase to as sequence comprising the agent or epitope of the invention (such transglutaminase activity may be a human intestinal transglutaminase activity). Typically this is performed by using a binding assay in which a moiety which binds to the sequence in a specific manner is contacted with the composition and the formation of sequence/moiety complex is detected and used to ascertain the presence of the agent. Such a moiety may be any suitable substance (or type of substance) mentioned herein, and is typically a specific antibody. Any suitable format of binding assay can be used (such as those mentioned herein).


In one embodiment, the composition is contacted with at least 2, 5, 10 or more antibodies which are specific for epitopes of the invention from different gliadins, for example a panel of antibodies capable of recognising the combinations of epitopes discussed above in relation to agents of the invention which are a product comprising more than one substance.


The composition typically comprises material from a plant that expresses a gliadin which is capable of causing coeliac disease (for example any of the gliadins or plants mentioned herein). Such material may be a plant part such as a harvested product (e.g. seed). The material may be processed products of the plant material (e.g. any such product mentioned herein), such as a flour or food that comprises the gliadin. The processing of food material and testing in suitable binding assays is routine, for example as mentioned in Kricka L J, J. Biolumin. Chemilumin. 13, 189-93 (1998).


Binding Assays


The determination of binding between any two substances mentioned herein may be done by measuring a characteristic of either or both substances that changes upon binding, such as a spectroscopic change.


The binding assay format may be a ‘band shift’ system. This involves determining whether the presence of one substance (such as a candidate substance) advances or retards the progress of the other substance during gel electrophoresis.


The format may be a competitive binding method which determines whether the one substance is able to inhibit the binding of the other substance to an agent which is known to bind the other substance, such as a specific antibody.


Mutant Gliadin Proteins


The invention provides a gliadin protein in which an epitope sequence of the invention, or sequence which can be modified by a transglutaminase to provide such a sequence has been mutated so that it no longer causes, or is recognised by, a T cell response that recognises the epitope. In this context the term recognition refers to the TCR binding the epitope in such a way that normal (not antagonistic) antigen-specific functional activity of the T cell occurs.


Methods of identifying equivalent epitopes in other gliadins are discussed above. The wild type of the mutated gliadin is one which causes coeliac disease. Such a gliadin may have homology with SEQ ID NO:3, for example to the degree mentioned above (in relation to the analogue) across all of SEQ ID NO:3 or across 15, 30, 60, 100 or 200 contiguous amino acids of SEQ ID NO:3. Likewise, for other non-A-gliadins, homology will be present between the mutant and the native form of that gliadin. The sequences of other natural gliadin proteins are known in the art.


The mutated gliadin will not cause coeliac disease or will cause decreased symptoms of coeliac disease. Typically the mutation decreases the ability of the epitope to induce a T cell response. The mutated epitope may have a decreased binding to HLA-DQ2 or -DQ8, a decreased ability to be presented by an APC or a decreased ability to bind to or to be recognised (i.e. cause antigen-specific functional activity) by T cells that recognise the agent. The mutated gliadin or epitope will therefore show no or reduced recognition in any of the assays mentioned herein in relation to the diagnostic aspects of the invention.


The mutation may be one or more deletions, additions or substitutions of length 1 to 3, 4 to 6, 6 to 10, 11 to 15 or more in the epitope, for example across sequence SEQ ID NO:2 or across any of SEQ ID NOS:18-22, 31-36, 3944, and 46; or across equivalents thereof. Preferably the mutant gliadin has at least one mutation in the sequence SEQ ID NO:1. A preferred mutation is at position 65 in A-gliadin (or in an equivalent position in other gliadins). Typically the naturally occurring glutamine at this position is substituted to any of the amino acids shown in Table 3, preferably to histidine, tyrosine, tryptophan, lysine, proline, or arginine.


The invention thus also provides use of a mutation (such any of the mutations in any of the sequences discussed herein) in an epitope of a gliadin protein, which epitope is an epitope of the invention, to decrease the ability of the gliadin protein to cause coeliac disease.


In one embodiment the mutated sequence is able to act as an antagonist. Thus the invention provides a protein that comprises a sequence which is able to bind to a T cell receptor, which T cell receptor recognises an agent of the invention, and which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.


The invention also provides proteins which are fragments of the above mutant gliadin proteins, which are at least 15 amino acids long (e.g. at least 30, 60, 100, 150, 200, or 250 amino acids long) and which comprise the mutations discussed above which decrease the ability of the gliadin to be recognised. Any of the mutant proteins (including fragments) mentioned herein may also be present in the form of fusion proteins, for example with other gliadins or with non-gliadin proteins.


The equivalent wild type protein to the mutated gliadin protein is typically from a graminaceous monocotyledon, such as a plant of genus Triticum, e.g. wheat, rye, barley, oats or triticale. The protein is typically an α, αβ, β, γ or ω gliadin. The gliadin may be an A-gliadin.


Kits


The invention also provides a kit for carrying out the method comprising one or more agents and optionally a means to detect the recognition of the agent by the T cell. Typically the different agents are provided for simultaneous, separate or sequential use. Typically the means to detect recognition allows or aids detection based on the techniques discussed above.


Thus the means may allow detection of a substance secreted by the T cells after recognition. The kit may thus additionally include a specific binding moiety for the substance, such as an antibody. The moiety is typically specific for IFN-γ. The moiety is typically immobilised on a solid support. This means that after binding the moiety the substance will remain in the vicinity of the T cell which secreted it. Thus “spots” of substance/moiety complex are formed on the support, each spot representing a T cell which is secreting the substance. Quantifying the spots, and typically comparing against a control, allows determination of recognition of the agent.


The kit may also comprise a means to detect the substance/moiety complex. A detectable change may occur in the moiety itself after binding the substance, such as a colour change. Alternatively a second moiety directly or indirectly labelled for detection may be allowed to bind the substance/moiety complex to allow the determination of the spots. As discussed above the second moiety may be specific for the substance, but binds a different site on the substance than the first moiety.


The immobilised support may be a plate with wells, such as a microtitre plate. Each assay can therefore be carried out in a separate well in the plate.


The kit may additionally comprise medium for the T cells, detection moieties or washing buffers to be used in the detection steps. The kit may additionally comprise reagents suitable for the separation from the sample, such as the separation of PBMCs or T cells from the sample. The kit may be designed to allow detection of the T cells directly in the sample without requiring any separation of the components of the sample.


The kit may comprise an instrument which allows administration of the agent, such as intradermal or epidermal administration. Typically such an instrument comprises plaster, dressing or one or more needles. The instrument may allow ballistic delivery of the agent. The agent in the kit may be in the form of a pharmaceutical composition.


The kit may also comprise controls, such as positive or negative controls. The positive control may allow the detection system to be tested. Thus the positive control typically mimics recognition of the agent in any of the above methods. Typically in the kits designed to determine recognition in vitro the positive control is a cytokine. In the kit designed to detect in vivo recognition of the agent the positive control may be antigen to which most individuals should response.


The kit may also comprise a means to take a sample containing T cells from the host, such as a blood sample. The kit may comprise a means to separate mononuclear cells or T cells from a sample from the host.


Polynucleotides, Cells, Transgenic Mammals and Antibodies


The invention also provides a polynucleotide which is capable of expression to provide the agent or mutant gliadin proteins. Typically the polynucleotide is DNA or RNA, and is single or double stranded. The polynucleotide will preferably comprise at least 50 bases or base pairs, for example 50 to 100, 100 to 500, 500 to 1000 or 1000 to 2000 or more bases or base pairs. The polynucleotide therefore comprises a sequence which encodes the sequence of SEQ ID NO:1 or 2 or any of the other agents mentioned herein. To the 5′ and 3′ of this coding sequence the polynucleotide of the invention has sequence or codons which are different from the sequence or codons 5′ and 3′ to these sequences in the corresponding gliadin gene.


5′ and/or 3′ to the sequence encoding the peptide the polynucleotide has coding or non-coding sequence. Sequence 5′ and/or 3′ to the coding sequence may comprise sequences which aid expression, such as transcription and/or translation, of the sequence encoding the agent. The polynucleotide may be capable of expressing the agent prokaryotic or eukaryotic cell. In one embodiment the polynucleotide is capable of expressing the agent in a mammalian cell, such as a human, primate or rodent (e.g. mouse or rat) cell.


A polynucleotide of the invention may hybridise selectively to a polynucleotide that encodes SEQ ID NO:3 at a level significantly above background.


Selective hybridisation is typically achieved using conditions of medium to high stringency (for example 0.03M sodium chloride and 0.03M sodium citrate at from about 50° C. to about 60° C.). However, such hybridisation may be carried out under any suitable conditions known in the art (see Sambrook et al (1989), Molecular Cloning: A Laboratory Manual). For example, if high stringency is required, suitable conditions include 0.2×SSC at 60° C. If lower stringency is required, suitable conditions include 2×SSC at 60° C.


Agents or proteins of the invention may be encoded by the polynucleotides described herein.


The polynucleotide may form or be incorporated into a replicable vector. Such a vector is able to replicate in a suitable cell. The vector may be an expression vector. In such a vector the polynucleotide of the invention is operably linked to a control sequence which is capable of providing for the expression of the polynucleotide. The vector may contain a selectable marker, such as the ampicillin resistance gene.


The polynucleotide or vector may be present in a cell. Such a cell may have been transformed by the polynucleotide or vector. The cell may express the agent. The cell will be chosen to be compatible with the said vector and may for example be a prokaryotic (bacterial), yeast, insect or mammalian cell. The polynucleotide or vector may be introduced into host cells using conventional techniques including calcium phosphate precipitation, DEAE-dextran transfection, or electroporation.


The invention provides processes for the production of the proteins of the invention by recombinant means. This may comprise (a) cultivating a transformed cell as defined above under conditions that allow the expression of the protein; and preferably (b) recovering the expressed polypeptide. Optionally, the polypeptide may be isolated and/or purified, by techniques known in the art.


The invention also provides TCRs which recognise (or bind) the agent, or fragments thereof which are capable of such recognition (or binding). These can be present in the any form mentioned herein (e.g. purity) discussed herein in relation to the protein of the invention. The invention also provides T cells which express such TCRs which can be present in any form (e.g. purity) discussed herein for the cells of the invention.


The invention also provides monoclonal or polyclonal antibodies which specifically recognise the agents (such as any of the epitopes of the invention) and which recognise the mutant gliadin proteins (and typically which do not recognise the equivalent wild-type gliadins) of the invention, and methods of making such antibodies. Antibodies of the invention bind specifically to these substances of the invention.


For the purposes of this invention, the term “antibody” includes antibody fragments such as Fv, F(ab) and F(ab)2 fragments, as well as single-chain antibodies.


A method for producing a polyclonal antibody comprises immunising a suitable host animal, for example an experimental animal, with the immunogen and isolating immunoglobulins from the serum. The animal may therefore be inoculated with the immunogen, blood subsequently removed from the animal and the IgG fraction purified. A method for producing a monoclonal antibody comprises immortalising cells which produce the desired antibody. Hybridoma cells may be produced by fusing spleen cells from an inoculated experimental animal with tumour cells (Kohler and Milstein (1975) Nature 256, 495497).


An immortalized cell producing the desired antibody may be selected by a conventional procedure. The hybridomas may be grown in culture or injected intraperitoneally for formation of ascites fluid or into the blood stream of an allogenic host or immunocompromised host. Human antibody may be prepared by in vitro immunisation of human lymphocytes, followed by transformation of the lymphocytes with Epstein-Barr virus.


For the production of both monoclonal and polyclonal antibodies, the experimental animal is suitably a goat, rabbit, rat or mouse. If desired, the immunogen may be administered as a conjugate in which the immunogen is coupled, for example via a side chain of one of the amino acid residues, to a suitable carrier. The carrier molecule is typically a physiologically acceptable carrier. The antibody obtained may be isolated and, if desired, purified.


The polynucleotide, agent, protein or antibody of the invention, may carry a detectable label. Detectable labels which allow detection of the secreted substance by visual inspection, optionally with the aid of an optical magnifying means, are preferred. Such a system is typically based on an enzyme label which causes colour change in a substrate, for example alkaline phosphatase causing a colour change in a substrate. Such substrates are commercially available, e.g. from BioRad. Other suitable labels include other enzymes such as peroxidase, or protein labels, such as biotin; or radioisotopes, such as 32P or 35S. The above labels may be detected using known techniques.


Polynucleotides, agents, proteins, antibodies or cells of the invention may be in substantially purified form. They may be in substantially isolated form, in which case they will generally comprise at least 80% e.g. at least 90, 95, 97 or 99% of the polynucleotide, peptide, antibody, cells or dry mass in the preparation. The polynucleotide, agent, protein or antibody is typically substantially free of other cellular components. The polynucleotide, agent, protein or antibody may be used in such a substantially isolated, purified or free form in the method or be present in such forms in the kit.


The invention also provides a transgenic non-human mammal which expresses a TCR of the invention. This may be any of the mammals discussed herein (e.g. in relation to the production of the antibody). Preferably the mammal has, or is susceptible, to coeliac disease. The mammal may also express HLA-DQ2 or -DQ8 or HLA-DR3-DQ2 and/or may be given a diet comprising a gliadin which cause coeliac disease (e.g. any of the gliadin proteins mentioned herein). Thus the mammal may act as an animal model for coeliac disease.


The invention also provides a method of identifying a product which is therapeutic for coeliac disease comprising administering a candidate substance to a mammal of the invention which has, or which is susceptible to, coeliac disease and determining whether substance prevents or treats coeliac disease in the mammal, the prevention or treatment of coeliac disease indicating that the substance is a therapeutic product. Such a product may be used to treat or prevent coeliac disease.


The invention provides therapeutic (including prophylactic) agents or diagnostic substances (the agents, proteins and polynucleotides of the invention). These substances are formulated for clinical administration by mixing them with a pharmaceutically acceptable carrier or diluent. For example they can be formulated for topical, parenteral, intravenous, intramuscular, subcutaneous, intraocular, intradermal, epidermal or transdermal administration. The substances may be mixed with any vehicle which is pharmaceutically acceptable and appropriate for the desired route of administration. The pharmaceutically carrier or diluent for injection may be, for example, a sterile or isotonic solution such as Water for Injection or physiological saline, or a carrier particle for ballistic delivery.


The dose of the substances may be adjusted according to various parameters, especially according to the agent used; the age, weight and condition of the patient to be treated; the mode of administration used; the severity of the condition to be treated; and the required clinical regimen. As a guide, the amount of substance administered by injection is suitably from 0.01 mg/kg to 30 mg/kg, preferably from 0.1 mg/kg to 10 mg/kg.


The routes of administration and dosages described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and dosage for any particular patient and condition.


The substances of the invention may thus be used in a method of treatment of the human or animal body, or in a diagnostic method practised on the human body. In particular they may be used in a method of treating or preventing coeliac disease. The invention also provide the agents for use in a method of manufacture of a medicament for treating or preventing coeliac disease. Thus the invention provides a method of preventing or treating coeliac disease comprising administering to a human in need thereof a substance of the invention (typically a non-toxic effective amount thereof).


The agent of the invention can be made using standard synthetic chemistry techniques, such as by use of an automated synthesizer. The agent may be made from a longer polypeptide e.g. a fusion protein, which polypeptide typically comprises the sequence of the peptide. The peptide may be derived from the polypeptide by for example hydrolysing the polypeptide, such as using a protease; or by physically breaking the polypeptide. The polynucleotide of the invention can be made using standard techniques, such as by using a synthesiser.


Plant Cells and Plants that Express Mutant Gliadin Proteins or Express Proteins Comprising Sequences which Can Act as Antagonists


The cell of the invention may be a plant cell, such as a cell of a graminaceous monocotyledonous species. The species may be one whose wild-type form expresses gliadins, such as any of the gliadin proteins mentioned herein (including gliadins with any degree of homology to SEQ ID NO:3 mentioned herein). Such a gliadin may cause coeliac disease in humans. The cell may be of wheat, maize, oats, rye, rice, barley, triticale, sorghum, or sugar cane. Typically the cell is of the Triticum genus, such as aestivum, spelta, polonicum or monococcum.


The plant cell of the invention is typically one which does not express a wild-type gliadin (such as any of the gliadins mentioned herein which may cause coeliac disease), or one which does not express a gliadin comprising a sequence that can be recognised by a T cell that recognises the agent. Thus if the wild-type plant cell did express such a gliadin then it may be engineered to prevent or reduce the expression of such a gliadin or to change the amino acid sequence of the gliadin so that it no longer causes coeliac disease (typically by no longer expressing the epitope of the invention).


This can be done for example by introducing mutations into 1, 2, 3 or more or all of such gliadin genes in the cell, for example into coding or non-coding (e.g. promoter regions). Such mutations can be any of the type or length of mutations discussed herein (e.g., in relation to homologous proteins). The mutations can be introduced in a directed manner (e.g., using site directed mutagenesis or homologous recombination techniques) or in a random manner (e.g. using a mutagen, and then typically selecting for mutagenised cells which no longer express the gliadin (or a gliadin sequence which causes coeliac disease)).


In the case of plants or plant cells that express a protein that comprises a sequence able to act as an antagonist such a plant or plant cell may express a wild-type gliadin protein (e.g. one which causes coeliac disease). Preferably though the presence of the antagonist sequence will cause reduced coeliac disease symptoms (such as no symptoms) in an individual who ingests a food comprising protein from the plant or plant cell.


The polynucleotide which is present in (or which was transformed into) the plant cell will generally comprise promoter capable of expressing the mutant gliadin protein the plant cell. Depending on the pattern of expression desired, the promoter may be constitutive, tissue- or stage-specific; and/or inducible. For example, strong constitutive expression in plants can be obtained with the CAMV 35S, Rubisco ssu, or histone promoters. Also, tissue-specific or stage-specific promoters may be used to target expression of protein of the invention to particular tissues in a transgenic plant or to particular stages in its development. Thus, for example seed-specific, root-specific, leaf-specific, flower-specific etc promoters may be used. Seed-specific promoters include those described by Dalta et al (Biotechnology Ann. Rev. (1997), 3, pp. 269-296). Particular examples of seed-specific promoters are napin promoters (EP-A-0 255, 378), phaseolin promoters, glutenine promoters, helianthenine promoters (WO92/17580), albumin promoters (WO98/45460), oleosin promoters (WO98/45461) and ATS1 and ATS3 promoters (PCT/US98/06798).


The cell may be in any form. For example, it may be an isolated cell, e.g. a protoplast, or it may be part of a plant tissue, e.g. a callus, or a tissue excised from a plant, or it may be part of a whole plant. The cell may be of any type (e.g. of any type of plant part). For example, an undifferentiated cell, such as a callus cell; or a differentiated cell, such as a cell of a type found in embryos, pollen, roots, shoots or leaves. Plant parts include roots; shoots; leaves; and parts involved in reproduction, such as pollen, ova, stamens, anthers, petals, sepals and other flower parts.


The invention provides a method of obtaining a transgenic plant cell comprising transforming a plant cell with a polynucleotide or vector of the invention to give a transgenic plant cell. Any suitable transformation method may be used (in the case of wheat the techniques disclosed in Vasil V et al, Biotechnology 10, 667-674 (1992) may be used). Preferred transformation techniques include electroporation of plant protoplasts and particle bombardment. Transformation may thus give rise to a chimeric tissue or plant in which some cells are transgenic and some are not.


The cell of the invention or thus obtained cell may be regenerated into a transgenic plant by techniques known in the art. These may involve the ruse of plant growth substances such as auxins, giberellins and/or cytokinins to stimulate the growth and/or division of the transgenic cell. Similarly, techniques such as somatic embryogenesis and meristem culture may be used. Regeneration techniques are well known in the art and examples can be found in, e.g. U.S. Pat. No. 4,459,355, U.S. Pat. No. 4,536,475, U.S. Pat. No. 5,464,763, U.S. Pat. No. 5,177,010, U.S. Pat. No. 5,187,073, EP 267,159, EP 604, 662, EP 672, 752, U.S. Pat. No. 4,945,050, U.S. Pat. No. 5,036,006, U.S. Pat. No. 5,100,792, U.S. Pat. No. 5,371,014, U.S. Pat. No. 5,478,744, U.S. Pat. No. 5,179,022, U.S. Pat. No. 5,565,346, U.S. Pat. No. 5,484,956, U.S. Pat. No. 5,508,468, U.S. Pat. No. 5,538,877, U.S. Pat. No. 5,554,798, U.S. Pat. No. 5,489,520, U.S. Pat. No. 5,510,318, U.S. Pat. No. 5,204,253, U.S. Pat. No. 5,405,765, EP 442,174, EP 486,233, EP 486,234, EP 539,563, EP 674,725, WO91/02071 and WO 95/06128.


In many such techniques, one step is the formation of a callus, i.e. a plant tissue comprising expanding and/or dividing cells. Such calli are a further aspect of the invention as are other types of plant cell cultures and plant parts. Thus, for example, the invention provides transgenic plant tissues and parts, including embryos, meristems, seeds, shoots, roots, stems, leaves and flower parts. These may be chimeric in the sense that some of their cells are cells of the invention and some are not. Transgenic plant parts and tissues, plants and seeds of the invention may be of any of the plant species mentioned herein.


Regeneration procedures will typically involve the selection of transformed cells by means of marker genes.


The regeneration step gives rise to a first generation transgenic plant. The invention also provides methods of obtaining transgenic plants of further generations from this first generation plant. These are known as progeny transgenic plants. Progeny plants of second, third, fourth, fifth, sixth and further generations may be obtained from the first generation transgenic plant by any means known in the art.


Thus, the invention provides a method of obtaining a transgenic progeny plant comprising obtaining a second-generation transgenic progeny plant from a first-generation transgenic plant of the invention, and optionally obtaining transgenic plants of one or more further generations from the second-generation progeny plant thus obtained.


Progeny plants may be produced from their predecessors of earlier generations by any known technique. In particular, progeny plants may be produced by:


obtaining a transgenic seed from a transgenic plant of the invention belonging to a previous generation, then obtaining a transgenic progeny plant of the invention belonging to a new generation by growing up the transgenic seed; and/or


propagating clonally a transgenic plant of the invention belonging to a previous generation to give a transgenic progeny plant of the invention belonging to a new generation; and/or


crossing a first-generation transgenic plant of the invention belonging to a previous generation with another compatible plant to give a transgenic progeny plant of the invention belonging to a new generation; and optionally


obtaining transgenic progeny plants of one or more further generations from the progeny plant thus obtained.


These techniques may be used in any combination. For example, clonal propagation and sexual propagation may be used at different points in a process that gives rise to a transgenic plant suitable for cultivation. In particular, repetitive back-crossing with a plant taxon with agronomically desirable characteristics may be undertaken. Further steps of removing cells from a plant and regenerating new plants therefrom may also be carried out.


Also, further desirable characteristics may be introduced by transforming the cells, plant tissues, plants or seeds, at any suitable stage in the above process, to introduce desirable coding sequences other than the polynucleotides of the invention. This may be carried out by the techniques described herein for the introduction of polynucleotides of the invention.


For example, further transgenes may be selected from those coding for other herbicide resistance traits, e.g. tolerance to: Glyphosate (e.g. using an EPSP synthase gene (e.g. EP-A-0 293,358) or a glyphosate oxidoreductase (WO 92/000377) gene); or tolerance to fosametin; a dihalobenzonitrile; glufosinate, e.g. using a phosphinothrycin acetyl transferase (PAT) or glutamine synthase gene (cf. EP-A-0 242,236); asulam, e.g. using a dihydropteroate synthase gene (EP-A-0 369,367); or a sulphonylurea, e.g. using an ALS gene); diphenyl ethers such as acifluorfen or oxyfluorfen, e.g. using a protoporphyrogen oxidase gene); an oxadiazole such as oxadiazon; a cyclic imide such as chlorophthalim; a phenyl pyrazole such as TNP, or a phenopylate or carbamate analogue thereof.


Similarly, genes for beneficial properties other than herbicide tolerance may be introduced. For example, genes for insect resistance may be introduced, notably genes encoding Bacillus thuringiensis (Bt) toxins. Likewise, genes for disease resistance may be introduced, e.g. as in WO91/02701 or WO95/06128.


Typically, a protein of the invention is expressed in a plant of the invention. Depending on the promoter used, this expression may be constitutive or inducible. Similarly, it may be tissue- or stage-specific, i.e. directed towards a particular plant tissue (such as any of the tissues mentioned herein) or stage in plant development.


The invention also provides methods of obtaining crop products by harvesting, and optionally processing further, transgenic plants of the invention. By crop product is meant any useful product obtainable from a crop plant.


Products that Contain Mutant Gliadin Proteins or Proteins that Comprise Sequence Capable of Acting as an Antagonist


The invention provides a product that comprises the mutant gliadin proteins or protein that comprises sequence capable of acting as an antagonist. This is typically derived from or comprise plant parts from plants mentioned herein which express such proteins. Such a product may be obtainable directly by harvesting or indirectly, by harvesting and further processing the plant of the invention. Directly obtainable products include grains. Alternatively, such a product may be obtainable indirectly, by harvesting and further processing. Examples of products obtainable by further processing are flour or distilled alcoholic beverages; food products made from directly obtained or further processed material, e.g. baked products (e.g. bread) made from flour. Typically such food products, which are ingestible and digestible (i.e. non-toxic and of nutrient value) by human individuals.


In the case of food products that comprise the protein which comprises an antagonist sequence the food product may also comprise wild-type gliadin, but preferably the antagonist is able to cause a reduction (e.g. completely) in the coeliac disease symptoms after such food is ingested.


The invention is illustrated by the following nonlimiting Examples:


EXAMPLE 1

We carried out epitope mapping in Coeliac disease by using a set of 51 synthetic 15-mer peptides that span the complete sequence of a fully characterized a-gliadin, “A-gliadin” (see Table 1). A-Gliadin peptides were also individually treated with tTG to generate products that might mimic those produced in vivo3. We also sought to study Coeliac disease patients at the point of initiation of disease relapse to avoid the possibility that epitope “spreading” or “exhaustion” may have occurred, as described in experimental infectious and autoimmune diseases.


Clinical and A-Gliadin Specific T-Cell Responses with 3 and 10 Day Bread Challenge


In a pilot study, two subjects with Coeliac disease in remission, defined by absence of serum anti-endomysial antibody (EMA), on a gluten free diet were fed four slices of standard gluten-containing white bread daily in addition to their usual gluten free diet. Subject 1 ceased bread because of abdominal pain, mouth ulcers and mild diarrhoea after three days, but Subject 2 continued for 10 days with only mild nausea at one week. The EMA became positive in Subject 2 one week after the bread challenge, indicating the bread used had caused a relapse of Coeliac disease. But in Subject 1, EMA remained negative up to two months after bread challenge. In both subjects, symptoms that appeared with bread challenge resolved within two days after returning to gluten free diet.


PBMC responses in IFNγ ELISPOT assays to A-gliadin peptides were not found before or during bread challenge. But from the day after bread withdrawal (Day 4) in Subject 1 a single pool of 5 overlapping peptides spanning A-gliadin 51-85 (Pool 3) treated with tTG showed potent IFNγ responses (see FIG. 1a). In Subject 1, the PBMC IFNγ response to A-gliadin peptide remained targeted to Pool 3 alone and was maximal on Day 8. The dynamics and magnitude of the response to Pool 3 was similar to that elicited by α-chymotrypsin digested gliadin. PBMC IFNγ responses to tTG-treated Pool 3 were consistently 5 to 12-fold greater than Pool 3 not treated with tTG, and responses to α-chymotrypsin digested gliadin were 3 to 10-fold greater if treated with tTG. In Subject 2, Pool 3 treated with tTG was also the only immunogenic set of A-gliadin peptides on Day 8, but this response was weaker than Subject 1, was not seen on Day 4 and by Day 11 the response to Pool 3 had diminished and other tTG-treated pools of A-gliadin peptides elicited stronger IFNα responses (see FIG. 1b).


The pilot study indicated that the initial T cell response in these Coeliac disease subjects was against a single tTG-treated A-gliadin pool of five peptides and was readily measured in peripheral blood. But if antigen exposure is continued for ten days instead of three, T cell responses to other A-gliadin peptides appear, consistent with epitope spreading.


Coeliac Disease-Specific IFN-g Induction by tTG-Treated A-Gliadin Peptides


In five out of six further Coeliac disease subjects on gluten free diet (see Table 1), bread challenge for three days identified tTG-treated peptides in Pool 3, and in particular, peptides corresponding to 56-70 (12) and 60-75 (13) as the sole A-gliadin components eliciting IFNγ from PBMC (see FIG. 2). IL-10 ELISPOT assays run in parallel to IFNγ ELISPOT showed no IL-10 response to tTG-treated peptides 12 or 13. In one subject, there were no IFNγ responses to any A-gliadin peptide or α-chymotrypsin digested gliadin before, during or up to four days after bread challenge. In none of these Coeliac disease subjects did EMA status change from baseline when measured for up to two months after bread challenge.


PBMC from four healthy, EMA-negative subjects with the HLA-DQ alleles α1*0501, β1*0201 (ages 28-52, 2 females) who had been challenged for three days with bread after following a gluten free diet for one month, showed no IFNγ responses above the negative control to any of the A-gliadin peptides with or without tTG treatment. Thus, induction of IFNγ in PBMC to tTG-treated Pool 3 and A-gliadin peptides 56-70 (12) and 60-75 (13) were Coeliac disease specific (7/8 vs. 0/4, p<0.01 by Chi-squared analysis).


Fine Mapping of the Minimal A-Gliadin T Cell Epitope


tTG-treated peptides representing truncations of A-gliadin 56-75 revealed that the same core peptide sequence QPQLP (SEQ ID NO:9) was essential for antigenicity in all of the five Coeliac disease subjects assessed (see FIG. 3). PBMC IFNγ responses to tTG-treated peptides spanning this core sequence beginning with the 7-mer PQPQLPY (SEQ ID NO:4) and increasing in length, indicated that the tTG-treated 17-mer QLQPFPQPQLPYPQPQS (SEQ ID NO:10) (A-gliadin 57-73) possessed optimal activity in the IFNγ ELISPOT (see FIG. 4).


Deamidation of Q65 by tTG Generates the Immunodominant T Cell Epitope in A-Gliadin


HPLC analysis demonstrated that tTG treatment of A-gliadin 56-75 generated a single product that eluted marginally later than the parent peptide. Amino acid sequencing indicated that out of the six glutamine (Q) residues contained in A-gliadin 56-75, Q65 was preferentially deamidated by tTG (see FIG. 5). Bioactivity of peptides corresponding to serial expansions from the core A-gliadin 62-68 sequence in which glutamate (E) replaced Q65, was equivalent to the same peptides with Q65 after tTG-treatment (see FIG. 4a). Replacement of Q57 and Q72 by E together or alone, with E65 did not enhance antigenicity of the 17-mer in the three Coeliac disease subjects studied (see FIG. 6). Q57 and Q72 were investigated because glutamine residues followed by proline in gliadin peptides are not deamidated by tTG in vitro (W. Vader et al, Proceedings 8th International Symposium Coeliac Disease). Therefore, the immunodominant T cell epitope was defined as QLQPFPQPELPYPQPQS (SEQ ID NO:2).


Immunodominant T Cell Epitope Response is DQ2-Restricted and CD4 Dependent


In two Coeliac disease subjects homozygous for HLA-DQ α1*0501, β1*0201, anti-DQ monoclonal antibody blocked the ELISPOT IFNγ response to tTG-treated A-gliadin 56-75, but anti-DP and -DR antibody did not (see FIG. 7). Anti-CD4 and anti-CD8 magnetic bead depletion of PBMC from two Coeliac disease subjects indicated the IFNγ response to tTG-treated A-gliadin 56-75 is CD4 T cell-mediated.


Discussion


In this study we describe a rather simple dietary antigen challenge using standard white bread to elicit a transient population of CD4 T cells in peripheral blood of Coeliac disease subjects responsive to a tTG-treated A-gliadin 17-mer with the sequence: QLQPFPQPELPYPQPQS (SEQ ID NO:2) (residues 57-73). The immune response to A-gliadin 56-75 (Q→E65) is restricted to the Coeliac disease-associated HLA allele, DQ α1*0501, β1*0201. Tissue transglutaminase action in vitro selectively deamidates Q65. Elicited peripheral blood IFNg responses to synthetic A-gliadin peptides with the substitution Q→E65 is equivalent to tTG-treated Q65 A-gliadin peptides; both stimulate up to 10-fold more T cells in the IFNg ELISPOT than unmodified Q65 A-gliadin peptides.


We have deliberately defined this Coeliac disease-specific T cell epitope using in vivo antigen challenge and short-term ex vivo immune assays to avoid the possibility of methodological artifacts that may occur with the use of T cell clones in epitope mapping. Our findings indicate that peripheral blood T cell responses to ingestion of gluten are rapid but short-lived and can be utilized for epitope mapping. In vivo antigen challenge has also shown there is a temporal hierarchy of immune responses to A-gliadin peptides; A-gliadin 57-73 modified by tTG not only elicits the strongest IFNg response in PBMC but it is also the first IFNg response to appear.


Because we have assessed only peptides spanning A-gliadin, there may be other epitopes in other gliadins of equal or greater importance in the pathogenesis of Coeliac disease. Indeed, the peptide sequence at the cote of the epitope in A-gliadin that we have identified PQPQLPY (SEQ ID NO:4) is shared by several other gliadins (SwissProt and Trembl accession numbers: P02863, Q41528, Q41531, Q41533, Q9ZP09, P04722, P04724, P18573). However, A-gliadin peptides that have previously been shown to possess bioactivity in biopsy challenge and in vivo studies (for example: 31-43, 44-55, and 206-217)4,5 did not elicit IFNg responses in PBMC following three day bread challenge in Coeliac disease subjects. These peptides may be “secondary” T cell epitopes that arise with spreading of the immune response.


EXAMPLE 2

The Effect on T Cell Recognition of Substitutions in the Immunodominant Epitope


The effect of substituting the glutamate at position 65 in the 57-73 A-gliadin epitope was determined by measuring peripheral blood responses-against the substituted epitopes in an IFNγ ELISPOT assay using synthetic peptides (at 50 μg/ml). The responses were measured in 3 Coeliac disease subjects 6 days after commencing gluten challenge (4 slices bread daily for 3 days). Results are shown in table 3 and FIG. 8. As can be seen substitution of the glutamate to histidine, tyrosine, tryptophan, lysine, proline or arginine stimulated a response whose magnitude was less than 10% of the magnitude of the response to the immunodominant epitope. Thus mutation of A-gliadin at this position could be used to produce a mutant gliadin with reduce or absent immunoreactivity.


EXAMPLE 3

Testing the Immunoreactivity of Equivalent Peptides from Other Naturally Occurring Gliadins


The immunoreactivity of equivalent peptides form other naturally occurring wheat gliadins was assessed using synthetic peptides corresponding to the naturally occurring sequences which were then treated with transglutaminase. These peptides were tested in an ELISPOT in the same manner and with PBMCs from the same subjects as described in Example 2. At least five of the peptides show immunoreactivity comparable to the A-gliadin 57-73 E65 peptide (after transglutaminase treatment) indicating that other gliadin proteins in wheat are also likely to induce this Coeliac disease-specific immune response (Table 4 and FIG. 9).


Methods


Subjects: Patients used in the study attended a Coeliac Clinic in Oxford, United Kingdom. Coeliac disease was diagnosed on the basis of typical small intestinal histology, and normalization of symptoms and small intestinal histology with gluten free diet.


Tissue typing: Tissue typing was performed using DNA extracted from EDTA-anticoagulated peripheral blood. HLA-DQA and DQB genotyping was performed by PCR using sequence-specific primer mixes6-8.


Anti-endomysial antibody assay: EMA were detected by indirect immunofluorescence using patient serum diluted 1:5 with monkey oesophagus, followed by FITC-conjugated goat anti-human IgA. IgA was quantitated prior to EMA, none of the subjects were IgA deficient.


Antigen Challenge: Coeliac disease subjects following a gluten free diet, consumed 4 slices of gluten-containing bread (50 g/slice, Sainsbury's “standard white sandwich bread”) daily for 3 or 10 days. EMA was assessed the week before and up to two months after commencing the bread challenge. Healthy subjects who had followed a gluten free diet for four weeks, consumed their usual diet including four slices of gluten-containing bread for three days, then returned to gluten free diet for a further six days.


IFNγ and IL-10 ELISPOT: PBMC were prepared from 50-100 ml of venous blood by Ficoll-Hypaque density centrifugation. After three washes, PBMC were resuspended in complete RPMI containing 10% heat inactivated human AB serum. ELISPOT assays for single cell secretion of IFNγ and IL-10 were performed using commercial kits (Mabtech; Stockholm, Sweden) with 96-well plates (MAIP-S-45; Millipore, Bedford, Mass.) according to the manufacturers instructions (as described elsewhere9) with 2-5×105 (IFNγ) or 0.4-1×105 (IL-10) PBMC in each well. Peptides were assessed in duplicate wells, and Mycobacterium tuberculosis purified protein derivative (PPD RT49) (Serum Institute; Copenhagen, Denmark) (20 μg/ml) was included as a positive control in all assays.


Peptides: Synthetic peptides were purchased from Research Genetics (Huntsville, Ala.) Mass-spectroscopy and HPLC verified peptides' authenticity and >70% purity. Digestion of gliadin (Sigma; G-3375) (100 mg/ml) with α-chymotrypsin (Sigma; C-3142) 200:1 (w/w) was performed at room temperature in 0.1 M NH4HCO3 with 2M urea and was halted after 24 h by heating to 98° C. for 10 minutes. After centrifugation (13,000 g, 10 minutes), the gliadin digest supernatant was filter-sterilized (0.2 mm). Digestion of gliadin was verified by SDS-PAGE and protein concentration assessed. α-Chymotrypsin-digested gliadin (640 μg/ml) and synthetic gliadin peptides (15-mers: 160 μg/ml, other peptides: 0.1 mM) were individually treated with tTG (Sigma; T-5398) (50 μg/ml) in PBS+CaCl2 1 mM for 2 h at 37° C. Peptides and peptide pools were aliquotted into sterile 96-well plates and stored frozen at −20° C. until use.


Amino acid sequencing of peptides: Reverse phase HPLC was used to purify the peptide resulting from tTG treatment of A-gliadin 56-75. A single product was identified and subjected to amino acid sequencing (automated sequencer Model 494A, Applied Biosystems, Foster City, Calif.). The sequence of unmodified G56-75 was confirmed as: LQLQPFPQPQLPYPQPQSFP (SEQ ID NO:5), and tTG treated G56-75 was identified as: LQLQPFPQPELPYPQPQSFP (SEQ ID NO:11). Deamidation of glutamyl residues was defined as the amount (pmol) of glutamate recovered expressed as a percent of the combined amount of glutamine and glutamate recovered in cycles 2, 4, 8, 10, 15 and 17 of the amino acid sequencing. Deamidation attributable to tTG was defined as (% deamidation of glutamine in the tTG treated peptide−% deamidation in the untreated peptide)/(100−% deamidation in the untreated peptide).


CD4/CD8 and HLA Class II Restriction: Anti-CD4 or anti-CD8 coated magnetic beads (Dynal, Oslo, Norway) were washed four times with RPMI then incubated with PBMC in complete RPMI containing 10% heat inactivated human AB serum (5×106 cells/ml) for 30 minutes on ice. Beads were removed using a magnet and cells remaining counted. In vivo HLA-class II restriction of the immune response to tTG-treated A-gliadin 56-75 was established by incubating PBMC (5×106 cells/ml) with anti-HLA-DR (L243), -DQ (L2), and -DP (B7.21) monoclonal antibodies (10 μg/ml) at room temperature for one hour prior to the addition of peptide.


EXAMPLE 4

Mucosal Integrin Expression by Gliadin-Specific Peripheral Blood Lymphocytes


Interaction between endothelial and lymphocyte adressins facilitates homing of organ-specific lymphocytes. Many adressins are known. The heterodimer α4β7 is specific for lamina propria gut and other mucosal lymphocytes, and αEβ7 is specific and intra-epithelial lymphocytes in the gut and skin. Approximately 30% of peripheral blood CD4 T cells express α4β7 and are presumed to be in transit to a mucosal site, while 5% of peripheral blood T cells express αEβ7. Immunomagnetic beads coated with antibody specific for αE or β7 deplete PBMC of cells expressing αEβ7 or αEβ7 and α4β7, respectively. In combination with ELISpot assay, immunomagnetic bead depletion allows determination of gliadin-specific T cell addressin expression that may identify these cells as homing to a mucosal surface. Interestingly, gluten challenge in vivo is associated with rapid influx of CD4 T cells to the small intestinal lamina propria (not intra-epithelial sites), where over 90% lymphocytes express α4β7.


Immunomagnetic beads were prepared and used to deplete PBMC from coeliac subjects on day 6 or 7 after commencing 3 day gluten challenge. FACS analysis demonstrated αE beads depleted approximately 50% of positive CD4 T cells, while P 7 beads depleted all-β7 positive CD4 T cells. Depletion of PBMC using CD4- or β7-beads, but not CD8- or αE-beads, abolished responses in the interferon gamma ELISpot. tTG gliadin and PPD responses were abolished by CD4 depletion, but consistently affected by integrin-specific bead depletion.


Thus A-gliadin 57-73 QE65-specific T cells induced after gluten challenge in coeliac disease express the integrin, α4β7, present on lamina propria CD4 T cells in the small intestine.


EXAMPLE 5

Optimal T cell Epitope Length


Previous data testing peptides from 7 to 17 amino acids in length spanning the core of the dominant T cell epitope in A-gliadin indicated that the 17mer, A-gliadin 57-73 QE65 (SEQ ID NO:2) induced maximal responses in the interferon gamma Elispot using peripheral blood mononuclear cells (PBMC) from coeliac volunteers 6 days after commencing a 3-day gluten challenge.


Peptides representing expansions form the core sequence of the dominant T cell epitope in A-gliadin were assessed in the IFN gamma ELISPOT using peripheral blood mononuclear cells (PBMC) from coeliac volunteers in 6 days after commencing a 3-day gluten challenge (n=4). Peptide 13: A-gliadin 59-71 QE65 (13mer), peptide 15: 58-72 QE65 (15mer), . . . , peptide 27: 52-78 SE65 (27mer).


As shown in FIG. 11 expansion of the A-gliadin 57-73 QE65 sequence does not substantially enhance response in the IFNgamma Elispot. Subsequent Examples characterise the agonist and antagonist activity of A-gliadin 57-73 QE65 using 17mer peptides.


EXAMPLE 6

Comparison of A-Gliadin 57-73 QE65 with Other DQ2-Restricted T Cell Epitopes in Coeliac Disease


Dose response studies were performed using peptides corresponding to unmodified and transglutaminase-treated peptides corresponding to T cell epitopes of gluten-specific T cell clones and lines from intestinal biopsies of coeliac subjects. Responses to peptides were expressed as percent of response to A-gliadin 57-73 QE65. All subjects were HLA-DQ2+ (none were DQ8+).


The studies indicate that A-gliadin 57-73 QE65 is the most potent gliadin peptide for induction of interferon gamma in the ELISpot assay using coeliac PBMC after gluten challenge (see FIG. 12a-h, and Tables 5 and 6). The second and third epitopes are suboptimal fragments of larger peptides i.e. A-gliadin 57-73 QE65 and GDA4_WHEAT P04724-84-100 QE92. The epitope is only modestly bioactive (approximately 1/20th as active as A-gliadin 57-73 QE65 after blank is subtracted).


A-gliadin 57-73 QE65 is more potent than other known T cell epitopes in coeliac disease. There are 16 polymorphisms of A-gliadin 57-73 (including the sequence PQLPY (SEQ ID NO:12)) amongst sequenced gliadin genes, their bioactivity is assessed next.


EXAMPLE 7

Comparison of Gliadin- and A-Gliadin 57-73 QE65-Specific Responses in Peripheral Blood


The relative contribution of the dominant epitope, A-gliadin 57-73 QE65, to the total T cell response to gliadin in coeliac disease is a critical issue. Pepsin-trypsin and chymotrypsin-digested gliadin have been traditionally used as antigen for development of T cell lines and clones in coeliac disease. However, it is possible that these proteases may cleave through certain peptide epitopes. Indeed, chymotrypsin digestion of recombinant α9-gliadin generates the peptide QLQPFPQPELPY (SEQ ID NO:13), that is a truncation of the optimal epitope sequence QLQPFPQPELPYPQPQS (SEQ ID NO:2) (see above). Transglutaminase-treatment substantially increases the potency of chymotrypsin-digested gliadin in proliferation assays of gliadin-specific T cell clones and lines. Hence, transglutaminase-treated chymotrypsin-digested gliadin (tTG gliadin) may not be an ideal antigen, but responses against this mixture may approximate the “total” number of peripheral blood lymphocyte specific for gliadin. Comparison of responses against A-gliadin 57-73 QE65 and tTG gliadin in the ELISpot assay gives an indication of the contribution of this dominant epitope to the overall immune response to gliadin in coeliac disease, and also be a measure of epitope spreading.


PBMC collected on day 6 or 7 after commencing gluten challenge in 4 coeliac subjects were assessed in dose response studies using chymotrypsin-digested gliadin+/−tTG treatment and compared with ELISpot responses to an optimal concentration of A-gliadin 57-73 QE65 (25 mcg/ml). TTG treatment of gliadin enhanced PBMC responses in the ELISpot approximately 10-fold (tTG was comparable to blank when assessed alone) (see FIG. 13a-c). In the four coeliac subjects studied, A-gliadin 57-73 QE65 (25 mcg/ml) elicited responses between 14 and 115% those of tTG gliadin (500 mcg/ml), and the greater the response to A-gliadin 57-73 QE65 the greater proportion it represented of the tTG gliadin response.


Relatively limited data suggest that A-gliadin 57-73 QE65 responses are comparable to tTG gliadin in some subjects. Epitope spreading associated with more evolved anti-gliadin T cell responses may account for the smaller contribution of A-gliadin 57-73 QE65 to “total” gliadin responses in peripheral blood in some individuals. Epitope spreading may be maintained in individuals with less strictly gluten free diets.


EXAMPLE 8

Definition of Gliadin Peptides Bioactive in Coeliac Disease: Polymorphisms of A-Gliadin 57-73


Overlapping 15mer peptides spanning the complete sequence of A-gliadin were assessed in order to identify the immunodominant sequence in coeliac disease. A-gliadin was the first fully sequenced alpha gliadin protein and gene, but is one of approximately 30-50 related alpha gliadin proteins in wheat Twenty five distinct alpha-gliadin genes have been identified by searching protein data bases, Swiss-Prot and TREMBL describing a further 8 alpha-gliadins. Contained within these 25 alpha-gliadins, there are 16 distinct polymorphisms of the sequence corresponding to A-gliadin 57-73 (see Table 7).


Synthetic peptides corresponding to these 16 polymorphisms, in an unmodified form, after treatment with transglutaminase in vitro, as well as with glutamate substituted at position 10 (equivalent to QE65 in A-gliadin 57-73) were assessed using PBMC from coeliac subjects, normally following a gluten free diet, day 6 or 7 after gluten challenge in interferon gamma ELISpot assays. Glutamate-substituted peptides were compared at three concentrations (2.5, 25 and 250 mcg/ml), unmodified peptide and transglutaminase-treated peptides were assessed at 25 mcg/ml only. Bioactivity was expressed as % of response associated with A-gliadin 57-73 QE65 25 mcg/ml in individual subjects (n=4). (See FIG. 14).


Bioactivity of “wild-type” peptides was substantially increased (>5-fold) by treatment with transglutaminase. Transglutaminase treatment of wild-type peptides resulted in bioactivity similar to that of the same peptides substituted with glutamate at position 10. Bioactivities of five glutamate-substituted peptides (B, C, K, L, M), were >70% that of A-gliadin 57-73 QE65 (A), but none was significantly more bioactive than A-gliadin 57-73 QE65. PBMC responses to glutamate-substituted peptides at concentrations of 2.5 and 250 mcg/ml were comparable to those at 25 mcg/ml. Six glutamate-substituted gliadin peptides (H, I, J, N, O, P) were <15% as bioactive as A-gliadin 57-73 QE65. Other peptides were intermediate in bioactivity.


At least six gliadin-derived peptides are equivalent in potency to A-gliadin 57-73 QE65 after modification by transglutaminase. Relatively non-bioactive polymorphisms of A-gliadin 57-73 also exist. These data indicate that transglutaminase modification of peptides from several gliadins of Triticum aestivum, T. uartu and T. spelta may be capable of generating the immunodominant T cell epitope in coeliac disease.


Genetic modification of wheat to generate non-coeliac-toxic wheat may likely require removal or modification of multiple gliadin genes. Generation of wheat containing gliadins or other proteins or peptides incorporating sequences defining altered peptide ligand antagonists of A-gliadin 57-73 is an alternative strategy to generate genetically modified wheat that is therapeutic rather than “non-toxic” in coeliac disease.


EXAMPLE 9

Definition of Core Epitope Sequence:


Comparison of peptides corresponding to truncations of A-gliadin 56-75 from the N- and C-terminal indicated that the core sequence of the T cell epitope is PELPY (A-gliadin 64-68). Attempts to define non-agonists and antagonists will focus on variants of A-gliadin that are substituted at residues that substantially contribute to its bioactivity.


Peptides corresponding to A-gliadin 57-73 QE65 with alanine (FIG. 15) or lysine (FIG. 16) substituted for residues 57 to 73 were compared in the IFN gamma ELISPOT using peripheral blood mononuclear cells (PBMC) from coeliac volunteers 6 days after commencing a 3-day gluten challenge (n=8). (BL is blank, E is A-gliadin 57-73 QE65: QLQPFPQPELPYPQPQS (SEQ ID NO:2)).


It was found that residues corresponding to A-gliadin 60-70 QE65 (PFPQPELPYPQ (SEQ ID NO:14)) contribute substantially to the bioactivity in A-gliadin 57-73 QE65. Variants of A-gliadin 57-73 QE65 substituted at positions 60-70 are assessed in a 2-step procedure. Initially, A-gliadin 57-73 QE65 substituted at positions 60-70 using 10 different amino acids with contrasting properties are assessed. A second group of A-gliadin 57-73 QE65 variants (substituted with all other naturally occurring amino acids except cysteine at positions that prove are sensitive to modification) are assessed in a second round.


EXAMPLE 10

Agonist Activity of Substituted Variants of A-Gliadin 57-73 QE65


A-gliadin 60-70 QE65 is the core sequence of the dominant T cell epitope in A-gliadin. Antagonist and non-agonist peptide variants of this epitope are most likely generated by modification of this core sequence. Initially, A-gliadin 57-73 QE65 substituted at positions 60-70 using 10 different amino acids with contrasting properties will be assessed in the IFNgamma ELISPOT using PBMC from coeliac subjects 6 days after starting 3 day gluten challenge. A second group of A-gliadin 57-73 QE65 variants (substituted with all other naturally occurring amino acids except cysteine) at positions 61-70 were also assessed. Both groups of peptides (all at 50 mcg/ml, in duplicate) were assessed using PBMC from 8 subjects and compared to the unmodified peptide (20 replicates per assay). Previous studies indicate that the optimal concentration for A-gliadin 57-73 QE65 in this assay is between 10 and 100 mcg/ml.


Results are expressed as mean response in spot forming cells (95% confidence interval) as % A-G 57-73 QE65 mean response in each individual. Unpaired t-tests will be used to compare ELISPOT responses of modified peptides with A-G 57-73 QE65. Super-agonists were defined as having a greater response than A-G 57-73 QE65 at a level of significance of p<0.01; partial agonists as having a response less than A-G 57-73 QE65 at a level of significance of p<0.01, and non-agonists as being not significantly different (p>0.01) from blank (buffer without peptide). Peptides with agonist activity 30% or less that of A-gliadin 57-73 QE65 were considered “suitable” partial or non-agonists to assess for antagonistic activity (see Table 8 and FIGS. 17-27).


The IFNgamma ELISPOT response of PBMC to A-gliadin 57-73 QE65 is highly specific at a molecular level. Proline at position 64 (P64), glutamate at 65 (E65) and leucine at position 66 (L66), and to a lesser extent Q63, P67, Y68 and P69 are particularly sensitive to modification. The substitutions Y61 and Y70 both generate super-agonists with 30% greater bioactivity than the parent peptide, probably by enhancing binding to HLA-DQ2 since the motif for this HLA molecule indicates a preference for bulky hydrophobic resides at positions 1 and 9. Eighteen non-agonist peptides were identified. Bioactivities of the variants (50 mcg/ml): P65, K64, K65 and Y65 (bioactivity 7-8%) were comparable to blank (7%). In total, 57 mutated variants of A-gliadin 57-73 QE65 were 30% or less bioactive than A-gliadin 57-73 QE65.


The molecular specificity of the peripheral blood lymphocyte (PBL) T cell response to the dominant epitope, A-gliadin 57-73 QE65, is consistently reproducible amongst HLA-DQ2+ coeliac subjects, and is highly specific to a restricted number of amino acids in the core 7 amino acids. Certain single-amino acid variants of A-gliadin 57-73 QE65 are consistently non-agonists in all HLA-DQ2+ coeliac subjects.


EXAMPLE 11

Antagonist Activity of Substituted Variants


The homogeneity of the PBL T cell response to A-gliadin 57-73 QE65 in HLA-DQ2+ coeliac disease suggests that altered peptide ligands (APL) capable of, antagonism in PBMC ex vivo may exist, even though the PBL T cell response is likely to be poly- or oligo-clonal. APL antagonists are generally weak agonists. Fifty-seven single amino acid-substituted variants of A-gliadin 57-73 QE65 with agonist activity 30% or less have been identified and are suitable candidates as APL antagonists. In addition, certain weakly bioactive naturally occurring polymorphisms of A-gliadin 57-73 QE65 have also been identified (see below) and may be “naturally occurring” APL antagonists. It has also been suggested that competition for binding MHC may also antagonise antigen-specific T cell immune. Hence, non-gliadin peptides that do not induce IFNgamma responses in coeliac PBMC after gluten challenge but are known to bind to HLA-DQ2 may be capable of reducing T cell responses elicited by A-gliadin 57-73 QE65. Two peptides that bind avidly to HLA-DQ2 are HLA class 1 α 46-60 (HLA 1a) (PRAPWIEQEGPEYW (SEQ ID NO:15)) and thyroid peroxidase (tp) 632-645Y (IDVWLGGLLAENFLPY (SEQ ID NO:16)).


Simultaneous addition of peptide (50 μg/ml) or buffer and A-gliadin 57-73 QE65 (10 μg/ml) in IFNgamma ELISPOT using PBMC from coeliac volunteers 6 days after commencing 3 day gluten challenge (n=5). Results were expressed as response with peptide plus A-G 57-73 QE65 (mean of duplicates) as % response with buffer plus A-G 57-73 QE65 (mean of 20 replicates). (See Table 9).


Four single amino acid-substituted variants of A-gliadin 57-73 QE65 reduce the interferon gamma PBMC ELISPOT response to A-gliadin 57-73 QE65 (p<0.01) by between 25% and 28%, 13 other peptide variants reduce the ELISPOT response by between 18% and 24% (p<0.06). The HLA-DQ2 binder, thyroid peroxidase (tp) 632-645Y reduces PBMC interferon gamma responses to A-gliadin 57-73 QE65 by 31% (p<0.0001) but the other HLA-DQ2 binder, HLA class 1 α 46-60, does not alter responses (see Tables 9 and 10). The peptide corresponding to a transglutaminase-modified polymorphism of A-gliadin 57-73, SwissProt accession no.: P04725 82-98 QE90 (PQPQPFPPELPYPQPQS (SEQ ID NO:17)) reduces responses to A-gliadin 57-73 QE65 by 19% (p<0.009) (see Table 11).


Interferon gamma responses of PBMC to A-gliadin 57-73 QE65 in ELISPOT assays are reduced by co-administration of certain single-amino-acid A-gliadin 57-73 QE65 variants, a polymorphism of A-gliadin 57-73 QE65, and an unrelated peptide known to bind HLA-DQ2 in five-fold excess. These finding suggest that altered peptide ligand antagonists of A-gliadin 57-73 QE65 exist. Not only putative APL antagonists but also certain peptides that bind HLA-DQ2 effectively reduce PBL T cell responses to A-gliadin 57-73 QE65.


These findings support two strategies to interrupt the T cell response to the dominant A-gliadin epitope in HLA-DQ2+ coeliac disease.

    • 1. Optimisation of APL antagonists by substituting amino acids at more than one position (64-67) for use as “traditional” peptide pharmaceuticals or for specific genetic modification of gliadin genes in wheat.
    • 2. Use of high affinity HLA-DQ2 binding peptides to competitively inhibit presentation of A-gliadin 57-73 QE65 in association with HLA-DQ2.


These two approaches may be mutually compatible. Super-agonists were generated by replacing F61 and Q70 with tyrosine residues. It is likely these super-agonists resulted from improved binding to HLA-DQ2 rather than enhanced contact with the T cell receptor. By combining these modifications with other substitutions that generate modestly effective APL antagonists might substantially enhance the inhibitory effect of substituted A-gliadin 57-73 QE65 variants.


EXAMPLE 12

Development of Interferon Gamma ELISpot Using PBMC and A-Gliadin 57-73 QE65 and P04724 84-100 QE92 as a Diagnostic for Coeliac Disease: Definition of Immune-Responsiveness in Newly Diagnosed Coeliac Disease


Induction of responsiveness to the dominant A-gliadin T cell epitope in PBMC measured in the interferon gamma ELISpot follows gluten challenge in almost all DQ2+ coeliac subjects following a long term strict gluten free diet (GFD) but not in healthy DQ2+ subjects after 4 weeks following a strict GFD. A-gliadin 57-73 QE65 responses are not measurable in PBMC of coeliac subjects before gluten challenge and pilot data have suggested these responses could not be measured in PBMC of untreated coeliacs. These data suggest that in coeliac disease immune-responsiveness to A-gliadin 57-73 QE65 is restored following antigen exclusion (GFD). If a diagnostic test is to be developed using the ELISpot assay and PBMC, it is desirable to define the duration of GFD required before gluten challenge is capable of inducing responses to A-gliadin 57-73 QE65 and other immunoreactive gliadin peptides in blood.


Newly diagnosed DQ2+ coeliac subjects were recruited from the gastroenterology outpatient service. PBMC were prepared and tested in interferon gamma ELISpot assays before subjects commenced GFD, and at one or two weeks after commencing GFD. In addition, gluten challenge (3 days consuming 4 slices standard white bread, 200 g/day) was performed at one or two weeks after starting GFD. PBMC were prepared and assayed on day six are after commencing gluten challenge. A-gliadin 57-73 QE65 (A), P4724 84-100 QE92 (B) (alone and combined) and A-gliadin 57-73 QP65 (P65) (non-bioactive variant, see above) (all 25 mcg/ml) were assessed.


All but one newly diagnosed coeliac patient was DQ2+ (one was DQ8+) (n=11). PBMC from newly diagnosed coeliacs that were untreated, or after 1 or 2 weeks following GFD did not show responses to A-gliadin 57-73 QE65 and P04724 84-100 QE92 (alone or combined) that were not significantly different from blank or A-gliadin 57-73 QP65 (n=9) (see FIG. 28). Gluten challenge in coeliacs who had followed GFD for only one week did not substantially enhance responses to A-gliadin 57-73 QE65 or P04724 84-100 QE92 (alone or combined). But gluten challenge 2 weeks after commencing GFD did induce responses to A-gliadin 57-73 QE65 and P04724 84-100 QE92 (alone or combined) that were significantly greater than the non-bioactive variant A-gliadin 57-73 QP65 and blank. Although these responses after gluten challenge at 2 weeks were substantial they appear to be less than in subjects >2 months after commencing GFD. Responses to A-gliadin 57-73 QE65 alone were equivalent or greater than responses to P04724 84-100 QE92 alone or when mixed with A-gliadin 57-73 QE65. None of the subjects experienced troubling symptoms with gluten challenge.


Immune responsiveness (as measured in PBMC after gluten challenge) to A-gliadin is partially restored 2 weeks after commencing GFD, implying that “immune unresponsiveness” to this dominant T cell epitope prevails in untreated coeliac disease and for at least one week after starting GFD. The optimal timing of a diagnostic test for coeliac disease using gluten challenge and measurement of responses to A-gliadin 57-73 QE65 in the ELISpot assay is at least 2 weeks after commencing a GFD.


Interferon gamma-secreting T cells specific to A-gliadin 57-73 QE65 cannot be measured in the peripheral blood in untreated coeliacs, and can only be induced by gluten challenge after at least 2 weeks GFD (antigen exclusion). Therefore, timing of a diagnostic test using this methodology is crucial and further studies are needed for its optimization. These finding are consistent with functional anergy of T cells specific for the dominant epitope, A-gliadin 57-73 QE65, reversed by antigen exclusion (GFD). This phenomenon has not been previously demonstrated in a human disease, and supports the possibility that T cell anergy may be inducible with peptide therapy in coeliac disease.


EXAMPLE 13

Comprehensive Mapping of Wheat Gliadin T Cell Epitopes


Antigen challenge induces antigen-specific T cells in peripheral blood. In coeliac disease, gluten is the antigen that maintains this immune-mediated disease. Gluten challenge in coeliac disease being treated with a gluten free diet leads to the appearance of gluten-specific T cells in peripheral blood, so enabling determination of the molecular specificity of gluten T cell epitopes. As described above, we have identified a single dominant T cell epitope in a model gluten protein, A-gliadin (57-73 deamidated at Q65). In this Example, gluten challenge in coeliac patients was used to test all potential 12 amino acid sequences in every known wheat gliadin protein derived from 111 entries in Genbank. In total, 652 20mer peptides were tested in HLA-DQ2 and HLA-DQ8 associated coeliac disease. Seven of the 9 coeliac subjects with the classical HLA-DQ2 complex (HLA-DQA1*05, HLA-DQB1*02) present in over 90% of coeliacs had an inducible A-gliadin 57-73 QE65- and gliadin-specific T cell response in peripheral blood. A-gliadin 57-73 was the only significant α-gliadin T cell epitope, as well as the most potent gliadin T cell epitope, in HLA-DQ2-associated coeliac disease. In addition, there were as many as 5 families of structurally related peptides that were between 10 and 70% as potent as A-gliadin 57-73 in the interferon-γ ELISpot assay. These new T cell epitopes were derived from γ- and ω-gliadins and included common sequences that were structurally very similar, but not identical to the core sequence of A-gliadin 57-73 (core sequence: FPQPQLPYP (SEQ ID NO:18)), for example: FPQPQQPFP (SEQ ID NO:19) and PQQPQQPFP (SEQ ID NO:20). Although no homologues of A-gliadin 57-73 have been found in rye or barley, the other two cereals toxic in coeliac disease, the newly defined T cell epitopes in γ- and ω-gliadins have exact matches in rye and barley storage proteins (secalins and hordeins, respectively).


Coeliac disease not associated with HLA-DQ2 is almost always associated with HLA-DQ8. None of the seven HLA-DQ8+ coeliac subjects had inducible A-gliadin 57-73-specific T cell responses following gluten challenge, unless they also possessed the complete HLA-DQ2 complex. Two of 4 HLA-DQ8+ coeliac subjects who did not possess the complete HLA-DQ2 complex, had inducible gliadin peptide-specific T cell responses following gluten challenge. In one HLA-DQ8 subject, a novel dominant T cell epitope was identified with the core sequence LQPQNPSQQQPQ (SEQ ID NO:21). The transglutaminase-deamidated version of this peptide was more potent than the non-deamidated peptide. Previous studies suggest that the transglutaminase-deamidated peptide would have the sequence LQPENPSQEQPE (SEQ ID NO:22); but further studies are required to confirm this sequence. Amongst the healthy HLA-DQ2 (10) and HLA-DQ8 (1) subjects who followed a gluten free diet for a month, gliadin peptide-specific T cell responses were uncommon, seldom changed with gluten-challenge, and were never potent T cell epitopes revealed with gluten challenge in coeliac subjects. In conclusion, there are unlikely to be more than six important T cell epitopes in HLA-DQ2-associated coeliac disease, of which A-gliadin 57-73 is the most potent. HLA-DQ2- and HLA-DQ8-associated coeliac disease do not share the same T cell specificity.


We have shown that short-term gluten challenge of individuals with coeliac disease following a gluten free diet induces gliadin-specific T cells in peripheral blood. The frequency of these T cells is maximal in peripheral blood on day 6 and then rapidly wanes over the following week. Peripheral blood gliadin-specific T cells express the integrin α4β7 that is associated with homing to the gut lamina propria. We exploited this human antigen-challenge design to map T cell epitopes relevant to coeliac disease in the archetypal gluten α-gliadin protein, A-gliadin. Using 15mer peptides overlapping by 10 amino acids with and without deamidation by transglutaiminase (tTG), we demonstrated that T cells induced in peripheral blood initially target only one A-gliadin peptide, residues 57-73 in which glutamine at position 65 is deamidated. The epitope is HLA-DQ2-restricted, consistent with the intimate association of coeliac disease with HLA-DQ2.


Coeliac disease is reactivated by wheat, rye and barley exposure. The α/β-gliadin fraction of wheat gluten is consistently toxic in coeliac disease, and most studies have focused on these proteins. The gene cluster coding for α/β-gliadins is located on wheat chromosome 6C. There are no homologues of α/β-gliadins in rye or barley. However, all three of the wheat gliadin subtypes (α/β, γ, and ω) are toxic in coeliac disease. The γ- and ω-gliadin genes are located on chromosome 1A in wheat, and are homologous to the secalins and hordeins in rye and barley.


There are now genes identified for 61 α-gliadins in wheat (Triticum aestivum). The α-gliadin sequences are closely homologous, but the dominant epitope in A-gliadin derives from the most polymorphic region in the α-gliadin sequence. Anderson et al (1997) have estimated that there are a total of about 150 distinct α-gliadin genes in T. aestivum, but many are psuedogenes. Hence, it is unlikely that T-cell epitopes relevant to coeliac disease are not included within known α-gliadin sequences.


Our work has identified a group of deamidated α-gliadin peptides almost identical to A-gliadin 57-73 as potent T cell epitopes specific to coeliac disease. Over 90% of coeliac patients are HLA-DQ2+, and so far, we have only assessed HLA-DQ2+ coeliac subjects after gluten challenge. However, coeliac patients who do not express HLA-DQ2 nearly all carry HLA-DQ8. Hence, it is critical to know whether A-gliadin 57-73 and its homologues in other wheat, rye and barley gluten proteins are the only T-cell epitopes recognized by T cells induced by gluten challenge in both HLA-DQ2+ and HLA-DQ8+ coeliac disease. If this were the case, design of peptide therapeutics for coeliac disease might only require one peptide.


Homologues of A-Gliadin 57-73 as T-Cell Epitopes


Initial searches of SwissProt and Trembl gene databases for cereal genes coding for the core sequence of A-gliadin 57-73 (PQLPY <SEQ ID NO:12>) only revealed α/β-gliadins. However, our fine-mapping studies of the A-gliadin 57-73 QE65 epitope revealed a limited number of permissive point substitutions in the core region (PQLP) (note Q65 is actually deamidated in the epitope). Hence, we extended our search to genes in SwissProt or Trembl databases encoding for peptides with the sequence XXXXXXXPQ[ILMP][PST]XXXXXX (SEQ IL NO:23). Homologues were identified amongst γ-gliadins, glutenins, hordeins and secalins (see Table 12). A further homologue was identified in ω-gliadin by visual search of the three ω-gliadin entries in Genbank.


These homologues of A-gliadin 57-73 were assessed after deamidation by tTG (or synthesis of the glutamate (QE)-substituted variant in four close homologues) using the IFNγ ELISpot assay with peripheral blood mononuclear cells after gluten challenge in coeliac subjects. The ω-gliadin sequence (AAG17702 141-157) was the only bioactive peptide, approximately half as potent as A-gliadin 57-73 (see Table 12, and FIG. 29). Hence, searches for homologues of the dominant A-gliadin epitope failed to account for the toxicity of γ-gliadin, secalins, and hordeins.


Methods


Design of a Set of Peptides Spanning All Possible Wheat Gliadin T-Cell Epitopes


In order to identify all possible T cell epitopes coded by the known wheat (Triticum aestivum) gliadin genes or gene fragments (61 α/β-, 47 γ-, and 3 ω-gliadin entries in Genbank), gene-derived protein sequences were aligned using the CustalW software (MegAlign) and arranged into phylogenetic groupings (see Table 22). Many entries represented truncations of longer sequences, and many gene segments were identical except for the length of polyglutamine repeats or rare substitutions. Hence, it was possible to rationalize all potential unique 12 amino acid sequences encoded by known wheat genes to be included in a set of 652 20mer peptides. (Signal peptide sequences were not included). Peptide sequences are listed in Table 23.


Comprehensive Epitope Mapping


Healthy controls (HLA-DQ2+ n=10, and HLA-DQ8+ n=1) who had followed a gluten free diet for 4 weeks, and coeliac subjects (six HLA-DQ2, four complex heterozygotes HLA-DQ2/8, and three HLA-DQ81X) (see Table 13) following long-term gluten free diet were studied before and on day 6 and 7 after 3-day gluten challenge (four 50 g slices of standard white bread—Sainsbury's sandwich bread, each day). Peripheral blood (a total of 300 ml over seven days) was collected and peripheral blood mononuclear cells (PBMC) were separated by Lymphoprep density gradient. PBMC were incubated with pools of 6 or 8 20mer peptides, or single peptides with or without deamidation by tTG in overnight interferon gamma (IFNγ) ELISpot assays.


Peptides were synthesized in batches of 96 as Pepsets (Mimotopes Inc., Melbourne Australia). Approximately 0.6 micromole of each of 652 20mers was provided. Two marker 20mer peptides were included in each set of 96 (VLQQHNIAHGSSQVLQESTY— peptide 161 (SEQ ID NO:24), and IKDFHVYFRRSRDALWKGPG (SEQ ID NO:25)) and were characterized by reverse phase-HPLC and amino acid sequence analysis. Average purities of these marker peptides were 50% and 19%, respectively. Peptides were initially dissolved in acetonitrile (10%) and Hepes 100 mM to 10 mg/ml.


The final concentration of individual peptides in pools (or alone) incubated with PBMC for the IFNγ ELISpot assays was 20 μg/ml. Five-times concentrated solutions of peptides and pools in PBS with calcium chloride 1 mM were aliquotted and stored in 96-well plates according to the template later used in ELISpot assays. Deamidated peptides and pools of peptides were prepared by incubation with guinea pig tissue tTG (Sigma T5398) in the ratio 100:32 μg/ml for two hours at 37° C. Peptides solutions were stored at −20° C. and freshly thawed prior to use.


Gliadin (Sigma G3375) (100 mg/ml) in endotoxin-free water and 2M urea was boiled for 10 minutes, cooled to room temperature and incubated with filter (0.2 μm)-sterilised pepsin (Sigma P6887) (2 mg/ml) in HCl 0.02M or chymotrypsin (C3142) (4 mg/ml) in ammonium bicarbonate (0.2M). After incubation for 4 hours, pepsin-digested gliadin was neutralized with sodium hydroxide, and then both pepsin- and chymotrypsin-digested gliadin were boiled for 15 minutes. Identical incubations with protease in which gliadin was omitted were also performed. Samples were centrifuged at 15 000 g, then protein concentrations were estimated in supernatants by the BCA method (Pierce, USA). Before final use in IFNγ ELISpot assays, aliquots of gliadin-protease were incubated with tTG in the ratio 2500:64 μg/ml.


IFNγ ELISpot assays (Mabtech, Sweden) were performed in 96-well plates (MAIP S-45, Millipore) in which each well contained 25 μl of peptide solution and 100 μl of PBMC (2-8×105/well) in RPMI containing 10% heat inactivated human AB serum. Deamidated peptide pools were assessed in one 96-well ELISpot plate, and peptides pools without deamidation in a second plate (with an identical layout) on both day 0 and day 6. All wells in the plate containing deamidated peptides included tTG (64 μg/ml). In each ELISpot plate there were 83 wells with peptide pools (one unique pool in each well), and a series of wells for “control” peptides (peptides all >90% purity, characterized by MS and HPLC, Research Genetics): P04722 77-93 (QLQPFPQPQLPYPQPQP (SEQ ID NO:26)), P04722 77-93 QE85 (in duplicate) (QLQPFPQPELPYPQPQP (SEQ ID NO:27)), P02863 77-93 (QLQPFPQPQLPYSQPQP (SEQ ID NO:28)), P02863 77-93 QE85 (QLQPFPQPELPYSQPQP (SEQ ID NO:29)), and chymotrypsin-digested gliadin (500 μg/ml), pepsin-digested gliadin (500 μg/ml), chymotrypsin (20 μg/ml) alone, pepsin (10 μg/ml) alone, and blank (PBS+/−tTG) (in triplicate).


After development and drying, IFNγ ELISpot plates were assessed using the MAIP automated ELISpot plate counter. In HLA-DQ2 healthy and coeliac subjects, induction of spot forming cells (sfc) by peptide pools in the IFNγ ELISpot assay was tested using a one-tailed Wilcoxon Matched-Pairs Signed-Ranks test (using SPSS software) applied to spot forming cells (sfc) per million PBMC minus blank on day 6 versus day 0 (“net response”). Significant induction of an IFNγ response to peptide pools in PBMC by in vivo gluten challenge was defined as a median “net response” of at least 10 sfc/million PBMC and p<0.05 level of significance. Significant response to a particular pool of peptides on day 6 was followed by assessment of individual peptides within each pool using PBMC drawn the same day or on day 7.


For IFNγ ELISpot assays of individual peptides, bioactivity was expressed as a percent of response to P04722 77-93 QE85 assessed in the same ELISpot plate. Median response to blank (PBS alone) was 0.2 (range 0-5) sfc per well, and the positive control (P04722 77-93 QE85) 76.5 (range: 25-282) sfc per well using a median of 0.36 million (range: 0.3-0.72) PBMC. Hence, median response to blank expressed as a percentage of P04722 77-93 QE65 was 0.2% (range: 0-6.7). Individual peptides with mean bioactivity greater than 10% that of P04722 QE85 were analyzed for common structural motifs.


Results


Healthy HLA-DQ2 Subjects


None of the healthy HLA-DQ2+ subjects following a gluten free diet for a month had IFNγ ELISpot responses to homologues of A-gliadin 57-73 before or after gluten challenge. However, in 9/10 healthy subjects, gluten challenge was associated with a significant increase in IFNγ responses to both peptic- and chymotryptic-digests of gliadin, from a median of 04 sfc/million on day 0 to a median of 16-29 sfc/million (see Table 14). Gliadin responses in healthy subjects were unaffected by deamidation (see Table 15). Amongst healthy subjects, there was no consistent induction of IFNγ responses to specific gliadin peptide pools with gluten challenge (see FIG. 30, and Table 16). IFNγ ELISpot responses were occasionally found, but these were weak, and not altered by deamidation. Many of the strongest responses to pools were also present on day 0 (see Table 17, subjects H2, H8 and H9). Four healthy subjects did show definite responses to pool 50, and the two with strongest responses on day 6 also had responses on day 0. In both subjects, the post-challenge-responses to pool 50 responses were due to peptide 390 (QQTYPQRPQQPFPQTQQPQQ (SEQ ID NO:30)).


HLA-DQ2 Coeliac Subjects


Following gluten challenge in HLA-DQ2+ coeliac subjects, median IFNγ ELISpot responses to P04722 77-93 E85 rose from a median of 0 to 133 sfc/million (see Table 4). One of the six coeliac subjects (C06) did not respond to P04722 77-93 QE85 (2 sfc/million) and had only weak responses to gliadin peptide pools (maximum: Pool 50+tTG 27 sfc/million). Consistent with earlier work, bioactivity of wild-type P04722 increased 6.5 times with deamidation by tTG (see Table 15). Interferon-gamma responses to gliadin-digests were present at baseline, but were substantially increased by gluten challenge from a median of 20 up to 92 sfc/million for chymotryptic-gliadin, and from 44 up to 176 sfc/million for peptide-gliadin. Deamidation of gliadin increased bioactivity by a median of 3.2 times for chymotryptic-gliadin and 1.9 times for peptic-gliadin (see Table 15). (Note that the acidity required for digestion by pepsin is likely to result in partial deamidation of gliadin.)


In contrast to healthy subjects, gluten challenge induced IFNγ ELISpot responses to 22 of the 83 tTG-treated pools including peptides from α-, γ- and ω-gliadins (see FIG. 31, and Table 17). Bioactivity of pools was highly consistent between subjects (see Table 18). IFNγ ELISpot responses elicited by peptide pools were almost always increased by deamidation (see Table 17). But enhancement of bioactivity of pools by deamidation was not as marked as for P04722 77-73 Q85, even for pools including homologues of A-gliadin 57-73. This suggests that Pepset peptides were partially deamidated during synthesis or in preparation, for example the Pepset peptides are delivered as salts of trifluoracetic acid (TFA) after lyophilisation from a TFA solution.


One hundred and seventy individual tTG-deamidated peptides from 21 of the most bioactive pools were separately assessed. Seventy-two deamidated peptides were greater than 10% as bioactive as P04722 77-93 QE85 at an equivalent concentration (20 μg/ml) (see Table 19). The five most potent peptides (85-94% bioactivity of P04722 QE85) were previously identified α-gliadin homologues A-gliadin 57-73. Fifty of the bioactive peptides were not homologues of A-gliadin 57-73, but could be divided into six families of structurally related sequences (see Table 20). The most bioactive sequence of each of the peptide families were: PQQPQQPQQPFPQPQQPFPW (SEQ ID NO:31) (peptide 626, median 72% bioactivity of P04722 QE85), QQPQQPFPQPQQPQLPFPQQ (SEQ ID NO:32) (343, 34%), QAFPQPQQTFPHQPQQQFPQ (SEQ ID NO:33) (355, 27%), TQQPQQPFPQQPQQPFPQTQ (SEQ ID NO:34) (396, 23%), PIQPQQPFPQQPQQPQQPFP (SEQ ID NO:35) (625, 22%), PQQSFSYQQQPFPQQPYPQQ (SEQ ID NO:36) (618, 18%) (core sequences are underlined). All of these sequences include glutamine residues predicted to be susceptible to deamidation by transglutaminase (e.g. QXP, QXPF (SEQ ID NO:37), QXX[FY] (SEQ ID NO:38)) (see Vader et al 2002). Some bioactive peptides contain two core sequences from different families.


Consistent with the possibility that different T-cell populations respond to peptides with distinct core sequences, bioactivity of peptides from different families appear to be additive. For example, median bioactivity of tTG-treated Pool 81 was 141% of P04722 QE85, while bioactivity of individual peptides was in rank order: Peptide 631 (homologue of A-gliadin 57-73) 61%, 636 (homologue of 626) 51%, and 635 19%, 629 16%, and 634 13% (all homologues of 396).


Although likely to be an oversimplification, the contribution of each “peptide family” to the summed IFNγ ELISpot response to gliadin peptides was compared in the HLA-DQ2+ coeliac subjects (see FIG. 32). Accordingly, the contribution of P04722 77-73 E85 to the summed response to gliadin peptides is between ⅕ and ⅔.


Using the peptide homology search programme, WWW PepPepSearch, which can be accessed through the world wide web of the internet at, for example, “cbrg.inf.ethz.ch/subsection315.html.”, and by direct comparison with Genbank sequences for rye secalins, exact matches were found for the core sequences QQPFPQPQQPFP (SEQ ID NO:39) in barley hordeins (HOR8) and rye secalins (A23277, CAA26449, AAG35598), QQPFPQQPQQPFP (SEQ ID NO:40) in barley hordeins (HOG1 and HOR8), and for PIQPQQPFPQQP (SEQ ID NO:41) also in barley hordeins (HOR8).


HLA-DQ8-Associated Coeliac Disease


Seven HLA-DQ8+ coeliac subjects were studied before and after gluten challenge. Five of these HLA-DQ8+ (HLA-DQA0*0301-3, HLA-DQB0*0302) subjects also carried one or both of the coeliac disease-associated HLA-DQ2 complex (DQA0*05, DQB0*02). Two of the three subjects with both coeliac-associated HLA-DQ complexes had potent responses to gliadin peptide pools (and individual peptides including P04722 77-93 E85) that were qualitatively and quantitatively identical to HLA-DQ2 coeliac subjects (see FIGS. 33 and 34, and Table 18). Deamidated peptide pool 74 was bioactive in both HLA-DQ2/8 subjects, but only in one of the 6 HLA-DQ2/X subjects. Pretreatment of pool 74 with tTG enhances bioactivity between 3.8 and 22-times, and bioactivity of tTG-treated pool 74 in the three responders is equivalent to between 78% and 350% the bioactivity of P04722 77-93 E85. Currently, it is not known which peptides are bioactive in Pool 74 in subject C02, C07, and C08.


Two of the four HLA-DQ8 coeliac subjects that lacked both or one of the HLA-DQ2 alleles associated with coeliac disease showed very weak IFNγ ELISpot responses to gliadin peptide pools, but the other two did respond to both protease-digested gliadin and specific peptide pools. Subject C12 (HLA-DQ7/8) responded vigorously to deamidated Pools 1-3 (see FIG. 35). Assessment of individual peptides in these pools identified a series of closely related bioactive peptides including the core sequence LQPQNPSQQQPQ (SEQ ID NO:42) (see Table 20). Previous work (by us) has demonstrated that three glutamine residues in this sequence are susceptible to tTG-mediated deamidation (underlined). Homology searches using WWW PepPepSearch have identified close matches to LQPQNPSQQQPQ (SEQ ID NO:43) only in wheat α-gliadins.


The fourth HLA-DQ8 subject (C11) had inducible IFNγ ELISpot responses to tTG-treated Pool 33 (see FIG. 36). Pools 32 and 33 include polymorphisms of a previously defined HLA-DQ8 restricted gliadin epitope (QQYPSGQGSFQPSQQNPQ (SEQ ID NO:44)) active after deamidation by tTG (underlined Gln are deamidated and convey bioactivity) (van der Wal et al 1998). Currently, it is not known which peptides are bioactive in Pool 33 in subject C11.


Comprehensive T cell epitope mapping in HLA-DQ2-associated coeliac disease using in vivo gluten challenge and a set of 652 peptides spanning all known 12 amino acid sequences in wheat gliadin has thus identified at least 72 peptides at 10% as bioactive as the known α-gliadin epitope, A-gliadin 57-73 E65. However, these bioactive peptides can be reduced to a set of perhaps as few as 5 distinct but closely related families of peptides. Almost all these peptides are rich in proline, glutamine, phenylalanine, and/or tyrosine and include the sequence PQ(QL)P(FY)P (SEQ ID NO:45). This sequence facilitates deamidation of Q in position 2 by tTG. By analogy with deamidation of A-gliadin 57-68 (Arentz-Hansen 2000), the enhanced bioactivity of these peptides generally found with deamidation by tTG may be due to increased affinity of binding for HLA-DQ2.


Cross-reactivity amongst T cells in vivo recognizing more than one of these bioactive gliadin peptides is possible. However, if each set of related peptides does activate a distinct T cell population in vivo, the epitope corresponding to A-gliadin 57-73 E65 is the most potent and is generally recognized by at least 40% of the peripheral blood T cells that secrete IFNγ in response to gliadin after gluten challenge.


No gliadin-peptide specific responses were found in HLA-DQ2/8 coeliac disease that differed qualitatively from those in HLA-DQ2/X-associated coeliac disease. However, peripheral blood T cells in HLA-DQ8+ coeliac subjects without both HLA-DQ2 alleles did not recognize A-gliadin 57-73 E65 homologues. Two different epitopes were dominant in two HLA-DQ8+ coeliacs. The dominant epitope in one of these HLA-DQ8+ individuals has not been identified previously (LQPQNPSQQQPQ (SEQ ID NO:46)).


Given the teaching herein, design of an immunotherapy for coeliac disease utilizing all the commonly recognised T cell epitopes is practical and may include fewer than six distinct peptides. Epitopes in wheat γ- and ω-gliadins are also present in barley hordeins and rye secalins.


EXAMPLE 14

Several ELISpot assays were performed as previously described and yielded the following results and/or conclusions:


Examination of Multiple α-Gliadin Polymorphisms with PQLPY

Potent agonists of A-gliadin 57-73QE (G01) includeQLQPFPQPELPYPQPQS (G01), PQL-Y------------P (G10), and PQPQPFL----------(G12). Less potent include--------L----P (G04), ------R---------P (G05), and ---------S------P (G06). Less potent yetinclude -----L----S----P (G07), --S--------S-----P (G08), -----------S--S---P (G09), and PQPQPFP--------(G13). Dashes indicate identity with the G01 sequence in theparticular position.


Gluten Challenge Induces A-Gliadin 57-73 QE65 T Cells Only After Two Weeks of Gluten-Free Diet in Newly Diagnosed Coeliac Disease


Additional analyses indicated that tTG-deamidated gliadin responses change after two weeks of gluten-free diet in newly diagnosed coeliac disease. Other analyses indicated that deamidated gliadin-specific T cells are CD4+ α4β7+ HLA-DQ2 restricted.


Optimal Epitope (Clones Versus Gluten Challenge)


A “dominant” epitope is defined by γIFN ELISpot after gluten challenge. QLQPFPQPELPYPQPQS (100% ELISpot response). Epitopes defined by intestinal T cell clones: QLQPFPQPELPY (27%), PQPELPYPQPELPY (52%), and QQLPQPEQPQQSFPEQERPF (9%).


Dominance Among Individual Peptide Responses


Dominance depends on wheat or rye. For wheat, dominant peptides include peptide numbers 89, 90 and 91 (referring to sequence numbers in Table 23). For rye, dominant peptides include peptide numbers 368, 369, 370, 371, and 372 (referring to sequence numbers in Table 23). Some peptides, including 635 and 636 (referring to sequence numbers in Table 23), showed activity in both rye and wheat


In Vivo Gluten Challenge Allows T Cell Epitope Hierarchy to be Defined for Coeliac Disease


The epitope hierarchy is consistent among HLA-DQ2+ coeliacs but different for HLA-DQ8+ coeliacs. The hierarchy depends on what cereal is consumed. Deamidation generates almost all gliadin epitopes. HLA-DQ2, DQ8, and DR4 present deamidated peptides. HLA-DQ2/8-associated coeliac disease preferentially present DQ2-associated gliadin epitopes. Gliadin epitopes are sufficiently restricted to justify development of epitope-based therapeutics.


Other analyses indicated the following: HLA-DR3-DQ2 (85-95%) and HLA-DR4-DQ8 (5-15%).


Other analyses indicated the following:

EMA onHLA-DQA1HLA-DQB1DuodenalGlutenglutenHLA-DQalleleallelehistologyfree(on GFD)C012, 6102/6, 501201, 602SVA1yr+(−)C022, 2501201SVA1yr+(−)C032, 5101/4/5, 501201, 501PVA1yr+(−)C042, 5101/4/5, 501201, 501SVA7yr+(−)C052, 2201, 501201, 202SVA4mo+(ND)C062, 2201, 501201, 202SVA2yr+(−)C072, 8301-3, 501201, 302SVA1yr+(−)C082, 8301-3, 501201, 302/8SVA11yrND(−)C092, 8301-3, 501201, 302SVA29yr+(−)C102, 8201, 301-3202, 302IEL1yr+(−)C116, 8102/6, 301-3602/15, 302/8IEL9mo−(ND)C128, 7301-3, 505302, 301/9-10SVA2yr−(−)C138, 8301302SVA1yr+(+)


Another analysis was carried out to determine the bioactivity of individual tTG-deamidated peptides in pools 1-3 in subject C12. The results are as follows (sequence numbers refer to the peptides listed in Table 23): Sequence 8 (100%), Sequence 5 (85%), Sequence 6 (82%), Sequence 3 (77%), Sequence 1 (67%), Sequence 2 (59%), Sequence 9 (49%), Sequence 7 (49%), Sequence 10 (33%), Sequence 4 (15%), Sequence 12 (8%), Sequence 11 (0%), Sequence 23 (26%), Sequence 14 (18%), Sequence 15 (18%), Sequence 17 (18%), Sequence 16 (13%), Sequence 14 (8%), Sequence 22 (5%), Sequence 18 (3%), Sequence 19 (3%), Sequence 20 (0%), Sequence 21 (0%). The predicted deamidated sequence is LQPENPSQEQPE.


Individual ELISpot Responses by PBMC (Spot Forming Cells Determined by ELISpot Reader)

Peptide (see Table 23)C01C02C03C04C056516212366326130667163404682584226940000702100071110017200000739521423131741221529212875512257610813281622773010178212353792002028052003814123182335228314200184300008514121286110202


Cross-Reactivity


To deal with data from 652 peptides in 29 subjects, or to determine when a particular response is a true positive peptide-specific T-cell response, or to determine when a response to a peptide is due to cross-reactivity with another structurally related peptide, expression of a particular peptide response can be as a percentage of a “dominant” peptide response. Alternately, the expression can be a “relatedness” as correlation coefficients between peptide responses, or via bioinformatics.


Additional Epitopes


A representative result is as follows:

Combination of peptides with P04722E(all 20 mcg/ml) (n = 4)AloneP04722E+Pep 62660135P04722E100110HLAa085(expressed as percent P04722E)
626 + tT: PQQPQQPQQPFPQPQQPFPW

P04724E: QLQPFPQPELPYPQPQL

TTG-deamidation of peptide 626 (n = 12)

No tTG = 100%

TTG = 170%


Substitution at Particular Positions

Substitution of Peptide 626PQQP[Q1]QP[Q2]QPFPQP[Q3]QPFPV (n = 12)GluArgQ19590Q214580Q315510(expressed as percent wild-type peptide)Bioactivity of tTG-treated 15 mers spanningPeptide 626/627 (PQQPQQPQQPFPQPQQPFPWQP)(n = 8)P1-155P2-164P3-173P4-1838P5-1965P6-2095P7-2165P8-2290(expressed as percent of maximal 15 mer response)


Multiple Epitopes:

P04724E: QLQPFPQPQLPYPQPQL626 + tTG: PQQPQQPQQPFPQPQQPFPWMinimal epitope: QPQQPFPQPQQPFPW


Immunomagnetic depletion of PBMC by beads coated with anti-CD4 and by anti-integrin β7 depleted IFNγ ELISpot responses, while immunomagnetic depletion of PBMC by beads coated with anti-CD8 or anti-alphaE integrin. Thus, the PBMC secreting IFNγ are CD4+ and α4β7+, associated with homing to the lamina propria in the gut.


Blocked by anti-DQ antibody but not by anti-DR antibody in heterozygotes and homozygotes for HLA-DQ2. This may imply multiple epitopes within one sequence.


T Cell Epitopes in Coeliac Disease


Other investigators have characterized certain intestinal T cell clone epitopes. See, e.g., Vader et al., Gastroenterology 2002, 122:1729-37; Arentz-Hansen et al., Gastroenterology 2002, 123:803-809. These are examples of epitopes whose relevance is at best unclear because of the in vitro techniques used to clone T cells.


Intestinal Versus Peripheral Blood Clones


Intestinal: 1) intestinal biopsies, 2) T cell clones raised against peptic-tryptic digest of gluten, 3) all HLA-DQ2 restricted, 4) clones respond to gliadin deamidated by transglutaminase.


Peripheral blood: 1) T cell clones raised against gluten are HLA-DR, DQ and DP restricted. Result: Intestinal T cell clones can be exclusively used to map coeliac disease associated epitopes


GDA9Wheat 307 aa Definition Alpha/Beta-Gliadin MM1 Precursor (Prolamin) Accession P18573—Genbank (which is incorporated herein by reference in its entirety)


Intestinal T Cell Clone Epitopes


A definition of intestinal T cell clone epitopes can be found in, for example, Arentz-Hansen et al., J Exp Med. 2000, 191:603-12. Also disclosed therein are gliadin epitopes for intestinal T cell clones. Deamidated QLQPFPQPQLPY is an epitope, with a deamidated sequence of QLQPFPQPELPY. There is an HLA-DQ2 restriction. A homology search shows other bioactive rAlpha-gliadins include PQPQLPY singly or duplicated. A majority of T cell clones respond to either/or DQ2-α1: QLQPFPQPELPY DQ2-αII: PQPELPYPQPELPY


Dominant Gliadin T Cell Epitopes


All deamidated by transglutaminase.


Peripheral blood day 6 after gluten challenge: A-gliadin 57-73:


QLQPFPQPELPYPQPQS


Intestinal T cell clones: DQ2-αI: QLQPFPQPELPY DQ2-αII: PQPELPYPQPELPY


Intestinal T-Cell Clone Epitope Mapping

α-GliadinsA1   PFPQPQLPYA2     PQPQLPYPQA3   PYPQPQLPYGlia-20PQQPYPQPQPQΓ-GliadinsG1PQQSFPQQQG2IIPQQPAQG3FPQQPQQPYPQQPG4FSQPQQQFPQPQG5LQPQQPFPQQPQQPYFQQPQGlu-21QSEQSQQPFPQQFGlu-5Q(LL)PQQPQQFGlutenin Glt-156PFSQQQQSPFGlt-17PFSQQQQQ


Gluten Exposure and Induction of IFNγ-Secreting A-Gliadin 57-73QE65-Specific T Cells in Peripheral Blood


Untreated coeliac disease, followed by gluten free diet for 1, 2, or 8 weeks, followed by gluten exposure (3 days bread 200 g/day), followed by gluten free diet


Result 1: Duration of gluten free diet and IFNγ ELISpot responses on day 0 and day 6 of gluten challenge: A-gliadin 57-73 QE65 (results expressed as IFNγ specific spots/million PPBMC)


Day 0: none (5), 1 week (1), 2 weeks (2), 8 weeks (1)


Day 6: none (0), 1 week (4), 2 weeks (28), 8 weeks (48)


Result 2: Duration of gluten free diet and IFNγ ELISpot responses on day 0 and day 6 of gluten challenge: tTG-gliadin (results expressed as IFNγ specific spots/million PPBMC)


Day 0: none (45), 1 week (62), 2 weeks (5), 8 weeks (5)


Day 6: none (0), 1 week (67), 2 weeks (40), 8 weeks (60)


Result 3: Duration of gluten free diet and IFNγ ELISpot responses on day 0 and day 6 of gluten challenge: A-gliadin 57-73 P65 (results expressed as IFNγ specific spots/million PPBMC)


Day 0: none (1), 1 week (2), 2 weeks (1), 8 weeks (1)


Day 6: none (0), 1 week (0), 2 weeks (0), 8 weeks (0)


Result 4: Duration of gluten free diet and IFNγ ELISpot responses on day 0 and day 6 of gluten challenge: PPD (results expressed as IFNγ specific spots/million PPBMC)


Day 0: none (90), 1 week (88), 2 weeks (210), 8 weeks (150)


Day 6: none (0), 1 week (100), 2 weeks (210), 8 weeks (100)


Result 5: Duration of gluten free diet and IFNγ ELISpot responses on day 0 and day 6 of gluten challenge: tTG (results expressed as IFNγ specific spots/million PPBMC)


Day 0: none (5), 1 week (4), 2 weeks (3), 8 weeks (2)


Day 6: none (0), 1 week (4), 2 weeks (1), 8 weeks (2)


Gluten Challenge in HLA-DQ2 Coeliac Disease on Long Term Gluten


Characterization of anti-gliadin T cell response was carried out in peripheral blood on day 6-8 after 3-day gluten challenge.


Result 1: PBMC Day 6 Long-term gluten free diet (preincubation with anti-HLA-DR and -DQ antibody) (expressed as % inhibition)


DR-: tTG-gliadin 100 mcg/ml (105), A-gliadin 57-73 QE65 50 mcg/ml (90), PPD 5 mcg/ml (30)


DQ-: tTG-gliadin 100 mcg/ml (5), A-gliadin 57-73 QE65 50 mcg/ml (22), PPD 5 mcg/ml (78).


Result 2: PBMC Day 6 Long-term gluten free diet (expressed as % CD8-depleted PBMC response)


B7 depletion: tTG-gliadin n=6 (7), A-gliadin 57-73 n-9 (6), PPD n=8 (62)


AE depletion: tTG-gliadin n=6 (120), A-gliadin 57-73 n=9 (80), PPD n=8 (110).


CD4 depletion: tTG-gliadin n=6 (10), A-gliadin 57-73 n=9 (9), PPD n=8 (10).


Therapeutic Peptides Include, but are not Limited to

QLQPFPQPQLPYPQPQS (AG01)QLQPFPQPQLPYPQPQP (AG02)QLQPFPQPQLPYPQPQL (AG03)QLQPFPQPQLPYLQPQP (AG04)QLQPFPRPQLPYPQPQP (AG05)QLQPFPQPQLPYSQPQP (AG06)QLQPFLQPQLPYSQPQP (AG07)QLQPFSQPQLPYSQPQP (AG08)QLQPFPQPQLSYSQPQP (AG09)PQLPYPQPQLPYPQPQP (AG10)PQLPYPQPQLPYPQPQL (AG11)PQPQPFLPQLPYPQPQS (AG12)PQPQPFPPQLPYPQPQS (AG13)PQPQPFPPQLPYPQYQP (AG14)PQPQPFPPQLPYPQPPP (AG015)


Briefly after oral antigen challenge, specificities of peripheral blood T cells reflect those of intestinal T cell clones. In peripheral blood, epitopes of intestinal T cell clones are sub-optimal compared to A-gliadin 57-73 QE65, which is an optimal α-gliadin epitope.


EXAMPLE 15

ELISpot assays were also carried out for mapping purposes as follows.


Fine-Mapping the Dominant DQ-8 Associated Epitope

Sequence / sfctTG-treated sequence / sfcVPQLQPQNPSQQQPQEQV / 76RWPVPQLQPQNPSQQ / 60 WPVPQLQPQNPSQQQ / 90VPQLQPENPSQQQPQEQV / 3  PVPQLQPQNPSQQQP/ 130VPQLQPRNPSQQQPQEQV / 76   VPQLQPQNPSQQQPQ / 140    PQLQPQNPSQQQPQE / 59VPQLQPQNPSQEQPQEQV / 100     QLQPQNPSQQQPQEQ / 95VPQLQPQNPSQRQPQEQV / 1      LQPQNPSQQQPQEQV / 30       QPQNPSQQQPQEQVP / 4VPQLQPQNPSQQQPEEQV / 71YPQLQPQNPSQQQPREQV / 27DQ8 Gliadin EpitopeGDA09 202Q / 6VPQLQPQNPSQEQPEEQV / 81GDA09 202E / 83VPQLQPENPSQQQPEEQV / 2GDA09 202Q + tTG / 17VPQLQPENPSQEQPQEQV / 6BI + tTG / 0VPQLQPENPSQEQPEEQV / 5BI / 0


Fine-Mapping Dominant Epitope (2)


Pool 33 (deamidated)/sfc


A2b3 301 qqyp sgqg ffqp sqqn pqaq/2


A2b5 301 qqyp sgqg ffqp fqqn pqaq/1


A3a1 301 qqyp sgqg ffqp sqqn pqaq/0


A3b1 301 qqyp ssqv sfqp sqln pqaq/0


A3b2 301 qqyp ssqg sfqp sqqn pqaq/2


A4a 301 eqyp sgqv sfqs sqqn pqaq/28


A1b1 309 sfrp sqqn plaq gsvq pqql/2


A1a1 309 sfrp sqqn pqaq gsvq pqql/2


EXAMPLE 16

Bioactivity of Gliadin Epitopes in IFNγ-ELISpot (25 mcg/ml, n=6) (Expressed as % A-Gliadin 57-73 QE65 Response)


DQ2-AII: wild type (WT) (4), WT+tTG (52), Glu-substituted (52)


DQ2-AI: wild type (WI) (2), WT+tTG (22), Glu-substituted (28)


GDA09: wild type (WT) (1), WT+tTG (7), Glu-substituted (8)


A-G31-49: wild type (WT) (2), WT+tTG (3), Glu-substituted (O)


Dose Response of A-Gliadin 57-73 QE65 (G01E) (n=8) (Expressed as % G01E Maximal Response)


0.025 mcg/ml (1), 0.05 mcg/ml (8), 0.1 mcg/ml (10), 0.25 mcg/ml (22), 0.5 mcg/ml (38), 1 mcg/ml (43), 2.5 mcg/ml (52), 5 mcg/ml (70), 10 mcg/ml (81), 25 mcg/ml (95), 50 mcg/ml (90), 100 mcg/ml (85).


IFNγ ELISpot response to gliadin epitopes alone or mixed with A-gliadin 57-75 (G01E) (all 50 mcg/ml, tTG-gliadin 100 mcg/ml, PPD 5 mcg/ml; n-9) (Expressed as % G01E Response)


Alone: DQ2-A1 (20), DQ2-A2 (55), Omega G1 (50), tTG Gliadin (80), PPD (220), DQ2 binder (0)


G01E+: DQ2-A1 (90), DQ2-A2 (95), Omega G1 (100), tTG Gliadin (120), PPD (280), DQ2 binder (80)


Effect of Alanine and Lysine Substitution of A-Gliadin 57-73 QE65 on IFNγ ELISpot Responses in Individual Coeliac Subjects (n=8)


Epitope sequence: QLQPFPQPELPYPQPQS


Alanine substitution at positions 57-59 and 72-73 showed little to no decrease in % A-gliadin 57-73 QE65 response. Alanine substitution at positions 60-62 and 68-71 showed moderate decrease in % A-gliadin 57-73 QE65 response. Alanine substitution at positions 63-67 showed most decrease in % A-gliadin 57-73 QE65 response.


Effect of lysine substitution of A-gliadin 57-73 QE65 on IFNγ ELISpot responses in individual coeliac subjects (n=8);


Epitope sequence: QLQPFPQPELPYPQPQS


Lysine substitution at positions 57-59 and 71-73 showed little to no decrease in % A-gliadin 57-73 QE65 response. Lysine substitution at positions 60-61 and 69-70 showed moderate decrease in % A-gliadin 57-73 QE65 response. Lysine substitution at positions 62-68 showed most decrease in % A-gliadin 57-73 QE65 response.


EXAMPLE 17

Table 24 shows the results of analyses examining the 652 peptides with several patients challenged with wheat or rye.


REFERENCES



  • 1. Molberg O, et al. Nature Med. 4, 713-717 (1998).

  • 2. Quarsten H, et al. Eur. J. Immunol. 29, 2506-2514 (1999).

  • 3. Greenberg C S et al. FASEB 5, 3071-3077 (1991).

  • 4. Mantzaris G, Jewell D. Scand. J. Gastroenterol. 26, 392-398 (1991).

  • 5. Mauri L, et al. Scand. J. Gastroenterol. 31, 247-253 (1996).

  • 6. Bunce M, et al. Tissue Antigens 46, 355-367 (1995).

  • 7. Olerup O, et al. Tissue antigens 41, 119-134 (1993).

  • 8. Mullighan C G, et al. Tissue-Antigens. 50, 688-92 (1997).

  • 9. Plebanski M et al. Eur. J. Immunol. 28, 4345-4355 (1998).

  • 10. Anderson D O, Greene F C. The alpha-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet (1997) 95:59-65.

  • 11. Arentz-Hansen H, Korner R, Molberg O, Quarsten H, Van der Wal Y, Kooy Y M C, Lundin K E A, Koning F, Roepstorff P, Sollid L M, McAdam S N. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med. 2000; 191:603-12.

  • 12. Vader L W, de Ru A, van der Wal, Kooy Y M C, Benckhuijsen W, Mearin M L, Drijfhout J W, van Veelen P, Koning F. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 2002; 195:643-649.

  • 13. van der Wal Y, Kooy Y, van Veelan P, Pena S, Mearin L, Papadopoulos G, Koning F. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J. Immunol. 1998; 161:1585-8.

  • 14. van der Wal Y, Kooy Y, van Veelan P, Pena S, Mearin L, Molberg O, Lundin K E A, Sollid L, Mutis T, Benckhuijsen W E, Drijfhout J W, Koning F. Proc Natl Acad Sci USA 1998; 95:10050-10054.

  • 15. Vader W, Kooy Y, Van Veelen P et al. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 2002, 122:1729-37

  • 16. Arentz-Hansen H, McAdam S N, Molberg O, et al. Celiac lesion T cells recognize epitopes that cluster in regions of gliadin rich in proline residues. Gastroenterology 2002, 123:803-809.



Each of the PCT publications, U.S. patents, other patents, journal references, and any other publications cited or referred to herein is incorporated herein by reference in their entirety.

TABLE 1A-Gliadin protein sequence (based on amino acid sequencing)VRVPVPQLQP QNPSQQQPQE QVPLVQQQQF PGQQQQFPPQ QPYPQPQPFP SQQPYLQLQP FPQPQLPYPQ1          11         21         31         41         51         61PQSFPPQQPY PQPQPQYSQP QQPISQQQAQ QQQQQQQQQQ QQQILQQILQ QQLIPCMDVV LQQHNIAHAR71         81         91         101        111        121        131SQVLQQSTYQ LLQELCCQHL WQIPEQSQCQ AIHNVVHAII LHQQQKQQQQ PSSQVSFQQP LQQYP LGQGS141        151        161        171        181        191        201FRPSQQNPQA QGSVQPQQLP QFEEIRNLAL QTLPAMCNVY IAPYCTIAPF GIFGTN211        221        231        241        251        261









TABLE 2










Coeliac disease subjects studied













Age
Gluten

Bread
Symptoms



Sex
free diet
HLA-DQ2
challenge
with bread


















1
64 f
14
yr
Homozygote
3
days
Abdominal









pain, lethargy,









mouth ulcers,









diarrhoea


2
57 m
1
yr
Heterozygote
10
days
Lethargy,









nausea


3
35 f
7
yr
Heterozygote
3
days
Nausea


4
36 m
6
wk
Homozygote
3
days
Abdominal









pain, mouth









ulcers,









diarrhoea


5
26 m
19
yr
Heterozygote
3
days
None


6
58 m
35
yr
Heterozygote
3
days
None


7
55 m
1
yr
Heterozygote
3
days
Diarrhoea


8
48 f
15
yr
Homozygote
3
days
Abdominal









pain, diarrhoea




















TABLE 3











Aminoacid at position 65
Range
Mean




















Glutamate
(100)
100%



Asparagine
(50-84)
70%



Aspartate
(50-94)
65%



Alanine
(44-76)
64%



Cysteine
(45-83)
62%



Serine
(45-75)
62%



Valine
(24-79)
56%



Threonine
(46-66)
55%



Glycine
(34-47)
40%



Leucine
 (8-46)
33%



Glutamine
(16-21)
19%



Isoleucine
 (3-25)
14%



Methionine
 (3-32)
14%



Phenylalanine
 (0-33)
12%



Histidine
 (0-13)
8%



Tyrosine
 (0-17)
8%



Tryptophan
 (0-17)
8%



Lysine
 (0-11)
4%



Proline
(0-4)
2%



Arginine
(0-2)
1%





















TABLE 4








Elisopt
response

Corresponding residues in gliadin



No TG
TG
Peptide sequence
protein sequences (Accession no.)




















 8 (1-13)

QLQPFPQPQLPYPQPQS
57-73
α-Gliadin (T. aestivum) Q41545







100 (100)
QLQPFPQPELPYPQPQS
57-73
α-Gliadin (T. aestivum) Q41545





 5 (1-7)
 53 (44-67)
QLQPFPQPQLPYSQPQP
77-93
α/β-Gliadin precursor (Tricetum aestivum) P02863








76-92
α-Gliadin (T. aestivum) Q41528








77-93
α-Gliadin storage protein (T. aestivum) Q41531








57-73
α-Gliadin mature peptide (T. aestivum) Q41533








77-93
α-Gliadin precursor (T. spelta) Q9ZP09





12 (0-20)
 83 (61-113)
QLQPFPQPQLPYPQPQP
77-93
α/β-Gliadin A-II precursor (T. aestivum) P0472





19 (0-33)
 83 (74-97)
QLQPFPQPQLPYPQPQL
77-93
α/β-Gliadin A-IV precursor (T. aestivum) P04724








77-93
α/β-Gliadin MM1 precursor (T. aestivum) P18573





 3 (0-7)
109 (41-152)
PQLPYPQPQLPYPQPQP
84-100
α/β-Gliadin A-I precursor (T. aestivum) P04724





ND

PQLPYPQPQLPYPQPQL
84-100
α/β-Gliadin MMI precursor (T. aestivum) P18573





 0 (0-1)
  3 (0-7)
QLQPFLQPQLPYSQPQP
77-93
α/β-Gliadin A-I precursor (T. aestivum) P04721








77-93
α-Gliadin (T. aestivum) Q41509





 0 (0-0)
  2 (0-7)
QLQPFSQPQLPYSQPQP
77-93
α-Gliadin storage protein (T. aestivum) Q41530





ND

PQPQPFPPQLPYPQTQP
77-93
α/β-Gliadin A-III precursor (T. aestivum) P04723





17 (0-40)
 24 (11-43)
PQPQPFPPQLPYPQPQS
82-98
α/β-Gliadin A-V precursor (T. aestivum) P04725





10 (0-30)
 19 (11-33)
PQPQPFPPQLPYPQPPP
82-98
α/β-Gliadin clone PW1215 precursor (T. aestivum) P04726








82-98
α/β-Gliadin (T. urartu) Q41632





10 (0-30)
 21 (11-33)
PQPQPFLPQLPYPQPQS
79-95
α/β-Gliadin clone PW8142 precursor (T. aestivum) P04726








79-95
α-Gliadin (T. estivum) Q41529








79-95
α/β-Gliadin precursor (T. aestivum) Q41546
















TABLE 5










T cell epitopes described in coeliac disease










Source
Restriction
Frequency
Sequence*














Gamma-gliadin
DQ2
3/NS (iTCC)
QQLPQPEQPQQSFPEQERPF






Alpha-gliadin
DQ2
12/17 (iTCL)
QLQPFPQPELPY





Alpha-gliadin
DQ2
11/17 (iTCL)
PQPELPYPQPELPY





Alpha-gliadin
DQ2
1/23 (bTCC)
LGQQQPFPPQQPYPQPQPF





Alpha-gliadin
DQ8
3/NS (iTCC)
QQYPSGEGSFQPSQENPQ





Glutenin
DQ8
1/1 (iTCC)
GQQGYYPTSPQQSGQ





Alpha-gliadin
DQ2
11/12 in vivo
QLQPFPQPELPYPQPQS







NS not stated in original publication, iTCC intestinal T cell clone, iTCL intestinal polyclonal T cell line, bTCC peripheral blood T cell clone





* All peptides are the products of transglutaminase modifying wild type gluten peptides except the fourth and sixth peptides















TABLE 6










Relative bioactivity of gliadin T cell epitopes



in coeliac PBMC after gluten challenge












ELISpot response as %
A-gliadin 57-73
QE65 (all 25 mcg/ml)



Sequence*
Wild type
Wildtype + tTG
E-substituted





QQLPQPEQPQQSFPEQERPF
 9 (3)
18 (7)
10 (5)






QLQPFPQPELPY
 6 (2)
19 (1)
 8 (3)





PQPELPYPQPELPY
13 (6)
53 (8)
48 (9)





QQYPSGEGSFQPSQENPQ
10 (3)
 9 (3)
14 (8)





QLQPFPQPELPYPQPQS
18 (7)
87 (7)
100  





PQLPYPQPELPYPQPQP
14 (4)
80 (17)
69 (20)







*sequence refers that of transglutaminase (tTG) modified peptide and the T cell epitope. Wild type is the unmodified gliadin peptide. Data from 4 subjects. Blank was 5 (1)%.














TABLE 7








Polymorphisms of A-gliadin 57-73







A. Sequences derived from Nordic autumn wheat strain Mjoelner








Alpha-gliadin protein (single letter code refers to FIG. 14 peptides)
Polymorphism












Q41545 A-gliadin (from sequenced protein) 57-73 (A)
QLQPFPQPQLPYPQPQS



Gli alpha 1, 6: (EMBL: AJ133605 & AJ133602 58-74) (J)
QPQPFPPPQLPYPQTQP


Gli alpha 3, 4, 5: (EMBL: AJ133606, AJ133607, AJ133608 57-73) (1)
QLQPFPQPQLSYSQPQP


Gli alpha 7: (EMBL: AJ133604 57-73) (E)
QLQPFPRPQLPYPQPQP


Gli alpha 8, 9, 11: (EMBL:) (F)
QLQPFPQPQLPYSQPQP


Gli alpha 10: (EMBL: AJ133610 57-73) (D)
QLQPFPQPQLPYLQPQS














B. SWISSPROT and TREMBL scan (10.12.99) for gliadins containing the



sequence: XXXXXXXPQLPYXXXXX








Wheat (Triticum aestivum unless stated) gliadin accession number
Polymorphism












Q41545 A-gliadin (from sequenced protein) 57-73 (A)
QLQPFPQPQLPYPQPQS



SWISSPROT:


GDA0_WHEAT P02863 77-93 (F)
QLQPFPQPQLPYSQPQP


GDA1_WHEAT P04721 77-93 (G)
QLQPFLQPQLPYSQPQP


GDA2_WHEAT P04722 77-93 (B)
QLQPFPQPQLPYPQPQP


GDA3_WHEAT P04723 77-93 (O)

PQPQPFPPQLPYPQTQP



GDA4_WHEAT P04724 77-93 (C)
QLQPFPQPQLPYPQPQL


GDA4_WHEAT P04724 84-100 (K)

PQLPYPQPQLPYPQPQP



GDA5_WHEAT P04725 82-98 (N)

PQPQPFPPQLPYPQPQS



GDA6_WHEAT P04726 82-98 (P)

PQPQPFPPQLPYPQPPP



GDA7_WHEAT P04727 79-95 (M)

PQPQPFLPQLPYPQPQS



GDA9_WHEAT P18573 77-93 (C)
QLQPFPQPQLPYPQPQL


GDA9_WHEAT P18573 84-100 (L)

PQLPYPQPQLPYPQPQL



GDA9_WHEAT P18573 91-107 (K)

PQLPYPQPQLPYPQPQP



TREMBL


Q41509 ALPHA-GLIADLN 77-93 (G)
QLQPFLQPQLPYSQPQP


Q41528 ALPHA-GLIADIN 76-92 (F)
QLQPFPQPQLPYSQPQP


Q41529 ALPHA-GLIADIN 79-95 (M)

PQPQPFLPQLPYPQPQS



Q41530 ALPHA-GLIADIN 77-93 (H)
QLQPFSQPQLPYSQPQP


Q41531 ALPHA-GLIADIN 77-93 (F)
QLQPFPQPQLPYSQPQP


Q41533 ALPHA-GLIADLN 57-73 (F)
QLQPFPQPQLPYSQPQP


Q41546 ALPHA/BETA-GLIADIN 79-95 (M)

PQPQPFLPQLPYPQPQS



Q41632 ALPHA/BETA-TYPE GLIADIN. Triticum urartu 82-98 (P)

PQPQPFPPQLPYPQPPP



Q9ZP09 ALPHA-GLIADIN Triticum spelta 77-93 (F)
QLQPFPQPQLPYSQPQP
















TABLE 8








Bioactivity of substituted variants of A-gliadin 57-73 QE65 (Subst)


compared to unmodified A-gliadin 57-73 QE65 (G) (mean 100%,


95% CI 97-104) and blank (no peptide, bl) (mean 7.1%, 95% CI: 5.7-8.5)







Super-agonists











Subst
%
P vs G







Y61
129
<0.0001



Y70
129
0.0006







Agonists











W70
119
0.017



K57
118
0.02



Y59
117
0.04



A57
116
0.046



S70
116
0.045



K58
114
0.08



W59
110
0.21



A73
109
0.24



I59
108
0.37



G59
108
0.34



A58
108
0.35



W60
105
0.62



A59
104
0.61



K72
104
0.65



S59
103
0.76



K73
102
0.8



A70
102
0.81



Y60
101
0.96



A72
100
0.94



S63
98
0.67



K59
96
0.46



I60
96
0.5



G70
95
0.41



D65
95
0.44



E70
93
0.27



I63
92
0.19



S60
92
0.23



P59
88
0.08



M63
87
0.03



K71
85
0.047



V62
84
0.04



I70
84
0.04



I61
83
0.01



V68
82
0.0045



E59
81
0.01







Partial agonists











W61
79
0.002



A60
78
0.002



Y62
78
0.006



G60
77
0.003



A71
77
0.003



W62
76
0.0009



Q60
76
0.001



L63
74
0.0002



I62
74
0.0005



K70
74
0.001



H61
72
<0.0001



W68
72
<0.0001



F62
71
0.001



V63
70
<0.0001



S69
70
<0.0001



H63
70
<0.0001



F63
70
0.008



P70
69
<0.0001



T62
69
<0.0001



L61
69
<0.0001



S61
69
<0.0001



T61
69
<0.0001



T63
69
<0.0001



M66
68
<0.0001



T69
67
<0.0001



K60
66
<0.0001



S62
66
<0.0001



M61
66
<0.0001



P61
65
<0.0001



M62
64
<0.0001



Q61
64
<0.0001



G61
64
<0.0001



A63
64
<0.0001



L62
60
<0.0001



I68
60
<0.0001



S67
59
<0.0001



N61
59
<0.0001



I69
59
<0.0001



V61
58
<0.0001



D61
58
<0.0001



E60
57
<0.0001



A61
57
<0.0001



Q62
56
<0.0001



F68
56
<0.0001



N65
56
<0.0001



A62
56
<0.0001



A68
53
<0.0001



P66
53
<0.0001



R61
53
<0.0001



S68
53
<0.0001



Y63
52
<0.0001



N69
51
<0.0001



E63
51
<0.0001



T64
51
<0.0001



T67
51
<0.0001



Y69
50
<0.0001



D63
50
<0.0001



A65
49
<0.0001



K61
49
<0.0001



I66
49
<0.0001



T68
48
<0.0001



S65
48
<0.0001



L68
48
<0.0001



Q68
48
<0.0001



H62
47
<0.0001



G69
47
<0.0001



N63
47
<0.0001



H68
47
<0.0001



M68
46
<0.0001



D68
46
<0.0001



V69
46
<0.0001



G63
45
<0.0001



V64
45
<0.0001



E61
45
<0.0001



A69
43
<0.0001



R62
42
<0.0001



G68
42
<0.0001



A64
42
<0.0001



C65
42
<0.0001



N67
41
<0.0001



W63
41
<0.0001



F69
41
<0.0001



N68
40
<0.0001



V66
40
<0.0001



H69
40
<0.0001



M69
40
<0.0001



R69
40
<0.0001



W69
40
<0.0001



Q69
39
<0.0001



L67
38
<0.0001



K69
38
<0.0001



K62
38
<0.0001



E67
37
<0.0001



L69
37
<0.0001



S64
36
<0.0001



G62
36
<0.0001



E69
36
<0.0001



E68
36
<0.0001



V67
35
<0.0001



D62
35
<0.0001



R68
34
<0.0001



Q66
34
<0.0001



A67
33
<0.0001



N62
32
<0.0001



F66
31
<0.0001



E62
31
<0.0001



D69
31
<0.0001



D67
30
<0.0001



M67
29
<0.0001



Y66
28
<0.0001



I67
28
<0.0001



H65
26
<0.0001



P68
26
<0.0001



Y64
25
<0.0001



EK65
25
<0.0001



T66
25
<0.0001
















Subst
%
P vs G
P vs bl







N66
24
<0.0001




R64
24
<0.0001



K63
23
<0.0001



V65
23
<0.0001



H66
23
<0.0001



H67
22
<0.0001



L64
22
<0.0001



S66
22
<0.0001



F67
21
<0.0001



W66
21
<0.0001



G64
21
<0.0001



G65
21
<0.0001



D64
21
<0.0001



I65
21
<0.0001



M64
20
<0.0001
<0.0001



G67
19
<0.0001
<0.0001



T65
19
<0.0001
0.003



A66
19
<0.0001
<0.0001



I64
19
<0.0001
0.0003



R63
19
<0.0001
<0.0001



W67
19
<0.0001
<0.0001



K68
18
<0.0001
<0.0001



H64
18
<0.0001
<0.0001



W64
18
<0.0001
0.0001



Q65
18
<0.0001
0.0002



F64
16
<0.0001
0.0008



L65
16
<0.0001
0.0022



N64
16
<0.0001
<0.0001



F65
16
<0.0001
0.12



Q67
15
<0.0001
0.0012



M65
14
<0.0001
0.015



D66
14
<0.0001
0.013



R67
14
<0.0001
0.002







Non-agonists












P63
13
<0.0001
0.012



E64
12
<0.0001
0.053



W65
11
<0.0001
0.24



Q64
11
<0.0001
0.15



G66
11
<0.0001
0.07



R65
11
<0.0001
0.26



Y67
10
<0.0001
0.13



E66
10
<0.0001
0.17



K66
10
<0.0001
0.21



R66
10
<0.0001
0.23



K67
10
<0.0001
0.11



P65
8
<0.0001
0.57



K64
8
<0.0001
0.82



K65
8
<0.0001
0.63



Y65
7
<0.0001
0.9

















TABLE 9










Antagonism of A-gliadin 57-73 QE65 interferon gamma ELISPOT


response by substituted variants of A-gliadin 57-73 QE65 (Subst) (P is


significance level in unpaired t-test). Agonist activity (% agonist) of


peptides compared to A-gliadin 57-73 QE65 is also shown.












Subst
% Inhibit.
P
% agonist.











Antagonists












65T
28
0.004
19



67M
27
0.0052
29



64W
26
0.007
18



67W
25
0.0088
19







Potential antagonists












67I
24
0.013
10



67Y
24
0.013
21



64G
21
0.03
21



64D
21
0.029
16



65L
20
0.046
26



66N
20
0.037
24



65H
20
0.038
16



64N
19
0.05
16



64Y
19
0.06
25



66Y
19
0.048
28



64E
19
0.049
12



67A
18
0.058
30



67H
18
0.052
22







Non-antagonists












65V
17
0.07
23



65I
17
0.086
21



66T
17
0.069
25



65W
15
0.11
11



67R
15
0.13
14



65P
15
0.13
8



65K
15
0.11
8



66W
15
0.12
21



67G
14
0.14
19



66A
14
0.14
19



65R
13
0.18
11



65M
13
0.16
14



68P
13
0.16
26



63R
13
0.19
19



66G
12
0.19
11



65Q
12
0.2
18



65Y
12
0.22
7



66S
12
0.22
22



67F
11
0.25
21



66R
10
0.29
10



67K
10
0.29
10



64F
10
0.29
16



65F
9
0.41
16



63P
8
0.42
13



65EK
8
0.39
25



64Q
7
0.49
11



64I
5
0.6
21



68K
5
0.56
19



67Q
5
0.61
18



65G
5
0.62
15



64M
4
0.7
20



66H
4
0.66
23



66 E
3
0.76
10



66D
1
0.9
14



63K
1
0.88
23



64H
1
0.93
18



66K
0
0.98
10



64K
−2
0.88
8



64L
−11
0.26
22

















TABLE 10










Inhibition of A-gliadin 57-73 QE65 interferon gamma ELISPOT


response by peptides known to bind HLA-DQ2 (P is significance


level in unpaired t-test).











Peptide
% Inhibit.
P















TP
31
<0.0001



HLA1a
0
0.95


















TABLE 11










Antagonism of A-gliadin 57-73 QE65 interferon gamma ELISpot response



by naturally occurring polymorphisms of A-gliadin 57-73 QE65 (P is


significance level in unpaired t-test).









A-gliadin 57-73 QE65 polymorphism
% Inhibit
P














P04725 82-98 QE90

PQPQPFPPELPYPQPQS

19
0.009






Q41509 77-93 QE85
QLQPFLQPELPYSQPQP
11
0.15





Gli α 1, 6 58-74 QE66
QPQPFPPPELPYPQTQP
11
0.11





P04723 77-93 QE85

PQPQPFPPELPYPQTQP

10
0.14





Gil α 3-5 57-73 QE65
QLQPFPQPELSYSQPQP
7
0.34





P02863 77-93 QE85
QLQPFPQPELPYSQPQP
6
0.35





Q41509 77-93 QE85
QLQPFLQPELPYSQPQP
6
0.41





P04727 79-95 QE65

PQPQPFLPELPYPQPQS

6
0.39





P04726 82-98 QE90

PQPQPFPPELPYPQPPP

5
0.43
















TABLE 12










Prolamin homologues of A-gliadin 57-73 (excluding alpha/beta-gliadins)










Prolamin
Accession number
Sequence
% Bioactivity*














Wheat: α-gliadin
A-gliadin (57-73)
QLQPFPQPQLPYPQPQS
100 (0)






Wheat: ω-gliadin
AAG17702 (141-157)
PQ...........................F......QSE
 32 (6.4)





Barley: C-hordein
Q40055 (166-182)
...QPFPL...............F............Q
  2.3 (2.0)





Wheat: γ-gliadin
P21292 (96-112)
...QTFPQ...............F......QPQ
  2.1 (4.2)





Rye: secalin
Q43639 (335-351)
...QPSPQ...............F............Q
  1.6 (1.4)





Barley: γ-hordein
P80198 (52-68)
...QPFPQ...............HQHQFP
 −1.0 (1.8)





Wheat: LMW glutenin
P16315 (67-83)
LQ...QPIL............FS...Q...Q
 −0.9 (1.0)





Wheat: HMW glutenin
P08489 (718-734)
HGYYPTS.........SGQGQRP
  6.4 (4.0)





Wheat: γ-gliadin
P04730 (120-136)
...QCCQQL......I...QQSRYQ
  0.7 (0.9)





Wheat: LMW glutenin
P10386 (183-199)
...QCCQQL......I...QQSRYE
 −0.7 (0.5)





Wheat: LMW glutenin
O49958 (214-230)
...QCCRQL......I...EQSRYD
 −1.1 (0.3)





Barley: B1-hordein
P06470 (176-192)
...QCCQQL......I...EQFRHE
  1.8 (1.4)





Barley: B-hordein
Q40026 (176-192)
...QCCQQL......ISEQFRHE
  0.5 (0.9)







*Bioactivity is expressed as 100x(spot forming cells with peptide 25 mcg/ml plus tTG 8 mcg/ml minus blank)/(spot forming cells with A-gliadin 57-73 25 mcg/ml plus tTG 8 mcg/ml minus blank) (mean (SEM), n = 5).





Peptides were preincubated with tTG for 2 h 37° C.





Note,





Q is deamidated in A-gliadin 57-73 by tTG.














TABLE 13










Clinical details of coeliac subjects.















HLA-DQA1
HLA-DQB1
Duodenal

EMA on gluten



HLA-DQ
alleles
alleles
histology
Gluten free
(on GFD)


















C01
2, 6
102/6, 501
201, 602
SVA
1
yr
+(−)


C02
2, 2
501
201
SVA
1
yr
+(−)


C03
2, 5
101/4/5, 501
201, 501
PVA
1
yr
+(−)


C04
2, 5
101/4-5, 501
201, 501
SVA
7
yr
+(−)


C05
2, 2
201, 501
201, 202
SVA
4
mo
+(ND)


C06
2, 2
201, 501
201, 202
SVA
2
yr
+(−)


C07
2, 8
301-3, 501
201, 302
SVA
1
yr
+(−)


C08
2, 8
301-3, 501
201, 302/8
SVA
11
yr
ND(−)


C09
2, 8
301-3, 501
201, 302
SVA
29
yr
+(−)


C10
2, 8
201, 301-3
202, 302
IEL
1
yr
+(−)


C11
6, 8
102/6, 301-3
602/15, 302/8
IEL
9
mo
−(ND)


C12
8, 7
301-3, 505
302, 301/9-10
SVA
2
yr
−(−)


C13
8, 8
301
302
SVA
1
yr
+(+)







SVA subtotal villous atrophy,





PVA partial villous atrophy,





IEL increased intra-epithelial atrophy,





GFD gluten-free diet,





ND not done.














TABLE 14










HLA-DQ2+ Coeliac (C01-6) and healthy control (H01-10) IFNγ


ELISpot responses to control peptides (20 μg/ml) and gliadin (500 μg/ml) before


and after gluten challenge (sfc/million PBMC minus response to PBS alone)











Peptide
Healthy Day 0
Healthy Day 6
Coeliac Day 0
Coeliac Day 6


















P04722 77-93
0
(−4 to 17)
0
(−5 to 9)
−2
(−3 to 0)
27
(0-100)*


P04722 77-93 + tTG
0
(−5 to 4)
0
(−9 to 3)
0
(−4 to 11)
141
(8 to 290)**


P04722 77-93 QE85
0
(−5 to 5)
0
(−3 to 4)
0
(−6 to 14)
133
(10 to 297)*


P02863 77-93
0
(−4 to 13)
2
(−3 to 5)
−2
(−3 to 2)
8
(−2 to 42)**


P02863 77-93 + tTG
−1
(−5 to 4)
−1
(−4 to 11)
1
(−4 to 6)
65
(8-164)**


P02863 77-93 QE85
0
(−4 to 13)
0
(−4 to 14)
−1
(−4 to 6)
42
(−2 to 176)*


Gliadin chymotrypsin
2
(−5 to 20)
18
(0 to 185)*
20
(11 to 145)
92
(50 to 154)


Gliadin chymotrypsin + tTG
0
(−1 to 28)
16
(−9 to 171)*
55
(29 to 248)
269
(206 to 384)**


Chymotrypsin
0
(−4 to 5)
1
(−4 to 11)
−2
(−5 to 5)
1
(−4 to 8)


Chymotrypsin + tTG
0
(−5 to 8)
6
(0 to 29)
−2
(−3 to 11)
2
(−3 to 18)*


Gliadin pepsin
4
(−4 to 28)
29
(0 to 189)***
44
(10 to 221)
176
(54 to 265)**


Gliadin pepsin + tTG
2
(−3 to 80)
27
(−4 to 241)***
61
(8 to 172)
280
(207 to 406)**


Pepsin
0
(−4 to 10)
0
(−3 to 12)
0
(−2 to 3)
2
(−2 to 8)


Pepsin + tTG
0
(−3 to 8)
0
(−5 to 9)
1
(−6 to 3)
0
(−3 to 14)


PBS alone
4
(0 to 6)
2
(0 to 6)
4
(1 to 12)
4
(0 to 4)


PBS + tTG
3
(0 to 8)
3
(0 to 11)
4
(2 to 10)
4
(2 to 11)







Day 6 vs. Day 0:





*P < 0.05





**P, 0.02,





***P < 0.01 by one-tailed Wilcoxon Matched-Pairs Signed-Ranks test














TABLE 15










Effect of deamidation by tTG to gliadin (0.5 mg/ml) and A-gliadin


57-73 homologues on IFNγ ELISpot responses in


HLA-DQ2+ coeliac (C01-6) and healthy control subjects


(H01-10) (median ratio tTG:no tTG pretreatment, range)










Peptide
Healthy Day 6
Coeliac Day 0
Coeliac Day 6
















Gliadin
0.94
(0.4-9.0)
2.1
(0.8-6.8)*
3.2
(1.8-4.2)**


chymotrypsin


Gliadin
1.4
(0.5-1.4)
1.4
(0.8-4.0)*
1.9
(1.1-4.4)**


pepsin


P04722




6.5
(2.3-12)**


77-93 Q85


P04722




0.7
(0.6-1.1)


77-93 E85


P02863




7.5
(3.9-19.9)**


77-93 Q85


P02863




1.0
(0.8-1.2)


77-93 E85







TTG > no tTG:





*P < 0.05





**P, 0.02,





***P < 0.01 by one-tailed Wilcoxon Matched-Pairs Signed-Ranks test














TABLE 16










Healthy subjects: IFNγ ELISpot Responses (>10 sfc/million PBMC


and >4 × buffer only) to tTG-treated gliadin peptide Pools on Day 6 of gluten


challenge (sfc/million PBMC) (italic: response also present on Day 0):


Group 1 - HLA-DQ2 (DQA1*0501-5, DQB1*0201)


Group 2 - HLA-DQ8 (DQA1*0301, DQB1*0302) and absent or “incomplete”


DQ2 (only DQA1*0501-5 or DQB1*0201)










Group 1
Group 2


















Subject
H01
H02
H03
H04
H05
H06
H07
H08
H09
H10
H11


HLA-DQ
2, 6
2, 7
2, 8
2, 5
2, 6
2, 6
2, 6
2, 7
2, 5
2, 5
8, 8





Pool 1
.
.
.
.
.
.
.
.
.
.
.


 2
.
.
.
.
.
.
.
.
.
.
.


 3
.
.
.
.
.
.
.
.
.
.
.


 4
.
.
.
.
.
.
.
.
13
.
.


 5
.
17
.
.
.
.
.
.

24

.
.


 6
.
.
.
.
.
.
.
.

31

.
.


 7
.
.
.
.
.
.
.
.
.
.
.


 8
.
.
.
.
.
.
.
.
.
.
.


 9
.
.
.
.
.
.
.
.
.
.
.


10
.
.
.
.
.
.
.
.
.
.
.


11
.
.
.
.
.
.
.
.
.
.
.


12
.
.
.
.
.
.
.
.
.
.
.


13
.
.
.
.
.
.
.
.
.
.
.


14
.
.
.
.
.
.
.
.
.
.
.


15
.
.
.
.
.
.
.
.
.
.
.


16
.
.
.
.
.
.
.
.
.
.
.


17
.
.
.
.
.
.
.
.
.
.
.


18
.
.
.
.
.
.
20
.
.
.
.


19
.
.
.
.
.
.
.
.
.
.
.


20
.
11
.
.
.
.
.
.
.
.
.


21
.
11
.
.
.
.
.
.
27
.
.


22
.
.
.
.
.
.
.
.
.
.
.


23
.

43

.
.
.
.
.
.
.
.
.


24
.
.
.
.
.
.
.
.
.
.
.


25
.
11
.
.
.
.
.
.
.
.
.


26
.
.
.
.
.
.
.
.
.
.
.


27
.
.
.
.
.
.
.
.
.
.
.


28
.
.
.
.
.
.
.
.
.
.
.


29
.
.
.
.
.
.
.
.
.
.
.


30
.
.
.
.
.
.
.
23
.
.
.


31
.
.
.
.
.
.
.
.
.
.
.


32
.
.
.
.
.
.
.
.
.
.
.


33
.
20
.
.
.
.
.
.
.
.
.


34
.
.
.
.
.
.
.
.
.
.
.


35
.
11
.
.
.
.
.
.
.
.
.


36
.
.
.
.
.
.
.
.
.
.
.


37
.
.
.
.
.
.
.

18

.
.
.


38
 14
.
.
.
.
.
.
12
.
.
.


39
.
.
.
.
.
.
.
11
.
.
.


40
.
14
.
.
.
.
.
17
.
.
.


41
.
.
.
.
.
.
.
.
.
.
.


42
.
.
.
.
.
.
.
.
.
.
.


43
.
.
.
.
.
.
.
.
11
.
.


44
.
14
.
.
.
.
.
.
.
.
.


45
.
11
.
.
.
.
.
.
.
.
.


46
.
.
.
.
.
.
.
.
.
.
.


47
.
.
.
.
.
.
.
.
.
.
.


48
.
.
.
.
.
.
.
.
.
.
.


49
.
.
.
.
.
.
.
.
.
.
.


50
.
14
.
.
12
.
.

22

.

14

.


51
.
.
.
.
.
.
.
.
.
.
.


52
.
14
.
.
.
.
.
.
.
.
.


53
.
26
.
.
.
.
.
.
.
.
.


54
.
.
.
.
.
.
.
12
.
.
.


55
.
.
.
.
.
.
.
.
.
.
.


56
.
.
.
.
.
.
.
.
.
.
.


57
.
23
.
.
.
.
12
.
.
.
.


58
.
14
.
.
.
.
.
.
.
.
.


59
.
.
.
.
.
.
.
.
.
.
.


60
.
.
.
.
.
.
.
.
.
.
.


61
.
23
.
.
.
.
.

11


11

.
.


62
.
.
.
.
.
.
.
.
.
.
.


63
.
.
.
.
.
.
.
.
.
.
.


64
.
20
.
.
.
.
.
.
.
.
.


65
.
.
.
.
.
.
.
.
.
.
.


66
.
14
.
.
.
.
.
.
.
.
.


67
.
11
.
.
.
.
.
.
.
.
.


68
.
20
.
.
.
.
.

20

.
.
.


69
.
20
.
.
.
.
.
.
.
.
.


70
.
.
.
.
.
.
.
.
.
.
.


71
.
.
.
.
.
.
.
.
.
.
16


72
.
11
.
.
.
.
.
.
.
.
.


73
.
14
.
.
.
.
.
.
.
.
.


74
.
.
.
.
.
.
.
.
.
.
.


75
.
.
.
.
.
.
.
.
.
.
.


76
.
14
.
.
.
.
.
.
.
.
.


77
.
.
.
.
.
.
.
.
.
.
.


78
.
11
.
.
.
.
.
.
.
.
.


79
.
11
.
.
19
.
.
.
.
.
.


80
.
.
.
.
.
.
.
.
.
.
.


81
.
.
.
.
.
.
.
.
.
.
.


82
.
.
.
.
.
.
.
.
.
.
.


83
.
.
.
.
.
.
.
.
.
.
.


P04722 77-93
.
.
.
.
.
.
.
.
.
.
.


P04722 77-93 E
.
.
.
.
.
.
.
.
.
.
.


P04722 77-93 E
.
.
.
.
.
.
.
.
.
.
.


P02863 77-93
.
.
.
.
.
.
.
11
.
.
.


P02863 77-93 E
.
.
.
.
.
.
.
.
.
.
.


Gliadin + C

171

40
25
16
10

18
14
.
17

90



Chymotrypsin
 29
26
18
.
.
.
.
.
22
.
.


Gliadin + Pepsin

241

151 
29
24
48
.
16
45
.
19

35



Pepsin
















TABLE 17










tTG-deamidated gliadin peptide pools showing significant increase in IFN


gamma responses between Day 0 and Day 6 of gluten challenge in HLA-


DQ2 coeliac subjects C01-6 (Day 6-Day 0 response, and ratio of


responses to tTG-deamidated pool and same pool without tTG treatment)










IFNg ELISpot
tTG: no tTG


Pool
(Median sfc/million)
(Median)












9
59***
1.0


10
116** 
1.7


11
24***
2.5


12
133*** 
1.1


13
26** 
2.1


42
30** 
1.2


43
32***
1.3


44
24***
1.5


45
10***
1.1


46
12***
2.1


48
17***
1.4


49
46***
1.4


50
50***
4.6


51
40***
1.7


52
30***
3.1


53
27** 
1.4


76
17***
1.1


79
20***
0.9


80
83***
1


81
141*** 
1.1


82
22***
1.5


83
16** 
1.8







Day 6 vs. Day 0 **P < 0.02, ***P < 0.01 by one-tailed Wilcoxon Matched-Pairs Signed-Ranks test














TABLE 18










Coeliac subjects: IFNγ ELISpot Responses >10 sfc/million PBMC and


>4 × buffer only to tTG-treated Pepset Pools on Day 6 of gluten challenge


(sfc/million PBMC) (italic: response also present on Day 0):


Group 1 - HLA-DQ2 (DQA1*0501-5, DQB1*0201/2),


Group 2 - HLA-DQ2/8 (DQA1*0501-5, *0301, and DQB1*0201/2, *0302), and


Group 3 - HLA-DQ8 (DQA1*0301, DQB1*0302) and absent or “incomplete”


DQ2 (only DQA1*0501-5 or DQB1*0201/2)











Group 1:
Group 2:
Group 3




















Subject
C01
C02
C03
C04
C05
C06
C07
C08
C09
C10
C11
C12
C13


HLA-DQ
2, 6
2, 2
2, 5
2, 5
2, 2
2, 2
2, 8
2, 8
2, 8
2, 8
6, 8
7, 8
8, 8























Pool 1
.





23




223



 2
.










155


 3
.










41


 4
11








22
.


 5
.








.
.


 6
18


21


20
17

.
.


 7
.






353

.
.


 8
11
64



14
20
480

.
.

13


 9
93
127

92
25

32
460

.
.

18


10
175 
491
58
200
48

84

787


.
.


11
32
118

33
14

26
27

12
.


12
204 
379
54
225
61

129
587

12
.


13
93
142

29
18



60


.
.

11


14
.
45

21


17


.
.


15
18
30




38
43

.
.


16
.






37

.
.


17
.








.
.


18
.








.
.


19
11








.
.


20
11
215




51
167

.
.


21
.







11
.
.


22
.
21







.
.


23
.
18

21





12
.


24
.
15





10

.
.


25
.

15








12
.


26
.

18






13

12
.


27
.

15








.
.


28
.








.
.

11


29
.





11


.
.


30
11





11


.
.


31
.
70







.
.


32
.
18




20


.
.


33
11


10



14



11

.
40


11



34
.







11
.
.


35
.








.
.


36
.








.
.


37
.


23

14



.
.


38
.
24

19


20


.
.


39
.
49

15





11

.
.


40
.





14


.
.


41
.
21







.
.


42
39
42

44
21

11
63

12
.


43
50
91
13
75
14

190
113

.
.
21


44
32
97
17
96
13

87
107

.
.


45
.
21
10
100
11

38
110

.
.


46
14
55

102
18

63

163


.
.


47
14
58

38


223
97

.
.
31


48
21
106

60
14

144
353

.
.
57


49
75
170
17
142
30

202
293

.
.
39


50
57

245

23
140
61

27

248

143


.
.

11


51
68
106
10
127


220

267


.
.
29


52
43
121

79
13
16
175
180

.
.


53
36
94

92
29

69
53

.
.


54
36


35
11

166
27

.
.
19
13


55
.








.
.


56
29








11

.
.


57
.
36




20
13

.
.


58
.








.
.


59
.

10




53

.
.


60
.
18

15


11
53

.
.


61
.





20


.
.


62
14
18

13


60


.
.


63
.

10


14



28
.


64
.
15







18
.


65

36

25

23


35
27

.

11



66



31
11
10
17


.
.


67
.


17


17


.
.


68
.

19

127


14



.
.


69
.
15

10



20

20


.


70
.
12
31

13
10



.


71
11
21
13



14


.
18


72
.




16



.
.


73
.


13


14

11


.
.


74
.
239




254
447

.
.


75
.








.
.


76
18
21
19
15





.
.
12


77
.
88



10

13

.
.


78
.
18
17
69





.
.


79
11
85

44
29
12
44
43

.
.


80
132 
133
33
240
39
12
208
467

12
.
70


81
171 
318
113
367
104
12
211
530

.
.
74


82
18
300
17
125
32

16

241
723

.
.


83
14
164

31
21

163
277

15
.


P04722 77-93
211 
291
75
281
66

78

740


.
.


P04722 77-93 E
164 
297
108
221
64
10
84
653

.
.


P04722 77-93 E
161 
182
98
256
73

16

63
500

.
.


P02863 77-93
139 
164
35
94
36

29
603

.
.


P02863 77-93 E
46
176
19
88
41

23
520

.
.


Gliadin + C

214 


273


265


360


384


206


278


543

17


25


527

71


Chymotrypsin






18




.
.


Gliadin + Pepsin

239 


315

269

406


207

292

357


557



42


89


335

87


Pepsin
.




14

















TABLE 19










Deamidated peptides with mean bioactivity > 10% of P04722 E85



(20 μg/ml) in HLA-DQ2 coeliac subjects C01-5


















Mean



Mean



Rank
No.
Sequence
(SEM)
Rank
No.
Sequence
(SEM)



















89
PQLPYPQPQLPYPQPQLPYP
94 (18)
37
483
SKQPQQPFPQPQQPQQSFPQ
18 (4)






*2
91
PQPFPPQLPYPQPQLPYPQP
89 (12)
38
380
QPQQPQQPFPQPQQPQLPFP
18 (6)





*3
74
MQLQPFPQPQLPYPQPQLPY
88 (24)
39
618
PQQSFSYQQQPFFQQPYPQQ
18 (7)





*4
90
PQLPYPQPQLPYPQPQPFRP
87 (16)
*40
78
LQLQPFPRPQLPYPQPQPFR
17 (8)





*5
76
LQLQPFPQPQLPYPQPQPFR
85 (15)
41
390
QQTYPQRPQQPFPQTQQPQQ
17 (9)





6
626
PQQPQQPQQPFPQPQQPFPW
72 (23)
42
348
QQTFPQPQQTPPHQPQQQFP
16 (10)





7
627
QPPPQPQQPFPWQPQQPFPQ
66 (30)
43
409
QPQQPFPQLQQPQQPLPQPQ
16 (2)





*8
631
FPQQPQQPFFQPQLPFPQQS
61 (12)
44
382
QQPFPQQPQQPFPQTQQPQQ
16 (6)





9
636
PQQPQQPFFQPQQPIPVQPQ
51 (20)
45
629
PFPQTQQSFPLQPQQPFPQQ
16 (5)





*10
73
LQLQPFPQPQLPYPQPQLPY
49 (22)
46
643
PLQPQQPFPQQPQQPFPQQP
16 (6)





11
412
SQQPQQPFPQPQQQFPQPQQ
34 (19)
47
389
QQPFPQTQQPQQPFPQQPQQ
16 (6)





12
343
QQPQQPFPQPQQPQLPFPQQ
34 (11)
48
350
QQIFPQPQQTFPHQPQQAFP
15 (8)





*13
68
LQLQPFPQPQLPYLPQPQFR
33 (10)
49
65
PFPSQQPYPQPQPFPQPQPF
15 (5)





*14
66
LQLQPFPQPQLPYSQPQFFR
32 (7)
50
349
QQIFPQPQQTFPHQPQQQFP
15 (9)





*15
96
PQPFPPQLPYPQPQSFPPQQ
28 (6)
51
610
PWQQQPLPPQQSPSQQPPFS
15 (1)





16
393
QLPFPQQPQQPFPQPQQPQQ
27 (8)
*52
81
PQPQPFPPQLPYPQTQPFPP
15 (5)





17
355
QAFPQPQQTFPHQPQQQFPQ
27 (15)
*53
75
MQLQPFPQPQPFPPQLPYPQ
14 (5)





*18
67
LQLQPFPQPQLPYSQPQQFR
26 (6)
54
368
QQFPQPQQPQQPFPQQPQQQ
14 (7)





19
335
QQQQPFPQPQQPQQPFPQPQ
25 (1)
*55
82
PQPQPFPQPQPFPPQLPYPQ
14 (3)





*10
95
PQPFLPQLPYPQPQSFPPQQ
24 (6)
*56
80
LQLQPFPQPQPFPPQLPYPQ
14 (4)





21
396
TQQPQQPFPQQPQQPFPQTQ
23 (9)
57
624
FTQPQQPTPIQPQQPFPQQP
14 (6)





22
609
SCISGLERPWQQQPLPPQQS
23 (18)
58
407
QPQQPFPQSQQPQQPFPQPQ
14 (5)





23
385
QQPFPQPQQPQLPFPQQPQQ
23 (7)
59
337
QQQPFPQPQQPFQQQPQRTI
13 (4)





24
375
PQQPFPQPQQPQQPFPQPQQ
23 (10)
60
634
PQQLQQPFPLQPQQPFPQQP
13 (3)





25
406
QPQQPFPQLQQPQQPFPQPQ
22 (8)
61
388
QQPYPQQPQQPFPQTQQPQQ
13 (3)





26
625
PIQPQQPFPQQPQQPQQPFP
22 (9)
62
641
TPELQQPIPQQPQQPFPLQP
13 (7)





27
378
QQPQQPFPQQPQQQFPQPQQ
22 (10)
63
399
QQPFPQTQQPQQPFPQLQQP
13 (5)





28
371
PQQQFQQPQQPFPQQPQQTY
22 (10)
64
387
QQTFPQQPQLPFPQQPQQPF
13 (4)





29
642
PQQPQQPFFLQPQQPFPQQP
20 (8)
65
628
PFPWQPQQPFPQTPPSFPLQ
12 (4)





30
635
PLQPQQPFPQQPQQPFFQPQ
19 (5)
*66
88
PQPFPPQLPYSQPQPFRPQQ
12 (3)





*31
93
PQPFPPQLPYPQPQPFRPQQ
19 (5)
67
408
QPQQPFPQSKQPQQPFFQPQ
12 (5)





32
377
PQQQFPQPQQPQQPFPQQPQ
19 (9)
*68
77
LQLQPFPQPQPFPPQLPYPQ
11 (4)





33
411
LQQPQQPFPQPQQQLPQPQQ
19 (4)
69
370
PQQQFLQPQQPFFQQPQQPY
11 (5)





34
415
SQQPQQPFPQPQQPQQSFPQ
18 (5)
70
79
LQLQPFPQPQPFLPQLPYPQ
11 (5)





*35
94
PQPFPPQLPYPQPPPFSPQQ
18 (3)
71
379
QQPQQQFPQPQQPQQPFPQP
11 (5)





36
329
PSGQVQWPQQQPFFQPQQPF
18 (4)
72
397
PQQPQQPFPQTQQPQQPFPQ
11 (3)







*Indicates homologue of A-gliadin 57-73 with the core sequence PQLP(Y/F)














TABLE 20










Peptides > 10% as bioactive as P04722 QE65 grouped structure.














IFNg ELISpot






response





compared to



Peptide no.

P04722 77-93



(Pool)

QE85: mean


Rank
Gliadin-subtype
Sequence
(SEM)










Group 1: Homologues of A-gliadin 57-73












P04722 77-93
QLQPFPQPQLPYPQPQP




1
 89 (12) α
  PQL...Y.................................LPYP
94 (18)


2
 91 (12) α
PQPFPPQL...Y...........................
89 (12)


3
 74 (10) α
  M..........................................LPY
88 (14)


4
 90 (12) α
  PQL...Y.................................PFRP
87 (16)


5
 76 (10) α
  L...........................................PFR
85 (15)


8
631 (81) ω
 FPQQPQ...........................F......QS
61 (12)


10
 73 (10) α
  L..........................................LPY
49 (11)


13
 68 (9) α
  L..................................L......PFR
33 (10)


14
 66 (9) α
  L..................................S......PFR
32 (7)


18
 67 (9) α
  L..................................S......QFR
26 (6)


20
 95 (13) α
   PQPFL..............................FPPQQ
24 (6)


31
 93 (12) α
   PQPFP............................PFRPQQ
19 (5)


35
 94 (12) α
   PQPFP..........................PPFSPQQ
18 (3)


40
 78 (10) α
 L..................R......................PFR
17 (8)


52
 81 (11) α
  PQPQPFP.....................T...PFPP
15 (8)


53
 75 (10) α
MQLQPFPQPQPF........................
14 (5)


55
 82 (11) α
PQPQPFPQPQPF........................
14 (3)


56
 80 (10) α
LQLQPFPQPQPF........................
14 (4)


66
 88 (11) α
  PQPFP..................S.........PFRPQQ
12 (3)


68
 77 (10) α
LQLQPFPQPQPFP.....................
11 (4)


70
 79 (10) α
LQLQPFPQPQPFL.....................
11 (5)










Group 2: Homologues of peptide 626













QQPFPQPQQPFP




6
626 (80) ω
PQQPQQP....................................W
72 (23)


7
627 (80) ω
    .................................WQPQQPFPQ
66 (30)


9
636 (81) ω
  PQQP..............................L...VQPQ
51 (10)


11
412 (53) γ
  SQQP...........................Q.........PQQ
34 (19)


33
411 (53) γ
  LQQP...........................Q.........PQQ
19 (4)


36
329 (42) γ
PSGQVQWPQ.................................
18 (4)


41
390 (50) γ
 QQTYPQRP..................T...........QQ
17 (9)


59
337 (43) γ
   Q.................................CQQPQRTI
13 (4)


61
388 (50) γ
 QQPYPQQP..................T...........QQ
13 (3)










Group 3: Homologues of peptide 355













FPQPQQTFPHQPQQQFP




17
355 (46) γ
 QA...................................................Q
27 (15)


42
348 (45) γ
QQT.......................................................
16 (10)


48
350 (45) γ
QQI..........................................A........
15 (8)


50
349 (45) γ
QQI.......................................................
15 (9)










Group 4: Homologues of Peptide 396













QQPFPQQPQQPFP




21
396 (51) γ
  TQQP.......................................QTQ
23 (9)


27
378 (49) γ
  QQP.......................................QPQQ
22 (10)


28
371 (48) γ
PQQQFIQP....................................TY
22 (10)


29
642 (82) ω
 PQQP...............L.......................QQP
20 (8)


30
635 (81) ω
 PLQP........................................QPQ
19 (5)


44
382 (49) γ
  ...........................................QTQQPQQ
16 (6)


45
629 (81) ω
 PFPQT.......S.......L.........................QQ
16 (5)


46
643 (82) ω
 PLQP...........................................QQP
16 (6)


60
634 (81) ω
 PQQL................L..........................QQP
13 (3)


64
387 (50) γ
  ......T....................L.............QQPQQPF
13 (4)


62
641 (82) ω
 FPEL.........I..............................LQP
13 (7)










Group 5: Homologues of Peptide 343 (overlap Groups 2 and 4)













QQPFPQPQQPQLPFPQ




12
343 (44) γ
  QQP...............................................Q
34 (11)


16
393 (51) γ
QLPFPQQP....................................
27 (8)


19
335 (43) γ
   QQ.................................Q............PQ
25 (11)


23
385 (50) γ
  ..............................................QPQQ
23 (7)


24
375 (48) γ
   P................................Q............PQQ
23 (10)


25
406 (52) γ
   QP..................L............Q............PQ
22 (8)


32
377 (49) γ
   P......Q........................Q............QPQ
19 (9)


34
415 (53) γ
  SQQP.................................QS.........
18 (5)


37
413 (53) γ
  SKQP.................................QS.........
18 (4)


38
380 (49) γ
  QPQQP...........................................
18 (6)


43
409 (53) γ
   QP..................L............Q...L.......PQ
16 (2)


47
389 (50) γ
    ..................T............Q............QPQQ
16 (6)


58
407 (52) γ
   QP..................S............Q............PQ
14 (5)


63
399 (51) γ
    ..................T............Q............LQQP
13 (5)


67
408 (52) γ
   QP..................SK...........Q............PQ
12 (5)


71
379 (49) γ
   QQP......Q........................Q............P
11 (5)


72
397 (51) γ
  PQQP..................T............Q
11 (3)










Group 6: Peptide 625













PIQPQQPFPQQP




26
625 (80) ω
   ....................................QQPQQPFP
22 (9)


57
624 (80) ω
FTQPQQPT....................................
14 (6)


65
628 (80) ω
  PF...W........................TQQSFPLQ
12 (4)










Group 7: Peptide 618










39
618 (79) ω
PQQSFSYQQQPFPQQPYPQQ
18 (7)
















TABLE 21










Bioactivity of indvidual tTG-deamidated Pools 1-3 peptides in Subject C12:












No.
Sequence
%
No
Sequence
%
















8
AVRWPVPQLQPQNPSQQQPQ
100
23

LQPQNPSQQQPQEQVPLMQQ

26






5
MVRVTVPQ.....................................
85
14
...................................EQVPLVQQ
18





6
AVRVSVPQ....................................
82
15
............................H......EQVPLVQQ
18





3
MVRVPVPQ............................H.......
77
17
...................................KQVPLVQQ
18





1
AVRFPVPQ...........................L........
67
16
..........D........................EQVPLVQQ
13





2
MVRVPVPQ.....................................
59
13
...................................EQVPLVQQ
8





9
AVRVPVPQ......L.............................
49
22
.......K...........................EQVPLVQQ
5





7
AVRVPVPQ.....................................
49
18
.....L.............................EQVPLVQE
3





10
MVRVPVPQ......L.............................
33
19
.....L.............................EQVPLVQE
3





4
MVRVPMPQ..........D..........................
15
20
     P....................P..........GQVPLVQQ
0





12
AVRVPVPQ.......K............................
8
21
     P....................P..........RQVPLVQQ
0





11
AVRVPVPQP..............P................
0







Core sequence of epitope is underlined. Predicted deamidated sequence is: LQPENPSQEQPE














TABLE 22








Phylogenetic groupings of wheat (Triticum aestivum) gliadins



















Alpha/beta-gliadins (n = 61)



A1a1
AAA96525, EEWTA, P02863



A1a2
CAB76963



A1a3
AAA96276



A1a4
CAA26384, S07923



A1a5
AAA34280



A1a6
P04728



A1b1
CAB76962



A1b2
CAB76961



A1b3
BAA12318



A1b4
CAB76960



A1b5
CAB76958



A1b6
CAB76959



A1b7
CAB76955



A1b8
AAA96524



A1b9
CAA10257



A1b10
AAA96523, T06282



A1b11
AAA17741, S52124



A1b12
AAA34281



A1b13
B22364, P04271



A2a1
AAB23109, CAA35238, P18573, S10015



A2a2
CAB76964



A2b1
P04724, T06500, AAA348282



A2b2
D22364



A2b3
P04722, T06498, AAA34276



A2b4
C22364



A2b5
CAB76956



A3a1
AAA34277, CAA26383, P04726, S07361



A3a2
1307187B, A27319, S13333



A3b1
AAA96522



A3b2i
AAA34279, P04727,



A3b2ii
CAA26385, S07924



A3b3
A22364, AAA34278, AAB23108, C61218, P04725



A4a
P04723, AAA34283, T06504



A4b
E22364



A4c
CAB76957



A4d
CAB76954




Gamma-gliadins (n = 47)



GI1a
P08079, AAA34288, PS0094, CAC11079,




AAD30556, CAC11057, CAC11065, CAC11056



GI1b
CAC11089, CAC11064, CAC11080, CAC11078,




AAD30440



GI1c
CAC11087



GI1d
CAC11088



GI1e
CAC11055



GI2a
JS0402, P08453, AAA34289



GI2b
AAF42989, AAK84779, AAK84779



GI3a
AAK84778



GI3b
CAB75404



GI3c
BAA11251



GI4
EEWTG, P06659, AAA34274




Gamma-gliadins



GI5a
AAK84774, AAK84772



GI5b
AAK84773



GI5c
AAK84776



GI6a
JA0153, P21292, AAA34272, 1507333A



GI6b
AAK84777



GI6c
1802407A, AAK84775, AAK84780



GI7
AAB31090



GIIa
AAA34287, P04730, S07398



GIIb
1209306A



GIII1a
P04729



GIII1b
AAA34286




Omega-gliadins (n = 3)



O1a
AAG17702



O1b
P02865



O1c
A59156

















TABLE 23










Synthetic peptides spanning all known wheat gliadin 12 mers














Protein
Position*
Sequence
No.
Protein
Position*
Sequence
No.


















POOL 1



POOL 43






A1A1
20
AVRF PVPQ LQPQ NPSQ QLPQ
1
GI2A
33
QQQL VPQL QQPL SQQP QQTF
331


A1A2
20
MVRV PVPQ LQPQ NPSQ QQPQ
2
GI3A
33
QQQP FPQP HQPF SQQP QQTF
332


A1B1
20
MVRV PVPQ LQPQ NPSQ QHPQ
3
GI4
33
QQQP FLQP HQPF SQQP QQIF
333


A1B2
20
MVRV PMPQ LQPQ DPSQ QQPQ
4
GI5A
33
QQQQ PFPQ PQQP FSQQ PQQI
334


A1B7
20
MVRV TVPQ LQPQ NPSQ QQPQ
5
GI5B
33
QQQQ PFPQ PQQP QQPE PQPQ
335


A1B8
20
AVRV SVPQ LQPQ NPSQ QQPQ
6
GI5C
33
QQQP FRQP QQPP YQQP QHTF
336


A1B8
20
AVRV PVPQ LQPQ NPSQ QQPQ
7
GI6A
33
QQQP FPQP QQPP CQQP QRTI
337


A1B10
20
AVRW PVPQ LQPQ NPSQ QQPQ
8
GI6C
42
QQQP FPQP QQPP CEQP QRTI
338


POOL 2



POOL 44


A2B3
20
AVRV PVPQ LQLQ NPSQ QQPQ
9
GI1A
42
HQPF SQQP QQTF PQPQ QTFP
339


A2B5
20
MVRV PVPQ LQLQ NPSQ QQPQ
10
GI2A
42
QQPL SQQP QQTF PQPQ QTFP
340


A3A1
20
AVRV PVPQ PQPQ NPSQ PQPQ
11
GI4
42
HQPF SQQP QQIF PQPQ QTFP
341


A3B1
20
AVRV PVPQ LQPK NPSQ QQPQ
12
GI5A
42
QQPF SQQP QQIF PQPQ QTFP
342


A1A1
28
LQPQ NPSQ QLPQ EQVP LVQQ
13
GI5B
42
QQPQ QPFP QPQQ PQLP FPQQ
343


A1A2
28
LQPQ NPSQ QQPQ EQVP LVQQ
14
GI5C
42
QQPF YQQP QHTF PQPQ QTCP
344


A1B1
28
LQPQ NPSQ QHPQ EQVP LVQQ
15
GI6A
42
QQPF CQQP QRTI PQPH QTFH
345


A1B2
28
LQPQ DPSQ QQPQ EQVP LVQQ
16
GI6B
42
QQPP CQQP QQTI PQPH QTFH
346


POOL 3



POOL 45


A2B1
28
LQPQ NPSQ QQPQ KQVP LVQQ
17
GI6C
42
QQPF CEQP QRTI PQPH QTFH
347


A2B3
28
LQLQ NPSQ QQPQ EQVP LVQE
18
GI1A
50
QQTP PQPQ QTFP HQPQ QQFP
348


A2B5
28
LQLQ NPSQ QQPQ EQVP LVQE
19
GI4
50
QQIF PQPQ QTFP HQPQ QQFP
349


A3A1
28
PQPQ NPSQ PQPQ GQVP LVQQ
20
GI5A
50
QQIF PQPQ QTFP HQPQ QAFP
350


A3A2
28
PQPQ NPSQ PQPQ RQVP LVQQ
21
GI6A
50
QRTI PQPH QTFH HQPQ QTFP
351


A3B1
28
LQPK NPSQ QQPQ EQVP LVQQ
22
GI5A
58
QTFP HQPQ QAFP QPQQ TFPH
352


A4A
28
LQPQ NPSQ QQPQ EQVP LMQQ
23
GI6A
58
QTFH HQPQ QTFP QPQQ TYPH
353


A1A1
36
QLPQ EQVP LVQQ QQFL GQQQ
24
GI6C
58
QTFH HQPQ QTFP QPEQ TYPH
354


POOL 4



POOL 46


A1B1
36
QHPQ EQVP LVQQ QQFL GQQQ
25
GI5A
66
QAFP QPQQ TFPH QPQQ QFPQ
355


A1B2
36
QQPQ EQVP LVQQ QQFL GQQQ
26
GI5C
66
QHTF PQPQ QTCP HQPQ QQFP
356


A1B12
36
QQPQ EQVP LVQQ QQFL GQQQ
27
GI6A
66
QTFP QPQQ TYPH QPQQ QFPQ
357


A2A1
36
QQPQ EQVP LVQQ QQFP GQQQ
28
GI6C
66
QTFP QPEQ TYPH QPQQ QFPQ
358


A2B1
36
QQPQ KQVP LVQQ QQFP GQQQ
29
GI1A
73
QTFP HQPQ QQFP QPQQ PQQQ
359


A2B3
36
QQPQ EQVP LVQE QQFQ GQQQ
30
GI2A
73
QTPP HQPQ QQVP QPQQ PQQP
360


A3A1
36
PQPQ GQVP LVQQ QQFP GQQQ
31
GI3A
73
QTFP HQPQ QQFS QPQQ PQQQ
361


A3A2
36
PQPQ RQVP LVQQ QQFP GQQQ
32
GI5C
73
QTCP HQPQ QQFP QPQQ PQQP
362


POOL 5



POOL 47


A4A
36
QQPQ EQVP LMQQ QQQF PGQQ
33
GI6A
73
QTYP HQPQ QQFP QTQQ PQQP
363


A1A1
44
LVQQ QQEL GQQQ PFPP QQPY
34
GI1A
81
QQFP QPQQ PQQQ FLQP QQPP
364


A1B1
44
LVQQ QQFL GQQQ SFPP QQPY
35
GI2A
81
QQVP QPQQ PQQP FLQP QQPF
365


A1B12
44
LVQQ QQFL GQQQ FFPP QQPY
36
GI3A
81
QQFS QPQQ PQQQ FIQP QQPF
366


A2A1
44
LVQQ QQFP GQQQ PFPP QQPY
37
GI4
81
QQFP QPQQ PQQQ FLQP RQPF
367


A2B3
44
LVQE QQFQ GQQQ PFPP QQPY
38
GI5A
81
QQFP QPQQ PQQP PPQQ PQQQ
368


A3A1
44
LVQQ QQFP GQQQ QFPP QQPY
39
GI6A
81
QQFP QTQQ PQQP FPQP QQTE
369


A4A
44
LMQQ QQQF PGQQ EQFP PQQP
40
GI1A
89
PQQQ FLQP QQPF PQQP QQPY
370


POOL 6



POOL 48


A4D
44
LMQQ QQQF PGQQ ERFP PQQP
41
GI3A
89
PQQQ FIQP QQPP PQQP QQTY
371


A1A1
53
GQQQ PFPP QQPY PQPQ PFPS
42
G13B
89
PQQQ FIQP QQPQ QTYP QRPQ
372


A1A3
53
GQQQ PFPP QQPY PQPQ FPSQ
43
GI4
89
PQQQ FLQP RQPE PQQP QQPY
373


A1B1
53
GQQQ SFPP QQPY PQPQ PFPS
44
GI5A
89
PQQP FPQQ PQQQ FPQP QQPQ
374


A2B1
53
GQQQ PFPP QQPY PQQQ PFPS
4S
GI5C
89
PQQP FPQP QQPQ QPPP QPQQ
375


A3A1
53
GQQQ QFPP QQPY PQPQ PFPS
46
GI6A
89
PQQP FPQP QQTF PQQP QLPF
376


A4A
53
GQQE QFPP QQPY PHQQ PFPS
47
POOL 49


A4D
53
GQQE RFPP QQPY PHQQ PFPS
48
GI5A
97
PQQQ FPQP QQPQ QPFP QQPQ
377


POOL 7



GI5A
105
QQPQ QPPP QQPQ QQFP QPQQ
378


A1A1
61
QQPY PQPQ PFPS QLPY LQLQ
49
GI5A
113
QQPQ QQFP QPQQ PQQP FPQP
379


A1A3
61
QQPY PQPQ FPSQ LPYL QLQP
50
GI5A
121
QPQQ PQQP FPQP QQPQ LPFP
380


A1B1
61
QQPY PQPQ PFPS QQPYLQLQ
51
GI1A
126
QQPF PQQP QQPY PQQP QQPP
381


A2B1
61
QQPY PQQQ PFPS QQPY MQLQ
52
GI2A
126
QQPF PQQP QQPF PQTQ QPQQ
382


A4A
61
QQPY PHQQ PFPS QQPY PQPQ
53
GI3A
126
QQPF PQQP QQTY PQRP QQPP
383


A1A1
69
PFPS QLPY LQLQ PFPQ PQLP
54
GI4
126
RQPF PQQP QQPY PQQP QQPP
384


A1B1
69
PFPS QQPY LQLQ PPPQ PQLP
55
POOL 50


A1B10
69
PFPS QQPY LQLQ PFSQ PQLP
56
GI5A
126
QQPF PQPQ QPQL PFPQ QPQQ
385


POOL 8



GI5C
126
QQPF PQPQ QAQL PFPQ QPQQ
386


A1B11
69
PFPS QQPY LQLQ PFLQ PQLP
57
GI6A
126
QQTF PQQP QLPF PQQP QQPF
387


A1B12
69
PFPS QQPY LQLQ PPLQ PQPF
58
GI1A
134
QQPY PQQP QQPF PQTQ QPQQ
388


A2A1
69
PFPS QQPY LQLQ PEPQ PQLP
59
GI2A
134
QQPF PQTQ QPQQ PFTQ QPQQ
389


A2B1
69
PFPS QQPY MQLQ PFPQ PQLP
60
GI3A
134
QQTY PQRP QQPF PQTQ QPQQ
390


A2B2
69
PFPS QQPY MQLQ PFPQ PQPF
61
GI5A
134
QPQL PFPQ QPQQ QPQQ PFPQ
391


A2B4
69
PFPS QQPY LQLQ PFPQ PQPF
62
GI5C
134
QAQL PFPQ QPQQ PLPQ PQQP
392


A2B5
69
PFPS QQPY LQLQ PFPR PQLP
63
POOL 51


A4A
69
PFPS QQPY PQPQ PFPP QLPY
64
GI6A
134
QLPF PQQP QQPF PQPQ QPQQ
393


POOL 9



GI2A
142
QPQQ PFPQ QPQQ PFPQ TQQP
394


A4B
69
PFPS QQPY PQPQ PFPQ PQPF
65
GI2A
150
QPQQ PFPQ TQQP QQPF PQQP
395


A1A1
77
LQLQ PFPQ PQLP YSQP QPFR
66
GI2A
158
TQQP QQPF PQQP QQPF PQTQ
396


A1A4
77
LQLQ PFPQ PQLP YSQP QQPR
67
GI2A
166
PQQP QQPF PQTQ QPQQ PFPQ
397


A1B1
77
LQLQ PFPQ PQLP YLQP QPFR
68
GI1A
170
QQPF PQTQ QPQQ LFPQ SQQP
398


A1B4
77
LQLQ PFPQ PQLS YSQP QPFR
69
GI2A
170
QQPF PQTQ QPQQ PFPQ LQQP
399


A1B10
77
LQLQ PFSQ PQLP YSQP QPFR
70
GI3A
170
QQPF PQTQ QPQQ PFPQ SQQP
400


A1B11
77
LQLQ PFLQ PQLP YSQP QPFR
71
POOL 52


A1B12
77
LQLQ PFLQ PQPF PPQL PYSQ
72
GI4
170
QQPE PQTQ QPQQ PFPQ SKQP
401


POOL 10



GI5A
170
QQPF PQPQ QPQQ PFPQ LQQP
402


A2A1
71
LQLQ PFPQ PQLP YPQP QLPY
73
C15C
170
QQPLPQPQQPQQPEPQSQQP
403


A2B1
71
MQLQ PFPQ PQLP YPQP QLPY
74
GI6A
170
QQPF PQPQ QPQQ PFPQ SQQP
404


A2B2
77
MQLQ PFPQ PQPF PPQL PYPQ
75
GI1A
178
QPQQ LFPQ SQQP QQQF SQPQ
405


A2B3
77
LQLQ PFPQ PQLP YPQP QPFR
76
GI2A
178
QPQQ PFPQ LQQP QQPF PQPQ
406


A2B4
77
LQLQ PFPQ PQPF PPQL PYPQ
77
GI3A
178
QPQQ PFPQ SQQP QQPF PQPQ
407


A2B5
77
LQLQ PPPR PQLP YPQP QPFR
78
GI4
178
QPQQ PFPQ SKQP QQPF PQPQ
408


A3B1
77
LQLQ PFPQ PQPF LPQL PYPQ
79
POOL 53


A3B3
77
LQLQ PFPQ PQPF PPQL PYPQ
80
GI5A
178
QPQQ PFPQ LQQP QQPL PQPQ
409


POOL 11



GI1A
186
SQQP QQQF SQPQ QQFP QPQQ
410


A4A
77
PQPQ PFPP QLPY PQTQ PFPP
81
GI2A
186
LQQP QQPF PQPQ QQLP QPQQ
411


A4B
77
PQPQ PFPQ PQPP PPQL PYPQ
82
GI1A
186
SQQP QQPP PQPQ QQFP QPQQ
412


A1A1
85
PQLP YSQP QPFR PQQP YPQP
83
GI4
186
SKQP QQPF PQPQ QPQQ SFPQ
413


A1A6
85
PQLP YSQP QQFR PQQP YPQP
84
GI5A
186
LQQP QQPL PQPQ QPQQ PFPQ
414


A1B1
85
PQLP YLQP QPFR PQQP YPQP
85
GI5C
186
SQQP QQPF PQPQ QPQQ SFPQ
415


A1B4
85
PQLS YSQP QPFR PQQP YPQP
86
GI1A
194
SQPQ QQFP QPQQ PQQS FPQQ
416


A1B6
85
PQLS YSQP QPFR PQQL YPQP
87
POOL 54


A1B12
85
PQPF PPQL PYSQ PQPF RPQQ
88
GI2A
194
PQPQ QQLP QPQQ PQQS FPQQ
417


POOL 12



GI3A
194
PQPQ QQFP QPQQ PQQS FPQQ
418


A2A1
85
PQLP YPQP QLPY PQPQ LPYP
89
GI4
194
PQPQ QPQQ SFPQ QQPS LIQQ
419


A2B1
85
PQLP YPQP QLPY PQPQ PFRP
90
GI5A
194
PQPQ QPQQ PFPQ QQQP LIQP
420


A2B2
85
PQPF PPQL PYPQ PQLP YPQP
91
GI5C
194
PQPQ QPQQ SFPQ QQQP LIQP
421


A2B3
85
PQLP YPQP QPFR PQQP YPQP
92
GI1A
202
QPQQ PQQS FPQQ QPPF IQPS
422


A2B4
85
PQPP PPQL PYPQ PQPF RPQQ
93
GI2A
202
QPQQ PQQS FPQQ QRPF IQPS
423


A3A1
85
PQPF PPQL PYPQ PPPF SPQQ
94
GI3A
202
QPQQ PQQS FPQQ QPSL IQQS
424


POOL 13



POOL 55


A3B1
85
PQPP LPQL PYPQ PQSF PPQQ
95
GI1A
210
FPQQ QPPP IQPS LQQQ VNPC
425


A3B3
85
PQPP PPQL PYPQ PQSF PPQQ
96
GI2A
210
FPQQ QRPF IQPS LQQQ LNPC
426


A4A
85
QLPY PQTQ PFPP QQPY PQPQ
97
GI3A
210
FPQQ QPSL IQQS LQQQ LNPC
427


A4B
85
PQPF PPQL PYPQ TQPF PPQQ
98
GI5A
210
FPQQ QQPL IQPY LQQQ MNPC
428


A2A1
106
LPYP QPQP FRPQ QPYP QSQP
99
GI6A
210
FPQQ QQPA IQSF LQQQ MNPC
429


A2B1
106
LPYP QPQP FRPQ QSYP QPQP
100
GI1A
218
IQPS LQQQ VNPC KNFL LQQC
430


A3A1
106
LPYP QPPP FSPQ QPYP QPQP
101
GI2A
218
IQPS LQQQ LNPC KNIL LQQS
431


A3B1
106
LPQL PYPQ PQSF PPQQ PYPQ
102
GI3A
218
IQQS LQQQ LNPC KNFL LQQC
432


POOL 14



POOL 56


A4A
106
PPQL PYPQ TQPF PPQQ PYPQ
103
GI5A
218
IQPY LQQQ MNPC KNYL LQQC
433


A1A1
112
QPPR PQQP YPQP QPQY SQPQ
104
GI6A
218
IQSF LQQQ MNPC KNFL LQQC
434


A1B0
112
QPPR PQQL YPQP QPQY SQPQ
105
GI1A
226
VNPC KNFL LQQC KPVS LVSS
435


A2A1
112
QPFR PQQP YPQS QPQY SQPQ
106
GI2A
226
LNPC KNIL LQQS KPAS LVSS
436


A281
112
QPFR PQQS YPQP QPQY SQPQ
107
GI3A
226
LNPC KNFL LQQC KPVS LVSS
437


A3A1
112
PPFS PQQP YPQP QPQY PQPQ
108
GI5A
226
MNPC KNYL LQQC NPVS LVSS
438


A3B1
112
QSFP PQQP YPQQ RPKY LQPQ
109
GI6A
226
MNPC KNFL LQQC NHVS LVSS
439


A3B2
112
QSFP PQQP YPQQ RPMY LQPQ
110
GI1A
234
LQQC KPVS LYSS LWSM IWPQ
440


POOL 15



POOL 57


A3B3
112
QSFP PQQP YPQQ QPQY LQPQ
111
GI2A
234
LQQS KPAS LVSS LWSI IWPQ
441


A4A
112
QPFP PQQP YPQP QPQY PQPQ
112
GI3A
234
LQQC KPVS LVSS LWSM ILPR
442


A1A1
120
YPQP QPQY SQPQ QPIS QQQQ
113
GI5A
234
LQQC NPVS LVSS LVSM ILPR
443


A1B3
120
YPQP QPQY SQPQ EPIS QQQQ
114
GI6A
234
LQQC NHVS LVSS LVSI ILPR
444


A2A1
120
YPQS QPQY SQPQ QPIS QQQQ
115
GI1A
242
LYSS LWSM IWPQ SDCQ VMRQ
445


A3A1
120
YPQP QPQY PQPQ QPIS QQQA
116
GI2A
242
LVSS LWSI IWPQ SDCQ VMRQ
446


A3B1
120
YPQQ RPKY LQPQ QPIS QQQA
117
GI3A
242
LVSS LWSM ILPR SDCQ VMRQ
447


A3B2
120
YPQQ RPMY LQPQ QPIS QQQA
118
GI4
242
LVSS LWSI ILPP SDCQ VMRQ
445


POOL 16



POOL 58


A3B3
120
YPQQ QPQY LQPQ QPIS QQQA
119
GI5A
242
LVSS LVSM ILPR SDCK VMRQ
449


A1A1
128
SQPQ QPIS QQQQ QQQQ QQQQ
120
GI5C
242
LVSS LVSM ILPR SDCQ VMQQ
450


A1B3
128
SQPQ EPIS QQQQ QQQQ QQQI
121
GI6A
242
LVSS LVSI ILPR SDCQ VMQQ
451


A3A1
128
PQPQ QPIS QQQA QQQQ QQQQ
122
GI1A
250
IWPQ SDCQ VMRQ QCCQ QLAQ
452


A1A1
138
QQQQ QQQQ QQQQ QQQQ ILQQ
123
GI3A
250
ILPR SDCQ VMRQ QCCQ QLAQ
453


A1A6
138
QQQQ QQQQ QQQQ QEQQ ILQQ
124
GI4
250
ILPP SDCQ VMRQ QCCQ QLAQ
454


A1B11
138
QQQQ QQQQ QQQQ QQQQ IIQQ
125
GI5A
250
ILPR SDCK VMRQ QCCQ QLAR
455


A2A1
138
QQQQ QQQQ QQKQ QQQQ QQQI
126
GI5C
250
ILPR SDCQ VMQQ QCCQ QLAQ
456


POOL 17



POOL 59


A4B
139
AQQQ QQQQ QQQQ QQQQ TLQQ
127
GII1A
258
VMRQ QCCQ QLAQ IPQQ LQCA
457


A1A1
146
QQQQ QQQQ ILQQ ILQQ QLIP
128
GI5A
258
VMRQ QCCQ QLAR IPQQ LQCA
458


A1A1
146
QQQQ QEQQ ILQQ ILQQ QLIP
129
GI5C
258
VMQQ QCCQ QLAQ IPRQ LQCA
459


A1B6
146
QQQQ QEQQ ILQQ MLQQ QLIP
130
GI6A
258
VMQQ QCCQ QLAQ IPQQ LQCA
460


A1B10
146
QQQQ QEQQ ILQQ ILQQ QLTP
131
GI1A
266
QLAQ IPQQ LQCA AIHT VIHS
461


A1B11
146
QQQQ QQQQ IIQQ ILQQ QLIP
132
GI1B
266
QLAQ IPQQ LQCA AIHT VIHS
462


A2A1
146
QQKQ QQQQ QQQI LQQI LQQQ
133
GI2A
266
QLAQ IPQQ LQCA AIHS VVHS
463


A3A2
146
QQQQ QQQQ ILPQ ILQQ QLIP
134
GI3A
266
QLAQ IPQQ LQCA AIHS IVHS
464


POOL 18



POOL 60


A4A
146
QQQQ QQQQ TLQQ ILQQ QLIP
135
GI5A
266
QLAR IPQQ LQCA AIHG IVHS
465


A1A1
163
ILQQ ILQQ QLIP CMDV VLQQ
136
GI5C
266
QLAQ IPRQ LQCA AIHS VVHS
466


A1B6
163
ILQQ MLQQ QLIP CMDV VLQQ
137
GI6A
266
QLAQ IPQQ LQCA AIHS VAHS
467


A1B10
163
ILQQ ILQQ QLTP CMDV VLQQ
138
GI1A
274
LQCA AIHT IIHS IIMQ QEQQ
468


A2B1
163
ILQQ ILQQ QLIP CRDV VLQQ
139
GI1B
274
LQCA AIHT VIHS IIMQ QEQQ
469


A3A2
163
ILPQ ILQQ QL1P CRDV VLQQ
140
GI2A
274
LQCA AIHS VVHS IIMQ QQQQ
470


A4A
163
TLQQ ILQQ QLIP CRDV VLQQ
141
POOL 61


A1A1
171
QLIP CMDV VLQQ HNIA HGRS
142
GI3A
274
LQCA AIHS IVHS IIMQ QEQQ
471


POOL 19



GI4
274
LQCA AIHS VVHS IIMQ QEQQ
472


A1A3
171
QLIP CMDV VLQQ HNKA HGRS
143
GI5A
274
LQCA AIHS VVHS IIMQ QEQQ
473


A1B2
171
QLIP CMDV VLQQ HNLA HGRS
144
GI6A
274
LQCA AIHS VAHS IIMQ QEQQ
474


A1B7
171
QLIP CMDV VLQQ HNIV HGRS
145
GI1A
282
IIHS IIMQ QEQQ EQQQ GMHI
475


A1B10
171
QLTP CMDV VLQQ HNIA RGRS
146
GI1B
282
VIHS IIMQ QEQQ QGMH ILLP
476


A1B1
1171
QLIP CMDV VLQQ HNIV HGKS
147
GI2A
282
VVHS IIMQ QQQQ QQQQ QGID
477


A2A1
171
QLIP CRDV VLQQ HSIA YGSS
148
GI3A
282
IVHS IIMQ QEQQ EQRQ OVQI
478


A2B1
171
QLIP CRDV VLQQ HSIA HGSS
149
POOL 62


A2B3
171
QLIP CRDV VLQQ HNIA HGSS
150
GI4
282
VVHS IIMQ QEQQ EQLQ OVQI
479


POOL 20



GI5A
282
IVHS IIMQ QEQQ QQQQ QQQQ
480


A3A1
171
QLIP CRDV VLQQ HNIA HARS
151
GI5C
282
VVHS IVMQ QEQQ QGIQ ILRP
481


A3B1
171
QLIP CRDV VLQQ HNIA HASS
152
GI6A
282
VARS IIMQ QEQQ QOVP ILRP
482


A1A1
179
VLQQ HNIA HGRS QVLQ QSTY
153
GI1A
290
QEQQ EQQQ GMHI LLPL YQQQ
483


A1A3
179
VLQQ HNKA HGRS QVLQ QSTY
154
GI2A
290
QQQQ QQQQ QGID IFLP LSQH
484


A1B2
179
VLQQ HNLA HGRS QVLQ QSTY
155
GI2B
290
QQQQ QQQQ QGMH IFLP LSQQ
485


A1B7
179
VLQQ HNIV HGRS QVLQ QSTY
156
GI3A
290
QEQQ EQRQ GVQI LVPL SQQQ
486


A1B10
179
VLQQ HNIA RGRS QVLQ QSTY
157
POOL 63


A1B11
179
VLQQ HNIV HGKS QVLQ QSTY
15B
GI4
290
QEQQ EQLQ GVQI LVPL SQQQ
487


POOL 21



GI5A
290
QEQQ QQQQ QQQQ QQQG IQIM
4BB


A2A1
179
VLQQ HSIA YGSS QVLQ QSTY
159
GI5C
290
QEQQ QGIQ ILRP LFQL VQGQ
489


A2B1
179
VLQQ HSIA HGSS QVLQ QSTY
160
GI6A
290
QEQQ QGVP ILRP LPQL AQGL
490


A2B3
179
VLQQ HNIA HGSS QVLQ ESTY
161
GI5A
29B
QQQQ QQQO IQIM RPLF QLVQ
491


A3A1
179
VLQQ HNIA HARS QVLQ QSTY
162
GI1A
305
GMHI LLPL YQQQ QVGQ GTLV
492


A3B1
179
VLQQ HNIA HASS QVLQ QSTY
163
GI2A
305
GIDI FLPL SQHE QVGQ GSLV
493


A4A
179
VLQQ HNIA HASS QVLQ QSSY
164
GI2B
305
GMHI FLPL SQQQ QVGQ GSLV
494


A1A1
187
HGRS QVLQ QSTY QLLQ ELCC
165
POOL 64


A1A3
187
HGRS QVLQ QSTV QLLR ELCC
166
GI3A
305
GVQI LVPL SQQQ QVOQ GTLV
495


POOL 22



GI4
305
GVQI LVPL SQQQ QVGQ GILV
496


A1B8
187
HGRS QVLQ QSTY QLLR ELCC
167
GI5A
305
GIQI MRPL FQLV QGQG IIQP
497


A1B11
187
HGKS QVLQ QSTY QLLQ ELCC
16B
GI5C
305
GQIQ LRPL FQLV QGQG IIQP
498


A2A1
187
YGSS QVLQ QSTY QLVQ QLCC
169
GI6A
305
GVPI LRPL FQLA QGLG IIQP
499


A2B1
187
HGSS QVLQ QSTY QLVQ QFCC
170
GI1A
313
YQQQ QVOQ GTLV QGQG IIQP
500


A2B1
187
HGSS QVLQ ESTY QLVQ QLCC
171
GI2A
313
SQHE QVGQ GSLV QGQG IIQP
501


A3A1
187
HARS QVLQ QSTY QPLQ QLCC
172
GI2B
313
SQQQ QVGQ GSLV QGQG IIQP
502


A3B1
187
HASS QVLQ QSTY QLLQ QLCC
173
POOL 65


A4A
187
HASS QVLQ QSSY QQLQ QLCC
174
GI3A
313
SQQQ QVGQ GTLV QGQG IIQP
503


POOL 23



GI4
313
SQQQ QVGQ GTLV QGQG IIQP
504


A1A1
195
QSTY QLLQ ELCC QHLW QIPE
175
GI1A
321
GTLV QGQG IIQP QQPA QLEA
505


A1A3
195
QSTY QLLR ELCC QHLW QIPE
176
GI2A
321
GSLV QGQG IIQP QQPA QLEA
506


A1B8
195
QSTY QLLR ELCC QHLW QIPE
177
GI5A
321
FQLV QGQG IIQP QQPA QLEV
507


A2A1
195
QSTY QLVQ QLCC QQLW QIPE
17B
GI6A
321
FQLA QGLG IIQP QQPA QLEG
508


A2B1
195
QS1Y QLVQ QFCC QQLW QIPE
179
GI1A
329
IIQP QQPA QLEA IRSL VLQT
509


A3A1
195
QSTY QPLQ QLCC QQLW QIPE
180
GI3A
329
IIQP QQPA QLEV IRSL VLQT
510


A3B1
195
QSTY QLLQ QLCC QQLL QIPE
181
POOL 66


A4A
195
QSSY QQLQ QLCC QQLF QIPE
182
G13C
329
IIQP QQPA QLEV IRSS VLQT
511


POOL 24



GI5C
329
IIQP QQPA QYEV IRSL VLRT
512


A1A1
203
ELCC QHLW QIPE QSQC QAIH
183
GI6A
329
IIQP QQPA QLEG IRSL VLKT
513


A1B6
203
ELCC QHLW QILE QSQC QAIH
184
GI1A
337
QLEA IRSL VLQT LPTM CNVY
514


A1B10
203
ELCC QHLW QIPE KLQC QAIH
185
GI2A
337
QLEA IRSL VLQT LPSM CNVY
515


A2A1
203
QLCC QQLW QIPE QSRC QAIH
186
GI3A
337
QLEV IRSL VLQT LATM CNVY
516


A2B1
203
QFCC QQLW QIPE QSRC QAIH
187
G13C
337
QLEV IRSS VLQT LATM CNVY
517


A3B1
203
QLCC QQLL QIPE QSRC QAIH
188
GI5A
337
QLEV IRSL VLGT LPTM CNVF
518


POOL 25



POOL 67


A3B3
203
GLCC QQLL QIPE QSQC QAIH
189
GI5C
337
QYEV IRSL VIRT LPNM CNVY
519


A4A
203
QLCC QQLF QIPE QSRC QAIH
190
GI6A
337
QLEG IRSL VLKT LPTM CNVY
520


A1A1
211
QIPE QSQC QAIH NVVH AIIL
191
GI1A
345
VLQT LPTM CNVY VPPE CSII
521


A1B3
211
QIPE QSQC QAIQ NVVH AIIL
192
GI2A
345
VLQT LPSM CNVY VPPE CSIM
522


A1B6
211
QILE QSQC QAIH NVVH AIIL
193
GI3A
345
VLQT LATM CNVY VPPY CSTI
523


A1B9
211
QIPE QSQC QAIH KVVH AIIL
194
GI5A
345
VLGT LPTM CNVF VPPE CSTT
524


A1B10
211
QIPE KLQC QAIH NVVH AIIL
195
GI5C
345
VLRT LPNM CNVY VRPD CSTI
525


A2A1
211
QIPE QSRC QAIH NVVH AIIL
196
GI6A
345
VLKT LPTM CNVY VPPD CSTI
526


POOL 26



POOL 68


A3B3
211
QIPE QSQC QAIH HVAH AIIM
197
GI1A
353
CNVY VPPE CSII KAPF SSVV
527


A4A
211
QIPE QSRC QAIH NVVH AIIL
198
GI1A
353
CNVY VPPE CSIM RAPF ASIV
528


A1A1
219
QAIH NVVH AIIL HQQQ KQQQ
199
GI3A
353
CNVY VPPY CSTI RAPP ASIV
529


A1A6
219
QAIH NWH AIIL HQQQ QKQQ
200
GI5A
353
CNVF VPPE CSTF RAPF ASIV
530


A1B3
219
QAIQ NVVH AIIL HQQQ KQQQ
201
GI5C
353
CNVY VRPD CSTI NAPP ASIV
531


A109
219
QAIH KVVH AIIL HQQQ KQQQ
202
GI6A
353
CNVY VPPD CSTI NVPY ANID
532


A1013
219
QAIH NVVH AIIL HQQQ QQQQ
203
GI1A
361
CSII KAPF SSVV AGIG GQ
533


A2B3
219
QAIH NVVH AIIL HQQH HHHQ
204
GI2A
361
CSIM RAPF ASIV AGIG GQ
534


POOL 27



POOL 69


A3A1
219
QAIH NVVH AIIL HQQQ RQQQ
205
GI3A
361
CSTI RAPF ASIV AGIG GQYR
535


A3B1
219
QAIH NVVH AIIM HQQE QQQQ
206
GI4
361
CSTI RAPF ASIV ASIG GQ
536


A3B3
219
QAIH NVAH AIIM HQQQ QQQQ
207
GI5A
361
CSTT KAPF ASIV ADIG GQ
537


A4A
219
QAIH NVVH AIIL HHHQ QQQQ
208
GI5C
361
CSTI NAPF ASIV AGIS GQ
538


A1A1
227
AIIL HQQQ KQQQ QPSS QVSF
209
GI6A
361
CSTI NVPY ANID AGIG GQ
539


A1A6
227
AIIL HQQQ QKQQ QQPS SQFS
210
GII 1

PQQP FPLQ PQQS PLWQ SQQP
540


A1B2
227
AIIL HQQQ KQQQ QLSS QVSF
211
GII 9

PQQS FLWQ SQQP FLQQ PQQP
541


A1B10
227
AUL HQQQ KQQQ PSSQ VSPQ
212
GII 17

SQQP PLQQ PQQP SPQP QQVV
542


POOL 28



POOL 70


A1B13
227
AIIL HQQQ QQQQ EQKQ QLQQ
213
GII 25

PQQP SPQP QQW QIIS PATP
543


A2A1
227
AIIL HQQQ QQQQ QQQQ QPLS
214
GII 33

QQVV QIIS PATP TTIP SAGK
544


A2B3
227
AIIL HQQH HHHQ QQQQ QQQQ
215
GII 41

PATP TTIP SAGK PTSA PFPQ
545


A2B4
227
AIIL HQQH HHHQ EQKQ QLQQ
216
GII 49

SAGK PTSA PFPQ QQQQ HQQL
546


A3A1
227
AIIL HQQQ RQQQ PSSQ VSLQ
217
GII 57

PFPQ QQQQ HQQL AQQQ IPVV
547


A3B1
227
AIIM HQQE QQQQ LQQQ QQQQ
21B
GII 65

HQQL AQQQ IPVV QPSI LQQL
548


A3B3
227
AIIM HQQQ QQQQ EQKQ QLQQ
219
GII 73

IPVV QPSI LQQL NPCK VFLQ
549


A4A
227
AIIM HHHQ QQQQ QPSS QVSY
220
GII 81

LQQL NPCK VFLQ QQCS PVAM
550


POOL 29



POOL 71


A1A1
235
KQQQ QPSS QVSF QQPL QQYP
221
GII 89

VFLQ QQCS PVAM PQRL ARSQ
551


A1A6
235
KQQQ QPSS QFSF QQPL QQYP
222
GII 97

PVAM PQRL ARSQ MLQQ SSCH
552


A1B2
235
KQQQ QLSS QVSF QQPQ QQYP
223
GII 105

ARSQ MLQQ SSCH VMQQ QCCQ
553


A1010
235
KQQQ PSSQ VSEQ QPQQ QYPL
224
GII 113

SSCH VMQQ QCCQ QLPQ IPQQ
554


A1B13
235
QQQQ EQKQ QLQQ QQQQ QQQL
225
GI 112

QCCQ QLPQ IPQQ SRYQ AIRA
555


A2B4
235
HHHQ EQKQ QLQQ QQQQ QQQL
226
GII 127B

PQIP QQSR YEAI RAII YSII
556


A3A1
235
RQQQ PSSQ VSLQ QPQQ QYPS
227
GII 129

IPQQ SRYQ AIRA ILYS IILQ
557


A3B1
235
QQQQ LQQQ QQQQ LQQQ QQQQ
22B
GII 137

AIRA IIYS ILLQ EQQQ VQGS
558


POOL 30



POOL 72


A4A
235
QQQQ QPSS QVSY QQPQ EQYP
229
GII 145

IILQ EQQQ VQGS IQSQ QQQP
559


A1B13
243
QLQQ QQQQ QQQL QQQQ QKQQ
230
GII 153

VQGS IQSQ QQQP QQLG QCVS
560


A1B13
251
QQQL QQQQ QKQQ QQPS SQVS
231
GII 161

QQQP QQLG QCVS QPQQ QSQQ
561


A2A1
260
QQQQ QQQQ QPLS QVSF QQPQ
232
GII 169

QCVS QPQQ QSQQ QLGQ QPQQ
562


A2B1
260
QQQQ QQQQ QPLS QVCF QQSQ
233
GII 177

QSQQ QLGQ QPQQ QQLA QGTF
563


A2B3
260
HHHQ QQQQ QQQQ QPLS QVSF
234
GII 185

QPQQ QQLA QGTF LQPH QIAQ
564


A3B1
260
QQQQ QQQQ QPSS QVSI QQPQ
235
POOL 73


A2A1
289
QPLS QVSP QQPQ QQYP SGQG
236
GII 193

QGTF LQPH QIAQ LEVM TSIA
565


POOL 31



GII 201

QIAQ LEVM TSIA LRIL PTMC
566


A231
289
QPLS QVCF QQSQ QQYP SGQG
237
GII 209

TSIA LRIL PTMC SVNV PLYR
567


A3B1
289
QPSS QVSF QQPQ QQYP SSQV
23B
GII 217

PTMC SVNV PLYR TTTS VPFG
568


A1A1
293
QVSF QQPL QQYP LGQG SFRP
239
GII 225

PLYR TTTS VPPG VGTG VGAY
569


A1A6
293
QFSF QQPL QQYP LGQG SFRP
240
GIII 1A
1
TTTR TFPI PTIS SNNN HHFR
570


A1B2
293
QVSF QQPQ QQYP LGQG SFRP
241
GIII 1A
9
PTIS SNNN HHFR SNSN HHFH
571


A2A1
293
QVSF QQPQ QQYP SGQG SPQP
242
GIII 1A
17
HHFR SNSN HHFH SNNN QFYR
572


A2B1
293
QVCF QQSQ QQYP SGQG SFQP
243
POOL 74


A2B3
293
QVSF QQPQ QQYP SGQG FPQP
244
GIII 1A
25
HHPH SNNN QFYR NNNS PGHN
573


POOL 32



GIII 1A
33
QFYR NNNS PGHN NPLN NNNS
574


A2B5
293
QVSF QQPQ QQYP SGQG FFQP
245
GIII 1A
41
PGHN NPLN NNNS PNNN SPSN
575


A3A1
293
QVSL QQPQ QQYP SGQG FPQP
246
GIII 1A
49
NNNS PNNN SPSN HHNN SPNN
576


A3B1
293
QVSP QQPQ QQYP SSQV SFQP
247
GIII 1A
57
SPSN HHNN SPNN NFQY HTHP
577


A3B2
293
QVSF QQPQ QQYP SSQO SFQP
248
GIII 1A
65
SPNN NFQY HTHP SNHK NLPH
578


A4A
293
QVSY QQPQ EQYP SGQV SFQS
249
GIII 1A
73
HTHP SNHK NLPH TNNI QQQQ
579


A1A1
301
QQYP LGQG SFRP SQQN PQAQ
250
GIII 1A
81
NLPH TNNI QQQQ PPFS QQQQ
580


A1B2
301
QQYP LGQG SFRP SQQN SQAQ
251
POOL 75


A2A1
301
QQYP SGQG SEQP SQQN PQAQ
252
GIII 1A
89
QQQQ PPPS QQQQ PPFS QQQQ
581


POOL 33



GIII 1A
97
QQQQ PPFS QQQQ PVLP QQSP
582


A2B3
301
QQYP SGQG FFQP SQQN PQAQ
253
GIII 1A
105
QQQQ PVLP QQSP FSQQ QQLV
583


A2B5
301
QQYP SGQG FFQP FQQH PQAQ
254
GIII 1A
113
QQSP FSQQ QQLV LPPQ QQQQ
584


A3A1
301
QQYP SGQG FFQP SQQN PQAQ
255
GIII 1A
121
QQLV LPPQ QQQQ QLVQ QQIP
585


A3B1
301
QQYP SSQV SFQP SQLN PQAQ
256
GIII 1A
129
QQQQ QLVQ QQIP IVQP SVLQ
586


A3B2
301
QQYP SSQG SFQP SQQN PQAQ
257
GIII 1A
137
QQIP IVQP SVLQ QLNP CKVF
587


A4A
301
EQYP SGQV SFQS SQQN PQAQ
258
GIII 1A
145
SVLQ QLNP CKVF LQQQ CSPV
588


A1B1
309
SFRP SQQN PLAQ GSVQ PQQL
259
POOL 76


A1A1
309
SFRP SQQN PQAQ GSVQ PQQL
260
GIII 1A
153
CKVF LQQQ CSPV AMPQ RLAR
589


POOL 34



GIII 1A
161
CSPV AMPQ RLAR SQMW QQSS
590


A1A3
309
SFRP SQQN PQTQ GSVQ PQQL
261
GIII 1A
169
RLAR SQMW QQSS CHVM QQQC
591


A1B2
309
SFRP SQQN SQAQ GSVQ PQQL
262
GIII 1A
177
QQSS CHVM QQQC CQQL QQIP
592


A1B3
309
SFRP SQQN PQDQ GSVQ PQQL
263
GIII 1A
185
QQQC CQQL QQIP EQSR YEAI
593


A1B4
309
SFRP SQQN PRAQ GSVQ PQQL
264
GIII 1A
193
QQIP EQSR YEAI RAII YSII
594


A2A1
309
SFQP SQQN PQAQ GSVQ PQQL
265
GIII 1A
201
YEAI RAII YSII LQEQ QQGF
595


A2B3
309
FFQP SQQN PQAQ GSFQ PQQL
266
GIII 1A
209
YSII LQEQ QQGF VQPQ QQQP
596


A2B5
309
FFQP FQQN PQAQ GSFQ PQQL
267
POOL 77


A3A1
309
FFQP SQQN PQAQ GSVQ PQQL
268
GIII 1A
217
QQOF VQPQ QQQP QQSG QGVS
597


Pool 35



GIII 1A
225
QQQP QQSG QGVS QSQQ QSQQ
598


A3B1
309
SFQP SQLN PQAQ GSVQ PQQL
269
GIII 1A
233
QGVS QSQQ QSQQ QLGQ CSFQ
599


A3B1
309
SFQP SQLN PQAQ GSVQ PQQL
270
GIII 1A
241
QSQQ QLGQ CSFQ QPQQ QLGQ
600


A3B2
309
SEQP SQQN PQAQ GSVQ PQQL
271
GIII 1A
249
CSFQ QPQQ QLGQ QPQQ QQQQ
601


A4A
309
SFQS SQQN PQAQ GSVQ PQQL
272
GIII 1A
257
QLGQ QPQQ QQQQ QVLQ GTFL
602


A1A1
317
PQAQ GSVQ PQQL PQEE EIRN
273
GIII 1A
263
QQQQ QVLQ GTFL QPHQ LAHL
603


A1A3
317
PQTQ GSVQ PQQL PQPE EIRN
274
GIII 1A
271
GTFL QPHQ IAHL EAVT SIAL
604


A1A6
317
PQAQ GSVQ PQQL PQEE IRNL
275
POOL 78


A1B1
317
PLAQ GSVQ PQQL PQFE EIRN
276
GIII 1A
279
IAHL EAVT SIAL RTLP TMCS
605


POOL 36



GIII 1A
287
SIAL RTLP TMCS VNVP LYSA
606


A1B3
317
PQDQ GSVQ PQQL PQFE EIRN
277
GIII 1A
295
TMCS VNVP LYSA TTSV PFGV
607


A1B4
317
PRAQ GSVQ PQQL PQFE EIRN
278
GIII 1A
303
LYSA TTSV PFGV GTGV GAY
608


A2B3
317
PQAQ GSFQ PQQL PQFE EIRN
279
GIII 1B
26
SCIS GLER PWQQ QPLP PQQS
609


A2B5
317
PQAQ GSPQ PQQL PQFE AIRN
280
GIII 1B
34
PWQQ QPLP PQQS FSQQ PPFS
610


A3B1
317
0QAQ GSVQ PQQL PQEA EIRN
2B1
GIII 1B
42
PQQS FSQQ PPFS QQQQ QPLP
611


A4A
317
PQAQ GSVQ PQQL PQFQ EIRN
2B2
GIII 1B
50
PPFS QQQQ QPLP QQPS FSQQ
612


Pool 37



Pool 79


A1A1
325
PQQL PQFE EIRN LALQ TLPA
283
GIII 1B
58
QPLP QQPS FSQQ QPPF SQQQ
613


A1A6
325
PQQL PQFE IRNL ALQT LPAM
284
GIII 1B
66
FSQQ QPPP SQQQ PILS QQPP
614


A1B12
325
PQQL PQFE EIRN LARK
285
GIII 1B
74
SQQQ PILS QQPP FSQQ QQPV
615


A2A1
325
PQQL PQFE EIRN LALE TLPA
286
O 1A
17
ATAA RELN PSNK ELQS PQQS
616


A2B5
325
PQQL PQFE AIRN LALQ TLPA
287
O 1A
25
PSNK ELQS PQQS FSYQ QQPF
617


A3B1
325
PQQL PQFA EIRN LALQ TLPA
288
O 1A
33
PQQS PSYQ QQPF PQQP YPQQ
618


A4A
325
PQQL PQFQ ERIN LALQ TLPA
289
O 1A
41
QQPF PQQP YPQQ PYPS QQPY
619


A1A1
333
EIRN LALQ TLPA MCNV YIPP
290
O 1A
49
YPQQ PYPS QQPY PSQQ PFPT
620


POOL 38



POOL 80


A1A3
333
EIRN LALQ TLPS MCNV YIPP
291
O 1A
57
QQPY PSQQ PFPT PQQQ FPEQ
621


A2A1
333
EIRN LALE TLPA MCNV YIPP
292
O 1A
65
PFPT PQQQ FPEQ SQQP FTQP
622


A3A1
333
EIRN LALQ TLPR MCNV YIPP
293
O 1A
73
FPEQ SQQP FTQP QQPT PIQP
623


A1A1
341
TLPA MCNV YIPP YCTI APFG
294
O 1A
81
FTQP QQPT PIQP QQPF PQQP
624


A1A3
341
TLPS MCNV YIPP YCTI APFG
295
O 1A
89
PIQP QQPF PQQP QQPQ QPFP
625


A1B1
341
TLPA MCNV YIPP YCTI VPFG
296
O 1A
97
PQQP QQPQ QPFP QPQQ PFPW
626


A1B4
341
TLPA MCNV YIPP YCTI APFG
297
O 1A
105
QPFP QPQQ PFPW QPQQ PFLQ
627


A1B9
341
TLPA MCNV YIPP YCTI TPFG
298
O 1A
113
PFPW QPQQ PFPQ TQQS FPLQ
628


Pool 39



POOL 81


A2A1
341
TLPA MCNV YIPP YCTI APVG
299
O 1A
121
PFPQ TQQS FPLQ PQQP FPQQ
629


A2B2
341
TLPA MCNV YIPP YCST TIAP
300
O 1A
129
FPLQ PQQP FPQQ PQQP FPQP
630


A3A1
341
TLPR MCNV YIPP YCST TIAP
301
O 1A
137
FPQQ PQQP PFQP QLPF PQQS
631


A3A2
341
TLPR MCNV YIPP YCST TTAP
302
O 1A
145
FPQP QLPF PQQS EQII PQQL
632


A3A1
341
TLPA MCNV YIPP HCST TIAP
303
O 1A
153
PQQS EQII PQQL QQPF PLQP
633


A1A1
349
YIPP YCTI APFG IFGT NYR
304
O 1A
161
PQQL QQPF PQQP QQPF PQQP
634


A1B1
349
YIPP YCTI VPPG IFGT NYR
305
O 1A
169
PQQP QQPF PQPQ QQPF PQPQ
635


A1B4
349
YIPP YCAM APFG IFGT NYR
306
O 1A
177
PQQP QQPF PQPQ QPIP VQPQ
636


Pool 40



POOL 82


A1B5
349
YIPP YCTM APFG IFGT NYR
307
O 1A
185
PQPQ QPIP VQPQ QSFP QQSQ
637


A1B9
349
YIPP YCTI TPFG IFGT N
308
O 1A
193
VQPQ QSFP QQSQ QSQQ PFAQ
638


A2A1
349
YIPP YCTI APVG IFGT NYR
309
O 1A
201
QQSQ QSQQ PFAQ PQQL FPEL
639


A2B2
349
YIPP YCST TIAP VGIF GTN
310
O 1A
209
PFAQ PQQL FPEL QQPL PQQP
640


A3A2
349
YIPP YCST TTAP FGIF GTN
311
O 1A
217
FPEL QQPI PQQP QQPF PLQP
641


A3B1
349
YIPP HCST TIAP FGIF GTN
312
O 1A
225
PQQP QQPF PLQP QQPF PQQP
642


A3B3
349
YIPP HCST TIAP FGIS GTN
313
O 1A
233
PLQP QQPF PQQP QQPF PQQP
643


A4D
350
IPPY CSTT IAPF GIFG TNYR
314
O 1A
241
PQQP QQPF PQQP QQSF PQQP
644


Pool 41



POOL 83


GI1A
17
GTAN MQVD PSSQ VQWP QQQP
315
O 1A
249
PQQP QQSF PQQP QQPY PQQQ
645


GI2A
17
GTAN IQVD PSGQ VQWL QQQL
316
O 1A
257
PQQP QQPY PQQQ PYGS SLTS
646


GI3A
17
ATAN MQVD PSGQ VPWP QQQP
317
O 1A
265
PQQQ PYGS SLTS IGGQ
647


G13B
19
MN IQVD PSGQ VPWP QQQP FP
318
O 1B
1
ARQL NPSD QELQ SPQQ LYPQ
648


GI4
17
ATAN MQAD PSGQ VQWP QQQP
319
O 1B
9
QELQ SPQQ LYPQ QPYP QQPY
649


GI5A
17
TTAN IQVD PSGQ VQWP QQQQ
320
O 1C
1
SRLL SPRG KELH TPQE QFPQ
650


GI5C
17
ATAN MQVD PSGQ VQWP QQQP
321
O 1C
9
KELH TPQE QFPQ QQQF PQPQ
651


GI7
20
QIVF PSGQ VQWP QQQQ PFP
322
O 1C
17
QFPQ QQQF PQPQ QFPQ
652


Pool 42


GI1A
25
PSSQ VQWP QQQP VPQP HQPF
323


GI2A
25
PSGQ VQWL QQQL VPQL QQPL
324


GI3A
25
PSGQ VPWP QQQP FPQP HQPF
325


GI4
25
PSGQ VQWP QQQP FLQP HQPF
326


GI5A
25
PSGQ VQWP QQQQ PFPQ PQQP
327


GI5C
25
PSGQ VQWP QQQP FRQP QQPF
328


GI6A
25
PSGQ VQWP QQQP FPQP QQPP
329


GI1A
33
QQQP VPQP HQPF SQQP QQTF
330







*Position of N-terminal residue in α-, γ1-, γ2-, γ3-, or ω consensus sequence








embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image
embedded image

Claims
  • 1. A method of preventing or treating coeliac disease comprising administering to an individual at least one agent selected from: (a) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of SEQ ID NO:22 and transglutaminase-deamidated SEQ ID NOs:19-21, 31-36, 39-44, and 46, and equivalents thereof; and (b) an analogue of (a) which is capable of being recognised by a T cell receptor that recognises the peptide of (a) and which is not more than 50 amino acids in length; and (c) optionally, in addition to the agent selected from (a) or (b), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NO:1 and SEQ ID NO:2.
  • 2. A method of claim 1 wherein the agent is HLA-DQ2-restricted.
  • 3. A method of claim 1 wherein the agent is HLA-DQ8-restricted.
  • 4. A method of claim 1 wherein one agent is HLA-DQ2-restricted and a second agent is HLA-DQ8-restricted.
  • 5. A method of claim 1 wherein the agent comprises a wheat epitope.
  • 6. A method of claim 1 wherein one agent comprises a wheat epitope and one agent comprises a rye epitope.
  • 7. A method of claim 1 wherein one agent comprises a wheat epitope and one agent comprises a barley epitope.
  • 8. A method of claim 1 wherein one agent comprises a rye epitope and one agent comprises a barley epitope.
  • 9. A method of claim 1 wherein one agent comprises a wheat epitope, one agent comprises a barley epitope, and one agent comprises a rye epitope.
  • 10. A method of claim 1 wherein a single agent comprises a wheat epitope, a barley epitope, and a rye epitope.
  • 11. A method of preventing or treating coeliac disease comprising administering to an individual a pharmaceutical composition comprising an agent as defined in claim 1 and a pharmaceutically acceptable carrier or diluent.
  • 12. A method of preventing or treating coeliac disease comprising administering to an individual a pharmaceutical composition comprising an antagonist of a T cell which has a T cell receptor as defined in claim 1, and a pharmaceutically acceptable carrier or diluent.
  • 13. A method of preventing or treating coeliac disease comprising administering to an individual a composition for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined in claim 1, which composition comprises an agent as defined in claim 1.
  • 14. A method of preventing or treating coeliac disease comprising: diagnosing coeliac disease in an individual by either: a) contacting a sample from the host with at least one agent selected from: i) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of: SEQ ID NO:22 and transglutaminase-deamidated SEQ ID NOS:19-21, 31-36, 39-44, and 46, and equivalents thereof; and ii) an analogue of i) which is capable of being recognised by a T cell receptor that recognises i) and which is not more than 50 amino acids in length; and iii) optionally, in addition to the agent selected from i) or ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS:1 and 2; and determining in vitro whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease; or b) administering an agent as defined in claim 1 and determining in vivo whether T cells in the individual recognise the agent, recognition of the agent indicating that the individual has or is susceptible to coeliac disease; and administering to an individual diagnosed as having, or being susceptible to, coeliac disease a therapeutic agent for preventing or treating coeliac disease.
  • 15-27. (canceled)
  • 28. An agent as defined in claim 1, optionally in association with a carrier.
  • 29. (canceled)
  • 30. An agent as defined in claim 1 or an analogue that binds an antibody that binds to an epitope of an agent as defined in claim 1.
  • 31-32. (canceled)
  • 33. A pharmaceutical composition comprising an agent as defined in claim 1 and a pharmaceutically acceptable carrier or diluent.
  • 34. A composition for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined in claim 1, which composition comprises an agent as defined in claim 1.
  • 35. A composition for antagonising a T cell response to an agent as defined in claim 1, which composition comprises an antagonist of a T cell which has a T cell receptor as defined in claim 1.
  • 36. A mutant gliadin protein whose wild-type sequence can be modified by a transglutaminase to a sequence which is an agent as defined in claim 1, which mutant gliadin protein comprises a mutation which prevents its modification by a transglutaminase to a sequence which is an agent as defined in claim 1; or a fragment of such a mutant gliadin protein which is at least 15 amino acids long and which comprises the mutation.
  • 37. A polynucleotide that comprises a coding sequence that encodes a protein or fragment as defined in claim 36.
  • 38. A polynucleotide according to claim 37 that additionally comprises one or more regulatory sequences operably linked to the coding sequence, which regulatory sequences are capable of securing the expression of the coding sequence in a cell.
  • 39. A polynucleotide according to claim 38 wherein the regulatory sequence (s) allow expression of the coding sequence in a prokaryotic or mammalian cell.
  • 40. A polynucleotide according to claim 37 which is a vector or which is in the form of a vector.
  • 41. A cell comprising a polynucleotide according to claim 37 or which has been transformed with such a polynucleotide.
  • 42. A cell according to claim 41 which is a prokaryotic cell or a mammalian cell.
  • 43. A mammal that expresses a T cell receptor as defined in claim 1.
  • 44. A method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising: (a) contacting a sample from the host with at least one agent selected from (i) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of: SEQ ID NO:22 and SEQ ID NOS:19-21, 31-36, 39-44, and 46, and equivalents thereof; and (ii) an analogue of (i) which is capable of being recognised by a T cell receptor that recognises (i) and which is not more than 50 amino acids in length; and (iii) optionally, in addition to the agent selected from (i) or (ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS:1 and 2; and (b) determining in vitro whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.
  • 45. (canceled)
  • 46. A method according to claim 44 wherein the agent is an analogue (iii) which comprises (i) or (ii) bound to (a) an HLA molecule, or (b) a fragment of an HLA molecule capable of binding (i) or (ii).
  • 47. A method according to claim 46 wherein the HLA molecule or fragment is in a complex comprising four HLA molecules or fragments of HLA molecules.
  • 48. A method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising: administering an agent to the skin of an individual and detecting the presence of inflammation at the site of administration, the detection of inflammation indicating that the T cells of the individual recognise the agent, wherein the agent is selected from: (i) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of: SEQ ID NO:22 and SEQ ID NOS:19-21, 31-36, 39-44, and 46, and equivalents thereof; and (ii) an analogue of (i) which is capable of being recognised by a T cell receptor that recognises (i) and which is not more than 50 amino acids in length; and (iii) optionally, in addition to the agent selected from (i) or (ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS:1 and 2.
  • 49. A method according to claim 44 wherein the sample is blood sample.
  • 50. A method according to claim 44 wherein the T cells are not restimulated in antigen specific manner in vitro before the said determining.
  • 51. A method according to claim 44 in which the recognition of the agent by the T cells is determined by detecting the secretion of a cytokine from the T cells.
  • 52. A method according to claim 51 in which the cytokine is IFN-γ.
  • 53. A method according to claim 51 in which the cytokine is detected by allowing the cytokine to bind to an immobilised antibody specific to the cytokine and then detecting the presence of the antibody/cytokine complex.
  • 54. A method according to claim 44 wherein said determining is done by measuring whether the agent binds the T cell receptor.
  • 55. A method for identifying an analogue as defined in a claim 44 comprising determining whether a candidate substance is recognised by a T cell receptor that recognises an epitope comprising sequence as defined in claim 44, recognition of the substance indicating that the substance is an analogue.
  • 56. A method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising determining the presence of an antibody that binds to an epitope of an epitope comprising sequence as defined in claim 44 in a sample from the individual, the presence of the antibody indicating that the individual has, or is susceptible to, coeliac disease.
  • 57. A method of determining whether a composition is capable of causing coeliac disease comprising determining whether a protein capable of being modified by a transglutaminase to an oligopeptide sequence as defined in claim 44 is present in the composition, the presence of the protein indicating that the composition is capable of causing coeliac disease.
  • 58. A method according to claim 57 wherein the said determining is done by contacting the composition with an antibody specific for the sequence which is capable of being modified to the oligopeptide sequence, binding of the antibody to a protein in the composition indicating the composition is capable of causing coeliac disease.
  • 59. A method of identifying an antagonist of a T cell, which T cell recognises an agent as defined in claim 1, comprising contacting a candidate substance with the T cell and detecting whether the substance causes a decrease in the ability of the T cell to undergo an antigen specific response, the detecting of any such decrease in said ability indicating that the substance is an antagonist.
  • 60. A kit comprising an agent as defined in claim 44 and a means to detect the recognition of the peptide by the T cell.
  • 61. A kit according to claim 60 wherein the means to detect recognition comprises an antibody to IFN-γ.
  • 62. A kit according to claim 61 wherein the antibody is immobilised on a solid support and optionally the kit also comprises a means to detect the antibody/IFN-γ complex.
  • 63-64. (canceled)
  • 65. A method of identifying a product which is therapeutic for coeliac disease comprising administering a candidate substance to a mammal as defined in claim 43 which has, or which is susceptible to, coeliac disease and determining whether substance prevents or treats coeliac disease in the mammal, the prevention or treatment of coeliac disease indicating that the substance is a therapeutic product.
  • 66. (canceled)
  • 67. A method of diagnosing coeliac disease, or susceptibility to coeliac disease in an individual comprising administering an agent as defined in claim 44 and determining in vivo whether T cells in the individual recognise the agent, recognition of the agent indicating that the individual has or is susceptible to coeliac disease.
  • 68. A cell according to claim 41 which is a cell of a graminaceous monocotyledonous species.
  • 69. A cell according to claim 68 which is a cell of wheat, maize, oats, rye, rice, barley, triticale, sorghum, or sugar cane.
  • 70. A process for the production of a mutant gliadin protein which process comprises: (a) cultivating a cell according to claim 41 under conditions that allow the expression of the protein; and optionally (b) recovering the expressed protein.
  • 71. A method of obtaining a transgenic plant cell comprising: (a) transforming a plant cell with a vector encoding a mutant gliadin protein or fragment thereof which is at least 15 amino acids long to give a transgenic plant cell.
  • 72. A method of obtaining a first-generation transgenic plant comprising: (b) regenerating a transgenic plant cell transformed with a vector encoding a mutant gliadin protein or fragment thereof which is at least 15 amino acids long to give a transgenic plant.
  • 73. A method of obtaining a transgenic plant seed comprising: (c) obtaining a transgenic seed from a transgenic plant obtainable by regenerating a transgenic plant cell transformed with a vector encoding a mutant gliadin protein or fragment thereof which is at least 15 amino acids long to give a transgenic plant.
  • 74. A method of obtaining a transgenic progeny plant comprising obtaining a second-generation transgenic progeny plant from a first-generation transgenic plant obtainable by regenerating a transgenic plant cell transformed with a vector encoding a mutant gliadin protein or fragment thereof which is at least 15 amino acids long to give a transgenic plant, and optionally obtaining transgenic plants of one or more further generations from the second-generation progeny plant thus obtained.
  • 75. A method according to claim 74 comprising: (d) obtaining a transgenic seed from a first-generation transgenic plant obtainable by obtaining a transgenic seed from a transgenic plant obtainable by regenerating a transgenic plant cell transformed with a vector encoding a mutant gliadin protein or fragment thereof which is at least 15 amino acids long to give a transgenic plant, then obtaining a second-generation transgenic progeny plant from the transgenic seed; and/or (e) propagating clonally a first-generation transgenic plant obtainable by regenerating a transgenic plant cell transformed with a vector encoding a mutant gliadin protein or fragment thereof which is at least 15 amino acids long to give a second-generation progeny plant; and/or (f) crossing a first-generation transgenic plant obtainable by regenerating a transgenic plant cell transformed with a vector encoding a mutant gliadin protein or fragment thereof which is at least 15 amino acids long to give a transgenic plant with another plant to give a second-generation progeny plant; and optionally (g) obtaining transgenic progeny plants of one or more further generations from the second-generation progeny plant thus obtained.
  • 76. A transgenic plant cell, plant, plant seed or progeny plant obtainable by a method according to any one of claims 71 to 75.
  • 77. A transgenic plant or plant seed comprising plant cells according to claim 68.
  • 78. A transgenic plant cell callus comprising plant cells according to claim 68 obtainable from a transgenic plant cell, first-generation plant, plant seed or progeny.
  • 79. A plant according to claim 76 which is wheat, maize, oats, rye, rice, barley, triticale, sorghum, or sugar cane.
  • 80. A method of obtaining a crop product comprising harvesting a crop product from a plant according to claim 76 and optionally further processing the harvested product.
  • 81. A method according to claim 80 wherein the plant is a wheat plant and the harvested crop product is grain; optionally further processed into flour or another grain product.
  • 82. A crop product obtainable by a method according to claim 80 or 81.
  • 83. A food that comprises a protein as defined in claim 31 or 36.
  • 84. A food according to claim 83 in which the protein is used instead of wild-type gliadin.
  • 85. A plant according to claim 77 which is wheat, maize, oats, rye, rice, barley, triticale, sorghum, or sugar cane.
  • 86. A callus according to claim 78 which is wheat, maize, oats, rye, rice, barley, triticale, sorghum, or sugar cane.
Priority Claims (1)
Number Date Country Kind
01212885.8 Jun 2002 GB national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB03/02450 6/5/2003 WO 8/9/2005