Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Abstract
Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies that immunospecifically bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the novel polypeptide, polynucleotide, or antibody specific to the polypeptide. Vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods for using same are also included. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
Description


FIELD OF THE INVENTION

[0002] The present invention relates to novel polypeptides, and the nucleic acids encoding them, having properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions.



BACKGROUND OF THE INVENTION

[0003] Eukaryotic cells are characterized by biochemical and physiological processes which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates, or more particularly organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways involve extracellular signaling proteins, cellular receptors that bind the signaling proteins, and signal transducing components located within the cells.


[0004] Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, for example two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.


[0005] Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.


[0006] Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors. In other classes of pathologies the dysregulation is manifested as increased or up-regulated level of synthesis and secretion of protein effectors. In a clinical setting a subject may be suspected of suffering from a condition brought on by altered or mis-regulated levels of a protein effector of interest. Therefore there is a need to assay for the level of the protein effector of interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest. In addition, there is a need for a method of treatment of a pathological condition brought on by a increased or up-regulated levels of the protein effector of interest.


[0007] Antibodies are multichain proteins that bind specifically to a given antigen, and bind poorly, or not at all, to substances deemed not to be cognate antigens. Antibodies are comprised of two short chains termed light chains and two long chains termed heavy chains. These chains are constituted of immunoglobulin domains, of which generally there are two classes: one variable domain per chain, one constant domain in light chains, and three or more constant domains in heavy chains. The antigen-specific portion of the immunoglobulin molecules resides in the variable domains; the variable domains of one light chain and one heavy chain associate with each other to generate the antigen-binding moiety. Antibodies that bind immunospecifically to a cognate or target antigen bind with high affinities. Accordingly, they are useful in assaying specifically for the presence of the antigen in a sample. In addition, they have the potential of inactivating the activity of the antigen.


[0008] Therefore there is a need to assay for the level of a protein effector of interest in a biological sample from such a subject, and to compare this level with that characteristic of a nonpathological condition. In particular, there is a need for such an assay based on the use of an antibody that binds immunospecifically to the antigen. There further is a need to inhibit the activity of the protein effector in cases where a pathological condition arises from elevated or excessive levels of the effector based on the use of an antibody that binds immunospecifically to the effector. Thus, there is a need for the antibody as a product of manufacture. There further is a need for a method of treatment of a pathological condition brought on by an elevated or excessive level of the protein effector of interest based on administering the antibody to the subject.



SUMMARY OF THE INVENTION

[0009] The invention is based in part upon the discovery of isolated polypeptides including amino acid sequences selected from mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102. The novel nucleic acids and polypeptides are referred to herein as NOVX, or NOV1, NOV2, NOV3, etc., nucleic acids and polypeptides. These nucleic acids and polypeptides, as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as “NOVX” nucleic acid or polypeptide sequences.


[0010] The invention also is based in part upon variants of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the invention includes the amino acid sequences selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102. In another embodiment, the invention also comprises variants of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed. The invention also involves fragments of any of the mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, or any other amino acid sequence selected from this group. The invention also comprises fragments from these groups in which up to 15% of the residues are changed.


[0011] In another embodiment, the invention encompasses polypeptides that are naturally occurring allelic variants of the sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102. These allelic variants include amino acid sequences that are the translations of nucleic acid sequences differing by a single nucleotide from nucleic acid sequences selected from the group consisting of SEQ ID NOS: 2n−1, wherein n is an integer between 1 and 102. The variant polypeptide where any amino acid changed in the chosen sequence is changed to provide a conservative substitution.


[0012] In another embodiment, the invention comprises a pharmaceutical composition involving a polypeptide with an amino acid sequence selected from the group consisting of


[0013] SEQ ID NO: 2n, wherein n is an integer between 1 and 102 and a pharmaceutically acceptable carrier. In another embodiment, the invention involves a kit, including, in one or more containers, this pharmaceutical composition.


[0014] In another embodiment, the invention includes the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease being selected from a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 wherein said therapeutic is the polypeptide selected from this group.


[0015] In another embodiment, the invention comprises a method for determining the presence or amount of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 in a sample, the method involving providing the sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the polypeptide, thereby determining the presence or amount of polypeptide in the sample.


[0016] In another embodiment, the invention includes a method for determining the presence of or predisposition to a disease associated with altered levels of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 in a first mammalian subject, the method involving measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in this sample to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0017] In another embodiment, the invention involves a method of identifying an agent that binds to a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, the method including introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. The agent could be a cellular receptor or a downstream effector.


[0018] In another embodiment, the invention involves a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, the method including providing a cell expressing the polypeptide of the invention and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent.


[0019] In another embodiment, the invention involves a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, the method including administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of the invention, wherein the test animal recombinantly expresses the polypeptide of the invention; measuring the activity of the polypeptide in the test animal after administering the test compound; and comparing the activity of the protein in the test animal with the activity of the polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the polypeptide of the invention. The recombinant test animal could express a test protein transgene or express the transgene under the control of a promoter at an increased level relative to a wild-type test animal. The promoter may or may not b the native gene promoter of the transgene.


[0020] In another embodiment, the invention involves a method for modulating the activity of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, the method including introducing a cell sample expressing the polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.


[0021] In another embodiment, the invention involves a method of treating or preventing a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, the method including administering the polypeptide to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject. The subject could be human.


[0022] In another embodiment, the invention involves a method of treating a pathological state in a mammal, the method including administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 or a biologically active fragment thereof.


[0023] In another embodiment, the invention involves an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102; a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102; a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 or any variant of the polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and the complement of any of the nucleic acid molecules.


[0024] In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102, wherein the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant.


[0025] In another embodiment, the invention involves an isolated nucleic acid molecule including a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102 that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant.


[0026] In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n−1, wherein n is an integer between 1 and 102.


[0027] In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102; a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102; and a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.


[0028] In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102, wherein the nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or a complement of the nucleotide sequence.


[0029] In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102, wherein the nucleic acid molecule has a nucleotide sequence in which any nucleotide specified in the coding sequence of the chosen nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides in the chosen coding sequence are so changed, an isolated second polynucleotide that is a complement of the first polynucleotide, or a fragment of any of them.


[0030] In another embodiment, the invention includes a vector involving the nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102. This vector can have a promoter operably linked to the nucleic acid molecule. This vector can be located within a cell.


[0031] In another embodiment, the invention involves a method for determining the presence or amount of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102 in a sample, the method including providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in the sample. The presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type. The cell type can be cancerous.


[0032] In another embodiment, the invention involves a method for determining the presence of or predisposition for a disease associated with altered levels of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102 in a first mammalian subject, the method including measuring the amount of the nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0033] The invention further provides an antibody that binds immunospecifically to a NOVX polypeptide. The NOVX antibody may be monoclonal, humanized, or a fully human antibody. Preferably, the antibody has a dissociation constant for the binding of the NOVX polypeptide to the antibody less than 1×10−9 M. More preferably, the NOVX antibody neutralizes the activity of the NOVX polypeptide.


[0034] In a further aspect, the invention provides for the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, associated with a NOVX polypeptide. Preferably the therapeutic is a NOVX antibody.


[0035] In yet a further aspect, the invention provides a method of treating or preventing a NOVX-associated disorder, a method of treating a pathological state in a mammal, and a method of treating or preventing a pathology associated with a polypeptide by administering a NOVX antibody to a subject in an amount sufficient to treat or prevent the disorder.


[0036] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.


[0037] Other features and advantages of the invention will be apparent from the following detailed description and claims.



DETAILED DESCRIPTION OF THE INVENTION

[0038] The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as “NOVX nucleic acids” or “NOVX polynucleotides” and the corresponding encoded polypeptides arc referred to as “NOVX polypeptides” or “NOVX proteins.” Unless indicated otherwise, “NOVX” is meant to refer to any of the novel sequences disclosed herein. Table A provides a summary of the NOVX nucleic acids and their encoded polypeptides.
1TABLE ASequences and Corresponding SEQ ID NumbersSEQ ID NOSEQ ID NONOVXInternal(nucleic(aminoAssignmentIdentificationacid)acid)Homology 1aCG113254-0112Fibrillin likehomo sapiens 1bCG113254-0234Fibrillin likehomo sapiens 1c21164830356Fibulin 1d21217092078Fibulin 2aCG122729-01910FAN like homosapiens 3aCG122777-011112P-type trefoildomain containingprotein like homosapiens 4aCG124229-011314Insulin-likegrowth factor bindingprotien 3like homo sapiens 5aCG124445-021516transmembranekuzbanian like homosapiens 6aCG124590-021718Integrin Beta 4like homo sapiens 7aCG124916-011920Selenoprotein Plike homo sapiens 8aCG126224-012122Type II MembraneProtein with C2domains like homosapiens 9aCG126233-012324CTL2 PROTEIN likehomo sapiens1OaCG126600-012526Fibronectin typeIII Domain-MembraneProtein like homosapiens11aCG127888-012728Secretory Proteinlike homo sapiens12aCG128249-022930EPHRIN-A4 likehomo sapiens13aCG128785-013132Alternativelyspliced SPUF likehomo sapiens14aCG129005-01333454TM like homosapiens15aCG132086-013536Membrane Proteincontaining Alaninedehydrogenase andpyridine nucleotidetranshydrogenasedomain like homosapiens16aCG132297-013738Elastin like homosapiens16bCG132297-023940Elastin like homosapiens17aCG132343-014142transmembrane proteinlike homo sapiens18aCG132423-014344PREGNANCY-SPECIFICBETA-1-GLYCOPROTEIN2 like homo sapiens18b2250293774546Pregnancy SpecificBeta-1 Glycoprotein 2Precursor19aCG132541-014748Cadherin likehomo sapiens19bCG132541-024950Cadherin20aCG132888-025152M130 Antigen likehomo sapiens21aCG133159-015354EGF like domainand Vacuolar sortingprotein 9 (VPS9)domain containing likehomo sapiens22aCG133508-015556SYNAPTOTAGMIN VIlike homo sapiens22b2251715625758SYNAPTOTAGMIN VI23aCG133548-015960300003P13RIKHomolog (TmMP) likehomo sapiens23bCG133548-026162300003P13RIKHomolog (TmMP) likehomo sapiens24aCG133569-016364Type I membraneprotein with SH3domain like homosapiens24bCG133569-026566Type I membraneprotein25aCG133858-016768Granulocyte PeptideZgpal likehomo sapiens26aCG134100-016970Amidase_2 Domainlike homo sapiens26bCG134100-027172Amidase_2 Domainlike homo sapiens27aCG134403-0173742510042P03RIKHomolog (TmSP) likehomo sapiens28aCG135049-017576Fetuin-B likehomo sapiens28bCG135049-027778Fetuin-B likehomo sapiens28cCG135049-037980Fetuin-B likehomo sapiens28dCG135049-048182Fetuin-B likehomo sapiens28eCG135049-058384Fetuin-B likehomo sapiens28fCG135049-068586Fetuin-B likehomo sapiens29aCG54912-02878829b207601301899029c207601309919229d207601313939429e207601331959629f207639332979830aCG56315-0399100Bioactive PeptideConnexin30bCG56315-04101102Bioactive PeptideConnexin30cCC56315-05103104Bioactive PeptideConnexin30dCG56315-06105106Bioactive PeptideConnexin30eCG56315-07107108Bioactive PeptideConnexin30fCG56315-08109110Bioactive PeptideConnexin30gCG56315-01111112Gap JunctionBeta-5 Connexin -isoform 130hCG56315-02113114Connexin31aCG56326-0111511631b17507026811711832aCG56711-0111912032b16628065912112232c16628066712312432d16628067012512632e16628067312712832f16628068012913032g16628070313113232h16628073013313433aCG57658-02135136Bioactive PeptideConnexin33bCG57658-03137138Bioactive PeptideConnexin33cCG57658-04139140Bioactive PeptideConnexin33dCG57658-05141142Bioactive PeptideConnexin33eCG57658-06143144Bioactive PeptideConnexin33fCG57658-07145146Bioactive PeptideConnexin33gCG57658-01147148Connexin - isoform I34aCG57664-02149150Bioactive PeptideMHC Class I34bCG57664-01151152MHC Class Iantigen - isoform I35aCG57668-02153154Bioactive PeptideMHC Class I35bCG57668-01155156HLA Class IHistocompatibiliyantigen - isoform I36aCG59256-02157158Bioactive PeptideMHC Class I36bCG59256-01159160MHC Class Iantigen - isoform I37aCG59437-0116116237b17010882716316437c17010886316516638aCG59739-0116716838b16967914816917039aCG94630-02171172Bioactive PeptideMHC Class I39bCG94630-01173174MHC Class Iantigen - isoform I40aCG95205-02175176TEM-1 like homosapiens


[0039]

2





TABLE B










Sequences and Corresponding SEQ ID Numbers













SEQ ID
SEQ ID





NO
NO


NOVX
Internal
(nucleic
(amino


Assignment
Identification
acid)
acid)
Homology





41a
CG55676-01
177
178
GPCR like


41b
CG55676-02
179
180
GPCR like


41c
CG55676-03
181
182
GPCR like


41d
CG55676-04
183
184
GPCR like


41e
CG55676-05
185
186
GPCR like


41f
CG55676-06
187
188
GPCR like


41g
CG55676-07
189
190
GPCR like


41h
248209538
191
192
GPCR like


41i
248209591
193
194
GPCR like


41j
248209663
195
196
GPCR like


41k
248209745
197
198
GPCR like


42a
CG53677-01
199
200
GPCR like


42b
CG53677-02
201
202
GPCR like


42c
116781634
203
204
GPCR like










[0040] Table A and B indicate the homology of NOVX polypeptides to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table A will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table A.


[0041] Pathologies, diseases, disorders and condition and the like that are associated with NOVX sequences include, but are not limited to: e.g., cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, metabolic disturbances associated with obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, diabetes, metabolic disorders, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers, as well as conditions such as transplantation, neuroprotection, fertility, or regeneration.


[0042] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0043] Consistent with other known members of the family of proteins, identified in column 5 of Table A, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.


[0044] The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table A.


[0045] The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e g detection of a variety of cancers.


[0046] Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.


[0047] NOVX Clones


[0048] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0049] The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.


[0050] The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration in vitro and in vivo (vi) a biological defense weapon.


[0051] In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d).


[0052] In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 102; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; (e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules.


[0053] In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.


[0054] NOVX Nucleic Acids and Polypeptides


[0055] One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g. NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (e g., cDNA or genomic DNA), RNA molecules (e.g, mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.


[0056] A NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a “mature” form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product “mature” form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (e.g., host cell) in which the gene product arises. Examples of such processing steps leading to a “mature” form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a “mature” form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.


[0057] The term “probe”, as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), about 100 nt, or as many as approximately, e g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single-stranded or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.


[0058] The term “isolated” nucleic acid molecule, as used herein, is a nucleic acid that is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′- and 3′-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (e.g., brain, heart, liver, spleen, etc.). Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, or of chemical precursors or other chemicals.


[0059] A nucleic acid molecule of the invention, e g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993.)


[0060] A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.


[0061] As used herein, the term “oligonucleotide” refers to a series of linked nucleotide residues. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.


[0062] In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of a NOVX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, is one that is sufficiently complementary to the nucleotide sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown in SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, thereby forming a stable duplex.


[0063] As used herein, the term “complementary” refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term “binding” means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.


[0064] A “fragment” provided herein is defined as a sequence of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and is at most some portion less than a full length sequence. Fragments may be derived from any Contiguous portion of a nucleic acid or amino acid sequence of choice.


[0065] A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5′ direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 3′ direction of the disclosed sequence.


[0066] A “derivative” is a nucleic acid sequence or amino acid sequence formed from the native compounds either directly, by modification or partial substitution. An “analog” is a nucleic acid sequence or amino acid sequence that has a structure similar to, but not identical to, the native compound, e.g. they differs from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. A “homolog” is a nucleic acid sequence or amino acid sequence of a particular gene that is derived from different species.


[0067] Derivatives and analogs may be full length or other than full length. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins under stringent, moderately stringent, or low stringent conditions. See e.g Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993, and below.


[0068] A “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences include those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for a NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.


[0069] A NOVX polypeptide is encoded by the open reading frame (“ORF”) of a NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG “start” codon and terminates with one of the three “stop” codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a bona fide cellular protein, a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more.


[0070] The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102; or an anti-sense strand nucleotide sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102; or of a naturally occurring mutant of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102.


[0071] Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe has a detectable label attached, e g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express a NOVX protein, such as by measuring a level of a NOVX-encoding nucleic acid in a sample of cells from a subject e g, detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.


[0072] “A polypeptide having a biologically-active portion of a NOVX polypeptide” refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a “biologically-active portion of NOVX” can be prepared by isolating a portion of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, that encodes a polypeptide having a NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.


[0073] NOVX Nucleic Acid and Polypeptide Variants


[0074] The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 102.


[0075] In addition to the human NOVX nucleotide sequences of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame (ORF) encoding a NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.


[0076] Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from a human SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.


[0077] Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term “hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other.


[0078] Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.


[0079] As used herein, the phrase “stringent hybridization conditions” refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% oifthe probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes, primers or oligonucleotides (e.g , 10 nt to 50 nt) and at least about 60° C. for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.


[0080] Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6×SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65° C., followed by one or more washes in 0.2×SSC, 0.01% BSA at 50° C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a “naturally-occurring” nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).


[0081] In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6×SSC, 5× Reinhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55° C., followed by one or more washes in 1×SSC, 0.1% SDS at 37° C. Other conditions of moderate stringency that may be used are well-known within the art. See, e.g., Ausubel, et al (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Krieger, 1990; GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY.


[0082] In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting, example of low stringency hybridization conditions are hybridization in 35% formamide, 5×SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40° C., followed by one or more washes in 2×SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50° C. Other conditions of low stringency that may be used are well known in the art (e g., as employed for cross-species hybridizations). See, e.g, Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kiegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.


[0083] Conservative Mutations


[0084] In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, thereby leading to changes in the amino acid sequences of the encoded NOVX protein, without altering the functional ability of that NOVX protein. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 102. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an “essential” amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.


[0085] Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 40% homologous to the amino acid sequences of SEQ ID NO: 2n, wherein n is an integer between 1 and 102. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 102; more preferably at least about 70% homologous to SEQ ID NO: 2n, wherein is an integer between 1 and 102; still more preferably at least about 80% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 102; even more preferably at least about 90% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 102; and most preferably at least about 95% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 102.


[0086] An isolated nucleic acid molecule encoding a NOVX protein homologous to the protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.


[0087] Mutations can be introduced any one of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e g, threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis of a nucleic acid of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.


[0088] The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved “strong” residues or fully conserved “weak” residues. The “strong” group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the “weak” group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.


[0089] In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and a NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).


[0090] In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).


[0091] Antisense Nucleic Acids


[0092] Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or fragments, analogs or derivatives thereof. An “antisense” nucleic acid comprises a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a NOVX protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, or antisense nucleic acids complementary to a NOVX nucleic acid sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, are additionally provided.


[0093] In one embodiment, an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence encoding a NOVX protein. The term “coding region” refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding the NOVX protein. The term “noncoding region” refers to 5′ and 3′ sequences which flank the coding region that are not translated into amino acids (i.e , also referred to as 5′ and 3′ untranslated regions).


[0094] Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).


[0095] Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-carboxymethylaminomethyl-2-thiouridine, 5-(carboxyhydroxylmethyl)uracil, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 5-methoxyuracil, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, 2-thiouracil, 4-thiouracil, beta-D-manniosylqueosine, 5′-methoxycarboxymethyluracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3 -amino-3-N-2-carboxypropyl) uracil, (acp3 )w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i e, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


[0096] The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a NOVX protein to thereby inhibit expression of the protein (e g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.


[0097] In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al., 1987. FEBS Lett. 215: 327-330.


[0098] Ribozymes and PNA Moieties


[0099] Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.


[0100] In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes arc catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of a NOVX cDNA disclosed herein (i.e., SEQ ID NO: 2n−1 , wherein n is an integer between 1 and 102). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., U.S. Pat. No. 4,987,071 to Cech, et al. and U.S. Pat. No. 5,116,742 to Cech, et al. NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.


[0101] Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.


[0102] In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al., 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms “peptide nucleic acids” or “PNAs” refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleotide bases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomer can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996. supra; Perry-O'Keefe, et al., 1996. Proc Natl Acad. Sci. USA 93: 14670-14675.


[0103] PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigens agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e g , S1 nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).


[0104] In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching, lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleotide bases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al, 1996. supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g, 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5′ end of DNA. See, e.g, Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment. See, e.g., Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.


[0105] In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g, for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, e g, Zon, 1988. Pharm Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.


[0106] NOVX Polypeptides


[0107] A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in any one of SEQ ID NO: 2n, wherein n is an integer between 1 and 102. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in any one of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.


[0108] In general, a NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.


[0109] One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.


[0110] An “isolated” or “purified” polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language “substantially free of cellular material” includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, i.e , culture medium represents less than about 20%, more preferaibly less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.


[0111] The language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.


[0112] Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 102) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of a NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of a NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.


[0113] Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.


[0114] In an embodiment, the NOVX protein has an amino acid sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 102. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 102, and retains the functional activity of the protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, and retains the functional activity of the NOVX proteins of SEQ ID NO: 2n, wherein n is an integer between 1 and 102.


[0115] Determining Homology Between Two or More Sequences


[0116] To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid “homology” is equivalent to amino acid or nucleic acid “identity”).


[0117] The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102.


[0118] The term “sequence identity” refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term “percentage of sequence identity” is calculated by comparing, two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G,. U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term “substantial identity” as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.


[0119] Chimeric and Fusion Proteins


[0120] The invention also provides NOVX chimeric or fusion proteins. As used herein, a NOVX “chimeric protein” or “fusion protein” comprises a NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An “NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a NOVX protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 102, whereas a “non-NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within a NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of a NOVX protein. In one embodiment, a NOVX fusion protein comprises at least one biologically-active portion of a NOVX protein. In another embodiment, a NOVX fusion protein comprises at least two biologically-active portions of a NOVX protein. In yet another embodiment, a NOVX fusion protein comprises at least three biologically-active portions of a NOVX protein. Within the fusion protein, the term “operatively-linked” is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.


[0121] In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.


[0122] In another embodiment, the fusion protein is a NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.


[0123] In yet another embodiment, the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a NOVX ligand and a NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of a NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g. promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with a NOVX ligand.


[0124] A NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.


[0125] NOVX Agonists and Antagonists


[0126] The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or truncation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.


[0127] Variants of the NOVX proteins that function as either NOVX agonists (i.e mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein. There are a variety of methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu Rev Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.


[0128] Polypeptide Libraries


[0129] In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of a NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.


[0130] Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.


[0131] Anti-NOVX Antibodies


[0132] Included in the invention are antibodies to NOVX proteins, or fragments of NOVX proteins. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab, Fab′ and F(ab′)2 fragments, and an Fab expression library. In general, antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG1, IgG2, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.


[0133] An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence or SEQ ID NO: 2n, wherein n is an integer between 1 and 102, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.


[0134] In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, e.g, a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide arc particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e g., Hopp and Woods, 1981, Proc. Nat. Acad Sci USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0135] The term “epitope” includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. A NOVX polypeptide or a fragment thereof comprises at least one antigenic epitope. An anti-NOVX antibody of the present invention is said to specifically bind to antigen NOVX when the equilibrium binding constant (KD) is ≦1 μM, preferably ≦100 nM, more preferably ≦10 nM, and most preferably ≦100 pM to about 1 pM, as measured by assays such as radioligand binding assays or similar assays known to those skilled in the art.


[0136] A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.


[0137] Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., incorporated herein by reference). Some of these antibodies are discussed below.


[0138] Polyclonal Antibodies


[0139] For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).


[0140] The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g, from the blood) and further purifed by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia Pa., Vol. 14, No. 8 (Apr. 17, 2000), pp. 25-28).


[0141] Monoclonal Antibodies


[0142] The term “monoclonal antibody” (MAb) or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.


[0143] Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.


[0144] The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.


[0145] Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, Calif. and the American Type Culture Collection, Manassas, Va. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).


[0146] The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.


[0147] After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding,1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.


[0148] The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.


[0149] The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e g, by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. One isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.


[0150] Humanized Antibodies


[0151] The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Pat. No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).


[0152] Human Antibodies


[0153] Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed “human antibodies”, or “fully human antibodies” herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).


[0154] In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g, mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison ( Nature 368, 812-13 (1994)); Fishwild et al, (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature, Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).


[0155] Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse™ as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.


[0156] An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Pat. No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.


[0157] A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Pat. No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.


[0158] In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.


[0159] Fab Fragments and Single Chain Antibodies


[0160] According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e g, U.S. Pat. No. 4,946,778). In addition, methods can be adapted for the construction of Fab expression libraries (see e g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F(ab′)2 fragment produced by pepsin digestion of an antibody molecule; (ii) an Fab fragment generated by reducing the disulfide bridges of an F(ab′)2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) Fv fragments.


[0161] Bispecific Antibodies


[0162] Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.


[0163] Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published May 13, 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).


[0164] Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).


[0165] According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises it least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e g tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.


[0166] Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.


[0167] Additionally, Fab′ fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.


[0168] Various techniques for making, and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VL and VH domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).


[0169] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).


[0170] Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).


[0171] Heteroconjugate Antibodies


[0172] Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980.


[0173] Effector Function Engineering


[0174] It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer- Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).


[0175] Immunoconjugates


[0176] The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).


[0177] Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, cirotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131I, 131In, 90Y, and 186Re.


[0178] Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldelhyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-dilsocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3 -methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.


[0179] In another embodiment, the antibody can be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is in turn conjugated to a cytotoxic agent.


[0180] Immunoliposomes


[0181] The antibodies disclosed herein can also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.


[0182] Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989).


[0183] Diagnostic Applications of Antibodies Directed Against the Proteins of the Invention


[0184] In one embodiment, methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA) and other immunologically mediated techniques known within the art. In a specific embodiment, selection of antibodies that are specific to a particular domain of an NOVX protein is facilitated by generation of hybridomas that bind to the fragment of an NOVX protein possessing such a domain. Thus, antibodies that are specific for a desired domain within an NOVX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0185] Antibodies directed against a NOVX protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of a NOVX protein (e.g., for use in measuring levels of the NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies specific to a NOVX protein, or derivative, fragment, analog or homolog thereof, that contain the antibody derived antigen binding domain, are utilized as pharmacologically active compounds (referred to hereinafter as “Therapeutics”).


[0186] An antibody specific for a NOVX protein of the invention (e.g., a monoclonal antibody or a polyclonal antibody) can be used to isolate a NOVX polypeptide by standard techniques, such as immunoaffinity, chromatography or immunoprecipitation. An antibody to a NOVX polypeptide can facilitate the purification of a natural NOVX antigen from cells, or of a recombinantly produced NOVX antigen expressed in host cells. Moreover, such an anti-NOVX antibody can be used to detect the antigenic NOVX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic NOVX protein. Antibodies directed against a NOVX protein can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycocrythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.


[0187] Antibody Therapeutics


[0188] Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question. In the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.


[0189] Alternatively, the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule. In this case the target, a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.


[0190] A therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.


[0191] Pharmaceutical Compositions of Antibodies


[0192] Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington: The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.


[0193] If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.


[0194] The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.


[0195] The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.


[0196] Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.


[0197] ELISA Assay


[0198] An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g, Fab or F(ab)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term “biological sample”, therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in “ELISA: Theory and Practice: Methods in Molecular Biology”, Vol. 42, J. R. Crowther (Ed.) Human Press, Totowa, N.J., 1995; “Immunoassay”, E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, Calif., 1996; and “Practice and Thory of Enzyme Immunoassays”, P. Tijssen, Elsevier Science Publishers, Amsterdam, 1985. Furthermore, in vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0199] NOVX Recombinant Expression Vectors and Host Cells


[0200] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


[0201] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably-linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e g, in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).


[0202] The term “regulatory sequence” is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).


[0203] The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


[0204] Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.


[0205] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).


[0206] One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, e.g., Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.


[0207] In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSec1 (Baldari, et al., 1987. EMBO. J. 6: 229-234), pMFa (Kurjan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).


[0208] Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).


[0209] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press Cold Spring Harbor, N.Y., 1989.


[0210] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g, tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Banerji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc Natl Acad Sci USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).


[0211] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub, et al., “Antisense RNA as a molecular tool for genetic analysis,” Reviews-Trends in Genetics, Vol. 1(1) 1986.


[0212] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


[0213] A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


[0214] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e g, DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.


[0215] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).


[0216] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.


[0217] Transgenic NOVX Animals


[0218] The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced. Such host cells can then be used to create nonhuman transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.


[0219] A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g, by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human NOVX cDNA sequences, i e., any one of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and arc described, for example, in U.S. Pat. Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.


[0220] To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g, the cDNA of any one of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a “knock out” vector).


[0221] Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e g, the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5′- and 3′-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5′- and 3′-termini) are included in the vector. See, e g, Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g. by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e g., Li, et al., 1992. Cell 69: 915.


[0222] The selected cells are then injected into a blastocyst of an animal (e g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.


[0223] In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, See, e.g., Lakso, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.


[0224] Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G0 phase. The quiescent cell can then be fused, e g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e g., the somatic cell) is isolated.


[0225] Pharmaceutical Compositions


[0226] The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as “active compounds”) of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers arc described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


[0227] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i e, topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. She parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


[0228] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophior EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


[0229] Sterile injectable solutions can be prepared by incorporating the active compound (e g., a NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


[0230] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials call be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanith or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


[0231] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


[0232] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.


[0233] The compounds can also be prepared in the form of suppositories (e g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


[0234] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


[0235] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.


[0236] The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Pat. No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.


[0237] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.


[0238] Screening and Detection Methods


[0239] The isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in a NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.


[0240] The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, supra.


[0241] Screening Assays


[0242] The invention provides a method (also referred to herein as a “screening assay”) for identifying modulators, i.e , candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e g, NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein.


[0243] In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.


[0244] A “small molecule” as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.


[0245] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al., 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chem. Int. Ed Engl 33: 2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, et al., 1994. J. Med. Chem. 37: 1233.


[0246] Libraries of compounds may be presented in solution (e.g, Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Pat. No. 5,223,409), spores (Ladner, U.S. Pat. No. 5,233,409), plasmids (Cull, et al., 1992. Proc Natl Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. USA. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Pat. No. 5,233,409.).


[0247] In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.


[0248] In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule. As used herein, a “target molecule” is a molecule with which a NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A NOVX target molecule can be a non-NOVX molecule or a NOVX protein or polypeptide of the invention. In one embodiment, a NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.


[0249] Determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.


[0250] In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting a NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.


[0251] In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e g stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to a NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate a NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.


[0252] In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of a NOVX target molecule.


[0253] The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)n, N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl)dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-1-propane sulfonate (CHAPSO).


[0254] In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.


[0255] Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting all enzymatic activity associated with the NOVX protein or target molecule.


[0256] In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.


[0257] In yet another aspect of the invention, the NOVX proteins can be used as “bait proteins” in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX (“NOVX-binding proteins” or “NOVX-bp”) and modulate NOVX activity. Such NOVX-binding proteins are also involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.


[0258] The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor. If the “bait” and the “prey” proteins are able to interact, in vivo, forming a NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e g , LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.


[0259] The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.


[0260] Detection Assays


[0261] Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications arc described in the subsections, below.


[0262] Chromosome Mapping


[0263] Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.


[0264] Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.


[0265] Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.


[0266] PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.


[0267] Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES (Pergamon Press, New York 1988).


[0268] Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.


[0269] Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, MENDELIAN INHERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e g, Egeland, et al., 1987. Nature, 325: 783-787.


[0270] Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease.


[0271] Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.


[0272] Tissue Typing


[0273] The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP (“restriction fragment length polymorphisms,” described in U.S. Pat. No. 5,272,057).


[0274] Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5′- and 3′-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.


[0275] Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).


[0276] Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If coding sequences, such as those of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.


[0277] Predictive Medicine


[0278] The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in a NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.


[0279] Another aspect of the invention provides methods for determining, NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as “pharmacogenomics”). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)


[0280] Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.


[0281] These and other agents are described in further detail in the following sections.


[0282] Diagnostic Assays


[0283] An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or a portion thereof such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.


[0284] An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i e , physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using, a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0285] In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.


[0286] In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.


[0287] The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.


[0288] Prognostic Assays


[0289] The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a “test sample” refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.


[0290] Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).


[0291] The methods of the invention can also be used to detect genetic lesions in a NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from a NOVX gene; (ii) an addition of one or more nucleotides to a NOVX gene; (iii) a substitution of one or more nucleotides of a NOVX gene, (iv) a chromosomal rearrangement of a NOVX gene; (v) an alteration in the level of a messenger RNA transcript of a NOVX gene (vi) aberrant modification of a NOVX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type splicing pattern of a messenger RNA transcript of a NOVX gene, (viii) a non-wild-type level of a NOVX protein, (ix) allelic loss of a NOVX gene, and (x) inappropriate post-translational modification of a NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0292] In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc Natl. Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al., 1995. Nacl. Acids Res. 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.


[0293] Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qβ Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.


[0294] In an alternative embodiment, mutations in a NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Pat. No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.


[0295] In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g, Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Natl. Med. 2: 753-759. For example, genetic mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.


[0296] In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc Natl Acad Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e g. Naeve, et al., 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol 38: 147-159).


[0297] Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases RNA/RNA or RNA/DNA heteroduplexes. See. e g, Myers, et al., 1985. Science 230: 1242. In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al., 1988. Proc. Natl. Acad. Sci USA 85: 4397; Saleeba, et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.


[0298] In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, e.g., Hsu, et al., 1994. Carcinogenesis 15: 1657-1662. According to an exemplary embodiment, a probe based on a NOVX sequence, e.g., a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g, U.S. Pat. No. 5,459,039.


[0299] In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al., 1989. Proc Natl Acad. Sci USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech Appl 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base chance. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g, Keen, et al., 1991. Trends Genet 7: 5.


[0300] In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE). See, e.g., Myers, et al., 1985. Nature 313: 495. When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.


[0301] Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al.. 1986. Nature 324: 163; Saiki, et al., 1989. Proc. Natl Acad Sci USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.


[0302] Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, e g, Gibbs, et al., 1989. Nucl. Acids Res 17: 2437-2448) or at the extreme 3′-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (.see, e.g., Prossner, 1993. Tibtech 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e g., Gasparini, et al, 1992. Mol Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, e g., Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3′-terminus of the 5′ sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


[0303] The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e g, in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a NOVX gene.


[0304] Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0305] Pharmacogenomics


[0306] Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX proteins such as those summarized in Table A.


[0307] In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.


[0308] Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e g, Eichelbaum, 1996. Clin. Exp Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin Chem, 43:254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.


[0309] As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome pregnancy zone protein precursor enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.


[0310] Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.


[0311] Monitoring of Effects During Clinical Trials


[0312] Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a “read out” or markers of the immune responsiveness of a particular cell.


[0313] By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e g., compound, drug or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of (gene expression (i e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.


[0314] In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.


[0315] Methods of Treatment


[0316] The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0317] These methods of treatment will be discussed more fully, below.


[0318] Diseases and Disorders


[0319] Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (i.e., reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (i) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are “dysfunctional” (i.e., due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to “knockout” endogenous function of an aforementioned peptide by homologous recombination (see, e.g., Capecchi, 1989. Science 244: 1288-1292); or (v) modulators (i e, inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.


[0320] Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (i.e., are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof, or an agonist that increases bioavailability.


[0321] Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).


[0322] Prophylactic Methods


[0323] In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, a NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.


[0324] Therapeutic Methods


[0325] Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of a NOVX protein, a peptide, a NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering a NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.


[0326] Stimulation of NOVX activity is desirable in situations in which NOVX is abnormally downregulatcd and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation (e.g., cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (e.g., preclampsia).


[0327] Determination of the Biological Effect of the Therapeutic


[0328] In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.


[0329] In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects.


[0330] Prophylactic and Therapeutic Uses of the Compositions of the Invention


[0331] The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0332] As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from diseases, disorders, conditions and the like, including but not limited to those listed herein.


[0333] Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.


[0334] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.







EXAMPLES


Example A

[0335] Polynucleotide and Polypeptide Sequences, and Homology Data



Example 1

[0336] The NOV1 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1A.
3TABLE 1ANOV1 Sequence AnalysisSEQ ID NO: 13163 bpNOV1a,CTCCCCACGGCGCCAGGAGGAGGGGCGAGGGCCGGCAGCCCCCTCTCCCCCGCGCGGCCG113254-01DNA SequenceGCAGGAGCCGAGCCCAGCCCCGGGGACCCGCCGCCGCCGGTCATGTGGGCCGGACTGCTCCTTCGGGCCGCCTGTGTCGCGCTCCTGCTGCCGGGGGCACCAGCCCGAGGCTACACCGGGAGGAAGCCGCCCGGGCACTTCGCGGCCGAGAGACGCCGACTGGGCCCCCACGTCTGCCTCTCTGGGTTTGGGAGTGGCTGCTGCCCTGGCTGGGCGCCCTCTATGGGTGGTGGGCACTGCACCCTACCCCTCTACTCCTTCGGCTGTGGGAGTGGCATCTGCATCGCTCCCAATGTCTGCTCCTGCCAGGATGGAGAGCAAGGGCCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGACCTTACCTGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGGAGACAGCTGTTGGCATCAGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGTGTGAACACAGAAGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAGCTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCTACAAGTGTTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGATGTAAACGAGTGTCGGAGGCCATTGGAGAGGCGAGTCTGTCACCATTCCTCCCACAACACCGTGGGCAGCTTCCTATGCACATGCCGACCTGGCTTCAGGCTCCGAGCTGACCGCGTGTCCTGTGAAGCTTTCCCGAAAGCCGTGCTGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCCGGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAGGACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGCTGTCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGCGGAACCTCAGACCCCCCTCACTCCTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGGCAGCAGGGCCCTCTCCCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTTCCCAGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGCTGTTTTCACACTGGTGTCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACGTGTCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCACACCCCCCCACAGACGGATTGCTGTACTTGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGACGTCGAGTGCTCCTTCATGCCCTGCCCTGAGCTGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACACCCTCGACAGGTTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGGTGACCCCTGTAGATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGGACTCCTGCCCTCACCCGATCCGGATCCCTGGACAGTGCTGCCCAGACTGTTCAGCAGGTTGCACCTACACAGGCAGAATCTTCTATAACAACGAGACCTTCCCGTCTGTGCTGGACCCATGTCTGAGCTCCATCTGCCTGACAGACTGCAACTACGAGGGAAGGAAGGTGGCGAATGGCCAGGTGTTCACCTTGGATGATGAACCCTGCACCCGGTGCACGTGCCAGCTAGATTCCCTGTCTCCTCTGGAAGAAAAGCAGGGGCTCTCCCCTCACGGAAATGTGGCATTCAGCAAAGCTGGTCGGAGCCTGCATGGAGACACTGAGGCCCCTGTCAACTGTAGCTCCTGTCCTCGGCCCCCGACAGCATCACCCTCGAGGCCGGTGCTTCATCTCCTCCAGCTCCTTTTAAGAACGAACTTGATGAAAACACAGACTTTACCTACAAGCCCGGCAGGAGCTCATGGTCCACACTCACTCGCTTTGGGGCTGACACCCACTTTCCCAGGGGAGCCTGGGGCCTCCCCTCGACTCTCACCAGGGCCTTCGACCCCTCCAGGAGCCCCCACTCTACCTCTAGCTTCCCCAGGGGCTCCTCAGCCACCTCCTGTGACTCCAGAGCGCTCGTTCTCAGCCTCTGGGGCCCAGATAGTGTCCAGGTGGCCTCCTCTGCCTGGCACCCTCCTGACGGAAGCTTCAGCACTTTCCATGATGGACCCCAGCCCCTCGAAGACCCCCATCACCCTCCTCGGGCCTCGCGTGCTTTCTCCCACCACCTCTAGACTCTCCACAGCCCTTGCAGCCACCACCCACCCTGGCCCCCAGCAGCCCCCAGTGGGGGCTTCTCGGGGGGAAGAGTCCACCATGTAAGGAGGTCACTGTGTCCGGGAGACTCTGGAGAGAGGACCTCTGCCAGTGGCCCAGGGTGTGTGCAGGGCAGCTCCAAGGATGAACCTGGTGGGGATGCCTGGGCTCCCTCCTGCAGGGGCCCTGGTGAGGATGGAAGACCCCCAAGGCTGGATGTAACCTTGTTCCCAAGAAGTGTTTGGAATGTGCTGTAAGAATGGAGGAAGTCGTTTCCACTGTCAGCATCCTCCCTGGACCGCGTGGCTGGCTCATCTTTTGAGAAGGGTTGGGACTGCCAAGTTCTCCTGGAGGAAGAGTTGCGTCCGGCTGGGATTCCACTCACTGGGACTGTACCGCCAGGTGTCATGCGTCTCTCTGAGGTTTCCTGATTAAAGGTTGTCTCGGTTTCAAAAORF Start: ATG at 101ORF Stop: TAA at 1991SEQ ID NO: 2630 aaMW at 66952.5 kDNOV1a,MWAGLLLRAACVALLLPGAPARGYTGRKPPGHFAAERRRLGPHVCLSGFGSGCCPGWACG113254-01Protein SequencePSMGGGHCTLPLYSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCDLTCNHGCCQEVARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNThGGFVCECGPGMQLSADRHSCQDTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVDVNECRRPLERRVCHHSCHNTVGSFLCTCRPGFRLRADRVSCEAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGHSPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLLQGEVMGTPSSPRGPESPRLAAGPSPCWHLGAMHESRSRWTEPGCSQCWCEDGKVTCEKVRCEAACSHPIPSRDGGCCPSCTGCFHSGVVRAEGDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQTPPQTDCCTCVPVRCYFHGRWYADGAVFSGGGDECTTCVCQNGEWECSFMPCPELACPREEWRLGPGQCCFTCQEPTPSTCCSLDDNGVEFPIGQIWSPGDPCRWLGELQEDRLCGLLPSPDPDPWTVLPRLFSRLHLHRQNLLSEQ ID NO:31830 bpNOV1b,GGTCATGTGCGCCGGACTGCTCCTTCGGGCCGCCTGTGTCGCGCTCCTGCTGCCGGGGCG113254-02DNA SequenceCCACCAGCCCGAGGCTACACCCCGACGAAGCCGCCCGGGCACTTCGCGGCCGAGAGACGCCGACTGGGCCCCCACGTCTGCCTCTCTGGGTTTGGGAGTGCCTGCTGCCCTGGCTGGGCGCCCTCTATGGGTGGTGGGCACTGCACCCTGCCCCTCTGCTCCTTCGGCTGTGGGAGTGGCATCTCCATCGCTCCCAATGTCTGCTCCTGCCAGGATGGAGAOCAACGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGACCTTACCTGCAGCCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGGAGACAGCTGTTCGCATCACGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGACGGCCACTGTGTGAACACAGAAGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAGCTGCCAAGACACTGACGAATGCCTAGGGACTCCCTCTCAGCAGAGATGTPAAAACAGCATTGGCACCTACAAGTCTTCCTGTCGAACTGGCTTCCACCTTCATGCCAACCGGCACTCCTGTGTAGCTTTCCCGAAACCCGTGCTGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCCGGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAGGACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGCTGTCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTCGGGAACCTCAGACCCCCCTCACTCCTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGCGCCCTGAGTCCCCCCGACTGGCAGCAGGGCCCTCTCCCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTCGACAGAGCCTGGGTGTTCCCAGTGCTGGTGCGAGGACGGGAACCTCACCTGTCAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCCAATTCCCTCCAGAGATGGTCGCTCCTGCCCATCGTGCACACGCTGTTTTCACACTGGTGTCCTCCGAGCTGAACGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACGTGTCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTGCTGTACTTGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGAGCTGTGTTCAGTGGGGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGAATCCCGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGCTGGCCTCCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACACCCTCGACAGGCTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGGTGACCCCTGTGAGTTATGCATCTGCCAGGCAGATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGGACTCCTGCCCTCACCCGATCCGGATCCCTGGACAGTGCTCCCCAGACTGTTCAGCAGGTAATCCCCTGCCTCTGCCCCAAGCCCCCAGGGCAGGGCATORF Start: ATG at 5ORF Stop: TAA at 1817SEQ ID NO: 4604 aaMW at 63127.1 kDNOV1b,MWAGLLLRAACVALLLPGAPARGYTGRKPPGHFAAERRRLGPHVCLSGFGSCCCPGWACG113254-02Protein SequencePSMGGGHCTLPLCSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCDLTCSHCGCQEVARVCPVGFSMTETAVGIRCTDIDECVTSSCEGHCVNTEGGFVCECGPGMQLSADRHSCQDTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGHSPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLLQGEVMGTPSSPRGPESPRLAAGPSPCWHLGAMHESRSRWTEPGCSQCWCEDGKVTCEKVRCEAACSHPIPSRDGGCCPSCTGCFHSGVVRAEGDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQTPPQTDCCTCVPVRCYFHGRWYADGAVFSGGGDECTTCVCQNGEVECSFMPCPELACPREEWRLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGQIWSPGDPCELCICQADGSVSCKRTDCVDSCPHPIRIPCQCCPDCSAGNPLPLPQAPRAGHLRHRAPSEQ ID NO:5597 bpNOV1c,GGTACCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTG211648303 DNASequenceGGTGTTCCCAGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTCCTTGTTCCCACCCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGCTGTTTTCACAGTGGTGTCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACGTGTCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTGCTGTACTTGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGCGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGCTGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACACCCTCGACAGGCTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGAGTCGACORF Start: at 1ORF Stop: end of sequenceSEQ ID NO:6199 aaMW at 21235.6 kDNOV1c,GTCWHLGAMHESRSRWTEPGCSQCWCEDGKVTCEKVRCEAACSHPIPSRDGGCCPSCT211648303Protein SequenceGCFHSGVVRAEGDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQTPPQTDCCTCVPVRCYFHGRWYADGAVFSGGGDECTTCVCQNGEVECSFMPCPELACPREEWRLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGVDSEQ ID NO:7597 bpNOV1d,GGTACCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTG212170920 DNASequenceGGTGTTCCCAGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCCAATTCCCTCCACAGATGGTCGGTGCTGCCCATCGTGCACAGGCTGTTTTCACAGTGGTGTCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGQAAACGTGTCCTGCATCTCTCCAGAGTGTCCTTCTGGCCCCTGTCAGGCCCCCCCACAGACCGATTGCTGTACTTGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTATTCACTGGGGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTACCCTGAGCTGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACACCCTCGACAGGCTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGAGTCGACORF Start: at 1ORF Stop: end of sequenceSEQ ID NO:8199 aaMW at 21265.6 kDNOV1d,GTCWHLGAMHESRSRWTEPGCSQCWCEDGKVTCEKVRCEAACSHPIPSRDGGCCPSCT212170920Protein SequenceGCFHSGVVRAEGDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQAPPQTDCCTCVPVRCYFHGRWYADGAVFSGGGDECTTCVCQNGEVECSFMPYPELACPREEWRLGPGQCCFTCQEPTPSTGCSLDDNGVEFPIGVD


[0337] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1B.
4TABLE 1BComparison of NOV1a against NOV1b through NOV1d.Identities/SimilaritiesNOV1a Residues/for theProtein SequenceMatch ResiduesMatched RegionNOV1b1 . . . 589477/589 (80%)1 . . . 546478/589 (80%)NOV1c386 . . . 580 179/195 (91%)3 . . . 197179/195 (91%)NOV1d386 . . . 580 193/195 (98%)3 . . . 197193/195 (98%)


[0338] Further analysis of the NOV1a protein yielded the following properties shown in Table 1C.
5TABLE 1CProtein Sequence Properties NOV1aPSort0.5947 probability located in outside; 0.1900analysis:probability located in lysosome (lumen);0.1000 probability located in endoplasmicreticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 22 and 23analysis:


[0339] A search of the NOV1a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1D.
6TABLE 1DGeneseq Results for NOV1aProtein/Identities/Organism/NOV1aSimilaritiesLengthResidues/for theGeneseq[Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueAAM99920Human polypeptide389 . . . 589201/201 (100%)e−133SEQ ID NO 36 - 5 . . . 205201/201 (100%)Homo sapiens, 272aa. [WO200155173-A2, 02 AUG. 2001]AAM99933Human polypeptide389 . . . 589197/201 (98%)e−131SEQ ID NO 49 - Homo 5 . . . 205198/201 (98%)sapiens, 212 aa[WO200155173-A2,02 AUG. 2001]AAB85364Novel Von284 . . . 489206/206 (100%)e−128Willebrand/ 1 . . . 206206/206 (100%)thrombosporin-like polypeptide -Homo sapiens, 235 aa.[WO200153485-A1,26 JUL. 2001]AAB85365Novel Von302 . . . 489188/188 (100%)e−117Willebrand/ 1 . . . 188188/188 (100%)thrombosporin-like mature proteinsequence -Homo sapiens, 217 aa.[WO200153485-A1,26 JUL. 2001]ABG15393Novel human 70 . . . 13868/69 (98%)2e−37diagnostic 959 . . . 102768/69 (98%)protein #15384 -Homo sapiens,1028 aa.[WO200175067-A2,11 OCT. 2001]


[0340] In a BLAST search of public sequence datbases, the NOV1a protein was found to have homology to the proteins shown in the BLASTP data in Table 1E.
7TABLE 1EPublic BLASTP Results for NOV1aIdentities/NOV1aSimilaritiesProteinProtein/Residues/for theAccessionOrganism/MatchMatchedExpectNumberLengthResiduesPortionValueQ96DN2CDNA FLJ32009 fis,1 . . . 589587/589 (99%)0.0clone1 . . . 589587/589 (99%)NT2RP7009498,weakly similar tofibulin-1, isoformA precursor -Homo sapiens(Human), 955 aa.Q9DBE21300015B04Rik1 . . . 615517/615 (84%)0.0protein - Mus1 . . . 607547/615 (88%)musculus (Mouse),608 aa.Q9IBG7Kielin - Xenopus368 . . . 589  79/227 (34%)2e−32laevis (African1483 . . . 1695 109/227 (47%)clawed frog),2327 aa.Q91V88POEM (NEPHRONECTIN44 . . . 373 103/364 (28%)1e−31short35 . . . 383 153/364 (41%)isoform) - Musmusculus (Mouse),561 aa.Q9CXD86130401L20Rik53 . . . 261  79/221 (35%)7e−31protein - Mus96 . . . 308 101/221 (44%)musculus (Mouse),528 aa.


[0341] PFam analysis indicates that the NOV1a protein contains the domains shown in the Table 1F.
8TABLE 1FDomain Analysis of NOV1aIdentities/SimilaritiesNOV1a Matchfor the MatchedPfam DomainRegionRegionExpect ValueEGF146 . . . 17916/47 (34%)0.0045 23/47 (49%)EGF185 . . . 21812/47 (26%)0.011 25/47 (53%)TIL166 . . . 22413/70 (19%)0.53  40/70 (57%)EGF224 . . . 26112/48 (25%)0.034 26/48 (54%)vwc386 . . . 44021/84 (25%)7.8e−0840/84 (48%)vwc443 . . . 49621/84 (25%)5.8e−0537/84 (44%)vwc501 . . . 55922/84 (26%)1.3e−0941/84 (49%)



Example 2

[0342] The NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.
9TABLE 2ANOV2 Sequence AnalysisSEQ ID NO: 94036 bpNOV2a,TCCTGGATGAGGCAGCTCAGTCACAGAGGGTGGGCCCCCAGAGAAGGGAAAATTGTGACG122729-01DNA SequenceGCAGCCCACACTGCTGGCAGATGCGGCATAAGTGTCCCAGCCAGGCTAGGGAGGCGGTGGGCACTGGGTGCACACGATGGCCCTGTGGTTGCTGTCTCAGTCCCGGGCTGTGCTTCCAGGCTTCTCCAGACCACGCCACCAGCCAACAGAAGCGAGACTTCCAGTCCGAGGTCCTGCTTTCTGCTATGGAACTATTCCACATGACAAGTGGAGGTGATGCAGCCATGTTCAGAGACGGCAAAGAGCCTCAGCCAAGTGCAGAAGCTGCTGCTGCCCCTTCTCTTGCCAACATCTCCTGCTTCACCCAGAAGCTGGTGGAGAAGCTGTACAGTGGGATGTTCTCGGCAGACCCCAGGCATATCCTCCTCTTCATCCTGGAGCACATCATGGTGGTCATTGAGACTGCCTCTTCTCAAAGGGACACTGTCCTCAGCACTTTATACAGCAGTTTAAATAAAGTCATTCTTTATTGCCTATCCAAGCCCCAGCAGTCCCTCTCCGAATGCCTCGGCCTTCTCAGCATCCTGCGCTTTCTGCAGGAGCACTGGGATGTTGTCTTTGCCACCTACAATTCCAACATCACCTTCCTCCTGTGTCTCATGCATTGCCTTTTGCTACTCAATGAGAGAAGTTACCCAGAAGGATTTGGATTGGAGCCCAAGCCTAGAATGTCTACTTATCATCAAGTCTTCCTTTCCCCAAATGAAGACGTGAAAGAAAAAAGAGAAGACTTACCAAGTTTCAGTGATGTCCAACACAACATCCAGAAGACAGTGCACACTCTCTGGCAGCAGCTGGTGGCACAAAGGCAGCAGACCCTGGAGGATGCCTTCAAGATCGATCTCTCTGTGAAACCTGGAGAGAGCGAAGTGAAGATTGAAGAGGTCACACCGCTCTGGGAGGAGACGATGCTCAAGGCCTGGCAGCATTACTTAGCATCTGAGAAGAAGTCACTGGCAAGTCGTTCAAATGTTGCACACCACACCAAAGTCACTTTGTGGAGTGGAAGCCTGTCCTCAGCCATCAAGCTGATGCCCGGGCGGCAGGCCAAGGACCCTGAGTGCAAGACAGAGGATTTTGTGTCATGTATAGAGAACTACAGAAGAAGAGGACAAGAGCTATATGCATCTTTATACAAAGACCATGTGCAPAGGCGAAAATGTGGCAACATCAAGGCAGCCAACGCCTGGGCCAGGATCCAGGAGCAGCTTTTTGGGGAGCTGGGCTTGTGGAGCCAGGGGGAAGAAACCAAGCCCTGTTCCCCATCGGAACTCGACTGGAGAGAAGGACCAGCTCGAATGAGGAAACGCATCAAACGCTTGTCTCCTTTGGAGGCCCTCAGCTCAGGAAGGCACAAGGAAAGCCAAGACAAAAATGATCATATTTCTCAAACAAATGCTGAAAACCAAGATGAACTGACACTGAGGGAGGCTGAGGGCGAGCCGGACGAGGTGGGGGTGGACTGCACCCAGCTCACCTTCTTCCCAGCCTTACACGAAAGTCTGCACTCAGAAGACTTCTTGGAACTGTGTCGGGAAAGACAAGTTATTTTACAAGAGCTTCTTGATAAAGAAAAGGTGACGCAGAAGTTCTCCCTGGTGATTGTGCAGGGCCACCTGGTGTCAGAAGGGCTCCTGCTTTTTGGCCACCAACACTTCTACATCTGCGAGAACTTCACACTGTCTCCCACGGGTGATGTCTACTGTACCCGTCACTGCTTATCCAACATCAGCGATCCGTTCATTTTCAACCTGTGCACCAAAGACAGGTCCACTGACCATTACTCGTGCCAGTCCCACAGCTACGCTGACATGCGGGAGCTACGGCAGGCTCGCTTCCTCCTGCAGGACATCGCCCTGGAGATCTTCTTCCACAATGGATATTCCAAGTTTCTTGTCTTCTACAACAATGATCGGAGTAAGCCCTTTAAAACCTTCTGCTCTTTCCAACCCAGCCTGAAGGGGAAAGCCACCTCGGAGGACACCCTCAATCTAAGGAGATACCCCCCCTCTGACACCATCATGCTGCAGAAGTGGCAGAAAAGGGACATCAGCAATTTTGAGTATCTCATCTACCTCAACACCGCGGCTGGGAGAACCTGCAATGACTACATGCAGTACCCAGTGTTCCCCTGGGTCCTCGCAGACTACACCTCAGACACATTGAACTTGGCAAATCCGAAGATTTTCCGGGATCTTTCAAAGCCCATGGGGGCTCAGACCAAGGAAAGCAAGCTGAAATTTATCCAGAGGTTTAAAGAAGTTGAGAAUXCTGAAGGAGACATGACTGTCCACTGCCACTACTACACCCACTACTCCTCGGCCATCATCGTGGCCTCCTACCTGGTCCGGATGCCACCCTTCACCCAGGCCTTCTGCGCTCTGCAGGGCGGAAGCTTCGACGTGGCAGACAGAATGTTCCACAGTGTGAAGAGCACGTGGGAGTCGGCCTCCAGAGAGAACATGAGTGACGTCAGGGAGCTGACCCCAGAGTTCTTCTACCTGCCTGAGTTCTTAACCAACTGCAACGGGGTAGAGTTCGGCTGCGTGCAGGACGGGACTGTGCTAGGAGACGTGCAGCTCCCTCCCTGGGCTGATGGGGACCCTCGGAAATTCATCAGCCTGCACAGAAAGGCCCTGGAAAGTGACTTTGTCAGTGCCAACCTCCACCATTGGATAGACCTTATTTTTGGGTACAAGCAGCAGGGGCCAGCCGCAGTGGATGCTGTTAATATCTTCCACCCCTACTTCTACGGTGACAGAATGGACCTCAGCAGCATCACTGACCCCCTCATCAAAAGCACCATCCTGGGGTTTGTCAGCAACTTTGGACAGGTGCCCAAACAGCTCTTTACCAAACCTCACCCAGCCAGGACTGCAGCAGGGAAGCCTCTGCCTGGAAAGGATATCTCCACCCCCGTGAGCCTGCCTGGCCACCCACAGCCCTTTTTCTACAGCCTGCAGTCGCTGAGGCCCTCCCAGGTCACGGTCAAAGATATGTACCTCTTTTCTCTAGGCTCAGAGTCCCCCAAAGGGGCCATTGGCCACATTGTCTCTACTGAGAAGACCATTCTGGCTGTAGAGAGGAACAAAGTGCTGCTGCCTCCTCTCTGGAACAGGACCTTCAGCTGCGGCTTTGATGACTTCAGCTGCTGCTTGGGGAGCTACGGCTCCGACAAGGTCCTGATGACATTCGAGAACCTGGCTGCCTGGGGCCGCTGTCTGTGCGCCGTGTGCCCATCCCCAACAACGATTGTCACCTCTGGGACCAGCACTGTGGTGTGTGTGTGGGAGCTCAGCATGACCAAAGGCCGCCCGAGGCGCTTGCGCCTCCGGCAGGCCTTGTATGGACACACACAGGCTGTCACGTGCCTGGCAGCGTCAGTCACCTTCAGCCTCCTGGTGAGCGGCTCCCAGGACTGCACCTGTATCCTGTGGGATCTGGACCACCTCACCCACGTGACCCGCCTGCCCCCCCATCGGGAAGGCATCTCAGCCATCACCATCAGTGACGTCTCAGGCACCATTGTCTCCTGTGCGGGAGCACACTTGTCCCTGTGGAATCTCAATGGACAGCCCCTGGCCAGCATCACCACAGCCTGGGGCCCAGAAGGAGCCATAACCTGTTGCTGCCTGATGGAGGGCCCAGCATGGGACACAAGCCAGATCATCATCACCGGGAGTCAAGACGGCATGGTCCGGGTTTGGAAGACTGAGGATGTGAAGATGTCTGTTCCTCGACGGCCAGCAGGAGAGGAGCCCCTGGCTCAGCCTCCAAGCCCAAGAGGCCACAAGTGGGAGAAGAACCTGGCCTTGAGTCGAGAGCTGGACGTTAGCATTGCTTTGACAGGGAAGCCCAGCAAAACCAGCCCCGCAGTGACTGCTCTGGCCGTGTCCAGAAACCACACCAAACTCCTGGTTGGTGATGAGAGGGGGAGAATATTCTGCTGGTCTGCAGATGGGTAGGAAGAGAGAGGCAORF Start: ATG at 7ORF Stop: TAG at 4021SEQ ID NO 101338 aaMW at 150546.1 kDNOV2a,MRQLSHRGWAPREGKIVSSPHCWQMRHKCPSQAREAVGTGCTRWPCGCCLSPGLCFQACG122729-01Protein SequenceSPDHATSQQKRDFQSEVLLSAMELFHMTSGGDAAMFRDGKEPQPSAEAAAAPSLANISCFTQKLVEKLYSGMFSADPRHILLFILEHIMVVIETASSQRDTVLSTLYSSLNKVILYCLSKPQQSLSECLGLLSILGFLQEHWDVVFATYNSNISFLLCLMHCLLLLNERSYPEGFGLEPKPRMSTYHQVFLSPNEDVKEKREDLPSLSDVQHNIQKTVQTLWQQLVAQRQQTLEDAFKIDLSVKPGEREVKIEEVTPLWEETMLKAWQHYLASEKKSLASRSNVAHHSKVTLWSGSLSSAMKLMPGRQAKDPECKTEDFVSCIENYRRRGQELYASLYKDHVQRRKCGNIKAANAWARIQEQLFGELGLWSQGEETKPCSPWELDWREGPARMRKRIKRLSPLEALSSGRHKESQDKNDHISQTNAENQDELTLREAEGEPDEVGVDCTQLTFFPALHESLHSEDFLELCRERQVILQELLDKEKVTQKFSLVIVQGHLVSEGVLLFGHQHFYICENFTLSPTGDVYCTRHCLSNISDPFIFNLCSKDRSTDHYSCQCHSYADMRELRQARFLLQDIALEIFFHNGYSKFLVFYNNDRSKAFKSFCSFQPSLKGKATSEDTLNLRRYPGSDRIMLQKWQKRDTSNFEYLMYLNTAAGRTCNDYMQYPVFPWVLADYTSETLNLANPKIFRDLSKPMGAQTKERKLKFIQRFKEVEKTEGDMTVQCHYYTHYSSAIIVASYLVRMPPFTQAFCALQGGSFDVADRMFHSVKSTWESASRENNSDVRELTPEFFYLPEFLTNCNGVEFGCVQDGTVLGDVQLPPWADGDPRKFISLHRKALESDFVSANLHHWIDLIFGYKQQGPAAVDAVNIFHPYFYGDRMDLSSITDPLIKSTILGFVSNFGQVPKQLFTKPHPARTAAGKPLPGKDISTPVSLPGHPQPFFYSLQSLRPSQVTVKDMYLFSLGSESPKGATGHIVSTEKTILAVERNKVLLPPLWNRTFSWGFDDFSCCLGSYGSDKVLMTFENLAAWGRCLCALCPSPTTIVTSGTSTVVCVWELSMTKGRPRGLRLRQALYGHTQAVTCLAASVTFSLLVSGSQDCTCILWDLDHLTHVTRLPAHREGISAITISDVSGTIVSCAGAHLSLWNVNGQPLASITTAWGPEGAITCCCLMEGPAWDTSQIIITGSQDGMVRVWKTEDVKMSVPGRPAGEEPLAQPPSPRGHKWEKNLALSRELDVSIALTGKPSKTSPAVTALAVSRNHTKLLVGDERGRIFCWSADG


[0343] Further analysis of the NOV2a protein yielded the following properties shown in Table 2B.
10TABLE 2BProtein Sequence Properties NOV2aPSort0.9000 probability located in Golgi body; 0.7900analysis:probability located in plasma membrane; 0.6000probability located in nucleus; 0.5147 probabilitylocated in microbody (peroxisome)SignalPNo Known Signal Sequence Indicatedanalysis:


[0344] A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2C.
11TABLE 2CGeneseq Results for NOV2aProtein/Identities/Organism/NOV2aSimilaritiesLengthResidues/for theGeneseq[Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueAAY79179Haematopoietic stem675 . . . 1329 563/656 (85%)0.0cell specific1 . . . 656 603/656 (91%)protein - Musmusculus, 693 aa.[WO200011168-A2,02 MAR. 2000]ABB64158Drosophila54 . . . 1262 450/1303 (34%) 0.0melanogaster1758 . . . 3021  674/1303 (51%) polypeptide SEQID NO 19266 -Drosophilamelanogaster,3309 aa.[WO200171042-A2,27 SEP. 2001]AAR99800NTII-1 nerve649 . . . 1269 334/633 (52%)0.0protein, facilitates4 . . . 621 441/633 (68%)regeneration ofnerve cells -Homosapiens, 887 aa.[WO9617865-A2,13 JUN. 1996]AAM40075Human polypeptide1017 . . . 1338   322/322 (100%)0.0SEQ ID NO1 . . . 322  322/322 (100%)3220 -homo sapiens,322 aa.[WO200153312-A1,26 JUL. 2001]AAM41861Human polypeptide1016 . . . 1338  283/339 (83%)e−160SEQ ID NO6792 - Homo9 . . . 331 290/339 (85%)sapiens, 346 aa.[WO200153312-A1,26 JUL. 2001]


[0345] In a BLAST search of public sequence datbases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2D.
12TABLE 2DPublic BLASTP Results for NOV2aIdentities/NOV2aSimilaritiesProteinProtein/Residues/for theAccessionOrganism/MatchMatchedExpectNumberLengthResiduesPortionValueQ9HCG5KIAA1607 protein -69 . . . 1338 1268/1270 (99%)0.0Homo sapiens1 . . . 12701270/1270 (99%)(Human), 1270 aa(fragment).Q8TEN7FLJ00156 protein -57 . . . 1288 1212/1237 (97%)0.0Homo sapiens614 . . . 1850 1218/1237 (97%)(Human), 1887 aa(fragment).BAA76837KIAA0993 protein -49 . . . 1269  498/1314 (37%)0.0Homo sapiens5 . . . 1288 747/1314 (55%)(Human), 1556 aa(fragment).Q96N85CDNA FLJ31244 fis,708 . . . 1335  339/649 (52%)0.0clone KIDNE2005042,1 . . . 634  450/649 (69%)moderately similarto lysosomaltraffickingregulator -Homosapiens(Human), 722 aa.Q96BE1Hypothetical1019 . . . 1338   319/320 (99%)0.034.6 kDa protein -4 . . . 323  319/320 (99%)Homo sapiens(Human), 323 aa(fragment).


[0346] PFam analysis indicates that the NOV2a protein contains the domains shown in the Table 2E.
13TABLE 2EDomain Analysis of NOV2aIdentities/SimilaritiesNOV2a Matchfor theExpectPfam DomainRegionMatched RegionValueBeach693 . . . 975174/287 (61%) 1.8e−181240/287 (84%) WD401128 . . . 116416/37 (43%)0.0002128/37 (76%)WD401213 . . . 125411/42 (26%)0.2532/42 (76%)



Example 3

[0347] The NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.
14TABLE 3ANOV3 Sequence AnalysisSEQ ID NO:11552 bpNOV3a,GTGACATGTTGGGCTGTGGGATCCCAGCGCTGGGCCTGCTCCTGCTGCTGCAGGGCTCCG122777-01DNA SequenceGGCAGACGGAAATGGAATCCAGGGATTCTTCTACCCATGGAGTTCCCCAGGCTGTGAGGGTGACATATGGGACCGGGAGAGCTGTGGGGGCCAGGCGGCCATCGATAGCCCCAACCTCTGCCTGCGTCTCCGGTGCTGCTACCGCAATGGGGTCTGCTACCACCAGCGTCCAGACGAAAACGTGCGGAGGAAGCACATGTGGCCGCTGGTCTGGACGTGCAGCGGCCTCCTCCTCCTGAGCTGCAGCATCTGCTTGTTCTGGTGGGCCAAGCGCCGGGACGTGCTGCATATGCCCGGTTTCCTGGCGGGTCCGTGTGACATGTCCAAGTCCGTCTCGCTGCTCTCCAAGCACCGAGGGACCAAGAAGACGCCGTCCACGGGCAGCGTGCCAGTCGCCCTGTCCAAAGAGTCCAGGGATGTGGAGGGAGGCACCGAGGGGGAAGGGACGGAGGAGGGTGAGGAGACAGAGGGCGAGGAAGAGGAGGATTAGGGGAORF Start: ATG at 6ORF Stop: TAG at 546SEQ ID NO: 12180 aaMw at 19698.1 kDNOV3a,MLGCGIPALGLLLLLQGSADGNGIQGFFYPWSSPGCEGDIWDRESCGGQAAIDSPNLCCG122777-01Protein SequenceLRLRCCYRNGVCYHQRPDENVRRKHMWALVWTCSGLLLLSCSICLFWWAKRRDVLHMPGFLAGPCDMSKSVSLLSKHRGTKKTPSTGSVPVALSKESRDVEGGTEGEGTEEGEETEGEEEED


[0348] Further analysis of the NOV3a protein yielded the following properties shown in Table 3B.
15TABLE 3BProtein Sequence Properties NOV3aPSort0.4600 probability located in plasma membrane; 0.1000analysis:probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum(lumen); 0.1000 probability located in outsideSignalPCleavage site between residues 22 and 23analysis:


[0349] A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3C.
16TABLE 3CGeneseq Results for NOV3aNOV3aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAW75084Human secreted protein encoded by 1 . . . 180177/180 (98%)  e−105gene 28 clone HHFGL62 - Homo 1 . . . 177177/180 (98%) sapiens, 178 aa. [WO9839446-A2,11 SEP. 1998]AAW75146Human secreted protein encoded by 1 . . . 5248/52 (92%)2e−21gene 28 clone HHFGL62 - Homo 1 . . . 4948/52 (92%)sapiens, 50 aa. [WO9839446-A2,11 SEP. 1998]ABP25902Streptococcus polypeptide SEQ ID110 . . . 17725/72 (34%)1.0NO 980 - Streptococcus agalactiae,432 . . . 50231/72 (42%)1266 aa. [WO200234771-A2,02 MAY 2002]ABP25903Streptococcus polypeptide SEQ ID110 . . . 17724/72 (33%)1.3NO 982 - Streptococcus pyogenes,423 . . . 49331/72 (42%)1257 aa. [WO200234771-A2,02 MAY 2002]AAO12986Human polypeptide SEQ ID NO124 . . . 17920/56 (35%)1.326878 - Homo sapiens, 984 aa.271 . . . 32625/56 (43%)[WO200164835-A2, 07 SEP. 2001]


[0350]

17





TABLE 3D










Public BLASTP Results for NOV3a














Identities/





NOV3a
Similarities


Protein

Residues/
for the


Accession

Match
Matched
Expect


Number
Protein/Organism/Length
Residues
Portion
Value





Q8WZ59
MDAC1 - Homo sapiens (Human),
1 . . . 180
177/180 (98%) 
 e−105



177 aa.
1 . . . 177
177/180 (98%) 


Q9D2E9
4930572D21Rik protein - Mus
1 . . . 177
112/178 (62%) 
4e−60





musculus
(Mouse), 166 aa.

1 . . . 166
129/178 (71%) 


AAH27748
Similar to complement component 8,
36 . . . 70 
16/35 (45%)
2.3



alpha polypeptide-Mus musculus
74 . . . 102 
18/35 (50%)



(Mouse), 587 aa.


AAL96855
Putative
110 . . . 177 
24/72 (33%)
3.1



phosphoribosylformylglycinamidine
423 . . . 493 
31/72 (42%)



synthase II - Streptococcus pyogenes



(serotype M18), 1257 aa.


Q9A1Z2
Putative
110 . . . 177 
24/72 (33%)
3.1



phosphoribosylformylglycinamidine
423 . . . 493 
31/72 (42%)



synthase II - Streptococcus pyogenes,



1257 aa.










[0351] PFam analysis indicates that the NOV3a protein contains the domains shown in the Table 3E.
18TABLE 3EDomain Analysis of NOV3aIdentities/SimilaritiesNOV3a Matchfor thePfam DomainRegionMatched RegionExpect ValueNo Significant Matches Found



Example 4

[0352] The NOV4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 4A.
19TABLE 4ANOV4 Sequence AnalysisSEQ ID NO: 13994 bpNOV4a,TGTCGCCCCATCCCTGCGCGCCCAGCCTGCCAAGCAGCGTGCCCCGGTTGCAGGCGTCCG124229-01DNA SequenceATGCAGCGGGCGCGACCCACGCTCTGGGCCGCTGCGCTGACTCTGCTGGTGCTGCTCCGCGGGCCGCCGGTGGCGCGGGCTGGCGCGAGCTCGGGGGGCTTGGGTCCCGTGGTGCGCTGCGAGCCGTGCGACGCGCGTGCACTGGCCCAGTGCGCGCCTCCGCCCGCCGTGTGCGCGGAGCTGGTGCGCGAGCCGGGCTQCGGCTGCTGCCTGACGTGCGCACTGACCGAGGGCCAGCCGTGCGGCATCTACACCGAGCGCTGTGGCTCCGGCCTTCGCTGCCAGCCGTCGCCCGACGAGGCGCGACCGCTGCAGGCGCTGCTGGACGGCCGCGGGCTCTGCGTCAACGCTAGTGCCGTCAGCCGCCTGCGCGCCTACCTGCTGCCACCCCCGCCAGCTCCAGGTGAGCCGCCCGCTCCAGGAAATGCTAGTGAGTCGGAGGAAGACCGCAGCGCCGCCAGTGTGGAGAGCCCGTCCGTCTCCAGCACGCACCGGGTGTCTGATCCCAAGTTCCACCCCCTCCATTCAAAGATAATCATCATCAAGAAAGGGCATGCTAAAGACAGCCAGCGCTACAAAGTTGACTACGAGTCTCAGAGCACACATACCCAGAACTTCTCCTCCGAGTCCAAGCGGGAGACAGAATATGGTCCCTGCCCTAGAGAAATGGAAOACACACTGAATCACCTGAAGTTCCTCAATGTGCTGAGTCCCAGGGGTGTACACATTCCCAACTGTGACAAGAAGGGATTTTATAAGAAAAAGCAGTGTCGCCCTTCCAAAGGCAGGAAGCGGGGCTTCTGCTGGTGTGTGGATAAGTATGGGCAGCCTCTCCCAGGCTACACCACCAAGGGGAAGGAGGACGTGCACTGCTACAGCATGCAGAGCAAGTAGACGCCTGCCGCAAGGTTAATGTGGAGCTCAAATATGCCTTATORF Start: ATG at 59ORF Stop: TAG at 950SEQ ID NO 14297 aaMW at 32208.4 kDNOV4a,MQRARPTLWAAALTLLVLLRGPPVARAGASSGGLGPVVRCEPCDARALAQCAPPPAVCCG124229-01Protein SequenceAELVREPGCGCCLTCALSEGQPCGIYTERCGSGLRCQPSPDEARPLQALLDGRGLCVNASAVSRLRAYLLPAPPAPGEPPAPGNASESEEDRSAGSVESPSVSSTHRVSDPKFHPLHSKIIIIKKGHAKDSQRYKVDYESQSTDTQNFSSESKRETEYGPCRREMEDTLNRLKFLNVLSPRGVHIPNCDKKGFYKKKQCRPSKGRKRGFCWCVDKYGQPLPGYTTKGKEDVHCYSMQSK


[0353] Further analysis of the NOV4a protein yielded the following properties shown in Table 4B.
20TABLE 4BProtein Sequence Properties NOV4aPSort0.3703 probability located in outside; 0.1900 probabilityanalysis:located in lysosome (lumen); 0.1080 probability located innucleus; 0.1000 probability located in endoplasmicreticulum (membrane)SignalPCleavage site between residues 28 and 29analysis:


[0354] A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4C.
21TABLE 4CGeneseq Results for NOV4aIdentities/NOV4aSimilaritiesResidues/for theGeneseqProtein/Organism/LengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB09209Human ibp3 CNN family protein1 . . . 297291/297 (97%)e−175sequence SEQ ID NO: 19 - Homo1 . . . 291291/297 (97%)sapiens, 291 aa. [US2002049304-A1, 25 APR. 2002]AAU85512Clone #19095 (L549S) of lung1 . . . 297291/297 (97%)e−175tumour protein - Homo sapiens,1 . . . 291291/297 (97%)291 aa. [WO200204514-A2, 17JAN. 2002]AAB59880IGFBP-3 protein - Homo sapiens,1 . . . 297291/297 (97%)e−175291 aa. [WO200078341-A1, 281 . . . 291291/297 (97%)DEC. 2000]AAB76857Human lung tumour protein related1 . . . 297291/297 (97%)e−175protein sequence SEQ ID NO: 333 -1 . . . 291291/297 (97%)Homo sapiens, 291 aa.[WO200100828-A2, 04 JAN. 2001]AAR89273Insulin like growth factor binding1 . . . 297291/297 (97%)e−175protein-3 - Homo sapiens, 291 aa.1 . . . 291291/297 (97%)[WO9601636-A1, 25 JAN. 1996]


[0355] In a BLAST search of public sequence datbases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4D.
22TABLE 4DPublic BLASTP Results for NOV4aIdentities/NOV4aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP17936Insulin-like growth factor binding1 . . . 297291/297 (97%)e−174protein 3 precursor (IGFBP-3) (IBP-1 . . . 291291/297 (97%)3) (IGF-binding protein 3) - Homosapiens (Human), 291 aa.Q9TTIOInsulin-like growth factor-binding1 . . . 297243/299 (81%)e−147protein 3 - Sus scrofa (Pig), 293 aa.1 . . . 293260/299 (86%)Q9GJV5Insulin-like growth factor binding1 . . . 297242/299 (80%)e−145protein-3 - Bos taurus (Bovine), 2911 . . . 291257/299 (85%)aa.P20959Insulin-like growth factor binding1 . . . 297239/299 (79%)e−143protein 3 precursor (IGFBP-3) (IBP-1 . . . 291255/299 (84%)3) (IGF-binding protein 3) - Bostaurus (Bovine), 291 aa.P15473Insulin-like growth factor binding1 . . . 297239/299 (79%)e−142protein 3 precursor (IGFBP-3) (IBP-1 . . . 292255/299 (84%)3) (IGF-binding protein 3) - Rattusnorvegicus (Rat), 292 aa.


[0356] PFam analysis indicates that the NOV4a protein contains the domains shown in the Table 4E.
23TABLE 4EDomain Analysis of NOV4aIdentities/SimilaritiesPfam DomainNOV4a Match Regionfor the Matched RegionExpect ValueIGFBP 40 . . . 9939/84 (46%)2.1e−2656/84 (67%)thyroglobulin_1219 . . . 29137/81 (46%)1.6e−3266/81 (81%)



Example 5

[0357] The NOV5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 5A.
24TABLE 5ANOV5 Sequence AnalysisSEQ ID NO: 151854 bpNOV5a,GGACGAAGGAAACGAACGAGGGGGAGGGAGGTCCCTGTTTTGGAGGAGCTAGGAGCGTCG124445-02DNA SequenceTGCCGGCCCCTGAAGTGGAGCGAGAGGGAGGTCCTTCGCCGTTTCTCCTGCCAGGGGAGGTCCCGGCTTCCCGTGGAGGCTCCGGACCAAGCCCCTTCAGCTTCTCCCTCCGGATCGATGTGCTGCTGTTAACCCGTGAGGAGGCGGCGGCGGCCACCAGCGGCAGCGGAAGATGGTGTTGCTGAGAGTGTTAATTCTGCTCCTCTCCTGGGCGGCGGGGATGGGAGGTCAGTATGGGAATCCTTTAAATAAATATATCAGACATTATGAAGGATTATCTTACAATGTGGATTCATTACACCAAAAACACCAGCGTGCCAAAAGAGCAGTCTCTCACATTACTTTTGCTCACGAAGTTGGACATAACTTTGGATCCCCACATGATTCTGGAACAGAGTGCACACCAGGAGAATCTAAGAATTTGGGTCAAAAAGAAAATGGCAATTACATCATGTATGCAAGAGCAACATCTGGGGACAAACTTAACAACAATAAATTCTCACTCTGTAGTATTAGAAATATAAGCCAAGTTCTTGAGAAGAAGAGAAACAACTGTTTTGTTGAATCTGGCCAACCTATTTTAAAGATGAATCCTGCTTCGATGCAAATCAACCAGAGCGAAGAAAATGCAAACTGAAACCTGGGAAACAGTGCAGTCCAAGTCAAGGTCCTTGTTGTACAGCACAGTGTGCATTCAAGTCAAAGTCTGAGAAGTGTCGGGATGATTCAGACTGTGCAAGGGAAGGAATATGTAATGGCTTCACAGCTCTCTGCCCAGCATCTGACCCTAAACCAAACTTCACAGACTGTAATAGGCATACACAACTGTCCATTAATGGGCAATGTGCAGGTTCTATCTGTGAGAAATATGGCTTAGAGGAGTGTACGTGTGCCAGTTCTGATGGCAAAGATGATAAAGAATTATGCCATGTATGCTGTATGAAGAAAATGGACCCATCAACTTGTGCCAGTACAGGGTCTGTGCAGTGGAGTAGGCACTTCAGTGGTCGAACCATCACCCTGCAACCTGGATCCCCTTGCAACGATTTTAGAGGTTACTGTGATGTTTTCATGCGGTGCAGATTAGTAGATGCTGATGGTCCTCTAGCTAGGCTTAAAAAAGCAATTTTTAGTCCAGAGCTCTATGAAAACATTGCTGAATGGATTGTGGCTCATTGGTGGGCAGTATTACTTATGGGAATTGCTCTGATCATGCTAATGGCTGGATTTATTAAGATATGCAGTGTTCATACTCCAAGTAGTAATCCAAAGTTGCCTCCTCCTAAACCACTTCCAGGCACTTTAAAGAGGAGGAGACCTCCACAGCCCATTCAGCAACCCCAGCGTCAGCGGCCCCGAGAGACTTATCAAATGGGACACATGAGACGCTAACTGCAGCTTTTGCCTTGGTTCTTCCTAGTGCCTACAATGGGAAAACTTCACTCCAAAGAGAAACCTATTAAGTCATCATCTCCAAACTAAACCCTCACAAGTAACAGTTGAAGAAAAAATGGCAAGAGATCATATCCTCAGACCAGGTGGAATTACTTAAATTTTAAAGCCTGAAAATTCCAATTTGGGGGTGGGAGGTGGAAAAGGAACCCAATTTTCTTATGAACAGATATTTTTAACTTAATGGCACAAAGTCTTAGAATATTATTATGTGCCCCGTGTTCCCTGTTCTTCGTTGCTGCATTTTCTTCACTTGCAGGCAAACTTGGCTCTCAATAAACTTTTCGORF Start: ATG at 230ORF Stop: TAA at 1505SEQ ID NO: 16425 aaMW at 47237.5 kDNOV5a,IVIVLLRVLILLLSWAAGMGGQYGNPLNKYIRHYEGLSYNVDSLHQKHQRAKRAVSHITFCG124445-02Protein SequenceAHEVGHNFGSPHDSGTECTPGESKNLGQKENGNYIMYARATSGDKLNNNKFSLCS IRNISQVLEKKRNNCFVESGQPICGNGMVEQGEECDCGYSDQCKDECCFDANQPEGRKCKL~KPGKQCSPSQGPCCTAQCAFKSKSEKCRDDSDCAREGICNGFTALCPASDPKPNFTDCNRHTQVCINGQCACSICEKYGLEECTCASSDGKDDKELCHVCCMKKNDPSTCASTGSVQWSRHFSGRTITLQPGSPCNDFRGYCDVPMRCRLVDADGPLARLKKAIFSPELYENIAEWIVAHWWAVLLMGIALIMLMAGFIKICSVHTPSSNPKLPPPKPLPGTLKRRRPPQPIQQPQRQRPRESYQMGHMRR


[0358] Further analysis of the NOV5protein yielded the following properties shown in 25TABLE 5BTable 5B. Protein Sequence Properties NOV5aPSort0.4600 probability located in plasma membrane;analysis:0.1800 probability located in nucleus; 0.1000 probabilitylocated in endoplasmic reticulum (membrane); 0.1000probability located in endoplasmic reticulum (lumen)SignalPCleavage site between residues 20 and 21analysis:


[0359] A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5C.
26TABLE 5CGeneseq Results for NOV5aNOV5aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB62520Human ADAM10 polypeptide -8 . . . 425381/422 (90%)0.0Homo sapiens, 748 aa.327 . . . 748 389/422 (91%)[US6228648-B1, 08 MAY 2001]AAG64048Human ADAM10 protein - Homo8 . . . 425381/422 (90%)0.0sapiens, 748 aa. [JP2001128677-A,327 . . . 748 389/422 (91%)15 MAY 2001]AAY79033Human Kuz amino acid sequence -8 . . . 425381/422 (90%)0.0Homo sapiens, 691 aa.270 . . . 691 389/422 (91%)[WO200002897-A2, 20 JAN. 2000]AAY16776Human disintegrin metalloprotease8 . . . 425381/422 (90%)0.0(KUZ) polypeptide - Homo sapiens,327 . . . 748 389/422 (91%)748 aa. [EP921197-A2, 09 JUN.1999]AAW56132Homo sapiens transmembrane KUZ8 . . . 425381/422 (90%)0.0protein - Homo sapiens, 748 aa.327 . . . 748 389/422 (91%)[WO9808933-A1, 05 MAR. 1998]


[0360] In a BLAST search of public sequence datbases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5D.
27TABLE 5DPublic BLASTP Results for NOV5aIdentities/NOV5aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueS52920disintegrin (EC 3.4.24.-) - human,8 . . . 425381/422 (90%)0.0491 aa (fragment).70 . . . 491 389/422 (91%)Q10742Disintegrin-metalloprotease MADM -8 . . . 425381/422 (90%)0.0Homo sapiens (Human), 691 aa270 . . . 691 389/422 (91%)(fragment).O14672ADAM10 - Homo sapiens (Human),8 . . . 425381/422 (90%)0.0748 aa.327 . . . 748 389/422 (91%)Q10743Disintegrin-metalloprotease8 . . . 425371/422 (87%)0.0precursor (EC 3.4.24.-)(Myelin-123 . . . 544 386/422 (90%)associated metalloproteinase)(MADM)-Rattus norvegicus (Rat),544 aa(fragment).O35598Kuzbanian - Mus musculus (Mouse),8 . . . 425370/422 (87%)0.0749 aa.328 . . . 749 385/422 (90%)


[0361] PFam analysis indicates that the NOV5a protein contains the domains shown in the Table 5E.
28TABLE 5EDomain Analysis of NOV5aIdentities/Similaritiesfor thePfamNOV5a MatchMatchedExpectDomainRegionRegionValuesquash200 . . . 221 8/22 (36%)0.2512/22 (55%)disintegrin143 . . . 22633/85 (39%)2.2e−0854/85 (64%)



Example 6

[0362] The NOV6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 6A.
29TABLE 6ANOV6 Sequence AnalysisSEQ ID NO:17725 bpNOV6a,GAGGTAGGTCCAGGACGGGCGCACAGCAGCAGCCGAGGCTGGCCGGGAGAGGGAGGAACG124590-02DNA SequenceGAGGATGGCAGGGCCACGCCGCAGCCCATGGGCCAGGCTGCTCCTGGCAGCCTTGATCAGCGTCACCCTCTCTGGGACCTTGGCAAACCGCTGCAAGAAGGCCCCAGTGAAGAGCTGCACGGAGTGTGTCCGTGTGGATAAGGACTGCGCCTACTGCGCAGACGAGATGTTCAGGGACCGGCGCTGCAACACCCAGGCGGAGCTGCTGGCCGCGGGCTGCCAGCGGGAGAGCATCGTGGTCATGGAGAGCAGCTTCCAAATCACAGAGGAGACCCAGATTGACACCACCCTGCGGCGCAGCCAGATGTCCCCCCAAGGCCTGCGGGTCCGTCTGCGGCCCGGTGAGGAGCGGCATTTTGAGCTGGAGGTGTTTGACCCACTGGACAGCCCCGTGGACCTGTACATCCTCATGGACTTCTCCAACTCCATGTCCGATGATCTGGACAACCTCAAGAAGATGGGGCAGAACCTGGCTCGGGTCCTGAGCCAGCTCACCAGCGCCACCGAGCCCTTCCTAGTGGATGGGCCGACCCTGGGGGCCCAGCACCTGGAGGCAGGCGGCTCCCTCACCCGGCATGTGACCCAGGAGTTTGTGAGCCGGACACTGACCACCAGCGGAACCCTTAGCACCCACATGGACCAACAGTTCTTCCAAACTTGACCGCACORF Start: ATG at 63ORF Stop: TGA at 717SEQ ID NO: 18218 aaMW at 24305.3 kDNOV6a,MAGPRPSPWARLLLAALISVSLSGTLANRCKKAPVKSCTECVRVDKDCAYCADEMFRDCG124590-02Protein SequenceRRCNTQAELLAAGCQRESIVVMESSFQITEETQIDTTLRRSQMSPQGLRVRLRPGEERHFELEVFEPLESPVDLYILMDFSNSMSDDLDNLKKMGQNLARVLSQLTSATEPFLVDGPTLGAQHLEAGGSLTRHVTQEFVSRTLTTSGTLSTHMDQQFFQT


[0363] Further analysis of the NOV6a protein yielded the following properties shown in Table 6B.
30TABLE 6BProtein Sequence Properties NOV6aPSort0.5135 probability located in outside; 0.1000 probabilityanalysis:located in endoplasmic reticulum (membrane); 0.1000probability located in endoplasmic reticulum (lumen);0.1000 probability located in microbody (peroxisome)SignalPCleavage site between residues 28 and 29analysis:


[0364] A search of the NOV6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6C.
31TABLE 6CGeneseq Results for NOV6aIdentities/NOV6aSimilaritiesResidues/for theGeneseqProtein/Organism/LengthMatchMatchedExpectIdentifier[Patent#, Date]ResiduesRegionValueAAB68089Amino acid sequence of the beta41 . . . 165164/165 (99%)2e−90part of alpha6beta4 integrin - Homo1 . . . 165164/165 (99%)sapiens, 1875 aa. [WO200130854-A2, 03 MAY 2001]AAR55273Beta subunit of integrin cell surface1 . . . 165164/165 (99%)2e−90receptor - Homo sapiens, 1822 aa.1 . . . 165164/165 (99%)[US5320942-A, 14 JUN. 1994]AAM35512Peptide #9549 encoded by probe for89 . . . 156 68/68 (100%)1e−32measuring placental gene expression -1 . . . 68 68/68 (100%)Homo sapiens, 68 aa.[WO200157272-A2, 09 AUG. 2001]AAM20582Peptide #7016 encoded by probe for89 . . . 156 68/68 (100%)1e−32measuring cervical gene expression -1 . . . 68 68/68 (100%)Homo sapiens, 68 aa.[WO200157278-A2, 09 AUG. 2001]AAM75399Human bone marrow expressed89 . . . 156 68/68 (100%)1e−32probe encoded protein SEQ ID NO:1 . . . 68 68/68 (100%)35705 - Homo sapiens, 68 aa.[WO200157276-A2, 09 AUG. 2001]


[0365] In a BLAST search of public sequence datbases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6D.
32TABLE 6DPublic BLASTP Results for NOV6aIdentities/NOV6aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueJC5545integrin beta-4 precursor, splice1 . . . 165164/165 (99%)4e−90form E - human, 964 aa.1 . . . 165164/165 (99%)A36429integrin beta-4 chain precursor -1 . . . 165164/165 (99%)4e−90human, 1875 aa.1 . . . 165164/165 (99%)P16144Integrin beta-4 precursor (GP150)1 . . . 165164/165 (99%)4e−90(CD104 antigen) - Homo sapiens1 . . . 165164/165 (99%)(Human), 1822 aa.Q64632Integrin beta-4 precursor (GP150)1 . . . 165123/165 (74%)5e−69(CD104 antigen) - Rattus1 . . . 165145/165 (87%)norvegicus (Rat), 1807 aa.JN0786integrin beta-4 chain precursor -1 . . . 165126/166 (75%)1e−67mouse, 1748 aa.1 . . . 166145/166 (86%)


[0366] PFam analysis indicates that the NOV6a protein contains the domains shown in the Table 6E.
33TABLE 6EDomain Analysis of NOV6aIdentities/Similaritiesfor thePfamNOV6a MatchMatchedExpectDomainRegionRegionValueintegrin_B37 . . . 16565/143 (45%)2.3e−89129/143 (90%) 



Example 7

[0367] The NOV7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 7A.
34TABLE 7ANOV7 Sequence AnalysisSEQ ID NO:191140 bpNOV7a,AGGACAACCCCAGCAATGTGGAGAAGCCTGGGGCTTGCCCTGGCTCTCTGTCTCCTCCCG124916-01DNA SequenceCATCGGGAGGAACACAGAGCCAGGACCAAAGCTCCTTATGTAAGCAACCCCCAGCCTGGAGCATAAGAGATCAAGATCCAATGCTAAACTCCAATGGTTCAGTGACTGTGGTTGCTCTTCTTCAAGCCTCATTTTATGTATTTCTTCCCAAATATTTTAGATTAGAAGACCTGCGAGTAAAACTGAAGAAAGAAGGATATTCTAATATTTCTTATATTGTTGTTAATCATCAAGCAATCTCTTCTCGATTAAAATACACACATCTTAAGAATAAGGTTTCAGAGCATATTCCTGTTTATCAACAAGAAGAAAACCAAACAGATGTCTGGACTCTTTTAAATGGAAGCAAAGATGACTTCCTCATATATGATAGGTGTGGCCGTCTTGTATATCATCTTGGTTTGCCTTTTTCCTTCCTAACTTTCCCATATGTAGAAGAAGCCATTAAGATTGCTTACTGTGAAAAGAAATGTGGAAACTGCTCTCTCACGACTCTCAAAGATGAAGACTTTTGTAAACGTGTATCTTTGGCTACTGTGGATAAAACAGTTGAAACTCCATCGCCTCATTACCATCATGAGCATCATCACAATCATGGACATCAGCACCTTGGCAGCAGTGAGCTTTCAGAGAATCACCAACCAGGAGCACCAAATGCTCCTACTCATCCTGCTCCTCCACGCCTTCATCACCACCATAAGCACAAGGGTCAGCATAGGCAGGGTCACCCAGAGAACCGAGATATGCCAGCAAGTGAAGATTTACAAGATTTACAAAAGAAGCTCTGTCGAAAGAGATGTATAAATCAATTACTCTGTAAATTGCCCACAGATTCAGAGTTGGCTCCTAGGAGCTGATGCTGCCATTGTCGACATCTGATATTTGAAAAAACAGGGTCTGCAATCACCTGACAGTGTAAAGAAAACCTCCCATCTTTATGTAGCTGACAGGGACTTCGGGCAGAGGAGAACATAACTGAATCTTGTCAGTGACGTTTGCCTCCAGCTGCCTGACAPATAAGTCAGCAGCTTATACCCACAGAAGCCAGTGCCAGTTGACGCTGAAAGAATCAGGCAAAAAAGORF Start: ATG at 16ORF Stop: TGA at 913SEQ ID NO 20299 aaMW at 34008.2 kDNOV7a,MWRSLGLALALCLLPSGGTESQDQSSLCKQPPAWSIRDQDPMLNSNGSVTVVALLQASCG124916-01Protein SequenceFYVFLPKYFRLEDLRVKLKKEGYSNISYIVVNHQGISSRLKYTHLKNKVSEHIPVYQQEENQTDVWTLLNGSKDDFLIYDRCGRLVYHLGLPFSFLTFPYVEEAIKIAYCEKKCGNCSLTTLKDEDFCKRVSLATVDKTVETPSPHYHHEHHHNHGHQHLGSSELSENQQPGAPNAPTHPAPPGLHHHHKHKGQHRQGHPENRDMPASEDLQDLQKKLCRKRCINQLLCKLPTDSELAPRS


[0368] Further analysis of the NOV7a protein yielded the following properties shown in Table 7B.
35TABLE 7BProtein Sequence Properties NOV7aPSort0.5135 probability located in outside; 0.1900 probabilityanalysis:located in lysosome (lumen); 0.1000 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 22 and 23analysis:


[0369] A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7C.
36TABLE 7CGeneseq Results for NOV7aIdentities/NOV7aSimilaritiesResidues/for theGeneseqProtein/Organism/LengthMatchMatchedExpectIdentifier[Patent#, Date]ResiduesRegionValueAAU84306Human endometrial cancer related1 . . . 299290/299 (96%) e−176protein, SEPP1 - Homo sapiens, 3811 . . . 299294/299 (97%)aa. [W0200209573-A2, 07 FEB.2002]AAB03188Human selenoprotein P - Homo1 . . . 299290/299 (96%) e−176sapiens, 381 aa. [WO200031131-1 . . . 299294/299 (97%)A1, 02 JUN. 2000]AAB57080Human prostate cancer antigen60 . . . 299 232/240 (96%) e−142protein sequence SEQ ID NO: 1658 -1 . . . 240236/240 (97%)Homo sapiens, 240 aa.[WO200055174-A1, 21 SEP. 2000]AAG03755Human secreted protein, SEQ ID219 . . . 299 81/81 (100%)8e−45NO:7836 - Homo sapiens, 110 aa.30 . . . 110 81/81 (100%)[EP1033401-A2, 06 SEP. 2000]AAO06297Human polypeptide SEQ ID NO70 . . . 147 64/113 (56%)8e−2420189 - Homo sapiens, 113 aa.1 . . . 11369/113 (60%)[WO200164835-A2, 07 SEP. 2001]


[0370] In a BLAST search of public sequence datbases, the NOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7D.
37TABLE 7DPublic BLASTP Results for NOV7aIdentities/NOV7aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP49908Selenoprotein P precursor (SeP) -1 . . . 299290/299 (96%)e−176Homo sapiens (Human), 3811 . . . 299294/299 (97%)aa.Q9N2H6Selenoprotein P - Bos taurus1 . . . 296217/300 (72%)e−124(Bovine), 386 aa.1 . . . 300241/300 (80%)P25236Selenoprotein P precursor (SeP) -1 . . . 299215/304 (70%)e−123Rattus norvegicus (Rat), 3851 . . . 304243/304 (79%)aa.AAA42129Selenoprotein P precursor -1 . . . 299214/304 (70%)e−122Rattus norvegicus (Rat), 385 aa.1 . . . 304242/304 (79%)P70274Selenoprotein P precursor (SeP) -1 . . . 299211/301 (70%)e−121Mus musculus (Mouse), 3801 . . . 299244/301 (80%)aa.


[0371] PFam analysis indicates that the NOV7a protein contains the domains shown in the Table 7E.
38TABLE 7EDomain Analysis of NOV7aIdentities/SimilaritiesNOV7afor thePfamMatchMatchedExpectDomainRegionRegionValueNo Significant Matches Found



Example 8

[0372] The NOV8 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 8A.
39TABLE 8ANOV8 Sequence AnalysisSEQ ID NO 213123 bpNOV 8a,GATTCCAAGTCGCTGCTGTGCAGAGCAGCAAGTGCTCCGTGCAGGGCTGTTGCTATCACG126224-01DNA SequenceCTTGGAGGTGAACAGCCTCTTTGCCGGTATTCAGTGAAGAAAGCAAGTCTAAATATGCAGTTCTCTCACTGGAGTGAAAGATGTTTGTTCATTTCTAATCAACTATGCTAGACAGCTGCAAGCTGAAAAGTGCCTGCAATTTGCCATTTATTTGTAATAAGAAAATAATAAACACTGCTGGAACCAGTAATGCAGAAGTCCCCTTGGCTGATCCCGGAATGTACCAGCTGGACATTACATTAAGAAGGGGTCAAAGTTTAGCTGCTCGAGATCGAGGAGGGACGAGTGATCCATATGTGAAGTTTAAAATCGGAGGAAAAGAAGTTTTTAGAAGTAAGATAATACACAAGAACCTCAACCCTGTGTGGGAAGAAAAAGCTTGTATTCTGGTTGATCATCTTAGGGAGCCATTGTATATAAAGGTATTTGACTATGATTTTGGACTACAGGATGACTTTATGGGCTCAGCCTTTCTGGATCTGACACAATTGGAGTTAAACAGGCCCACAGATGTGACCCTTACTCTGAAAGATCCTCATTATCCTGACCATGATCTTGGAATCATTTTGCTCTCAGTCATCCTTACCCCTAAAGAAGGAGAGTCCAGGGAGTTTCAGACCCAAAGTTTACGCCTATCAGACCTACACAGAAAATCGCATCTTTGGAGAGGAATAGTCAGCATCACCTTGATTGAAGGGAGAGACCTCAAGGCCATGGATTCCAACGGGTTGAGCGATCCCTACGTGAAGTTCCGGCTTGGGCATCAGAAGTACAAGAGCAAGATTATGCCAAAAACGTTGAATCCTCAGTGGAGGGAACAATTTGATTTTCACCTTTATGAAGAAAGAGGAGGAGTCATTGATATCACTGCATGGGACAAAGATGCTGGGAAAAGGGATGATTTCATTGGCAGGTGCCAGGTCGACCTGTCAGCCCTCAGTAGGGAACAGACGCACAAGCTGGAGTTGCAGCTGGAAGAGGGTGAGGGACACCTGGTGCTGCTGGTCACTCTGACAGCATCAGCCACAGTCAGCATCTCTGACCTGTCTGTCAACTCCCTGGAGGACCAGAAGGAACGAGAGGAGATATTAAAGAGATATAGCCCATTGAGGATATTTCACAACCTGAGAGATGTGGGATTTCTCCAGGTGAAAGTCATCAGAGCGGAAGGGTTAATCGCTGCCGACGTCACTGGAAAAAGTGACCCATTTTGTGTGGTAGAACTGAACAAAGATAGACTGCTAACACATACTGTCTACAAAAATCTCAATCCTGAGTGGAATAAAGTCTTCACGTTCAACATTAAAGATATCCATTCAGTTCTTGAAGTGACAGTTTATGATGAAGATCGGGATCGAAGTGCTGACTTTCTGGGCAAAGTTGCTATACCATTGCTGTCTATTCAAAATGGTGAACAGAAAGCCTACGTCTTGAAAAACAGGCAGCTGACAGGGCCAACAAAGGGGGTCATCTATCTTGAAATAGATGTGATTTTTAATGCTGTGAAAGCCAGCTTACGAACATTAATACCCAAAGAACAGAAGTACATTGAAGAGGAAAACAGACTCTCTAAACAGCTGCTACTAAGAAACTTTATCAGAATGAAACGTTGTGTCATGGTGCTGGTAAATGCTGCATACTACGTTAATAGTTGCTTTGATTGGGATTCACCCCCAAGGAGTCTCGCTGCTTTTGTGGTAGTGGAGGACATGCTAGAGGACGAGGAAGAAGAAGATGACAAAGATGACAAGGACAGTGPAAAAAAGGGATTTATAAATAAAATCTATGCCATCCAGGAGGTATGTGTCAGTGTCCAGAACATCCTAGATGAAGTGGCTTCCTTTGGCGAAAGGATAAAGAGTACTTTCAACTGGACTGTCCCATTCTTAAGCTGGCTGGCCATTGTAGCCCTCTGTGTGTTCACAGCCATCCTGTACTGCATTCCGCTGAGATACATTGTCCTTGTCTGGGCCATCAATAAATTTACAAAAAAGCTTCGCAGTCCATATGCAATTGATAACAATGAACTACTTGACTTCCTTTCCAGAGTCCCTTCAGATGTACAAGTGGTGCAATACCAAGAACTGAee AACCAGATCCTTCTCATAGCCCATATAAAAGAAAGAAAAACAATCTTGGCTAGCCAGCTCCCAGCACTGAGGAGACCAGCATCTGTTTGGGAAGATAAAAGAAAAAGCCCTCAGCCTCAGCAGCATTTCCTTTCTTTCTGCTTTTTATTTATTTTGCCTTTTTATCATGATCGAGAGAATCTGTAAATAGTGTACAAAGGCATATGTCTTTGAATATATACTTCTATTGTACAGACTCAACTTGATAAAGGTTTTGCTACTGCTGTGTCAAAACCTTGTTAGCTGTGGATAATAATATAACACACTGAAAGAACAAATATAAGAATGATAACACTGGAAGATATATTCTTATCTAATTACAAGTGGATTkAATACTCACCTGTGCTCTGATTAAATCTACATCAATTGTAAATGTCGATTTGATTTTAAAGTTTTTTTTTAATGCGACTATTTTTTATCTGAAAAGTAATCCATTACACTTTTCTATGTTTTATACATTTCAAAAGGGAGGGAAATTCCAAAGCCTGAATAATGGAATGGATACATTTCAATTTAACATATATTCTGGCTTTAGATCCCGACATTCACTCCTGTGCAAATTACTTAGGTATGACTTAGGCTAATTTTAAGCTAATAAGTGAAGGTACATTCACTCCCTCAAGAGAATCAATACTCAGAAGGTTACAAAGTTTTCTTTATAGAATTTCAATCAATCATTCCATCTAAAACCTTAAAATCTCTACAGGACTACATAACATAAATACTGCCAGTTTATAAACGATTGCCTATCTGAATTTTTATACCTACCACTACTTTAATTTATACAGTTAGTTAGCAAATTAGCAACCCAGTAAGTACAGTTATCAAAAATACTAGGAAACTATATCCATATCGCTTTTGGTGTCAGATTGTATCTGTGCATCTAAAAATATTTTAATAAATACTCAAGTGCTCTCAGAGAAAAAAAAAAAAAAAAAORF Start: ATG at 163ORF Stop: TAG at 2197SEQ ID NO: 22678 aaMW at 77717.4 kDNOV8a,MLDSCKLKSACNLPFICNKKIINTAGTSNAEVPLADPGMYQLDITLRRGQSLAARDRCCG126224-01Protein SequenceGTSDPYVKFKIGGKEVFRSKIIHKNLNPVWEEKACILVDHLREPLYIKVFDYDFGLQDDFMGSAFLDLTQLELNRPTDVTLTLKDPHYPDHDLGIILLSVILTPKEGESREFQTQSLRLSDLHRKSHLWRGIVSITLIEGRDLKAMDSNGLSDPYVKFRLGHQKYKSKIMPKTLNPQWREQFDFHLYEERGGVIDITAWDKDAGKRDDFIGRCQVDLSALSREQTHKLELQLEEGEGHLVLLVTLTASATVSISDLSVNSLEDQKEREEILKRYSPLRIFHNLRDVGFLQVKVIRAEGLMAADVTGKSDPFCVVELNKDRLLTHTVYKNLNPEWNKVFTFNIKDIHSVLEVTVYDEDRDRSADFLGKVAIPLLSIQNGEQKAYVLKNRQLTGPTKGVIYLEIDVIFNAVKASLRTLIPKEQKYIEEENRLSKQLLLRNFIRMKRCVMVLVNAAYYVNSCFDWDSPPRSLAAFVVVEDMLEDEEEEDDKDDKDSEKKGFINKIYAIQEVCVSVQNILDEVASFGERIKSTFNWTVPFLSWLAIVALCVFTAILYCIPLRYIVLVWGINKFTKKLRSPYAIDNNELLDFLSRVPSDVQVVQYQELKPDPSHSPYKRKKNNLG


[0373] Further analysis of the NOV8a protein yielded the following properties shown in Table 8B.
40TABLE 8BProtein Sequence Properties NOV8aPSort0.8500 probability located in endoplasmic reticulumanalysis:(membrane); 0.4400 probability located in plasma membrane;0.3000 probability located in microbody (peroxisome);0.1000 probability located in mitochondrialinner membraneSignalPNo Known Signal Sequence Indicatedanalysis:


[0374] A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 8C.
41TABLE 8CGeneseq Results for NOV8aNOV8aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB93562Human protein sequence SEQ ID250 . . . 677254/465 (54%) e−140NO: 12957 - Homo sapiens, 466 aa. 2 . . . 466329/465 (70%)[EP1074617-A2, 07 FEB. 2001]ABB11104Human C2 domain homologue, SEQ168 . . . 400226/233 (96%) e−129ID NO: 1474 - Homo sapiens, 485 18 . . . 250230/233 (97%)aa. [WO200157188-A2, 09 AUG.2001]ABB70130Drosophila melanogaster168 . . . 676228/552 (41%) e−102polypeptide SEQ ID NO 37182 -452 . . . 975326/552 (58%)Drosophila melanogaster, 983 aa.[WO200171042-A2, 27 SEP. 2001]AAU87251Novel central nervous system201 . . . 365164/165 (99%)4e−90protein #161 - Homo sapiens, 166 1 . . . 165165/165 (99%)aa. [WO200155318-A2, 02 AUG.2001]AAG66417Human C2 domains protein,532 . . . 678146/147 (99%)4e−81BioHC2 - Homo sapiens, 175 aa. 29 . . . 175147/147 (99%)[CN1296954-A, 30 MAY 2001]


[0375] In a BLAST search of public sequence datbases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8D.
42TABLE 8DPublic BLASTP Results for NOV8aNOV8aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96LX0CDNA FLJ33132 fis, clone1 . . . 678672/692 (97%)0.0UMVEN2000133, weakly similar1 . . . 692677/692 (97%)to rabphilin-3A - Homo sapiens(Human), 692 aa.AAH30005Hypothetical 68.5 kDa protein -1 . . . 533514/593 (86%)0.0Homo sapiens (Human), 600 aa.1 . . . 593522/593 (87%)Q9H6E8CDNA: FLJ22344 fis, clone358 . . . 678320/321 (99%)0.0HRC06080 - Homo sapiens1 . . . 321320/321 (99%)(Human), 321 aa.Q8SZ34RE18318p - Drosophila168 . . . 676238/552 (43%)e−113melanogaster (Fruit fly), 596 aa.51 . . . 588337/552 (60%)Q9V8M4CG15078 protein - Drosophila168 . . . 676228/552 (41%)e−102melanogaster (Fruit fly), 983 aa.452 . . . 975326/552 (58%)


[0376] PFam analysis indicates that the NOV8a protein contains the domains shown in the Table 8E.
43TABLE 8EDomain Analysis of NOV8aIdentities/SimilaritiesPfamNOV8afor theExpectDomainMatch RegionMatched RegionValueC2 42 . . . 12330/97 (31%)4e−1861/97 (63%)C2191 . . . 27237/97 (38%)3e−2768/97 (70%)C2347 . . . 42737/97 (38%)1.9e−20  61/97 (63%)



Example 9

[0377] The NOV9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 9A.
44TABLE 9ANOV9 Sequence AnalysisSEQ ID NO: 232376 bpNOV9a,ATGAATGACACAGAAAAACCAGCAGATACTCCCTCTGAGGAAGAGGACTTTGGTGATCCG126233-01DNA SequenceCAAGGACATATGACCCAGATTTCAAGGGGCCTGTTGCCAACAGGAGTTGTACAGATGTTCTGTGCTGTATGATCTTCCTACTGTGTATTATTGGCTACATTGTTTTAGGACTTGTCGCCTGGGTACATGGGGACCCCAGAAGAGCAGCCTATCCTACAGACAGCCAGGGCCACTTTTGTGGCCAGAAGGGCACTCCCAATGAGAACAAGACCATTTCGTTTTACTTTAACCTGTTACGCTGTACCAGTCCCTCCGTATTCCTAAACCTACAGTGCCCTACCACACAGATCTGTGTCTCCAAGTGCCCAGAAAAATTTTTAACCTATGTGGAAATGCAACTTTTGTACACAAAAGACAAAAGCTACTGGGAAGACTACCGTCAGTTCTGTAAGACCACTGCTAAGCCTGTGAAGTCTCTCACACAGCTTTTACTGGATGATGATTGTCCAACAGCGATTTTTCCCAGCAAACCTTGTCTCCAGAGATGTTTCCCTGACTTCTCTACCAAAAATGGCACTTTAACAATAGGAAGTAACATGATGTTCCAAGATGGAAATGGACGGACAAGAAGTGTTGTAGAACTCGGGATTGCTGCAAATGGTATCAATAAACTTCTTGATGCAAAGTCACTTGGATTGAAAGTGTTTGAAGACTATGCAAGAACTTGGTATTGGATTCTCATTGGCCTGACGATTGCCATGGTCCTTAGTTGGATATTTTTGATACTTCTGAGGTTCATAGCTGGATGCCTCTTCTGGGTCTTCATGATTGGTGTGATTGGAATTATAGGTTATGGAATATGGCACTGTTACCAGCAGTACACCAATCTTCAGGAACGCCCAAGTTCTGTATTAACTATCTATGACATCGGGATTCAGACTAACATAAGCATGTACTTTGAACTGCAACAAACATGGTTCACATTTATGATAATACTCTGCATCATTGAAGTGATTGTCATCCTCATGCTGATCTTCCTCAGGAATCGAATCCGAGTCGCCATTATCCTGCTGAAGGAAGGAAGCAAAGCCATTGGATATGTTCCTAGTACATTAGTCTATCCAGCTTTAACTTTCATTTTGCTCTCAATCTGCATTTGCTACTGGGTCGTGACACCAGTGTATCAGATTTTTAATACAACTGAAATTGCCAAAGCTTGCCCTGGGGCTCTGTGTAACTTTGCTTTCTATGGTGGAAAGAGCTTGTACCATCAGTACATCCCTACCTTCCATGTATACAACTTATTTGTCTTTCTCTGGCTTATAAACTTCGTCATTGCATTAGGTCAGTGCGCCCTTGCTGGTGCATTCGCTACTTATTACTGGCCCATGAAAAAACCTGATGACATCCCACGATATCCACTTTTTACTGCATTTGGACGAGCCATACCATATCACACAGGATCCCTAGCATTTGGATCTTTAATTATTGCATTAATTCAAATGTTTAAAATTGTACTAGAATACTTGGACCACCGTCTTAAACGTACCCAGAACACATTGTCTAAATTCCTACAATGCTGCCTGAGATGCTGCTTCTGGTGTTTGGAAAATGCAATAAAGTTTTTAAACAGAAATGCCTATATTATGATTGCAATATATGGCAGAAACTTCTGCAGGTCAGCAAAAGATGCTTTCAATCTGCTGATGAGAAATATACTAAAAGTTGCAGTTACAGATGAAGTTACATACTTTGTATTATTCCTGGGGAAACTTCTAGTTGCTGGAAGTATAGGTGTTCTGGCCTTCCTATTCTTCACACAAAGACTGCCAGTGATTGCACAACGACCAGCATCTTTAAATTACTACTGGGTACCTTTGCTGACAGTCATTTTTGGGTCTTACCTGATTGCACATGGGTTCTTCACCGTCTATGCAATGTGTGTTGAAACAATTTTCATCTGCTTCTTGGAAGATTTAGAAAGAAATGATGGTTCTACTGCPAGACCTTATTATGTGAGTCAACCTTTGCTGAAGATTTTCCAGGAGGAATCCACAAACTAGGAAGCAGTAGAAGAGCAAAACTGGTCGTCCTACAGCTGTGTGTTACCTTTTCTCCATCTGCTGTGTCTGTGCAACATTTGTTTCATAAGTGCTTTGTGTTTAGCAACACTGTATTCACGACCTTGTTGGCTTGCATTTGCATGTTTTATACCAAAGCTTATACTGTACTATGTGAAGCCATCAGAAGTCGCAAGGGAATTGTTAATAACATAAAACATTTTTATACTAAGATCATTTGTTTTGTIATTCGTTTTTAAAGAGTGGCTTGGATGTTTTGAAAATACTACTGAATATGTTAATATTCTTTTAAATCTORf Start: ATG at 1ORf Stop: TAG at 2071SEQ ID NO:24690 aaMW at 78829.8 kDNOV9a,MNDTEKPADTPSEEEDFGDPRTYDPDFKGPVANRSCTDVLCCMIFLLCIIGYIVLGLVCG126233-01Protein SequenceAWVHGDPRRAAYPTDSQGHFCGQKGTPNENKTISFYFNLLRCTSPSVLLNLQCPTTQICVSKCPEKFLTYVEMQLLYTKDKSYWEDYRQFCKTTAKPVKSLTQLLLDDDCPTAIFPSKPCLQRCFPDFSTKNGTLTIGSKMMFQDGNGRTRSVVELGIAANGINKLLDAKSLGLKVFEDYARTWYWILIGLTIAMVLSWIFLILLRFIAGCLFWVFMIGVIGIIGYGIWHCYQQYTNLQERPSSVLTIYDIGIQTNISMYEELQQTWFTFMIILCIIEVIVILMLIFLRNRIRVAIILLKEGSKAIGYVPSTLVYPALTPILLSICICYWVVTAVYQIFNTTEIAKACPGALCNFAFYGGKSLYHQYIPTFHVYNLFVFLWLINFVIALGQCALAGAFATYYWANKKPDDIPRYPLFTAFGRAIRYHTGSLAFGSLIIALIQMFKIVLEYLDHRLKRTQNTLSKFLQCCLRCCFWCLENAIKFLNRNAYIMIAIYGRNFCRSAKDAFNLLMRNILKVAVTDEVTYFVLFLGKLLVAGSIGVLAFLFFTQRLPVIAQGPASLNYYWVPLLTVIFGSYLIAHGFFSVYAMCVETIFICFLEDLERNDGSTARPYYVSQPLLKIFQEENPQTRKQ


[0378] Further analysis of the NOV9a protein yielded the following properties shown in Table 9B.
45TABLE 9BProtein Sequence Properties NOV9aPSort0.6000 probability located in plasma membrane; 0.4000analysis:probability located in Golgi body; 0.3000 probabilitylocated in endoplasmic reticulum (membrane); 0.0300probability located in mitochondrial inner membraneSignalPCleavage site between residues 64 and 65analysis:


[0379] A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 9C.
46TABLE 9CGeneseq Results for NOV9aNOV9aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB95155Human protein sequence SEQ ID17 . . . 684374/694 (53%)0.0NO: 17188 - Homo sapiens, 704 aa.10 . . . 698499/694 (71%)[EP1074617-A2, 07 FEB. 2001]AAM40010Human polypeptide SEQ ID NO18 . . . 684374/693 (53%)0.03155 - Homo sapiens, 706 aa.13 . . . 700499/693 (71%)[WO200153312-A1, 26 JUL. 2001]AAB42144Human ORFXORF 190818 . . . 684374/694 (53%)0.0polypeptide sequence SEQ ID13 . . . 701499/694 (71%)NO: 3816 - Homo sapiens, 707 aa.[WO200058473-A2, 05 OCT. 2000]AAB24284Human H38087 (clone GTB6)17 . . . 684373/694 (53%)0.0protein sequence SEQ ID NO: 7 -10 . . . 698499/694 (71%)Homo sapiens, 704 aa.[WO200061746-A1, 19 OCT. 2000]AAB68406Amino acid sequence of a human18 . . . 684373/693 (53%)0.0choline transporter like protein 2 -13 . . . 700498/693 (71%)Homo sapiens, 706 aa.[WO200132704-A1, 10 MAY2001]


[0380] In a BLAST search of public sequence datbases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9D.
47TABLE 9DPublic BLASTP Results for NOV9aNOV9aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ95JW2Hypothetical 81.6 kDa protein -1 . . . 690661/717 (92%)0.0Macaca fascicularis (Crab eating1 . . . 717677/717 (94%)macaque) (Cynomolgus monkey),717aa.AAH28743Hypothetical 81.7 kDa protein -1 . . . 690666/719 (92%)0.0Homo sapiens (Human), 719 aa.1 . . . 719677/719 (93%)Q95JX5Hypothetical 53.6 kDa protein -251 . . . 690424/467 (90%)0.0Macaca fascicularis (Crab eating2 . . . 468434/467 (92%)macaque) (Cynomolgus monkey),468 aa.Q9NY68CTL2 protein - Homo sapiens18 . . . 684374/693 (53%)0.0(Human), 706 aa.13 . . . 700499/693 (71%)Q91VA1RIKEN CDNA 2210409B01 gene12 . . . 684320/711 (45%)0.0(NG22) - Mus musculus (Mouse),6 . . . 696457/711 (64%)707 aa.


[0381] PFam analysis indicates that the NOV9a protein contains the domains shown in the Table 9E.
48TABLE 9EDomain Analysis of NOV9aIdentities/SimilaritiesPfamNOV9afor theExpectDomainMatch RegionMatched RegionValueNo Significant Matches Found



Example 10

[0382] The NOV10 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 10A.
49TABLE 10ANOV10 Sequence AnalysisSEQ ID NO: 256065 bpNOV10a,CCAGAGGAGCGCCTTCTGCCTCAGAACGGCGTGACTCGGAGAATTGGAGCGTTATTCACG126600-01DNA SequenceGTATATTAATGTCTTATTGATAATGGCAGAACATCCACCACTACTGGATACAACTCAGATCTTAAGTAGTGATATTTCTCTTTTGTCTGCCCCTATTGTGAATGCAGATGGAACACAACAGGTTATTCTGGTACAAGTTAACCCAGGAGAAGCATTTACAATAAGAAGAGAAGATGGACAGTTTCAGTGCATTACAGGTCCTGCTCAGGTTCCAATGATGTCCCCAAATGGTTCTGTGCCTCCTATCTATGTGCCTCCTGGATATGCCCCACAGGTTATTGAAGACAATGGTCTTCGAAGAGTTGTCGTCGTCCCTCAGGCACCAGAGTTTCACCCTGGTAGTCACACAGTTCTCCACCGTTCTCCACATCCTCCTCTACCTGGTTTCATTTCTGTCCCAACTATGATGCCGCCTCCACCACGTCATATGTACTCACCCGTGACTGGAGCTGGAGACATGACAACACAGTATATGCCACAGTATCAGTCTTCACAAGTCTATGGAGATGTAGATGCTCACTCTACACATGGAAGGTCCAACTTTAGAGATGAACGATCTAGTAAAACATATGAACGTTTGCAGAAAAAATTGAAGGATCGCCAAGGAACACAGAAAGATAAAATGAGCAGTCCACCATCATCACCCCAGAAATGCCCTTCTCCCATTAATGAACATAATGGACTTATAAAAGGACAAATTGCTGGTGGTATAAACACAGGATCAGCAAAAATCAAGTCTGGGAAGGGGAAAGGTGGTACACAAGTTGATACAGAAATTGAAGAAAAAGATGAAGAAACTAAAGCATTTGAAGCACTTCTTTCCAACATTGTCAAACCAGTGGCCTCCGACATCCAGGCAAGGACAGTAGTACTTACCTGGTCACCACCTTCCAGCCTCATTAATGGTGAAACAGATGAAAGTAGTGTACCAGAGCTCTATGGTTATGAAGTTCTGATCTCAAGTACTGGAAAAGATGGGAAATACAAAAGTGTATATGTAGGAGAAGAAACAAATATCACTTTAAATGATCTCAAGCCAGCCATGGATTACCATGCAAAAGTCCAGGCAGAATATAATTCTATAAAGGGAACTCCTTCAGAGGCTGAAATCTTTACCACCTTGAGCTGTGAACCTGATATACCTAATCCACCAAGGATAGCCAATCGGACCAAAAATTCACTCACTTTGCAATGGAAGGCACCTAGTGACAATGGTTCTAAAATCCAAAACTTTGTATTAGAATGGGATGAAGGAAAAGGAAATGGAGAATTTTGTCAGTGTTACATGGGCTCACAGAAACAATTTAAAATTACTAAACTTTCACCAGCAATGGGCTGTAAATTCAGACTATCGGCCAGAAATGACTATGCTACAAGTGGTTTTAGTGAAGAAGTCTTATATTACACCTCAGGCTGTGCTCCTTCTATGCCAGCAAGTCCTGTATTAACCAAGGCTGGAATTACTTGGTTATCCTTACAATGGAGTAAGCCCTCAGGAACACCATCAGATGAAGGAATTTCTTACATTTTAGAGATGGAGGAAGAAACTTCAGGATATGGTTTTAAGCCTAAATATGATGGAGAAGATCTTGCTTACACAGTGAAAAATCTCAGACGTAGTACTAAGTATAAATTTAAGGTTATTGCTTACAACTCAGAAGGTAAAAGTAATCCAAGTGAAGTAGTAGAATTTACTACTTGCCCTGATAAACCAGGCATACCTGTAAAGCCTTCAGTGAAAGGAAAGATACATTCACACAGTTTTAAAATAACCTGGGATCCACCAAAAGACAATGGCGGAGCAACCATCAATAATATGTAGTGGAGATGGCAGAAGGTTCTAAACGGAAACAAATGGGAAATGATATACAGTGGTGCTACCAGGGAACATCTTTGTGATCGACTGAATCCAGGCTGTTTCTATCGTTTACGAGTTTACTGCATCAGTGATGGAGGACAGAGTGCGCTCTCTGAATCTTTACTTGTGCAGACTCCAGCTGTGCCTCCTGGCCCATGCCTCCCTCCCAGATTACAGGGTAGACCCAAAGCAAAAGAAATACAGTTACGATGGGGACCCCCTCTGGTTGATGGTGGATCACCCATTTCCTGTTACAGTGTGGAAATGTCTCCTATAGAAAAAGATGAACCTAGAGAAGTTTACCAAGGTTCTGAAGTAGAATGTACAGTGAGCAGCCTTCTTCCTGGAAAGACATACAGCTTCAGACTACGTGCAGCTAACAAAATGGGGTTTGGACCATTTTCAGAAAAATGTGATATTACTACAGCCCCTGGGCCACCAGATCAGTGCAAGCCCCCTCAAGTGACATGTAGATCTGCAACTTGTGCACAAGTGAATTGGGAGGTTCCTTTGAGTAATGGAACAGATGTCACTGAATATCGACTGGAGTGGGGAGGAGTTGAAGGAAGTATGCAGATATGTTACTGTGGGCCTGGTCTCAGTTATGAAATAAAAGGACTTTCACCAGCAACTACCTATTATTGCAGGGTCCAGGCTCTGAGTGTTGTGGGTGCAGGCCCTTTCAGTGAAGTAGTAGCCTGTGTGACTCCACCATCAGTTCCTGGCATTGTGACCTGTCTTCAAGAAATAAGCGATGATGAGATAGAAAATCCCCATTATTCACCTTCTACATGCCTTGCAATAAGCTGGGAAAAGCCTTGTGATCATGGTTCGGAAATCCTTGCCTACAGCATAGACTTTGGAGATAAACAATCCCTAACAGTGGGAAAGGTTACAAGCTATATTATCAACAATTTGCAACCAGATACAACATACAGAATACGAATTCAAGCCTTGAATAGCCTTGGAGCTGGTCCTTTCAGCCATATGATAAAATTAAAAACTAAGCCTCTCCCTCCTGATCCACCTCGTCTGGAATGTGTTGCCTTTAGCCACCAGAACCTTAAGCTGAAATGGGGAGAAGGAACTCCAAAGACATTGTCAACCGATTCTATTCAGTACCACCTTCAGATGGAGGATAAGAATGGACGGTTTGTATCCCTATACAGAGGACCATGTCATACATACAAAGTACAAAGACTTAATGAGTCAACATCCTATAAATTCTGTATTCAAGCTTGTAATGAAGCTCGGGAAGGTCCCCTCTCCCAAGAATATATTTTCACTACTCCAAAATCTGTCCCAGCTGCCTTGAAAGCCCCCAAAATAGAGAAAGTAAATGATCACATTTGTGAAATTACATGGGAGTGTTTACAGCCAATGAAAGGTGATCCAGTTATTTACAGTCTTCAAGTTATGTTGGGAAAAGATTCAGAATTCAAACAGATTTACAAGGGTCCCGACTCTTCCTTCCGGTATTCCAGCCTTCAGCTGAACTGTGAATATCGCTTCCGTGTATGTGCCATTCGCCAGTGCCAAGACTCTCTGGGACACCAGGACCTCGTAGGTCCCTACAGCACCACAGTGCTCTTCATCTCTCAGAGGACTGAACCACCAGCCAGCACCAACAGAGACACTGTGGAAAGCACAAGGACCCGACGGGCACTGAGTGACGAGCAGTGTGCTCCCCTCATCCTTGTGCTGTTTGCTTTCTTTTCCATTTTGATTGCCTTTATCATTCAGTACTTTGTAATCAAGTGAAAATATAACTTTATTTTTTAACTCTATTACATTTTATTTTGTCATGTACTAAAATTATTTCTGTATTGCTTTTATAAAAAACAGTGGCATTTAGCACTGGCATTGAGACTATAGCACATCATTTTTGCCATTTTCAGTGCTTATATTGTTAGGTAGAGGCTGGCACTTTATTAGAATGCAAGCCACAAAAATATCAATTTTGTTTTTTTTTGTTAGGGTGGGTCTTCTTTTTTTCTTTCCCTCTCTCTTTTTTTAACAAATGCCTTCTTATAGAAAAACTTTCTAAGAGGCAACAATTTAGAATGGATATTTTGACGAATCGGCATGAGTGTAACAGTGATAACCTGATCTGTTTGTTTTAAAGATTATTACCAAGTGAAAAATTCAGAATGAATAGAATTTACACTAACATGCTATATAAAATGTTAAAGTCTGATGCTGTGAAAGCAATCTAGTGCTATATTTCTACCTCCTCATTTGTCTTAATTATTTGGTAAGTGGGATTATGATGAGTAACTGGAGGGGCTTAGAAACAAAAACTGGATGAAAGAGTATGCATGAAGAAAAGCTTCTTTGATAAATGTGGAGTTCTTCATTATAAATATATATTCATGAATTCACAGATAAGTACTTAAAGAACAGACAGTTTACTTGGCCTAAAAATATTTTGATGTTTACTCAAAAAGTACCTCTTCAGGTCTTGAGAACATGGAAAAGAATTGAGTGCTTTTAAATACTTTTTAGAAAGTAATCATAAAAGTAAATTGAATTTCAAACCTATTTGGCTTCTGTTTTGTGAACCTTTGAACTATATGTATGTGTATAAGGGTATACACATACATATATGGCATATAACAAGTGTACACATATACACATAACAAGTGTAGAAGTATATATTACATACATACACTCACTCTGTCTGGTATAGGCTAATTTTGAAGAACTCCCATAAGTTTCTGCTGCTTCTCCCATAACTGCTGCCACCACCATCAGAATTCATAATCAAACCTAACCTTTTTGTTTGGGGCACCAAATCTGAAGACAAAATTAATTTGCACCAGTAAACTTCAAGCTGCTTTCTTTCTTGAAAACTAAACGTTTAACGTATAATGTCTGTTTGGATACTGTTCCAAATTGTTGATTGCATGTGGTTAATGTTGCATTAGAGCACTTTGCAATTGCATAATTCATTAATGTTTTGTGAGCTTGCATTTGTGAGTTATTGGATGATCAGACTGAATTTTGTCAAGTATCACATTGTACATCTTGCCTAGATGTCGATGACTGCAAGTAATAATACAGTTTATAATGAAACTATCTACAATTCTTGTTTTAGCACATCTGTTATCCGTAAAACACCTGTAACTAGCTTTTTTAATTTATTATTTGAATTTTAGGATAGCGAATCACTAATTTTTAGTTGCTGAGGTTGGCATTTTAGTGATTATTAAGCACTTCTGTCAGTCTTTGAAAAAAAGAACGTATTTTTTGTGCTTTGAAGATCTCTGAAGAATTTCTTTTATAATAGAATGGGCATGTATTGTAACAGTTTTATGTCAAATGATCTGTGCTGTAGAAAAACATTAACCCTTGTTCAAAAAAGAAATGGATAAACTTGGCCTTTCTAAGTGGTAAGAATGACCTGTCACTATAATATACTGTATGTTTACATTTTATTTAAATTTAATCTCTTATGTATAGGGTGATAACCTTCCCCAGAAACAACAGTGATTGCGATTGTTTTCTAGAAACTTCTTTAAAGTGCCACATTTGGCAGTACAAATGAGTCTGAGTGTAATAGCCCAGAGATTTATATATAGTTGAATGTCTAAAATGGTAAAATGTGCCACTGTGTCAAGTTACAGTGGCTTATGTTTTTCATAGTAATTCAAATGAACTTCCTATTTTTGATAGTAAATGTCATTTkATAGTATACTTGCCATTTGAGCCTCACTGCAAAATTAGTGCAGAGGAGAAAACAATTTTTAATGTAATCTTGATTTTACCTCATATACTGTACATTCCAAAAACTCTAAACTTTTTAAAGATTATAGATACACTACCAGTTGTATCATTCTTTTTGAGATACGTTTATTGTATTCATATATATTCATTATTTGCTACCTGTTTAAGAAAGTGAAATGTTATGGTCTCCCCTCTTCCAATGAGCTTAAAACATTTGTTGTATCATTCTTTTTGAGATACGTTTATTGTATTCATATATATTCATTATTTGCTACCTGTTTAAGAAAGTGAAATGTTATGGTCTCCCCTCTTCCAATGAGCTTAAAACATTTTTCCCAACAGTATATAAATCTTCAACATGAGAGGATGTATATTTATTATATAAAGCCCAGTAAAGAATAAAATTAGAAGTTTTATCCTAGGORF Start: ATG at 81ORF Stop: TGA at 3675SEQ ID NO 261198 aaMW at 131840.2 kDNOV10a,MAEHPPLLDTTQILSSDISLLSAPIVSADGTQQVILVQVNPGEAFTTRREDGQFQCITCG126600-01Protein SequenceGPAQVPMMSPNGSVPPIYVPPGYAPQVIEDNGVRRVVVVPQAPEFHPGSHTVLHRSPHPPLPGFISVPTMMPPPPRHMYSPVTGAGDMTTQYMPQYQSSQVYGDVDAHSTHGRSNFIRDERSSKTYERLQKKLKDRQGTQKDKMSSPPSSPQKCPSPINEHNGLIKGQIAGGINTGSAKIKSGKGKGGTQVDTEIEEKDEETKJXFEALLSNIVKPVASDIQARTVVLTWSPPSSLINGETDESSVPELYGYEVLISSTGKDGKYKSVYXTGEETNITLNDLKPAMDYHAKVQAEYNSIKGTPSEAEIFTTLSCEPDIPNPPRIANRTKNSLTLQWKAPSDNCSKIQNFVLEWDEGKGNGEFCQCYMGSQKQFKITKLSPAMGCKFRLSARNDYGTSGFSEEVLYYTSGCAPSMPASPVLTKAGITWLSLQWSKPSGTPSDEGISYILEMEEETSGYGFKPKYDGEDLAYTVKNLRRSTKYKFKVIAYNSEGKSNPSEVVEFTTCPDKPGIPVKPSVKGKIHSHSFKITWDPPKDNGGATINKYVVEMAEGSNGNKWEMIYSGATREHLCDRLNPGCFYRLRVYCISDGCQSAVSESLLVQTPAVPPGPCLPPRLQCRPKAKEIQLRWGPPLVDGGSPISCYSVEMSPIEKDEPREVYQGSEVECTVSSLLPGKTYSFRLRAANKMGFGPFSEKCDITTAPGPPDQCKPPQVTCRSATCAQVNWEVPLSNGTDVTEYRLEWGGVEGSMQICYCGPGLSYEIKGLSPATTYYCRVQALSVVGAGPFSEVVACVTPPSVPGIVTCLQEISDDEIENPHYSPSTCLAISWEKPCDHGSEILAYSIDFGDKQSLTVGKVTSYIINNLQPDTTYRIRIQALNSLGAGPFSHMIKLKTKPLPPDPPRLECVAFSHQNLKLKWGEGTPKTLSTDSIQYHLQMEDKNGRFVSLYRGPCHTYKVQRLNESTSYKFCIQACNEAGEGPLSQEYIFTTPKSVPAALKAPKIEKVNDHICEITWECLQPMKGDPVIYSLQVMLGKDSEFKQIYKGPDSSFRYSSLQLNCEYRFRVCAIRQCQDSLGHQDLVGPYSTTVLFISQRTEPPASTNRDTVESTRTRRALSDEQCAAVILVLFAFFSILIAFIIQYFVIK


[0383] Further analysis of the NOV10a protein yielded the following properties shown in Table 10B.
50TABLE 10BProtein Sequence Properties NOV10aPSort0.8500 probability located in endoplasmic reticulumanalysis:(membrane); 0.6640 probability located in plasma membrane;0.1000 probability located in mitochondrial innermembrane; 0.1000 probability located in Golgi bodySignalPNo Known Signal Sequence Indicatedanalysis:


[0384] A search of the NOV10a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 10C.
51TABLE 10CGeneseq Results for NOV10aNOV10aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABG34076Human Pro peptide #47 - Homo351 . . . 1198 459/850 (54%)0.0sapiens, 847 aa. [WO200224888-2 . . . 847607/850 (71%)A2, 28 MAR. 2002]AAM93625Human polypeptide, SEQ ID NO:437 . . . 1198 405/764 (53%)0.03462 - Homo sapiens, 760 aa.1 . . . 760540/764 (70%)[EP1130094-A2, 05 SEP. 2001]AAU18383Human endocrine polypeptide SEQ486 . . . 1198 373/715 (52%)0.0ID No 338 - Homo sapiens, 717 aa.7 . . . 717501/715 (69%)[WO200155364-A2, 02 AUG.2001]AAM43571Human polypeptide SEQ ID NO487 . . . 1198 372/714 (52%)0.0249 - Homo sapiens, 710 aa.1 . . . 710499/714 (69%)[WO200155308-A2, 02 AUG.2001]AAU12206Human PRO4979 polypeptide8 . . . 608313/614 (50%)e−168sequence - Homo sapiens, 625 aa.9 . . . 612409/614 (65%)[WO200140466-A2, 07 JUN. 2001]


[0385] In a BLAST search of public sequence datbases, the NOV10a protein was found to have homology to the proteins shown in the BLASTP data in Table 10D.
52TABLE 10DPublic BLASTP Results for NOV10aNOV10aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9Y2H6KIAA0970 protein - Homo57 . . . 1198 1139/1142 (99%) 0.0sapiens (Human), 1151 aa10 . . . 1151 1141/1142 (99%) (fragment).Q9H1W1BA203I16.1 (KIAA0970422 . . . 1198 733/777 (94%)0.0protein) - Homo sapiens1 . . . 733 733/777 (94%)(Human), 733 aa.Q96N25CDNA FLJ31509 fis, clone1 . . . 326 324/326 (99%)0.0NT2RI1000016 - Homo1 . . . 326 325/326 (99%)sapiens (Human), 326 aa.Q9H517CDNA: FLJ23399 fis,706 . . . 1198 256/494 (51%)e−151clone HEP 18254 - Homo5 . . . 495 350/494 (70%)sapiens (Human), 495 aa.Q9NSQ8Hypothetical 52.6 kDa720 . . . 1198 249/480 (51%)e−147protein - Homo sapiens1 . . . 477 341/480 (70%)(Human), 477 aa(fragment).


[0386] PFam analysis indicates that the NOV10a protein contains the domains shown in the Table 10E.
53TABLE 10EDomain Analysis of NOV10aIdentities/NOV10aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValuefn3266 . . . 35924/97 (25%)1.6e−0565/97 (67%)fn3371 . . . 45519/88 (22%)3.2e−0662/88 (70%)fn3467 . . . 55222/87 (25%)9.7e−0759/87 (68%)fn3564 . . . 65025/88 (28%)0.0001260/88 (68%)fn3661 . . . 74725/90 (28%)4.1e−0959/90 (66%)fn3759 . . . 84124/86 (28%)1.6e−0859/86 (69%)fn3863 . . . 94028/87 (32%)3.2e−0963/87 (72%)fn3 952 . . . 103523/88 (26%)0.03252/88 (59%)



Example 11

[0387] The NOV11 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 11A.
54TABLE 11ANOV11 Sequence AnalysisSEQ ID NO: 271175 bpNOV11a,ATGGCCACTGCCCAGTTGCAGAGGACTTCCATGACTGCACTGGTATTTCTCAATAAGACG127888-01DNA SequenceTACCACCTGAACACCAGTCTTTGGTGTTAGTGAAGAGTTTCCTCACAGTTTCAGTATCCTGTATCATGTATTTGAGAGGAATATTTCCAGCATGTGCTTATGGAACCAGATATCTAGATGATCTTTGTGTCAAAATACTGAGAGAAGATAAAAATTGCCCAGGATCTACACAGTTAGTGAAATGGATACTAGGATGTTACGATGCTTTACAGAAAAAAATATACACAAACCCAGAAGATCCTCAGACAATTTCAGAATGTTACCAATTCAAATTCAAATACACCAATAATGGACCACTTATGGACTTCATAAGTGAAAGCCPAAGCAATGAGTCTAGCATGTTATGTACTGACACCGAGAAAGCAAGCACTCTCCTAATTCGCAAGATTTATACCCTAATGCAAAATCTGGGGCCTTTACCTAATGTTTGTTTGAGCATGAAACGTTTTTACTATGATGAAGTTACACCCCCAGATTACCAGCCTCCTGGTTTTAAGGATGGTGATTGTGAAGGACTTATATTTGAAGGGGAACTTATGTATTTATCTGGGCGAAGTCTCAAAACACCTTTTCCCACCTTCAAAGTAAGTGACCACTGAGAGAGAACGAATGGAAAATATTTATTCAAACTATACTAATCACTAAAACAAATAAAPACAACTTCACAAAATCCTGAGGGACAAAGATGCAGAAAAGATGACCACGCGCATTATACAAGTGATGATTTGGACATTGAAACTAAAATGGAAGAGCAGGAAAAAAACCCTCGATTTTCTGAACTTGGAGAACCAAGTTTAGTTTGTGAGGATGATGAAATTGTGAGGTATAAAPAAAGTTCAGATCTTTCCATTTCTCATTCTCAGGTTGAGCAGTTAGTCAATAAAACATCGGAACTTGATATGTCTGAAAGCAAAACAAGAAGTGGAAAGTCTTTCAGAATAATGGCAAATGGAAATCAACCAGTAACATCTTCCAAAGAAATTCGGAAGAGAAGTCAACATGAATCTGGGAGAATAGTGCTCCATCACTCGCATTCTTCTAGTCAAGAGTCAGTACCAAAAAGGAGAAAGTTTAGTGAACCAAAGGACATATATAAAAAATTATTTTTCTTCTGTATORF Start: ATG at 1ORF Stop: TAA at 1153SEQ ID NO: 28384 aaMW at 43970.6 kDNOV11a,MATAQLQRTSMTALVFLNKIPPEHQSLVLVKSFLTVSVSCIMYLRGIFPACAYGTRYLCG127888-01Protein SequenceDDLCVKILREDKNCPGSTQLVKWILGCYDALQKKIYTNPEDPQTISECYQFKFKYTNNGPLMDFISESQSNESSMLCTDTEKASTLLIRKTYTLMQNLGRLPNVCLSMKRFYYDEVTPPDYQPPGFKDGDCEGVIFEGELMYLNVGEVSTPFPTFKVKVTTERERMENIYSTILSLKQIKTKLHKILRDKDAEDDQAHYTSDDLDIETKMEEQEKNPRFSELGEPSLVCEDDEIVRYKKSSDLSISHSQVEQLVNKTSELDMSESKTRSGKSFRIMANGNQPVTSSKEIRKRSQHESGRIVLHHSHSSSQESVPKRRKFSEPKEHI


[0388] Further analysis of the NOV11a protein yielded the following properties shown in Table 11B.
55TABLE 11BProtein Sequence Properties NOV11aPSort0.6186 probability located in outside; 0.1900 probabilityanalysis:located in lysosome (lumen); 0.1000 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 53 and 54analysis:


[0389] A search of the NOV11a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 11C.
56TABLE 11CGeneseq Results for NOV11aNOV11aIdentities/Residues/Similarities forGenescqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAG89139Human secreted protein, SEQ ID1 . . . 384339/394 (86%)0.0NO: 259 - Homo sapiens, 394 aa.1 . . . 394350/394 (88%)[WO200142451-A2, 14 JUN. 2001]AAB63451Human breast cancer associated36 . . . 259 196/233 (84%)e−109antigen protein sequence SEQ ID2 . . . 234203/233 (87%)NO: 813 - Homo sapiens, 235 aa.[WO200073801-A2, 07 DEC. 2000]AAB63280Human breast cancer associated36 . . . 259 196/233 (84%)e−109antigen protein sequence SEQ ID2 . . . 234203/233 (87%)NO: 642 - Homo sapiens, 235 aa.[WO200073801-A2, 07 DEC. 2000]AAU07870Polypeptidc sequence for1 . . . 112 93/121 (76%)5e−46 mammalian Spg27 - Mammalia, 121 aa.1 . . . 121100/121 (81%)[WO200166752-A2, 13 SEP. 2001]AAG76687Human colon cancer antigen protein248 . . . 359  88/113 (77%)6e−41 SEQ ID NO: 7451 - Homo sapiens,22 . . . 134  94/113 (82%)155 aa. [WO200122920-A2, 05APR. 2001]


[0390] In a BLAST search of public sequence datbases, the NOV11a protein was found to have homology to the proteins shown in the BLASTP data in Table 11D.
57TABLE 11DPublic BLASTP Results for NOV11aNOV11aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9H0K8Hypothetical 44.4 kDa protein -1 . . . 384338/387 (87%)0.0Homo sapiens (Human), 387 aa.1 . . . 387350/387 (90%)Q9D5T74921522K05Rik protein - Mus1 . . . 383272/395 (68%)e−146musculus (Mouse), 392 aa.1 . . . 391315/395 (78%)Q9D4734921522K05Rik protein - Mus1 . . . 351255/363 (70%)e−138musculus (Mouse), 374 aa.1 . . . 360294/363 (80%)Q95JZ3Hypothetical 30.7 kDa protein -120 . . . 384 228/267 (85%)e−123Macaca fascicularis (Crab eating1 . . . 267239/267 (89%)macaque) (Cynomolgus monkey),267 aa.Q9CUF34921522K05Rik protein - Mus1 . . . 288212/298 (71%)e−116musculus (Mouse), 295 aa1 . . . 295242/298 (81%)(fragment).


[0391] PFam analysis indicates that the NOV11a protein contains the domains shown in the Table 11E.
58TABLE 11EDomain Analysis of NOV11aIdentities/NOV11aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueHORMA22 . . . 22554/254 (21%)0.00013134/254 (53%) 



Example 12

[0392] The NOV12 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 12A.
59TABLE 12ANOV12 Sequence AnalysisSEQ ID NO: 29513 bpNOV12a,GCCAGACCAAACCGGACCTCGGGGCCGATGCGGCTGCTGCCCCTGCTGCGGACTGTCCCG128249-02DNA SequenceTCTGGGCCGCGTTCGTCGGCTCCCCTCTGCGCGGGGGCTCCAGCCTCCGCCACGTAGTCTACTGGAACTCCAGTAACCCCAGGTTGCTTCGAGGAGACGCCGTGGTGGAGGTGGCCCTCAACGATTACCTAGACATTGTCTGCCCCCACTACGAAGGCCCAGGGCCCCCTGAGGGCCCCGAGACGTTTGCTTTGTACATGGTGGACTGGCCAGGGTATGAGTCCTGCCAGGCAGAGGGCCCCCGGGCCTACAAGCGCTGGGTGTCCTCCCTGCCCTTTGGCCATGTTCAATTCTCAGAGAAGATTCAGCGCTTCACACCCTTCTCCCTCGGCTTTGAGTTCTTACCTGGAGAGAGTGGCACATCAGGGTGGCGAGGGGGGGACACTCCCAGCCCCCTCTCTCTCTTGCTATTACTGCTGCTTCTGATTCTTCGTCTTCTGCGAATTCTGTGACCCORF Start: ATG at 28ORF Stop: TGA at 508SEQ ID NO: 30160 aaMW at 17901.6 kDNOV12aMRLLPLLRTVLWAAFVGSPLRGGSSLRHVVYWNSSNPRLLRGDAVVEVGLNDYLDIVCCG128249-02Protein SequencePHYEGPGPPEGPETFALYMVDWPGYESCQAEGPRAYKRWVCSLPFGHVQFSEKIQRFTPFSLGFEFLPGESGTSGWRGGDTPSPLCLLLLLLLLILRLLRIL


[0393] Further analysis of the NOV 12a protein yielded the following properties shown in Table 12B.
60TABLE 12BProtein Sequence Properties NOV12aPSort0.9190 probability located in plasma membrane; 0.3000analysis:probability located in lysosome (membrane); 0.2133probability located in microbody (peroxisome); 0.1000probability located in endoplasmic reticulum (membrane)SignalPCleavage site between residues 23 and 24analysis:


[0394] A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12C.
61TABLE 12CGeneseq Results for NOV12aNOV12aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAR71482Human hek-L protein - Homo1 . . . 160158/201 (78%) 4e−87sapiens, 201 aa. [WO9506065-A,1 . . . 201160/201 (78%) 02 MAR. 1995]ABG27837Novel human diagnostic protein1 . . . 12763/131 (48%)1e−28#27828 - Homo sapiens, 335 aa.111 . . . 240 82/131 (62%)[WO200175067-A2, 11 OCT.2001]ABG27837Novel human diagnostic protein1 . . . 12763/131 (48%)1e−28#27828 - Homo sapiens, 335 aa.111 . . . 240 82/131 (62%)[WO200175067-A2, 11 OCT.2001]AAW00035HEK4 binding protein - Homo1 . . . 12763/131 (48%)1e−28sapiens, 228 aa. [WO9623000-A1,4 . . . 13382/131 (62%)01 AUG. 1996]AAW02586Lerk-7 protein - Homo sapiens,1 . . . 12763/131 (48%)1e−28228 aa. [WO9617925-A1, 13 JUN.4 . . . 13382/131 (62%)1996]


[0395]

62





TABLE 12D










Public BLASTP Results for NOV12a













NOV12a
Identities/



Protein

Residues/
Similarities for


Accession

Match
the Matched
Expect


Number
Protein/Organism/Length
Residues
Portion
Value





P52798
Ephrin-A4 precursor (EPH-related
1 . . . 160
158/201 (78%)
1e−86



receptor tyrosine kinase ligand 4)
1 . . . 201
160/201 (78%)



(LERK-4) - Homo sapiens (Human),



201 aa.


008542
Ephrin-A4 precursor (EPH-related
1 . . . 160
131/206 (63%)
2e−67



receptor tyrosine kinase ligand 4)
1 . . . 206
141/206 (67%)



(LERK-4) - Mus musculus (Mouse),



206 aa.


Q9CZS8
10 days embryo cDNA, RIKEN full-
1 . . . 160
129/206 (62%)
1e−66



length enriched library,
1 . . . 206
141/206 (67%)



clone: 2610529M21, full insert



sequence - Mus musculus (Mouse),



206 aa.


Q98TZ1
Ephrin-A6 - Gallus gallus (Chicken),
6 . . . 129
 69/127 (54%)
2e−31



202 aa (fragment).
1 . . . 124
 84/127 (65%)


P97605
Ephrin-A5 precursor (EPH-related
1 . . . 127
 64/131 (48%)
3e−28



receptor tyrosine kinase ligand 7)
4 . . . 133
 82/131 (61%)



(LERK-7) (AL-1) - Rattus





norvegicus
(Rat), 228 aa.











[0396] PFam analysis indicates that the NOV12a protein contains the domains shown in the Table 12E.
63TABLE 12EDomain Analysis of NOV12aIdentities/NOV12aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueEphrin22 . . . 12963/114 (55%)1.2e−5494/114 (82%)



Example 13

[0397] The NOV13 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 13A.
64TABLE 13ANOV13 Sequence AnalysisSEQ ID NO: 31240 bpNOV13a,ATGGTGGGCCCCGCGCCGCGGCGGCGGCTGCGGCCGCTGGCAGCGCTGGCCCTGGTCCCG128785-01DNA SequenceTGGCGCTGGCCCCGGGGCTGCCCACAGCCCGGGCCGGGCAGACACCGCGCCCTGCCGAGCGGGGGCCCCCAGTGCGGCTTTTCACCGAGGAGGAGCTGGCCCGCTATGGCGGGGAGGAGCTTCTCCCCTGCTTTCTAGGAAGATCACCCCATCTACTTGGCAGTGAACGGAGTGGTGTTTGAORF Start: ATG at 1ORF Stop: TGA at 238SEQ ID NO: 3279 aaMW at 8309.6 kDNOV13a,MVGPAPRRRLRPLAALALVLALAPGLPTARAGQTPRPAERGPPVRLFTEEELARYGGECG128785-01Protein SequenceELLPCFLGRSAHLLGSEGSGV


[0398] Further analysis of the NOV13a protein yielded the following properties shown in Table 13B.
65TABLE 13BProtein Sequence Properties NOV13aPSort0.6854 probability located in outside; 0.1000 probabilityanalysis:located in endoplasmic reticulum (membrane); 0.1000probability located in endoplasmic reticulum (lumen);0.1000 probability located in microbody (peroxisome)SignalPCleavage site between residues 32 and 33analysis:


[0399] A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13C.
66TABLE 13CGeneseq Results for NOV13aNOV13aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB98325Human ortholog of r0v0-176.7A1 . . . 59 59/59 (100%)1e−27(PA27) protein sequence - Homo1 . . . 59 59/59 (100%)sapiens, 120 aa. [WO200132926-A2,10 MAY 2001]AAY94866Human protein clone HP 10557 -1 . . . 59 59/59 (100%)1e−27Homo sapiens, 172 aa.1 . . . 59 59/59 (100%)[WO200005367-A2, 03 FEB. 2000]AAB98322Human PA27 protein (r0v0-176.7A)1 . . . 5958/59 (98%)1e−25SEQ ID NO: 72 - Homo sapiens, 171 aa.1 . . . 5858/59 (98%)[WO200132926-A2, 10 MAY2001]ABB72158Rat protein isolated from skin cells1 . . . 5946/59 (77%)4e−17SEQ ID NO: 197 - Rattus sp, 171 aa.1 . . . 5848/59 (80%)[WO200190357-A1, 29 NOV. 2001]AAB55958Skin cell protein, SEQ ID NO: 197 -1 . . . 5946/59 (77%)4e−17Rattus sp, 171 aa. [WO200069884-1 . . . 5848/59 (80%)A2, 23 NOV. 2000]


[0400] In a BLAST search of public sequence datbases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13D.
67TABLE 13DPublic BLASTP Results for NOV13aNOV13aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9UMX5Secreted protein of unknown1 . . . 59 59/59 (100%)2e−27function - Homo sapiens1 . . . 59 59/59 (100%)(Human), 172 aa.Q9CQ451110060M21Rik protein - Mus1 . . . 5947/59 (79%)1e−17musculus (Mouse), 171 aa.1 . . . 5849/59 (82%)Q9I6U2Probable TonB-dependent6 . . . 4421/42 (50%)1.6receptor - Pseudomonas8 . . . 4823/42 (54%)aeruginosa, 790 aa.Q9AJPOORF5 - Streptomyces griseus,4 . . . 4218/42 (42%)2.0524 aa.421 . . . 462 25/42 (58%)AAA42060Ornithine aminotransferase -10 . . . 62 20/56 (35%)6.0Rattus norvegicus (Rat), 97 aa2 . . . 5727/56 (47%)(fragment).


[0401] PFam analysis indicates that the NOV13a protein contains the domains shown in the Table 13E.
68TABLE 13EDomain Analysis of NOV13aIdentities/NOV13aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueNo Significant Matches Found



Example 14

[0402] The NOV14 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 14A.
69TABLE 14ANOV14 Sequence AnalysisSEQ ID NO: 33751 bpNOV14a,CGAGCGTCGCGGCTATGGCTTATCACTCGGGCTACGGAGCCCACGGCTCCAAGCACAGCG129005-01DNA SequenceGGCCCGGGCAGCCCCGGATCCCCCTCCCCTCTTCGATGACACAAGCGGTGGTTATTCCAGCCAGCCCGGGGGATACCCAGCCACAGGAGCAGACGTGGCCTTCAGTGTCAACCACTTGCTTGGGGACCCAATGGCCAATGTGGCTATGGCCTATGGCAGCTCCATCGCATCCCATGGGAAGGACATGGTGCACAAGGAGCTGCACCGTTTTGTGTCTGTGAGCAAACTCAAGTATTTTTTTGCTGTGGACACAGCCTACGTGCCCAAGAAGCTAGGGCTGCTGGTCTTCCCCTACACACACCAGAACTGGGAAGTGCAGTACAGTCGTGATGCTCCTCTGCCCCCCCGGCAAGACCTCAACGCCCCTGACCTCTATATCCCCACGATGGCCTTCATTACTTACGTGCTCCTGGCTCGGATGGCACTGGGCATTCAGAAAATGATCCTCAGTGTGCTCACGGGGCTGCTGTTCGGCAGCGATGGCTACTACGTGGCGCTGGCCTGGACCTCATCGGCGCTCATGTACTTCATTGTGCGCTCTTTGCGGACAGCAGCCCTGGGCCCCGACAGCATGGGCGGCCCCGTCCCCCGGCAGCGTCTCCAGCTCTACCTGACTCTGGGAGCTGCAGCCTTCCAGCCCCTCATCATATACTGGCTGACTTTCCACCTGGTCCCGTGACCCCCTGGCCCCAGORF Start: ATG at 15ORF Stop: TGA at 735SEQ ID NO: 34240 aaMW at 26221.0 kDNOV14a,MAYHSGYGAHGSKHRARAAPDPPPLFDDTSGGYSSQPGGYPATGADVAFSVNHLLGDPCG129005-01Protein SequenceMANVAMAYGSSIASHGKDMVHKELHRFVSVSKLKYFFAVDTAYVAKKLGLLVFPYTHQNWEVQYSRDAPLPPRQDLNAPDLYIPTMAFITYVLLAGMALGIQKMILSVLTGLLFGSDGYYVALAWTSSALMYFIVRSLRTAALGPDSMGGPVPRQRLQLYLTLGaAAFQPLIiyWLTFHLVR


[0403] Further analysis of the NOV14a protein yielded the following properties shown in Table 14B.
70TABLE 14BProtein Sequence Properties NOV14aPSort0.7480 probability located in microbody (peroxisome); 0.7000analysis:probability located in plasma membrane; 0.2000 probabilitylocated in endoplasmic reticulum (membrane); 0.1000probability located in mitochondrial inner membraneSignalPNo Known Signal Sequence Indicatedanalysis:


[0404] A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 14C.
71TABLE 14CGeneseq Results for NOV14aNOV14aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB12032Human SIGP 2328134 homologue, 1 . . . 240240/293 (81%) e−132SEQ ID NO: 2402 - Homo sapiens,53 . . . 345240/293 (81%)345 aa. [WO200157188-A2, 09AUG. 2001]AAY21851Human signal peptide-contianing 1 . . . 240240/293 (81%) e−132protein (SIGP) (clone ID 2328134) -54 . . . 346240/293 (81%)Homo sapiens, 346 aa.[WO9933981-A2, 08 JUL. 1999]AAM41111Human polypeptide SEQ ID NO11 . . . 240133/294 (45%)7e−596042 - Homo sapiens, 351 aa.61 . . . 351171/294 (57%)[WO200153312-A1, 26 JUL. 2001]AAO17463Human liver cancer expressed21 . . . 240128/284 (45%)7e−57protein PP4519 - Homo sapiens, 3 . . . 283165/284 (58%)283 aa. [CN1329064-A, 02 JAN.2002]AAU83613Human PRO protein, Seq ID No 44 -21 . . . 240128/284 (45%)7e−57Homo sapiens, 283 aa. 3 . . . 283165/284 (58%)[WO200208288-A2, 31 JAN. 2002]


[0405] In a BLAST search of public sequence datbases, the NOV14a protein was found to have homology to the proteins shown in the BLASTP data in Table 14D.
72TABLE 14DPublic BLASTP Results for NOV14aNOV14aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9BVD0Putative transmembrane protein -1 . . . 240240/293 (81%)e−131Homo sapiens (Human), 293 aa.1 . . . 293240/293 (81%)O9507054TMp - Homo sapiens (Human),1 . . . 240239/293 (81%)e−131293 aa.1 . . . 293239/293 (81%)Q91XB7Similar to putative transmembrane1 . . . 240220/293 (75%)e−120protein, homolog of yeast golgi1 . . . 293230/293 (78%)membrane protein Yif1p (Yip1p-interacting factor) - Mus musculus(Mouse), 293 aa.O35946Hypothetical 14.9 kDa protein -1 . . . 132112/132 (84%)2e−63 Rattus norvegicus (Rat), 137 aa.1 . . . 132123/132 (92%)O00606Putative Rab5-interacting protein -10 . . . 115  99/107 (92%)8e−52 Homo sapiens (Human), 123 aa1 . . . 107101/107 (93%)(fragment).


[0406] PFam analysis indicates that the NOV14a protein contains the domains shown in the Table 14E.
73TABLE 14EDomain Analysis of NOV14aIdentities/NOV14aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueNo Significant Matches Found



Example 15

[0407] The NOV15 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 15A.
74TABLE 15ANOV15 Sequence AnalysisSEQ ID NO: 359508 bpNOV15a,TACTGCCACCATTGGAACTTTTGATGTTGATGGGGAAGAGTTGCAACACCTCCAGGGTCG132086-01DNA SequenceTGTCCTGCTGATGGTGGCTGCGAAGATTTGCCTTGACAATAGCTGAAAAACCACCATCTGCAACACGTGGGAGTAAGACTTCTCCTGCTCTTTGCCAGTGGTCTGACGTGATGAACCACCCTGGCTTGGTGTGCTGTGTCCAGCAAACTACAGGGGTGCCGCTGGTAGTTATGGTGAAACCAGACACTTTTCTTATCCACGAGATTAAGACTCTTCCTGCTAAAGCGAAGATCCAAGACATGGTTGCTATTAGGCACACGGCCTGCAATGAGCAGCAGCGGACAACAATGATTCTGCTGTGTGAGGATGGCAGCCTGCGCATTTACATGGCCAACGTGGAGAACACCTCCTACTGGCTGCAGCCATCCCTGCAGCCCAGCAGTGTCATCAGCATCATGAAGCCTGTTCGAAAGCGCAAAACAGCTACAATCACAACCCGCACGTCTAGCCAGGTGACTTTCCCCATTGACTTTTTTOAACACAACCAGCAGCTGACAGATGTGGAGTTTGGTGGTAACGACCTCCTACAGGTCTATAATGCACAACAGATAAAACACCGGCTGAATTCCACTGGCATGTATGTGGCCAACACCAAGCCCGGAGGCTTCACCATTGAGATTAGTAACAACAATAGCACTATGGTGATGACAGGCATGCGGATCCAGATTGGGACTQAAGCAATAGAACCGGCCCCGTCATATATCGAGATCTTCGGCACAACTATGCAGCTCAACCTGAGTCGCTCACGCTGGTTTGACTTCCCCTTCACCAGAGAAGAAGCCCTGCAGGCTGATAAGAAGCTGAACCTCTTCATTGGGGCCTCGGTGGATCCAGCAGGTGTCGCCATGATAGATGCTGTAAAAATTTATGGCAAGACTAAGGACCAGTTTGGCTGGCCTGATGAGCCCCCAGAAGAATTCCCTTCTGCCTCTGTCAGCAACATCTOCCCTTCAAATCTGAACCAGAGCAACGGCACTGGAGATAGCGACTCAGCTGCCCCCACTACGACCAGTGOAACTGTCCTGGAGAGGCTGGTTGTGAGTTCTTTAGAGCCCTGGAAAGCTGCTTTGCCGTTGGCCCAATCATCGAGAAAGGAGAGAAACAAGAATGCTGCTCAGGAGCTGGCCACTTTGCTGTTGTCCCTGCCAGCACCTGCCAGTGTCCAGCAGCAGTCCAAGAGCCTTCTGGCCAGCCTGCACACCAGCCGCTCGGCCTACCACAGCCACAAGGATCAGGCCTTGCTGAGCAAAGCTGTGCAGTGTCTCAACACATCTAGCAAAGAGGGCAAGGATTTGGACCCTGAGGTGTTCCAGAGGCTAGTGATCACAGCTCGCTCCATTGCCATCATGCGCCCCAACAACCTTGTCCACTTTACGGAGTCAAAGCTGCCCCAGATGGAAACAGACTGTTTTTTTCCTAGATGTGCCTGCTGGAGTCTAGGGATAGTTGGCATATTGATTGGGGCCCCACTTGAAACTCCCTCCCCAGAAGGAATGGATGAAGGGAAGGAACCGCAGAAGCAGTTGGAAGGAGATTGCTGTAGTTTCATCACCCAGCTTGTGAACCACTTCTGGAACTCCATGCATCCAAACCGAAAGAATGCCTTCTTGGCACCTGCCTGCCTTCCAGGACTAACTCATATTGAAGCTACTGTCAATGCTCTGGTGGACATCATCCATGGCTACTGTACCTGTGAGCTGGATTGTATTAACACAGCATCCAAGATCTACATGCAGATGCTCTTGTGTCCTGATCCTGCTGTGAGCTTCTCTTGTAAAGAAGCTCTAATTCGAGTCCTAAGGCCCAGGAACAAACGGAGACATGTGACTTTACCCTCTTCCCCTCGAAGCAACACTCCAATGGGAGACAAGGATGATGATGACGATGATGATGCAGATGACAAAAAGCAGTCATCAGGGATCCCGAATGGTGGTCACATCCGTCAGGAAGCCAGGAAACAGAGTGAGGTGGACCATCGAGATTTTCAGATGGTGTCTCAGTCCATGGTCCTGGAGACAGCTGAAAATGTCAACAATGGCAACCCCTCTCCCCTGGAGGCCCTGCTGGCAGGCGCAGAGGGCTTCCCCCCCATGCTGGACATCCCACCTGATGCAGATGACGAGACCATGGTTGAACTAGCCATTGCCCTGAGCCTGCAGCAGGACCAACAAGCTCCAGCCTCAGACGACGAGGGCAGTACAGCAGCGACAGATGGTTCTACCCTTCGCACCTCTCCTGCTGACCACGGTGGTAGTGTGGGCTCGGAGAGCGGGGGCAGTGCAGTGGACTCAGTGGCTGGCGAGCACAGTGTATCTGGCCGGAGCAGTGCTTATGGCGATGCTACAGCTGAGGGGCATCCGGCTGGACCAGGAAGTGTCAGCTCAAGCACTGGAGCCATCAGCACCACCACTGGGCACCAGGAGGGAGATGGCTCCGAGGGAGAAGGAGAAGGAGAAACTGAAGGAGATGTCCACACTAGCAACAGGCTGCACATGGTCCGTCTAATGCTGTTGGAGAGATTACTGCAGACCCTGCCTCAAATTACGAACGTTGGCGGTGTCCGGGCCATCCCATACATGCAGGTCATTCTAATGCTCACTACAGATCTGGATGGAGAAGATGAGAAAGACAAGQGGGCCCTAGACACCTCCTCTCCCAACTTATTAACTGAGTTGGGTATGGATAAAAAGGATGTCTCCAAGAAGAATGAGCGCAGCGCCTGAAATGAAGTCCATCTGGTAGTAAATGAGACTCCTGAGTGTCTTCATGTCCCCCACCAATCTGGATCCAAGTCTTCCATATGTGAGTCATCTTCCCTCATCTCCAGTGCCACAGCAGCAGCTCTACTGAGCTCTGGGGCTGTGGACTACTGCCTGCACGTGCTCAAATCACTGCTCGAATATTGGAAGAGCCAACAGAATGACGAGGAGCCTGTGGCTACCAGCCAGTTGCTGAAACCACATACTACCTCCTCCCCACCTGACATGAGCCCATTCTTTCTCCCCCAGTATGTGAAGGGTCATGCTGCTGATGTGTTTGAGGCCTATACTCAGCTTCTAACAGAAATGGTACTGAGGCTTCCTTACCATCAAAGATTACTGACACCAATTCTCGAATCCCACCTCCGGAAAGTCTTTGACCACTCGTGGTTTTACTTTCTCTCCGAGTACCTCATGATCCAGCAGACTCCATTTGTGCGCCGTCAAGTCCCCAACTTCTGCTCTTCATCTGTGGATCCAAGAAAAAAGTACCGCCAGCTCCGGGATTTGCACACCCTGGACTCTCACGTGCGTGGGATCAACAAGCTGCTAGAAGAGCAGGGGATATTCCTCCGGGCAAGTGTGGTTACAGCCAGCTCAGGCTCCGCCTTGCAATATGACACACTCATCAGCCTGATGGAGCACCTGAAAGCCTGTGCAGAGATTGCCGCCCAGCGAACCATCAAACTGGCAGAAATTCTGCATCAAGATGACTCCGTCCTGTACTTCCTCCTCCAAGTCAGTTTCCTTGTGGATGAGGGCGTGTCCCCAGTGCTGCTGCAACTGCTCTCCTGTGCTCTGTGCGGCAGCAAGGTGCTCGCTGCACTGCCAGCCTCTTCGGGATCCTCCAGTGCTTCTTCCTCCTCAGCCCCTGTGGCTGCCAGTTCTGGACAAGCCACAACACAGTCCAAGTCTTCCACTAAAAAGAGCAAGAAAGAAGAAAAAGAAAAGGAGAAAGATGGTGAGACCTCTGGCAGCCAGGAGGACCAGCTGTGCACAGCTCTGGTGAACCAGCTGAACAAATTTGCCGATAAGGAAACCCTGATCCAGTTCCTGCGTTGTTTCCTGTTAGAGTCCAATTCTTCCTCGGTGCGCTGGCAGGCCCACTGTCTGACACTGCACATCTACAGAAATTCCAGCAAATCTCAACAGGAGCTCCTGCTAGATCTGATGTGGTCCATCTGGCCAGAACTCCCAGCCTATGGTCGTAAGGCTGCCCAGTTTGTGGACCTACTAGGATATTTCTCCCTGAACTCCACAACAGAGAAGAAGTTGAAGGAAGTATTCACAGAAAAGCTAATGGAGATTCTGCGGACTCAAAACCATATTCTTACCAACCACCCCAACTCGAACATTTATAACACTTTGTCTGGCTTAGTGGAGTTTGATGGCTATTACCTGGAGAGCGATCCCTGCCTGCTGTGTAATAACCCGGAAGTACCGTTCTGTTATATCAAGCTGTCTTCCATTAAAGTGGACACGCGGTACACCACCACCCAGCAGGTTGTGAAGCTCATTGGCAGTCACACCATCAGCAAAGTGACAGTGAAATCGGGGATCTGAAACGGACCAIkGATGGTGCGGACCATCAACCTGTATTATAACACCGPACCGTGCAGGCCATCGTGGAGTTGAAACAAAAGCCAGCTCCCTGCCACAAAGCCAAGAAGGTTCAGCTGACCCCTGGACACACAGAGGTGAAGATTGACCTGCCGTTGCCCATTGTGGCCTCCAATCTGATGATTGAGTTTGCAGACTTCTATGAAAACTACCAGGCCTCCACAOAGACCCTGCAGTGCCCTCGCTGTAGTOCCTCGGTCCCTGCCAACCCAGGAGTCTGTGGCAACTGTGGAGAGAATGTGTACCAGTGTCACAAATGCAGATCCATCAACTACGATGAAAAGGATCCCTTCCTCTGCAATGCCTGTGGCTTCTGTAAATATGCCCGCTTCGACTTCATGCTCTATCACCAGCCTTGCTGTGCAGTGGATCCCATTGAGAATGAAGAGACCGGAAGACGCTGTATCCAACATCAATACACTTTTGGACAAAAAGCTGATCGAGTGTATCATCAGCTGATGGGACACCGGCCACAGCTGGAGAACCTGCTCTGCAAAGTGAATGAGGCAGCTCCAGAAAAGCCACAGGATGACTCAGGAACAGCAGGGGGCATCAGCTCCACTTCTGCCAGTGTGAATCGTTACATCCTGCAGTTGGCTCAGGAGTATTGTGGAGACTCCAAGAACTCTTTTGATGAACTCTCCAAATCATCCAGAAAGTCATTTGCTTCGCGCAAAGAGTTGTTGGAATATGACCTACAGCAGAGGGAAGCAGCACTAAAATCATCCCGGACCTCCGTGCAGCCCACATTCACTGCCAGCCAGTACCGTGCCTTATCCGTCCTGGGCTGTGGCCACACATCCTCCACCAAGTGCTATGGCTGCGCCTCGGCTGTCACAGAACATTGTATCACACTACTTCGGGCCCTGGCCACCAACCCAGCCTTGAGGCACATCCTTGTCTCCCAGGGCCTTATCCGGGAGCTCTTTGATTATAATCTTCGCCGAGGGGCTGCGGCCATGCGGGAGGAGGTCCGCCAGCTCATGTGCCTCCTAACTCGAGACAAACCCAGAGCCACCCAACAGATGAATGACCTGATTATTCGCAAGGTCTCCACACCCCTGAAGGGCCACTGGCCCAACCCCGATCTGGCAGTAGCCTGCAGTATGAAAATGCTGCTGCTGACGGATTCTATCTCCAAGGAGGACAGCTGCTGGGAGCTCCGGTTACGCTGTGCTCTCAGCCTTTTCCTCATGGCTGTGAACATTAAGACTCCTGTGGTGGTTGAAAACATTACCCTCATGTGCCTGAGGATCTTGCAGAAGCTGATAAAACCACCTGCTCCCACTAGCAAGAAGAACAAGGATGTCCCCGTTGAGGCCCTCACCACGGTGAAOCCATACTGCAATGAGATCCATGCCCAGGCTCAACTGTGGCTCPIAAGAGAGACCCCAGGCATCCTATCATGCCTGGAAGAATGTCTTCCTATCAGAGGGATAGATGGCAATCGGAAAAGCCCCCAGCAATCAGAGCTCCGCCATCTCTATTTGACTGAGAAGTATGTGTGGAGGTGGAAACAGTTCCTGAGTCGTCGGGGGAAGAGGACCTCCCCCTTGGATCTCACTGGGGCATAACAACTGGCTGCGACAAAACTGCTTTTCACTCCAGCAACGCAGGCCGCACGGCAGGCAGCCTGTACCATTGTGGAAGCTCTAGCCACCATTCCCAGCCGCAAGCAGCAGGTCCTGGACCTGCTTACCAGTTACCTGGATGAGCTGAGCATAGCTGGGGAGTGTGCACCTGAGTACCTGGCTCTCTACCAGAAGCTCATCACTTCTGCGCACTGGAAAGTCTACTTGGCAGCTCGGGGAGTCCTACCCTATGTGGGCAACCTCATCACCAAGGAAATAGCTCGTCTGCTGGCCCTGGAGGAGGCTACCCTGAGTACCGATCTGCAGCAGCGTTATGCCCTTAAAGTCTCACAGGCCTTCTCTCCTCCTATTGTTGAGGTGGAATCCATCAAAAAGACATTTTAAAGTCGCTTGGTGGGTACTGTGCTGAATGGATACCTGTGCTTGCGGAAGCTGGTGGTGCAGAGGACCAAGCTGATCGATGAGACGCAGGACATGCTGCTGGACATGCTGGAGGACATGACCACAGGTACAGAAAAATCAGCCAAGGCCTTCATGGCTGTGTGCATTGAGACAGCCAAGCGCTACAAATCTGGATGACTCCGGACCCCGGTGTTCATCTTCGAGAGGCTCTGCAGCATCATTTATCCTGAGGAGAATGAAGTCACTGAGTTCTTTGTGACCCTGGAGAAGGATCCCCAACAAGAAGACTTCTTACAGGGCAGGATGCCTGGGAACCCGTATAGCAGCAATGAGCCAGGCATCGGGCCGCTGATGAGGGATATAAAGAACAAGATTTGCCAGGACTGTGACTTAGTGGCCCTCCTGGAAGATGACAGTGGCATGGAGCTTCTAGTGAZkCAATAAAATCATTAGTTTGGACCTTCCTGTGCTGAAGTTTACAAGAAAGTCTGGTGTACCACGAATGAGGGAGAGCCCATGAGGATTGTTTATCGTATGCGGGGGCTGCTGGGCGATGCCACAGAGGAGTTCATTGAGTCCCTGGACTCTACTACAGATGAAGAAGAAGATGAAGAAGAAGTGTATAAAAATGGCTGGTGTGATGCCCAGTGTGGGGGCCTGGAATGCATGCTTAACAGACTCGCAGGGATCAGAGATTTCAAGCAGGGACGCCACCTTCTAACAGTGCTACTGAAATTGTTCAGTTACTGCGTGAAGGTGAAAGTCAACCGGCAGCAACTGGTCAAACTGGAAATGAACACCTTGAACGTCATGCTGGGGACCCTAACCTGGCCCTTGTAGCTGAACAAGAAAGCAAGGACAGTGGGGGTGCACCATGTGGCTGAGCAGGTGCTTAGCATCATGGAGATCATTCTAGATGAGTCCAATGCTGAGCCCCTGAGTGAGGACAAGGGCAACCTCCTCCTGACAGGTGACAAGGATCAACTGGTGATGCTCTTGGACCAGATCAACAGCACCTTTGTTCGCTCCAACCCCAGTGTGCTCCAGGGCCTGCTTCGCATCATCCCGTACCTTTCCTTTGGAGAGGTGGAGAAAATGCAGATCTTGGTGGAGCGATTCAAACCATACTGCAACTTTGATAAATATGATGAAGATCACAGTGGTGATGATAAAGTCTTCCTGGACTGCTTCTGTAAATAGCTGCTGGCATCAAGAACAACAAGCAATGGGCACCAGCTGAAGGATCTGATTCTCCAGAAGGGGATCACCCAGATGCAACTTGACTACATGAAAAAGCACATCCCTAGCGCCAAGAATTTGGATGCCGACATCTGGAAAAAGTTTTTGTCTCGCCCAGCCTTGCCATTTATCCTAAGGCTGCTTCGGGGCCTGGCCATCCAGCACCCTGGCACCCAGGTTCTGATTGGACTGATTCCATCCCGAACCTGCATAAAACTGGACCAGGTGTCCAGTGATGAGGGCATTGGGACCTTGGCAGAGAACCTGCTGGAAACCCTGCGGCAACACCCTGACGTAAACAAGAAGATTGACGCAGCCCGCAGGGAGACCCGGGCAGAGAAGAAGCGCATGGCCATGGCAATGAGGCAGAAGGCCCTGGGCACCCTGGGCATGACGACAATGAAAAGCGCCACGTCGTGACCAAGACAGCACTCCTGAAAGCAGATGGAAGAGCTCATCGAGGAGCCTGGCCTCACGTGCTGCATCTGCAGGGAGGGATACAAGTTCCAGCCCACAAAGGTCCTGGGCATTTATACCTTCACGAAGCGGGTAGCCTTCGAGGAGATGGAGAATAAGCCCCGGAAACAGCAGGGCTACAGCACCGTGTCCCACTTCAACATTGTGCACTACGACTGCCATCTGGCTGCCGTCAGGTTGGCTCGAGGCCGGGAAGAGTGGGAGAGTGCCGCCCTGCACAATGCCACACCTTAGTGCAACGGGCTCCTTCCGGTCTGGGGACCTCATGTCCCTGAATCAGCTTTTGCCACTTGCTTGGCAAGACACAACACTTACCTCCAAAGCAATGTACAGGCCAGCGGGAGCCCACGTATCAGCTCACATCCATGACATCAACTGCTCTTCCTGCGCTTCGCCATGGAGCAGTCGTTCAGCGCAGACACTGGCGGGGGCGGCCGGGAGAGCAACATCCACCTGATCCCGTACATCATTCACACTGTGCTTTACGTCCTGAACACACCCGAGCAACTTCCCGAGAAGAGAAGAACCTCCAAGGCTTTCTGGAAACAGCCCAAGGAGAAGTGGGTGGAGAGTGCCTTTGAAGTGGACGGGCCCTACTATTTCACAGTCTTGGCCCTTCACATCCTGCCCCCTGAGCAGTGGAGAGCCACACGTGTGGAAATCTTGCGCAGCCTGTTGGTGACCTCGCAGGCTCGGGCAGTGGCTCCAGGTGGAGCCACCAGGCTGACAGATAAGGCAGTGAAGGACTATTCCGCTTACCGTTCTTCCCTTCTCTTTTGGGCCCTCGTCGATCTCATTTACAACATGTTTAACAAGGTGCCTACCAGTAACACAGAGGGAGGCTGGTCCTGCTCTCTCGCTGAGTACATCCGCCACAACGACATGCCCATCTACGAAGCTGCCGACAAAGCCCTGAAAACCTTCCAGGAGGAGTTCATGCCAGTGGAGACCTTCTCAGAGTTCCTCGATGTGGCCGGTCTTTTATCAGAAATCACCGATCCAGAGAGCTTCCTGAAGGACCTGTTGAACTCAGTCCCCTGACCACCACACAGCAGCTGCGGCGGCGAAGACGAAGCTGGCTTGCCTTCCACCCTCTGTTCTCCCTCCTTGTGCATTAAGTTCCCTCCGCGGGATGCTGCATTGTTACCCCGCCCTCCCCTCTCTCATTTTTCTTGGTGTGGCTTGGGGTTTTTAGGCTTCCTGTTTTATCTCGTGTGTGTGGTGCACCAGCTATGAGGTTGTCTGTAACCCAAGCCATCAAAGGGCCTGTACATACCTAGGAGCCATGAGTTGTCCCGGCCAGCTTCATACTTGAGTGTGCACATCTTGAGAAATAAACAAGTGACTTAACACACATTGORF Start: ATG at 170ORF Stop: TGA at 9188SEQ ID NO: 363006 aaMW at 334825.2 kDNOV15a,MNHPGLVCCVQQTTGVPLVVMVKPDTFLIHEIKTLPAKAKIQDMVAIRHTACNEQQRTCG132086-01Protein SequenceTMILLCEDGSLRIYMANVENTSYWLQPSLQPSSVISIMKPVRKRKTATITTRTSSQVTFPIDFFEHNQQLTDVEFGGNDLLQVYNAQQIKHRLNSTGMYVANTKPGGFTIEISNNNSTMVMTGMRIQIGTQAIERAPSYTIEIFGRTMQLNLSRSRWFDFPFTREALQADKKLNLFIGASVDPAGVAMIDAVKIYGKTKEQFGWPDEPPEEFPSASVSNICPSNLNQSNGTGDSDSAAPTTTSGTVLERLVVSSLEALESCFAVGPIIEKERNKNAAQELATLLLSLPAPASVQQQSKSLLASLHTSRSAYHSHKDQALLSKAVQCLNTSSKEGKDLDPEVFQRLVITARSIAIMRPNNLVHFTESKLPQMETDCFFPRCACWSLGIVGILIGAPLETPSPEGMDEGKEPQKQLEGDCCSFITQLVNHFWKLHASKPKNAFLAPACLPGLTHIEATVNALVDIIHGYCTCELDCINTASKIYMQMLLCPDPAVSFSCKQALIRVLRPRNKRRHVTLPSSPRSNTPMGDKDDDDDDDADEKMQSSGIPNGGHIRQESQEQSEVDHGDFEMVSESMVLETAENVNNGNPSPLEALLAGAEGFPPMLDIPPDADDETMVELAIALSLQQDQQAPASDDEGSTAATDGSTLRTSPADHGGSVGSESGGSAVDSVAGEHSVSGRSSAYGDATAEGHPAGRGSVSSSTGAISTTTGHQEGDGSEGEGEGETEGDVHTSNRLHMVRLMLLERLLQTLPQLRNVGGVRAIPYMQVILMLTTDLDGEDEKDKGALDNLLSQLIAELGMDKKDVSKKNERSALNEVHLVVMRLLSVFMSRTKSGSKSSICESSSLISSATAAALLSSGAVDYCLHVLKSLLEYWKSQQNDEEPVATSQLLKPHTTSSPPDMSPFFLRQYVKGHAADVFEAYTQLLTEMVLRLPYQIKKITDTNSRIPPPVFDHSWFYFLSEYLMIQQTPFVRRQVRKLLLFICGSKEKYRQLRDLHTLDSHVRGIKKLLEEQGIFLRASVATASSGSALQYDTLISLMEHLKACAEIAAQRTINWQKFCIKDDSVLYFLLQVSFLVDEGVSPVLLQLLSCALCOSKVLAALAASSGSSSASSSSAPVAASSGQATTQSKSSTKKSKKEEKEKEKDGETSGSQEDQLCTALVNQLNKFADKETLIQFLRCFLLESNSSSVRWQAHCLTLHIYRNSSKSQQELLLDLMWSIWPELPAYGRKAAQFVDLLGYFSLKTPQTEKKLKEYSQKAVEILRTQNHILTNHPNSNIYNTLSGLVEFDGYYLESDPCLVCNNPEVPFCYIKLSSIKVDTRYTTTQQVVKLIGSHTI SKVTVKIGDLKRTKMVRTINLYYNNRTVQAIVELKNKPARWHKAKVQLTPGQTEVKIDLPLPIVASNLMIEFADFYENYQASTETLQCPRCSASVPANPGVCGNCGENVYQCHKCRSINYDEKDPFLCNACGFCKYARFDFMLYAKPCCAVDPIENEEDRKKAVSNINTLLDKADRVYHQLMGHRPQLENLLCKVNEAAPEKPQDDSGTAGGISSTSASVNRYILQLAQEYCGDCKNSFDELSKIIQKVFASRKELLEYDLQQREAATKSSRTSVQPTFTASQYRALSVLGCGHTSSTKCYGCASAVTEHCITLLRALATNPALRHILVSQCLIRELFDYNLRRGAAAMREEVRQLMCLLTRDNPEATQQMNDLIIGKVSTALKGHWANPDLASSLQYEMLLLTDSISKEDSCWELRLRCALSLFLMAVNIKTPVVVENITLMCLRILQKLIKPPAPTSKKNKDVPVEALTTVKPYCNEIHAQAQLWLKRDPKASYDAWKKCLPIRGIDGNGKAPSKSELRHLYLTEKYVWRWKQFLSRRGKRTSPLDLKLGHNNWLRQVLFTPATQAARQAACTIVEALATIPSRKQQVLDLLTSYLDELSIAGECAAEYLALYQKLITSAHWKVYLAARGVLPYVGNLITKEIARLLALEEATLSTDLQQGYALKSLTGLLSSFVEVESIKRHFKSRLVGTVLNGYLCLRKLVVQRTKLIDETQDMLLEMLEDMTTGTESETKAFMAVCIETAKRYNLDDYRTPVFIFERLCSIIYPEENEVTEFFVTLEKDPQQEDFLQGRMPGNPYSSNEPCICPLMRDIKNKICQDCDLVALLEDDSGMELLVNNKIISLDLPVAEVYKKVWCTTNEGEPMRIVYRMRGLLCDATEEFIESLDSTTDEDEEEVYKAVIAGVMAQCGGLECMLNRLAGIRDFKQGRHLLTVLLKLFSYCVKVKVNRQQLVKLEMNTLNTMLGTLNLALVAEQESKDSCGAAVAEQVLSIMEIILDESNAEPLSEDKGNLLLTGDKDQLVMLLDQINSTFVRSNPSVLQGLLRIIPYLSFGEVEKMQILVERFKPYCNFDKYDEDHSGDDKVFLDCFCKLAAGIKNNSNGHQLKDLILQKGITQNLDYMKKHIPSAKNLDADIWKKFLSRPALPFIYLRLLRGLATQHPGTQVLIGTDSIPNLHKLEQVSSDEGIGTLAENLLEALREHPDVNKKIDAARRETRAEKKRMAMRQKALGTLGMTTNEKGQVATKTALLKQMEELIEEPGLTCCICREGYAAKFQPTKVLGIYTFTKRVALEEMENKPRKQQGYSTVSHFNIVHYDCHLAAVRLARGREEWESAALQNANTKCNGLLPVWGPHVPESAFATCLARHNTYLQECTGQREPTYQLNIHDIQPKEKWVESAFEVDGPYYFTVLALHILPPEQWRATRVEILRRLLVTSQARAVPGGATARLTDKAVKDYSAYRSSLLFWALVDLIYNMFKKVPTSNTEGGWSCSLAEYIRHNDMPIYIEAADKALKTFQEEFMPVETFSEFLDVAGLLSEITDPESFLKDLLNSVP


[0408] Further analysis of the NOV15a protein yielded the following properties shown in Table 15B.
75TABLE 15BProtein Sequence Properties NOV15aPSort0.6850 probability located in endoplasmic reticulumanalysis:(membrane); 0.6400 probability located in plasma membrane;0.4600 probability located in Golgi body; 0.1800probability located in nucleusSignalPNo Known Signal Sequence Indicatedanalysis:


[0409] A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 15C.
76TABLE 15CGeneseq Results for NOV15aNOV15aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAY53675Mechanical stress induced protein1 . . . 29382834/2974 (95%)0.0274 amino acid sequence - Rattus318 . . . 3262 2881/2974 (96%)sp, 3262 aa. [WO9960164-A1, 25NOV. 1999]AAU28088Novel human secretory protein,584 . . . 3006 2423/2458 (98%)0.0Seq ID No 257 - Homo sapiens,1 . . . 24582423/2458 (98%)2458 aa. [WO200166689-A2, 13SEP. 2001]AAM39071Human polypeptide SEQ ID NO584 . . . 3006 2421/2458 (98%)0.02216 - Homo sapiens, 2458 aa.1 . . . 24582423/2458 (98%)[WO200153312-A1, 26 JUL.2001]AAY53677Sequence731 . . . 3006 2276/2278 (99%)0.0gi/3413886/dbj/BAA323071 from1 . . . 22782276/2278 (99%)an alignment with protein 274 -Unidentified, 2278 aa.[WO9960164-A1, 25 NOV. 1999]AAM40857Human polypeptide SEQ ID NO 5788 -731 . . . 3006 2246/2281 (98%)0.0Homo sapiens, 2281 aa.1 . . . 22812253/2281 (98%)[WO200153312-A1, 26 JUL.2001]


[0410] In a BLAST search of public sequence datbases, the NOV15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15D.
77TABLE 15DPublic BLASTP Results for NOV15aNOV15aIdentities/ProteinProtein/Residues/Similarities forAccessionOrganism/Matchthe MatchedExpectNumberLengthResiduesPortionValueQ8TDN5Retinoblastoma-associated1 . . . 30062974/3041 (97%)0.0factor 600 - Homo sapiens2171 . . . 5183  2975/3041 (97%)(Human), 5183 aa.O75050KIAA0462 protein - Homo731 . . . 3006  2276/2276 (100%)0.0sapiens (Human), 2276 aa1 . . . 2276 2276/2276 (100%)(fragment).Q9XYD2PUSHOVER - Drosophila3 . . . 30061330/3157 (42%)0.0melanogaster (Fruit fly), 53222303 . . . 5316  1891/3157 (59%)aa.Q9VLT5CG14472 protein - Drosophila3 . . . 30061329/3157 (42%)0.0melanogaster (Fruit fly), 53222303 . . . 5316  1892/3157 (59%)aa.O96958CALO protein - Drosophila3 . . . 30061327/3155 (42%)0.0melanogaster (Fruit fly), 41161097 . . . 4110  1890/3155 (59%)aa (fragment).


[0411] PFam analysis indicates that the NOV15a protein contains the domains shown in the Table 15E.
78TABLE 15EDomain Analysis of NOV15aIdentities/NOV15aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueTub1417 . . . 1437 8/21 (38%)0.1317/21 (81%)



Example 16

[0412] The NOV16 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 16A.
79TABLE 16ANOV16 Sequence AnalysisSEQ ID NO: 372178 bpNOV16a,TTGACTGTATCGCCGGAATTCATGGCGGGTCTGACGGCGGCGGCCCCGCGGCCCGGAGCG132297-01DNA SequenceTCCTCCTGCTCCTGCTGTCCATCCTCCACCCCTCTCGGCCTGGAGGGGTCCCTGGGGCCATTCCTGGTGGAGTTCCTGGAGGAGTCTTTTATCCAGGGGCTGGTCTCGGAGCCCTTGGAGGAGGAGCGCTGGGGCCTGGAGGCAAACCTCTTAAGCCAGTTCCCGGAGGGCTTGCGGGTGCTGGCCTTGGGGCAGGGCTCGGCGCCTTCCCCGCAGTTACCTTTCCGGGGGCTCTGGTGCCTGGTGGAGTGGCTGACGCTGCTGCAGCCTATAAAGCTGCTAAGGCTGGCGCTGGGCTTGGTGGTGTCCCAGGAGTTGGTGGCTTAGGAGTGTCTGCAGCCCCTTCTGTGCCAGGTGCGGTGGTTCCTCAGCCTGGAGCCGGAGTGAAGCCCGGGAAAGTGCCGGGTGTGGGGCTGCCAGGTGTATACCCAGGTGGCGTGCTCCCAGGAGCTCGGTTCCCCGGTGTGGGGGTGCTCCCTGGAGTTCCCACTGGAGCAGGAGTTAAGCCCAAGGCTCCAGGTGTAGGTGGAGCTTTTGCTGGAATCCCAGGAGTTGGACCCTTTGGGGGACCGCAACCTGGAGTCCCACTCGGGTATCCCATCAAGGCCCCCAAGCTGCCTGGTGGCTATGGACTGCCCTACACCACAGGGAAACTGCCCTATGGCTATGGGCCCGGAGGAGTGGCTGGTGCAGCGGGCAAGGCTGGTTACCCAACAGGGACAGGGGTTGCCCCCCAGGCAGCAGCAGCACCGGCAGCTAAAGCAGCAGCAAAGTTCGGTGCTGGAGCAGCCCGAGTCCTCCCTGGTCTTGGAGGGGCTGGTGTTCCTGGCGTGCCTGGGGCAATTCCTGGAATTGGACGCATCGCAGCCGTTGGGACTCCAGCTGCAGCTGCAGCTGCAGCAGCGGCCGCTAAGGCAGCCAAGTATGGAGCTGCTGCAGGCTTAGTGCCTGGTGGGCCAGGCTTTGGCCCGGGAGTAGTTGGTGTCCCAGGAGCTGGCGTTCCAGGTGTTGGTGTCCCAGGAGCTGGGATTCCAGTTGTCCCAGGTGCTGGGATCCCAGGTGCTGCGGTTCCAGGGGTTGTGTCACCAGAAGCAGCTGCTAAGGCAGCTGCAAAGGCAGCCAAATACGGGGCCAGGCCCGGAGTCGGAGTTGGAGGCATTCCTACTTACGGGGTTGGAGCTGGGGGCTTTCCCGGCTTTGGTGTCGGAGTCGGAGGTATCCCTGGAGTCGCAGGTGTCCCTAGTGTCGGAGGTGTTCCCGGAGTCGGAGGTGTCCCGGGAGTTGGCATTTCCCCCGAAGCTCAGGCAGCAGCTGCCGCCAAGGCTGCCAAGTACGGAGTGGGGACCCCAGCAGCTGCAGCTGCTAAAGCAGCCGCCAAAGCCGCCCAGTTTGGGTTAGTTCCTGGTGTCGGCGTGGCTCCTGGAGTTGGCGTGGCTCCTGGTGTCGGTGTGGCTCCTGGAGTTGGCTTGGCTCCTGGAGTTGGCGTGGCTCCTGGAGTTGGTGTGGCTCCTGGCGTTGGCGTGGCTCCCGGCATTGGCCCTGGTGGAGTTGCAGCTGCAGCAAAATCCGCTGCCAAGGTGGCTGCCAAAGCCCAGCTCCGAGCTGCAGCTGGGCTTGGTGCTGGCATCCCTGGACTTGGAGTTGGTGTCGGCGTCCCTGGACTTGGAGTTGGTGCTGGTGTTCCTGGACTTGGAGTTGGTGCTGGTGTTCCTGCCTTCGGGGCAGTACCTGGAGCCCTGGCTGCCCCTAGAGCAGCCAAATATGGAGCAGCAGTGCCTGGGGTCCTTGGAGGGCTCGGGGCTCTCGGTCCACTAGGCATCCCAGGCGGTGTGGTGGGAGCCGGACCCGCCGCCGCCGCTGCCGCAGCCAAAGCTGCTGCCAAAGCCGCCCAGTTTGGCCTAGTGGGAGCCGCTGGGCTCGGAGGACTCGCAGTCGGAGGGCTTGGAGTTCCAGGTGTTGGGGGCCTTGGAGGTATACCTCCAGCTGCAGCCGCTAAAGCAGCTAAATACGGAGTGGCAGCAAGACCTGGCTTCGGATTGTCTCCCATTTTCCCAGGTGGGGCCTGCCTGGGCAAAGCTTGTGGCCGGAAGAGAAAATGACTGCAGCCAAGCTAATTCCGGORF Start: ATG at 22ORF Stop: TGA at 2155SEQ ID NO: 38711 bpMW at 61662.7 kDNOV16a,MAGLTAAAPRPGVLLLLLSILHPSRPGGVPGAIPGGVPGGVFYPGAGLGALGGGALGPCG132297-01Protein SequenceGCKPLKPVPGGLAGAGLGAGLGAFPAVTFPGALVPGGVADAAAYKAAAKAGAGLGCVPGVGGLGVSAAPSVPGAVVPQPGAGVKPGKVPCVGLPGVYPCCVLPGARFRGVGVLPGVPTGAGVKPKAPGVGCGFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKLPYGYGPGGVAGAAGKAGYPTGTGVCPQAAAAAAAKAAAKFGAGAAGVLPGVGGAGVPGVPGAIPGIGGIAGVGTAAAAAAAAAAKAAKYGAAAGLVPGGPCFGPGVVGVPGAGVPGAVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKMAKAAKYGARRGVGVGCIPTYGVGAAGGFPGFGVGVGGIPGVAGVPSVGGVPGVCGVPGVGISPEAQAAAAAKAAKYGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVGVAPGVGVAPGVGVAPGIGPGGVkAAAKSAAKVAAKAQLRAAAGLGAGIPGLGVGVGVPGLGVCAGVPGLGVGAGVPGFGAVPGALAAARAAKYGAAVPGVLGGLCALGGVGIPGGVVGAGPAAAAAYAAAAAKAAQFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPAAAAKAAKYGVAARPGFGLSPIFPGGACLGKACGRKRKSEQ ID NO: 392100 bpNOV16b,TTGACTGTATCGCCGGAATTCATGGCGGGTCTGACGGCGGCGGCCCCGCGGCCCGGAGCG132297-02DNA SequenceTCCTCCTGCTCCTGCTGTCCATCCTCCACCCCTCTCGGCCTGGAGGGGTCCCTCGGGCCATTCCTGCTGGAGTTCCTGGAGGAGTCTTTTATCCAGGCGCTGGTCTCGGAGCCCTTGGAGCAGGAGCGCTGGGGCCTGGAGGCAAACCTCTTAAGCCAGTTCCCGGAGGGCTTGCGGGTGCTGGCCTTCGGGCAGGGCTCGGCGCCTTCCCCGCAGTTACCTTTCCCGGGGCTCTGGTGCCTGGTGGAGTCCCTGACGCTGCTGCAGCCTATAAAGCTGCTAAGGCTGGCGCTCGGCTTGGTGGTGTCCCAGGAGTTGGTGGCTTAGGAGTGTCTGCAGGTGCCGTGGTTCCTCAGCCTGGAGCCGGAGTGAAGCCTGGGAAAGTGCCGGGTGTACGTGGAGCTTTTGCTGCAATCCCAGGAGTTGGACCCTTTGGGGGACCGCAACCTGGAGTCCCACTGGGGTATCCCATCAAGGCCCCCAAGCTGCCTGGTGGCTATGGACTGCCCTACACCACAGGGAAACTGCCCTATGGCTATGGGCCCGGAGGAGTGGCTGGTGCAGCGGGCAAGGCTGGTTACCCAACAGGGACAGGGGTTGGCCCCCAGGCAGCAGCAGCAGCGGCAGCTAAGCACCAAGCAAAGTTCGGTGCTGGAGCAGCCGGAGTCCTCCCTGGTGTTGGAGGGGCTGGTGTTCCTGGCGTGCCTGGGGCAATTCCTGGAATTGGAGGCATCGCAGGCGTTGGGACTCCAGCTGCAGCTGCAGCTGCAGCAGCAGCCGCTAAGGCAGCCAAGTATCGAGCTGCTGCAGGCTTAGTGCCTGGTGGCCCAGGCTTTGGCCCGGGAGTAGTTGGTGTCCCAGGAGCTGGCGTTCCAGGTGTTGGTGTCCCAGGAGCTGGGATTCCAGTTGTCCCAGGTGCTGGGATCCCAGGTGCTGCGGTTCCAGGGGTTGTGTCACCAGAAGCAGCTGCTAAGGCAGCTGCAAAGGCAGCCAAATACGGGGCCAGGCCCGCAGTCGGAGTTGGAGGCATTCCTACTTACGGGGTTGGAGCTGGGGGCTTTCCCGGCTTTGGTGTCGGAGTCGGAGGTATCCCTGGAGTCGCAGGTGTCCCTAGTGTCGGAGGTGTTCCCGGAGTCGGAGGTGTCCCGGGAGTTGGCATTTCCCCCGAAGCTCAGGCAGCAGCTGCCGCCAAGGCTGCCAAGTACGGAGTGGGGACCCCAGCAGCTGCAGCTGCTAAAGCAGCCGCCAAAGCCGCCCAGTTTGCTCTTCTCAATCTTCCAGGGTTAGTTCCTGGTGTCGGCGTGGCTCCTGGAGTTGGCGTGGCTCCTGGTGTCGGTGTGGCTCCTGGAGTTGGCTTGGCTCCTGGAGTTGGCGTGGCTCCTGGAGTTGGTGTGGCTCCTGGCGTTGGCGTGGCTCCCGGCATTGGCCCTGGTGGAGTTGCAGCTGCAGCAAAATCCGCTGCCAAGGTGGCTGCCAAAGCCCAGCTCCGAGCTGCAGCTGGGCTTGGTGCTGGCATCCCTGGACTTGGAGTTCGTGTCGGCGTCCCTGGACTTGGAGTTGGTGCTGGTGTTCCTGGACTTGGACTTGGTGCTGGTGTTCCTGGCTTCGGGGCAGTACCTGGAGCCCTGGCTGCCGCTAAAGCAGCCAAATATGGAGCAGCAGTGCCTGGGGTCCTTGGAGGGCTCGGGGCTCTCGGTGGAGTAGGCATCCCAGGCGGTGTGGTGGGAGCCGGACCCGCCGCCGCCGCTGCCGCAGCCAAAGCTGCTGCCAAAGCCGCCCAGTTTGCCCTAGTGGGAGCCGCTGGGCTCGGAGGACTCGGAGTCCGAGGGCTTGGAGTTCCAGGTGTTGGGGGCCTTGGAGGTATACCTCCAGCTGCAGCCGCTAAAGCAGCTAAATACGGTGCTGCTGGCCTTGGAGGTGTCCTAGGGGGTGCCGGGCAGTTCCCACTTGGAGGAGTGGCAGCAGAACCTGGCTTCGGATTGTCTCCCATTTTCCCAGGTGGGGCCTGCCTGGGGAAAGCTTGTGGCCGGAAGAGAAAATGAORF Start: ATG at 22ORF Stop: TGA at 2098SEQ ID NO: 40692 aaMW at 59784.4 kDNOV16b,MAGLTAAAPRPGVLLLLLSILHPSRPGGVPGAIPGGVPGGVFYPGAGLGALGGGALGPCG132297-02Protein SequenceGGKPLKPVPGGLAGAGLGAGLGAFPAVTFPGALVPGGVADAAAKAAAAYAGAGLGGVPGVGGLGVSAGAVVPQPGAGVKPGKVPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLRYTTGKLPYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPGVGGAGVPGVPGAIPGIGGIAGVGTRAAAAAAAAAAAKAAKYGAAAGLVRGGPFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKAAAKAAKYGARPGVGVGGIPTYGVGAGGFPGFCVGVGGIPGVAGVPSVGGVPGVGGVPGVGISPEAQAAAAAKAAKYGVGTPAAAAAKAAAKAAQFALLNLAGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRAAAGLCAGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAvPGALAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVGAGPAAAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPTFPGGACLGKACGRKRK


[0413] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 16B
80TABLE 16BComparison of NOVl6a against NOV16b.Identities/SimilaritiesProteinNOV16a Residues/for theSequenceMatch ResiduesMatched RegionNOV16b686 . . . 71126/26 (100%)667 . . . 69226/26 (100%)


[0414] Further analysis of the NOV16a protein yielded the following properties shown in Table 16C.
81TABLE 16CProtein Sequence Properties NOV16aPSort0.4323 probability located in outside; 0.1376 probabilityanalysis:located in microbody (peroxisome); 0.1000 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 27 and 28analysis:


[0415] A search of the NOV16a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 16D.
82TABLE 16DGeneseq Results for NOV16aNOV16aIdentities/Residues/Similarities forGeneseqProtcin/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB08630Amino acid sequence of a human1 . . . 711704/717 (98%)0.0elastin polypeptide - Homo sapiens,1 . . . 712705/717 (98%)712 aa. [WO200050068-A2, 31AUG. 2000]AAB08631Fusion protein comprising human2 . . . 711703/716 (98%)0.0elastin and c-myc - Synthetic, 73011 . . . 721 704/716 (98%)aa. [WO200050068-A2, 31 AUG.2000]AAY69069Amino acid sequence of a human27 . . . 711 679/703 (96%)0.0reduced tropoelastin derivative -1 . . . 698680/703 (96%)Synthetic, 698 aa. [WO200004043-A1, 27 JAN. 2000]AAY01302Human tropoelastin variant27 . . . 711 679/703 (96%)0.0SHELdelta26A - Homo sapiens,1 . . . 698680/703 (96%)698 aa. [WO9903886-A1, 28 JAN.1999]AAW46315Human elastin containing non-27 . . . 711 679/735 (92%)0.0natural polypeptide MFU-11 . . . 730680/735 (92%)sequence - Homo sapiens, 730 aa.[WO9805685-A2, 12 FEB. 1998]


[0416] In a BLAST search of public sequence datbases, the NOV16a protein was found to have homology to the proteins shown in the BLASTP data in Table 16E.
83TABLE 16EPublic BLASTP Results for NOV16aIdentities/NOV16aSimilarities forProteinResidues/theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP15502Elastin precursor (Tropoelastin) -1 . . . 711705/735 (95%)0.0Homo sapiens (Human), 730 aa.1 . . . 730706/735 (95%)Q14234Elastin - Homo sapiens (Human),1 . . . 711705/762 (92%)0.0757 aa.1 . . . 757706/762 (92%)Q14235Elastin - Homo sapiens (Human),1 . . . 711686/711 (96%)0.0687 aa.1 . . . 687687/711 (96%)EAHUelastin precursor, long splice1 . . . 711705/797 (88%)0.0form - human, 792 aa.1 . . . 792706/797 (88%)O15337Elastin - Homo sapiens (Human),29 . . . 600 565/607 (93%)0.0602 aa (fragment).1 . . . 602566/607 (93%)


[0417] PFam analysis indicates that the NOV16a protein contains the domains shown in the Table 16F.
84TABLE 16FDomain Analysis of NOV16aIdentities/NOV16aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueNo Significant Matches Found



Example 17

[0418] The NOV17 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 17A.
85TABLE 17ANOV17 Sequence AnalysisSEQ ID NO: 411072 bpNOV17a,ATCCGAGTCACCTGCAGGACCGAAATGGAGGAGAGAGCACAGCACTGCCTGTCCAGATCG132343-01DNA SequenceTACTAGACAACTCTGCCCTGAAGCAGCAGCAGTTACCCATACACCGGCTATATTTCACGGCCAGGAGAGTCCTCTTTGTCTTTTTCGCAACAGGAATATTCTGCCTTTGTATGGGCATCATCCTTATATTGTCTGCAAGGAGCACTCAGGAAATAGAGGTTAATTACACAAGAATATGTGCAAATTGTGCAAAACTGCGAGAAATGCCTCTIAATTTTGACAAGGAATGCACCTGCTCTATTCCCTTTTACCTTTCAGGAAAAATGCAGGGTAATGTTTATATGTACTACAAATTGTATGGCTTCTATCAGAACCTGTATCTATATATTCGATCCAGAAGTAATAGACAACTGGTGGGCAAAGATGTAAAAGTAGTTGAGGATTGTGCCCCATTTAAAATGTCCGACAATAAGACCCCCATCGTTCCTTGTGGTGCTATTGCCAACAGCATGTTCAATGACACCATAATTCTTTCACACAACATTAATTCATCTGTACAAATCAAAGTGCCAATGTTAAAGAGTAGACTTACGTGGTGGACAGATAGTATGTCAAATTTCAGAAAATCTAAGTTTCAAGATCTTGCTGATGATTTAGAGGTACCACAAAGCCCCCAACTGGCCCIAAAGCCTATCTATAACTTGGATAAAAAGGATCCAAGAAACAATGGCTTCCTCAATGATGACTTCATTGTGTGGATGCGGGCAGCTGCCTTTCCCACTTTCAAAAAACTGTATGGTCGACTCAGTCGAACACACCATTTTATAGAAGGCTTGCCTGCTGGTAATTATAGTTTCAACATAACCTATAGTTTCCCAGTAACCAGGTTCCACGGAGAAAAATCAGTTGTTCTCTCCACCCTGACATGGTGTGGGGGTAATAGCCTTTTCTTAGGTCTTGCCTACACAGTGACAGGAGCTATGACATGGTTGGCCTCCTTTGCCATGATGGCAATTCACATCATGCTGAAAAAAACAAGAATGTCCTTCTTCCATCAATAAAGTCAAGCTTTAAORF Start: ATG at 25ORF Stop: TAA at 1057SEQ ID N0 42344 aaMW at 39698.8 kDNOV17a,MEERAQHCLSRLLDNSALKQQELPIHRLYFTARRVLFVFFATGIFCLCMCIILILSARAACG132343-01Protein SequenceSTQEIEVNYTRICANCAKLRENASNFDKECTCSIPFYLSGKMQGNVYMYYKLYGFYQNAALYLYIRSRSNRQLVGKDVKVVEDCAPFKMSDNKTPIVPCGAIAASMFNDTIILSHNINAASSVQIKVPMLKSRLTWWTDKYVKFQNLSFKNLADEFRGTTKPPNWPKPIYDLDKKDPRINNGFLNDDFIVWMRAAFPTFKKLYGRLSRTHHFIEGLPAGNYSFNITYSFPVTRFHGEKSVVLSTLTWCGGNSLFLGLAYTVTGAMTWLASFAMMAIHIMLKNKKAVISFFHQ


[0419] Further analysis of the NOV17a protein yielded the following properties shown in Table 17B.
86TABLE 17BProtein Sequence Properties NOV17aPSort0.7900 probability located in plasma membrane; 0.7294analysis:probability located in microbody (peroxisome); 0.3000probability located in Golgi body; 0.2000 probabilitylocated in endoplasmic reticulum (membrane)SignalPCleavage site between residues 60 and 61analysis:


[0420] A search of the NOV17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 17C.
87TABLE 17CGeneseq Results for NOV17aNOV17aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB93258Human protein sequence SEQ ID10 . . . 336147/336 (43%)6e−74NO: 12282 - Homo sapiens, 361 aa.25 . . . 352206/336 (60%)[EP1074617-A2, 07 FEB. 2001]AAY28810nn296_2 secreted protein - Homo10 . . . 336147/336 (43%)6e−74sapiens, 361 aa. [WO9950405-A1,25 . . . 352206/336 (60%)07 OCT. 1999]ABB64777Drosophila melanogaster3 . . . 343141/349 (40%)3e−65polypeptide SEQ ID NO 21123 -9 . . . 349203/349 (57%)Drosophila melanogaster, 357 aa.[WO200171042-A2, 27 SEP. 2001]ABG20423Novel human diagnostic protein10 . . . 336138/336 (41%)5e−65#20414 - Homo sapiens, 430 aa.94 . . . 421194/336 (57%)[WO200175067-A2, 11 OCT. 2001]ABG20423Novel human diagnostic protein10 . . . 336138/336 (41%)5e−65#20414 - Homo sapiens, 430 aa.94 . . . 421194/336 (57%)[WO200175067-A2, 11 OCT. 2001]


[0421] In a BLAST search of public sequence datbases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17D.
88TABLE 17DPublic BLASTP Results for NOV17aNOV17aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ95JK4Hypothetical 39.5 kDa protein -1 . . . 344324/344 (94%)0.0Macaca fascicularis (Crab eating1 . . . 344330/344 (95%)macaque) (Cynomolgus monkey),344 aa.Q95JU6Hypothetical 33.9 kDa protein -1 . . . 282268/282 (95%)e−160Macaca fascicularis (Crab eating1 . . . 282271/282 (96%)macaque) (Cynomolgus monkey),292 aa.Q9D4D74933401B01Rik protein - Mus1 . . . 341229/341 (67%)e−135musculus (Mouse). 342 aa.1 . . . 341272/341 (79%)Q9UGC2DJ234P15.3 (novel protein similar10 . . . 336 147/336 (43%)2e−73 to (predicted) yeast and worm23 . . . 350 206/336 (60%)proteins) - Homo sapiens(Human), 359 aa.Q9NV96CDNA FLJ10856 fis, clone10 . . . 336 147/336 (43%)2e−73 NT2RP4001547 - Homo sapiens25 . . . 352 206/336 (60%)(Human), 361 aa.


[0422] PFam analysis indicates that the NOV17a protein contains the domains shown in the Table 17E.
89TABLE 17EDomain Analysis of NOV17aIdentities/SimilaritiesPfamNOV17a Matchfor theExpectDomainRegionMatched RegionValueNo Significant Matches Found



Example 18

[0423] The NOV18 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 18A.
90TABLE 18ANOV18 Sequence AnalysisSEQ ID NO: 431084 bpNOV 18a,GAAGCTTCTGGATCCTACGCTCATCTCTACAGAGGAGAACATGCACGCAGCAGAGATCCG132423-01DNA SequenceATGGGGCCCCTCTCAGCCCCTCCCTGCACAGAGCACATCAAATGGAAGGGGCTCCTGCTCACAGCATTACTTTTAAACTTCTGGAACTTGCCTACCACTGCCCAAGTCATGATTGAAGCCCAGCCACCCAAAGTGTCCGAGGGGAAGGATGTTCTTCTACTTGTCCAAATCAGGGACCTCTACCATTACATTACATCATATGTAGTAGACGGTCAATAAATTATATATGGACCGGCATACAGTGGACGAGAAACAGTATATTCCAATGCATCCCTGCTGATCCAGAATGTCACCCGGGAGGACGCAGGATCCTACACCTTACACATCATAAAGCGAGGTGATCGGACTAGAGGAGTAACTGGATATTTCACCTTCACCTTATACCTGGAGACTCCCAAGCCCTCCATCTCCAGCAGCAACTTAACCCCAGGGAGGCCATGGAGACTGTGATCTTAACCTGTAAATCCTGAGACTCCGGACGCAAGCTACCTGTGGTGGATGAATGGTCAGAGCCTCCCTATGACTCATAGGATGCAGCTGTCTGAAACCAACAGGACCCTCTTTCTATTTAGTGTCACAAAGTATACTGCAGGACCCTATGAATGTGAAATATGGAACTCAGGGAGTGCCAGCCGCAGTGACCCAGTCACCCTGAATCTCCTCCATGGTCCAGACCTCCCCACAATTTTCCCTTCAGTCACCTCTTACTATTCAGCAGAGAACCTCGACTTGTCCTGCTTCGCAGACTCTAACCCACCAGCACAGTATTCTTGGACAATTAAATGGGAAAGTTTCAGCTATCAGGACAAACTCTTTATCCCTCAATTACTCCAAAGCATAATGGGCTCTATGCTTGCTCTGCTCGTAAACTCAGCCACTGGCGAGGAAAGCTCCACATCCTTGACAATCAGAGTCATTGCTCCTCCAGGATTAGGAACTTTTGCTTTCAATAATCCAACGTAGCAGCCGTGATGTCATTTTTGTATTTCAGGAAGACTGGCAGGAGATTTATGGAAAAGACTATGAORF Start: ATG at 41ORF Stop: TAG at 1019SEQ ID NO: 44326 aaMW at 36013.5 kDNOV18a,MHAAEIMGPLSAPPCTEHIKWKGLLLTALLLNFWNLPTTAQVMIEAQPPKVSEGKDVLCG132423-01Protein SequenceLLVQIRDLYHYITSYVVDGQIIIYGPAYSGRETVYSNASLLIQNTTREDAGSYTLHIIKRGDGTRGVTCYFTFTLYLETPKPSISSSNLNPREANETVILTCNPETPDASYLWWMNGQSLPMTHRMQLSETNRTLFLFGVTKYTAGPYECEIWNSGSASRSDPVTLNLLHGPDLPRIFPSVTSYYSGENLDLSCFADSNPPAQYSWTINGKFQLSGQKLFIPQITPKHNGLYACSARNSATGEESSTSLTIRVIAPPGLGTFAFNNPTSEQ ID NO: 45990 bpNOV18b,AGATCTATGCACGCAGCAGAGATCATGGGGCCCCTCTCAGCCCCTCCCTGCACAGAGC225029377 DNASequenceACATCAAATGGAAGGGGCTCCTGCTCACAGCATTACTTTTAAACTTCTGGAACTTGCCTACCACTGCCCAAGTCATGATTGAAGCCCAGCCACCCAAAGTGTCCGAGGGGAAGCATGTTCTTCTACTTGTCCAAATCAGGGACCTCTACCATTACATTACATCATATGTAGTAGACGGTCAATAAATTATATATGGACCGGCATACAGTGGACGAAGAACAGTATATTCCAATGCATCCCTGCTGATCCAGAATGTCACCCGGCAGGACGCAGGATCCTACACCTTACACATCATAAGCGAGGTGATGGGACTAGAGGAGTAAACTGGATATTTCACCTTCACCTTATACCTGGAGACTCCCAAGCCCTCCATCTCCAGCAGCAACTTAAACCCCAGGGAGGCCATGGAGACTGTGATCTTAACCTGTAATCCTGAGACTCCGGACGCAAGCTACCTGTGGTGGATGAATGGTCAGAGCCTCCCTATGACTCATAGGATGCAGCTGTCTGAAACCAACAGGACCCTCTTTCTATTTGGTGTCACAAGTATACTGCGGGACCCTATGAAAAATGTGATATGGAACTCAGGCAAGTGCCAGCCGCAGTGACCCAGTCACCCTGATCTCCTCCATGGTCCAGACCTCCCCAGAATTTTCCCTTCAGTCACCTCTTACTATTCAGGAGAGkACCTCGACTTGTCCTGCTTCGCAGACTCTAAACCCACCAGCACAGTATTCTTGGACATTAAATGAAAGTTTCAGCTATCAGGACAAAGCTCTTTATCCCTCAGATTACTCCAAGCATAAAATGGGCTCTATGCTTGCTCTGCTCGTAACTCAGCCACTGGCGAGGAAAGCTCCACATCCTTGACAATCGGAGTCATTGCTCCTCCAGGATTAGGAACTTTTGCTTTCAATAATCCAACGCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 46330 aaMW at 36399.9 kDNOV18b,RSMHAAEIMGPLSAPPCTEHIKWKGLLLTALLLNFWNLPTTAQVMIEAQPPKVSEGKD225029377Protein SequenceVLLLVQIRDLYHYITSYVVDGQIIIYGPAYSGRETVYSNASLLIQNVTREDAGSYTLHIIKRGDGTRGVTGYFTFTLYLETPKPSISSSNLNPREAMETVILTCNPETPDASYLWWMNGQSLPMTHRMQLSETNRTLFLFGVTKYTAGPYECEIWNSGSASRSDPVTLNLLHGPDLPRIFPSVTSYYSGENLDLSCFADSNPPAQYSWTINGKFQLSGQKLFIPQITPKHNGYACSARNSATGEESSTSLTIGVIAPPGLGTFAFNITPTLE


[0424] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 18B.
91TABLE 18BComparison of NOV18a against NOV18b.Identities/ProteinNOV18a Residues/Similarities forSequenceMatch Residuesthe Matched RegionNOV18b1 . . . 326317/326 (97%)3 . . . 328317/326 (97%)


[0425] Further analysis of the NOV18a protein yielded the following properties shown in Table 18C.
92TABLE 18CProtein Sequence Properties NOV18aPSort0.4500 probability located in cytoplasm;analysis:0.2390 probability located inlysosome (lumen); 0.2113 probabilitylocated in microbody (peroxisome);0.1000 probability located inmitochondrial matrix spaceSignalPCleavage site between residues 41 and 42analysis:


[0426] A search of the NOV18a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 18D.
93TABLE 18DGeneseq Results for NOV18aNOV18aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABG18511Novel human diagnostic protein1 . . . 322321/337 (95%)0.0#18502 - Homo sapiens, 355 aa.18 . . . 354 321/337 (95%)[WO200175067-A2, 11 OCT.2001]ABG18511Novel human diagnostic protein1 . . . 322321/337 (95%)0.0#18502 - Homo sapiens, 355 aa.18 . . . 354 321/337 (95%)[WO200175067-A2, 11 OCT.2001]AAY57912Human transmembrane protein7 . . . 325260/334 (77%)e−147HTMPN-36 - Homo sapiens, 3351 . . . 334278/334 (82%)aa. [WO9961471-A2, 02 DEC.1999]AAM93561Human polypeptide, SEQ ID NO:7 . . . 311223/320 (69%)e−1253333 - Homo sapiens, 324 aa.1 . . . 320252/320 (78%)[EP1130094-A2, 05 SEP. 2001]AAM93510Human polypeptide, SEQ ID NO:7 . . . 311223/320 (69%)e−1253229 - Homo sapiens, 326 aa.1 . . . 320252/320 (78%)[EP1130094-A2, 05 SEP. 2001]


[0427] In a BLAST search of public sequence datbases, the NOV18a protein was found to have homology to the proteins shown in the BLASTP data in Table 18E.
94TABLE 18EPublic BLASTP Results for NOV18aNOV18aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ15242Pregnancy-specific beta-1-7 . . . 322315/331 (95%)0.0glycoprotein precursor - Homo1 . . . 331315/331 (95%)sapiens (Human), 332 aa.Q8TCD9Pregnancy specific beta-1-7 . . . 326287/335 (85%)e−165glycoprotein 2 - Homo sapiens1 . . . 335295/335 (87%)(Human), 335 aa.P11465Pregnancy-specific beta-1-7 . . . 326285/335 (85%)e−164glycoprotein 2 precursor (PSBG-2)1 . . . 335295/335 (87%)(Pregnancy-specific beta-1glycoprotein E) (PS-beta-E) - Homosapiens (Human), 335 aa.C27658pregnancy-specific beta-17 . . . 326285/336 (84%)e−163glycoprotein E precursor - human,1 . . . 336295/336 (86%)336 aa.O75237PSGIIA-c - Homo sapiens (Human),7 . . . 313261/322 (81%)e−147335 aa.1 . . . 322274/322 (85%)


[0428] PFam analysis indicates that the NOV18a protein contains the domains shown in the Table 18F.
95TABLE 18FDomain Analysis of NOV18aIdentities/SimilaritiesPfamNOV18a Matchfor theExpectDomainRegionMatched RegionValueig245 . . . 29416/53 (30%)7.9e−0834/53 (64%)



Example 19

[0429] The NOV19 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 19A.
96TABLE 19ANOV19 Sequence AnalysisSEQ ID NO: 477347 bpNOV19a,ATGCAGAAGGAGCTGGGCATTGTGCCTTCCTGCCCTGCCATGAAGAGCCCCAGGCCCCCG132541-01DNA SequenceACCTCCTGCTACCATTGCTGCTGCTGCTGCTGCTGCTGCTGGGGGCTGGGGTGCCAGGTGCCTGGGGTCAGGCTGGGAGCCTGGACTTGCAGATTGATGAGGAGCAGCCAGCGGGTACACTGATTGGCGACATCAGTGCGGCGCTTCCGGCAGGCAcGGCAGCTCCTCTCATGTACTTCATCTCTGCCCAAGAGGGCAGCGGCGTGGGCACAGACCTGGCCATTGACGAACACAGTGGGGTCGTCCGTACAGCCCGTGTCTTGGACCGTGAGCAGCGGGACCGCTACCGCTTCACTGCAGTCACTCCTGATGGTGCCACCGTAGAAGTTACAGTGCGAGTCGCTGACATCAACGACCATGCTCCAGCCTTCCCACAGGCTCGGGCTGCCCTGCAGGTACCTGAGCATACAGCTTTTGGCACCCGCTACCCACTGGAGCCTGCTCGTGATGCAGATGCTGGGCGTCTGGGAACCCAGGGCTATGCGCTATCTGGTGATGGGGCTGGAGAGACCTTCCGGCTGGAGACACGCCCCGGTCCAGATGGGACTCCAGTACCTGAGCTGGTAGTTACTGGGAAACTGGACCGAGAGAACCGCTCACACTATATGCTACAGCTGGAGGCCTATGATGGTGGTTCACCCCCCCGGAGGGCCCAGGCCCTGCTGGACGTGACACTGCTGGACATCAATGACCATGCCCCGGCTTTCAATCAGAGCCGCTACCATGCTGTGGTGTCTGAGAGCCTGGCCCCTGGCAGTCCTGTCTTGCAGGTGTTCGCATCTGATGCCGATGCTGGTGTCAATGGGGCTGTGACTTACGAGATCAACCGGAGGCAGAGCGAGGGTGATGGACCCTTCTCCATCGACGCACACACGGGGCTGCTGCAGTTAGAGCGGCCACTGGACTTTGAGCAGCGGCGGGTCCATGAACTGGTGGTGCAAGCACGAGATGGTGGGGCTCACCCTGAGCTGGGCTCGGCCTTTGTGACTGTGCATGTGCGAGATGCCAATGACAATCAGCCCTCCATGACTGTCATCTTTCTCAGTGCAGATGGCTCCCCCCAAGTGTCTGAGGCCGCCCCACCTGGACAGCTCGTTGCTCGCATCTCTGTGTCAGACCCAGATGATGGTGACTTTGCCCATGTCAATGTGTCCCTGGAAGGTGGAGAGGGCCACTTTGCCCTAAGCACCCAAGACAGCGTCATCTATCTGGTGTGTGGCTCGGCGGCTGGATCGAGAGGAGAGGGATGCCTATAACTTGAGGGTTACAGCCACAGACTCAGGCTCACCTCCACTGCGGGCTGAGGCTGCCTTTGTGCTGCACGTCACTGATGTCAACGACAATGCACCTGCCTTTGACCGCCAGCTCTACCGACCTGAGCCCCTGCCTGAGGTTGCGCTGCCTGGCAGCTTTGTAGTGCGGGTGACTGCTCGGGATCCTGACCAAGGCACCAATGGTCAGGTCACTTATAGCCTAGCCCCTGGCGCCCACACCCACTCGTTCTCCATTGACCCCACCTCAGGCATTATCACTACGGCTGCCTCACTGGACTATGAGTTGGAACCTCAGCCACAGCTGATTGTGGTGGCCACAGATGGTCGCCTGCCCCCTCTAGCCTCCTCTGCCACAGTTAGCGTGGCCCTGCAAGATGTGAATGATAATGAGCCCCAATTCCAGAGGACTTTCTACAATGCCTCACTGCCTGAGGGCACCCAGCCTGGAACTTGCTTCCTGCAGGTGACAGCCACAGACGCGGATAGTGGCCCATTTGGCCTCCTCTCCTATTCCTTGGGTGCTGGACTTGGGTCCTCCGGATCTCCCCCATTCCGCATTGATGCCCACAGCGGTGATGTGTGCACAACCCGGACCCTGGACCGTGACCAGGGGCCCTCAAGCTTTGACTTCACAGTGACAGCTGTGGATGGGGGAGGCCTCAAGTCCATCGTATATGTGAAGGTGTTTCTGTCAGACGAGAATGACAACCCTCCTCAGTTTTATCCACGGGAGTATGCTGCCAGTATPAGTGCCCAGAGTCCACCAGGCACAGCTGTGCTGAGGTTGCGTGCCCATGACCCTGACCAGGGATCCCATGGGCGACTCTCCTACCATATCCTGGCTGGCAACAGCCCCCCACTTTTTACCTTGGATGAGCAATCAGGTCTGTTGACAGTAGCCTGGCCCTTGGCCAGACGGGCCAATTCTGTGGTGCAGCTGGAGATCGGGGCTGAGGACGGAGGTGGCCTACAGGCAGAACCCAGTGCCCGAGTGGACATCAGCATTGTGCCTGGAACCCCCACACCACCCATATTTGAGCAACTACAGTATGTTTTTTCTGTGCCAGAGGATGTGGCACCAGGCACCAGTGTGGGCATAGTCCAGGCACACAACCCACCAGGTCGCTTGGCACCTGTGACCCTTTCCCTATCAGGTCGGGAAATCCCCGAGGACTCTTCTCCCTAGATGCGGTATCAGGACTGTTGCAACACTTCCCCTCTGGACCGGGAGCTACTGGGACCAGTGTTGGAGCTGGAGGTGCGAGCAGGCAGTGGAGTGCCCCCAGCTTTCGCTGTAGCTCGCGTGCGTGTGCTGCTGGATGATGTGAATGACAACTCCCCTGCCTTTCCTGCACCTGAAGACACGGTATTGCTACCACCAAACACTGCCCCAGGGACTCCCATCTATACACTGCGGGCTCTTGACCCCGACTCAGGTGTTAACAGTCGAGTCACCTTTACCCTGCTTGCTGGGGGTGGTGGAGCCTTCACCGTGGACCCCACCACAGGCCATGTACGGCTTATGAGGCCTCTGGGGCCCTCAGGAGGGCCAGCCCATGAGCTGGAGCTGGAGGCCCGGGATGGGGGCTCCCCACCACGCACCAGCCACTTTCGACTACGGGTGGTGGTACAGGATGTGGGAACCCGTCGGCTGGCTCCCCGATTCAACAGCCCTACCTACCGTGTGGACCTGCCCTCAGGCACCACTGCTGGAACTCAGGTCCTGCAAGTGCAGGCCCAAGCACCAGATGGGGGCCCTATCACCTATCACCTTGCAGCAGAGGGAGCAAGTAGCCCCTTTGGCCTGGAGCCACAGAGTGGGTGGCTATGGGTGCGGGCAGCACTACACCGTGAGGCCCAGGAATTGTACATACTGAAGGTAATGGCAGTGTCTGGGTCCAAAGCTGAGTTGGGGCAGCAGACAGGCACAGCCACCGTGAGGGTCAGCATCCTCAACCAGAATGAACACAGTCCCCGCTTGTCTGAGGATCCCACCTTCCTGGCTGTGGCTGAGAACCAGCCCCCAGGGACCAGCGTGGGCCGAGTCTTTGCCACTGACCGAGACTCAGGACCCAATGGACGTCTGACCTACAGCCTGCAACAGCTGTCTGAAGACAGCAAGGCCTTCCGCATCCACCCCCAGACTGGTGAGGTGACCACACTCCAAACCCTGGACCGTGAGCAGCAGAGCAGCTATCAGCTCCTGGTGCAGGTGCAGGATGGAGGGAGCCCACCCCGCAGCACCACAGGCACTGTCCATGTTGCAGTGCTTGACCTCAACGACAACAGCCCCACGTTCCTGCAGGCTTCAGGAGCTGCTGGTGGGGGCCTCCCTATACAGGTACCAGACCGCGTGCCTCCAGGAACACTGGTGACGACTCTGCAGGCGAAGGATCCAGATGAGGGGGAGAATGGGACCATCTTCTACACGCTAACTGGTCCTGGCTCAGAGCTTTTCTCTCTGCACCCTCACTCAGGGGAGCTGCTCACTGCAGCTCCCCTGATCCGAGCAGAGCGGCCCCACTATGTGCTGACACTGAGTGCTCATGACCAAGGCAGCCCTCCTCGAAGTCCCAGCCTCCAGCTGCTGGTGCAGGTACTTCCCTCAGCTCGCTTGGCCGAGCCGCCCCCAGATCTCGCAGAGCGGGACCCAGCGGCACCAGTGCCTGTCGTGCTGACGGTGACAGCAGCTGAGGGACTGCGGCCCGGCTCTCTGTTGGGCTCGGTGGCAGCGCCAGAGCCCGCGGGTCTGCGTGCACTCACCTACACACTGGTGGGCGGTGCCGATCCCGAGGGCACCTTCGCGCTGGATGCGGCCTCAGGGCGCTTGTACCTGGCGCCGCCCCTGGACTTCGAAGCTGGCCCGCCGTGGCGCGCGCTCACGGTACGCGCTGAGGGGCCGGGAGGCGCGGGCGCGCGGCTGCTGCGAGTGCAGGTGCAAGTGCAGCACGACAATGAGCATGCGCCCGCCTTTGCGCGCGACCCGCTGGCGCTGGCGCTGCCAGAGAACCCGGAGCCCGGCGCAGCGCTGTACACTTTCCGCGCGTCGGACGCCGACGGCCCCGGCCCCAATAGCGACGTGCGCTACCGCCTGCTGCGCCAGGAGCCGCCCGTGCCGGCGCTTCGCCTGGACGCGCGCACCGGGGCGCTCAGCGCTCCGCGCGGCCTGGACCGAGAGACCACTCCCGCGCTGCTGCTGCTGGTGGAAGCCACCGACCGGCCCGCCAACGCCAGCCGCCGTCGTGCAGCGCGCGTTTCAGCGCGCCTCTTCGTCACGGATGAGAATGACAACGCGCCTGTCTTCGCCTCGCCGTCACGCGTGCGCCTCCCAGAGGACCAGCCGCCTGGGCCCGCGGCCCTGCACGTGGTAGCCCGGGACCCGGATCTGGGCGAGGCTGCACGCGTGTCCTATCGGCTGGCATCTGGCGGGGACGGCCACTTCCCGCTGCACTCAAGCACTCGTGCGCTGTCCGTGGTGCGGCCGTTCGACCGCGAACAACGAGCTGAGCACGTACTGACAGTGGTGGCCTCAGACCACGGCTCCCCGCCGCGCTCGACCACGCAGGTCCTGACCGTCAGTGTCGCTGACGTCAACGACGAGGCGCCTACTTTCCAGCAGCAGGAGTACAGCGTCCTCTTGCGTGAGAACAACCCTCCTGCCACATCTCTGCTCACCCTGCGAGCAACCGACCCCCACGTGGGTGCCAACGGGCAAGTGACTTATGGAGGCGTCTCTAGCGAAAGCTTTTCTCTGGATCCTGACACTCGTGTTCTCACGACTCTTCGGGCCCTGGATCGAGAGGAACAGGAGGAGATCAACCTGACAGTGTATGCCCAGGACAGGGGCTCACCTCCTCAGTTAACGCATGTCACTGTTCGAGTGGCTGTGGAGGATGAGAATGACCATGCACCAACCTTTGGGAGTGCCCATCTCTCTCTGGAGGTGCCTGAGGGCCAGGACCCCCAGACCCTTACCATGCTTCGGQCCTCTGATCCAGATGTGGGAGCCAATGGGCAGTTGCAGTACCGCATCCTAGATGGGGACCCATCAGGAGCCTTTGTCCTAGACCTTGCTTCTGGAGAGTTTGGCACCATGCGGCCACTAGACAGAGAACTGGAGCCAGCTTTCCAGCTGAGGATAGAGGCCCGGGATGGAGGCCAGCCAGCTCTCAGTGCAACACGCTGCTTTTGACAGTGACAGTGCTGGATGCCAATGACCATGCTCCAGCCTCCTGTGCCTGCCTACTCGTGGAGGTGCCGGAGGATGTGCCTGCAGGGACCCTGCTGCTCACAGCTACAGGCTCATGACCCTGATGCTGGAGCTAATGGCCATGTGACCTACTACCTGGCCGCCGGTACAGCAGGAGCCTTCCTGCTGGAGCCCAGCTCTGGAGAACTGCGCACAGCTCCAGCCTTGGACAGAGAACAGTGTCCCAGCTACACCTTTTCTGTGAGTGCAGTGGATGGTGCAGCTGCTGGGCCCCTAAGCACCACAGTGTCTGTCACCATCACGGTGCGCGATGTCAATGACCATGCACCCACCTTCCCCACCAGTCCTCTGCGCCTACGTCTGCCCCGCCCAGGCCCCAGCTTCAGTACCCCAACCCTGGCTCTGGCCACACTGAGAGCTGAAGATCGTCATGCTGGTGCCAATGCTTCCATTCTGTACCGGCTGGCAGGCACACCACCTCCTGGCACTACTGTGGACTCTTACACTGGTGAAATCCGCGTGGCCCGCTCTCCTGTAGCTCTAGGCCCCCGAGATCGTGTCCTCTTCATTGTGGCCACTGATCTTGGCCGTCCAGCTCGCTCTGCCACTGGTGTCATCATTGTTGGACTGCAGGGGGAAGCTGAGCGTGGACCCCGCTTTCCCCGGGCTAGCAGTGAGGCTACGATTCGTGAGAATGCGCCCCCAGGTACTCCTATTGTCTCCCCCAGGGCCGTCCATGCAGGAGGCACAAATGGACCCATCACCTACAGCATTCTCAGTGGGAATGAGAAAGGGACATTCTCCATCCAGCCTAGTACAGGTGCCATCACAGTTCGCTCAGCAGAGGGGCTAGACTTCGAGGTGAGTCCACGGCTGCGACTGGTGCTGCAGGCACTTGGAGGGGCCCCTGCTGCAGGTGGAGGCGGATGACCTGGATCAAGGCTCTGGAGGAACAATGCTCCCCGTTTCCTGCGGCCCCATTATGTGGCCTTCCTTCCTGAGTCCCGGCCCTTGGAGGGGCCCCTGCTGCAGGTGGAGGCGGATGACCTGGATCAAGGCTCTGGAGGACAGATTTCCTACAGTCTGGCTGCATCCCAGCCGGCACGTGGATTGTTCCACGTAGACCCACCACAGGCACTATCACTACCACAGCCATCCTGGACCGTGAGATCTGGGCTGAAAACACGGTTGGTGCTGATGGCCACAGACAGAGGGAGCCCAGCCCTGGTGGGCTCAGCTACCTTGACGGTGATGGTCATCGACACCAATGACAATCGCCCCACCATCCCCCAACCCTGGGAGCTCCGAGTGTCAGAAGATGGCAIGCCATGTGTGGCAGGTGCGCTGACAGCCATTGTGGCCGGCGAGCAGGAGCTCCGTGGCAGCTATAACTGGGACTACCTGCTGAGCTGGTGCCATCAGCACCAACCACTGGCCAGTGTCTTCACAGAGATCGCTCGGCTCAAGGATGAAGCTCGGCCATGTCCCCCAGCTCCCCGTATCGACCCACCACCCCTCATCACTGCCGTGGCCCACCCAGGAGCCAAGTCTGTGCCCCCCAAGCCAGCAAACACAGCTGCAGCCCGGGCCATCTTCCCACCAGCTTCTCACCGCTCCCCCATCAGCCGTGAAGGCTCCCTGTCCTCAGCTGCCATGTCCCCCAGCTTCTCACCCTCTCTGTCTCCTCTGGCTGCTCGCTCACCCGTTGTCTCACCAATTGGGGTGGCCCAGGGTCCCTCAGCCTCAGCACTCAGCGCAGAGTCTGGCCTGGAGCCACCTGATGACACGGAGCTGCACATCTAGORF Start: ATG at 1ORF Stop: TAG at 7345SEQ ID NO: 482448 aaMW at 258115.8 kDNOV19a,MQKELGIVPSCPGMKSPRPHLLLPLLLLLLLLLGAGVPGAWGQAGSLDLQIDEEQPAGCG132541-01Protein SequenceTLIGDISAGLPAGTAAPLMYFISAQEGSGVGTDLAIDEHSGVVRTARVLDREQRDRYRPTAVTPDGATVEVTVRVADINDHAPAFPQARAALQVPEHTAFGTRYPLEPARDADAGRLGTQGYALSGDGAGETFRLETRPGPDGTPVPELVVTGELDRENRSHYMLQLEAYDGGSPPRRAQALLDVTLLDINDHAPAFNQSRYHAVVSESLAPGSPVLQVFASDADAGVNGAVTYEINRRQSEGDGPFSIDAHTCLLQLERPLDFEQRRVHELVVQARDGGAHPELGSAFVTVHVRDANDNQPSMTVIFLSADGSPQVSEAAPPGQLVARISVSDPDDGDFAHVNVSLEGGEGHFALSTQDSVIYLVCVARRLDREERDAYNLRVTATDSGSPPLRAEAAFVLHVTDVNDNAPAFDRQLYRPEPLPEVALPGSFVVRVTARDPDQGTNGQVTYSLAPGAHTHWFSIDPTSGIITTAASLDYELEPQPQLIVVATDGGLPPLASSATVSVALQDVNDNEPQFQRTFYNASLPEGTQPGTCFLQVTATDADSGPFGLLSYSLGAGLGSSGSPPFRIDAHSGDVCTTRTLDRDQGPSSFDFTVTAVDGGGLKSMVYVKVFLSDENDNPPQFYPREYAASISAQSPRGTAVLRLRAHDPDQGSHGRLSYHILAGNSPPLFTLDEQSCLLTVAWPLARRANSVVQLEIGAEDGGGLQAEPSARVDISIVRGTPTPPIFEQLQYVFSVPEDVAPGTSVGIVQAHNPPGRLAPVTLSLSGGDPRGLFSLDAVSGLLQTLRPLDRELLGPVLELEVRAGSGVPPAFAVARVRVLLDDVNDNSPAFPAPEDTVLLPPNTAPGTPIYTLRALDPDSGVNSRVTETLLAGGGGAFTVDPTTGHVRLMRPLGPSGGRAHELELEARDGGSPPRTSHFRLRVVVQDVGTRGLAPRFNSPTYRVDLPSGTTAGTQVLQVQAQAPDGGPITYHLAAEGASSPFGLEPQSGWLNTRAALDREAQELYILKVMAVSGSKAELGQQTGTATVRVSILNQNEHSPRLSEDPTFLAVAENQPPGTSVGRVFATDRDSGPNGRLTYSLQQLSEDSKAFRIHPQTGEVTTLQTLDREQQSSYQLLVQVQDGGSPPRSTTGTVHVAVLDLNDNSPTFLQASGAAGGGLPIQVPDRVPPGTLVTTLQAKDPDEGENGTILYTLTGPGSELFSLHPHSGELLTAAPLIRAERPHYVLTLSAHDQGSPPRSASLQLLVQVLPSARLAEPPPDLAERDPAAPVPVVLTVTAAEGLRPGSLLGSVAAPEPAGVGALTYTLVGGADPEGTFALDAASCRLYLARPLDFEAGPPWRALTVRAEGPGGAGARLLRVQVQVQDENEHAPAFARDPLALALPENPEPGAALYTFRASDADGPGPNSDVRYRLLRQEPPVPALRLDARTGALSAPRGLDRETTPALLLLVEATDRPANASRRRAARVSARVFVTDENDNAPVFASPSRVRLPEDQPPGPAALHVVARDPDLGEAARVSYRLASGGDGHFRLHSSTGALSVVRPLDREQRAEHVLTVVASDHGSPPRSATQVLTVSVADVNDEApTFQQQEYSVLLRENNPPGTSLLTLRATDPDVGAGIAQVTYGGVSSESFSLDPDTGVLTTLRALDREEQEEINLTVYAQDRGSPPQLTHVTVRVVEDENDHAPTFGSAHLSLEVPEGQDPQTLTMLRASDPDVGANGQLQYRILDGDPSCAFVLDLASGEFGTMRPLDREVEPAFQLRIERDGGQPALSATLLLTVTVLDANDHIAPAFPVPAYSVEVPEDVPAGTLLLQLQAHDPDAGANGIVTYYLGAGTAGAFLLEPSSGELRTAAALDREQCPSYTPSVSAVDGAAAGPLSTTVSVTITVRDVNDHAPTFPTSPLRLRLPRPGPSFSTPTLALATLRAEDRDAGANASILYRLAGTPPPGTTVDSYTGEIRVARSPVALGPRDRVLFIVATDLGRPARSATGVIIVGLQGEAERGPRFPPASSEATIRENAPPGTPIVSPPAVHAGGTNGPITYSILSGNEKGTFSIQPSTGAITVRSAEGLDFEVSPRLRLVLQAESGGAFAFTVLTLTLQDANDNAPRFLRPHYVAFLPESRPLEGPLLQVEAADLDQGSGGQISYSLAASQPARGLFHVDPTTGTITTTAILDREIWAETRLVLAATDRGSPALVGSATLTVMVIDTNDNRPTIPQPWELRVSEDGKPCVAGALTAIVAGEEELRGSYNWDYLLSWHQHQPLASVFTEIARLKDEARPCPPAPRIDPPPLITAVAPGAKSVPPKPANTAAARAIFPPASHRSPISREGSLSSVASPSFSPSLSPLAARSPVVSPIGVAQGPSASALSAESGLEPPDDTELHISEQ ID NO: 4910759 bpNOV19b,GCGGGGGGAGGGGAGGGGAGGGGAGGGGGCGCGGGGCCGCGGCAGCGGACCTCGCATCCG132541-02DNA SequenceCTCGGCGGGGCGGCTGTGCAGGAGGCGGCGCCCGGGCGTCAGCGGACGGACCGATCGACGGCCAAGGGCGCGCGGACCGACGGCGGCTGCCCGGAGGGGATCGCGGGCCTCCGAGACAGCCACTGCGGACGATGCGCGGCCCCAGGCCCCGCGCGAGCGGGCGCTGCCCGGGGGGCTGACCGCGGCCCGACGGCGCCCCAGCACCGGGCGAGGGAGCCCGCGTCGCGCGGAGGTCAGGGAGCCTGAGCTGGAGCCAGGGCCCCAGTGGGACCTGACCCAAAGTCTGAGGTCAAGCTCGGCCCAGAGCCTGGCCTGGAGCTGGAGCCCACAGCACAGCTGGACTACCCTTGTCATGCAGAAGGAGCTGGGCATTGTGCCTTCCTGCCCTGGCATGAAGAGCCCCAGGCCCCACCTCCTGCTACCATTGCTGCTGCTGCTGCTGCTGCTGCTGGGGGCTGGGGTGCCAGGTGCCTGGGGTCAGGCTGGGAGCCTGCACTTGCACATTGATGAGGAGCAGCCAGCGGGTACACTGATTGGCGACATCAGTGCGGGGCTTCCGGCAGGCACCGCAGCTCCTCTCATGTACTTCATCTCTGCCCAAGAGCGCAGCGGCGTGGGCACAGACCTGGCCATTGACGAACACAGTGGGGTCGTCCGTACAGCCCGTGTCTTGGACCGTGAGCAGCGGGACCGCTACCGCTTCACTCCAGTCACTCCTGATGGTGCCACCGTAGAAGTTACAGTGCGAGTGGCTGACATCAACGACCATGCTCCAGCCTTCCCACAGOCTCGGGCTGCCCTGCAGGTACCTGAGCATACAGCTTTTGGCACCCGCTACCCACTGGAGCCTGCTCGTGATGCAGATGCTCGGCGTCTGGGAACCCAGGGCTATGCGCTATCTGGTGATGGGGCTGGAGAGACCTTCCGGCTGGAGACACGCCCCGGTCCAGATGGGACTCCAGTACCTGAGCTGGTAGTTACTGGGGAACTGGACCGAGAGAACCGCTCACACTATATGCTACAGCTGGAGGCCTATGATGGTGGTTCACCCCCCCGCACGGCCCAGGCCCTGCTGGACGTGACACTGCTGGACATCAATGACCATGCCCCGGCTTTCAATCAGAGCCGCTACCATGCTGTGGTGTCTGAGAGCCTGGCCCCTGGCAGTCCTGTCTTGCAGGTGTTCGCATCTGATGCCGATGCTGGTGTCAATGGGGCTGTGACTTACGAGATCAACCGCAAGGCAGAGCGAGGGTGATGGACCCTTCTCCATCGACGCACACACGGCGCTGCTGCAGTTAGAGCGGCCACTGGACTTTGAGCAGCGGCGGGTCCATGAACTGGTGGTGCAAGCACGAGATGGTGGGGCTCACCCTGAGCTGGGCTCGGCCTTTGTGACTGTGCATGTGCGAGATGCCAATGACAATCAGCCCTCCATGACTGTCATCTTTCTCAGTGCAGATGGCTCCCCCCAAGTGTCTGAGGCCGCCCCACCTGGACAGCTCGTTGCTCGCATCTCTGTGTCAGACCCAGATGATGGTGACTTTGCCCATGTCAATGTGTCCCTGGAAGGTGGAGAGGGCCACTTTGCCCTAAGCACCCAAGACAGCGTCATCTATCTGGTGTGTGTGGCTCGGCGGCTGGATCGAGAGGAGAGGGATGCCTATAACTTGAGGCTTACAGCCACAGACTCAGGCTCACCTCCACTGCGGGCTGAGGCTGCCTTTGTGCTGCACGTCACTGATGTCAACGACAATGCACCTGCCTTTGACCGCCAGCTCTACCGACCTGAGCCCCTGCCTGAGGTTGCGCTGCCTGGCAGCTTTGTAGTGCGGGTGACTGCTCGGGATCCTGACCAAGGCACCAATGGTCAGGTCACTTATAGCCTAGCCCCTGGCGCCCACACCCACTGGTTCTCCATTGACCCCACCTCAGGCATTATCACTACGGCTGCCTCACTGGACTATGAGTTGGAACCTCAGCCACAGCTGATTGTGGTGGCCACAGATGGTGGCCTGCCCCCTCTAGCCTCCTCTGCCACAGTTAGCGTGGCCCTGCAAGATGTGATGAATAATGAGCCCCAATTCCAGAGGACTTTCTACAATGCCTCACTGCCTGAGGGCACCCAGCCTGGIACTTGCTTCCTGCAGGTGACAGCCACAGACGCGGATAGTGCCCCATTTGGCCTCCTCTCCTATTCCTTGGGTGCTGGACTTGGGTCCTCCGGATCTCCCCCATTCCGCATTGATGCCCATAGCGCTGATGTGTGCACAACCCGGACCCTGGACCCTGACCAGGGGCCCTCAAGCTTTGACTTCACAGTGACAGCTGTGGATGGGGGAGGCCTCAAGTCCATGGTATATGTGAAGGTGTTTCTGTCAGACGAGAATGACAACCCTCCTCAGTTTTATCCACGGGAGTATGCTGCCAGTATAAGTGCCCAGAGTCCACCAGGCACAGCTGTGCTGAGGTTGCGTGCCCATGACCCTCACCAGGGATCCCATGGGCGACTCTCCTACCATATCCTGGCTGGCAACAGCCCCCCACTTTTTACCTTGGATGAGCAATCAGGGCTGTTGACAGTAGCCTGGCCCTTGGCCAGACGGGCAAATTCTGTGGTGCAGCTGGAGATCGGGGCTGAGGACGGAGGTGGCCTACAGGCAGAACCCAGTGCCCGAGTGGACATCAGCATTGTGCCTGGAACCCCCACACCACCCATATTTGAGCACTACAGTATGTTTTTTCTGTGCCAGAGGATGTGGCACCAGGCACCAGTGTGGCACATAGTCCAGGCACACAACCCACCAGGTCGCTTGGCACCTGTGACCCTTTCCCTATCAGGTGGGGATCCCCGAGGACTCTTCTCCCTAGATGCGGTATCAGGACTGTTGCAAACACTTCGCCCTCTGGACCCGGAGCTACTGGGACCAGTGTTGGAGCTGGAGGTGCGAGCAGGCAGTGGAGTGCCCCCAGCTTTCGCTGTAGCTCGGGTGCGTGTGCTGCTGGATGATGTGAATGACAACTCCCCTGCCTTTCCTGCACCTGAAGACACGGTATTGCTACCACCAAACACTGCCCCAGGGACTCCCATCTATACACTGCGGGCTCTTGACCCCGACTCAGGTGTTAACAGTCGAGTCACCTTTACCCTGCTTGCTGGGGGTGGTGGAGCCTTCACCGTGGACCCCACCACAGGCCATGTACGGCTTATGAGGCCTCTGGGGCCTCAGGACAGGCCAGCCCATGAGCTGGAGCTGGAGGCCCGGGATGGGGGCTCCCCACCACGCACCAGCCACTTTCGACTACGGGTGGTGGTACAGGATGTGGGAACCCGTGGGCTGGCTCCCCGATTCAACAGCCCTACCTACCGTCTGGACCTGCCCTCAGGCACCACTGCTGGAACTCAGGTCCTGCAAGTGCAGGCCCAAGCACCAGATGGGGGCCCTATCACCTATCACCTTGCACCAGAGGGAGCAAGTAGCCCCTTTGGCCTGGAGCCACAGAGTGGGTGGCTATGGGTGCGGGCAGCACTAGACCGTGAGGCCCAGGAATTGTACATACTGAAGGTAZTGGCAGTGTCTGGGTCCAAAGCTGAGTTGGGGCAGCAGACAGGCACAGCCACCGTGAGGGTCAGCATCCTCAACCAGAATGAACACAGTCCCCGCTTGTCTGAGGATCCCACCTTCCTGGCTGTGGCTGAGAACCAGCCCCCAGGGACCAGCGTGGGCCGAGTCTTTGCCACTGACCGAGACTCAGGACCCAATGGACGTCTGACCTACAGCCTGCAACAGCTGTCTGAA\GACAGCAAGGCCTTCCGCATCCACCCCCAGACTGGAGAAGTGACCACACTCCAAACCCTGGACCGTGAGCAGCAGAGCAGCTATCAGCTCCTGGTGCAGGTGCAGGATGGAGGGAGCCCACCCCGCAGCACCACAGGCACTGTGCATGTTGCAGTGCTTGACCTCAACGACAACAGCCCCACGTTCCTGCAGGCTTCAGGAGCTGCTGGTGGGGGCCTCCCTATACAGGTACCAGACCGCGTGCCTCCAGGAACACTGGTGACGACTCTGCAGGCGAAGGATCCAGATGAGGGGCAGAATGGGACCATCTTGTACACGCTAACTGGTCCTGGCTCAGAGCTTTTCTCTCTGCACCCTCACTCAGGGGAGCTGCTCACTGCAGCTCCCCTGATCCGAGCACAGCGGCCCCACTATGTGCTGACACTGAGTGCTCATGACCAAGGCAGCCCTCCTCGAAGTGCCAGCCTCCAGCTGCTGGTGCAGGTGCTTCCCTCAGCTCGCTTGGCCGAGCCGCCCCCAGATCTCGCAGAGCGGGACCCAGCGGCACCAGTGCCTGTCGTGCTGACGGTGACAGCAGCTGAGGGACTGCGGCCCGGCTCTCTGTTGGGCTCGGTGGCAGCGCCAGAGCCCGCGCGTGTGGGTGCACTCACCTACACACTGGTGGGCGGTGCCGATCCCGAGGGCACCTTCGCGCTGGATGCGGCCTCAGGGCGCTTGTACCTGGCGCGGCCCCTGGACTTCGAAGCTGGCCCGCCGTGGCGCGCGCTCACGGTACGCGCTGAGGGGCCGGGAGGCGCCGGCGCGCGGCTGCTGCGAGTGCAGGTGCAAGTGCAGGACGAGAATGAGCATGCGCCCGCCTTTGCGCGCGACCCGCTGGCGCTGGCGCTGCCAGAGAACCCGGAGCCCGGCGCAGCGCTGTACACTTTCCGCGCGTCGGACGCCGACGGCCCCGGCCCCAATAGCGACGTGCGCTACCGCCTGCTGCGCCACGAGCCGCCCGTGCCGGCGCTTCGCCTGGACGCGCGCACCGGGGCGCTCAGCGCTCCGCGCGGCCTGGACCGAGAGACCACTCCCGCGCTGCTGCTGCTGGTGGAAGCCACCGACCGGCCCGCCAACGCCAGCCQCCGTCGTGCAGCGCGCGTTTCAGCGCGCGTCTTCGTCACGGATGAGAATGACAACGCGCCTGTCTTCGCCTCGCCGTCACGCGTGCGCCTCCCAGAGGACCAGCCGCCTGGGCCCGCGGCCCTGCACGTGGTAGCCCGGGACCCGGATCTGGGCGAGGCTGCACGCGTGTCCTATCCGCTGGCATCTGGCGGGGACGGCCACTTCCGGCTGCACTCAAGCACTGGAGCGCTGTCCGTGGTGCGGCCGTTGGACCGCGAACAACGAGCTGAGCACGTACTGACAGTGGTGGCCTCAGACCACGGCTCCCCGCCGCGCTCGGCCACGCAGGTCCTGACCGTCAGTGTCGCTGACGTCAACGACGAGGCGCCTACTTTCCAGCAGCAGGAGTACAGCGTCCTCTTGCGTGAGAACAACCCTCCTGGCACATCTCTGCTCACCCTGCGAGCAACCGACCCCGACGTGGGGGCCAACGGGCAAGTGACTTATGGAGGCGTCTCTAGCGAAAGCTTTTCTCTGGATCCTGACACTGGTGTTCTCACGACTCTTCGGGCCCTGGATCGAGAGGAACAGGAGGAGATCAACCTGACAGTGTATGCCCAGGACAGGGGCTCACCTCCTCAGTTAACGCATGTCACTGTTCGAGTGGCTGTGGAGGATGAGAATGACCATGCACCAACCTTTGGGAGTGCCCATCTCTCTCTGGAGGTGCCTGAGGGCCAGGACCCCCAGACCCTTACCATGCTTCGGGCCTCTGATCCAGATGTGGGAGCCAATGGGCAGTTGCAGTACCGCATCCTAGATGGGGACCCATCAGGAGCCTTTGTCCTAGACCTTGCTTCTGGAGACTTTGGCACCATGCGGCCACTAGACAGAGAAGTGGAGCCAGCTTTCCAGCTGAGGATAGACCCCCGGGATGGAGGCCAGCCAGCTCTCAGTGCCACGCTGCTTTTGACAGTGACAGTGCTGGATGCCAATGACCATGCTCCACCCTTTCCTGTGCCTGCCTACTCGGTGGAGGTGCCGGAGGATGTGCCTGCAGGGACCCTGCTGCTGCAGCTACAGGCTCATGACCCTGATGCTGGAGCTAATGGCCATGTGACCTACTACCTGGGCGCCGGTACACCAGGAGCCTTCCTGCTGGAGCCCAGCTCTGGAGAACTGCGCACAGCTGCAGCCTTGGACAGAGAACAGTGTCCCAGCTACACCTTTTCTGTGAGTGCAGTGGATGGTGCAGCTGCTGGGCCCCTAAGCACCACAGTGTCTGTCACCATCACGGTGCGCGATGTCAATGACCATGCACCCACCTTCCCACCAGTCCTCTGCGCCTACGTCTGCCCCGACCCAGGCCCCAGCTTCAGTACCCCAACCCTGGCTCTGGCCACACTGAGAGCTGAAGATCGTGATGCTGGTGCCAATGCTTCCATTCTGTACCGGCTGGCAGGCACACCACCTCCTGGCACTACTGTGGACTCTTACACTGGTGAAATCCGCGTGGCCCGCTCTCCTGTAGCTCTAGGCCCCCGAGATCGTGTCCTCTTCATTGTGGCCACTGATCTTGGCCGTCCAGCTCGCTCTGCCACTGGTGTGATCATTGTTGGACTGCAGGGGGAAGCTGAGCGTGGACCCCGCTTTCCCCGGCCTAGCAGTGAGOCTACGATTCGTGAGAATGCGCCCCCAGGGACTCCTATTGTCTCCCCCAGGGCCGTCCATGCAGGAGGCACAAATGGACCCATCACCTACAGCATTCTCAGTGGGAATGAGAAAGGGACATTCTCCATCCAGCCTAGTACAGGTGCCATCACAGTTCGCTCAGCAGAGGGGCTAGACTTCGAGGTGAGTCCACGCCTGCGACTGGTGCTGCAGGCAGAGAGTGGAGGAGCCTTTGCCTTCACTGTGCTGACCCTGACCCTGCAAGATGCCAACGACAATGCTCCCCGTTTCCTGCGGCCCCATTATGTGGCCTTCCTTCCTGAGTCCCGGCCCTTGGAGGGGCCCCTGCTGCAGGTGGAGGCGGATGACCTGGATCAAGGCTCTGGAGGACAGATTTCCTACAGTCTGCCTGCATCCCAGCCGGCACGTGGATTGTTCCACGTAGACCCAACCACAGGCACTATCACTACCACAGCCATCCTGGACCGTOAGATCTGGGCTGAAACACGGTTGGTGCTGATGGCCACAGACAGAGGGAGCCCAGCCCTGGTGGGCTCAGCTACCTTGACGGTGATGGTCATCGACACCAATGACAATCGCCCCACCATCCCCCAACCCTGGGAGCTCCGAGTGTCAGAAGATGCGTTATTGGGCTCAGAGATTGCACAGGTAACAGGGkATGATGTGGACTCAGGACCCGTGCTGTGGTATGTGCTAAGCCCATCTGGGCCCCAGGATCCCTTCAGTGTTGGCCGCTATGGAGGCCGTGTCTCCCTCACGGGGCCCCTGGACTTTGAGCAGTGTGACCGCTACCAGCTGCAGCTGCTGGCACATGATGGGCCTCATGAGGGCCGTGCCAACCTCACAGTCCTTGTGGAGGATGTCAATCACAATGCACCTGCCTTCTCACAGAGCCTCTACCAGGTAATGCTGCTTGAGCACACACCCCCAGGCAGTGCCATTCTCTCCGTCTCTGCCACTGATCGGGACTCAGGTGCCAACGGTCACATTTCCTACCACCTGGCTTCCCCTGCCGATGGCTTCAGTGTTGACCCCAACAATGGGACCCTGTTCACAATAGTGGGAACAGTGGCCTTGGGCCATGACGGGTCAGGAGCAGTGGATGTGGTGCTGGAAGCACGAGACCACGGGGCTCCAGGCCGGGCAGCACGAGCCACAGTGCACGTGCAGCTGCAGGACCAGAACGACCACGCCCCGAGCTTCACATTGTCACACTACCGTGTGGCTGTGACTGAAGACCTGCCCCCTGGCTCCACTCTGCTCACCCTGGAGGCTACAGATGCTGATCGAAGCCGCAGCCATGCCGCTGTGGACTACAGCATCATCAGTGGCAACTGGGGCCGAGTCTTCCAGCTGGAACCCAGGCTGGCTGAGGCTGGGGAGAGTGCTGGACCAGGCCCCCGGGCACTGGGCTGCCTGGTGTTGCTTGAACCTCTAGACTTTGAAAGCCTGACACAGTACAATCTAACAGTGGCTGCAGCTGACCGTGGGCAGCCACCCCAAAGCTCAGTCGTGCCAGTCACTGTCACTGTACTAGATGTCAATGACAACCCACCTGTCTTTACCCGAGCATCCTACCGTGTGACAGTACCTGAGGACACACCTGTTGGAGCTGAGCTGCTGCATGTAGAGGCCTCTGACGCTGACCCTGGCCCTCATGGCCTCGTGCGTTTCACTGTCAGCTCAGGCGACCCATCAGGGCTCTTTGAGCTGGATGAGAGCTCAGGCACCTTGCGACTGGCCCATGCCCTGGACTGTGAGACCCAGGCTCGACATCAGCTTGTAGTACAGGCTGCTGACCCTGCTGGTGCACACTTTGCTTTGGCACCAGTGACAATTGAGGTCCAGGATGTGAATGATCATGGCCCAGCCTTCCCACTGAACTTACTCAGCACCAGCGTGGCCGAGAATCAGCCTCCAGGCACTCTCGTGACCACTCTGCATGCAATCGACGGGGATGCTGGGGCTTTTGGGAGGCTCCGTTACAGCCTGTTGGAGGCTGGGCCAGGACCTGAGGGCCGTGAGGCATTTGCACTGAACAGCTCAACAGGGGAGTTGCGTGCGCGAGTGCCCTTTGACTATGAGCACACAGAAAGCTTCCGGCTGCTGGTGGGTGCTGCTGATGCTGGGAATCTCTCAGCCTCTGTCACTGTGTCGGTGCTAGTGACTGGAGAGGATGAGTATGACCCTGTATTTCTGGCACCAGCTTTCCACTTCCAAGTGCCCGAAGGTGCCCGGCGTGGCCACAGCTTGGGTCACGTCCAGGCCACAGATGAGGATGGGGGTGCCGATGGCCTGGTTCTGTATTCCCTTGCCACCTCTTCCCCCTATTTTGGTATTAACCAGACTACAGGAGCCCTGTACCTGCGGGTGGACAGTCGGGCACCAGGCAGCGGAACAGCCACCTCTGGGGGTGGGGGCCGGACCCGGCGGGAAGCACCACGGGAGCTGAGGCTGGAGGTGATAGCACCGGGCCCTCTGCCTGGTTCCCGGAGTGCCACAGTGCCTGTGACCGTGGATATCACCCACACCGCACTGGGCCTGGCACCTGACCTCAACCTGCTATTAGTAGGGGCCGTGGCAGCCTCCTTGGGAGTTGTGGTGGTGCTTGCACTGGCACCCCTGGTCCTAGGACTTGTTCGCGCCCGTAGCCGCAAGGCTGAGGCAGCCCCTGGCCCAATGTCACAGGCAGCACCCCTAGCCAGTGACTCACTGCAGkAZCTGGGCCGGGAGCCACCTAGTCCACCACCCTCTGAGCACCTCTATCACCAGACTCTTCCCAGCTATGGTGGGCCAGGAGCTGGAGGACCCTACCCCCCTGGTGGCTCCTTGGACCCTTCACATTCAAGTGGCCGAGGATCAGCAGAGGCTGCAGAGGATGATGAGATCCGCATGATCAATGAGTTCCCCCGTGTGGCCAGTGTGGCCTCCTCTCTGGCTCCCCGTGGCCCTGACTCAGGCATCCAGCAGGATGCAGATGGTCTGAGTGACACATCCTGCGAACCACCTGCCCCTGACACCTGGTATAAGGCCCGAAAGGCAGGGCTGCTGCTGCCAGGTGCAGGAGCCACTCTCTACAGAGAGGAGGGGCCCCCAGCCACTGCCACAGCCTTCCTGGGGGGCTGTGGCCTGAGCCCTGCACCCACTGGGGACTATGGCTTCCCAGCAGATGGCAAGCCATGTGTGGCAGGTGCGCTGACAGCCATTGTGGCCGGCGAGGAGGAGCTCCGTGGCAOCTATAACTGGGACTACCTGCTGAGCTGGTCCCCTCAGTTCCAACCACTGGCCAGTGTCTTCACAGAGATCGCTCGGCTCAAGGATGAAGCTCGGCCATGTCCCCCAGCTCCCCGTATCGACCCACCACCCCTCATCACTGCCGTGGCCCACCCAGGAGCCAAGTCTGTGCCCCCCAAGCCAGCAAACACAGCTGCAGCCCGGGCCATCTTCCCACCAGCTTCTCACCGCTCCCCCATCAGCCATGAAGGCTCCCTGTCCTCAGCTGCCATGTCCCCCAGCTTCTCACCCTCTCTGTCTCCTCTGGCTGCTCGCTCACCCGTTGTCTCACCATTTGCGGTGGCCCAGGGTCCCTCAGCCTCAGCACTCAGCGCAGAGTCTGGCCTGGAGCCACCTGATGACACGGAGCTGCACATCTAGCTGTCAGCCCAGGCTGGCCCGACCTGGGATGCGCACAGTGTCCCCAACGCAGGCCCCACTCTCAAGCCTGCCCTGGGCAGCCTCGGACTATGACTGGCTACGGGGAGGCCACCACCAGGCCCCAGCTCTCCACCCTGAACTCCCCAGCCCCCTCAGAGTACTAGGACCACAGAAGCCCTGTTGCTCACTGACCTGTGACCAGGTCCAATGTGGGGAGAAATATGAAGGAGGTAGCAGCCCTGGGTTCTCCTCAGTGAGGGATCCCTGCCCTGCACCAGCACCCTGAGATCGACCTGAGACTTTATTTATTGGGGGTAGGGGGATGGAGGAGGTCCCTCCAAkCATGTTTGGACCCAGCTCCTTTGGGTTCCACTGACACCCCTGCCCCTGCCCCTGCCCAGAACCAAGTGCCATTTCTCACTCTGGAGCCTTAATAAACTGCAATTTGTATCCORF Start: ATG at 411ORF Stop: TAG at 10305SEQ ID NO: 503298 aaMW at 346176.3 kDNOV19b,MQKELGIVPSCPGMKSPRPHLLLPLLLLLLLLLGAGVPGAWGQAGSLDLQIDEEQPAGCG132541-02Protein SequenceTLIGDISAGLPAGTAAPLMYFISAQEGSGVGTDLAIDEHSGVVRTARVLDREQRDRYRFTAVTPDGATVEVTVRVADINDHAPAFPQARAALQVPEHTAFGTRYPLEPARDADAGRLGTQGYALSGDGAGETFRLETRPGPDGTPVPELVVTGELDRENRSHYMLQLEAYDGGSPPRRAQALLDVTLLDINDHAPAFNQSRYHAVVSESLARGSPVLQVFASDADAGVNGAVTYEINRRQSEGDGPFSIDAHTGLLQLERPLDFEQRRVHELVVQARDGGAHPELGSAFVTVHVRDANDNQPSMTVIFLSADGSPQVSEAAPRGQLVARISVSDPDDGDFAHVNTSLEGGEGHFALSTQDSVIYLVCVARRLDREERDAYNLRVTATDSGSPPLRAEAAFVLHVTDVNDNAPAFDRQLYRPEPLPEVALPGSFVVRVTARDPDQGTNGQVTYSLAPGAHTHWFSIDPTSGIITTAASLDYELEPQPQLITVATDGGLPPLASSATVSVALQDVNDNEPQFQRTFYNASLPEGTQPGTCFLQVTATDADSGPFGLLSYSLGAGLGSSGSPPFRIDAHSGDVCTTRTLDRDQGPSSFDFTVTAVDGGGLKSAVYVKVFLSDENDNPPQFYPREYAASISAQSPPGTAVLRLRAHDPDQGSHGRLSYHILAGNSPPLFTLDEQSGLLTVAWPLARRANSVVQLEIGAEDGGGLQAEPSARVDISIVPGTPTPPIFEQLQYVFSVPEDVAPGTSVGIVQAHNPPGRLAPVTLSLSGGDPRGLFSLDAVSGLLQTLRPLDRELLGPVLELEVRAGSGVPPAFAVARVRVLLDDVNDNSPAFPAPEDTVLLPPNTAPGTPIYTLRALDPDSGVNSRVTFTLLAGGGGAFTVDPTTGHVRLMRPLGPSGGPAHELELEARDGGSPPRTSHFRLRVVVQDVGThGLAPRFNSPTYRVDLPSGTTAGTQVLQVQAQAPDGGPITYHLAAEGASSPFGLEPQSGWLWVRAALDREAQELYILKVMAVSGSKAELGQQTGTATVRVSILNQNEHSPRLSEDPTFLAVAENQPPGTSVGRVFATDRDSGPNGRLTYSLQQLSEDSKAFRIHPQTGEVTTLQTLDREQQSSYQLLVQVQDGGSPPRSTTGTVHVAVLDLNDNSPTFLQASGAAGGGLPIQVPDRVPPGTLVTTLQAKDPDEGENGTILYTLTGPGSELFSLHPHSGELLTAAPLIRAERPHYVLTLSAHDQGSPPRSASLQLLVQVLPSARLAEPPPDLAERDPAAPVPVVLTVTAAEGLRPCSLLGSVAAPEPAGVGALTYTLVGGADPEGTFALDAASGRLYLARPLDFEAGPPWRALTVRAEGPGGAGARLLRVQVQVQDENEHAPAFARDPLALALPENPEPGAALYTFRASDADGPGPNSDVRYRLLRQEPPVPALRLDARTGALSAPRGLDRETTPALLLLVEATDRPANASRRRAARVSARVFVTDENDNAPVFASPSRVRLPEDQPPGPAALHVVARDPDLGEAARVSYRLASGGDGHFRLHSSTGALSVVRPLDREQRAEHVLTVVASDHGSPPRSATQVLTVSVADVNIDEAPTFQQQEYSVLLRENPPGTSLLTLRATDPDVGANGQVTYGGVSSESFSLDPDTGVLTTLRALDREEQEEINLTVYAQDRGSPPQLTHVTVRVAVEDENDHAPTFGSAHLSLEVPEGQDPQTLTMLRASDPDVGANGQLQYRILDGDPSGAFVLDLASGEFGTMRPLDREVEPAFQLRIEARDGGQPALSATLLLTVTVLDANDHAPAFPVPAYSVEVPEDVPAGTLLLQLQAHDPDAGANGHVTYYLGAGTAGAFLLEPSSGELRTAAALDREQCPSYTFSVSAVDGAAAGPLSTTVSVTITVRDVNDHAPTFPTSPLRLRLPRPGPSFSTPTLALATLRAEDRDAGANASILYRLAGTPPPGTTVDSYTGEIRVARSPVALGIPRDRVLFIVATDLGRPARSATGVIIVGLQGEAERGPRFPRASSEATIRENAPPGTPVSPRAVHAGGTNGPITYSILSGNEKGTFSIQPSTGAITVRSAEGLDFEVSPRLRLVLQAESGGAFAFTVLTLTLQDANDNAPRFLRPHYVAFLPESRPLEGPLLQVEADDLDQGSGGIQISYSLAASQPARGLFHVDPTTGTITTTAILDREIWAETRLVLMATDRGSPALVGSTLTVMVIDTNDNRPTIPQPWELRVSEDALLGSEIAQVTGNDVDSGPVLWYVLSPSGPQDPFSVGRYGGRVSLTGPLDFEQCDRYQLQLLAHDGPHEGRANLTVLVEDvNDNAPAFSQSLYQVMLLEHTPPGSAILSVSATDRDSGANGHISYHLASPADCFSVDPNNGTLFTIVGTVALGHDGSGAVDVVLEARDHGAPGRAARATVHVQLQDQNDHAPSFTLSHYRVAVTEDLPPGSTLLTLEATDADGSRSHAAVDYSILSGNWGRVFQLEPRLAEAGESAGPGPRALGCLVLLEPLDFESLTQYNLTVAAADRGQPPQSSVVPVTVTVLDVNDNPPVFTRASYRVTVPEDTPVGAELLHVEASDADPCPHGLVRFTVSSGDPSGLFELDESSGTLRLAHALDCETQARHQLVVQADPAGAHFALAPVTIEVQDVNIDHGPAFPLNLLSTSVAENQPPGTLVTTLHAIDGDAGAFGRLPYSLLEAGPGPEGREAFALNSSTGELRARVPFDYEHTESFRLLVGAADAGNLSASVTVSVLVTGEDEYDPVFLAPAFHFQVPEGARRGHSLGHTQATDEDGGADGLVLYSLATSSPYFGTNQTTGALYLRVDSRAPGSGTATSGGGGRTRREAPRELRLEVIARGPLPGSRSATVPVTVDITHTALGLAPDLNLLLVGAVAASLGVVVVLALAALVLGLVRARSRKAEAAPGPMSQAAPLASDSLQKLGREPPSPPPSEHLYHQTLPSYGGPGAGGPYPRGCSLDPSHSSGRGSAEAAEDDEIRMINEFPRVASVASSLAARGPDSGIQQDADGLSDTSCEPPAPDTWYKGRKAGLLLRGAGATLYREEGPPATATAFLGCCGLSPAPTGDYGFPADGKPCVAGALTAIVAGEEELRGSYNWDYLLSWCPQFQPLASVFTEIARLKDEARPCPPAPRIDPPPLITAVAHPGAKSVPPKPANTAAkARAIFPPASHRSPISHEGSLSSAMSPSFSPSLSPLAARSPVVSPFGVAQGPSASALSAESGLEPPDDTELHI


[0430] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 19B.
97TABLE 19BComparison of NOV19a against NOV19b.Identities/ProteinNOV19a Residues/Similarities for theSequenceMatch ResiduesMatched RegionNOV19b1 . . . 23182162/2318 (93%)1 . . . 23142166/2318 (93%)


[0431] Further analysis of the NOV19a protein yielded the following properties shown in Table 19C.
98TABLE 19CProtein Sequence Properties NOV19aPSort0.7900 probability located in plasma membrane; 0.3000analysis:probability located in microbody (peroxisome); 0.3000probability located in Golgi body; 0.2000probability located in endoplasmic reticulum (membrane)SignalPCleavage site between residues 43 and 44analysis:


[0432] A search of the NOV19a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19D.
99TABLE 19DGeneseq Results for NOV19aNOV19aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB05430Human dachsous protein SEQ ID1 . . . 23182297/2318 (99%)0.0NO: 2 - Homo sapiens, 3298 aa.1 . . . 23142301/2318 (99%)[JP2001327295-A, 27 NOV. 2001]AAU74825Human REPTR 8 protein - Homo14 . . . 2318 2158/2305 (93%)0.0sapiens, 3217 aa. [WO200198354-1 . . . 22332170/2305 (93%)A2, 27 DEC. 2001]ABB66499Drosophila melanogaster25 . . . 2304  875/2445 (35%)0.0polypeptide SEQ ID NO 26289 -7 . . . 24001269/2445 (51%)Drosophila melanogaster, 3503 aa.[WO200171042-A2, 27 SEP.2001]AAU77406Human NOV2 protein, homologue14 . . . 611  590/598 (98%)0.0of cadherin proteins - Homo1 . . . 591  590/598 (98%)sapiens, 602 aa.[WO200206329-A2, 24 JAN.2002]ABB59831Drosophila melanogaster46 . . . 2302  728/2419 (30%)0.0polypeptide SEQ ID NO 6285 -68 . . . 2410 1098/2419 (45%)Drosophila melanogaster, 5147 aa.[WO200171042-A2, 27 SEP.2001]


[0433] In a BLAST search of public sequence datbases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19E.
100TABLE 19EPublic BLASTP Results for NOV19aNOV19aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96JQ0Protocadherin 16 precursor 1 . . . 23182297/2318 (99%)0.0(Cadherin 19) (Cadherin fibroblast 1 . . . 23142301/2318 (99%)1) - Homo sapiens (Human), 3298aa.Q24292DACHSOUS protein precursor25 . . . 2304 871/2445 (35%)0.0(ADHERIN) - Drosophila 7 . . . 24001267/2445 (51%)melanogaster (Fruit fly), 3503 aa.IJFFTMcadherin-related tumor suppressor46 . . . 2302 730/2419 (30%)0.0precursor - fruit fly (Drosophila68 . . . 24101097/2419 (45%)melanogaster), 5147 aa.P33450Cadherin-related tumor suppressor46 . . . 2302 728/2419 (30%)0.0precursor (Fat protein) -68 . . . 24101098/2419 (45%)Drosophila melanogaster (Fruitfly), 5147 aa.Q99PF4Cadherin 23 precursor150 . . . 2300  668/2243 (29%)0.0(Otocadherin) - Mus musculus40 . . . 21991007/2243 (44%)(Mouse), 3354 aa.


[0434] PFam analysis indicates that the NOV19a protein contains the domains shown in the Table 19F.
101TABLE 19FDomain Analysis of NOV19aIdentities/SimilaritiesPfamNOV19a Matchfor theExpectDomainRegionMatched RegionValuecadherin 47 . . . 134 24/110 (22%)6.8e−0561/110 (55%)cadherin 148 . . . 246 35/111 (32%)2.9e−0969/111 (62%)cadherin 260 . . . 353 39/109 (36%)1.3e−2269/109 (63%)cadherin 371 . . . 463 33/107 (31%)5.6e−1471/107 (66%)cadherin 478 . . . 569 39/107 (36%)1.4e−2372/107 (67%)cadherin 583 . . . 676 38/110 (35%)2.7e−1671/110 (65%)cadherin 690 . . . 781 32/107 (30%)7.1e−1667/107 (63%)cadherin 795 . . . 885 33/107 (31%)1.2e−1169/107 (64%)cadherin 899 . . . 989 32/107 (30%)  7e−1670/107 (65%)cadherin1005 . . . 109630/107 (28%)1.8e−1467/107 (63%)cadherin1110 . . . 120244/108 (41%)7.6e−3378/108 (72%)cadherin1222 . . . 131236/107 (34%)7.2e−2171/107 (66%)cadherin1337 . . . 142722/108 (20%)0.004562/108 (57%)cadherin1441 . . . 153734/108 (31%)8.9e−0866/108 (61%)cadherin1550 . . . 164039/107 (36%)8.5e−3178/107 (73%)cadherin1654 . . . 174242/107 (39%)2.7e−2776/107 (71%)cadherin1756 . . . 184638/107 (36%)1.8e−1971/107 (66%)cadherin1860 . . . 195139/107 (36%)2.1e−2877/107 (72%)cadherin1974 . . . 205927/110 (25%)0.017 69/110 (63%)cadherin2073 . . . 216233/109 (30%)  3e−1470/109 (64%)cadherin2176 . . . 226843/108 (40%)2.7e−2067/108 (62%)



Example 20

[0435] The NOV20 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 20A.
102TABLE 20ANOV20 Sequence AnalysisSEQ ID NO:513400 bpNOV20a,GAATTCTTAGTTGTTTTCTTTAGAAGAACATTTCTAGGGAATAATACAAGAAGATTTACC132888-02DNA SequenceGGAATCATTGAAGTTATAAATCTTTGGAATGAGCAAACTCAGAATGGTGCTACTTGAACACTCTGGATCTGCTGACTTCAGAAGACATTTTGTCAACCTGAGTCCCTTCACCATTACTGTGGTCTTACTTCTCAGTGCCTGTTTTGTCACCAGTTCTCTTGGAGGAACAGACAAGGAGCTGAGGCTAGTGGATGGTGAAAACAAGTGTAGCGGGAGAGTGGAAGTGAAAGTCCAGGAGGAGTGGGGAACGGTGTGTAATAATGGCTGGAGCATGGAAGCGGTCTCTGTGATTTGTAACCAGCTGGGATGTCCAACTGCTATCAAAGCCCCTGGATGGGCTAATTCCAGTGCAGGTTCTGGACGCATTTGGATGGATCATGTTTCTTGTCGTGGGAATGAGTCAGCTCTTTGGGATTGCAAACATGATGGATGGGGAAAGCATAGTAACTGTACTCACCAACAAGATGCTGGAGTGACCTGCTCAGATCGATCCAATTTGGAAATGAGGCTGACGCGTGGAGGGAATATGTGTTCTGGAAGAATAGAGATCAAATTCCAAGGACGGTGGGGAACAGTGTGTGATGATAACTTCAACATAGATCATGCATCTGTCATTTGTAGACAACTTGAATGTGGAAGTGCTGTCAGTTTCTCTGGTTCATCTAATTTTGGAGAAGGCTCTGGACCAATCTGGTTTGATGATCTTATATGCAACGGAAATGAGTCAGCTCTCTGGAACTGCAAACATCAAGGATGGGGAAAGCATAACTGTGATCATGCTGAGGATGCTGGAGTGATTTGCTCAAAGGGAGCAGATCTGAGCCTGAGACTGGTAGATCGAGTCACTGAATGTTCAGGAAGATTAGAAGTGAGATTCCAAGGAGAATGGGGGACAATATGTGATGACGGCTGGGACAGTTACGATGCTGCTGTGGCATGCAAGCAACTGGGATGTCCkACTGCCGTCACAGCCATTGGTCGAGTTAACGCCAGTAAGGGATTTGGACACATCTGGCTTGACAGCGTTTCTTGCCAGGGACATGAACCTGCTGTCTGGCAATGTAAACACCATGAATGGGGAAAGCATTATTGCAATCACAATGAAGATGCTGGCGTGACATGTTCTGATGGATCAGATCTGGAGCTAAGACTTAGAGGTGGAGGCAGCCGCTGTGCTGGGACAGTTGAGGTGGAGATTCAGAGACTGTTAGGGAACGTCTGTGACAGAGGCTGGGGACTGAAAGAAGCTGATGTGGTTTGCAGGCAGCTGGGATGTGGATCTGCACTCAAAACATCTTATCAAGTGTACTCCAAAATCCAGGCAACAAACACATGGCTGTTTCTAAGTAGCTGTAACGGAAATGPAACTTCTCTTTGGGACTGCAAGAACTGGCAATGGGGTGGACTTACCTGTGATCACTATGAAGAAGCCAAAATTACCTGCTCAGCCCACAGGGAACCCAGACTGGTTGGAGGGGACATTCCCTGTTCTGGACGTGTTGAAGTGAAGCATGGTGACACGTGGGGCTCCATCTGTCATTCGGACTTCTCTCTGGAAGCTGCCAGCGTTCTATGCAGGGAATTACAGTGTGGCACAGTTGTCTCTATCCTGGGGGGAGCTCACTTTGGAGAGGGAAATGGACAGATCTGGGCTGAAGAATTCCAGTGTGAGGGACATGAGTCCCATCTTTCACTCTGCCCAGTAGCACCCCGCCCAGAAGGAACTTGTAGCCACAGCAGGGATGTTGGAGTAGTCTGCTCAAGATACACAGAAATTCGCTTGGTGAATGGCAAGACCCCGTGTGAGGGCAGAGTGGAGCTCAAAACGCTTGGTGCCTGGGGATCCCTCTGTAACTCTCACTGGGACATAGAAGATGCCCATGTTCTTTGCCAGCAGCTTAAATGTGGAGTTGCCCTTTCTACCCCAGGAGGAGCACGTTTTGGAAAAGGAAATGGTCAGATCTGGAGGCATATGTTTCACTGCACTGGGACTGAGCAGCACATGGGAGATTGTCCTGTAACTGCTCTAGGTGCTTCATTATGTCCTTCAGAGCAAGTGGCCTCTGTAATCTGCTCAGGAAACCAGTCCCAAACACTGTCCTCGTGCAATTCATCGTCTTTGGGCCCAACAAGGCCTACCATTCCAGAAGAAAGTGCTGTGGCCTGCATAGAGAGTGGTCkACTTCGCCTGGTAAATGGAGGAGGTCGCTGTGCTGGGAGAGTAGACATCTATCATCAGCGCTCCTGGGGCACCATCTGTGATGACAGCTGGGACCTGAGTGATGCCCACGTGGTTTGCAGACAGCTGGGCTGTGGAGAGGCCATTAATGCCACTGGTTCTGCTCATTTTGGGGAAGGAACAGGGCCCATCTGGCTGGATGAGATGAAATGCAATGGAAAACAATCCCGCATTTGGCAGTGCCATTCACACGGCTGGGGGCAGCAAAATTGCAGGCACAAGGAGGATGCGGGAGTTATCTGCTCAGAATTCATGTCTCTGAGACTGACCAGTGAAGCCAGCAGAGAGGCCTGTGCAGGGCGTCTGGAAGTTTTTTACAATGGAGCTTGGGGCACTGTTGGCAAGAGTAGCATGTCTGAAACCACTGTGGGTGTGGTGTGCAGGCAGCTGGGCTGTGCAGACAAAGGGAAAATCAACCCTGCATCTTTAGACAAGGCCATGTCCATTCCCATGTGGGTGGACAATGTTCAGTGTCCAAAAGGACCTGACACGCTGTGGCAGTGCCCATCATCTCCATGGGAGAAGAGACTGGCCAGCCCCTCGGAGGAGACCTGGATCACATGTGACAACAAGATAAGACTTCAGGAAGGACCCACTTCCTGTTCTGGACGTGTGGAGATCTGGCATGGAGGTTCCTGGGGGACAGTGTGTGATGACTCTTGGGACTTGGACGATGCTCAGGTGGTGTGTCAACAACTTGGCTGTGGTCCAGCTTTGAAAGCATTCAAAGAAGCAGAGTTTGGTCAGGGGACTGGACCGATATGGCTCAATGAAGTGAAGTCCAAAGGGAATGAGTCTTCCTTGTGGGATTGTCCTGCCAGACGCTGGGGCCATAGTGAGTGTGGGCACAAGGAAGACGCTGCAGTGAATTGCACAGATATTTCAGTGCAGAAAACCCCACAAAAAGCCACAACAGTTTCCTCAAGAGGAGAGAACTTAGTCCACCAAATTCAATACCGGGAGATGAATTCTTGCCTGAATGCAGATGATCTGGACCTAATGAATTCCTCAGGAGGCCATTCTGAGCCACACTGAAAAGGAAAATGGGAATTTATAACCCAGTGAGTTCAGCCTTTAAGATACCTTGATGAAGACCTGGAGTAORF Start: ATG at 87ORF Stop: TGA at 3330SEQ ID NO:521081 aaMW at 117107.8 kDNOV20a,MSKLRMVLLEDSGSADFRRHFVNLSPFTITVVLLLSACFVTSSLGGTDKELRLVDGENCG132888-02CG132888-02KCSGRVEVKVQEEWGTVCNNGWSMEAVSVICNQLGCPTAIKAPGWANSSAGSGRIWMDProtein SequenceHVSCRGNESALWDCKHDGWGKHSNCTHQQDAGVTCSDGSNLEMRLTRGGNMCSGRIEIKFQGRWGTVCDDNFNIDHASVICRQLECGSAVSPSGSSNFGEGSGPIWFDDLICNGNESALWNCKHQGWGKHNCDHAEDAGVICSKGADLSLRLVDGVTECSGRLEVRFQGEWGTICDDGWDSYDAAVACKQLGCPTAVTAIGRVNASKGFGHIWLDSVSCQGHEPAVWQCKHHEWGKHYCNHNEDAGVTCSDGSDLELRLRGGGSRCAGTVEVEIQRLLGKVCDRGWGLKEADVVCRQLGCGSALKTSYQVYSKIQATNTWLFLSSCNGNETSLWDCKNWQWGGLTCDHYEEAKITCSAHREPRLVGGDIPCSGRVEVKHGDTWGSICDSDFSLEAASVLCRELQCGTVVSILGGAHFGEGNGQIWAEEFQCEGHESHLSLCPVAPRPEGTCSHSRDVGVVCSRYTEIRLVNGKTPCEGRVELKTLGAWGSLCNSHWDIEDAHVLCQQLKCGVALSTPGGARFGKGNGQIWRHMFHCTGTEQHMGDCPVTALGASLCPSEQVASVICSGNQSQTLSSCNSSSLGPTRPTIPEESAVACIESGQLRLVNCGGRCAGRVEIYHEGSWGTICDDSSDLSDAHVVCRQLGCGEAINATGSAHFGEGTGPIWLDEMKCNGKESRIWQCHSHGWGQQNCRHKEDAGVICSEFMSLRLTSEASREACAGRLEVFYNGAWGTVGKSSMSETTVGVVCRQLGCADKGKINPASLDKANSIPMWVDNVQCPKGPDTLWQCPSSPWEKRLASPSEETWITCDNKIRLQEGPTSCSGRVEIWHGGSWGTVCDDSWDLDDAQVVCQQLGCGPALKAFKEAEFGQGTGPIWLNEVKCKGNESSLWDCPARRWGHSECGHKEDAAVNCTDISVQKTPQKATTVSSRGENLVHQIQYREMNSCLNADDLDLMNSSGGHSEPH


[0436] Further analysis of the NOV20a protein yielded the following properties shown in Table 20B.
103TABLE 20BProtein Sequence Properties NOV20aPSort0.6500 probability located in plasma membrane; 0.5658 probability located inanalysis:mitochondrial inner membrane; 0.3635 probability located in microbody(peroxisome); 0.3000 probability located in Golgi bodySignalPCleavage site between residues 46 and 47analysis:


[0437] A search of the NOV20a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 20C.
104TABLE 20CGeneseq Results for NOV20aNOV20aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM41280Human polypeptide SEQ ID NO 1 . . . 10811081/1121 (96%)0.06211 - Homo sapiens, 1124 aa. 4 . . . 11241081/1121 (96%)[WO200153312-A1, 26 JUL.2001]AAM41279Human polypeptide SEQ ID NO 1 . . . 10811081/1121 (96%)0.06210 - Homo sapiens, 1124 aa. 4 . . . 11241081/1121 (96%)[WO200153312-A1, 26 JUL.2001]AAM39493Human polypeptide SEQ ID NO 1 . . . 10811081/1121 (96%)0.02638 - Homo sapiens, 1121 aa. 1 . . . 11211081/1121 (96%)[WO200153312-A1, 26 JUL.2001]AAB66039Human TANGO 234 mature 46 . . . 1067 586/1057 (55%)0.0protein - Homo sapiens, 1413 aa.324 . . . 1379 737/1057 (69%)[WO200077239-A2, 21 DEC.2000]AAB66040Human TANGO 234 extracellular 46 . . . 1034 575/989 (58%)0.0domain - Homo sapiens, 1319 aa.324 . . . 1311 722/989 (72%)[WO200077239-A2, 21 DEC.2000]


[0438] In a BLAST search of public sequence datbases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20D.
105TABLE 20DPublic BLASTP Results for NOV20aNOV20aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ07898M130 antigen precursor - Homo 6 . . . 10811076/1116 (96%)0.0sapiens (Human), 1116 aa. 1 . . . 11161076/1116 (96%)Q07900M130 antigen cytoplasmic variant 6 . . . 10751070/1110 (96%)0.02 precursor - Homo sapiens 1 . . . 11101070/1110 (96%)(Human), 1156 aa.Q07899M130 antigen cytoplasmic variant 6 . . . 10791070/1114 (96%)0.01 precursor - Homo sapiens 1 . . . 11141070/1114 (96%)(Human), 1151 aa.Q99MX8Macrophage hemoglobin 5 . . . 1075 804/1108 (72%)0.0scavenger receptor CD163 5 . . . 1108 911/1108 (81%)precursor - Mus musculus(Mouse), 1121 aa.Q9NR16Scavenger receptor cysteine-rich 46 . . . 1067 585/1057 (55%)0.0type 1 protein M160 precursor -364 . . . 1419 736/1057 (69%)Homo sapiens (Human), 1453 aa.


[0439] PFam analysis indicates that the NOV20a protein contains the domains shown in the Table 20E.
106TABLE 20EDomain Analysis of NOV20aIdentities/SimilaritiesPfamNOV20a Matchfor theExpectDomainRegionMatched RegionValueSRCR 54 . . . 152 43/115 (37%)2.2e−3080/115 (70%)SRCR162 . . . 259 46/114 (40%)9.6e−3479/114 (69%)SRCR269 . . . 366 47/114 (41%)2.4e−3580/114 (70%)SRCR376 . . . 473 43/114 (38%)7.4e−2473/114 (64%)SRCR481 . . . 578 52/114 (46%)  2e−3987/114 (76%)SRCR586 . . . 683 41/114 (36%)2.4e−2978/114 (68%)SRCR722 . . . 819 53/114 (46%)9.4e−4589/114 (78%)SRCR829 . . . 926 35/114 (31%)3.2e−1769/114 (61%)SRCR932 . . . 102951/114 (45%)2.1e−3780/114 (70%)



Example 21

[0440] The NOV21 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 21A.
107TABLE 21ANOV21 Sequence AnalysisSEQ ID NO: 534308 bpNOV21a,ATGGGGAAGAGAGGCATGATGAGAGATCTCTGTGGCTTGTGTGTGCCAAGGTCACCACCG133159-01DNA SequenceTGGAAACTCTCAAGGACAATACCTGTGTCTCCTCCAAGGCCCATCCCTCGTGCCTAACACAGTTCCTGGCAGAGACCAGAAACTCCTTTGACTGTTGTGAACCTGATGAGGTCCCTGATCACTGTCCAGGGCCGCCAGGCTCCAAGCACAGGGCCCGGCCAGCCCCGGATCCCCCTCCCCTCTTCGATGACACAAGCGGTGGTTATTCCAGCCAGCCCGGGGGATACCCAGCCACAGGAGCAGACGTGGCCTTCAGTGTCAACCACTTGCTTGGGGACCCAATGCCCAATGTGGCTATCGCCTATGGCAGCTCCATCGCATCCCATGGGAAGGACATGGTGCACAAGGAGCTGCACCGTTTTGTGTCTGTGAGCAAACTCAAGTATTTTTTTGCTGTGGACACAGCCTACGTGGCCAAGAAGCTAGGGCTGCTGGTCTTCCCCTACACACACCAGAACTGGGAAGTGCAGTACAGTCGTCATGCTCCTCTGCCCCCCCGGCAAGACCTCAACGCCCCTGACCTCTATATCCCCAGCGTGCTCTGTTATCCCTTCTTCCAAGAAGCCTTTCCTGACCCCCTGAGCAAGTGGTGGCTCCCTTCTGGGTTCCCACAACTGCCTGTCCACATGGCATTTTTCAGGCTGCCCACACATACAGCTGACTCTTCTCTGTCCTGTTGGCTGCACAGGGCCAGGCCCATCGTGGACACCCAGGCGATGGCCTTCATTACTTACGTGCTCCTGGCTGGGATGGCACTGGGCATTCAGAAAAGGTTCTCCCCGGAGGTGCTGGGCCTGTGTGCAAGCACAGCGCTGGTGTGGGTGGTGATGGAGGTGCTGGCCCTGCTCCTGGGCCTCTACCTGGCCACCGTGCGCAGTGACCTGAGCACCTTTCACCTGCTGGCCTACAGTGGCTACAAATACGTGGGAATGATCCTCAGTGTGCTCACGGGGCTGCTGTTCGGCAGCGATGGCTACTACGTGGCGCTGGCCTGGACCTCATCGGCGCTCATGTACTTCATTGTGCGCTCTTTGCGGACAGCAGCCCTGGGCCCCGACAGCATGGGGGGCCCCGTCCCCCGGCAGCGTCTCCAGCTCTACCTGACTCTGGGAGCTGCAGCCTTCCAGCCCCTCATCATATACTGGCTGACTTTCCACCTGGTCCGGCAGCTGCTACCCTCACCTCCAGAGGTGGTAGAAGAGGAGGGGGATGTTGAGGCCCAGGGTCACCCACTCTGCTGCACACAGAAACATCAGACAGAAGACGCCGTGGATGCAGTATTCTGGGACCACCAGCTGGGGGATGACTACCTGTTTAAGCTGCTTTTGATTGGCGACTCAGGCGTGGGCAAGTCATGCCTGCTCCTGCGGTTTGCTGATGACACGTACACAGAGAGCTACATCAGCACCATCGGGGTGGACTTCAAGATCCGAACCATCGAGCTGGATGGCAAAACTATCAAACTTCAGATCTGGGACACAGCGGCCCAGGAACGGTTCCGGACCATCACTTCCAGCTACTACCGGGGGGCTCATGGCATCATCGTGGTGTATGACGTCACTGACCAGATTCACAAGTGCCAGTTCCGGCCCGGCCATTGTTCkAGGCCCTTGAGATTTAACTGCGAACAAGGTGGGGGTGGCTCTGGCATTCTACTGACGGAAACAGACAATAAACTTGCATACAGAACCACCGTGACTTTAGGAGTGATAAGGTCAATGCTTCCAATAGAGTTGGAGCAAGTGCGCCAQAAGCTGCTGCAGCTGCTCCGCACCTACTCACCCAGCGCCCAGGTCAAGCGGCTCCTGCAGGCCTGCAAGCTGCTCTACATGGCCCTGAGGACCCAGCAAGGGGAGGGCGCGGGTGCCGACGAGTTCCTGCCTCTGCTGAGCCTCGTCTTGGCCCACTGTGACCTTCCTGACCTGCTGCTGGAGGCCGAGTACATGTCGGAGCTGCTGGAGCCCAGCCTGCTTACTGGAGAGGGTCGCTACTACCTGACCAGCCTCTCTGCCAGCCTGGCCCTGCTGAGTGGCCTGGGTCAGGCCCACACCCTCCCACTGAGCCCCGTGCAGGAGCTACGGCGCTCCCTCAGCCTCTGGGAGCAGCGCCGCCTCCCTGCCACCCACTGCTTCCAGCACCTCCTCCGAGTAGCCTATCAGGATCCCAGCAGTGGCTGCACCTCCAAGACCCTGGCCGTGCCCCCAGAGGCCTCGATTGCCACCCTGAACCAGCTCTGTGCCACCAAGTTCCGAGTGACCCAGCCCAACACTTTTCGCCTCTTCCTGTACAAGGAGCAGGGCTACCACCGCCTGCCCCCTGGGGCCCTGGCCCACAGGCTGCCCACCACTGGCTACCTCGTCTACCGCCGGGCAGAGTGGCCTGAGACCCAGGGGGCTGTGACAGAGGAGGAGGGCAGTGGGCAGTCAGAGGCAAGAAGCAGAGGGGAGGAGCAAGGGTGCCAGGGAGATGGGGATCCTGGGGTCAAAGCCAGCCCCAGGGACATTCGGGAACAGTCTGAGACAACTGCTGAAGGGGGCCAGGAGTTTGAGTGGCTGCCCTTCGGCTCTGTGGCCGCTGTGCAGTGCCAGGCTGGCAGGGGAGCCTCTCTGCTCTGCGTGAAGCAGCCTGAGGGAGGTGTGGGCTGGTCACGGGCTGGGCCCCTGTGCCTGGGGACTGGCTGCAGCCCTGACAACGGGGGCTGCGAACACGAATGTGTGGAGGAGGTGGATGGTCACGTGTCCTGCCGCTGCACTGAGGGCTTCCGGCTGGCAGCAGACGGGCGCAGTTGCGAGGACCCCTGTCCCCAGGCTCCGTGCGAGCAGCAGTGTGAGCCCGGTGGGCCACAAGGCTACAGCTGCCACTGTCGCCTGGGTTTCCGGCCAGCGGAGGATGATCCGCACCGCTGTGTGGACACAGATGAGTGCCAGATTGCCGGTGTGTGCCAGCAGATGTGTGTCAACTACGTTGGTGGCTTCGAGTGTTATTGTAGCGAGGGACATGAGCTGGAGGCTGATGGCATCAGCTGCAGCCCTGCAGGGGCCATGGGTGCCCAGGCTTCCCAGGACCTCGGAGATGAGTTGCTGGATGACGGCGAGGATGAGGAAGATGAAGACGAGGCCTGGAACGCCTTCAACGGTGGCTGGACGGAGATGCCTGGGATCCTGTGGATGGAGCCTACGCAGCCGCCTGACTTTGCCCTGGCCTATAGACCGAGCTTCCCAGAGGACAGAGAGCCACAGATACCCTACCCGGAGCCCACCTGGCCACCCCCGCTCAGTGCCCCCAGGGTCCCCTACCACTCCTCAGTGCTCTCCGTCACCCGGCCTGTGGTGGTCTCTGCCACGCATCCCACACTGCCTTCTGCCCACCAGCCTCCTGTGATCCCTGCCACACACCCAGCTTTGTCCCGTGACCACCAGATCCCCGTGATCGCAGCCAACTATCCACATCTGCCTTCTGCCTACCAACCCGGTATTCTCTCTGTCTCTCATTCAGCACAGCCTCCTGCCCACCAGCCCCCTATGATCTCAACCAAATATCCGGAGCTCTTCCCTGCCCACCAGTCCCCCATGTTTCCAGACACCCGGGTCGCTGGCACCCAGACCACCACTCATTTGCCTGGAATCCCACCTAACCATGCCCCTCTGGTCACCACCCTCGGTGCCCAGCTACCCCCTCAAGCCCCAGATGCCCTTGTCCTCAGAACCCAGGCCACCCAGCTTCCCATTATCCCAACTGCCCAGCCCTCTCTGACCACCACCTCCAGGTCCCCTGTGTCTCCTGCCCATCAAATCTCTGTGCCTGCTGCCACCCAGCCCGCAGCCCTCCCCACCCTCCTGCCCTCTCAGAGCCCCACTAACCAGACCTCACCCATCAGCCCTACACATCCCCATTCCAAAGCCCCCCAAATCCCAAGGGAAGATGGCCCCAGTCCCAAGTTGGCCCTGTGGCTGCCCTCACCAGCTCCCACAGCAGCCCCAACAGCCCTGGGGGAGGCTGGTCTTGCCGAGCACAGCCAGAGGGATGACCGGTGGCTGCTGGTGGCACTCCTGGTGCCAACGTGTGTCTTTTTGGTGGTCCTGCTTGCACTGGGCATCGTGTACTGCACCCGCTGTGGCCCCCATGCACCCAACAAGCGCATCACTGACTGCTATCGCTGGGTCATCCATGCTGGGAGCAAGAGCCCAACAGAACCCATGCCCCCCAGGGGCAGCCTCACAGGGGTGCAGACCTGCAGAACCAGCGTGTGAORF Start: ATG at 1ORF Stop: TGA at 4306SEQ ID NO:541435 aaMW at 156118.8 kDNOV21a,MGKRGMMRDLCGLCVPRSPVETLKDNTCVSSKAHPSCLTQFLAETRNSFDCCEPDEVPCG133159-01Protein SequenceDHCPGPPGSKHRARAAPDPPPLFDDTSCGYSSQPGGYPATGADVAFSVNHLLGDPMANVAMAYGSSIASHGKDMVHKELHRFVSVSKLKYFFAVDTAYVAKKLGLLVFPYTHQNWEVQYSRDAPLPPRQDLNAPDLYIPSVLCYPFFQEAFPDPLSKWWLPSGFPQLPVHMAFFRLPTHTADSSLSCWLHRARPIVDTQAMAFITYVLLAGMALGIQKRFSPEVLGLCASTALVWVVMEVLALLLGLYLATVRSDLSTFHLLAYSGYKYVGMILSVLTGLLFCSDGYYVALAWTSSALMYFIVRSLRTAALGPDSMGGPVPRQRLQLYLTLGAAAFQPLIIYWLTFHLVRQLLPSPPEVVEEEGDVEAQGHPLCCTQKHQTEEAVDGVFWDHQLGDDYLFKLLLIGDSGVGKSCLLLRFADDTYTESYISTIGVDFKIRTIELDGKTIKLQIWDTAGQERFRTITSSYYRGAHGIIVVYDVTDQTHKCQFRPGHCSRPLRFNCEQGGGGSGILVTETDNKLAYRTTVTLGVIRSMLPIELEQVRQKLLQLLRTYSPSAQVKRLLQACKLLYMALRTQEGEGAGADEFLPLLSLVLAHCDLPELLLEAEYMSELLEPSLLTGEGGYYLTSLSASLALLSGLGQAHTLPLSPVQELRRSLSLWEQRRLPATHCFQHLLRVAYQDPSSGCTSKTLAVPPEASIATLNQLCATKFRVTQPNTFGLFLYKEQGYHRLPPGALAHRLPTTGYLVYRRAEWPETQGAVTEEEGSGQSEARSRGEEQGCQGDGDAGVKASPRDIREQSETTAEOGQEFEWLPFGSVAAVQCQAGRGASLLCVKQPEGGVGWSRAGPLCLGTGCSPDNGGCEHECVEEVDGHVSCRCTEGFRLAADGRSCEDPCAQAPCEQQCEPGGPQGYSCHCRLGFRPAEDDPHRCVDTDECQIAGVCQQMCVNYVGGFECYCSEGHELEADGISCSPAGAMGAQASQDLGDELLDDGEDEEDEDEAWKAFNGGWTEMPGILWMEPTQPPDFALAYRPSFPEDREPQIPYPEPTWPPPLSAPRVPYHSSVLSVTRPVVVSATHPTLPSAHQPPVIPATHPALSRDHQIPVIAANYPDLPSAYQPGILSVSHSAQPPAHQPPMISTKYPELFPAHQSPMFPDTRVAGTQTTTHLPGIPPNHAPLVTTLGAQLPPQAPDALVLRTQATQLPIIPTAQPSLTTTSRSPVSPAHQISVPAATQPAALPTLLPSQSPTNQTSPISPTHPHSKAPQIPREDGPSPKLALWLPSPAPTAAPTALGEAGLAEHSQRDDRWLLVALLVPTCVFLVVLLALGIVYCTRCGPHAPNKRITDCYRWVIHAGSKSPTEPMPPRGSLTGVQTCRTSV


[0441] Further analysis of the NOV21a protein yielded the following properties shown in Table 21B.
108TABLE 21BProtein Sequence Properties NOV21aPSort0.6000 probability located in plasma membrane; 0.4000 probability located inanalysis:Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane);0.3000 probability located in microbody (peroxisome)SignalPNo Known Signal Sequence Indicatedanalysis:


[0442] A search of the NOV21a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 21C.
109TABLE 21CGeneseq Results for NOV21aNOV21aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB90732Human Tumour Endothelial 867 . . . 1435 569/569 (100%)0.0Marker polypeptide SEQ ID NO 189 . . . 757  569/569 (100%)196 - Homo sapiens, 757 aa.[WO200210217-A2, 07 FEB.2002]ABB90721Human Tumour Endothelial 867 . . . 1435 569/569 (100%)0.0Marker polypeptide SEQ ID NO 189 . . . 757  569/569 (100%)177 - Homo sapiens, 757 aa.[WO200210217-A2, 07 FEB.2002]AAM25557Human protein sequence SEQ ID 941 . . . 1435489/495 (98%)0.0NO: 1072 - Homo sapiens, 494 aa.  2 . . . 494 489/495 (98%)[WO200153455-A2, 26 JUL.2001]AAB93749Human protein sequence SEQ ID1003 . . . 1435432/433 (99%)0.0NO: 13411 - Homo sapiens, 433  1 . . . 433 432/433 (99%)aa. [EP1074617-A2, 07 FEB2001]AAM93967Human stomach cancer expressed1003 . . . 1435432/433 (99%)0.0polypeptide SEQ ID NO 2 - Homo  1 . . . 433 432/433 (99%)sapiens, 433 aa. [WO200109317-A1, 08 FEB. 2001]


[0443] In a BLAST search of public sequence datbases, the NOV21a protein was found to have homology to the proteins shown in the BLASTP data in Table 21D.
110TABLE 21DPublic BLASTP Results for NOV21aNOV21aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9HCU0Tumor endothelial marker 1 867 . . . 1435 569/569 (100%)0.0precursor (Endosialin protein) - 189 . . . 757  569/569 (100%)Homo sapiens (Human), 757 aa.Q96KB6CDNA FLJ14384 fis, clone1003 . . . 1435432/433 (99%)0.0HEMBA1002150 - Homo sapiens  1 . . . 433 432/433 (99%)(Human), 433 aa.Q91ZV1Endosialin - Mus musculus 867 . . . 1435431/586 (73%)0.0(Mouse), 765 aa. 189 . . . 765 469/586 (79%)Q91V98Tumor endothelial marker 1 867 . . . 1435430/586 (73%)0.0precursor (Endosialin) - Mus 189 . . . 765 468/586 (79%)musculus (Mouse), 765 aa.Q96CC8Hypothetical 84.1 kDa protein - 595 . . . 866 271/272 (99%)e−154Homo sapiens (Human), 783 aa. 489 . . . 760 272/272 (99%)


[0444] PFam analysis indicates that the NOV21a protein contains the domains shown in the Table 21E.
111TABLE 21EDomain Analysis of NOV21aIdentities/SimilaritiesPfamNOV21a Matchfor theExpectDomainRegionMatched RegionValuearf445 . . . 619 40/202 (20%)0.0036 102/202 (50%) ras459 . . . 628 69/210 (33%)1.6e−30131/210 (62%) VPS9595 . . . 700 51/107 (48%)2.7e−5097/107 (91%)RA730 . . . 811 22/113 (19%)9.8e−1770/113 (62%)EGF913 . . . 949  13/47 (28%)4.6e−06 31/47 (66%)TIL936 . . . 994  19/74 (26%)0.17   40/74 (54%)EGF994 . . . 1028 13/47 (28%)0.00035 26/47 (55%)



Example 22

[0445] The NOV22 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 22A.
112TABLE 22ANOV22 Sequence AnalysisSEQ ID NO: 551902 bpNOV22a,CCCCAGTGCGGCCGGGGCGCGGGTTCGAGCTGCTGCTCGGCAAGCCTGGGTGTCTAGGCG133508-01DNA SequenceGCATGAGCGGAGTGTGGGGGGCCGGCGGGCCTCGGTGCCAGGAGGCGCTCGCGGTCCTCGCCTCGCTGTGCCGGGCCCGGCCGCCCCCTCTCGGGCTGGACGTGGAGACTTGTCGGAGCTTCGAGCTGCAGCCCCCAGAGCGGAGTCCCAGCGCGGCAGGCGCAGGCACCTCTGTCAGCCTCCTCGCAGTTGTAGTTATTGTGTGTGGCGTGGCCCTGGTGGCAGTTTTTCTCTTTCTCTTTTGGAAGCTGTGCTGGATGCCCTGGAGGAACAAGGAGGCCTCCAGTCCCTCTTCTGCTAATCCCCCCTTGGAAGCCCTCCAGAGCCCCACCTTCAGAGGCAACATGGCGGACAAGCTGAAGGACCCCAGCACCCTGGGCTTCCTGGAGGCCGCCGTGAAGATCAGCCACACGTCCCCAGATATCCCACCTGAGGTGCAGATGTCGGTCAAGGAGCACATCATGCGTCACACCCGGCTGCAGCGGCAAACTACACAGCCAGCGTCATCCACCAGGCACACGTCCTTCAAGCGCCACCTGCCAAGGCAGATGCATGTCTCCAGTGTAGACTATGGCAATGAGCTTCCACCAGCAGCAGAGCAGCCCACCAGCATTGGCCGCATCAAGCCTGAGCTCTACAAGCAGAAGTCGGTGGATGGGGAGGATGCCAAGTCTGAGGCCACCAAGAGCTGCGGGAAGATCAACTTCAGCCTACGCTACGATTACGAGACCGAGACCCTGATTGTGCGTATCCTGAAGGCTTTTGACCTCCCTGCCAAGGACTTTTGTGGAAGCTCTGACCCTTATGTCAAGATCTACCTCCTGCCTGACCGCAAATGCAAGCTGCAGACCCGGGTGCACCGCAAGACCCTGAACCCCACCTTTGATGAGAACTTCCACTTCCCTGTGCCCTATGAGGAGCTGGCTGACCGCAAGCTGCATCTCAGTGTCTTCGACTTTGACCGCTTCTCCCGCCATGACATGATTGGCGAGGTCATCCTGGACAACCTCTTTCAGGCCTCTGACCTGTCTCGGGAAACCTCCATCTGGAAGGATATCCAATATGCCACAAGTGAAAGCGTGGACTTGGGAGAGATCATGTTCTCCCTTTGCTACCTGCCCACTGCAGGCAGGCTCACCCTCACAGTGATTAAGTGTCGGAACCTCAAGGCGATGGACATCACAGGCTATTCAGATCCCTATGTGAAAGTGTCCTTGCTCTGTGATGGGCGGAGGCTGAACAAGAAGAAAACAACCATAAACAAAAACACTCTCAATCCTGTCTACAATGAGGCCATCATCTTTGACATTCCCCCGGAAAACATGGATCAAGTCAGCCTGCTCATCTCAGTCATGGACTATGATCGAGTGGGCCACAATGAGATCATAGGAGTCTGTCGTGTGGGGATCACTGCTGAAGGCCTGGGCAGGGACCACTGGAACGAGATGCTGGCATACCCCCGGAAGCCCATCGCACACTGGCACTCCTTGGTGGAGGTAAAGAAATCCTTCAAAGAGGGAAACCCTCGGTTGTGATTTCATTCACGTCCATGCCGCAAGCAGAGAGACTGCCACCTGGAGTTAGGATGGCAGGCCCGAGCTGCTAGCTTCGACAGTGAGAGCTCGTGCCCATCTCCGAAACCACCTCCAACACCATGAGATGTGCAGCCAAATAACACAAATGGGACTCAGCAATGTTCTCTTTGCACTTGTTCAACCGTCTAAACAGTGTTGTGCAGTCGCAGTGGCGGCAGCAGCGGCAGCCGTCCGTCACTCCAGAGTCTTACCTGCTCCTGTGTAGGTCAAAGCTGAGACACTTGTCATGTGGTCAGATCTGTCTTAGTCORF Start: ATG at 61ORF Stop: TGA at 1591SEQ ID NO:56510 aaMW at 57324.3 kDNOV22aMSGVWGAGGPRCQEALAVLASLCRARPPPLGLDVETCRSFELQPPERSPSAAGAGTSVCG133508-01Protein SequenceSLLAVVVIVCGVALVAVFLFLFWKLCWMPWRNKEASSPSSANPPLEALQSPSFRGNMADKLKDPSTLGFLEAAVKISHTSPDIPAEVQMSVKEHIMRHTRLQRQTTEPASSTRHTSFKRHLPRQMHVSSVDYGNELPPAAEQPTSIGRIKPELYKQKSVDGEDAKSEATKSCCKINFSLRYDYETETLIVRILKAFDLPAKDFCGSSDPYVKIYLLPDRKCKLQTRVHRKTLNPTFDENFHFPVPYEELADRKLHLSVFDFDRFSRHDMIGEVILDNLFEASDLSRETSIWKDIQYATSESVDLGEIMFSLCYLPTAGRLTLTVIKCRNLKAMDITGYSDPYVKVSLLCDGRRLKKKKTTIKKNTLNPVYNEAIIFDIPPENMDQVSLLISVMDYDRVGHNETIGVCRVGITAEGLGRDHWNEMLAYPRKPIAHWHSLVEVKKSFKEGNPRLSEQ ID NO: 57675 bpNOV22b,GGATCCCTGATTGTGCGTATCCTGAAGGCTTTTGACCTCCCTGCCAAGGACTTTTGTG225171562 DNASequenceGAAGCTCTGACCCTTATGTCAAGATCTACCTCCTGCCTGACCGCAAATGCAAGCTGCAGACCCGGGTGCACCGCAAGACCCTGAACCCCACCTTTGATGAGAACTTCCACTTCCCTGTGCCCTATGAGGAGCTGGCTGACCGCAAGCTGCATCTCAGTGTCTTCGACTTTGACCGCTTCTCCCGCCATGACATGATTGGCGAGGTCATCCTGGACAACCTCTTTGAGGCCTCTGACCTGTCTCGGGPAACCTCCATCTGGAAGGATATCCAATATGCCACAAGTGAAAGCGTGGACTTGGGAGAGATCATGTTCTCCCTTTGCTACCTGCCCACTGCAGGCAGGCTCACCCTCACAGTGATTAAGTGTCGGAACCTCAAGGCGATGGACATCACAGGCTATTCAGATCCCTATGTGAAAGTGTCCTTGCTCTGTGATGGGCGGAGGCTGAAGAAGAAGAAAACAACCATAAAGAAAAACACTCTCAATCCTGTCTACAATGAGGCCATCATCTTTGACATTCCCCCGGAAAACATGGATCAAGTCAGCCTGCTCATCTCAGTCATGGACTATGATCGAGTGGGCCACAATGAGATCATAGGAGTCTGTCGTCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 58225 aaMW at 25902.6 kDNOV22b,GSLIVRILKAFDLPAKDFCGSSDPYVKIYLLPDRKCKLQTRVHRKTLNPTFDENFHFP225171562Protein SequenceVPYEELADRKLHLSVFDFDRFSRHDMTGEVILDNLFEASDLSRETSIWKDIQYATSESVDLGEIMFSLCYLRTAGRLTLTVIKCRNLKAMDITGYSDPYVKVSLLCDGRRLKKKKTTIKKNTLNPVYNEAIIFDIPPENMDQVSLLISVMDYDRVGHNEIIGVCRLE


[0446] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 22B.
113TABLE 22BComparison of NOV22a against NOV22b.Identities/ProteinNOV22a Residues/Similarities forSequenceMatch Residuesthe Matched RegionNOV22b245 . . . 467210/223 (94%) 2 . . . 224212/223 (94%)


[0447] Further analysis of the NOV22a protein yielded the following properties shown in Table 22C.
114TABLE 22CProtein Sequence Properties NOV22aPSort0.6760 probability located in plasma membrane; 0.1000analysis:probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum(lumen); 0.1000 probability located in outsideSignalPCleavage site between residues 26 and 27analysis:


[0448] A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22D.
115TABLE 22DGeneseq Results for NOV22aNOV22aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU19715Human novel extracellular matrix82 . . . 510428/429 (99%)0.0protein, Seq ID No 365 - Homo33 . . . 461429/429 (99%)sapiens, 461 aa. [WO200155368-A1, 02 AUG. 2001]AAU87165Novel central nervous system82 . . . 421339/340 (99%)0.0protein #75 - Homo sapiens, 412 aa.33 . . . 372340/340 (99%)[WO200155318-A2, 02 AUG. 2001]ABB05693Human cell12 . . . 510261/580 (45%)e−127signaling/communication protein10 . . . 583340/580 (58%)clone amy2_2o13 - Homo sapiens,590 aa. [WO200198454-A2, 27DEC. 2001]AAE17499Human secretion and trafficking12 . . . 510261/580 (45%)e−127protein-8 (SAT-8) - Homo sapiens,10 . . . 583340/580 (58%)590 aa. [WO200202610-A2, 10JAN. 2002]AAU19714Human novel extracellular matrix230 . . . 500 179/272 (65%)e−105protein, Seq ID No 364 - Homo10 . . . 281218/272 (79%)sapiens, 295 aa. [WO200155368-A1, 02 AUG. 2001]


[0449] In a BLAST search of public sequence datbases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22E.
116TABLE 22EPublic BLASTP Results tor NOV22aNOV22aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9R0N8Synaptotagmin VI - Mus 1 . . . 510493/511 (96%)0.0musculus (Mouse), 511 aa. 1 . . . 511498/511 (96%)Q62746Synaptotagmin VI - Rattus 1 . . . 510490/511 (95%)0.0norvegicus (Rat), 511 aa. 1 . . . 511498/511 (96%)Q9QUK7Synaptotagmin VIDELTATM2 -86 . . . 510413/426 (96%)0.0Mus musculus (Mouse), 426 aa. 1 . . . 426416/426 (96%)Q9R0N4Synaptotagmin X (SytX) - Mus12 . . . 499331/499 (66%)0.0musculus (Mouse), 523 aa.13 . . . 501390/499 (77%)Q925B8Synaptotagmin 10 - Rattus12 . . . 499330/499 (66%)0.0norvegicus (Rat), 523 aa.13 . . . 501390/499 (78%)


[0450] PFam analysis indicates that the NOV22a protein contains the domains shown in the Table 22F.
117TABLE 22FDomain Analysis of NOV22aIdentities/Similarities forPfamNOV22a Matchthe MatchedExpectDomainRegionRegionValueC2246 . . . 33245/97 (46%)5.2e−3577/97 (79%)C2378 . . . 46644/97 (45%)7.3e−3778/97 (80%)



Example 23

[0451] The NOV23 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 23A.
118TABLE 23ANOV23 Sequence AnalysisSEQ ID NO: 591751 bpNOV23a,CGGGAGCCTCTCCCTGAGGGGCACCGCGTTCTTCAGGAGCTGGGCCTCCAGTGCGGCGCG133548-01DNA SequenceCGATGTCAGGCGCGGTGACAGCTCTGTGAGTCCGAGGCCGCGGCGTGTGGCTGGGCGGCTGCGGGGCCTGACCGGTCCGCTCATGGTGCCGCCACGACGCCATCGCGGGGCAGGAAGGCCAGGGGTGCTGAGTTCTTCACCTCCTTTTAGACTGAGATCTGCCAAGTTTTCCGGCATTGCTCTTGAGGATCTCAGAAGGGCTCTTAAGACAAGACTGCAAATGGTGTGTGTATTTGTCATGAACCGAATGAATTCCCAGAACAGTGGTTTCACTCACCGCAGGCGAATGGCTCTTGGGATTGTTATTCTTCTGCTTGTTGATGTGATATGGGTTGCTTCCTCTGAACTTACTTCGTATGTTTTTACCCAGTACAACAAACCATTCTTCAGCACCTTTGCAAAAACATCTATGTTTGTTTTGTACCTTTTGGGCTTTATTATTTGGAAGCCATGCAGACAACAGTGTACAAGAGGACTTCGCGGAAAGCATGCTGCTTTTTTTGCAGATGCTGAAGGTTACTTTCCTGCTTGCACAACAGATACAACTATGAATAGTTCTTTGAGTGAACCTCTGTATGTGCCTGTGAAATTCCATGATCTTCCAAGTGAAAAACCTGAGAGCACAAACATTGATACTGAAAAAAGTCCCAAAAAGTCTCGTGTGAGGTTCAGTAATATCATGGAGATTCGACAGCTTCCGTCAAGTCATGCATTGGAAGCAAAGTTGTCTCGCATGTCATATCCTGTGAAAGAACAAGAATCCATACTGAAAACTGTGGGGAAACTTACTGCAACTCAAGTAGCGAAAATTAGCTTTTTTTTTTGCTTTGTGTGGTTTTTGGCAAATTTGTCATATCAAGAAGCACTTTCAGACACACAAGTTGCTATAGTTAATATTTTATCTTCAACTTCCGGTCTTTTTACCTTAATCCTTGCTGCAGTATTTCCAAGTAACAGTGGAGATAGATTTACCCTTTCTAAACTATTAGCTGTAATTTTAAGCATTGGAGGCGTTGTACTGGTAAACCTGGCAGGGTCTGAAAAACCTGCTGGAACAGACACAGTAGGTTCCATTTGGTCTCTTGCTGGAGCCATGCTCTATGCTGTCTATATTGTTATGATTAAGAGAAAAGTAGATAGAGAAGACAAGTTGGATATTCCAATGTTCTTTGGTTTTCTAGGTTTGTTTAATCTGCTGCTCTTATGGCCAGGTTTCTTTTTACTTCATTATACTGGATTTGAGQACTTCGAGTTTCCCAATAAAGTAGTATTAATCTGCATTATCATTAATGGCCTTATTGGAACAGTACTCTCAGAGTTCCTGTGGTTGTGGGGCTGCTTTCTTACCTCATCATTGATAGGCACACTTGCACTAAGCCTTACAATACCTCTGTCCATAATAGCTGACATGTGTATGCAAAAGGTACAGTTTTCTTGGTTATTTTTTGCAGGAGCTATCCCTGTATTTTTTTCATTTTTTATTGTAACTCTCCTATGCCATTATAATAATTGGGATCCTGTGATGGTGGGAATCAGAAGAATATTTGCTTTTATATGCAGAAAACATCGAATTCAGAGGCTTCCAGAAGACAGCGAACAGTGTGAGAGTCTCATTTCTATGCACAGTGTTTCTCAGGAGGATGGAGCTAGTTAGCTGTCTGTTGTCTGTAGCCCAGGTTTGTATGTGAGCTGGORF Start: ATG at 141ORF Stop: TAG at 1710SEQ ID NO: 60523 aaMW at 58872.3 kDNOV23a,MVPPRRHRGAGRPGVLSSSPPFRLRSAKFSGIALEDLRRALKTRLQMVCVFVMNRMNSCG133548-01Protein SequenceQNSGFTQRRRMALGIVILLLVDVIWVASSELTSYVFTQYNKPFFSTFAKTSMFVLYLLGFIIWKPWRQQCTRCLRGKHAAFFADAEGYFAACTTDTTMNSSLSEPLYVPVKFHDLPSEKPESTNIDTEKSPKKSRVRFSNIMEIRQLRSSHALEAKLSRMSYPVKEQESILKTVGKLTATQVAKISFFFCFVWFLANLSYQEALSDTQVAIVNILSSTSGLFTLILAAVFPSNSGDRFTLSKLLAVILSIGGVVLVNLAGSEKPAGRDTVGSIWSLAGAMLYAVYIVMIKRKVDREDKLDIPMFFGFVGLFNLLLLWPGFFLLHYTGFEDFEFPNKVVLMCIIINGLIGTVLSEFLWLWGCFLTSSLIGTLALSLTIPLSIIADMCMQKVQFSWLFFAGAIPVFPSFFIVTLLCHYNNWDPVMVGIRRIFAFICRKHRIQRVPEDSEQCESLISMHSVSQEDGASEQ ID NO:611607 bpNOV23b,CGGGAGCCTCTCCCTGAGGCiAGCACCGCGTTCTTCAGGAGCTGGGCCTCCAGTGCGGCGCG133548-02DNA SequenceCGATGTCAGGCGCGGTGACAGCTCTGTGAGTCCGAGGCCGCGGCGTGTGGCTGGGCGGCTGCGGGGCCTGACCGGTCCGCTCATGGTGCCGCCACGACGCCATCGCGGGGCAGGAAGGCCAGGGATGCTGAGTTCTTCACCTCCTTTTAGACTGAGATCTGCCAAGTTTTCCGGCATTGCTCTTGAGGATCTCAGAAGGGCTCTTAAGACAAGACTGCAAATGGTGTGTGTATTTGTCATGACCGATGAATTCCCAGAACAGTGGTTTCACTCAGCGCAGGCGAAAATGGCTCTTGGGATTGTTATTCTTCTGCTTGTTGATGTGATATGGGTTGCTTCCTCTGAACTTACTTCGTTTGCAGATGCTGAAGGTTACTTTGCTGCTTGCACAACAGATACAACTATCAATAGTTCTTTGAGTGAACCTCTGTATGTGCCTGTGAAATTCCATGATCTTCCAAGTGAAAAACCTGAGAGCACAAACATTGATACTGAAAAAAGTCCCAAAAAGTCTCGTGTGAGGTTCAGTAATATCATGGAGATTCGACAGCTTCCGTCAACTCATGCATTGGAAGCAAACTTGTCTCGCATGTCATATCCTGTGPAAGAACAAGAATCCATACTGAAAACTGTGGGGAAACTTACTGCAACTCAAGTAGCGAAAATTAGCTTTTTTTTTTGCTTTGTGTGGTTTTTGGCAAATTTGTCATATCAAGAAGCACTTTCAGACACACAAGTTGCTATAGTTAATATTTTATCTTCAACTTCCGGTCTTTTTACCTTAATCCTTGCTGCAGTATTTCCAAGTAACAGTGGAGATAGATTTACCCTTTCTAAACTATTAGCTGTAATTTTAAGCATTGGAGGCGTTGTACTGGTAAACCTGGCAGGGTCTGAAAAACCTGCTGGAAGAGACACAGTAGGTTCCATTTGGTCTCTTGCTGGAGCCATGCTCTATGCTGTCTATATTGTTATGATTAAGAGAAAAGTAGATAGAGAAGACAAGTTGGATATTCCAATGTTCTTTGGTTTTGTAGGTTTGTTTAATCTGCTGCTCTTATGGCCAGGTTTCTTTTTACTTCATTATACTGGATTTGAGGACTTCGAGTTTCCCAATAAAGTAGTATTAATGTGCATTATCATTAATGGCCTTATTGGAACAGTACTCTCAGAGTTCCTGTGGTTGTCGGCCTGCTTTCTTACCTCATCATTGATAGGCACACTTGCACTAAGCCTTACAATACCTCTGTCCATAATAGCTGACATGTGTATGCAAAAGGTACAGTTTTCTTCGTTATTTTTTGCAGGAGCTATCCCTGTATTTTTTTCATTTTTTATTGTAACTCTCCTATGCCATTATAATAATTGGGATCCTGTGATGGTGGGAATCAGAAGAATATTTGCTTTTATATGCAGAAAACATCGAATTCAGAGGGTTCCAGAAGACAGCGAACAGTGTGAGAGTCTCATTTCTATGCACAGTGTTTCTCAGGAGGATGGAGCTAGTTAGCTGTCTGTTGTCTGTAGCCCAGGTTTGTATGTGAGCTGGORF Start: ATG at 141ORF Stop: TAG at 1566SEQ ID NO: 62475 aaMW at 53094.6 kDNOV23b,MVPPRRHRGAGRPGVLSSSPPFRLRSAKFSGIALEDLRRALKTRLQMVCVFVMNRMNSCG133548-02Protein SequenceQNSGFTQRRRMALGIVILLLVDVIWVASSELTSFADAEGYFAACTTDTTMNSSLSEPLYVPVKFHDLPSEKPESTNIDTEKSPKKSRVRFSNIMEIRQLPSSHALEAKLSRMSYPVKEQESILKTVGKLTATQVAKISFFFCFVWFLANLSYQEALSDTQVAIVNILSSTSGLFTLILAAVPPSNSGDRFTLSKLLAVILSIGGVVLVNLAGSEKPAGRDTVGSIWSLAGAMLYAVYIVMIKRKVDREDKLDIPMFFGFVGLFNLLLLWPGFFLLHYTGFEDFEFPNKVVLMCIIINGLIGTVLSEFLWLWGCFLTSSLIGTLALSLTIPLSIIADMCMQKVQFSWLFFAGAIPVFFSFFIVTLLCHYNNWDPVMVGIRRIFAPICRKHRIQRVPEDSEQCESLISMHSVSQEDGAS


[0452] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 23B.
119TABLE 23BComparison of NOV23a against NOV23b.Identities/Similarities forProteinNOV23a Residues/the MatchedSequenceMatch ResiduesRegionNOV23b15 . . . 523431/509 (84%)15 . . . 475431/509 (84%)


[0453] Further analysis of the NOV23a protein yielded the following properties shown in Table 23C.
120TABLE 23CProtein Sequence Properties NOV23aPSort0.6000 probability located in plasma membrane; 0.4000analysis:probability located in Golgi body; 0.3000 probabilitylocated in endoplasmic reticulum (membrane); 0.3000probability located in microbody (peroxisome)SignalPNo Known Signal Sequence Indicatedanalysis:


[0454] A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23D.
121TABLE 23DGeneseq Results for NOV23aNOV23aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU12294Human PRO6097 polypeptide1 . . . 523522/523 (99%)0.0sequence - Homo sapiens, 523 aa.1 . . . 523523/523 (99%)[WO200140466-A2, 07 JUN. 2001]AAE21623Human gene 14 encoded secreted1 . . . 523520/523 (99%)0.0protein, SEQ ID NO: 95 - Homo1 . . . 523521/523 (99%)sapiens, 523 aa. [WO200222654-A1, 21 MAR. 2002]AAE21622Human gene 14 encoded secreted1 . . . 523520/523 (99%)0.0protein, SEQ ID NO: 94 - Homo19 . . . 541 521/523 (99%)sapiens, 541 aa. [WO200222654-A1, 21 MAR. 2002]AAE21611Human gene 14 encoded secreted56 . . . 523 465/468 (99%)0.0protein HOSDW58, SEQ ID NO: 83 -1 . . . 468466/468 (99%)Homo sapiens, 468 aa.[WO200222654-A1, 21 MAR. 2002]AAB58385Lung cancer associated polypeptide187 . . . 523 336/337 (99%)0.0sequence SEQ ID 723 - Homo1 . . . 337337/337 (99%)sapiens, 337 aa. [WO200055180-A2, 21 SEP. 2000]


[0455] In a BLAST search of public sequence datbases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23E.
122TABLE 23EPublic BLASTP Results for NOV23aNOV23aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ8WV83Similar to RIKEN cDNA1 . . . 523522/523 (99%)0.01300003P13 gene - Homo sapiens1 . . . 523523/523 (99%)(Human), 523 aa.Q8R314RIKEN cDNA 1300003P13 gene -1 . . . 523492/524 (93%)0.0Mus musculus (Mouse), 524 aa.1 . . . 524508/524 (96%)Q9DBK91300003P13Rik protein - Mus1 . . . 523491/524 (93%)0.0musculus (Mouse), 524 aa.1 . . . 524508/524 (96%)Q9H7D8CDNA: FLJ21013 fis, clone156 . . . 523 366/368 (99%)0.0CAE05223 - Homo sapiens1 . . . 368367/368 (99%)(Human), 368 aa.Q9H6P8CDNA: FLJ22004 fis, clone10 . . . 247 234/238 (98%)e−130HEP06871 - Homo sapiens4 . . . 241236/238 (98%)(Human), 244 aa.


[0456] PFam analysis indicates that the NOV23a protein contains the domains shown in the Table 23F.
123TABLE 23FDomain Analysis of NOV23aIdentities/Similarities forPfamNOV23a Matchthe MatchedExpectDomainRegionRegionValueDUF6338 . . . 47019/136 (14%)0.08292/136 (68%)



Example 24

[0457] The NOV24 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 24A.
124TABLE 24ANOV24 Sequence AnalysisSEQ ID NO:635964 bpNOV24a,GCTGACCACAACATGGCTGCGGCGCCTGGGCTGCTCGTCTGGCTGCTCGTGCTCCGGCCG133569-01DNA SequenceTGCCCTGGCGGGTGCCGGGCCAGCTGGACCCCAGCACTGGCCGGCGGTTCTCGGAGCACAAACTCTGCGCGGACGACGAATGCAGCGTGTTAATGTACCGCGGTGAGGCTCTTGAAGATTTCACAGGCCCGGATTGTCGTTTTGTGAATTTTAAAAAAGGTGATCCTGTATATGTTTTGGATATTTTCCAAAAGATTTAATCCAGGTAGTTCATGAATATACCAAAGAAGAGCTACAAGTTCCAACAGATGAGACGGATTTTGTTTGTTTTGATGGAGGAAGAGATGATTTTCATAATTATAATGTAGAAGAACTTTTAGGGTTTTTGGAACTGTACAATTCTGCAGCTACAGATTCTGAGAAAGCTGTAGAAAAAACTTTACAGGATATGGAAAAAAACCCTGAATTATCTAAGGAAAGGGAACCTGAACCTGAACCAGTAGAAGCCAACTCAGAGGAAAGTGATAGTGTATTCTCAGAAAACACTGAGGATCTTCAGQAACAGTTTACAACTCAGAAGCACCACTCCCATGCAAACAGCCAAGCAAATCATGCTCAGGGAGAGCAGGCTTCATTTGAATCTTTTGAAGAAATGCTGCAAGATAACTAAAGTGCCAGAAAGTGAAAACAACAAAAAACCAGCAATAGTTCTCAGGTCTCAAATGAACAGGATAAGATTGATGCCTATAAAATTTTGAAAAAAGAAATGACTCTAGACTTGAAAACCAAATTTGGCTCAACAGCTGATGCACTTGTATCTGATGATGAGACAACCAGACTCGTTACTTCATTAGAAGATCATTTTGATGAGGAATTGGATACTGAGTATTATGCAGTTGGAAAGGAAGATGAGGAGAACCAAGAAGACTTTGATGAGTTGCCATTACTTACCTTTACAGATGGGGAAGATATAAAAACTCCAGCAAAGTCTGGCGTTGAGAAATATCCAACAGATAAAAGAGCAGAAATTCATGAAGAGGACAAGGTTCAGCTAACTGTGCCCCCTGGCATCAAAAATGATGATAAAAATATACTAACAACCTGGGGGGACACTATCTTCTCTATTGTCACAGGAGGTGAAGAAACAAGAGATACGATGGATTTAGAGAGCTCTAGTTCAGAGGAAGAAAAAGAAGATGATGATGATGCATTAGTCCCAGATAGCAAACAGGGGAAACCACAGTCAGCAACAGATTATAGTGACCCTGACAATGTAGATGATGGTCTTTTTATTGTAGACATTCCTAACAAAATAATGACAAGAAGTAAACGCAAAGAACATCACATTAAAGGAAAAGGGAGGGGAGTTCAGGAATCCAAGAGGGGCCTGGTACAAGATAAGACAGAATTAGAGGATGAAAATCAAGAAGGCATGACTGTGCACAGTTCTGTTCACAGCAATAACCTCAACTCTATGCCAGCTGCTGAAAAGGGTAAACACACATTAAAATCAGCTTATGATGATACAGAAAATGACCTAAAAGGAGCAGCTATTCATATCTCAAAAGGAATGCTCCACGAAGAAAAGCCTGGAGAGCAGATTTTGGAAGGTGGCTCAGAGAGTGAATCTGCACAGAAAGCTGCAGGGAATCAAATGAATGACAGAAAGATTCAACAGGAATCCCTGGGTAGTGCACCACTCATGGGAGATGACCACCCTAACGCATCCAGAGACAGTGTGGAGGGAGACGCTTTGGTAAATGGGGCCAAACTGCACACGCTTTCAGTGGAGCATCAACGTGAGGAATTGAAAGAGGAATTAGTTCTTAAAACTCAAAACCAACCTAGATTCTCCTCTCCAGATGAGATTGATTTGCCCAGAGAACTGGAAGACGAGGTTCCCATTCTGGGAAGAAATCTTCCCTGGCAACAAGAAAGAGATGTGGCTGCCACAGCCAGTAAGCAAATGAGTGAGAAGATAAGGCTCTCTGAGCGAGAAGCCAAAGAGGACTCCTTGGATGAAGAGTTTTTTCATCACAAGGCAATGCAGGGCACAGAGGTAGGACAGACAGACCAAACTGACAGCACAGGAGGACCAGCTTTCCTTTCTAAGTAGAIXGAGGATGATTATCCCTCTGAAGAACTACTAGAGGATGAAAACGCTATAAATGCAAAACGGTCTAAAGAAAAAAACCCTGGGAATCAGGGCAGGCAGTTTGATGTTAATCTCCAAGTCCCTGACAGAGCAGTTTTAGGGACCATTCATCCAGATCCAGAAATTGAAGAAAGCAAGCAAGkAACTAGTATGATTTTGGATAGCGAAAAAACAAGTGAGACTGCTGCCAAAGGGGTCAACACAGGAGGCAGGGAACCAAATACAATGGTGGAAAAAGAACGCCCTCTGGCAGATAAGAAAGCACAGAGACCATTTGAACGAAGTGACTTTTCTGACAGCATAAAAATTCAGACTCCAGAATTAGGTGAAGTGTTTCAGAATAAAGATTCTGATTATCTGAAGAACGACAACCCTGAGGAACATCTGAAGACCTCAGGGCTTGCAGGGGAGCCTGAGGGAGAACTCTCAAAAGAGGACCATGAGAACACAGAGAAGTACATGGGCACAGAAAGCCAGGGGTCTGCTGCTGCAGAACCTGAAGATGACTCGTTCCACTGGACTCCACATACAAGTGTAGAGCCAGGGCATAGTGACAAGAGGGAGGACTTACTTATCATAAGCAGCTTCTTTAAAGAACAACAGTCTTTGCAGCGGTTCCAGAAGTACTTTAATGTCCATGAGCTGGAAGCCTTGCTACAAGAAATGTCATCAAAACTGAAGTCAGCGCAGCAGGAGAGCCTGCCCTATAATATGGAAAAAGTCCTAGATAAGGTCTTCCGTGCTTCTGAGTCACAAATTCTGAGCATAGCAGAAAAAATGCTTGATACTCGTGTGGCTGAAAATAGAGATCTGGGAATGAACGAAAATAACATATTTGAAGAGGCTGCAGTGCTTGATGACATTCAAGACCTCATCTATTTTGTCAGGTACAAGCACTCCACAGCAGAGGAGACAGCCACACTCGTCATCGCACCACCTCTAGAGGAAGGCTTGGGTGGAGCAATGGAAGAGATGCAACCACTGCATGAAGATAATTTCTCACGAGAGAAGACAGCAGAACTTAATGTGCAGGTTCCTGAAGAACCCACCCACTTGGACCAACGTGTGATTGGGGACACTCATGCCTCAGAAGTGTCACAGAAGCCAAATACTGAGAAAGACCTGGACCCAGGGCCAGTTACAACAGAAGACACTCCTATGGATGCTATTGATGCAAACAAGCAACCAGAGACAGCCGCCGAAGAGCCGGCAAGTGTCACACCTTTGGAAAACGCAATCCTTCTAATATATTCATTCATGTTTTATTTAACTAAGTCGCTAGTTGCTACATTGCCTGATGATGTTCAGCCTGGGCCTGATTTTTATGGACTGCCATGGAAACCTGTATTTATCACTGCCTTCTTGGGAATTGCTTCGTTTGCCATTTTCTTATGGAGAACTGTCCTTGTTGTGAAGGATAGAGTATATCAAGTCACGGAACAGCAAATTTCTGAGAAGTTGAAGACTATCATGAAAGAAAATACAGAACTTGTACAAAAATTGTCAATTATGAACAGAAGATCAAGGAATCAJAAAGAACATGTTCAGGAAACCAGGAAACAAAATATGATTCTCTCTGATGAAGCAATTAAATATAAGGATAAAATCAAGACACTTGAAAAAAATCAGGAAATTCTGGATGACACAGCTAAAAATCTTCGTGTTATGCTAGAATCTGAGAGAGAACAGAATGTCAAGAATCAGGACTTGATATCAGAAAACAAGAAATCTATAGAGAAGTTAAAGGATGTTATTTCAATGAATGCCTCAGAGTTTTCAGAGGTTCAGATTGCACTTAATGAAGCTAAGCTTAGTGPAGAGAAGGTGAAGTCTGAATGCCATCGGGTTCAAGAAGAAAATGCTAGGCTTAAGAAGAAAAAAGAGCAGTTGCAGCAGGAAATCGAAGACTGGAGTAAATTACATGCTGAGCTCAGTGAGCAAATCAAATCATTTGAGAAGTCTCAGAAAGATTTGGAAGTAGCTCTTACTCACAAGGATGATAATATTAATGCTTTGACTAACTGAATTACACAGTTGAATCTGTTAGAGTGTGAATCTGAATCTGAGGGTCAAAATAAAGGTGGAAATGATTCAGATGAATTAGCAAATGGAGAACTGGGAGGTGACCGGAATGAGAAGATGAAAAATCAAATTAAGCAGATGATGGATGTCTCTCGGACACAGACTGCAATATCGGTAGTTGAAGAGGATCTAAAGCTTTTACAGCTTAAGCTAAGAGCCTCCGTGTCCACTAAATGTAACCTGGAAGACCAGGTAAAGAAATTGGAAGATGACCGCPACTCACTACAAGCTGCCAAAGCTGGACTGGAAGATGAATGCAAAACCTTGAGGCAGAAAGTGGAGATTCTGAATGAGCTCTATCAGCAGAAGGAGATGGCTTTGCAAAAGAAGCTGAGTCAAGAAGAGTATGAACGGCAAGAAAGAGAGCACAGGCTGTCAGCTGCAGATGAAAAGGCAGTTTCGGCTGCACAGGAAGTAAAAACTTACAAGCGGAGAATTGAAGAAATGGAGGATCAATTACAGAAGACAGAGCGGTCATTTAAAAACCAGATCGCTACCCATGAGAAGAAAGCTCATGAAAACTGGCTCAAAGCTCGTGCTGCAGAAAGAGCTATAGCTGAAGAGAAAAGGGAAGCTGCCAATTTGAGACACAAATTATTAGAATTAACACAAAACATGGCAATGCTGCAAGAAGAACCTGTGATTGTAAAACCAATGCCAGGAAAACCAAATACACAAAACCCTCCACCCACAGCTCCTCTGAGCCAGAATGGCTCTTTTCGCCCATCCCCTGTGAGTGGTGGAGAATGCTCCCCTCCATTGACAOTGOAOCCACCCGTGAGACCTCTCTCTGCTACTCTCAATCGPAGAGATATGCCTAGAAGTGAATTTGGATCAGTCGACCOGCCTCTACCTCATCCTCGATGGTCAGCTGAGGCATCTGGGAAACCCTCTCCTTCTGATCCAGGATCTGGTACAGCTACCATGATGAACAGCAGCTCAAGAGGCTCTTCCCCTACCAGGGTACTCGATGAAGGCAAGGTTAATATGGCTCCAAAAOGOCCCCCTCCTTTCCCAGGAGTCCCTCTCATGAGCACCCCCATGGGAGGCCCTGTACCACCACCCATTCOATATGGACCACCACCTCAGCTCTGCGGACCTTTTGGGCCTCGGCCACTTCCTCCACCCTTTGGCCCTGGTATGCGTCCACCACTAGGCTTAAGAGAATTTGCACCAGGCGTTCCACCAGGAAGACGGGACCTGCCTCTCCACCCTCGGGGATTTTTACCTGGACACGCACCATTTAGACCTTTAGGTTCACTTGGCCCAAGAGAGTACTTTATTCCTGGTACCCGATTACCACCCCCAACCCATGGTCCCCAGGAATACCCACCACCACCTOCTGTAAGAGACTTACTGCCGTCAGGCTCTAGAGATGAGCCTCCACCTGCCTCTCAGAGCACTAGCCAGGACTGTTCACAOGCTTTAAAACAGAGCCCATAAAACTATGACCTCTGAGGTTTCATTGGAAAGAAAGTGTACTGTGCATTATCCATTACAGTAAAGGATTTCATTGGCTTCAAAATCCAAAAGTTTATTTTAAAAGGTTTGTTGTTAGAACTAAGCTGCCTTGGCAGTGTGCATTTTTGAGCCAAACAATTCAAAAATGTCATTTCTTCCCTAAATAAAAATCACCTTTTAAGCTAAAAAGAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 13ORF Stop: TAA at 5734SEQ ID NO: 641907 aaMW at 213668.2 kDNOV24a,MAAAPGLLVWLLVLRLRWRVPGQLDPSTGRRFSEHKLCADDECSVLMYRGEALEDFTGCG133569-01Protein SequencePDCRFVNFKKGDPVYVYYKLARGWPEVWAGSVGRTFGYFPKDLIQVVHEYTKEELQVPTDETDFVCFDGGRDDFHNYNMEELLGFLELYNSAATDSEKAVEKTLQDMEKNPELSKEREPEPEPVEANSEESDSVFSENTEDLQEQFTTQKHHSHANSQANHAQGEQASFESFEEMLQDKLKVPESENNKTSNSSQVSNEQDKIDAYKLLKKEMTLDLKTKFGSTADALVSDDETTRLVTSLEDDFDEELDTEYYAVGKEDEENQEDFDELPLLTFTDGEDMKTPAKSGVEKYPTDKEQNSNEEDKVQLTVPPGIKNDDKNILTTWGDTIFSIVTGGEETRDTMDLESSSSEEEKEDDDDALVPDSKQGKPQSATDYSDPDNVDDGLFIVDIPKTNNDKEVNAEHHIKGKGRGVQESKRGLVQDKTELEDENQEGMTVHSSVHSNNLNSMPAAEKGKDTLKSAYDDTENDLKGAAIHISKGMLHEEKPGEQILECGSESESAQKAAGNQMNDRKIQQESLGSAPLMGDDHPNASRDSVEGDALVNGAKLHTLSVEHQREELKEELVLKTQNQPRFSSPDEIDLRRELEDEVPILGRNLPWQQERDVAATASKQMSEKIRLSEGEAKEDSLDEEFFHHKAMQGTEVGQTDQTDSTGGPAFLSKVEEDDYPSEELLEDENAINAKRSKEKNPGNQGRQFDVNLQVPDRAVLGTIHPDPEIEESKQETSMILDSEKTSETAAKGVNTGGREPNTMVEKERPLADKKAQRPFERSDFSDSTKIQTPELGEVFQNKDSDYLKNDNPEEHLKTSGLAGEPEGELSKEDHENTEKYMGTESQGSAAAEPEDDSFHWTPHTSVEPGHSDKREDLLIISSFFKEQQSLQRFQKYFNVHELEALLQEMSSKLKSAQQESLPYNMEKVLDKVFRASESQILSIAEKMLDTRVAENRDLGMNENNIFEEAAVLDDIQDLIYFVRYKHSTAEETATLVMAPPLEEGLCGAMEEMQPLHEDNFSREKTAELNVQVPEEPTHLDQRVIGDTHASEVSQKPNTEKDLDPGPVTTEDTPMDAIDANKQPETAAEEPASVTPLENAILLIYSFMFYLTKSLVATLPDDVQPGPDFYGLPWKPVFTTAFLGIASFAIFLWRTVLVVKDRVYQVTEQQISEKLKTIMKENTELVQKLSNYEQKIKESKKHVQETRKQNMILSDEAIKYKDKIKTLEKNQEILDDTAKNLRVMLESEREQNVKNQDLTSENKKSIEKLKDVISMNASEFSEVQIALNEAKLSEEKVKSECHRVQEENARLKKKKEQLQQEIEDWSKLHAELSEQIKSFEKSQKDLEVALTHKDDNINALTNCITQLNLLECESESEGQNKGGNDSDELANGEVGGDRNEKMKNQIKQMMDVSRTQTAISVVEEDLKLLQLKLRASVSTKCNLEDQVKKLEDDRNSLQAAKAGLEDECKTLRQKVEILNELYQQKEMALQKKLSQEEYERQEREHRLSAADEKAVSAAEEVKTYKRRIEEMEDELQKTERSFKNQIATHEKKAHENWLKARAAERAIAEEKREAANLRHKLLELTQKMAMLQEEPVIVKPMPGKPNTQNPPRRGPLSQNGSFGPSPVSGGECSPPLTVEPPVRPLSATLNRRDMPRSEFGSVDGPLPHPRWSAEASGKPSPSDPGSGTATMMNSSSRGSSPTRVLDEGKVNMAPKGPPPFPGVPLMSTPMGGPVPPRIRYGPPPQLCGPFGPRPLPPPFGPGMRPPLGLREFAPGVPPGRRDLPLHPRGFLPGHAPFRPLGSLGPREYFIPGTRLPPPTHGPQEYPPPPAVRDLLPSGSRDEPPPASQSTSQDCSQALKQSPSEQ ID NO: 654985 bpNOV24b,GCTGACCACAACATGGCTGCGGCGCCTGGGCTCCTCGTCTGGCTGCTCGTGCTCCGGCCG133569-02DNA SequenceTGCCCTGGCGGGTGCCGGGCCAGCTGGACCCCACCACTGGCCGGCGGTTCTCGGAGCACAAACTCTGCGCGGACGACGAATGCAGCGTGTTAATGTACCCCCGTGAGGCTCTTGAAGATTTCACAGGCCCGGATTGTCGTTTTGTGAATTTTAAAAAAGGTGATCCTGTATATGTTTACTATAAACTGGCAAGAGGATGGCCTGAAGTTTGGGCTGGAAGTGTAGGACGCACTTTTGGATATTTTCCAAAAGATTTAATCCAGGTAGTTCATGAATATACCAAAGAAGAGCTACAAGTTCCAACAGATGAGACGGATTTTGTTTGTTTTGATGGAGGAAGAGATGATTTTCATAATTATAATGTAGAAGAACTTTTAGGGTTTTTGGAACTGTACAATTCTGCAGCTACAGATTCTGAGAAAGCTGTAGAAAAAACTTTACAGGATATGGAAAAAAACCCTGAATTATCTAAGGAAAGGGAACCTGAACCTGAACCAGTAGAAGCCAACTCAGAGGAAAGTGATAGTGTATTCTCAGAAAACACTGAGGATCTTCACGAACAGTTTACAACTCAGAAGCACCACTCCCATGCAAACAGCCAAGCAAATCATGCTCAGGGAGAGCAGGCTTCATTTGAATCTTTTGAAGAAATGCTGCAAGATAAAACTAAAAAGTGCCAGAAAGTGAACAACAAAACCAGCAATAGTTCTCAGGTCTCAAATGAACAGGATAAGATTGATGCCTATAAACTTTTGAAAAAAGAAATGACTCTAGACTTGAAAACCAAATTTGGCTCAACAGCTGATGCACTTGTATCTGATGATGAGACAACCAGACTCGTTACTTCATTAGAAGATGATTTTGATGAGGAATTGGATACTGAGTATTATGCAGTTGGAGGAAGATGAGGAGAAACCAAGAAAGACTTTGATGAGTTGCCATTACTTACCTTTACAGATGGGGAAGATATGAAAACTCCAGCAAAGTCTGGCGTTGAGAAATATCCAACAGATAAGAGCAGAAATTCAAATGAAGAGGACAAGGTTCAGCTAACTGTGCCCCCTGGCATCAAAAATGATGATAAAAATATACTAACAACCTGGGGGGACACTATCTTCTCTATTGTCACAGGAGGTGAAGAAACAAGAGATACGATGGATTTAGAGAGCTCTAGTTCAGAGGAAGAAAAAGAAGATGATGATGATGCATTAGTCCCAGATAGCAAACAGGGGAAACCACAGTCAGCAACAGATTATAGTGACCCTGACAATGTAGATGATGGTCTTTTTATTGTAGACATTCCTAAAACAAATAATGACAAAGAAGTAAACGCAGAACATCACATTAAAGGAAAAGAAACGGGAGTTCACGAATCCAAGAGGGGCCTGGTACAAGATAAGACAGAATTAGAGGATGAAAATCAAGAAGGCATGACTGTGCACAGTTCTGTTCACAGCAATAACCTCAACTCTATGCCAGCTGCTGAAAAGGGTAAAGACACATTAAAATCAGCTTATGATGATACAGAAAATGACCTAAAAGGAGCAGCTATTCATATCTCAAAAGGAATGCTCCACGAAGAAAAGCCTGGAGAGCAGATTTTGGAAGGTGGCTCAGAGAGTGAATCTGCACAGAAAGCTGCAGGGAATCAAATGAATGACAGAAAGATTCAACAGGAATCCCTCGGTAGTGCACCACTCATGGGACATGACCACCCTAACGCATCCAGAGACAGTGTGGAGGGAGACGCTTTGGTAAATCGCGCCAAACTGCACACGCTTTCAGTGGAGCATCAACGTGAGGAATTGPAAGAGGAATTAGTTCTTAAAACTCAAAACCAACCTAGATTCTCCTCTCCAGATGAGATTGATTTGCCCAGAGAACTGGAAGACGAGGTTCCCATTCTGGGAAGAAATCTTCCCTGGCAACAAGAAAGAGATGTGGCTGCCACAGCCAGTAAGCAAATGAGTGAGAAGATAAGGCTCTCTGAGGGAGAAGCCAAAGAGGACTCCTTGGATGAAGAGTTTTTTCATCACAAGGCAATGCAGGGCACAGAGGTAGGACAGACACACCAAACTGACAGCACAGGAGGACCAGCTTTCCTTTCTAAAGTAGAAGAGGATGATTATCCCTCTGAAGAACTACTAGAGGATGAAAACGCTATAAATGCAAAACGGTCTAAGAAAAAAAACCCTGGGAATCAGGGCAGGCAGTTTGATGTTAATCTGCAAGTCCCTGACAGAGCAGTTTTAGGGACCATTCATCCAGATCCAGAAATTGAAGAAAGCAAGCAAGAAACTAGTATGATTTTGGATAGCGAAAAAACAAGTGAGACTGCTGCCAAAGGGGTCAACACAGGAGGCAGGGAACCAAATACAATGGTGGAAAAAGAACGCCCTCTGGCAGATAAGAAAGCACAGAGACCATTTGAACGAAGTGACTTTTCTGACAGCATAAAAATTCAGACTCCAGAATTAGGTGAAGTGTTTCAGAATAAAGATTCTGATTATCTGAAGAACGACAACCCTGAGGAACATCTGAAGACCTCAGGGCTTGCAGGGGAGCCTGAGGGAGAACTCTCAAAAGAGGACCATGAGAACACAGAGAAGTACATCGGCACAGAAAGCCAGGGGTCTGCTGCTGCAGAACCTGAAGATGACTCGTTCCACTGGACTCCACATACAAGTGTAGAGCCAGGGCATAGTGACAAGAGGGAGGACTTACTTATCATAAGCAGCTTCTTTAAAGAACAACAGTCTTTGCAGCGGTTCCAGAAGTACTTTAATGTCCATGAGCTGGAAGCCTTGCTACAAGAAATGTCATCAAAACTGAAGTCAGCGCAGCAGGAGAGCCTGCCCTATAATATGGAAAAAGTCCTAGATAAGGTCTTCCGTGCTTCTGAGTCACAAATTCTGAGCATAGCAGAAAAAATGCTTGATACTCGTGTGGCTGAAAATAGAGATCTGGGAATGAACGAAAATAACATATTTGAAGAGGCTGCAGTGCTTGATGACATTCAAGACCTCATCTATTTTGTCAGGTACAAGCACTCCACAGCAGAGGAGACAGCCACACTGGTGATGGCACCACCTCTAGAGGAAGGCTTGGGTGGAGCAATGGAAGAGATGCAACCACTGCATGAAGATAATTTCTCACGAGAGAAGACAGCAGAACTTAATGTGCAGGTTCCTGAAGAACCCACCCACTTCGACCAACGTGTGATTGGGGACACTCATGCCTCAGAAGTGTCACAGAAGCCAAATACTGAGAAAGACCTGGACCCAGGGCCAGTTACAACAGAACACACTCCTATGGATGCTATTGATGCAAACAAGCAACCAGAGACAGCCGCCGAAGAGCCGGCAAGTGTCACACCTTTGGAAAACGCAATCCTTCTAATATATTCATTCATGTTTTATTTAACTAAGTCGCTAGTTGCTACATTGCCTGATGATGTTCACCCTGGGCCTGATTTTTATGGACTGCCATCGAAACCTGTATTTATCACTGCCTTCTTGGGAATTGCTTCGTTTGCCATTTTCTTATGGAGAACTGTCCTTGTTGTGAAGGATAGAGTATATCAAGTCACGGAACAGCAAATTTCTGAGAAGTTGAAGACTATCATGAAAGAAAATACAGAACTTGTACAAAAATTGTCAAATTATGAACAGAAGATCAAGGAATCAAAGAAACATGTTCAGGAAACCAGGAAACAAAATATGATTCTCTCTGATGAAGCAATTAAATATAAGGATAAAATCAAGACACTTGAAAAAAATCAGGAAATTCTGGATGACACAGCTAAAAATCTTCGTGTTATGCTAGAATCTGAGAGAGAACAGAATGTCAAGAATCAGGACTTGATATCAGAAAACAAGAAATCTATAGAGAAGTTAAAGGATGTTATTTCAATGAATGCCTCAGAGTTTTCAGAGGTTCAGATTGCACTTAATGAAGCTAAGCTTAGTGAAGAGAAGGTGAAGTCTGAATGCCATCGGGTTCAAGAAGAAAATGCTAGGCTTAAGAAGAAAAAAGAGCAGTTGCAGCAGGAAATCGAAGACTGGAGTAAATTACATGCTGAGCTCAGTGAGCAAATCAAATCATTTGAGAAGTCTCAGAAAGATTTGGAAGTAGCTCTTACTCACAAGGATGATAATATTAATGCTTTGACTAACTGCATTACACAGTTGAATCTGTTAGAGTGTGAATCTGAATCTGAGGGTCAAAATAAAGGTGGAAATGATTCAGATGAATTAGCAAATGGAGAAGTGGGAGGTGACCGGAATGAGAAGATGAAAAATCAAATTAAGCAGATGATGGATGTCTCTCGGACACAGACTGCAATATCGGTAGTTGAAGAGGATCTAAAGCTTTTACAGCTTAAGCTAAGAGCCTCCGTGTCCACTCCTCCACCCTTTGGCCCTGGTATGCGTCCACCACTAGGCTTAAGAGAATTTGCACCAGGCGTTCCACCAGGAAGACGGGACCTGCCTCTCCACCCTCGGGGATTTTTACCTGGACACGCACCATTTAGACCTTTAGGTTCACTTGGCCCAAGAGAGTACTTTATTCCTGGTACCCGATTACCACCCCCAACCCATGGTCCCCAGGAATACCCACCACCACCTGCTGTAAGAGACTTACTGCCGTCAGGCTCTAGAGATGAGCCTCCACCTGCCTCTCAGAGCACTAGCCAGGACTGTTCACAGGCTTTAAAACAGAGCCCATAAAACTATGACCTCTGAGGTTTCATTGGAAAGAAAGTGTACTGTGCATTATCCATTACAGTAAAGGATTTCATTGGCTTCAAAATCCAAAAGTTTATTTTAAAAGGTTTGTTGTTAGAACTAAGCTGCCTTGGCAGTGTGCATTTTTGAGCCAAACAATTCAAAAATGTCATTTCTTCCCTAAATAAAAATCACCTTTTORF Start: ATG at 13ORF Stop: TAA at 4786SEQ ID NO: 661591 aaMW at 178733.8 kDNOV24b,MAAAPGLLVWLLVLRLPWRVPGQLDPSTGRRFSEHKLCADDECSVLMYRGEALEDFTGCG133569-02Protein SequencePDCRFVNFKKGDRVYVYYKLARGWPEVWAGSVGRTFGYPPKDLIQVVHEYTKEELQVPTDETDFVCFDGGRDDFHNYNVEELLGFLELYNSAATDSEKAVEKTLQDMEKNPELSKEREPEPEPVEANSEESDSVFSENTEDLQEQFTTQKHHSHANSQANHAQGEQASFESFEEMLQDKLKVPESENNKTSNSSQVSNEQDKIDAYKLLKKEMTLDLKTKFGSTADALVSDDETTRLVTSLEDDFDEELDTEYYAVGKEDEENQEDFDELPLLTFTDGEDMKTPAKSGVEKYPTDKEQNSNEEDKVQLTVPPGIKNDDKNILTTWGDTIFSIVTGGEETRDTMDLESSSSEEEKEDDDDALVPDSKQGKPQSATDYSDPDNVDDGLFIVDIPKTNNDKEVNAEHHIKGKGRGVQESKRGLVQDKTELEDENQEGMTVHSSVHSNNLNSMPAAEKGKDTLKSAYDDTENDLKGAAIHISKGMLHEEKPGEQILEGGSESESAQKAAGNQMNDRKIQQESLGSAPLMGDDHPNASRDSVEGDALVNGAKLHTLSVEHQREELKEELVLKTQNQPRFSSPDEIDLPRELEDEVPILGRNLPWQQERDVAATASKQMSEKIRLSEGEAKEDSLDEEFFHHKAMQGTEVGQTDQTDSTGGPAFLSKVEEDDYPSEELLEDENAINAKRSKEKNPGNQGRQPDVNLQVPDRAVLGTIHPDPEIEESKQETSMILDSEKTSETAAKGVNTGGREPNTMVEKERPLADKKAQRPFERSDFSDSIKIQTPELGEVFQNKDSDYLKNDNPEEHLKTSGLAGEPEGELSKEDHENTEKYMGTESQGSAAAEPEDDSFHWTPHTSVEPGHSDKREDLLIISSFFKEQQSLQRFQKYFNVHELEALLQEMSSKLKSAQQESLPYNMEKVLDKVFRASESQILSIAEKMLDTRVAENRDLGMNENNIFEEAAVLDDIQDLIYFVRYKHSTAEETATLVMKPPLEEGLGGAMEEMQPLHEDNFSREKTAELNVQVPEEPTHLDQRVIGDTHASEVSQKPNTEKDLDPGPVTTEDTPMDAIDANKQPETAAEEPASVTPLENAILLIYSFMPYLTKSLVATLPDDVQPGPDFYGLPWKPVFITAFLGIASFAIFLWRTVLVVKDRVYQVTEQQISEKLKTIMKENTELVQKLSNYEQKIKESKKHVQETRKQNMILSDEAIKYKDKIKTLEKNQEILDDTAKNLRVMLESEREQNVKNQDLISENKKSIEKLKDVISMNASEFSEVQIALNEAKLSEEKVKSECHRVQEENARLKKKKEQLQQEIEDWSKLHAELSEQIKSFEKSQKDLEVALTHKDDNINALTNCITQLNLLECESESEGQNKGGNDSDELANGEVGGDRNEKMKNQIKQMMDVSRTQTAISVVEEDLKLLQLKLRASVSTPPPFGPGMRPPLGLREFAPGVPPGRRDLPLHPRGFLPGHAPFRPLGSLGPREYFIPGTRLPPPTHGPQEYPPPPAVRDLLPSGSRDEPPPASQSTSQDCSQALKQSP


[0458] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 24B.
125TABLE 24BComparison of NOV24a against NOV24b.Identities/Similarities forProteinNOV24a Residues/the MatchedSequenceMatch ResiduesRegionNOV24b23 . . . 14841386/1462 (94%)23 . . . 14841386/1462 (94%)


[0459] Further analysis of the NOV24a protein yielded the following properties shown in Table 24C.
126TABLE 24CProtein Sequence Properties NOV24aPSort0.4600 probability located in plasma membrane; 0.1080analysis:probability located in nucleus; 0.1000 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 23 and 24analysis:


[0460] A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24D.
127TABLE 24DGeneseq Results for NOV24aNOV24aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM25602Human protein sequence SEQ ID715 . . . 1907 1191/1193 (99%) 0.0NO: 1117 - Homo sapiens, 11931 . . . 11931193/1193 (99%) aa. [WO200153455-A2, 26 JUL.2001]AAU32407Novel human secreted protein715 . . . 1907 1186/1194 (99%) 0.0#2898 - Homo sapiens, 1194 aa.1 . . . 11941186/1194 (99%) [WO200179449-A2, 25 OCT.2001]AAU29319Human PRO polypeptide1 . . . 492 489/492 (99%)0.0sequence #296 - Homo sapiens,1 . . . 491 491/492 (99%)499 aa. [WO200168848-A2, 20SEP. 2001]AAG73911Human colon cancer antigen1325 . . . 1798   474/474 (100%)0.0protein SEQ ID NO: 4675 -1 . . . 474  474/474 (100%)Homo sapiens, 487 aa.[WO200122920-A2, 05 APR.2001]AAY70210Human TANGO 130 protein -1 . . . 410 409/410 (99%)0.0Homo sapiens, 410 aa.1 . . . 410 410/410 (99%)[WO200012762-A1, 09 MAR.2000]


[0461] In a BLAST search of public sequence datbases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24E.
128TABLE 24EPublic BLASTP Results for NOV24aNOV24aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ92580KIAA0268 protein - Homo sapiens 715 . . . 19071192/1193 (99%) 0.0(Human), 1193 aa (fragment).  1 . . . 11931192/1193 (99%) O15320Meningioma-expressed antigen1158 . . . 1871233/790 (29%)1e−716/11 (MEA6) (MEA11) - Homo 20 . . . 783381/790 (47%)sapiens (Human), 804 aa.Q14083C219-reactive peptide - Homo1306 . . . 1441 136/136 (100%)9e−71sapiens (Human), 136 aa 1 . . . 136 136/136 (100%)(fragment).Q96SG9BA500G10.2 (Novel protein1158 . . . 1900217/812 (26%)1e−66similar to meningioma expressed 34 . . . 822371/812 (44%)antigen 6 (MEA6) and 11(MEA 11)) - Homo sapiens(Human), 825 aa (fragment).O95046WUGSC: H_DJ0988G15.3 protein1160 . . . 1873214/781 (27%)2e−62(DJ1005H11.2) 22 . . . 775368/781 (46%)(WUGSC: H_DJ0988G15.3protein) - Homo sapiens (Human),777 aa.


[0462] PFam analysis indicates that the NOV24a protein contains the domains shown in the Table 24F.
129TABLE 24FDomain Analysis of NOV24aIdentities/Similarities forPfamNOV24a Matchthe MatchedExpectDomainRegionRegionValueSH348 . . . 10516/61 (26%)0.02634/61 (56%)



Example 25

[0463] The NOV25 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 25A.
130TABLE 25ANOV25 Sequence AnalysisSEQ ID NO: 671153 bpNOV25a,ATGCTGCCGTGGCTTCTTGTCTTCTCTGCTCTGGGTCTCCAGGCCTGGGGTGATTCCTCG133858-01DNA SequenceCCTGGAACAAAACACAAGCTAAACAGGTATCAGAGGGGCTCCAGTACCTATTTGAGAACATCTCCCAGCTCACTCAAAAAGGCCTCCCCACAGATGTCTCCACCACGGTCTCCCGCAAGGCATGGGGGGCAGAAGCTGTTGGCTGCAGTATTCAGCTGACCACGCCAGTGAATCTCCTTGTTATACACCATGTCCCTGGACTGGAGTGTCACGACCAGACAGTCTGCAGCCAGAGACTGCGGGAACTGCAGGCCCATCATGTCCACAACAACAGTGGGTGTGATGTGGCCTACAACTTCCTGGTTGGGGATGATGGCAGGGTGTATGAAGGTGTTGGCTGGAATATCCAAGGAGTGCACACCCAAGGCTACAACAACATCTCCCTGGGCTTTGCCTTCTTCGGCACTAAGAAAGGCCACAGTCCCAGCCCTGCTGCCCTGTCGGCCATGGAAAACCTAATCACCTATGCTGTCCAGAAGCGCCACCTGTCATCCAGTTATGTTCAGCCACTTCTTGTGAAAGGCGAGAACTGCCTGGCCCCTCGGCAGAAGACAAGCCTGAAGAAGGCTTGCCCCGGCGTTGTCCCACGGTCTGTGTGGGGAGCCAGGGAGACCCACTGTCCCAGGATGACTCTCCCAGCGAAGTATGGCATCATTATCCACACTGCCGGGAGGACCTGCAACATTTCTGATGAGTGCCGCCTGCTGGTCCGGGACATCCAGTCTTTCTACATAGACAGGCTCAAGTCATGCGACATTGGTTATAACTTCCTGGTGGGCCAGGATGGCGCCATTTATGAAGGGGTGGGCTGCAATGTCCAAGGCTCCTCCACCCCTGGCTACGATGACATTGCCCTGGGCATTACCTTCATGGGCACCTTCACAGGTATACCACCCAATGCTGCAGCACTAGAGGCAGCCCAAGACCTGATCCAGTGTGCCATGGTCAAAGGGTACCTGACTCCCAACTACCTGCTGGTGGGCCACAGTGATGTGGCCCGAACCTTGTCTCCTGGGCAGGCTTTATACAACATCATCAGCACCTGGCCTCATTTCAAGCACTGTGGACAAGAAGCCACGGCAGCATAAGGGCGATORF Start: ATG at 1ORF Stop: TAA at 1144SEQ ID NO: 68381 aaMW at 41393.7 kDNOV25a,MLPWLLVFSALGLQAWGDSSWNKTQAKQVSEGLQYLFENISQLTEKGLPTDVSTTVSRCG133858-01Protein SequenceKAWGAEAVGCSIQLTTPVNVLVIHHVPGLECHDQTVCSQRLRELQAHHVHNNSGCDVAYNFLVGDDGRVYEGVGWNIQGVHTQGYNNISLGFAFFGTKKGHSPSPAALSAMENLITYAVQKGHLSSSYVQPLLVKGENCLAPRQKTSLKKACPGVVPRSVWGARETHCPRMTLPAKYGIIIHTAGRTCNISDECRLLVRDIQSFYIDRLKSCDIGYNFLVGQDGAIYEGVGWNVQGSSTPGYDDIALGITFMGTFTGIPPNAAALEAAQDLIQCAMVKGYLTPNYLLVGHSDVARTLSPGQALYNIISTWPHFKHCGQEATAA


[0464] Further analysis of the NOV25a protein yielded the following properties shown in Table 25B.
131TABLE 25BProtein Sequence Properties NOV25aPSort0.5500 probability located in lysosome (lumen); 0.3700analysis:probability located in outside; 0.1000 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 18 and 19analysis:


[0465] A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 25C.
132TABLE 25CGeneseq Results for NOV25aNOV25aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB53272Human polypeptide #12 - Homo1 . . . 373368/373 (98%)0.0sapiens, 369 aa.1 . . . 369369/373 (98%)[WO200181363-A1, 01 NOV.2001]AAE00693Human full length granulocyte1 . . . 373368/373 (98%)0.0peptide homolog Zgpa1 protein #2 -1 . . . 369369/373 (98%)Homo sapiens, 369 aa.[WO200129224-A2, 26 APR. 2001]AAE00692Human full length granulocyte1 . . . 373370/375 (98%)0.0peptide homolog Zgpa1 protein #1 -1 . . . 375371/375 (98%)Homo sapiens, 375 aa.[WO200129224-A2, 26 APR. 2001]AAY96963Wound healing tissue peptidoglycan1 . . . 373349/373 (93%)0.0recognition protein-like protein -1 . . . 368352/373 (93%)Homo sapiens, 368 aa.[WO200039327-A1, 06 JUL. 2000]ABB53271Human polypeptide #11 - Homo153 . . . 373 217/221 (98%)e−127sapiens, 241 aa. [WO200181363-21 . . . 241 218/221 (98%)A1, 01 NOV. 2001]


[0466] In a BLAST search of public sequence datbases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25D.
133TABLE 25DPublic BLASTP Results for NOV25aNOV25aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96LB8Peptidoglycan recognition1 . . . 373 373/373 (100%)0.0protein-I-beta precursor - Homo1 . . . 373 373/373 (100%)sapiens (Human), 373 aa.CAC38715Sequence 7 from Patent1 . . . 373368/373 (98%)0.0WO0129224 - Homo sapiens1 . . . 369369/373 (98%)(Human), 369 aa.CAC38714Sequence 4 from Patent1 . . . 373370/375 (98%)0.0WO0129224 - Homo sapiens1 . . . 375371/375 (98%)(Human), 375 aa.Q9HD75Hypothetical 40.0 kDa protein -1 . . . 373349/373 (93%)0.0Homo sapiens (Human), 368 aa.1 . . . 368352/373 (93%)Q96LB9Peptidoglycan recognition2 . . . 373231/372 (62%)e−136protein-I-alpha precursor - Homo4 . . . 341268/372 (71%)sapiens (Human), 341 aa.


[0467] PFam analysis indicates that the NOV25a protein contains the domains shown in the Table 25E.
134TABLE 25EDomain Analysis of NOV25aIdentities/SimilaritiesPfamNOV25a Matchfor theExpectDomainRegionMatched RegionValueNo Significant Matches Found



Example 26

[0468] The NOV26 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 26A.
135TABLE 26ANOV26 Sequence AnalysisSEQ ID NO: 691182 bpNOV26a, GTCCTGGGACCACATGGGGACGCTGCCATGGCTTCTTGCCTTCTTCATTCTGGGTCTCCG134100-01 DNA Sequence CAGGCTTGGGGTTCTCCTGGAGTGAGACCCAAGCCAGAGCCTTGTCCCAGAGGCTTATGGACCTGTTTGTCAGCATCTCACAGTTCATTCACAAGGGTCGCAATGATACTCCCACCATCGTCTCCCGCAAGGAGTGGGGGGCAAGACCGCTCGCCTGCAGGGCCCTGCTGACCCTGCCTGTGGCCTACATCATCACAGACCAGCTCCCAGGGATGCAGTGCCAGCAGCAGAGCGTTTGCAGCCAGATGCTGCGGGGGTTGCAGTCCCATTCCGTCTACACCATAGGCTGGTGCGACGTGGCCTACAACTTCCTGGTTGGGGATGATGGCAGGGTGTATGAAGGTGTTGGCTGGAACATCCAAGGCTTGCACACCCAGGGCTACAACAACATTTCCCTGGGCATCGCCTTCTTTGGCAATAAGATAAGCAGCAGTCCCAGCCCTGCTGCCTTATCAGCTGCAGAGGGTCTGATCTCCTATGCCATCCAGAAGGGTCACCTGTCGCCCAGGTATATTCAGCCACTTCTTCTGAAAGAAGAGACCTGCCTGGACCCTCAACATCCAGTGATGCCCAGGAAGGTTTGCCCCAACATCATCAAACGATCTGCTTGGGAAGCCAGAGAGACACACTGCCCTAAAATGAACCTCCCAGCCAAATATGTCATCATCATCCACACCGCTGGCACAAGCTGCACTGTATCCACAGACTGCCAGACTGTCGTCCGAAACATACAGTCCTTTCACATGGACACACGGAACTTTTGTGACATTGGATATCACTTCCTGGTGGGCCAGGATGGTGGCGTGTATGAAGGGGTTGGATGGCACATCCAAGGCTCTCACACTTATGGATTCAACGATATTGCCCTAGGAATTGCCTTCATCGGCTACTTTGTAGAAAAGCCTCCAAATGCTGCAGCGCTGGAGGCGGCCCAGGACCTGATCCAGTGTGCCGTGGTTGAGGGGTACCTGACTCCAAACTACCTGCTGATGGGCCACAGTGACGTGGTCAACATCCTGTCCCCTGGGCAGGCTTTGTATAACATCATCAGCACCTGGCCTCATTTCAAGCACTGAAGGAGGCCCCACTCCCTTTGAGACTGCCCTCCCTCCCCTGCTGGGTCTORF Start: ATG at 28ORF Stop: TGA at 1132SEQ ID NO: 70368 aaMW at 40515.0kDNOV26a, MASCLLHSGSPGLGFSWSETQARGLSQRLMDLFVSISQFIHKGRNDTPTIVSRKEWGACG134100-01 Protein Sequence RPLACRALLTLPVAYIITDQLPGMQCQQQSVCSQMLRGLQSHSVYTIGWCDVAYNFLVGDDGRVYEGVGWNIQGLHTQGYNNISLGIAFFGNKISSSPSPAALSAAECLISYAIQKGHLSPRYIQPLLLKEETCLDPQHPVMPRKVCPNIIKRSAWEARETHCPKMNLPAKYVIIIHTAGTSCTVSTDCQTVVRNIQSFHMDTRNFCDIGYHFLVGQDGGVYEGVGWHIQGSHTYGFNDIALGIAFIGYFVEKRPNAAALEAAQDLIQCAVVEGYLTPNYLLMGHSDVVNILSPGQALYNIISTWPHFKHSEQ ID NO: 711087 bpNOV26b, GTCCTGGGACCACATGGGGACGCTGCCATGGCTTCTTOCCTTCTTCATTCTGGGTCTCCG134100-02 DNA Sequence CAGGCTTGGGATACTCCCACCATCGTCTCCCGCAAGGAGTGGGGGGCAAGACCGCTCGCCTGCAGGGCCCTGCTGACCCTGCCTGTGGCCTACATCATCACAGACCAGCTCCCAGGGATGCAGTGCCAGCAGCAGAGCOTTTGCAGCCAGATGCTGCCGGGGTTGCAGTCCCATTCCGTCTACACCATAGGCTGGTGCGACGTGGCGTACAACTTCCTGGTTGGGGATGATGGCAGGGTGTATGAAGGTGTTGGCTGGAACATCCAAGGCTTGCACACCCAGGGCTACAACAACATTTCCCTGGGCATCGCCTTCTTTGGCAATAAGATAAGCAGCAGTCCCAGCCCTGCTGCCTTATCAGCTGCAGAGGGTCTGATCTCCTATGCCATCCAGAAGGGTCACCTGTCGCCCAGGTATATTCAGCCACTTCTTCTGAAAGAAGAGACCTGCCTGGACCCTCAACATCCAGTGATGCCCAGGAAGGTTTGCCCCAACATCATCAAACGATCTGCTTGGGAAGCCAGAGAGACACACTGCCCTAAAATGAACCTCCCAGCCAAATATGTCATCATCATCCACACCGCTGGCACAAGCTGCACTGTATCCACAGACTGCCAGACTGTCGTCCGAAACATACAGTCCTTTCACATCGACACACGGAACTTTTGTGACATTGGATATCACTTCCTGGTGGGCCAGGATGGTGGCGTGTATGAAGGGGTTGGATGGCACATCCAACGCTCTCACACTTATGGATTCAACGATATTGCCCTAGGAATTGCCTTCATCGGCTACTTTGTAGAAAAGCCTCCAAATGCTGCAGCGCTGGAGGCGGCCCAGGACCTGATCCAGTGTGCCGTGGTTGAGGGGTACCTGACTCCAAACTACCTGCTGATGGGCCACAGTGACGTGGTCAACATCCTGTCCCCTGGGCACGCTTTGTATAACATCATCAGCACCTGGCCTCATTTCAAGCACTGAAGGACGCCCCACTCCCTTTGAGACTGCCCTCCCTCCCCTGCTGGGTCTORF Start: ATG at 14ORF Stop: TGA at 1037SEQ ID NO: 72341 aaMW at 37640.9kDNOV26b, MGTLPWLLAFFILGLQAWDTPTIVSRKEWGARPLACRALLTLPVAYIITDQLPGMQCQCG134100-02 Protein Sequence QQSVCSQMLRGLQSHSVYTIGWCDVAYNFLVGDDGRVYEGVGWNIQGLHTQGYNNISLGIAFFGNKISSSPSPAALSAAEGLISYAIQKGHLSPRYIQPLLLKEETCLDPQHPVMPRKVCPNIIKRSAWEARETHCPKMNLPAKYVIIIHTAGTSCTVSTDCQTVVRNIQSFHMDTRNFCDIGYHFLVGQDGGVYEGVGWHIQGSHTYGFNDIALGIAFIGYFVEKPPNAAALEAAQDLIQCAVVEGYLTPNYLLMGHSDVVNILSPGQALYNIISTWPHFKH


[0469] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 26B.
136TABLE 26BComparison of NOV26a against NOV26b.Identities/ProteinNOV26a Residues/Similarities forSequenceMatch Residuesthe Matched RegionNOV26b46 . . . 368299/323 (92%)19 . . . 341299/323 (92%)


[0470] Further analysis of the NOV26a protein yielded the following properties shown in Table 26C.
137TABLE 26CProtein Sequence Properties NOV26aPSort0.4500 probability located in cytoplasm;analysis:0.3239 probability located in microbody(peroxisome); 0.2643 probabilitylocated in lysosome (lumen); 0.1000probability located in mitochondrialmatrix spaceSignalPNo Known Signal Sequence Indicatedanalysis:


[0471] A search of the NOV26a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 26D.
138TABLE 26DGeneseq Results for NOV26aNOV26aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAE00692Human full length granulocyte16 . . . 368231/356 (64%)e−139peptide homolog Zgpa1 protein #1 -20 . . . 375276/356 (76%)Homo sapiens, 375 aa.[WO200129224-A2, 26 APR.2001]ABB53272Human polypeptide #12 - Homo16 . . . 368230/353 (65%)e−138sapiens, 369 aa. [WO200181363-20 . . . 369274/353 (77%)A1, 01 NOV. 2001]AAE00693Human full length granulocyte16 . . . 368230/353 (65%)e−138peptide homolog Zgpa1 protein #2 -20 . . . 369274/353 (77%)Homo sapiens, 369 aa.[WO200129224-A2, 26 APR.2001]AAY76124Human secreted protein encoded by46 . . . 269 224/224 (100%)e−133gene 1 - Homo sapiens, 244 aa.19 . . . 242 224/224 (100%)[WO9958660-A1, 18 NOV. 1999]AAY96962Keratinocyte peptidoglycan46 . . . 269 224/224 (100%)e−133recognition protein-like protein -19 . . . 242 224/224 (100%)Homo sapiens, 243 aa.[WO200039327-A1, 06 JUL. 2000]


[0472] In a BLAST search of public sequence datbases, the NOV26a protein was found to have homology to the proteins shown in the BLASTP data in Table 26E.
139TABLE 26EPublic BLASTP Results for NOV26aNOV26aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96LB9Peptidoglycan recognition46 . . . 368322/323 (99%)0.0protein-I-alpha precursor - Homo19 . . . 341322/323 (99%)sapiens (Human), 341 aa.Q96LB8Peptidoglycan recognition16 . . . 368232/354 (65%)e-139protein-I-beta precursor - Homo20 . . . 373275/354 (77%)sapiens (Human), 373 aa.CAC38714Sequence 4 from Patent16 . . . 368231/356 (64%)e-138WO0129224 - Homo sapiens20 . . . 375276/356 (76%)(Human), 375 aa.CAC38715Sequence 7 from Patent16 . . . 368230/353 (65%)e-138WO0129224 - Homo sapiens20 . . . 369274/353 (77%)(Human), 369 aa.Q9HD75Hypothetical 40.0 kDa protein -16 . . . 368221/353 (62%)e-126Homo sapiens (Human), 368 aa.20 . . . 368263/353 (73%)


[0473] PFam analysis indicates that the NOV26a protein contains the domains shown in the Table 26F.
140TABLE 26FDomain Analysis of NOV26aIdentities/Similarities forPfamNOV26a Matchthe MatchedExpectDomainRegionRegionValueNo Significant Matches Found



Example 27

[0474] The NOV27 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 27A.
141TABLE 27ANOV27 Sequence AnalysisSEQ ID NO:732195 bpNOV27a,TTTGTTCCTAACAGATTTCTTGCGACAAGGAAACCCGCAGTCTTCCGCTTCCGGTTGCCG134403-01DNA SequenceTCTGTTGCCATACTAACCCCACCCATAACAGCCGTGGTGGTTATGGCTGGCCTGAGCGGCGCGCAGATCCCCGACGGGGAGTTCACCGCGGTCGTGTACCGCCTCATCCGCAATGCACGCTACGCCGAGGCGGTGCAGCTGCTGGGCGGAGAACTGCACCGGAGCCCTAGGAGCCGCGCCGGCCTGTCGCTGCTAGGCTACTGCTACTACCGCCTGCAGGAGTTCGCGCTGGCGGCCGAGTGCTATGAGCAGCTGGGCCAGCTGCACCCGGAACTGGAGCAGTACCGCCTGTACCAGGCCCAGGCCCTGTACAAGGCCTGCCTTTATGCGGAGGCCACCCGGGTCGCCTTCCTTCTCCTGGATAACCCCGCCTACCACAGCCGGGTCCTCCGCCTGCAAGCTGCTATCAAGTACAGCGAGGGCGATCTGCCAGGGTCCAGGAGCCTGGTAGAGCAGCTGCCGAGTAGGGAAGGGGGAGAGGAPAGTGGGGCCGAGAATCAGACCGATGGCCAGATCAACCTGGGTTGTTTGCTCTACAAGGAGGGACAGTATGAAGCTGCATGCTCCAAGTTTTTTGCCGCCCTGCAGGCCTCCGGCTACCAGCCTGACCTTTCCTACAACCTGGCTTTGGCCTATTACAGCAGCCGACACTATCCTTCAGCACTGAAGCATATCGCTGAGATTATTGAGCGTGGCATCCGCCAGCACCCTGAGCTAGGTGTCGGCATGACCACTGAGGGCATTGATGTTCGCAGTGTTCGCAACACCTTAGTCCTCCATCAGACTGCTCTGGTGGAAGCCTTCAACCTTAAGGCAGCTATAGAATACCAACTGAGAAACTATGAGGCAGCTCAAGAAGCCCTCACTCACATGCCACCCAGGGCAGAGGAAGAGTTGGACCCTGTGACCCTACACAACCAGGCACTAATGAACATGGATGCCAGGCCTACAGAAGGGTTTGAAAAGCTACACTTTTTGCTCCAACAGAATCCCTTTCCTCCAGAGACTTTTGGCAACCTGTTGCTGCTCTACTGTAAATATGAGTATTTTGACCTGCCAGCAGATGTCCTGGCACAAAATGCCCATTTGATTTATAAGTTCCTCACACCCTATCTCTATGACTTCTTGGACGCTGTGATCACTTGCCAGACAGCTCCTGAAGAGGCTTTCATTAACCTTGATGGGCTAGCAGGGATGCTGACTGACCTCCTCCGGAAACTTACCATACAAGTACAGGAAGCAAGACACAATAGAGATGATGAAGCTATCAAAAAGGCAGTGAATGAATATGATGAAACCATGGAGAAATACATTCCTGTGTTGATGGCTCAGGCAAAAATCTACTGGAATCTTGAAAATTATCCAATGGTGGAAAAGATCTTCCGCAAATCTGTGGAATTCTGTAACGACCATGATGTGTGGAAGTTGAATGTGGCTCATGTTCTGTTCATGCAGGAAAACAAATACAAGAAGCCATTGGTTTCTATGAACCCATAGTCAAGAAAACATTATGATAACATCCTCAATGTCAGTGCTATTGTACTGGCTAATCTCTGTGTTTCCTATATTATGACAAGTCAAAATGAAGAXGCAGAGGAGTTGATGAGGAAGATTGAAAAGGAGGAAGAGCAGCTCTCTTATGATGACCCAGATAAGAAAATGTACCATCTCTGCATTGTGAATTTGGTGATACGAACTCTTTATTGTGCCAAAGGAAATTATGACTTTGGTATTTCTCGAGTTATCAAAAGCTTGGAACCTTACAACAAAAAGCTGGGAACAGACACCTGGTATTATGCCAAAAGATGCTTCCTGTCCTTGTTAGAAAACATGTCAAAACACACAATCATGCTTCGTCATAGTGTTATTCAAGAATGTGTCCAGTTTCTAGAACACTGTGAACTTCATCGCAGAAACATACCTGCTGTTATTGAACAACCCCTGGAAGAAGAAAGAATGCATGTTGGAAAGAATACAGTCACATATGAGTCTAGGCAGTTAAAAGCTTTCATTTATGAGATTATAGGATCGAATATATAGTAATAGCTGATAGTGGCATTTATCAAATGGCTTTCTTATGTAAATTTGCATCGCTTTATTTACCCTTTGGCATCTTTATATTTGTTACATGTTGAACORF Start: ATG at 101 ORFStop: TAG at 2096SEQ ID NO: 74665 aaMW at 76098.0 kDNOV27a,MAGLSGAQIPDGEFTAVVYRLIRNARYAEAVQLLGGELQRSPRSRAGLSLLGYCYYRLCG134403-01Protein SequenceQEFALAAECYEQLGQLHPELEQYRLYQAQALYKACLYAEATRVAFLLLDNPAYHSRVLRLQAAIKYSEGDLPGSRSLVEQLPSREGGEESGGENETDGQINLGCLLYKEGQYEAACSKFFAALQASCYQPDLSYNLALAYYSSRQYASALKHIAEIIERGIRQHPELGVGMTTEGIDVRSVGNTLVLHQTALVEAFNLKAAIEYQLRNYEAAQEALTDMPPRAEEELDPVTLHNQALMNMDARPTEGFEKLQFLLQQNPFPPETFGNLLLLYCKYEYFDLAADVLAENAHLIYKFLTPYLYDFLDAVITCQTAPEEAFIKLDGLAGMLTEVLRKLTIQVQEARHNRDDEAIKKAVNEYDETMEKYIPVLMAQAKIYWNLENYPMVEKIPRKSVEFCNDHDVWKLNVAHVLPMQENKYKEATGFYEPIVKKHYDNILNVSAIVLANLCVSYIMTSQNEEAEELMRKIEKEEEQLSYDDPDKKMYHLCIVNLVIGTLYCAKGNYDFGISRVIKSLEPYNKKLGTDTWYYAKRCFLSLLENMSKHTIMLRDSVIQECVQFLEHCELHGRNIPAVIEQPLEEERMHVGKNTVTYESRQLKALIYEIIGWNI


[0475] Further analysis of the NOV27a protein yielded the following properties shown in Table 27B.
142TABLE 27BProtein Sequence Properties NOV27aPSort0.8500 probability located in endoplasmicanalysis:reticulum (membrane); 0.6640 probabilitylocated in plasma membrane; 0.3000probability located in microbody(peroxisome); 0.1000 probability locatedin mitochondrial inner membraneSignalPNo Known Signal Sequence Indicatedanalysis:


[0476] A search of the NOV27a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 27C.
143TABLE 27CGeneseq Results for NOV27aNOV27aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM39821Human polypeptide SEQ ID NO 1 . . . 640636/640 (99%)0.02966 - Homo sapiens, 843 aa.60 . . . 699637/640 (99%)[WO200153312-A1, 26 JUL. 2001]AAM41607Human polypeptide SEQ ID NO356 . . . 664 293/309 (94%)e−1736538 - Homo sapiens, 310 aa. 1 . . . 309302/309 (96%)[WO200153312-A1, 26 JUL. 2001]ABB61288Drosophila melanogaster22 . . . 660301/648 (46%)e−157polypeptide SEQ ID NO 10656 -18 . . . 646424/648 (64%)Drosophila melanogaster, 652 aa.[WO200171042-A2, 27 SEP. 2001]AAB94836Human protein sequence SEQ ID385 . . . 664 266/280 (95%)e−156NO: 16004 - Homo sapiens, 281 aa. 1 . . . 280273/280 (97%)[EP1074617-A2, 07 FEB. 2001]ABB48602Listeria monocytogenes protein59 . . . 317 57/260 (21%)2e−04 #1306 - Listeria monocytogenes,14 . . . 237102/260 (38%)417 aa. [WO200177335-A2, 18OCT. 2001]


[0477] In a BLAST search of public sequence datbases, the NOV27a protein was found to have homology to the proteins shown in the BLASTP data in Table 27D.
144TABLE 27DPublic BLASTP Results for NOV27aNOV27aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96NE6CDNA FLJ30990 fis, clone1 . . . 665635/665 (95%)0.0HLUNG1000037 - Homo sapiens1 . . . 638635/665 (95%)(Human), 638 aa.Q9CY002510042P03Rik protein - Mus1 . . . 665615/665 (92%)0.0musculus (Mouse), 664 aa.1 . . . 664642/665 (96%)Q99J38Similar to RIKEN cDNA1 . . . 665598/665 (89%)0.02510042P03 gene - Mus musculus1 . . . 664632/665 (94%)(Mouse), 664 aa.Q9D2H04930506L13Rik protein - Mus1 . . . 617558/617 (90%)0.0musculus (Mouse), 616 aa.1 . . . 616586/617 (94%)Q9VK41CG5142 protein - Drosophila22 . . . 660 301/648 (46%)e−157melanogaster (Fruit fly), 652 aa.18 . . . 646 424/648 (64%)


[0478] PFam analysis indicates that the NOV27a protein contains the domains shown in the Table 27E.
145TABLE 27EDomain Analysis of NOV27aIdentities/Similarities forPfamNOV27a Matchthe MatchedExpectDomainRegionRegionValueTPR45 . . . 7810/34 (29%)0.9722/34 (65%)



Example 28

[0479] The NOV28 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 28A.
146TABLE 28ANOV28 Sequence AnalysisSEQ ID NO:751165 bpNOV28a,CCTTGTTCTCCACAGAATGGGTCTGCTCCTTCCCCTGGCACTCTGCATCCTAGTCCTGCG135049-01DNA SequenceTGCTGCGGAGCAATGTCTCCACCCCAGCTGGCCCTCAACCCCTCGGCTCTGCTCTCCCGGGGCTCCAATGACTCAGATGTGCTGGCAGTTGCAGGCTTTGCCCTGCGGGATATTAACAAAGACAGAAGGATGGCTATGTGCTGAGACTCAACCGAGTGAAACCACGCCCAGGAATACAGACGGGGTGGCCTGGGATCTCTGTTCTATCTTACACTGGATGTGCTAGAGACTGACTGCCATGTGCTCAGAAAGAAGGCATGGCAAGACTGTGGAATGAGGATATTTTTTGAATCAGTTTATGGTCAATGCAAAGCAATATTTTATATGAACAACCCAAGTAGAGTTCTCTATTTAGCTGCTTATAACTGTACTCTTCGCCCAGTTTCAAAAAAAAAGATTTACATGACGTGCCCGGACTGCCCAGGCTCCATACCCACTGACTCTTCCAATCACCAAGTGCTGGAGGCTGCCACCGAGTCTCTTGCGAAATACAACAATGAGAACACATCCAAGCAGTATTCTCTCTTCAAAGTCACCAGGGCTTCTAGCCAGTGGGTGGTCGGCCCTTCTTACTTGTGGGAATACTTAATTAAAGAATCACCATGTACTAAATCCCAGGCCAGCAGCTGTTCACTTCAGTCCTCCGACTCTGTGCCTGTTGGTCTTTGCAAAGGTTCTCTGACTCGAACACACTGGGAAAAGTTTGTCTCTGTGACTTGTGACTTCTTTGAATCACAGGCTCCAGCCACTGGAAGTGAAAACTCTGCTGTTAACCAGAAACCTACAAACCTTCCCAAGGTGGAAGAATCCCAGCAGAAAAACACCCCCCCAACAGACTCCCCCTCCAAAGCTGGGCCAAGAGGATCTGTCCAATATCTTCCTGACTTGGATGATAAAAATTCCCAGGAAAAGGGCCCTCAGGAGGCCTTTCCTGTGCATCTGGACCTAACCACGAATCCCCAGGGAGAAACCCTGGATATTTCCTTCCTCTTCCTGGAGCCTATGGAGGAGAAGCTGGTGGTCCTGCCTTTCCCCAAAGAAAAAGCACGCACTGCTGAGTGCCCAGGGCCAGCCCAGAATGCCAGCCCTCTTGTCCTTCCGCCATGAORF Start: ATG at 17ORF Stop: TGA at 1163SEQ ID NO: 76382 aaMW at 42077.4 kDNOV28a,MGLLLPLALCILVLCCGAMSPRQLALNPSALLSRGCNDSDVLAVAGFALRDINKDRKDCG135049-01Protein SequenceGYVLRLNRVNDAQEYRRGGLGSLFYLTLDVLETDCHVLRKKAWQDCGMRIFFESVYGQCKAIFYMNNPSRVLYLAAYNCTLRPVSKKKIYMTCPDCPGSIPTDSSNHQVLEAATESLAKYNNENTSKQYSLFKVTPASSQWVVGPSYLWEYLIKESPCTKSQASSCSLQSSDSVPVGLCKGSLTRTHWEKFVSVTCDFFESQAPATGSENSAVNQKPTNLPKVEESQQKNTPPTDSPSKAGPRGSVQYLPDLDDKNSQEKGPQEAFPVHLDLTTNPQGETLDISFLFLEPMEEKLVVLPFPKEKARTAECPGPAQNASPLVLPPSEQ ID NO: 771303 bpNOV28b,GTAACAAAACCGCTCAAGTCTGCCTTAAAGAGCCTTACAAGCCAGCCAGTCCCTGCAGCG135049-02DNA SequenceCTCCACAAACTGACCCATCCTGGGCCTTGTTCTCCACAGAATGGGTCTGCTCCTTCCCCTGGCACTCTGCATCCTAGTCCTGTGCTGCGGAGCAATGTCTCCACCCCAGCTGGCCCAATCAACCCCTCGGCTCTGCTCTCCCGGGGCTGCAATGACTCAGATGTGCTGGCAGTTGCAGGCTTTGCCCTGCGGGATATTAACAAAGACAGAAAGGATGGCTATGTGCTGAGACTCAACCGAGTGAACGACGCCCAGGAATACAGACCGGGTGGCCTGGGATCTCTGTTCTATCTTACACTGGATGTGCTAGACTGTGGAATGAGGATATTTTTTGAATCAGTTTATGGTCAATGCAAAGCAATATTTTATATGAACAACCCAAGTAGAGTTCTCTATTTAGCTGCTTATAACTGTACTCTTCGCCCAGTTTCAAAAAAAAAGATTTACATGACGTGCCCTGACTGCCCAAGCTCCATACCCACTGACTCTTCCAATCACCAAGTGCTGGAGGCTGCCACCGAGTCTCTTGCGAAATACAACAATGAGAACACATCCAAGCAGTATTCTCTCTTCAAAGTCACCAGGGCTTCTAGCCAGTGGGTGGTCGGCCCTTCTTACTTTGTGGAATACTTAATTAAAGAATCACCATCTACTAAATCCCAGGCCAGCAGCTGTTCACTTCAGTCCTCCGACTCTGTGCCTGTTGGTCTTTGCAAAGGTTCTCTGACTCGAACACACTGGGAAAAGTTTGTCTCTGTGACTTGTGACTTCTTTGAATCACAGGCTCCAGCCACTGGAAGTGAAAACTCTGCTGTTAACCAGAAACCTACAAACCTTCCCAAGGTGGAAGAATCCCAGCAGAAAAACACCCCCCCAACACACTCCCCCTCCAAAGCTGGGCCAAGAGGATCTGTCCAATATCTTCCTGACTTGGATGATAAAAATTCCCAGGAAAAGGGCCCTCAGGAGGCCTTTCCTGTGCATCTGGACCTAACCACGAATCCCCAGGGAGAAACCCTGGATATTTCCTTCCTCTTCCTGGAGCCTATGGAGGAGAAGCTGGTGGTCCTGCCTTTCCCCAAAGAAAAAGCACGCACTGCTGAGTGCCCAGGGCCAGCCCAGAATGCCAGCCCTCTTGTCCTTCCGCCATGAGAATCACACAGAGTCTTCTGTAGGGGTATGGTGCGCCGCATGACATGGGAGGCGATGCGGACGATGGACAGAGACAGAGCGTGCACACGTAGAGTORF Start: ATG at 99ORF Stop: TGA at 1206SEQ ID NO: 78369 aaMW at 40458.6 kDNOV28b,MGLLLPLALCILVLCCGAIVISPPQLALNPSALLSRGCNDSDVLAVAGFALRDINKDRKDCG135049-02Protein SequenceGYVLRLNRVNDAQEYRRGGLGSLFYLTLDVLDCGMRIFFESVYGQCKAIFYMNNPSRVAALYLAAYNCTLRPVSKKKIYMTCPDCPSSIPTDSSNHQVLEAATESLAKYNNENTSKQYAASLFKVTRASSQWVVGPSYFVEYLIKESPCTKSQASSCSLQSSDSVPVGLCKGSLTRTHWEKFVSVTCDFFESQAPATGSENSAVNQKPTNLPKVEESQQKNTPPTDSPSKAGPRGSVQYLPDLDDKNSQEKGPQEAFPVHLDLTTNPQGETLDISFLFLEPMEEKLVVLPFPKEKARTAECPGPAQNASPLVLPPSEQ ID NO: 791970 bpNOV28cGTAACAAAACCGCTCAAGTCTGCCTTAAAGAGCCTTACAAGCCAGCCAGTCCCTGCAGCG135049-03DNA SequenceCTCCACAAACTGACCCATCCTGGGCCTTGTTCTCCACAGAATGGGTCTGCTCCTTCCCCTGGCACTCTGCATCCTAGTCCTGTGCTGCGGAGCAATGTCTCCACCCCAGCTGGCCCTCAACCCCTCGGCTCTGCTCTCCCGGGGCTGCAATGACTCAGATGTGCTGGCAGTTGCAGGCTTTGCCCTGCGGGATATTAACAAAGACAGAAAGGATGGCTATGTGCTGAGACTCAACCGAGTGAACGACGCCCAGGAATACAGACGGGGTGGCCTGGGATCTCTGTTCTATCTTACACTGGATGTGCTAGACTGTGGAATGAGGATATTTTTTGAATCAGTTTATGGTCAATGCAAAGCAATATTTTATATGAACAACCCAAGTAGAGTTCTCTATTTAGCTGCTTATAACTGTACTCTTCGCCCAGTTTCAAAAAAAAAGATTTACATGACGTGCCCTGACTGCCCAAGCTCCATACCCACTGACTCTTCCAATCACCAAGTGCTGGAGGCTGCCACCGAGTCTCTTGCGAAATACAACAATGAGAACACATCCAAAGCAGTATTCTCTCTTCAAGTCACCAGGGCTTCTAGCCAGTGGGTGGTCGGCCCTTCTTACTTTGTGGAATACTTAATTAAAGAATCACCATGTACTAAATCCCAGGCCAGCAGCTGTTCACTTCAGTCCTCCGACTCTGTGCCTGTTGGTCTTTGCAAAGGTTCTCTGACTCGAACACACTGGGAAAAGTTTGTCTCTGTGACTTGTGACTTCTTTGAATCACAGGCTCCAGCCACTGGAAGTGAAAACTCTGCTGTTAACCAGAAACCTACAAACCTTCCCAAGGTGGAAGAATCCCAGCAGAAAAATACCCCCCCAACAGACTCCCCCTCCAAACCTGGGCCAAGAGGATCTGTCCAATATCTTCCTGACTTGGATGATAAAAATTCCCAGGAAAAGGGCCCTCAGGAGGCCTTTCCTGTGCATCTGGACCTAACCACGAATCCCCAGGGAGAAACCCTGGATATTTCCTTCCTCTTCCTGGAGCCTATGGAGGAGAAGCTGGTGGTCCTGCCTTTCCCCAAAGAAAAAGCACGCACTGCTGAGTGCCCAGGGCCAGCCCAGAATGCCAGCCCTCTTGTCCTTCCGCCATGAGAATCACACAGAGTCTTCTCTAGGGGTATGGTGCGCCGCATGACATGGGAGGCGATGGGGACGATGGACAGAGACAGAGCGTGCACACGTAGAGTACCAGGGGAAGGAGCAGACCCATCCTGGGCCTTGTTCTCCACAGAATGGGTCTGCTCCTTCCCCTGGCACTCTGCATCCTAGTCCTGTGCTGCGGAGCAATGTCTCCACCCCAGCTGGCCCTCAACCCCTCGGCTCTGCTCTCCCCGGGCTGCAATCACTCAGATGTGCTGGCAGTTGCAGGCTTTGCCCTGGCGGGATATTAACAAAGACAGAAAGGATGGCTATGTGCTGAGACTCAACCGAGTGAACGACGCCCAGGAATACAGACGGGGTGGCCTGGGATCTCTGTTCTATCTTACACTGGATGTGCTAGAGACTGACTGCCATGTGCTCAGAAAGAAGGCATGGCAAGACTGTGGAATGAGGATATTTTTTGAATCAGTTTATGGTCAATGCAAAGCAATATTTTATATGAACAACCCAAGTAGAGTTCTCTATTTAGCTGCTTATAACTGTACTCTTCGCCCAGTTTCAAAAAAAAAGATTTACATGACGTGCCCTGACTGCCCAAGCTCCATACCCACTGACTCTTCCAATCACCAAGTGCTGGAGGCTGCCACCGAGTCTCTTGCGAAATACAACAATGAGAACACATCCAAGCAGTATTCTCTCTTCAAAGTCACCAGGGCTTCTAGCCAGTGGGTGGTCGGCCCTTCTTACTTGTGGORF Start: ATG at 99ORF Stop: TGA at 1206SEQ ID NO:801369 aaMW at 40458.6 kDNOV28c,MCLLLPLALCILVLCCGAMSPPQLALNPSALLSRGCNDSDVLAVAGFALRDINKDRKDCG135049-03Protein SequenceGYVLRLNRVNDAQEYRRGGLGSLFYLTLDVLDCGMRIFFESVYGQCKAIFYMNNPSRVLYLAAYNCTLRPVSKKKIYMTCPDCPSSIPTDSSNHQVLEAATESLAKYHNENTSKQYSLFKVTRASSQWVVGPSYFVEYLIKESPCTKSQASSCSLQSSDSVPVGLCKGSLTRTHWEKFVSVTCDFFESQAPATGSENSAVNQKPTNLPKVEESQQKNTPPTDSPSKAGPRGSVQYLPDLDDKNSQEKGPQEAFPVHLDLTTNPQGETLDISFLFLEPMEEKLVVLPFPKEKARTAECPGPAQNASPLVLPPSEQ ID NO:811427 bpNOV28d,AAAGTCTGCCTTAAAGAGCCTTACAAGCCAGCCAGTCCCTGCAGCTCCACiAACTGACCG135049-04DNA SequenceCCATCCTGGGCCTTGTTCTCCACAGAATGGGTCTGCTCCTTCCCCTGGCACTCTGCATCCTAGTCCTGTGCTGCGGAGCAATGTCTCCACCCCAGCTGGCCCTCAACCCCTCGGCTCTGCTCTCCCGGGGCTGCAATGACTCAGATGTGCTGGCAGTTGCAGGCTTTGCCCTGCGGGATATTAACAAAGACAGAAAGGATGGCTATGTGCTGAGACTCAACCGAGTGAACGACGCCCAGGAATACAGACGGGCAATTTCAAAAAAAAAGATTTACATGACGTGCCCTGACTGCCCAAGCTCCATACCCACTGACTCTTCCAATCACCAAGTGCTGGAGGCTGCCACCGAGTCTCTTGCGAAATACAACAATGAGAACACATCCAAGCAGTATTCTCTCTTCAAAGTCACCAGGGCTTCTAGCCAGTGGGTGGTCGGCCCTTCTTACTTTGTGGAATACTTAATTAAAGAATCACCATGTACTAAATCCCAGGCCAGCAGCTGTTCACTTCAGTCCTCCGACTCTGTGCCTGTTGGTCTTTGCAAAGGTTCTCTGACTCGAACACACTGGGAAAAGTTTGTCTCTGTGACTTGTGACTTCTTTGAATCACAGGCTCCAGCCACTGGAAGTGAAAACTCTGCTGTTAACCAGAAACCTACAACCTTCCCAAGGTGGAAAGAATCCCAGCAGAAAAACACCCCCCCAACAGACTCCCCCTCCkAAGCTGGGCCAAGACGATCTGTCCAATATCTTCCTGACTTGGATGATAAAAATTCCCAGGAAAAGGGCCCTCAGGAGGCCTTTCCTGTGCATCTGGACCTAACCACGAATCCCCAGGGAGAAACCCTGGATATTTCCTTCCTCTTCCTGGAGCCTATGGAGGAGAAGCTGGTCGTCCTGCCTTTCCCCAAAGAAAAAGCACGCACTGCTGAGTGCCCACGGCCAGCCCAGAATGCCAGCCCTCTTGTCCTTCCGCCATGAGAATCACACAGAGTCTTCTGTAGGGGTATGGTGCGCCGCATGACATCGGAGGCGATGGGGACGATGGACAGAGACAGAGCGTGCACACGTAGAGTGGCTAGTGAAGGACCCCTTTTTGACTCTTCTTGGTCTCAGCATGTTGACTGGGATTGGAAATAATGAGACTGAGCCCTCGGCTTGGGCTGCACTCTACCCT2TACACTGCCTTGTACCCTGAGCTGCATCACCTCCTAAACTGAGCAGTCTCATACCATGGAGAGATGCCTCTCTTATGTCTTCAGCCACTCACTTATAAAGATACTTATCTTTTCAGCAGTATATATGTGCTGAAATCTCAGCATGAAAGCATTGCATGAGTAAGATACTTTCCCTAAAAAAAAAAAAAAAAAORF Start: ATG at 85ORF Stop: TGA at 1036SEQ ID NO: 82317 aaMW at 34555.7 kDNOV28d,MGLLLPLALCILVLCCGAMSPPQLALNPSALLSRGCNDSDVLAVAGFALRDINKDRKDCG135049-04Protein SequenceGYVLRLNRVNDAQEYRRAISKKKIYMTCPDCPSSIPTDSSNHQVLEAATESLAKYNNENTSKQYSLFKVTRASSQWVVGPSYFVEYLIKESPCTKSQASSCSLQSSDSVPVGLCKGSLTRTHWEKFVSVTCDFFESQAPATGSENSAVNQKPTNLPKVEESQQKNTPPTDSPSKAGPRGSVQYLPDLDDKNSQEKGPQEAFPVHLDLTThPQGETLDISFLFLEPMEEKLVVLPFPKEKARTAECPGPAQNASPLVLPPSEQ ID NO: 831544 bpNOV28e,AAAGTCTGCCTTAAAGAGCCTTACAAGCCAGCCAGTCCCTGCAGCTCCACAAACTGACCG135049-05DNA SequenceCCATCCTGGGCCTTGTTCTCCACAGAATGGGTCTGCTCCTTCCCCTGGCACTCTGCATCCTAGTCCTGTGCTGCGGAGCAATGTCTCCACCCCAGCTCGCCCTCAACCCCTCGGCTCTGCTCTCCCGGGGCTGCAATGACTCAGATGTGCTGGCAGTTGCAGGCTTTGCCCTGCGGGATATTAACAAAGACAGAAAGGATGGCTATCTGCTGAGACTCAACCGAGTGAACGACGCCCAGGAATACAGACGGGGTGGCCTGGGATCTCTGTTCTATCTTACACTGGATGTGCTAGAGACTGACTGCCATGTGCTCAGAAAGAAGGCATGGCAAGACTGTGGAATGAGGATATTTTTTGAATCAGCATCAACAGTTTCAAAAAAAAAGATTTACATGACGTGCCCTGACTGCCCAAGCTCCATACCCACTGACTCTTCCAATCACCAAGTGCTGGAGGCTGCCACCGAGTCTCTTGCGAAATACAACATGAGAACACATCCAAGCAGTATTCTCTCTTCAAAAGTCACCAGGGCTTCTAGCCAGTGGGTGGTCGGCCCTTCTTACTTTGTCGAATACTTAATTAAAGAATCACCATGTACTAAATCCCAGGCCAGCAGCTGTTCACTTCAGTCCTCCGACTCTGTGCCTGTTGGTCTTTGCAAAGGTTCTCTGACTCGAACACACTGGGAAAAGTTTGTCTCTGTGACTTGTGACTTCTTTGAATCACAGGCTCCAGCCACTGGAAGTGAAAACTCTGCTGTTAACCAGAAACCTACAAACCTTCCCkAGGTGGAAGAATCCCAGCAGAAAAACACCCCCCCAACAGACTCCCCCTCCAAAGCTGGGCCAAGAGGATCTGTCCAATATCTTCCTGACTTGGATGATAAAAATTCCCAGGAAAAGGGCCCTCAGGAGGCCTTTCCTGTGCATCTGGACCTAACCACGAATCCCCAGGGAGAAACCCTGGATATTTCCTTCCTCTTCCTGGAGCCTATGGAGGAGAAGCTGGTGGTCCTGCCTTTCCCCAAAGAAAAAGCACGCACTGCTGAGTGCCCAGGGCCAGCCCAGAATGCCAGCCCTCTTGTCCTTCCGCCATGAGAATCACACAGAGTCTTCTGTAGGGGTATGGTGCGCCGCATGACATGGGAGGCGATGGGGACGATGGACAGAGACAGAGCGTGCACACGTAGAGTGGCTAGTGAAGGACGCCTTTTTGACTCTTCTTGGTCTCAGCATGTTGACTGGGATTGGAAATAATGAGACTGAGCCCTCGGCTTGGGCTGCACTCTACCCTGTACACTGCCTTGTACCCTGAGCTGCATCACCTCCTAAACTGAGCAGTCTCATACCATGGAGAGATGCCTCTCTTATGTCTTCAGCCACTCACTTATAAAGATACTTATCTTTTCAGCAGTATATATGTGCTGAAATCTCAGCATGAAAGCATTGCATGAGTAAAGATACTTTCCCTAAAAAAAAAAAAAAAAORF Start: ATG at 85ORF Stop: TGA at 1153SEQ ID NO: 84356 aaMW at 38961.8 kDNOV28e,MGLLLPLALCILVLCCGAMSPPQLALNPSALLSRGCNDSDVLAVAGFALRDINKDRKDCG135049-05Protein SequenceGYVLRLNRVNDAQEYRRGGLGSLFYLTLDVLETDCHVLRKKAWQDCGMRIFPESASTVSKKKIYMTCPDCPSSIPTDSSNHQVLEAATESLAKYNNENTSKQYSLFKVTRASSQWVVGPSYFVEYLIKESPCTKSQASSCSLQSSDSVPVGLCKGSLTRTHWEKFVSVTCDFFESQAPATGSENSAVNQKPTNLPKVEESQQKNTPPTDSPSKAGPRGSVQYLPDLDDKNSQEKGPQEAFPVHLDLTTNPQGETLDISFLFLEPMEEKLVVLPFPKEKARTAECPGPAQNASPLVLPPSEQ ID NO: 851511 bpNOV28f,AAAGTCTGCCTTAAAGAGCCTTACAAGCCAGCCAGTCCCTGCAGCTCCACAAACTGACCG135049-06DNA SequenceCCATCCTGGGCCTTGTTCTCCACAGAATGGGTCTGCTCCTTCCCCTGGCACTCTGCATCCTAGTCCTGTGCTGCGGAGCAATGTCTCCACCCCAGCTGGCCCTCAACCCCTCGGCTCTGCTCTCCCGGGGCTGCAATGACTCAGATGTGCTGGCAGTTGCAGGCTTTGCCCTGCGGGATATTAACAAAGACAGAAAGGATGGCTATGTGCTGAGACTCAACCGAGTGAACGACGCCCAGGAATACAGACGGGTTTATGGTCAATGCAAAGCAATATTTTATATGAACAACCCAAGTAGAGTTCTCTATTTAGCTGCTTATAACTGTACTCTTCGCCCAGTTTCAAAAAAAAAGATTTACATGACGTGCCCTGACTGCCCAAGCTCCATACCCACTGACTCTTCCAATCACCAAGTGCTGGAGGCTGCCACCGAGTCTCTTGCGAAATACAACAATGAGAACACATCCAAGCAGTATTCTCTCTTCAAAGTCACCAGGGCTTCTAGCCAGTGGGTGGTCGGCCCTTCTTACTTTGTGGAATACTTAATTAAAGAATCACCATGTACTAAATCCCAGGCCAGCAGCTGTTCACTTCAGTCCTCCGACTCTGTGCCTGTTGGTCTTTGCAAAGGTTCTCTGACTCGAACACACTGGGAAAAGTTTGTCTCTCTGACTTGTGACTTCTTTGAATCACAGGCTCCAGCCACTGGAAGTGAAAACTCTGCTGTTAACCAGAAACCTACAAACCTTCCCAAGGTGGAAGAATCCCAGCAGAAAAACACCCCCCCAACAGACTCCCCCTCCAAAGCTGGGCCAAGAGGATCTGTCCAATATCTTCCTGACTTGGATGATAAAAATTCCCAGGAAAAGGGCCCTCAGGAGGCCTTTCCTGTGCATCTGGACCTAACCACGAATCCCCACGGAGAAACCCTGGATATTTCCTTCCTCTTCCTGGAGCCTATGGAGGAGAAGCTGGTGGTCCTGCCTTTCCCCAAAGAAAAAGCACGCACTGCTGAGTGCCCAGGGCCAGCCCAGAATGCCAGCCCTCTTGTCCTTCCGCCATGAGAATCACACAGAGTCTTCTGTAGGGCTATGGTCCCCCGCATGACATGGGAGGCGATGGGGACGATGGACAGAGACAGAGCGTGCACACGTAGAGTGGCTAGTGAAGGACGCCTTTTTGACTCTTCTTGGTCTCAGCATGTTGACTGGCATTGGAAATAATGAGACTCAGCCCTCGGCTTGGGCTGCACTCTACCCTGTACACTGCCTTCTACCCTGAGCTGCATCACCTCCTAAACTGAGCAGTCTCATACCATCGACAGATGCCTCTCTTATGTCTTCAGCCACTCACTTATAAAGATACTTATCTTTTCAGCAGTATATATGTGCTGAAATCTCAGCATGAAAGCATTGCATGAGTAAAGATACTTTCCCTAAAAAAAAAAAAAAAAORF Start: ATG at 85ORF Stop: TGA at 1120SEQ ID NO: 86345 aaMW at 37822.5 kDNOV28f,MGLLLPLALCILVLCCGAMSPPQLALNPSALLSRGCNDSDVLAVAGFALRDINKDRKDCG135049-06Protein SequenceGYVLRLNRVNDAQEYRRVYCQCKAIFYMNNPSRVLYLAAYNCTLRPVSKKKIYMTCPDCPSSIPTDSSNHQVLEAATESLAKYNNENTSKQYSLFKVTRASSQWVVGPSYFVEYLIKESPCTKSQASSCSLQSSDSVPVGLCKGSLTRTHWEKFVSVTCDFFESQAPATGSENSAVNQKPTNLPKVEESQQKNTPPTDSPSKAGPRGSVQYLPDLDDKNSQEKGPQEAFPVHLDLTTNPQGETLDISFLFLEPMEEKLVVLPFPKEKARTAECPGPAQNASPLVLPP


[0480] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 28B.
147TABLE 28BComparison of NOV28a against NOV28b through NOV28f.Identities/Similarities forProteinNOV28a Residues/the MatchedSequenceMatch ResiduesRegionNOV28b17 . . . 382337/366 (92%)17 . . . 369337/366 (92%)NOV28c17 . . . 382337/366 (92%)17 . . . 369337/366 (92%)NOV28d140 . . . 382 225/243 (92%)75 . . . 317226/243 (92%)NOV28e17 . . . 382321/366 (87%)17 . . . 356321/366 (87%)NOV28f17 . . . 382313/366 (85%)17 . . . 345313/366 (85%)


[0481] Further analysis of the NOV28a protein yielded the following properties shown in Table 28C.
148TABLE 28CProtein Sequence Properties NOV28aPSort0.8200 probability located in outside; 0.1900analysis:probability located in lysosome (lumen); 0.1000probability located in endoplasmic reticulum(membrane); 0.1000 probability locatedin endoplasmic reticulum (lumen)SignalPCleavage site between residues 19 and 20analysis:


[0482] A search of the NOV28a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 28D.
149TABLE 28DGeneseq Results for NOV28aNOV28aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB75368Human secreted protein #27 -1 . . . 382379/382 (99%)0.0Homo sapiens, 382 aa.1 . . . 382379/382 (99%)[WO200100806-A2, 04 JAN. 2001]AAB25782Human secreted protein SEQ ID1 . . . 382379/382 (99%)0.0#94 - Homo sapiens, 382 aa.1 . . . 382379/382 (99%)[WO200037491-A2, 29 JUN. 2000]AAW88491Human liver clone HP01263-1 . . . 382379/382 (99%)0.0encoded transmembrane protein -1 . . . 382379/382 (99%)Homo sapiens, 382 aa.[WO9855508-A2, 10 DEC. 1998]AAB51346Human HS-glycoprotein-like1 . . . 382378/382 (98%)0.0protein sequence SEQ ID NO: 5 -1 . . . 382379/382 (98%)Homo sapiens, 382 aa.[JP2000300275-A, 31 OCT. 2000]AAB51347Bovine HS-glycoprotein-like10 . . . 381 245/377 (64%)e−141protein sequence SEQ ID NO: 6 -1 . . . 377289/377 (75%)Bos taurus, 378 aa. [JP2000300275-A, 31 OCT. 2000]


[0483] In a BLAST search of public sequence datbases, the NOV28a protein was found to have homology to the proteins shown in the BLASTP data in Table 28E.
150TABLE 28EPublic BLASTP Results for NOV28aNOV28aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueCAC24999Sequence 43 from Patent 1 . . . 382379/382 (99%)0.0WO0100806 precursor - Homo 1 . . . 382379/382 (99%)sapiens (Human), 382 aa.Q9UGM5Fetuin-B precursor (IRL685) 1 . . . 382377/382 (98%)0.0(16G2) - Homo sapiens (Human), 1 . . . 382378/382 (98%)382 aa.Q9QXC1Fetuin-B precursor (IRL685) - 1 . . . 382246/397 (61%)e−135Mus musculus (Mouse), 388 aa. 1 . . . 388297/397 (73%)Q9QX79Fetuin-B precursor (IRL685) - 1 . . . 377238/388 (61%)e−129Rattus norvegicus (Rat), 378 aa. 1 . . . 378295/388 (75%)Q9D7632310011017Rik protein - Mus61 . . . 382208/334 (62%)e−115musculus (Mouse), 325 aa. 1 . . . 325254/334 (75%)


[0484] PFam analysis indicates that the NOV28a protein contains the domains shown in the Table 28F.
151TABLE 28FDomain Analysis of NOV28aIdentities/Similarities forPfamNOV28a Matchthe MatchedExpectDomainRegionRegionValuecystatin 37 . . . 10423/68 (34%)5.4e−1352/68 (76%)cystatin155 . . . 25432/112 (29%)   6e−1070/112 (62%) 



Example 29

[0485] The NOV29 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 29A.
152TABLE 29ANOV29 Sequence AnalysisSEQ ID NO: 872973 bpNOV29a,CGCCCCGGGCTGGCGATGCTGCGCCGCCCCGCTCCCGCGCTGGCCCCGGCCGCCCGGCCG54912-02DNA SequenceTGCTGCTGGCCGGGCTGCTGTGCGGCGGCGGGGTCTGGGCCGCGCGAGTTAACAAGCACAAGCCCTGGCTGGAGCCCACCTACCACGGCATAGTCACAGAGAACGACAACACCGTACTCCTCGACCCCCCACTGATCGCGCTGGATAAAGATGCGCCTCTGCGATTTGCAGAGAGTTTTGAGGTGACAGTCACCAAAGAAGGTGAGATTTGTGGATTTAATTCACGCGCAAAGAATGTCCCCTTTGATGCAGTGGTAGTGGATAAATCCACTGGTGAGGGAGTCATTCGCTCCAAAGAGAAACTGGACTGTGAGCTGCAGAAAGACTATTCATTCACCATCCAGGCCTATGATTGTGGGAAGGGACCTGATGGCACCAACGTGAAAAAGTCTCATAAAGCAACTGTTCATATTCAGGTGAACGACGTGAATGAGTACGCGCCCGTGTTCAAGGAGAAGTCCTACAAAGCCACGGTCATCGAGGGGAAGCAGTACGACAGCATTTTGAGGGTGGAGGCCGTGGATGCCGACTGCTCCCCTCAGTTCAGCCAGATTTGCAGCTACGAAATCATCACTCCAGACGTGCCCTTTACTGTTGACAAAGATGGTTATATAAAAAACACAGAGAAATTAAACTACGGGAAAGAACATCAATATAAGCTGACCGTCACTGCCTATGACTGTGGGAAGAAAAGAGCCACAGAAGATGTTTTGGTGAAGATCAGCATTAAGCCCACCTGCACCCCTGGGTGGCAAGGATGGAACAACAGGATTGAGTATGAGCCGGGCACCGGCGCGTTGGCCGTCTTTCCAAATATCCACCTGCAGACATGTGACGAGCCAGTCGCCTCAGTACAGGCCACAGTGGAGCTAGAAACCAGCCACATAGGGAAAGGCTGCGACCGAGACACCTACTCAGAGAAGTCCCTCCACCGGCTCTGTGGTGCGGCCGCGGGCACTGCCGAGCTGCTGCCATCCCCGAGTGGATCCCTCAACTGGACCATGGOCCTGCCCACCGACAATGGCCACCACAGCGACCAGGTGTTTGAGTTCAACGGCACCCAGGCAGTGAGGATCCCGGATGGCCTCGTGTCGGTCAGCCCCAAAGAGCCGTTCACCATCTCGGTGTGGATGAGACATGGGCCATTCGGCAGGAAGAAGGAGAGAATTCTTTGCAGTTCTGATAAAACAGATATGAATCGGCACCACTACTCCCTCTATGTCCACGGGTGCCGGCTGATCTTCCTCTTCCGTCAGGATCCTTCTGAGGAGAAGAAATACAGACCTGCAGAGTTCCACTGGAAGTTGAATCAGGTCTGTGATGAGGAATGGCACCACTACGTCCTCAATGTAGAATTCCCGAGTCTGACTCTCTATGTGGATGGCACGTCCCACGAGCCCTTCTCTGTGACTGAGGATTACCCGCTCCATCCATCCAAGATAGAAACTCAGCTCGTGGTGGGGGCTTGCTGGCAAGAGTTTTCAGGAGTTGAAAATGACAATGAAACTGAGCCTGTGACTGTGGCCTCTGCAGGTGGCGACCTGCACATGACCCAGTTTTTCCGAGGCAATCTGGCTGGCTTAACTCTCCGTTCCGGGAAACTCGCGGATAACAAGGTGATCGACTGTCTGTATACCTGCAAGGAGGGGCTGGACCTGCAGGTCCTCGAAGACAGTGGCAGAGGCGTGCAGATCCAAGCACACCCCAGCCAGTTGGTATTGACCTTGGAGGGAGAAGACCTCGGGGAATTGGATAAGGCCATGCAGCACATCTCGTACCTGAACTCCCGGCAGTTCCCCACGCCCGGAATTCGCAGACTCAAATCACCAGCACAATCAAGTGTTTTAAACGAGGCCACCTGCATTTCGGTCCCCCCGGTAGATGGCTACGTGATGGTTTTACAGCCCGAGGAGCCCAAGATCAGCCTGAGTGGCGTCCACCATTTTGCCCGAGCAGCTTCTGAATTTGAAAGCTCAGAAGCCGTGTTCCTTTTCCCTGAGCTTCGCATCATCAGCACCATCACGAGAGAAGTGGAGCCTGAAGGGGACGGGGCTGAGGACCCCACAGTTCAAGAATCACTGGTGTCCGAGGAGATCGTGCACGACCTGGATACCTGTGAGGTCACGGTGGAGGGAGAGGAGCTGAACCACGAGCAGGAGAGCCTGGAGGTGGACATGGCCCGCCTGCAGCAGAAGGGCATTGAAGTGAGCAGCTCTGAACTGGGCATGACCTTCACAGGCGTGGACACCATGGCCAGCTACGAGGAGGTTTTGCACCTGCTGCGCTATCGGAACTGGCATGCCAGGTCCTTCCTTGACCGGAAGTTTAAGCTCATCTGCTCAGAGCTGAATGGCCGCTACATCAGCAACGAATTTAAGGTGGAGGTGAATGTAATCCACACGGCCAACCCCATGGAACACGCCAACCACATGGCTGCCCAGCCACAGTTCGTGCACCCGGAACACCGCTCCTTTGTTGACCTGTCAGGCCACAACCTGGCCAACCCCCACCCGTTCGCAGTCGTCCCCAGCACTGCGACAGTTGTGATCGTGGTGTGCGTCAGCTTCCTGGTGTTCATGATTATCCTGGGGGTATTTCGGATCCGGGCCGCACATCGGCGGACCATGCGGGATCAGGACACCGGGAAGGAGAACGAGATGGACTGGGACGACTCTGCCCTGACCATCACCGTCAACCCCATGGAGACCTATGAGGACCAGCACAGCAGTGAGGAGGAGGACGAAGAGGAAGAGGAAGAGGAAGCGAGGACGGCGIAAGAAGAGGATGACATCACCAGCGCCGAGTCGGAGAGCAGCGAGGAGGAGGAGGGGGAGCAGGGCGACCCCCAGAACGCAACCCGGCAGCAGCAGCTGGAGTGGGATGACTCCACCCTCAGCTACTGACCCGTGCCCCCGORF Start: ATG at 16ORF Stop: TGA at 2959SEQ ID NO:88981 aaMW at 109791.7 kDNOV29a,MLRRPAPALAPAARLLLAGLLCGGGVWAARVNKHKPWLEPTYHGIVTENDNTVLLDPPCG54912-02Protein SequenceLIALDKDAPLRFAESFEVTVTKEGEICGFKIHGQNVPFDAVVVDKSTGEGVIRSKEKLDCELQKDYSFTTQAYDCGKGPDGTNVKKSHKATVHIQVNDVNEYAPVFKEKSYKATVIEGKQYDSILRVEAVDADCSPQFSQICSYEIITPDVPFTVDAAGYIKNTEKLNYGKEHQYKLTVTAYDCGKKRATEDVLVKISIKPTCTPGWQGWNNRIEYEPGTGALAVFPNIHLETCDEPVASVQATVELETSHIGKGCDRDTYSEKSLHRLCGAAAGTAELLPSPSGSLNWTMGLPTDNGHDSDQVFEFNGTQAVRIPDGVVSVSPKEPFTISVWMRHGPFGRKKETILCSSDKTDMNRHHYSLYVHGCRLIFLFRQDPSEEKKYRPAEFHWKLNQVCDEEWHHYVLNVEFPSVTLYVDGTSHEPFSVTEDYPLHPSKIETQLVVGACWQEFSGVENDNETEPVTVASAGGDLHMTQFFRGNLAGLTLRSGKLADKKVIDCLYTCKEGLDLQVLEDSGRGVQIQAHPSQLVLTLECEDLGELDKAMQHISYLNSRQFPTPGIRRLKITSTIKCFNEATCISVPPVDGYVMVLQPEEPKISLSGVHHFARAASEFESSEGVFLFPELRIISTITREVEPEGDGAEDPTVQESLVSEEIVHDLDTCEVTVEGEELNHEQESLEVDMARLQQKGIEVSSSELGMTFTGVDTMASYEEVLHLLRYRNWHARSLLDRKFKLICSELNGRYISNEFKVEVNVIHTANPMEHANHMAAQPQFVHPEHRSFVDLSGHNLANPHPFAVVPSTATVVIVVCVSFLVFMIILGVFRIRAAHRRTMRDQDTGKENEMDWDDSALTITVNPMETYEDQHSSEEEEEEEEAAEESEDGEEEDDITSAESESSEEEEGEQGDPQNATRQQQLEWDDSTLSYSEQ ID NO: 89672 bpNOV29b,AGATCTGCGCGAGTTAACAAGCACAAGCCCTGGCTGGAGCCCACCTACCACGGCATAG207601301 DNASequenceTCACAGAGAACGACAACACCGTGCTCCTCGACCCCCCACTGATCGCGCTGGATAAAGATGCGCCTCTGCGATTTGCAGGTGAGATTTGTGGATTTAAAATTCACGGGCAGAATGTCCCCTTTGATGCAGTGGTAGTGGATAAATCCACTGGTGAGGGAGTCATTCGCTCCAAAGAGAAACTGGACTGTGAGCTGCAGAAAGACTATTCATTCACCATCCAGGCCTATGATTGTGGGAAGGGACCTGATGGCACCAACGTGATAAAGTCTCATAAAGCAACTGTTCATATTCAGGTGAACGACGTGAATGAGTACGCGCCCGTGTTCAAGGAGAAGTCCTACAAAGCCACGGTCATCGAGGGGAAGCAGTACGACAGCATTTTGAGGGTGGAGGCCGTGGATGCCGACTGCTCCCCTCAGTTCAGCCAGATTTGCAGCTACGAAATCATCACTCCAGACGTGCCCTTTACTGTCGACAAAGATGGTTATATAAAAAACACAGAGAAATTAAACTACGGGAAAGAACATCAATATAAGCTGACCGTCACTGCCTATGACTGTGGGAAGAAAAGAGCCACAGAAGATGTTTTGGTGAAGATCAGCATTAAGCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO 90224 aaMW at 25130.3 kDNOV29b,RSARVNKHKPWLEPTYHGIVTENDNTVLLDPPLIALDKDAPLRFAGEICGFKIHGQNV207601301Protein SequencePFDAVVVDKSTGEGVIRSKEKLDCELQKDYSFTIQAYDCGKGPDGTNVIKSHKATVHIQVNDVNEYAPVFKEKSYKATVIEGKQYDSTLRVEAVDADCSPQFSQICSYEIITPDVPFTVDKDGYIKNTEKLNYGKEHQYKLTVTAYDCGKKRATEDVLVKISIKLESEQ ID NO: 91672 bpNOV29c,AGATCTGCGCGAGTTAACAAGCACAAGCCCTGGCTGGAGCCCACCTACCACGGCATAG207601309 DNASequenceTCACAGAGAACGACAACACCGTGCTCCTCGACCCCCCACTGATCGCGCTGGATAAAGATGCGCCTCTGCGATTTGCAGGTGAGATTTGTGGATTTAAAATTCACGGGCAGAATGTCCCCTTTGATGCAGTGGTAGTGGATAAATCCACTGGTGAGGGAGTCATTCGCTCCAAAGAGAAACTGGACTGTGAGCTGCAGAAAGACTATTCATTCACCATCCAGGCCTATGATTGTGGGAAGGGACCTGATGGCACCAACGTGAAAAAGTCTCATAAAGCAACTGTTCATATTCAGGTGAACGACGTGAATGAGTACGCGCCCGTGTTCAAGGAGAAGTCCTACAAAGCCACGGTCATCGAGGGGAAGCAGTACGACAGCATTTTGAGGGTGGAGGCCGTGGATGCCGACTGCTCCCCTCAGTTTAGCCACATTTGCAGCTACGAAATCATCACTCCAGACGTGCCCTTTACTGTTGACAAAGATGGTTATATAAAAAACACAGAGAAATTAAACTACGGGAAAGAACATCAATATAAGCTGACCGTCACTGCCTATGACTGTGGGAAGAAAAGAGCCACAGAAGATGTTTTGGTGAAGATCAGCATTAAGCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 92224 aaMW at 25145.3 kDNOV29c,RSARVNKHKPWLEPTYHGIVTENDNTVLLDPPLIALDKDAPLRFAGEICGFKIHGQNV207601309Protein SequencePFDAVVVDKSTGEGVIRSKEKLDCELQKDYSFTIQAYDCGKGPDGTNVKKSHKATVHIQVNDVNEYAPVFKEKSYKATVIEGKQYDSILRVEAVDADCSPQFSQTCSYEIITPDVPFTVDKDGYIKNTEKLNYGKEHQYKLTVTAYDCGKKRATEDVLVKISIKLESEQ ID NO: 93702 bpNOV29dAGATCTGCGCCAGTTAACAAGCACAAAGCCCTGGCTGGAGCCCACCTACCACGGCATAG207601313 DNASequenceTCACAGAGAACGACAACACCGTGCTCCTCGACCCCCCACTGATCGCGCTGGATAAAGATGCGCCTCTGCGATTTGCAGAGAGTTTTGAGGTGACAGTCACCAAAGAAGGTGAGATTTGTGGATTTAAAATTCACGGGCAGAATGTCCCCTTTGATCCAGTGGTAGTGGATAAATCCACTGGTGAGGGAGTCATTCGCTCCAAAGAGAAACTGGACTGTGAGCTGCAGAAAGACTATTCATTCACCATCCAGGCCTGTGGTTGTGGGAAGGGACCTGATGGCACCAACGTGAAAAAGTCTCATAAAGCAACTGTTCATATTCAGGTGAACGACGTGAATGAGTACGCGCCCGTGTTCAAGGAGAAGTCCTACAAAGCCACGGTCATCGAGGGGAACCAGTACGACAGCATTTTGAGGGTGGAGGCCGTGGATGCCGACTGCTCCCCTCAGTTCAGCCAGATTTGCAGCTACGAAATCATCACTCCAGACGTGCCCTTTACTGTTGACAAAGATGGTTATATAAAAAACACAGAGAAATTAAACTACGGGAAAGAACATCAATATAAGCTGACCGTCACTGCCTATGACTGTGGGAAAAAAAGAGCCACAGAAGATGTTTTGGTGAAGATCAGCATTAAGCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 94234 aaMW at 26177.4 kDNOV29d,RSARVNKHKPWLEPTYHGIVTENDNTVLLDPPLIALDKDAPLRFAESFEVTVTKEGEI207601313SequenceCGFKIHGQNVPFDAVVVDKSTGEGVIRSKEKLDCELQKDYSFTIQACGCGKGPDGTNVKKSHKATVHIQVNDVNEYAPVFKEKSYKATVIEGKQYDSILRVEAVDADCSPQFSQICSYEIITPDVPFTVDKDGYIKNTEKLNYGKEHQYKLTVTAYDCGKKRATEDVLVKISIKLESEQ ID NO: 95672 bpNOV29e,AGATCTGCGCGAGTTAACAAGCACAAGCCCTGGCTGGAGCCCACCTACCACGGCATAG207601331 DNASequenceTCACAGAGAACGACAACACCGTGCTCCTCGACCCCCCACTGATCGCGCTGGATAAAGATGCGCCTCTGCGATTTGCAGGTGAGATTTGTGGATTTAAAATTCACGGGCAGAATGTCCCCTTTGATGCAGTGGTAGTGGATAAATCCACTGGTGAGGGAGTCATTCGCTCCAAAGAGAAACTGGACTGTGAGCTGCAGAAAGACTATTCATTCACCATCCAGGCCTATGATTGTGGGAAGGGACCTGATGGCACCAACGTGAAAAAGTCTCATAAAGCAACTGTTCATATTCAGGTGAACGACGTGAATGAGTACGCGCCCGTGTTCAAGGAGAGGTCCTACAAAGCCACGGTCATCGAGGGGAAGCAGTACGACAGCATTTTGAGGGTGGAGGCCGTGGATGCCGACTGCTCCCCTCAGTTCAGCCAGATTTGCAGCTACGAAATCATCACTCCAGACGTGCCCTTTACTGTTGACAAAGATGGTTATATAAAAAACACACAGAAATTAAACTACGGGAAAGAACATCAATATAAGCTGACCGTCACTGCCTATGACTGTGGGAAGAAAAGAGCCACAGAAGATGTTTTGGTGAAGATCAGCATTAAGCTCCAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO:96224 aaMW at 25173.3 kDNOV29e,RSARVNKHKPWLEPTYHGIVTENDNTVLLDPPLIALDKDAPLRFAGEICGFKIHGQNV207601331Protein SequencePFDAVVVDKSTGEGVTRSKEKLDCELQKDYSFTIQAYDCGKGPDGTNVKKSHKATVHIQVNDVNEYAPVFKERSYKATVIEGKQYDSILRVEAVDADCSPQFSQICSYEIITPDVPFTVDKDGYIKNTEKLNYGKEHQYKLTVTAYDCGKKRATEDVLVKISIKLESEQ ID NO: 97672 bpNOV29f,AGATCTGCGCGAGTTAACAAGCACAAGCCCTGGCTGGACCCCACCTACCACGGCATAG207639332 DNASequenceTCACAGAGAACGACAACACCGTGCTCCTCGACCCCCCACTGATCGCGCTGGATAAAGATGCGCCTCTGCGATTTGCAGGTGAGATTTGTGGATTTAAAATTCACGGGCAGAATGTCCCCTTTGATGCAGTGGTAGTGGATAAATCCACTGGTGAGGGAGTCATTCGCTCCAAAGAGAAACTGGACTGTGAGCTGCACAAAGGCTATTCATTCACCATCCAGGCCTATGATTGTGGGAAGGGACCTGATGGCACCAACGTGAAAAAGTCTCATAAAGCAACTGTTCATATTCAGGTGAACGACGTGAATGAGTACGCGCCCGTGTTCAAGGAGAAGTCCTACAAAGCCACGGTCATCGAGGGGAAGCAGTACGACAGCATTTTGAGGGTGGAGGCCGTGGATGCCGACTGCTCCCCTCAGTTCAGCCAGATTTGCAGCTACGAAATCATCACTCCAGACGTGCCCTTTACTGTTGACAAAGATGGTTATATAAAAAACACAGAGAAATTAAACTACGGGAAAGAACATCAATATAAGCTGACCGTCACTGCCTATGACTGTGGGAAGAAAAGAGCCACAGAAGATGTTTTGGTGAAGATCAGCATTAAGCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 98224 aaMW at 25087.2 kDNOV29f,RSARVNKHKPWLEPTYHGIVTENDNTVLLDPPLIALDKDAPLRFAGEICGFKIHGQNV207639332Protein SequencePFDAVVVDKSTGEGVIRSKEKLDCELQKGYSFTIQAYDCGKGPDGTNVKKSHKATVHIQVNDVNEYAPVFKEKSYKATVIEGKQYDSILRVEAVDADCSPQFSQICSYEIITPDVPFTVDKDGYIKNTEKLNYGKEHQYKLTVTAYDCGKKRATEDVLVKISIKLE


[0486] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 29B.
153TABLE 29BComparison of NOV29a against NOV29b through NOV29f.Identities/Similarities forProteinNOV29a Residues/the MatchedSequenceMatch ResiduesRegionNOV29b28 . . . 258219/231 (94%) 2 . . . 222220/231 (94%)NOV29c28 . . . 258220/231 (95%) 2 . . . 222221/231 (95%)NOV29d28 . . . 258228/231 (98%) 2 . . . 232229/231 (98%)NOV29e28 . . . 258219/231 (94%) 2 . . . 222221/231 (94%)NOV29f28 . . . 258219/231 (94%) 2 . . . 222220/231 (94%)


[0487] Further analysis of the NOV29a protein yielded the following properties shown in Table 29C.
154TABLE 29CProtein Sequence Properties NOV29aPSort0.4600 probability located in plasma membrane; 0.1030analysis:probability located in microbody (peroxisome); 0.1000probability located in endoplasmic reticulum(membrane); 0.1000 probability located in endoplasmicreticulum (lumen)SignalPCleavage site between residues 29 and 30analysis:


[0488] A search of the NOV29a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 29D.
155TABLE 29DGeneseq Results for NOV29aNOV29aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB93107Human protein sequence SEQ ID646 . . . 981 335/336 (99%)0.0NO: 11970 - Homo sapiens, 336 aa. 1 . . . 336336/336 (99%)[EP1074617-A2, 07 FEB. 2001]AAU19843Human novel extracellular matrix50 . . . 331270/282 (95%)e−158protein, Seq ID No 493 - Homo 5 . . . 276270/282 (95%)sapiens, 276 aa. [WO200155368-A1, 02 AUG. 2001]AAW95631Homo sapiens secreted protein gene15 . . . 408246/405 (60%)e−146clone hj968_2 - Homo sapiens, 428 8 . . . 400301/405 (73%)aa. [WO9856805-A1, 17 DEC.1998]AAU91129Human secreted protein sequence514 . . . 949 198/444 (44%)e−114#49 - Homo sapiens, 467 aa.17 . . . 456309/444 (69%)[WO200218412-A1, 07 MAR.2002]AAB58434Lung cancer associated polypeptide514 . . . 944 195/444 (43%)e−113sequence SEQ ID 772 - Homo17 . . . 456305/444 (67%)sapiens, 467 aa. [WO200055180-A2, 21 SEP. 2000]


[0489] In a BLAST search of public sequence datbases, the NOV29a protein was found to have homology to the proteins shown in the BLASTP data in Table 29E.
156TABLE 29EPublic BLASTP Results for NOV29aNOV29aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueO94985KIAA0911 protein - Homo1 . . . 981 981/981 (100%)0.0sapiens (Human), 981 aa.1 . . . 981 981/981 (100%)Q9EPL2Calsyntenin-1 protein precursor -1 . . . 981907/981 (92%)0.0Mus musculus (Mouse), 979 aa.1 . . . 979948/981 (96%)Q9DDD3Calsyntenin-1 protein - Gallus31 . . . 981 818/952 (85%)0.0gallus (Chicken), 948 aa1 . . . 948891/952 (92%)(fragment).AAH29027Hypothetical 83.0 kDa protein -235 . . . 981 683/747 (91%)0.0Mus musculus (Mouse), 745 aa1 . . . 745718/747 (95%)(fragment).Q9H4D0Calsyntenin-2 - Homo sapiens28 . . . 981 528/968 (54%)0.0(Human), 955 aa.34 . . . 955 707/968 (72%)


[0490] PFam analysis indicates that the NOV29a protein contains the domains shown in the Table 29F.
157TABLE 29FDomain Analysis of NOV29aIdentities/Similarities forPfamNOV29a Matchthe MatchedExpectDomainRegionRegionValuecadherin 42 . . . 15530/127 (24%)0.07172/127 (57%)cadherin169 . . . 25828/108 (26%)0.003461/108 (56%)



Example 30

[0491] The NOV30 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 30A.
158TABLE 30ANOV30 Sequence AnalysisSEQ ID NO: 9924 bpNOV30a, TTTGAGCAAAACAGAAGACAGCCCCG56315-03 DNA Sequence ORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1008 aaMW at 1074.2kDNOV30a, FEQNRRQPCG56315-03 Protein Sequence SEQ ID NO: 10124 bpNOV30b, TTTGAGTGCAACAGGAGACAGCCCCG56315-04 DNA Sequence ORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1028 aaMW at 1049.2kDNOV30b, FECNRRQPCG56315-04 Protein Sequence SEQ ID NO: 10324 bpNOV30c, TTTGAGCAAAACAGTAGACAGCCCCG56315-05 DNA Sequence ORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1048 aaMW at 1005.1kDNOV30c, FEQNSRQPCG56315-05 Protein Sequence SEQ ID NO: 10524 bpNOV30d, TTTGAGTGCAACAGTAGACAGCCCCG56315-06 DNA Sequence ORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1068 aaMW at 980.1kDNOV30d, FECNSRQPCG56315-06 Protein Sequence SEQ ID NO: 10724 bpNOV30e, TTTGAGCAAAACAGTAGACAGGCCCG56315-07 DNA Sequence ORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1088 aaMW at 979.0kDNOV30e, FEQNSRQACG56315-07 Protein Sequence SEQ ID NO: 10924 bpNOV30f, TTTGAGTGCAACAGTAGACAGGCCCG56315-08 DNA Sequence ORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1108 aaMW at 954.0kDNOV30f, FECNSRQACG56315-08 Protein Sequence


[0492] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 30B.
159TABLE 30BComparison of NOV30a against NOV3Ob through NOV30f.Identities/Similarities forProteinNOV30a Residues/the MatchedSequenceMatch ResiduesRegionNOV30bNo Significant Alignment Found.NOV30c1 . . . 87/8 (87%)1 . . . 87/8 (87%)NOV30dNo Significant Alignment Found.NOV30eNo Significant Alignment Found.NOV30fNo Significant Alignment Found.


[0493] Further analysis of the NOV30a protein yielded the following properties shown in Table 30C.
160TABLE 30CProtein Sequence Properties NOV30aPSort analysis:SignalP analysis:No Known Signal Sequence Indicated


[0494] A search of the NOV30a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 30D.
161TABLE 30DGeneseq Results for NOV30aNOV30aIdentities/Protein/Residues/Similarities forGeneseqOrganism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueNo Significant Matches Found


[0495] In a BLAST search of public sequence datbases, the NOV30a protein was found to have homology to the proteins shown in the BLASTP data in Table 30E.
162TABLE 30EPublic BLASTP Results for NOV30aNOV30aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueNo Significant Matches Found


[0496] PFam analysis indicates that the NOV30a protein contains the domains shown in the Table 30F.
163TABLE 30FDomain Analysis of NOV30aIdentities/Similarities forNOV30athe MatchedExpectPfam DomainMatch RegionRegionValueNo Significant Matches Found



Example 31

[0497] The NOV31 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 31A.
164TABLE 31ANOV31 Sequence AnalysisSEQ ID NO: 1152628 bpNOV31a, ACCGTGCCTCTGCGGCCTGCGTGCCCGGAGTCCCCGCCTGTGTCGTCTCTGTCGCCGTCG56326-01DNA SequenceCCCCGTCTCCTGCCAGGCGCGGAGCCCTGCGAGCCGCGGGTGGGCCCCAOGCGCGCAGACATGGGCTGCTCCGCCAAAGCGCGCTGGGCTGCCGGGGCGCTGGGCGTCGNGGGGCTACTGTGCGCTGTGCTCGGCGCTGTCATGATCGTGATGGTGCNGTCGCTCATCAAGCAGCAGGTCCTTAAGAACGTCCGCATCGACCCCAGTAGCCTGTCCTTCAACATGTGGAAGGAGATCCCTATCCCCTTCTATCTCTCCGTCTACTTCTTTGACGTCATGAACCCCAGCGAGATCCTGAAGGGCGAGAAGCCGCAGGTGCGGGAGCCCGGGCCCTACGTCTACAGGGAGTTCAGGCACAAAAGCAACATCACCTTCAACAACAACGACACCGTGTCCTTCCTCGAGTACCGCACCTTCCAGTTCCAGCCCTCCAAGTCCCACGGCTCGGAGAGCGACTACATCGTCATGCCCAACATCCTGGTCTTGGGTGCGGCGGTGATGATGGAGAATAAGCCCATGACCCTGAAGCTCATCATGACCTTGGCATTCACCACCCTCGGCGAACGTGCCTTCATGAACCGCACTGTGGGTGAGATCATGTGGGGCTACAAGGACCCCCTTGTGAATCTCATCAACAAGTACTTTCCAGGCATGTTCCCCTTCAAGGACAAGTTCGGATTATTTGCTGAGCTCAACAACTCCGACTCTGGGCTCTTCACGGTGTTCACGGGGGTCCAGAACATCAGCAGGATCCACCTCGTGGACAAGTGGAACGGGCTGAGCAAGGTTGACTTCTGGCATTCCGATCAGTGCAACATGATCAATGGAACTTCTGGGCAAATGTGGCCGCCCTTCATGACTCCTGAGTCCTCGCTGGAGTTCTACAGCCCGGAGGCCTGCCGATCCATGAAGCTAATGTACAAGGAGTCAGGGGTGTTTGAAGGCATCCCCACCTATCGCTTCGTGGCTCCCAAAACCCTGTTTGNCAACGGGTCCATCTACCCACCCAACGAAGGCTTCTGCCCGTGCCTGGAGTCTGGAATTCAGAACGTCAGCACCTGCAGGTTCAGTGCCCCCTTGTTTCTCTCCCATCCTCACTTCCTCAACGCCGACCCGGTTCTGGCAGAAGNGGTGACTNNCCTGCACNCTAACCAGGAGGCACACTCCTTGTTCCTGGACATCCACCCGGTCACGGGAATCCCCATGAACTGCTCTGTGAAACTGCAGCTGAGCCTCTACATGAAATCTGTCGCAGGCATTGGACAAACTGGGAAGATTGAGCCTGTGGTCCTGCCGCTGCTCTGGTTTGCACAGAGCGGGGCCATGGAGGGGGAGACTCTTCACACATTCTACACTCAGCTGGTGTTGATGCCCAAGGTGATGCACTATGCCCAGTACGTCCTCCTGGCGCTGGGCTGCGTCCTGCTGCTGGTCCCTGTCATCTGCCAAATCCGGAGCCAAGAGAAATGCTATTTATTTTGGAGTAGTAGTAAAAAGGGCTCAAAGGATAAGGAGGCCATTCAGGCCTATTCTGAATCCCTGATGACATCAGCTCCCAAGGGCTCTGTGCTGCAGGAAGCAAAACTGTAGGCTCCTGAGGACACCGTGAGCCAGCCAGGCCTGGCCGCTGGGCCTGACCGGCCCCCCAGCCCCTACACNCCGCTTCTCCCGGACTCTCCCAGCAGACAGCCCCCCAGCCCCACAGCCTGAGCCTCCCAGCTGCCATGTCCCTGTTGCACACCTGCACACACGCCCTGGCACACATACACACATGCGTGCAGGCTTGTGCAGACACTCAGGGATGGAGCTGCTGCTGAAGGGACTTGTAGGGAGAGGCTCGTCAACAACCACTGTTCTGGAACGTTCTCTCCACGTGGCCCACAGGCCTGACCACAGGGGCTGTGGGTCCTGCGTCCCCTTCCTCGGGTGAGCCTGGCCTGTCCCGTTCAGCCGTTGGGCCCAGGCTTCCTCCCCTCCAACGTGAAACACTGCAGTCCCGGTGTGGTGGCTCCCCATGCAGGACGGGCCAGGCTGGGAGTGCCGCCTTCCTGTGCCAAATTCAGTGGGGACTCAGTGCCCAGGCCGTGGCCACGAGCTTTGGCCTTGGTCTACCTGCCAGGCCAGGCAAAGCGCCTTTACACAGGCCTCGGAAAACAATGGAGTGAGCACAAGATGCCCTGTGCAGCTGCCCGAGGGTCTCCGCCCACCCCGGCCGGACTTTGATCCCCCCGAAGTCTTCACAGGCACTCCATCGGGTTGTCTGGCGCCCTTTTCCTCCAGCCTAAACTGACATCATCCTATGGACTGAGCCGGCCACTTTGGCCGAAGTGGCCGCAGGCTGTGCCCCCGAGCTGCCCCCACCCCCTCACAGGGTCCCTCAGATTATAGGTGCCCAGGCTGAGGTGAAGAGGCCTGGGGGCCCTGCCTTCCGGCCGCTCCTGGACCCTGGGGCAAACCTGTGACCCTTTTCTACTGGAATAGAAATGAGTTTTATCATCTTTGAAAAATAATTCACTCTTGAAGTAATAAACGTTTAAAAAAATGGGAAAAAAAAAAAAAAAAAAAAAAAAORF Start: at 218ORF Stop: at 1745SEQ ID NO: 116509 aaMW at 56449.3kDNOV31a, MGCSAKARWAAGALGVXGLLCAVLGAVMIVMVXSLIKQQVLKNVRIDPSSLSFNMWKECG56326-01 Protein SequenceIPIPFYLSVYFFDVMNPSEILKGEKPQVREPGPYVYREFRHKSNITFNNNDTVSFLEYRTFQFQPSKSHGSESDYIVMPNILVLGAAVMMENKPMTLKLIMTLAFTTLGERAFMNRTVGEIMWGYKDPLVNLINKYFPGMFPFKDKFGLFAELNNSDSGLFTVFTGVQNISRIHLVDKWNGLSKVDFWHSDQCNMINGTSGQMWPPFMTPESSLEFYSPEACRSMKLMYKESGVFEGIPTYRFVAPKTLFXNGSIYPPNEGFCPCLESGIQNVSTCRFSAPLFLSHPHFLNADPVLAEXVTXLHXNQEAHSLFLDIHPVTGIPMNCSVKLQLSLYMKSVAGIGQTGKIEPVVLPLLWFAESGAMEGETLHTFYTQLVLMPKVMHYAQYVLLALGCVLLLVPVICQIRSQEKCYLFWSSSKKGSKDKEAIQAYSESLMTSAPKGSVLQEAKLSEQ ID NO: 1171248bpNOV31b, AGATCTCTCATCAAGCAGCAGGTCCTTAAGAACGTGCCCATCGACCCCAGTAGCCTGT175070268 DNASequenceCCTTCAACATGTGGAAGGAGATCCCTATCCCCTTCTATCTCTCCGTCTACTTCTTTGACGTCATGAACCCCAGCGAGATCCTGAAGGGCGAGAAGCCGCAGGTGCGGGAGCGCGGGCCCTACGTGTACAGGGAGTTCAGGCACAAAAGCAACATCACCTTCAACAACAACGACACCGTGTCCTTCCTCGAGTACCGCACCTTCCAGTTCCAGCCCTCCAAGTCCCACGGCTCGGAGAGCGACTACATCGTCATGCCCAACATCCTGGTCTTGGGTGCGGCGGTGATGATGGAGAATAAGCCCATGACCCTGAAGCTCATCATGACCTTGGCATTCACCACCCTCGGCGAACGTGCCTTCATGAACCGCACTGTGGGTGAGATCATGTGGGGCTACAAGGACCCCCTTGTGAATCTCATCAACAAGTACTTTCCAGGCATGTTCCCCTTCAAGGACAAGTTCGGATTATTTGCTGAGCTCAACAACTCCGACTCTGGGCTCTTCACGGTGTTCACGGGGGTCCAGAACATCAGCAGGATCCACCTCGTGGACAAGTGGAACGGGCTGAGCAAGGTTGACTTCTGGCATTCCGATCAGTGCAACATGATCAATGGAAGTTCTGGGCAAATGTGGCCGCCCTTCATGACTCCTGAGTCCTCGCTGGAGTTCTACAGCCCGGAGGCCTGCCGATCCATGAAGCTAATGTACAAGGAGTCAGGGGTGTTTGAAGGCATCCCCACCTATCGCTTCGTGGCTCCCAAAACCCTGTTTGCCAACGGGTCCATCTACCCACCCAACGAAGGCTTCTGCCCGTGCCTGGAGTCTGGAATTCAGAACGTCAGCACCTGCAGGTTCAGTGCCCCCTTGTTTCTCTCCCATCCTCACTTCCTCAACGCCGACCCGGTTCTGGCAGAAGCGGTGACTGGCCTGCACCCTAACCAGGAGGCACACTCCTTGTTCCTGGACATCCACCCGGTCACGGGAATCCCCATGAACTGCTCTGTGAAACTGCAGCTGAGCCTCTACATGAAATCTGTCGCAGGCATTGGACAAACTGGGAAGATTGAGCCTGTGGTCCTGCCGCTGCTCTGGTTTGCAGAGAGCGGGGCCATGGAGGGCGAGACTCTTCACACATTCTACACTCAGCTGGTGTTGATGCCCAAGGTGATGCACTATGCCCAGTACGTCGACORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 118416 aaMW at 47303.3kDNOV31b, RSLIKQQVLKNVRIDPSSLSFNMWKEIPIPFYLSVYFFDVMNPSEILKGEKPQVRERG175070268Protein SequencePYVYREFRHKSNITFNNNDTVSFLEYRTFQFQPSKSHGSESDYIVMPNILVLGAAVMMENKPMTLKLIMTLAFTTLCERAFMNRTVGEIMWGYKDPLVNLINKYFPGMFPFKDKFGLFAELNNSDSGLFTVFTGVQNISRIHLVDKWNGLSKVDFWHSDQCNMINCTSGQMWPPFMTPESSLEFYSPEACRSMKLMYKESGVFEGIPTYRFVAPKTLFANGSIYPPNEGFCPCLESGIQNXTSTCRFSAPLFLSHPHFLNADPVLAEAVTGLHPNQEAHSLFLDIHPVTGIPMNCSVKLQLSLYMKSVAGIGQTGKIEPVVLPLLWFAESGAJAEGETLHTFYTQLVLMPKVMHYAQYVD


[0498] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 31B.
165TABLE 31BComparison of NOV31a against NOV31b.Identities/Similarities forProteinNOV31a Residues/the MatchedSequenceMatch ResiduesRegionNOV31b34 . . . 447409/414 (98%) 2 . . . 415409/414 (98%)


[0499] Further analysis of the NOV31a protein yielded the following properties shown in Table 31C.
166TABLE 31CProtein Sequence Properties NOV31aPSort0.5644 probability located in microbody (peroxisome);analysis:0.4600 probability located in plasma membrane;0.1000 probability located in endoplasmic reticulum(membrane); 0.1000 probability located in endoplasmicreticulum (lumen)SignalPCleavage site between residues 35 and 36analysis:


[0500] A search of the NOV31a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 31D.
167TABLE 31DGeneseq Results for NOV31aNOV31aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAW97900Human SR-BI class B scavenger -1 . . . 509503/509 (98%)0.0Homo sapiens, 509 aa.1 . . . 509503/509 (98%)[WO9902736-A2, 21 JAN. 1999]AAW97899Human SR-BI class B scavenger -1 . . . 509502/509 (98%)0.0Homo sapiens, 509 aa.1 . . . 509502/509 (98%)[WO9902735-A2, 21 JAN. 1999]ABB12012Human SR-BI class B scavenger1 . . . 509501/509 (98%)0.0homologue, SEQ ID NO: 2382 -24 . . . 532 501/509 (98%)Homo sapiens, 532 aa.[WO200157188-A2, 09 AUG.2001]AAY49573Human CLA-1 protein sequence -1 . . . 509501/509 (98%)0.0Homo sapiens, 509 aa.1 . . . 509501/509 (98%)[WO9950454-A2, 07 OCT. 1999]ABG22317Novel human diagnostic protein1 . . . 509485/514 (94%)0.0#22308 - Homo sapiens, 537 aa.24 . . . 537 490/514 (94%)[WO200175067-A2, 11 OCT. 2001]


[0501] In a BLAST search of public sequence datbases, the NOV31a protein was found to have homology to the proteins shown in the BLASTP data in Table 31E.
168TABLE 31EPublic BLASTP Results for NOV31aIdentities/ProteinSimilarities forAccessionNOV31a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ14016CLA-1 - Homo sapiens (Human),1 . . . 509501/509 (98%)0.0509 aa.1 . . . 509501/509 (98%)Q8WTV0Similar to CD36 antigen (collagen1 . . . 467460/467 (98%)0.0type I receptor, thrombospondin1 . . . 467460/467 (98%)receptor)-like 1 - Homo sapiens(Human), 552 aa.Q8SQC1High density lipoprotein receptor1 . . . 509437/509 (85%)0.0SR-BI - Sus scrofa (Pig), 509 aa.1 . . . 509474/509 (92%)O18824Scavenger receptor class B type 1 -1 . . . 509418/509 (82%)0.0Bos taurus (Bovine), 509 aa.1 . . . 509462/509 (90%)Q60417HaSR-BI - Cricetulus griseus1 . . . 509409/509 (80%)0.0(Chinese hamster), 509 aa.1 . . . 509455/509 (89%)


[0502] PFam analysis indicates that the NOV31a protein contains the domains shown in the Table 31F.
169TABLE 31FDomain Analysis of NOV31aIdentities/PfamNOV31aSimilarities forDomainMatch Regionthe Matched RegionExpect ValueCD365 . . . 445213/567 (38%)3.6e−227410/567 (72%)



Example 32

[0503] The NOV32 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 32A.
170TABLE 32ANOV32 Sequence AnalysisSEQ ID NO: 1191284 bpNOV32a, ATGCATCTTATCGACTACCTGCTCCTCCTGCTGGTTCGACTACTGGCCCTTTCTCATGCG56711-01 DNA Sequence GCCAGCTGCACGTTGAGCATGATGGTGAGAGTTGCAGTAACAGCTCCCACCAGCAGATTCTGGAGACAGGTGGGGGCTCCCCCAGCCTCPAGATAGCCCCTGCCAATGCTGACTTTGCCTTCCGCTTCTACTACCTGATCGCTTCGGAGACCCCGGGGAAGAACATCTTTTTCTCCCCGCTGAGCATCTCGGCGGCCTACGCCATGCTTTCCCTGGGGGCCTGCTCACACAGCCGCAGCCAGATCCTTGAGGGCCTGGGCTTCAACCTCACCGAGCTGTCTGAGTCCGATGTCCATAGGGGCTTCCACCACCTCCTGCACACTCTGAACCTCCCCGGCCATGGGCTGGAAACACGCGTGGGCAGTGCTCTGTTCCTGAGCCACAACCTGAAGTTCCTTGCAAAATTCCTGAATGACACCATGGCCGTCTATGAGGCTAAACTCTTCCACACCAACTTCTACGACACTGTGGGCACAATCCAGCTTATCAACGACCACGTCAAGAAGGAAACTCGAGGGAAGATTGTGGATTTGGTCAGTGAGCTCAAGAAGGACGTCTTGATGGTGCTGGTGAATTACATTTACTTCAAAGCCCTGTGGGAGAAACCATTCATTTCCTCAAGGACCACTCCCAAAGACTTTTATGTTGATGAGAACACAACACTCCGGGTGCCCATGATGCTGCAGGACCAGGAGCATCACTGGTATCTTCATGACAGATACTTGCCCTGCTCGGTGCTACGGATGGATTACAAAGGAGACGCAACCGTGTTTTTCATTCTCCCTAACCAAGGCAAAATGAGGGAGATTGAAGAGGTTCTGACTCCAGAGATGCTAATGAGGTGGAACPACTTGTTGCGGAAGAGGAATTTTTACAAGAAGCTAGAGTTGCATCTTCCCAAGTTCTCCATTTCTGGCTCCTATGTATTAGATCAGATTTTGCCCAGGCTGGGCTTCACGGATCTGTTCTCCAAGTGGGCTGACTTATCCGGCATCACCAAACAGCAAAAACTGGAGGCATCCAAAAGTTTCCACAAGGCCACCTTGGACGTGGATGAGGCTGGCACCGAGGCTGCAGCAGCCACCAGCTTCGCGATCAAATTCTTCTCTGCCCAGACCAATCGCCACATCCTGCGATTCAACCGGCCCTTCCTTGTGGTGATCTTTTCCACCAGCACCCAGAGTGTCCTCTTTCTGGGCAAGGTCGTCGACCCCACGAAACCATAGORF Start: ATG at 1ORF Stop: TAG at 1282SEQ ID NO: 120427 aaMW at 48469.3kDNOV32a, MHLIDYLLLLLVGLLALSHGQLHVEHDGESCSNSSHQQILETGGGSPSLKIAPANADFCG56711-01 Protein Sequence AFRFYYLIASETPGKNIFFSPLSISAAYAMLSLGACSHSRSQILEGLGFNLTELSESDVHRGFQHLLHTLNLPGHGLETRVGSALFLSHNLKFLAKFLNDTMAVYEAKLFHTNFYDTVGTIQLINDHVKKETRGKIVDLVSELKKDVLMVLVNYIYFKALWEKPFISSRTTPKDFYVDENTTVRVPMMLQDQEHHWYLHDRYLPCSVLRMDYKGDATVFFILPNQGKMREIEEVLTPEMLMRWNNLLRKRNFYKKLELHLPKFSISGSYVLDQILPRLGFTDLFSKWADLSGITKQQKLEASKSFHKATLDVDEAGTEAAAATSFAIKFFSAQTNRHILRFNRPFLVVIFSTSTQSVLFLGKVVDPTKPSEQ ID NO: 1211233 bpNOV32b, GGATCCCAGCTGCACGTTGAGCATGATCGTGAGAGTTGCAGTAACAGCTCCCACCAGC166280659 DNA Sequence AGATTCTGGAGACAGGTGAGGCCTCCCCCAGCCTGAAGATAGCCCCTGCCAATGCTGACTTTGCCTTCCGCTTCTACTACCTGATCGCTTCGGAGACCCCGGGGAAGAACATCTTTTTCTCCCCGCTGAGCATCTCGGCGGCCTACGCCATGCTTTCCCTGGGGGCCTGCTCACACAGCCGCAGCCAGATCCTTGAGGGCCTGGGCTTCAACCTCACCGAGCTGTCTGAGTCCGATGTCCATAGGGGCTTCCAGCACCTCCTGCACACTCTCAACCTCCCCGGCCATGGGCTGGAAACACGCGTGGGCAGTGCTCTGTTCCTGAGCCACAACCTGAAGTTCCTTGCPAAATTCCTGAATGACACCATGGCCGTCTATGAGGCTAAACTCTTCCACACCAACTTCTACCACACTGTGGGCACAATCCAGCTTATCAACGACCACGTCAAGAAGGAAACTCGAGGGAAGATTGTGGATTTGGTCAGTGAGCTCAAGAAGGACGTCTTGATGGTGCTGGTGAATTACATTTACTTCAAAGCCCTGTGGGAGAAACCATTCATTTCCTCAAGGACCACTCCCAAAGACTTTTATGTTGATGAGAACACAACAGTCCGGGTGCCCATGATGCTGCAGGACCAGGAGCATCACTGGTATCTTCATGACAGATACTTGCCCTGCTCGGTGCTACGGATGGATTACAAAGGAGACGCAACCGTGTTTTTCATTCTCCCTAACCAAGGCAAAATGAGGGAGATTGAAGAGGTTCTGACTCCAGAGATGCTAATGAGGTGGAACAACTTGTTGCGGAAGAGGAATTTTTACAAGAAGCTAGAGTTGCATCTTCCCAAGTTCTCCATTTCTGGCTCCTATGTATTAGATCAGATTTTGCCCAGGCTGGGCTTCACGGATCTGTTCTCCAAGTGGGCTGACTTATCCGGCATCACCAAACAGCAAAAACTGGACGCATCCAAAAGTTTCCACAAGGCCACCTTGGACGTGGATGAGGCTGGCACCGAGGCTGCAGCAGCCACCAGCTTCGCGATCAAATTCTTCTCTGCCCAGACCAATCGCCACATCCTGCGATTCAACCGGCCCTTCCTTGTGGTGATCTTTTCCACCAGCACCCAGACTGTCCTCTTTCTGGGCAAGGTCGTCGACCCCACGAAACCAGAATTCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 122411 aaMW at 46775.1kDNOV32b, GSQLHVEHDGESCSNSSHQQILETGEGSPSLKIAPANADFAFRFYYLIASETPGKNIF166280659 Protein Sequence FSPLSISAAYAMLSLGACSHSRSQILEGLGFNLTELSESDVHRGFQHLLHTLNLPGHGLETRVGSALFLSHNLKFLAKFLNDTMAVYEAKLFHTNFYDTVGTIQLINDHVKKETRGKTVDLVSELKKDVLMVLVNYIYFKALWEKPFISSRTTPKDFYVDENTTVRVPMMLQDQEHHWYLHDRYLPCSVLRMDYKGDATVFFILPNQGKMREIEEVLTPEMLMRWNNLLRKRNFYKKLELHLPKFSISGSYVLDQILPRLGFTDLFSKWADLSGTTKQQKLEASKSFHKATLDVDEAGTEAAAATSFAIKFFSAQTNRHILRFNRPFLVVIFSTSTQSVLFLGKVVDPTKPEFSEQ ID NO: 1231233 bpNOV32c, GGATCCCAGCTGCACGTTCAGCATGATGGTGAGAGTTGCAGTAACAGCTCCCACCAGC166280667 DNA 166280667 DNA AGATTCTGGAGACAGGTGAGGGCTCCCCCAGCCTCAAGATAGCCCCTGCCAATGCTGASequence CTTTGCCTTCCGCTTCTACTACCTGATCGCTTCGGAGACCCCGGGGAAGAACATCTTTTTCTCCCCGCTGACCATCTCGGCGGCCTACGCCATGCTTTCCCTGGGGGCCTGCTCACACAGCCGCAGCCAGATCCTTGAGGGCCTGGCCTTCAACCTCACCGAGCTGTCTGAGTCCGATGTCCATAGGGGCTTCCAGCACCTCCTGCACACTCTCAACCTCCCCGGCCATGGGCTGGAAACACGCGTGGGCAGTGCTCTGTTCCTGAGCCACAACCTGAAGTTCCTTGCAAAATTCCTGAATGACACCATGGCCGTCTATGAGGCTAAACTCTTCCACACCAACTTCTACGACACTGTGGGCACAATCCAGCTTATCAACGACCACGTCAAGAAGGAAACTCGAGGGAAGATTGTGGATTTGGTCAGTGAGCTCAAGAAGGACGTCTTGATGGTGCTGGTGAATTACATTTACTTCAAGCCCTGTGGGAGAAACCATTCATTTCCTCAAGGACCACTCGAGGGAGACTTTTATGTTGATGAGAACACAACAGTCCGGGTGCCCATGATGCTGCAGGACCAGGAGCATCACTGGTATCTTCATGACAGATACTTGCCCTGCTCCGTGCTACGGATGGATTACAAAGGAGACGCAACCGTGTTTTTCATTCTCCCTAACCAAGGCAAAATGAGGGAGATTGAAGAGGTTCTGACTCCAGAGATGCTAATGAGGTGGAACAACTTGTTGCGGAAGAGGAATTTTTACAAGAAGCTAGAGTTGCATCTTCCCAAGTTCTCCATTTCTGGCTCCTATGTATTAGATCAGATTTTGCCCAGGCTGGGCTTCACGGATCTGTTCTCCAAGTGGGCTGACTTATCCGGCATCACCAAACAGCAAAAACTGGAGGCATCCAAAAGTTTCCACAAGGCCACCTTGGACGTGGATGAGGCTGGCACCGAGGCTGCAGCAGCCACCAGCTTCGCGATCAAATTCTTCTCTGCCCAGACCAATCGCCACATCCTGCGATTCAACCGGCCCTTCCTTGTGGTGATCTTTTCCACCAGCACCCAGAGTGTCCTCTTTCTGGGCAAGGTCGTCGACCCCACGAAACCAGAATTCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 124411 aaMW at 46775.1kDNOV32e, GSQLHVEHDGESCSNSSHQQILETGEGSPSLKIAPANADFAFRFYYLIASETPGKNIF166280667 Protein Sequence FSPLSISAAYANLSLGACSHSRSQILEGLGFNLTELSESDVHRGFQHLLHTLNLPGHGLETRVGSALFLSHNLKFLAKFLNDTMAVYEAKLFHTNFYDTVGTIQLINDHVKKETRGKIVDLVSELKKDVLMVLVNYIYFKALWEKPFISSRTTPKDFYVDENTTVRVPMMLQDQEHHWYLHDRYLPCSVLRMDYKGDATVFFILPNQGKMREIEEVLTPEMLMRWNNLLRKRNFYKKLELHLPKFSISGSYVLDQILPRLGFTDLFSKWADLSGITKQQKLEASKSFHKATLDVDEAGTEAAAATSFAIKFFSAQTNRHILRFNRPFLVVIFSTSTQSVLFLGKVVDPTKPEFSEQ ID NO: 1251233 bpNOV32d, GGATCCCAGCTGCACGTTGAGCATGATGGTGAGAGTTGCAGTAACAGCTCCCACCAGC166280670 DNA Sequence AGATTCTGGACACAGGTGAGGGCTCCCCCAGCCTCAAGATAGCCCCTGCCAATGCTGACTTTGCCTTCCGCTTCTACTACCTGATCGCTTCGGAGACCCCGGGGAAGAACATCTTTTTCTCCCCGCTGAGCATCTCGGCGGCCTACGCCATGCTTTCCCTGGGGGCCTGCTCACACAGCCGCAGCCAGATCCTTGAGGGCCTGCGCTTCAACCTCACCGAGCTGTCTGAGTCCGATGTCCATAGGGGCTTCCAGCACCTCCTGCACACTCTCAACCTCCCCGGCCATGGGCTGGAAACACGCGTGGGCAGTGCTCTGTTCCTGAGCCACAACCTGAAGTTCCTTGCAAAATTCCTGAATGACACCATGGCCGTCTATGAGGCTAAACTCTTCCACACCAACTTCTACGACACTGTGGGCACAATCCAGCTTATCAACGACCACGTCAAGAAGGAAACTCGAGGGAAGATTGTGGATTTGGTCAGTGAGCTCAAGAAGGACGTCTTGATGGTGCTGGTGAATTACATTTACTTCAAAGCCCTGTGGGAGAAACCATTCATTTCCTCAAGGACCACTCCCAAAGACTTTTATGTTGATGAGAACACAACAGTCCGGGTGCCCATGATGCTGCAGGACCAGGAGCATCACTGGTATCTTCATGACAGATACTTGCCCTGCTCGGTGCTACGGATGGATTACAAAGGAGACGCAACCGTGTTTTTCATTCTCCCTAACCAAGGCAAAATGAGGGAGATTGAAGAGGTTCTGACTCCAGAGATGCTAATGAGGTGGAACAACTTGTTGCGGAAGAGGAATTTTTACAAGAAGCTAGAGTTGCATCTTCCCAAGTTCTCCATTTCTGGCTCCTATGTATTAGATCAGATTTTGCCCAGGCTGGGCTTCACGGATCTGTTCTCCAAGTGGGCTGACTTATCCGGCATCACCAAACAGCAAAAACTGGAGGCATCCAAAAGTTTCCACAAGGCCACCTTGGACGTGGATGAGGCTGGCACCGAGGCTGCAGCAGCCACCAGCTTCGCGATCAAATTCTTCTCTGCCCAGACCAATCGCCACATCCTGCGATTCAACCGGCCCTTCCTTGTGGTGATCTTTTCCACCAGCACCCAGAGTGTCCTCTTTCTGGGCAAGGTCGTCGACCCCACGAAACCAGAATTCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 126411 aaMW at 46775.1kDNOV32d, GSQLHVEHDGESCSNSSHQQILETGEGSPSLKIAPANADFAFRFYYLIASETPGKNIF166280670 Protein Sequence FSPLSISAAYAMLSLGACSHSRSQILEGLGFNLTELSESDVHRGFQHLLHTLNLPGHGLETRVGSALFLSHNLKFLAKFLNDTMAVYEAKLFHTNFYDTVGTIQLINDHVKKETRGKIVDLVSELKKDVLMVLVNYIYFKALWEKPFISSRTTPKDFYVDENTTVRVPMMLQDQEHHWYLHDRYLPCSVLRMDYKGDATVFFILPNQGKMREIEEVLTPEMLMRWNNLLRKRNFYKKLELHLPKFSISGSYVLDQILPRLGFTDLFSKWADLSGITKQQKLEASKSFHKATLDVDEAGTEAAAATSFAIKFFSAQTNRHILRFNRPFLVVIFSTSTQSVLFLGKVVDPTKPEFSEQ ID NO: 1271233 bpNOV32e, GGATCCCAGCTGCACGTTGAGCATGATGGTGAGAGTTGCAGTAACAGCTCCCACCAGC166280673 DNA Sequence AGATTCTGGAGACAGGTGAGGGCTCCCCCAGCCTCAAGATAGCCCCTGCCAATGCTGACTTTGCCTTCCGCTTCTACTACCTGATCGCTTCGGAGACCCCGGGGAAGAACATCTTTTTCTCCCCGCTGAGCATCTCGGCGGCCTACGCCATGCTTTCCCTGGGGGCCTGCTCACACAGCCGCACCCAGATCCTTGAGCGCCTGGGCTTCAACCTCACCGAGCTGTCTGAGTCCGATGTCCATAGGCCCTTCCAGCACCTCCTGCACACTCTCAACCTCCCCGGCCATGGGCTGGAAACACGCGTGCGCAGTGCTCTGTTCCTGAGCCACAACCTGAAGTTCCTTGCAAAATTCCTGAATGACACCATGGCCGTCTATGAGGCTAAACTCTTCCACACCAACTTCTACGACACTGTGGGCACAATCCAGCTTATCAACGACCACGTCAAGAAGGAAACTCGAGGGAAGATTGTGGATTTGGTCAGTGAGCTCAAGAAGCACGTCTTGATGGTGCTGGTGAATTACATTTACTTCAAAGCCCTGTGGGAGAAACCATTCATTTCCTCAAGGACCACTCCCAAAGACTTTTATGTTGATGAGAACACAACAGTCCGGGTGCCCATCATGCTGCAGGACCAGGAGCATCACTGGTATCTTCATGACAGATACTTGCCCTGCTCGGTGCTACCGATGGATTACAAAGGAGACGCAACCGTGTTTTTCATTCTCCCTAACCAAGGCAAAATGAGGGAGATTGAAGAGGTTCTGACTCCAGAGATGCTAATGAGGTGGAACAACTTGTTGCGGAAGAGGAATTTTTACAAGAAGCTAGAGTTGCATCTTCCCAAGTTCTCCATTTCTGGCTCCTATGTATTAGATCAGATTTTGCCCAGCCTGGGCTTCACGGATCTGTTCTCCAAGTGCGCTGACTTATCCGGCATCACCAAACAGCAAAAACTGGAGGCATCCAAAAGTTTCCACAAGGCCACCTTGGACGTGGATGAGGCTGGCACCGAGGCTGCAGCAGCCACCAGCTTCGCGATCAAATTCTTCTCTGCCCAGACCAATCGCCACATCCTGCGATTCAACCGGCCCTTCCTTGTGGTGATCTTTTCCACCAGCACCCAGACTCTCCTCTTTCTGGGCAAGGTCGTCGACCCCACGAAACCAGAATTCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 128411 aaMW at 46775.1kDNOV32e, GSQLHVEHDGESCSNSSHQQILETGEGSPSLKIAPANADFAFRFYYLIASETPGKNIF166280673 Protein Sequence FSPLSISAAYAMLSLGACSHSRSQILEGLGFNLTELSESDVHRCFQHLLHTLNLPGHGLETRVOSALFLSHNLKFLAKFLNDTMAVYEAKLFHTNFYDTVGTIQLINDHVKKETRGKIVDLVSELKKDVLMVLVNYIYFKALWEKPFISSRTTPKDFYVDENTTVRVPMMLQDQEHHWYLHDRYLPCSVLRMDYKGDATVFFILPNQGKMREIEEVLTPEMLMRWNNLLRKRNFYKKLELHLPKFSISGSYVLDQILPRLGFTDLFSKWADLSGITKQQKLEASKSFHKATLDVDEAGTEAAAATSFAIKFFSAQTNRHILRFNRPFLVVIFSTSTQSVLFLGKVVDPTKPEFSEQ ID NO: 1291233 bpNOV32f, GGATCCCAGCTGCACGTTGAGCATGATCGTCAGAGTTGCAGTAACAGCTCCCACCAGC166280680 DNASequence AGATTCTGGAGACAGGTGAGGGCTCCCCCAGCCTCAAGATAGCCCCTGCCAATGCTGACTTTGCCTTCCGCTTCTACTACCTGATCGCTTCGGAGACCCCGGGGAAGAACATCTTTTTCTCCCCGCTGAGCATCTCGGCGGCCTACGCCATGCTTTCCCTGGGGGCCTGCTCACACAGCCGCAGCCAGATCCTTGAGGGCCTGGGCTTCAACCTCACCGAGCTGTCTCAGTCCGATGTCCATAGGGGCTTCCAGCACCTCCTGCACACTCTCAACCTCCCCGGCCATGGGCTGGAAACACGCGTGGGCAGTGCTCTGTTCCTGAGCCACAACCTCAAGTTCCTTGCAAAATTCCTGAATGACACCATGGCCGTCTATGAGGCTAAACTCTTCCACACCAACTTCTACGACACTGTGGGCACAATCCAGCTTATCAACGACCACGTCAAGAAGGAAACTCGAGGGAAGATTGTGGATTTGGTCAGTGAGCTCAAGAAGGACGTCTTGATGGTGCTGCTGAATTACATTTACTTCAAAGCCCTGTGGGAGAAACCATTCATTTCCTCAAGGACCACTCCCAAAGACTTTTATGTTGATGAGAACACAACAGTCCGGGTGCCCATGATGCTGCACGACCAGGAGCATCACTGGTATCTTCATGACAGATACTTGCCCTGCTCGGTGCTACGGATGGATTACAAAGGAGACGCAACCGTGTTTTTCATTCTCCCTAACCAAGGCAAAATGAGGGAGATTGAAGAGGTTCTGACTCCAGAGATGCTAATGAGGTGGAACAACTTGTTGCGGAAGAGGAATTTTTACAAGAAGCTAGAGTTGCATCTTCCCAAGTTCTCCATTTCTGGCTCCTATGTATTAGATCAGATTTTGCCCAGGCTGGGCTTCACGGATCTGTTCTCCAAGTGGGCTGACTTATCCGGCATCACCAAACAGCAAAAACTGGAGGCATCCAAAAGTTTCCACAAGGCCAATTCTTCTCTGCCCAGACCAATCGCCACATCCTGCGATTCAACCGOCCCTTCCTTGTGGTGATCTTTTCCACCAGCACCCAGAGTGTCCTCTTTCTGGGCAAGGTCGTCGACCCCACGAAACCAGAATTCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 130411 aaMW at 46775.1kDNOV32f, GSQLHVEHDGESCSNSSHQQILETGEGSPSLKIAPANADFAFRFYYLIASETPGKNIF166280680Protein Sequence FSPLSISAAYAMLSLGACSHSRSQILEGLGFNLTELSESDVHRGFQHLLHTLNLPGHGLETRVGSALFLSHNLKFLAKFLNDTMAVYEAKLFHTNFYDTVGTIQLINDHVKKETRGKIVDLVSELKKDVLMVLVNYIYFKALWEKPFISSRTTPKDFYVDENTTVRVPMMLQDQEHHWYLHDRYLPCSVLRMDYKGDATVFFILPNQGKMREIEEVLTPEMLMRWNNLLRKRNFYKKLELHLPKFSISGSYVLDQILPRLGFTDLFSKWADLSGITKQQKLEASKSFHKATLDVDEAGTEAAAATSFAIKFFSAQTNRHILRFNRPFLVVIFSTSTQSVLFLGKVVDPTKPEFSEQ ID NO: 1311233 bpNOV32g, GGATCCCAGCTGCACGTTGAGCATGATGGTGAGAGTTGCAGTAACAGCTCCCACCAGC166280703 DNA Sequence AGATTCTGCAGACAGGTGAGGGCTCCCCCAGCCTCAAGATAGCCCCTGCCAATGCTGACTTTGCCTTCCGCTTCTACTACCTGATCGCTTCGGAGACCCCGGGGAAGAACATCTTTTTCTCCCCGCTGAGCATCTCGGCGGCCTACGCCATGCTTTCCCTGGGGGCCTGCTCACACAGCCGCAGCCAGATCCTTGAGGGCCTCCGCTTCAACCTCACCGAGCTGTCTGAGTCCGATGTCCATAGGGGCTTCCAGCACCTCCTGCACACTCTCAACCTCCCCGGCCATGGGCTGGAAACACGCGTGGGCAGTGCTCTGTTCCTGAGCCACAACCTGAAGTTCCTTGCAAAATTCCTGAATGACACCATGGCCGTCTATGAGGCTAAACTCTTCCACACCAACTTCTACGACACTGTGGGCACAATCCAGCTTATCAACGACCACGTCAAGAAGGAAACTCGAGGGAAGATTGTGGATTTGGTCAGTGAGCTCAAGAAGGACGTCTTGATGGTGCTGGTGAATTACATTTACTTCAAAGCCCTGTGGGAGAAACCATTCATTTCCTCAAGGACCACTCCCAAAGACTTTTATGTTGATGAGAACACAACACTCCGGGTGCCCATGATGCTGCAGGACCAGGAGCATCACTGGTATCTTCATGACAGATACTTGCCCTGCTCGGTGCTACGGATCGATTACAAAGGAGACGCAACCGTGTTTTTCATTCTCCCTAACCAAGGCAAAATGAGGGAGATTGAAGAGGTTCTGACTCCAGAGATGCTAATGAGGTGGAACAACTTGTTGCGGAAGAGGAATTTTTACAAGAAGCTAGAGTTGCATCTTCCCAAGTTCTCCATTTCTGGCTCCTATGTATTAGATCAGATTTTGCCCAGGCTGGGCTTCACGGATCTGTTCTCCPAGTGGGCTGACTTATCCGGCATCACCAAACAGCAAAAACTGGAGGCATCCAAAAGTTTCCACAAGGCCACCTTGGACGTGGATGAGGCTGGCACCGACGCTGCAGCAGCCACCAGCTTCGCGATCAAATTCTTCTCTGCCCAGACCAATCGCCACATCCTGCGATTCAACCGGCCCTTCCTTGTGGTGATCTTTTCCACCAGCACCCAGAGTGTCCTCTTTCTGGGCAAGGTCGTCGACCCCACGAAACCAGAATTCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 132411 aaMW at 46775.1kDNOV32g, GSQLHVEHDCESCSNSSHQQTLETGEGSPSLKIAPANADFAFRFYYLIASETPGKNIF166280703Protein Sequence FSPLSISAAYAMLSLGACSHSRSQILEGLCFNLTELSESDVHRGFQHLLHTLNLPGHGLETRVGSALFLSHNLKFLAKFLNDTMAVYEAKLFHTNFYDTVGTIQLINDHVKKETRGKIVDLVSELKKDVLMVLVNYIYFKALWEKPFISSRTTPKDFYVDENTTVRVPNMLQDQEHHWYLHDRYLPCSVLRMDYKGDATVFFILPNQGKMREIEEVLTPEMLMRWNNLLRKRNFYKKLELHLPKFSISGSYVLDQILPRLGFTDLFSKWADLSGITKQQKLEASKSFHKATLDVDEAGTEAAAATSFATKFFSAQTNRHILRFNRPFLVVIFSTSTQSVLFLGKVVDPTKPEFSEQ ID NO: 1331233 bpNOV32h, GGATCCCAGCTGCACGTTGAGCATGATGGTGAGACTTGCAGTAACAGCTCCCACCAGC166280730 DNASequence AGATTCTGGAGACAGGTGAGGGCTCCCCCAGCCTCAAGATAGCCCCTGCCAATGCTGACTTTGCCTTCCGCTTCTACTACCTGATCGCTTCGGAGACCCCGGGGAAGAACATCTTTTTCTCCCCGCTGAGCATCTCGGCGGCCTACGCCATGCTTTCCCTGGGGGCCTGCTCACACAGCCGCAGCCAGATCCTTGAGGGCCTGGGCTTCAACCTCACCGAGCTGTCTGAGTCCGATGTCCATAGGGGCTTCCAGCACCTCCTGCACACTCTCAACCTCCCCGGCCATGGGCTGGAAACACGCGTGGGCAGTGCTCTGTTCCTGAGCCACAACCTGAAGTTCCTTGCAAAATTCCTGAATGACACCATGGCCGTCTATGAGGCTAAACTCTTCCACACCAACTTCTACGACACTGTGGGCACAATCCAGCTTATCAACGACCACGTCAAGAAGGAAACTCGAGGGAAGATTGTGGATTTGGTCAGTGAGCTCAAGAAGGACGTCTTGATGGTGCTGGTGAATTACATTTACTTCAAAGCCCTGTGGGAGAAACCATTCATTTCCTCAAGGACCACTCCCAAAGACTTTTATGTTGATGAGAACACAACAGTCCGGGTGCCCATGATGCTGCAGGACCAGGAGCATCACTGGTATCTTCATGACAGATACTTGCCCTGCTCGGTGCTACGGATGGATTACAAAGGAGACGCAACCGTGTTTTTCATTCTCCCTAACCAAGGCAAAATGAGGGAGATTGAAGAGGTTCTGACTCCAGAGATGCTAATGACGTGGAACAACTTGTTGCGGAAGAGGAATTTTTACAAGAAGCTAGAGTTGCATCTTCCCAAGTTCTCCATTTCTGGCTCCTATGTATTAGATCAGATTTTGCCCAGGCTGGGCTTCACGGATCTGTTCTCCAAGTGGGCTGACTTATCCGGCATCACCAAACAGCAAAAACTGGAGGCATCCAAAAGTTTCCACAAGGCCACCTTGGACGTGGATGAGGCTGGCACCGAGGCTGCAGCAGCCACCAGCTTCGCGATCAAATTCTTCTCTGCCCAGACGAATCGCCACATCCTGCGATTCAACCGGCCCTTCCTTGTGGTGATCTTTTCCACCAGCACCCAGAGTGTCCTCTTTCTGGGCAAGGTCGTCGACCCCACGAAACCAGAATTCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 134411 aaMW at 46775.1kDNOV32h, GSQLHVEHDGESCSNSSHQQILETGEGSPSLKIAPANADFAFRFYYLIASETPGKNIF166280730 Protein Sequence FSPLSISAAYAMLSLGACSHSRSQILEGLGFNLTELSESDVHRGFQHLLHTLNLPGHGLETRVGSALFLSHNLKFLAKFLNDTMAVYEAKLFHTNFYDTVGTIQLINDHVKKETRGKIVDLVSELKKDVLMVLVNYIYFKALWEKPFISSRTTPKDFYVDENTTVRVPMMLQDQEHHWYLHDRYLPCSVLRMDYKGDATVFFILPNQGKMREIEEVLTPEMLMRWNNLLRKRNFYKKLELHLPKFSISGSYVLDQILPRLGFTDLFSKWADLSGITKQQKLEASKSFHKATLDVDEAGTEAAAATSFAIKFFSAQTNRHILRFNRPFLVVIFSTSTQSVLFLGKVVDPTKPEF


[0504] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 32B.
171TABLE 32BComparison of NOV32a against NOV32b through NOV32h.Identities/Similarities forProteinNOV32a Residues/the MatchedSequenceMatch ResiduesRegionNOV32b21 . . . 427387/407 (95%) 3 . . . 409387/407 (95%)NOV32c21 . . . 427387/407 (95%) 3 . . . 409387/407 (95%)NOV32d21 . . . 427387/407 (95%) 3 . . . 409387/407 (95%)NOV32e21 . . . 427387/407 (95%) 3 . . . 409387/407 (95%)NOV32f21 . . . 427387/407 (95%) 3 . . . 409387/407 (95%)NOV32g21 . . . 427387/407 (95%) 3 . . . 409387/407 (95%)NOV32h21 . . . 427387/407 (95%) 3 . . . 409387/407 (95%)


[0505] Further analysis of the NOV32a protein yielded the following properties shown in Table 32C.
172TABLE 32CProtein Sequence Properties NOV32aPSort0.7809 probability located in outside; 0.4253 probabilityanalysis:located in lysosome (lumen); 0.2787 probability locatedin microbody (peroxisome); 0.1000 probability locatedin endoplasmic reticulum (membrane)SignalPCleavage site between residues 21 and 22analysis:


[0506] A search of the NOV32a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 32D.
173TABLE 32DGeneseq Results for NOV32aNOV32aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAE15747Human protease inhibitor (PI)1 . . . 427425/427 (99%)0.04 (kallistatin) protein - Homo1 . . . 427426/427 (99%)sapiens, 427 aa.[WO200179227-A2, 25 OCT.2001]AAM02223Peptide #905 encoded by probe1 . . . 216215/216 (99%)e−120for measuring human breast1 . . . 216215/216 (99%)gene expression - Homosapiens, 216 aa.[WO200157270-A2, 09 AUG.2001]AAM26911Peptide #948 encoded by probe1 . . . 216215/216 (99%)e−120for measuring placental gene1 . . . 216215/216 (99%)expression - Homo sapiens,216 aa. [WO200157272-A2,09 AUG. 2001]AAM14496Peptide #930 encoded by probe1 . . . 216215/216 (99%)e−120for measuring cervical gene1 . . . 216215/216 (99%)expression - Homo sapiens,216 aa. [WO200157278-A2,09 AUG. 2001]AAM66622Human bone marrow expressed1 . . . 216215/216 (99%)e−120probe encoded protein SEQ ID1 . . . 216215/216 (99%)NO: 26928 - Homo sapiens,216 aa. [WO200157276-A2,09 AUG. 2001]


[0507] In a BLAST search of public sequence datbases, the NOV32a protein was found to have homology to the proteins shown in the BLASTP data in Table 32E.
174TABLE 32EPublic BLASTP Results for NOV32aNOV32aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96BZ5Hypothetical 48.5 kDa protein -1 . . . 427426/427 (99%)0.0Homo sapiens (Human), 427 aa.1 . . . 427426/427 (99%)P29622Kallistatin precursor (Kallikrein1 . . . 427425/427 (99%)0.0inhibitor) (Protease inhibitor 4) -1 . . . 427426/427 (99%)Homo sapiens (Human), 427 aa.P97569Kallistatin - Rattus norvegicus1 . . . 425241/425 (56%)    e−132(Rat), 423 aa.1 . . . 422312/425 (72%)O46519Alpha-1-antitrypsin - Equus4 . . . 426202/427 (47%)  9e−97caballus (Horse), 421 aa.5 . . . 420273/427 (63%)O54760Alpha-1-antitrypsin-like protein4 . . . 426201/427 (47%)  4e−96CM55-SI precursor - Tamias5 . . . 412269/427 (62%)sibiricus (Siberian chipmunk)(Asian chipmunk), 413 aa.


[0508] PFam analysis indicates that the NOV32a protein contains the domains shown in the Table 32F.
175TABLE 32FDomain Analysis of NOV32aIdentities/Similarities forPfamNOV32a Matchthe MatchedExpectDomainRegionRegionValueserpin48 . . . 424193/397 (49%)1.6e−171317/397 (80%)



Example 33

[0509] The NOV33 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 33A.
176TABLE 33ANOV33 Sequence AnalysisSEQ ID NO: 13524 bpNOV33a,TTTGTCCAAAACAGGCTGCAGCCGCG57658-02DNA SequenceORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1368 aaMW at 1001.2 kDNOV33a,FVQNRLQPCG57658-02Protein SequenceSEQ ID NO: 13724 bpNOV33b,TTTGTCTGCAACAGGCTGCAGCCGCG57658-03DNA SequenceORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1388 aaMW at 976.2 kDNOV33b,FVCNRLQPCG57658-03Protein SequenceSEQ ID NO: 13924 bpNOV33c,TTTGTCCAAAACACGCTGCAGCCGCG57658-04DNA SequenceORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1408 aaMW at 946.1 kDNOV33c,FVQNTLQPCG57658-04Protein SequenceSEQ ID NO: 14124 bpNOV33d,TTTGTCTGCAACACGCTGCAGCCGCG57658-05DNA SequenceORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1428 aaMW at 921.1 kDNOV33d,FVCNTLQPCG57658-05Protein SequenceSEQ ID NO: 14324 bpNOV33e,TTTGTCCAAAACACGCTGCAGGCGCG57658-06DNA SequenceORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1448 aaMW at 920.0 kDNOV33e,FVQNTLQACG57658-06Protein SequenceSEQ ID NO: 14524 bpNOV33f,TTTGTCTGCAACACGCTGCAGGCGCG57658-07DNA SequenceORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1468 aaMW at 895.0 kDNOV33f,FVCNTLQACG57658-07Protein Sequence


[0510] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 33B.
177TABLE 33BComparison of NOV33a against NOV33b through NOV33f.Identities/NOV33a Residues/Similarities forProtein SequenceMatch Residuesthe Matched RegionNOV33bNo Significant Alignment Found.NOV33c1 . . . 87/8 (87%)1 . . . 87/8 (87%)NOV33dNo Significant Alignment Found.NOV33eNo Significant Alignment Found.NOV33fNo Significant Alignment Found.


[0511] Further analysis of the NOV33a protein yielded the following properties shown in Table 33C.
178TABLE 33CProtein Sequence Properties NOV33aPSort analysis:SignalP analysis:No Known Signal Sequence Indicated


[0512] A search of the NOV33a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 33D.
179TABLE 33DGeneseq Results for NOV33aNOV33aIdentities/Protein/Organism/Residues/SimilaritiesGeneseqLengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueNo Significant Matches Found


[0513] In a BLAST search of public sequence datbases, the NOV33a protein was found to have homology to the proteins shown in the BLASTP data in Table 33E.
180TABLE 33EPublic BLASTP Results for NOV33aNOV33aIdentities/ProteinResidues/SimilaritiesAccessionProtein/Organism/Matchfor theExpectNumberLengthResiduesMatched PortionValueNo Significant Matches Found


[0514] PFam analysis indicates that the NOV33a protein contains the domains shown in the Table 33F.
181TABLE 33FDomain Analysis of NOV33aIdentities/SimilaritiesPfamNOV33a Matchfor theExpectDomainRegionMatched RegionValueNo Significant Matches Found



Example 34

[0515] The NOV34 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 34A.
182TABLE 34ANOV34 Sequence AnalysisSEQ ID NO: 14972 bpNOV34a,CAGGAGACACGGAACGCCAAGGGCCG57664-02CACGCGCAGATTTACCGAGTGAACDNACTGCGGACCCTGCTCCGCTATTACSequenceORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 15024 aaMW at 2964.4 kDNOV34a,QETRNAKGHAQIYRVNLRTLLRYYCG57664-02ProteinSequence


[0516] Further analysis of the NOV34a protein yielded the following properties shown in Table 34B.
183TABLE 34BProtein Sequence Properties NOV34aPSort0.8500 probability located in lysosome (lumen); 0.5392analysis:probability located in nucleus; 0.1000 probabilitylocated in mitochondrial matrix space; 0.0000probability located in endoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Indicatedanalysis:


[0517] A search of the NOV34a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 34C.
184TABLE 34CGeneseq Results for NOV34aNOV34aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAM23917Rhesus monkey EST encoded 1 . . . 24 24/24 (100%)3e−07protein SEQ ID NO: 1442 - Macaca125 . . . 148 24/24 (100%)mulatta, 153 aa. [WO200154477-A2, 02 AUG. 2001]AAB58652Murine class I H-2 protein #5 - Mus 1 . . . 2416/24 (66%)0.025musculus, 311 aa. [US6153408-A,62 . . . 8520/24 (82%)28 NOV. 2000]AAY52891Murine class I molecule H-2D-d 1 . . . 2416/24 (66%)0.025peptide SEQ ID NO: 69 - Mus sp,62 . . . 8520/24 (82%)311 aa. [US5976551-A, 02 NOV.1999]AAY68237Murine class I molecule protein SEQ 1 . . . 2416/24 (66%)0.025ID NO: 69 - Mus sp, 311 aa.62 . . . 8520/24 (82%)[US6011146-A, 04 JAN. 2000]AAB58650Murine class I H-2 protein #3 - Mus 3 . . . 2416/22 (72%)0.043musculus, 350 aa. [US6153408-A,64 . . . 8519/22 (85%)28 NOV. 2000]


[0518] In a BLAST search of public sequence datbases, the NOV34a protein was found to have homology to the proteins shown in the BLASTP data in Table 34D.
185TABLE 34DPublic BLASTP Results for NOV34aNOV34aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ30714MHC class I antigen Mamu B*06 -1 . . . 2419/24 (79%)0.004Macaca mulatta (Rhesus macaque),18 . . . 41 20/24 (83%)294 aa.Q95H92Similar to histocompatibility 2, Q1 . . . 2417/24 (70%)0.010region locus 7 - Mus musculus89 . . . 11221/24 (86%)(Mouse), 332 aa.Q31152MHC class I Q4 beta-2-1 . . . 2417/24 (70%)0.010microglobulin (Qb-1) - Mus83 . . . 10621/24 (86%)musculus (Mouse), 326 aa(fragment).Q9QYQ3A1h - Rattus norvegicus (Rat), 3461 . . . 2417/24 (70%)0.013aa (fragment).62 . . . 85 20/24 (82%)Q951L1MHC class I antigen - Felis1 . . . 2417/24 (70%)0.017silvestris catus (Cat), 62 aa34 . . . 57 20/24 (82%)(fragment).


[0519] PFam analysis indicates that the NOV34a protein contains the domains shown in the Table 34E.
186TABLE 34EDomain Analysis of NOV34aIdentities/SimilaritiesNOV34a Matchfor thePfam DomainRegionMatched RegionExpect ValueMHC_I1 . . . 2416/24 (67%)6.1e−07 24/24 (100%)



Example 35

[0520] The NOV35 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 35A.
187TABLE 35ANOV35 Sequence AnalysisSEQ ID NO: 15372 bpNOV35a,CGGAACACACAGATCTGCAAGGCCCG57668-02CAAGCACGGACTGAACGAGAGAACDNACTGCGGATCGCGCTCCGCTACTACSequenceORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 15424 aaMW at 2967.4 kDNOV35a,RNTQICKAQARTERENLRIALRYYCG57668-02ProteinSequence


[0521] Further analysis of the NOV35a protein yielded the following properties shown in Table 35B.
188TABLE 35BProtein Sequence Properties NOV35aPSort0.8191 probability located in mitochondrialanalysis:intermembrane space; 0.5581 probability located inmitochondrial matrix space; 0.5500 probability locatedin nucleus; 0.3285 probability located in lysosome(lumen)SignalPNo Known Signal Sequence Indicatedanalysis:


[0522] A search of the NOV35a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 35C.
189TABLE 35CGeneseq Results for NOV35aNOV35aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAM05915Peptide #4597 encoded by probe for1 . . . 2424/24 (100%)5e−07measuring breast gene expression -51 . . . 74 24/24 (100%)Homo sapiens, 79 aa.[WO200157270-A2, 09 AUG. 2001]AAM18309Peptide #4743 encoded by probe for1 . . . 2424/24 (100%)5e−07measuring cervical gene expression -51 . . . 74 24/24 (100%)Homo sapiens, 79 aa.[WO200157278-A2, 09 AUG. 2001]AAM70472Human bone marrow expressed1 . . . 2424/24 (100%)5e−07probe encoded protein SEQ ID NO:51 . . . 74 24/24 (100%)30778 -Homo sapiens, 79 aa.[WO200157276-A2, 09 AUG. 2001]AAW33794Peptide B2702.60-84 tested for1 . . . 2319/23 (82%) 3e−04immunomodulating activity -3 . . . 2522/23 (95%) Synthetic, 25 aa. [WO9744351-A1,27 NOV. 1997]AAR83090HLA-B2702 CTL modulating1 . . . 2319/23 (82%) 3e−04peptide (B2702.60-84) - Synthetic,3 . . . 2522/23 (95%) 25 aa. [WO9526979-A1, 12 OCT.1995]


[0523] In a BLAST search of public sequence datbases, the NOV35a protein was found to have homology to the proteins shown in the BLASTP data in Table 35D.
190TABLE 35DPublic BLASTP Results for NOV35aNOV35aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValuesCAB22750HLA-H PROTEIN - Homo sapiens1 . . . 24 24/24 (100%)1e−06(Human), 90 aa (fragment).62 . . . 85  24/24 (100%)HLHU12MHC class I histocompatibility1 . . . 2423/24 (95%)3e−06antigen HLA alpha chain precursor83 . . . 10624/24 (99%)(clone pHLA 12.4) - human, 359aa.CAB66931Gogo-H protein - Gorilla gorilla1 . . . 2423/24 (95%)3e−06(gorilla), 359 aa (fragment).83 . . . 10624/24 (99%)CAB22754HLA-H PROTEIN - Homo sapiens1 . . . 2423/24 (95%)3e−06(Human), 90 aa (fragment).62 . . . 85 24/24 (99%)CAB22753HLA-H PROTEIN - Homo sapiens1 . . . 2423/24 (95%)3e−06(Human), 90 aa (fragment).62 . . . 85 24/24 (99%)


[0524] PFam analysis indicates that the NOV35a protein contains the domains shown in the Table 35E.
191TABLE 35EDomain Analysis of NOV35aIdentities/SimilaritiesNOV35a Matchfor thePfam DomainRegionMatched RegionExpect ValueMHC_I1 . . . 2413/24 (54%)0.0002123/24 (96%)



Example 36

[0525] The NOV36 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 36A.
192TABLE 36ANOV36 Sequence AnalysisSEQ ID NO: 15772 bpNOV36a,GAGGAGACACGGAACACCAAGGCCCCG59256-02ACGCACAGACTGACAGAATGAACCTDNAGCAGACCCTGCGCGGCTACTACSequenceQRF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 15824 aaMW at 2897.2 kDNOV36a,EETRNTKAHAQTDRMNLQTLRGYYCG59256-02ProteinSequence


[0526] Further analysis of the NOV36a protein yielded the following properties shown in Table 36B.
193TABLE 36BProtein Sequence Properties NOV36aPSort0.8169 probability located in lysosome (lumen); 0.6500analysis:probability located in cytoplasm; 0.1000 probabilitylocated in mitochondrial matrix space; 0.0000probability located in endoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Indicatedanalysis:


[0527] A search of the NOV36a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 36C.
194TABLE 36CGeneseq Results for NOV36aNOV36aIdentities/Residues/Similarities forGeneseqProtein/Organism/Matchthe MatchedExpectIdentifierLength [Patent #, Date]ResiduesRegionValueAAU79455HLA-G recombinant protein 2 - 1 . . . 2424/24 (100%)2e−07Homo sapiens, 234 aa. 93 . . . 11624/24 (100%)[WO200222784-A2, 21 MAR.2002]AAU79454HLA-G recombinant protein 1 - 1 . . . 2424/24 (100%)2e−07Homo sapiens, 326 aa. 93 . . . 11624/24 (100%)[WO200222784-A2, 21 MAR.2002]AAU79450HLA-G alpha1 domain protein - 1 . . . 2424/24 (100%)2e−07Homo sapiens, 92 aa.64 . . . 8724/24 (100%)[WO200222784-A2, 21 MAR.2002]AAM48340Human leukocyte antigen, 1 . . . 2424/24 (100%)2e−07HLA-G7 - Homo sapiens, 116 86 . . . 10924/24 (100%)aa. [WO200196564-A2, 20DEC. 2001]AAM02055Peptide #737 encoded by probe 1 . . . 2424/24 (100%)2e−07for measuring human breast61 . . . 8424/24 (100%)gene expression - Homosapiens, 89 aa. [WO200157270-A2, 09 AUG. 2001]


[0528] In a BLAST search of public sequence datbases, the NOV36a protein was found to have homology to the proteins shown in the BLASTP data in Table 36D.
195TABLE 36DPublic BLASTP Results for NOV36aNOV36aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueCAD20672Sequence 7 from Patent 1 . . . 2424/24 (100%)3e−07WO0196564 - Homo sapiens 86 . . . 10924/24 (100%)(Human), 116 aa.Q31611B2 microglobulin - Homo sapiens 1 . . . 2424/24 (100%)3e−07(Human), 246 aa. 86 . . . 10924/24 (100%)Q8WLP2MHC-G protein - Homo sapiens 1 . . . 2424/24 (100%)3e−07(Human), 165 aa (fragment).52 . . . 7524/24 (100%)Q8WLS1HLA-G histocompatibility 1 . . . 2424/24 (100%)3e−07antigen, class I, G - Homo sapiens 86 . . . 10924/24 (100%)(Human), 338 aa.Q95391HLA-G - Homo sapiens(Human), 1 . . . 2424/24 (100%)3e−07182 aa (fragment).62 . . . 8524/24 (100%)


[0529] PFam analysis indicates that the NOV36a protein contains the domains shown in the Table 36E.
196TABLE 36EDomain Analysis of NOV36aIdentities/Similarities forPfamNOV36athe MatchedExpectDomainMatch RegionRegionValueMHC_I1 . . . 2413/24 (54%)2.1e−0523/24 (96%)



Example 37

[0530] The NOV37 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 37A.
197TABLE 37ANOV37 Sequence AnalysisSEQ ID NO: 161555 bpNOV37a, ATGCACAGCCACCGCGACTTCCAGCCGGTGCTCCACCTGGTTGCGCTCAACAGCCCCCCG59437-01DNA SequenceTGTCAGGCGGCATGCGGGGCATCCGCGGGGCCGACTTCCAGTGCTTCCAGCAGGCGCGGGCCGTGGGGCTGGCGGGCACCTTCCGCGCCTTCCTGTCCTCGCGCCTGCACGACCTGTACAGCATCGTGCGCCGTGCCGACCGCGCAGCCGTGCCCATCGTCAACCTCAAGGACGAGCTGCTGTTTCCCAGCTGGGAGGCTCTGTTCTCAGGCTCTGAGGGTCCGCTGAAGCCCGGGGCACGCATCTTCTCCTTTAACGGCAAGGACGTCCTGACCCACCCCACCTGGCCCCAGAAGAGCGTGTGGCATGGCTCGGACCCCAACGGGCGCAGGCTGACCGAGAGCTACTGTGAGACGTGGCGGACGGAGGCTCCCTCGGCCACGGGCCAGGCCTACTCGCTGCTGGGGGGCAGGCTCCTGGGGCAGAGTGCCGCGAGCTGCCATCACGCCTACATCGTGCTATGCATTGAGAACAGCTTCATGACTGCCTCCPAGTAGORF Start: ATG at 1ORF Stop: TAG at 553SEQ ID NO: 162184 aaMW at 20246.8kDNOV37a, MHSHRDPQPVLHLVALNSPLSGGMRGIRGADFQCFQQARAVGLAGTFRAFLSSRLQDLCG59437-01Protein Sequence YSIVRRADRAAVPIVNLKDELLFPSWEALFSGSEGPLKPGARTFSFNGKDVLTHPTWPQKSVWHGSDPNGRRLTESYCETWRTEAPSATGQAYSLLGGRLLGQSAASCHHAYIVLCIENSFMTASKSEQ ID NO: 163482 bpNOV37b, GGATCCGGCATGCGGGGCATCCGCGGGGCCGACTTCCAGCGCTTCCACCAGGCGCGGA170108827 DNASequence AGGTGCCCGCCAGCCCCACGGCCCGCGCCTGCAGGACCTGTACAGCATCGTGCGCCGTGCCGACCGCGCAGCCGTGCCCATCGTCAACCTCAAGGACGAGCTGCTGTTTCCCAGCTGGGAGGCCCTGTTCTCAGGCTCTGAGGGTCCGCTGAAGCCCGGGGCACGCATCTTCTCCTTTGACGGCAAGGACGTCCTGAGGCACCCCACCTGGCCCCAGAAGAGCGTGTGGCATGGCTCGGACCCCAACGGGCCCAGGCTGACCGAGAGCTACTGTGAGACGTGGCGGACGGAGGCTCCCTCGGCCACGGGCCAGCCCTCCTCGCTGCTGGGGGGCAGGCTCCTGGGGCAGAGTGCCGCGAGCTGCCATCACGCCTACATCGTGCTCTGCATTGAGAACAGCTTCATGACTGCCTCCAAGCTCGAGORF Start: at 3ORF Stop: end of sequenceSEQ ID NO: 164160 aaMW at 17488.6kDNOV37b, IRHAGHPRGRLPALPAGAEGARQPHGPRLQDLYSIVRRADRAAVPIVNLKDELLFPSW170108827Protein Sequence EALFSGSEGPLKPGARIFSFDGKDVLRHPTWPQKSVWHGSDPNGRRLTESYCETWRTEAPSATGQASSLLGGRLLGQSAASCHHAYIVLCIENSFMTASKLESEQ ID NO: 165480 bpNOV37c, GGATCCGGCATGCGGGGCATCCGCGGGGCCGACTTCCAGTGCTTCCAGCAGGCGCGGA170108863 DNASequence AGGTGCCCGCCAGCCCCACGGCCCGCGCCTGCAGGACCTGTACAGCATCGTGCGCCGTGCCGACCGCGCAGCCGTGCCCATCGTCAACCTCAAGGACGAGCTGCTQTTTCCCAGCTGGGAGGCTCTGTTCTCAGGCTGAGGGTCCGCTGAAGCCCGGGGCACCCATCTTCTCCTTTGACCGCAAGGACGTCCTGAGGCACCCCACCTCGCCCCAGAAGAGCGTGTGGCATGGCTCGGACCCCAACGGGCGCAGGCTGACCGAGAGCTACTGTGAGACGTGGCGGACGGAGGCTCCCTCGGCCACGGGCCAGGCCTCCTCCCTGCTGGGGGGCAGGCTCCTGGCGCAGAGTCCCGCGAGCTGCCATCACGCCTACATCGTGCTCTGCATTGAGAACAGCTTCATGACTGCCTCCAAGCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 166160 aaMW at 17082.1kDNOV37c, GSGMRGIRGADFQCFQQARKVPASPTARACRTCTASCAVPTAQPCPSSTSRTSCCFPA170108863Protein Sequence GRLCSQAEGPLKPGARIFSFDGKDVLRHRTWPQKSVWHGSDPNGRRLTESYCETWRTEAPSATGQASSLLGGRLLGQSAASCHHAYIVLCIENSFNTASKLE


[0531] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 37B.
198TABLE 37BComparison of NOV37a against NOV37b and NOV37c.Identities/Similarities forProteinNOV37a Residues/the MatchedSequenceMatch ResiduesRegionNOV37b54 . . . 184111/131 (84%)28 . . . 158112/131 (84%)NOV37c23 . . . 184 95/162 (58%) 3 . . . 158 99/162 (60%)


[0532] Further analysis of the NOV37a protein yielded the following properties shown in Table 37C.
199TABLE 37CProtein Sequence Properties NOV37aPSort0.7480 probability located in microbody (peroxisome);analysis:0.2213 probability located in lysosome (lumen); 0.1000probability located in mitochondrial matrix space;0.0000 probability located in endoplasmic reticulum(membrane)SignalPNo Known Signal Sequence Indicatedanalysis:


[0533] A search of the NOV37a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 37D.
200TABLE 37DGeneseq Results for NOV37aNOV37aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent#, Date]ResiduesRegionValueAAU76689Synthetic plasmid pEnd-HR#1 FPD2 . . . 184180/183 (98%)e−103fusion protein sequence - Chimeric -93 . . . 275 181/183 (98%)Mus sp, 275 aa. [WO200210372-A1, 07 FEB. 2002]AAU76688Human collagen XVIII 1alpha NCI2 . . . 184180/183 (98%)e−103domain protein sequence - Homo128 . . . 310 181/183 (98%)sapiens, 310 aa. [WO200210372-A1, 07 FEB. 2002]AAM49503Human endostatin protein - Homo2 . . . 184180/183 (98%)e−103sapiens, 183 aa. [CN1177005-A,1 . . . 183181/183 (98%)25 MAR. 1998]AAM48895Human endostatin protein - Homo2 . . . 184180/183 (98%)e−103sapiens, 183 aa. [WO200193897-1 . . . 183181/183 (98%)A2, 13 DEC. 2001]AAB49379Human endostatin SEQ ID NO: 2 -2 . . . 184180/183 (98%)e−103Homo sapiens, 183 aa.1 . . . 183181/183 (98%)[WO200067771-A1, 16 NOV.2000]


[0534] In a BLAST search of public sequence datbases, the NOV37a protein was found to have homology to the proteins shown in the BLASTP data in Table 37E.
201TABLE 37EPublic BLASTP Results for NOV37aNOV37aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueA53019collagen alpha 1(XVIII) chain - 2 . . . 184180/183 (98%)e−103human, 684 aa (fragment).502 . . . 684181/183 (98%)AAM52249Multi-functional protein MFP - 2 . . . 184180/183 (98%)e−103Homo sapiens (Human), 261 aa. 79 . . . 261181/183 (98%)Q8WX15Collagen XVIII - Homo sapiens 2 . . . 184180/183 (98%)e−103(Human), 187 aa (fragment). 5 . . . 187181/183 (98%)P39060Collagen alpha 1(XVIII) chain 2 . . . 184180/183 (98%)e−103precursor [Contains: Endostatin] -1334 . . . 1516181/183 (98%)Homo sapiens(Human), 1516 aa.B56101collagen alpha 1(XVIII) chain 2 . . . 182152/181 (83%)4e−88 precursor, long splice form -1591 . . . 1771168/181 (91%)mouse, 1774 aa.


[0535] PFam analysis indicates that the NOV37a protein contains the domains shown in the Table 37F.
202TABLE 37FDomain Analysis of NOV37aIdentities/Similarities forPfamNOV37athe MatchedExpectDomainMatch RegionRegionValueNo Significant Matches Found



Example 38

[0536] The NOV38 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 38A.
203TABLE 38ANOV38 Sequence AnalysisSEQ ID NO: 167678 bpNOV38a, GCTGCTGCAGTTGCCATGGTACAAGGGATGGGTTGTGGATTAGAGTTGGCATACTTGGCG59739-01DNA Sequence CAGCCCGCTGCTTGATGAATGCAGCCAACAGCTGGGGGTTGGCGTGAAGGATACTAAGCACCTGTCGCTGCTGCAGTTGCCATGGTGACAAGGGTTGCTGGCACAAGGATCTGCAACAAGCTGGCAGCTAGAATTCAGCGGCCGCTGAATTCTAGCTTCAACTTCACTACTTCTGTAGTCTCATCTTGAGTAAAAGAGAACCCAGCCAACTATGAAGTTCCTTGTCTTTGCCTTCATCTTGGCTCTCATGGTTTCCATGATTGGAGCTGATTCATCTGAAGAGAAATTTTTGCGTAGAATTGGAAGATTCGGTTATGGGTATGGCCCTTATCAGCCAGTTCCAGAACAACCACTATACCCACAACCATACCAACCACAATACCAACAATATACCTTTTAATATCATCAGTAACTGCAGGACATGATTATTGAGGCTTGATTGGCAAATACGACTTCTACATCCATATTCTCATCTTTCATACCATATCACACTACTACCACTTTTTGAAGAATCATCAAAGAGCAATGCAAATGAAAAACACTATAATTTACTGTATACTCTTTGTTTCAGGATACTTGCCTTTTCAATTGTCACTTGATCATATAATTGCATTTAAACTORF Start: ATG at 270ORF Stop: TAA at 456SEQ ID NO: 16862 aaMW at 7304.4kDNOV38a, MKFLVFAFILALMVSMIGADSSEEKFLRRIGRFGYGYGPYQPVPEQPLYPQPYQPQYQCG59739-01 Protein Sequence QYTFSEQ ID NO: 169141 bpNOV38 b, GGATCCGATTCATCTGAAGAGAAATTTTTGCGTAGAATTGGAAGATTCGGTTATGGGT169679148 DNASequence ATGGCCCTTATCAGCCAGTTCCAGAACAACCACTATACCCACAACCATACCAACCACAATACCAACAATATACCTTTCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 17047 aaMW at 5606.1kDNOV38bGSDSSEEKFLRRIGRFGYGYGPYQPVPEQPLYPQPYQPQYQQYTFLE169679148 Protein Sequence


[0537] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 38B.
204TABLE 38BComparison of NOV38a against NOV38b.NOV38aIdentities/Residues/SimilaritiesProteinMatchfor theSequenceResiduesMatched RegionNOV38b18 . . . 3820/21 (95%) 1 . . . 2121/21 (99%)


[0538] Further analysis of the NOV38a protein yielded the following properties shown in Table 38C.
205TABLE 38CProtein Sequence Properties NOV38aPSort0.8200 probability located in outside;analysis:0.3016 probability located in microbody(peroxisome); 0.1000 probability locatedin endoplasmic reticulum (membrane);0.1000 probability located in endoplasmicreticulum (lumen)SignalPCleavage site between residues 20 and 21analysis:


[0539] A search of the NOV38a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 38D.
206TABLE 38DGenesq Results for NOV38aNOV38aIdentities/Residues/SimilaritiesGenespProtein/Organism/Length [PatentMatchfor theExpectIdentifier#, Date]ResiduesMatched RegionValueAAY94527Human statherin protein - Homo1 . . . 6262/62 (100%)9e−32sapiens, 62 aa. [WO200024779-A11 . . . 6262/62 (100%)04 MAY 2000]AAB42456Human ORFX ORF22203 . . . 6254/67 (80%) 2e−24polypeptide sequence SEQ ID16 . . . 82 56/67 (82%) NO: 4440 - Homo sapiens, 82 aa.[WO200058473-A2, 05 OCT. 2000]AAG80022Strathin homologue peptide33 . . . 47 15/15 (100%)0.002fragment - Unidentified, 15 aa.1 . . . 1515/15 (100%)[DE10017249-A1, 11 OCT. 2001]AAW90168BK-RiV plant stratherin peptide33 . . . 47 15/15 (100%)0.002fragment homologue - Unknown, 151 . . . 1515/15 (100%)aa. [EP889053-A2, 07 JAN. 1999]AAU90983Transplant media associated1 . . . 2517/25 (68%) 0.033antimicrobial peptide #19 - Homo1 . . . 2520/25 (80%) sapiens, 51 aa. [WO200209738-A1,07 FEB. 2002]


[0540] In a BLAST search of public sequence datbases, the NOV38a protein was found to have homology to the proteins shown in the BLASTP data in Table 38E.
207TABLE 38EPublic BLASTP Results for NOV38aIdentities/NOV38aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP02808Statherin precursor - Homo sapiens1 . . . 62 62/62 (100%)2e−31(Human), 62 aa.1 . . . 62 62/62 (100%)P02809Statherin precursor - Macaca1 . . . 6038/61 (62%)6e−14fascicularis (Crab eating macaque)1 . . . 6139/61 (63%)(Cynomolgus monkey), 61 aa.P14709Statherin - Macaca arctoides (Stump-20 . . . 60 30/42 (71%)6e−10tailed macaque), 42 aa.1 . . . 4231/42 (73%)P15515Histatin 1 precursor (Histidine-rich1 . . . 2517/25 (68%)0.015protein 1) (Post-PB protein) (PPB)1 . . . 2521/25 (84%)[Contains: Histatin 2] - Homo sapiens(Human), 57 aa.P15516Histatin 3 precursor (Histidine-rich1 . . . 2517/25 (68%)0.075protein 3) (PB) (Basic histidine-rich1 . . . 2520/25 (80%)protein) [Contains: Histatins 4 to 12] -Homo sapiens (Human), 51 aa.


[0541] PFam analysis indicates that the NOV38a protein contains the domains shown in the Table 38F.
208TABLE 38FDomain Analysis of NOV38aIdentities/SimilaritiesNOV38afor thePfamMatchMatchedExpectDomainRegionRegionValueNo Significant Matches Found



Example 39

[0542] The NOV39 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 39A.
209TABLE 39ANOV39 Sequence AnalysisSEQ ID NO: 17172 bpNOV39a, CTACAGACACTGGGCGCCAAGGCCCAGGCACAGACTGACCGAGTGAACCTGCGGACCCCG94630-02 DNA Sequence TGCTCCGCTACTACORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 17224 aaMW at 2793.2kDNOV39a. LQTLGAKAQAQTDRVNLRTLLRYYCG94630-02 Protein Sequence


[0543] Further analysis of the NOV39a protein yielded the following properties shown in Table 39B.
210TABLE 39BProtein Sequence Properties NOV39aPSort0.8500 probability located in lysosomeanalysis:(lumen); 0.7847 probability located inmitochondrial intermembrane space;0.4500 probability located in cytoplasm;0.4488 probability located inmitochondrial matrix spaceSignalPNo Known Signal Sequence Indicatedanalysis:


[0544] A search of the NOV39a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 39C.
211TABLE 39CGeneseq Results for NOV39aIdentities/NOV39aSimilaritiesResidues/for theGeneseqProtein/Organism/Length [Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueAAP70155Sequence encoded by genomic DNA2 . . . 2416/23 (69%)0.17encoding human histocompatibility87 . . . 10919/23 (82%)antigen HLA-B 27 - Homo sapiens,362 aa. [EP226069-A, 24 JUN. 1987]AAM23917Rhesus monkey EST encoded protein2 . . . 2416/23 (69%)0.22SEQ ID NO: 1442 - Macaca mulatta,126 . . . 148 17/23 (73%)153 aa. [WO200154477-A2, 02 AUG.2001]AAU79455HLA-G recombinant protein 2 - Homo2 . . . 2414/23 (60%)0.85sapiens, 234 aa. [WO200222784-A2,94 . . . 11617/23 (73%)21 MAR. 2002]AAU79454HLA-G recombinant protein 1 - Homo2 . . . 2414/23 (60%)0.85sapiens, 326 aa. [WO200222784-A2,94 . . . 11617/23 (73%)21 MAR. 2002]AAU79450HLA-G alpha1 domain protein -2 . . . 2414/23 (60%)0.85Homo sapiens, 92 aa.65 . . . 87 17/23 (73%)[WO200222784-A2, 21 MAR. 2002]


[0545] In a BLAST search of public sequence datbases, the NOV39a protein was found to have homology to the proteins shown in the BLASTP data in Table 39D.
212TABLE 39DPublic BLASTP Results for NOV39aIdentities/NOV39aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ30175MHC class I HLA-J antigen -1 . . . 24 24/24 (100%)4e−06Homo sapiens (Human), 218 aa85 . . . 108 24/24 (100%)(fragment).Q8WW48Hypothetical 28.9 kDa protein -1 . . . 24 24/24 (100%)4e−06Homo sapiens (Human), 264 aa89 . . . 112 24/24 (100%)(fragment).Q95533Class I histocompatibility antigen -3 . . . 2418/22 (81%)0.013Pan troglodytes (Chimpanzee), 13729 . . . 50 18/22 (81%)aa (fragment).Q9MXK1MHC class I antigen - Pan3 . . . 2418/22 (81%)0.013troglodytes (Chimpanzee), 362 aa.88 . . . 10918/22 (81%)Q95430MHC class I - Pongo pygmaeus2 . . . 2418/23 (78%)0.017(Orangutan), 354 aa (fragment).79 . . . 10120/23 (86%)


[0546] PFam analysis indicates that the NOV39a protein contains the domains shown in the Table 39E.
213TABLE 39EDomain Analysis of NOV39aIdentities/NOV39aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueMHC_I2 . . . 2415/23 (65%)7.1e−0521/23 (91%)



Example 40

[0547] The NOV40 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 40A.
214TABLE 40ANOV40 Sequence AnalysisSEQ ID NO: 1751513 bpNOV40a, TCGCGATGCTGCTGCGCCTGTTGCTGGCCTGGGCGGCCGCAGGGCCCACACTGGGCCACG95205-02DNA Sequence GGACCCCTGGGCTGCTGAGCCCCGTGCCGCCTGCGGCCCCAGCAGCTGCTACGCTCTCTTCCCACGGCGCCGCACCTTCCTGGAGGCCTGGCGCGCCTGCCGCGAGCTGGGGGGCGACCTGGCCACTCCTCGGACCCCCGAGGAGGCCCAGCGTGTGGACAGCCTGGTGGGTGCGGGCCCAGCCAGCCGGCTGCTGTGGATCGGCCTGCAGCGGCAGGCCCGGCAATGCCAGCTGCAGCGCCCACTGCGCGGCTTCACGTGGACCACAGGGGACCAGGACACGGCTTTCACCAACTGGGCCCAGCCAGCCTCTGGAGGCCCCTGCCCGGCCCAGCGCTCTGTGGCCCTGGAGGCAAGTGGCGAGCACCGCTGGCTGGAGGGCTCGTGCACCCTGGCTGTCGACGGCTACCTGTGCCAGTTTGGCTTCGAGGGCGCCTGCCCGGCGCTGCAAGATGAGGCGGGCCAGGCCGGCCCAGCCGTGTATACCACGCCCTTCCACCTGGTCTCCACAGAGTTTGAGTGGCTGCCCTTCGGCTCTGTGGCCGCTGTGCAGTGCCAGGCTGGCAGGGGAGCCTCTCTGCTCTGCGTGAAGCAGCCTGAGGGAGGTGTGGGCTGGTCACGGGCTGGGCCCCTGTGCCTGGGGACTGGCTGCAGCCCTGACAACGGCGGCTGCGAACACGAATGTGTGGAGGAGGTGGATGGTCACGTGTCCTGCCGCTGCACTGAGGGCTTCCGGCTGGCAGCAGACGGGCGCAGTTGCGAGCACCCCTGTGCCCAGGCTCCGTGCGAGCAGCAGTGTGAGCCCGGTGGGCCACAAGGCTACAGCTGCCACTGTCGCCTCGGTTTCCGGCCAGCGGAGGATGATCCGCACCGCTGTGTGGACACAGATGAGTGCCAGATTGCCGGTGTGTGCCAGCAGATGTGTGTCAACTACGTTGCTGGCTTCGAGTGTTATTGTAGCGAGGGACATGAGCTGGAGGCTCATGGCATCAGCTGCAGCCCTGCAGGGGCCATGGGTGCCCAGGCTTCCCAGGACCTCGGAGATGAGTTGCTGGATGACGCGGAGGATGAGGAAGATGAAGACGAGGCCTGGAAGGCCTTCAACGGTGGCTGGACGGAGATGCCTGGGATCCTGTGGATGGAGCCTACGCAGCCGCCTGACTTTGCCCTGGCCTATAGACCGAGCTTCCCAGAGGACAGAGAGCCACAGATACCCTACCCGGAGCCCACCTGGCCACCCCCGCTGCCCAGCTGGACAGATGGCTTCCTGCTCCCCAGGCCCAGCCAGGGTCCTCTCTCAACCACTAGACTTGGCTCTCAGGAACTCTGCTTCCTGGCCCAGCGCTCGTGACCAAGGATACACCAAAGCCCTTAAGACCTCAGGGGGCGGGTGCTGGGGTCTTCTCCAATAAATGGGGTGTCACCCTTAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 6ORF Stop: TGA at 1407SEQ ID NO: 176467 aaMW at 50389.6kDNOV40a, MLLRLLLAWAAAGPTLGQDPWAAEPRAACGPSSCYALFPRRRTFLEAWRACRELGGDLCG95205-02Protein SequenceATPRTPEEAQRVDSLVGAGPASRLLWIGLQRQARQCQLQRPLRGFTWTTGDQDTAFTNWAQPASGGPCPAQRCVALEASGEHRWLEGSCTLAVDGYLCQEGFEGACPALQDEAGQAGPAVYTTPFHLVSTEFEWLPFGSVAAVQCQAGRGASLLCVKQPEGGVGWSRAGPLCLGTGCSPDNGGCEHECVEEVDGHVSCRCTEGFRLAADGRSCEDPCAQAPCEQQCEPGGPQGYSCHCRLGFRPAEDDPHRCVDTDECQIAGVCQQMCVNYVGGFECYCSEGHELEADGISCSPAGAMGAQASQDLGDELLDDGEDEEDEDEAWKAFNGGWTEMPGILWMEPTQPPDFALAYRPSFPEDREPQIPYPEPTWPPPLPSWTDGFLLPRPSQGPLSTTRLGSQELCFLAQRS


[0548] Further analysis of the NOV40a protein yielded the following properties shown in Table 40B.
215TABLE 40BProtein Sequence Properties NOV40aPSort0.3700 probability located in outside;analysis:0.1440 probability located in microbody(peroxisome); 0.1000 probabilitylocated in endoplasmic reticulum(membrane); 0.1000 probability locatedin endoplasmic reticulum (lumen)SignalPCleavage site between residues 18 and 19analysis:


[0549] A search of the NOV40a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 40C.
216TABLE 40CGeneseq Results for NOV40aNOV40aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB90732Human Tumour Endothelial Marker1 . . . 433 433/433 (100%)0.0polypeptide SEQ ID NO 196 -1 . . . 433 433/433 (100%)Homo sapiens, 757 aa.[WO200210217-A2, 07 FEB. 2002]ABB90721Human Tumour Endothelial Marker1 . . . 433 433/433 (100%)0.0polypeptide SEQ ID NO 177 -1 . . . 433 433/433 (100%)Homo sapiens, 757 aa.[WO200210217-A2, 07 FEB. 2002]ABB90780Mouse Tumour Endothelial Marker1 . . . 433382/433 (88%)0.0polypeptide SEQ ID NO 291 - Mus1 . . . 433397/433 (91%)musculus, 765 aa. [WO200210217-A2, 07 FEB. 2002]ABB90727Mouse Tumour Endothelial Marker1 . . . 433382/433 (88%)0.0polypeptide SEQ ID NO 190 - Mus1 . . . 433397/433 (91%)musculus, 765 aa. [WO200210217-A2, 07 FEB. 2002]AAE05343Mouse tumour endothelial marker I3 . . . 464388/469 (82%)0.0precursor protein - Mus sp, 492 aa.1 . . . 469408/469 (86%)[WO200148192-A1, 05 JUL. 2001]


[0550] In a BLAST search of public sequence datbases, the NOV40a protein was found to have homology to the proteins shown in the BLASTP data in Table 40D.
217TABLE 40DPublic BLASTP Results for NOV40aNOV40aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9HCU0Tumor endothelial marker I1 . . . 433 433/433 (100%)0.0precursor (Endosialin protein) -1 . . . 433 433/433 (100%)Homo sapiens (Human), 757 aa.Q91V98Tumor endothelial marker I1 . . . 433382/433 (88%)0.0precursor (Endosialin) - Mus1 . . . 433397/433 (91%)musculus (Mouse), 765 aa.Q91ZV1Endosialin - Mus musculus1 . . . 433382/433 (88%)0.0(Mouse), 765 aa.1 . . . 433397/433 (91%)Q96KB6CDNA FLJ14384 fis, clone325 . . . 433  109/109 (100%)2e−64HEMBA1002150 - Homo sapiens1 . . . 109 109/109 (100%)(Human), 433 aa.THHUBthrombomodulin precursor2 . . . 352147/375 (39%)2e−54[validated] - human, 575 aa.1 . . . 365184/375 (48%)


[0551] PFam analysis indicates that the NOV40a protein contains the domains shown in the Table 40E.
218TABLE 40EDomain Analysis of NOV40aIdentities/NOV40aSimilarities forPfamMatchthe MatchedExpectDomainRegionRegionValueXlink43 . . . 61 9/19 (47%)0.03415/19 (79%)lectin_c 40 . . . 15829/134 (22%) 8.4e−0680/134 (60%) sushi176 . . . 23015/66 (23%)0.7239/66 (59%)EGF235 . . . 27113/47 (28%)4.6e−0631/47 (66%)TIL258 . . . 31619/74 (26%)0.1740/74 (54%)EGF316 . . . 35013/47 (28%)0.0003526/47 (55%)



Example B

[0552] Sequencing Methodology and Identification of NOVX Clones


[0553] 1. GeneCalling™ Technology: This is a proprietary method of performing differential gene expression profiling between two or more samples developed at CuraGen and described by Shimkets, et al., “Gene expression analysis by transcript profiling coupled to a gene database query” Nature Biotechnology 17:198-803 (1999). cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then digested with up to as many as 120 pairs of restriction enzymes and pairs of linker-adaptors specific for each pair of restriction enzymes were ligated to the appropriate end. The restriction digestion generates a mixture of unique cDNA gene fragments. Limited PCR amplification is performed with primers homologous to the linker adapter sequence where one primer is biotinylated and the other is fluorescently labeled. The doubly labeled material is isolated and the fluorescently labeled single strand is resolved by capillary gel electrophoresis. A computer algorithm compares the electropherograms from an experimental and control group for each of the restriction digestions. This and additional sequence-derived information is used to predict the identity of each differentially expressed gene fragment using a variety of genetic databases. The identity of the gene fragment is confirmed by additional, gene-specific competitive PCR or by isolation and sequencing of the gene fragment.


[0554] 2. SeqCalling™ Technology: cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen's proprietary SeqCalling technology. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using, bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0555] 3. PathCalling™ Technology: The NOVX nucleic acid sequences are derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, are sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.


[0556] The laboratory screening was performed using the methods summarized below:


[0557] cDNA libraries were derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then directionally cloned into the appropriate two-hybrid vector (Gal4-activation domain (Gal4-AD) fusion). Such cDNA libraries as well as commercially available cDNA libraries from Clontech (Palo Alto, Calif.) were then transferred from E. coli into a CuraGen Corporation proprietary yeast strain (disclosed in U.S. Pat. Nos. 6,057,101 and 6,083,693, incorporated herein by reference in their entireties).


[0558] Gal4-binding domain (Gal4-BD) fusions of a CuraGen Corportion proprietary library of human sequences was used to screen multiple Gal4-AD fusion cDNA libraries resulting in the selection of yeast hybrid diploids in each of which the Gal4-AD fusion contains an individual cDNA. Each sample was amplified using the polymerase chain reaction (PCR) using non-specific primers at the cDNA insert boundaries. Such PCR product was sequenced; sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0559] Physical clone: the cDNA fragment derived by the screening procedure, covering the entire open reading frame is, as a recombinant DNA, cloned into pACT2 plasmid (Clontech) used to make the cDNA library. The recombinant plasmid is inserted into the host and selected by the yeast hybrid diploid generated during the screening procedure by the mating of both CuraGen Corporation proprietary yeast strains N106′ and YULH (U.S. Pat. Nos. 6,057,101 and 6,083,693).


[0560] 4. RACE: Techniques based on the polymerase chain reaction such as rapid amplification of cDNA ends (RACE), were used to isolate or complete the predicted sequence of the cDNA of the invention. Usually multiple clones were sequenced from one or more human samples to derive the sequences for fragments. Various human tissue samples from different donors were used for the RACE reaction. The sequences derived from these procedures were included in the SeqCalling Assembly process described in preceding paragraphs.


[0561] 5. Exon Linking: The NOVX target sequences identified in the present invention were subjected to the exon linking process to confirm the sequence. PCR primers were designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence was examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective was encountered, or, in the case of the reverse primer, until the stop codon was reached. Such primers were designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the predicted exons to closely related human sequences from other species. These primers were then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain—amygdala, brain—cerebellum, brain—hippocampus, brain—substantia nigra, brain—thalamus, brain—whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma—Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, traclea, uterus. Usually the resulting amplicons were gel purified, cloned and sequenced to high redundancy. The PCR product derived from exon linking was cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial clone has an insert covering the entire open reading frame cloned into the pCR2.1 vector. The resulting sequences from all clones were assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs were included as components for an assembly when the extent of their identity with another component of the assembly was at least 95% over 50 bp. In addition, sequence traces were evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.


[0562] 6. Physical Clone: Exons were predicted by homology and the intron/exon boundaries were determined using standard genetic rules. Exons were further selected and refined by means of similarity determination using multiple BLAST (for example, tBlastN, BlastX, and BlastN) searches, and, in some instances, GeneScan and Grail. Expressed sequences from both public and proprietary databases were also added when available to further define and complete the gene sequence. The DNA sequence was then manually corrected for apparent inconsistencies thereby obtaining the sequences encoding the full-length protein.


[0563] The PCR product derived by exon linking, covering the entire open reading frame, was cloned into the pCR2.1 vector from Invitrogen to provide clones used for expression and screening purposes.



Example C

[0564] Quantitative Expression Analysis of Clones in Various Cells and Tissues


[0565] The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoinflammatory diseases), Panel CNSD.01 (containing samples from normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).


[0566] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[0567] First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.


[0568] In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 μg of total RNA were performed in a volume of 20 μl and incubated for 60 minutes at 42° C. This reaction can be scaled up to 50 μg of total RNA in a final volume of 100 μl. sscDNA samples are then normalized to reference nucleic acids as described previously, using 1×TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions.


[0569] Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration=250 nM, primer melting temperature (Tm) range=58°-60° C., primer optimal Tm=59° C., maximum primer difference=2° C., probe does not have 5′G, probe Tm must be 10° C. greater than primer Tm, amplicon size 75 bp to 100 bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, Tex., USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5′ and 3′ ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900 nM each, and probe, 200 nM.


[0570] PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR plate (Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using, TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog, No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48° C. for 30 minutes followed by amplification/PCR cycles as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.


[0571] When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using 1×TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were analyzed and processed as described previously.


[0572] Panels 1, 1.1, 1.2, and 1.3D


[0573] The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.


[0574] In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used:


[0575] ca.=carcinoma,


[0576] *=established from metastasis,


[0577] met=metastasis,


[0578] s cell var=small cell variant,


[0579] non-s=non-sm=non-small,


[0580] squam=squamous,


[0581] pl. eff=pl effusion=pleural effusion,


[0582] glio=glioma,


[0583] astro=astrocytoma, and


[0584] neuro=neuroblastoma.


[0585] General_screening_panel_v1.4, v1.5 and v1.6


[0586] The plates for Panels 1.4, 1.5, and 1.6 include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in Panels 1.4, 1.5, and 1.6 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panels 1.4, 1.5, and 1.6 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panels 1.4, 1.5, and 1.6 are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations arc as described for Panels 1, 1.1, 1.2, and 1.3D.


[0587] Panels 2D, 2.2, 2.3 and 2.4


[0588] The plates for Panels 2D, 2.2, 2.3 and 2.4 generally include 2 control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI) or from Ardais or Clinomics). The tissues are derived from human malignancies and in cases where indicated many malignant tissues have “matched margins” obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted “NAT” in the results below. The tumor tissue and the “matched margins” are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI/CHTN/Ardais/Clinomics). Unmatched RNA samples from tissues without malignancy (normal tissues) were also obtained from Ardais or Clinomics. This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, Calif.), Research Genetics, and Invitrogen.


[0589] HASS Panel v 1.0


[0590] The HASS panel v 1.0 plates are comprised of 93 cDNA samples and two controls. Specifically, 81 of these samples are derived from cultured human cancer cell lines that had been subjected to serum starvation, acidosis and anoxia for different time periods as well as controls for these treatments, 3 samples of human primary cells, 9 samples of malignant brain cancer (4 medulloblastomas and 5 glioblastomas) and 2 controls. The human cancer cell lines are obtained from ATCC (American Type Culture Collection) and fall into the following tissue groups: breast cancer, prostate cancer, bladder carcinomas, pancreatic cancers and CNS cancer cell lines. These cancer cells are all cultured under standard recommended conditions. The treatments used (serum starvation, acidosis and anoxia) have been previously published in the scientific literature. The primary human cells were obtained from Clonetics (Walkersville, Md.) and were grown in the media and conditions recommended by Clonetics. The malignant brain cancer samples are obtained as part of a collaboration (Henry Ford Cancer Center) and are evaluated by a pathologist prior to CuraGen receiving the samples. RNA was prepared from these samples using the standard procedures. The genomic and chemistry control wells have been described previously.


[0591] ARDAIS Panel v 1.0


[0592] The plates for ARDAIS panel v 1.0 generally include 2 control wells and 22 test samples composed of RNA isolated from human tissue procured by surgeons working in close cooperation with Ardais Corporation. The tissues are derived from human lung malignancies (lung adenocarcinoma or lung squamous cell carcinoma) and in cases where indicated many malignant samples have “matched margins” obtained from noncancerous lung tissue just adjacent to the tumor. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue) in the results below. The tumor tissue and the “matched margins” arc evaluated by independent pathologists (the surgical pathologists and again by a pathologist at Ardais). Unmatched malignant and non-malignant RNA samples from lungs were also obtained from Ardais. Additional information from Ardais provides a gross histopathological assessment of tumor differentiation grade and stage. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical state of the patient.


[0593] Panel 3D, 3.1 and 3.2


[0594] The plates of Panel 3D, 3.1, and 3.2 are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there arc two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D, 3.1, 3.2, 1, 1.1., 1.2, 1.3D, 1.4, 1.5, and 1.6 are of the most common cell lines used in the scientific literature.


[0595] Panels 4D, 4R, and 4.1D


[0596] Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, Calif.) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, Calif.). Intestinal tissue for RNA preparation from patients diagnosed as having, Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, Pa.).


[0597] Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, Md.) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5 ng/ml, TNF alpha at approximately 5-10 ng/ml, IFN gamma at approximately 20-50 ng/ml, IL-4 at approximately 5-10 ng/ml, IL-9 at approximately 5-10 ng/ml, IL-13 at approximately 5-10 ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.


[0598] Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco/Life Technologies, Rockville, Md.), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20 ng/ml PMA and 1-2 μg/ml ionomycin, IL-12 at 5-10 ng/ml, IFN gamma at 20-50 ng/ml and IL-18 at 5-10 ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5 μg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2×106 cells/mil in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol (5.5×10−5M) (Gibco), and 10 mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1-7 days for RNA preparation.


[0599] Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions. Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, Utah), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco), 50 ng/ml GMCSF and 5 ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10 −5M (Gibco), 10 mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50 ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100 ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10 μg/ml for 6 and 12-14 hours.


[0600] CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and plated at 106cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with 0.5 μg/ml anti-CD28 (Pharmingen) and 3 ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyrivate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.


[0601] To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 106cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). To activate the cells, we used PWM at 5 μg/ml or anti-CD40 (Pharmingen) at approximately 10 μg/ml and IL-4 at 5-10 ng/ml. Cells were harvested for RNA preparation at 24, 48 and 72 hours.


[0602] To prepare the primary and secondary Th1/Th2 and Tr1 cells, six-well Falcon plates were coated overnight with 10 μg/ml anti-CD28 (Pharmingen) and 2 μg/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, German Town, Md.) were cultured at 105-106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (4 ng/ml). IL-12 (5 ng/ml) and anti-IL4 (1 μg/ml) were used to direct to Th1, while IL-4 (5 ng/ml) and anti-IFN gamma (1 μg/ml) were used to direct to Th2 and IL-10 at 5 ng/ml was used to direct to Tr1. After 4-5 days, the activated Th1, Th2 and Tr1 lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (1 ng/ml). Following this, the activated Th1, Th2 and Tr1 lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L (1 μg/ml) to prevent apoptosis. After 4-5 days, the Th1, Th2 and Tr1 lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Th1 and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Th1 , Th2 and Tr1 after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.


[0603] The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1 mM dbcAMP at 5×105 cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5×105 cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10 ng/ml and ionomycin at 1 μg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone) 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). CCD1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1 ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5 ng/ml IL-4, 5 ng/ml IL-9, 5 ng/ml IL-13 and 25 ng/ml IFN gamma.


[0604] For these cell lines and blood cells, RNA was prepared by lysing approximately 107 cells/ml using Trizol (Gibco BRL). Briefly, 1/10 volume of bromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15 ml Falcon Tube. An equal volume of isopropanol was added and left at −20° C. overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 μl of RNAse-free water and 35 μl buffer (Promega) 5 μl DTT, 7 μl RNAsin and 8 μl DNAse were added. The tube was incubated at 37° C. for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with 1/10 volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at −80° C.


[0605] AI_comprehensive panel_v1.0


[0606] The plates for AI_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, Md.). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.


[0607] Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.


[0608] Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.


[0609] Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.


[0610] Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-lanti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.


[0611] In the labels employed to identify tissues in the AI_comprehensive panel_v1.0 panel, the following abbreviations are used:


[0612] AI=Autoimmunity


[0613] Syn=Synovial


[0614] Normal=No apparent disease


[0615] Rep22 /Rep20 =individual patients


[0616] RA=Rheumatoid arthritis


[0617] Backus=From Backus Hospital


[0618] OA=Osteoarthritis


[0619] (SS)(BA)(MF)=Individual patients


[0620] Adj=Adjacent tissue


[0621] Match control=adjacent tissues


[0622] -M=Male


[0623] -F=Female


[0624] COPD=Chronic obstructive pulmonary disease


[0625] Panels 5D and 5I


[0626] The plates for Panel 5D and 5I include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.


[0627] In the Gestational Diabetes study subjects are young (18-40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:


[0628] Patient 2: Diabetic Hispanic, overweight, not on insulin


[0629] Patient 7-9: Nondiabetic Caucasian and obese (BMI>30)


[0630] Patient 10: Diabetic Hispanic, overweight, on insulin


[0631] Patient 11: Nondiabetic African American and overweight


[0632] Patient 12: Diabetic Hispanic on insulin


[0633] Adiocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr. 2, 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:


[0634] Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose


[0635] Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated


[0636] Donor 2 and 3 AD: Adipose, Adipose Differentiated


[0637] Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.


[0638] Panel 5I contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 5I.


[0639] In the labels employed to identify tissues in the 5D and 5I panels, the following abbreviations are used:


[0640] GO Adipose=Greater Omentum Adipose


[0641] SK=Skeletal Muscle


[0642] UT=Uterus


[0643] PL=Placenta


[0644] AD=Adipose Differentiated


[0645] AM=Adipose Midway Differentiated


[0646] U=Undifferentiated Stem Cells


[0647] Panel CNSD.01


[0648] The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0649] Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supernuclear Palsy, Depression, and “Normal controls”. Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.


[0650] In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:


[0651] PSP=Progressive supranuclear palsy


[0652] Sub Nigra=Substantia nigra


[0653] Glob Palladus=Globus palladus


[0654] Temp Pole=Temporal pole


[0655] Cing Gyr=Cingulate gyrus


[0656] BA 4 =Brodman Area 4


[0657] Panel CNS_Neurodegeneration_V1.0


[0658] The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0659] Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from “Normal controls” who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0=no evidence of plaques, 3 =severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a “control” region within AD patients. Not all brain regions are represented in all cases.


[0660] In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used:


[0661] AD=Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy


[0662] Control=Control brains; patient not demented, showing no neuropathology


[0663] Control (Path)=Control brains; patient not demented but showing sever AD-like pathology


[0664] SupTemporal Ctx=Superior Temporal Cortex


[0665] Inf Temporal Ctx=Inferior Temporal Cortex


[0666] A. NOV1a and NOV1b (CG113254-01 and CG113254-02): Fibulin


[0667] Expression of gene CG113254-01 and CG113254-02 was assessed using the primer-probe sets Ag1294b, Ag746, Ag905, Ag4470 and Ag4726, described in Tables AA, AB, AC, AD and AE. Results of the RTQ-PCR runs are shown in Tables AF, AG, AH, AI, AJ, AK, AL and AM. Please note that CG113254-02 represents a full-length physical clone and is recognized only by two probes and primer sets: Ag4470 and Ag4726.
219TABLE AAProbe Name Ag1294bStart Primers Sequences Length Position SEQ ID NoForward 5′-cattggcagctacaagtgttc-3′21 691 205Probe TET-5′-ctgtcgaactggcttccaccttcat-3′- 25 712 206TAMRA Reverse 5′-cctccgacactcgtttacatc-3′21 758 207


[0668]

220






TABLE AB










Probe Name Ag746
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-gcattggcagctacaagtgt-3′
20
690
208






Probe
TET-5′-ctgtcgaactggcttccaccttcat-3′-
25
712
209




TAMRA











Reverse
5′-cctccgacactcgtttacatc-3′
21
758
210










[0669]

221






TABLE AC










Probe Name Ag905
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-cattggcagctacaagtgttc-3′
21
691
211






Probe
TET-5′-ctgtcgaactggcttccaccttcat-3′-
25
712
212





Reverse
5′-cctccgacactcgtttacatc-3′
21
758
213










[0670]

222






TABLE AD










Probe Name Ag4470


















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-gcatcaggtgtacagaeattga-3′
22
510
214






Probe
TET-5′-cgaatgtgtaacctcctcctgcgag-3′-
25
532
215




TAMRA











Reverse
5′-acaaacccaccttctgtgttc-3′
21
568
216










[0671]

223






TABLE AL










Probe Name Ag4726
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-gtgtctgtctggctggaaac-3′
20
1497
217






Probe
TET-5′-tgcatctctcctgagtgtccttctgg-3′-
26
1523
218



TAMRA





Reverse
5′-acaagtacaqcaatccgtctgt-3′
22
1567
219










[0672]

224





TABLE AF










AI_comprehensive panel_v1.0










Rel. Exp. (%)
Rel. Exp. (%)



Ag1294b, Run
Ag4470, Run


Tissue Name
249007981
249008358












110967 COPD-F
6.6
3.0


110980 COPD-F
16.6
8.7


110968 COPD-M
3.9
3.4


110977 COPD-M
31.6
38.2


110989 Emphysema-F
45.1
31.4


110992 Emphysema-F
7.2
3.3


110993 Emphysema-F
5.8
5.5


110994 Emphysema-F
3.3
2.1


110995 Emphysema-F
2.0
15.4


110996 Emphysema-F
3.1
2.0


110997 Asthma-M
3.7
0.8


111001 Asthma-F
2.8
7.7


111002 Asthma-F
5.3
5.5


111003 Atopic Asthma-F
6.1
6.0


111004 Atopic Asthma-F
3.4
12.4


111005 Atopic Asthma-F
3.9
5.6


111006 Atopic Asthma-F
2.4
1.4


111417 Allergy-M
6.6
3.5


112347 Allergy-M
3.3
5.8


112349 Normal Lung-F
3.2
6.1


112357 Normal Lung-F
100.0
100.0


112354 Normal Lung-M
58.6
69.3


112374 Crohns-F
7.5
9.4


112389 Match Control Crohns-F
3.5
7.1


112375 Crohns-F
5.1
7.4


112732 Match Control Crohns-F
0.5
6.7


112725 Crohns-M
10.6
5.8


112387 Match Control Crohns-M
3.5
0.0


112378 Crohns-M
1.7
4.7


112390 Match Control Crohns-M
55.5
52.5


112726 Crohns-M
3.6
7.9


112731 Match Control Crohns-M
13.9
13.1


112380 Ulcer Col-F
13.7
13.2


112734 Match Control Ulcer Col-F
5.6
8.4


112384 Ulcer Col-F
3.9
2.8


112737 Match Control Ulcer Col-F
3.3
2.8


112386 Ulcer Col-F
0.0
0.0


112738 Match Control Ulcer Col-F
0.0
1.6


112381 Ulcer Col-M
4.2
9.4


112735 Match Control Ulcer Col-M
18.2
25.2


112382 Ulcer Col-M
4.2
7.6


112394 Match Control Ulcer Col-M
0.0
0.0


112383 Ulcer Col-M
12.2
6.6


112736 Match Control Ulcer Col-M
2.0
2.4


112423 Psoriasis-F
3.9
4.5


112427 Match Control Psoriasis-F
30.8
25.7


112418 Psoriasis-M
4.6
4.3


112723 Match Control Psoriasis-M
23.8
27.5


112419 Psoriasis-M
2.7
2.6


112424 Match Control Psoriasis-M
1.9
4.0


112420 Psoriasis-M
4.9
13.7


112425 Match Control Psoriasis-M
25.9
25.7


104689 (MF) OA Bone-Backus
12.9
7.3


104690 (MF) Adj “Normal” Bone-
3.7
1.2


Backus


104691 (MF) OA Synovium-Backus
6.9
11.3


104692 (BA) OA Cartilage-Backus
21.3
7.4


104694 (BA) OA Bone-Backus
6.6
2.0


104695 (BA) Adj “Normal” Bone-
2.3
5.3


Backus


104696 (BA) OA Synovium-Backus
5.7
6.3


104700 (SS) OA Bone-Backus
6.2
5.6


104701 (SS) Adj “Normal” Bone-
3.8
5.8


Backus


104702 (SS) OA Synovium-Backus
15.4
15.1


117093 OA Cartilage Rep7
18.0
12.2


112672 OA Bone5
90.1
97.3


112673 OA Synovium5
63.7
46.0


112674 OA Synovial Fluid cells5
32.3
32.5


117100 OA Cartilage Rep14
3.3
0.0


112756 OA Bone9
7.0
14.8


112757 OA Synovium9
12.2
17.4


112758 OA Synovial Fluid Cells9
3.9
5.2


117125 RA Cartilage Rep2
4.6
7.9


113492 Bone2 RA
2.4
1.5


113493 Synovium2 RA
1.1
0.0


113494 Syn Fluid Cells RA
1.4
0.0


113499 Cartilage4 RA
1.4
2.0


113500 Bone4 RA
0.5
1.7


113501 Synovium4 RA
1.7
2.3


113502 Syn Fluid Cells4 RA
1.8
0.7


113495 Cartilage3 RA
1.6
1.2


113496 Bone3 RA
1.1
2.3


113497 Synovium3 RA
0.0
0.0


113498 Syn Fluid Cells3 RA
0.6
0.8


117106 Normal Cartilage Rep20
4.5
5.7


113663 Bone3 Normal
6.7
0.9


113664 Synovium3 Normal
1.2
1.6


113665 Syn Fluid Cells3 Normal
0.9
3.3


117107 Normal Cartilage Rep22
1.3
3.5


113667 Bone4 Normal
11.8
8.7


113668 Synovium4 Normal
12.0
12.8


113669 Syn Fluid Cells4 Normal
10.7
24.3










[0673]

225





TABLE AG










CNS_neurodegeneration_v1.0











Rel.
Rel.
Rel.



Exp. (%)
Exp. (%)
Exp. (%)



Ag1294b,
Ag4470,
Ag4726,


Tissue
Run
Run
Run


Name
206231468
224535165
224706360













AD 1 Hippo
11.2
13.7
11.6


AD 2 Hippo
22.5
22.2
23.5


AD 3 Hippo
4.7
6.3
0.0


AD 4 Hippo
8.7
10.7
15.2


AD 5 Hippo
37.6
35.1
35.6


AD 6 Hippo
100.0
95.9
100.0


Control 2 Hippo
28.7
15.8
21.9


Control 4 Hippo
30.4
23.7
40.3


Control (Path) 3 Hippo
6.9
0.0
3.6


AD 1 Temporal Ctx
16.3
15.0
26.1


AD 2 Temporal Ctx
31.6
14.8
25.2


AD 3 Temporal Ctx
3.8
2.6
5.6


AD 4 Temporal Ctx
10.9
23.7
36.1


AD 5 Inf Temporal Ctx
34.6
38.4
35.8


AD 5 Sup Temporal Ctx
19.6
29.7
55.9


AD 6 Inf Temporal Ctx
73.7
85.3
76.8


AD 6 Sup Temporal Ctx
81.2
100.0
97.9


Control 1 Temporal Ctx
1.2
7.7
5.1


Control 2 Temporal Ctx
15.5
28.5
42.9


Control 3 Temporal Ctx
5.9
16.7
18.4


Control 4 Temporal Ctx
7.9
14.5
17.2


Control (Path) 1 Temporal
41.8
32.3
43.5


Ctx


Control (Path) 2 Temporal
26.2
34.9
36.6


Ctx


Control (Path) 3 Temporal
1.5
2.8
11.4


Ctx


Control (Path) 4 Temporal
19.2
31.6
20.3


Ctx


AD 1 Occipital Ctx
15.8
17.8
17.4


AD 2 Occipital Ctx
0.0
0.0
0.0


(Missing)


AD 3 Occipital Ctx
1.2
7.9
3.6


AD 4 Occipital Ctx
17.8
11.3
7.9


AD 5 Occipital Ctx
8.7
9.3
17.6


AD 6 Occipital Ctx
12.3
20.3
30.8


Control 1 Occipital Ctx
0.0
5.8
3.0


Control 2 Occipital Ctx
27.4
36.3
34.6


Control 3 Occipital Ctx
5.4
9.4
2.8


Control 4 Occipital Ctx
6.7
10.7
15.4


Control (Path) 1 Occipital
56.3
54.7
85.3


Ctx


Control (Path) 2 Occipital
10.4
10.0
21.8


Ctx


Control (Path) 3 Occipital
1.2
0.0
0.0


Ctx


Control (Path) 4 Occipital
6.3
18.3
5.0


Ctx


Control 1 Parietal Ctx
6.4
7.4
9.7


Control 2 Parietal Ctx
39.5
33.2
55.9


Control 3 Parietal Ctx
4.4
9.6
11.2


Control (Path) 1 Parietal
17.6
22.4
45.4


Ctx


Control (Path) 2 Parietal
17.6
28.1
12.1


Ctx


Control (Path) 3 Parietal
0.0
2.2
4.2


Ctx


Control (Path) 4 Parietal
26.4
44.1
30.1


Ctx










[0674]

226





TABLE AH










General_screening_panel_v1.4










Rel. Exp. (%)
Rel. Exp. (%)



Ag4470, Run
Ag4726, Run


Tissue Name
222655825
222842378












Adipose
4.8
3.3


Melanoma* Hs688(A).T
3.3
2.7


Melanoma* Hs688(B).T
3.1
2.7


Melanoma* M14
2.8
4.8


Melanoma* LOXIMVI
0.2
0.1


Melanoma* SK-MEL-5
0.8
0.4


Squamous cell carcinoma SCC-4
0.6
0.2


Testis Pool
5.5
4.3


Prostate ca.* (bone met) PC-3
3.0
1.6


Prostate Pool
1.1
0.5


Placenta
10.0
7.7


Uterus Pool
2.3
0.1


Ovarian ca. OVCAR-3
0.8
0.7


Ovarian ca. SK-OV-3
0.4
0.6


Ovarian ca. OVCAR-4
0.3
0.3


Ovarian ca. OVCAR-5
1.6
1.1


Ovarian ca. IGROV-1
0.5
1.4


Ovarian ca. OVCAR-8
0.9
0.7


Ovary
7.7
5.0


Breast ca. MCF-7
0.9
0.4


Breast ca. MDA-MB-231
1.2
0.5


Breast ca. BT 549
1.8
0.7


Breast ca. T47D
4.9
4.2


Breast ca. MDA-N
0.3
0.2


Breast Pool
2.4
0.8


Trachea
4.5
1.3


Lung
7.9
5.5


Fetal Lung
3.8
1.8


Lung ca. NCI-N417
3.9
3.6


Lung ca. LX-I
0.9
0.7


Lung ca. NCI-H146
0.8
0.8


Lung ca. SHP-77
2.3
0.3


Lung ca. A549
0.9
0.8


Lung ca. NCI-H526
2.9
2.1


Lung ca. NCI-H23
1.4
0.8


Lung ca. NCI-H460
2.2
1.2


Lung ca. HOP-62
2.0
0.5


Lung ca. NCI-H522
31.6
20.2


Liver
20.7
11.6


Fetal Liver
63.7
61.1


Liver ca. HepG2
100.0
100.0


Kidney Pool
11.2
6.7


Fetal Kidney
5.3
2.0


Renal ca. 786-0
1.6
1.7


Renal ca. A498
0.8
1.3


Renal ca. ACHN
2.2
2.5


Renal ca. UO-31
12.9
10.6


Renal ca. TK-10
54.0
41.8


Bladder
2.9
1.8


Gastric ca. (liver met.) NCI-N87
2.3
2.0


Gastric ca. KATO III
0.8
0.6


Colon ca. SW-948
0.5
0.6


Colon ca. SW480
3.3
0.7


Colon ca.* (SW480 met) SW620
16.2
12.8


Colon ca. HT29
0.0
0.1


Colon ca. HCT-116
4.4
3.7


Colon ca. CaCo-2
94.0
31.9


Colon cancer tissue
16.5
7.9


Colon ca. SW1116
0.6
1.0


Colon ca. Colo-205
0.0
0.0


Colon ca. SW-48
0.2
0.0


Colon Pool
2.6
1.0


Small Intestine Pool
10.8
4.9


Stomach Pool
2.4
3.4


Bone Marrow Pool
1.0
0.0


Fetal Heart
2.6
0.7


Heart Pool
1.7
0.7


Lymph Node Pool
2.7
2.6


Fetal Skeletal Muscle
2.3
1.6


Skeletal Muscle Pool
0.8
1.0


Spleen Pool
0.6
0.4


Thymus Pool
16.3
7.9


CNS cancer (glio/astro) U87-MG
5.7
6.4


CNS cancer (glio/astro) U-118-MG
2.7
1.6


CNS cancer (neuro; met) SK-N-AS
4.8
4.4


CNS cancer (astro) SF-539
0.0
0.2


CNS cancer (astro) SNB-75
5.2
4.4


CNS cancer (glio) SNB-19
0.5
1.1


CNS cancer (glio) SF-295
8.3
5.1


Brain (Amygdala) Pool
2.9
2.5


Brain (cerebellum)
5.9
7.3


Brain (fetal)
25.3
12.2


Brain (Hippocampus) Pool
3.7
1.9


Cerebral Cortex Pool
4.6
2.6


Brain (Substantia nigra) Pool
4.7
2.1


Brain (Thalamus) Pool
3.8
3.9


Brain (whole)
9.2
8.5


Spinal Cord Pool
3.6
1.9


Adrenal Gland
4.2
2.6


Pituitary gland Pool
0.8
0.6


Salivary Gland
1.0
0.9


Thyroid (female)
2.0
1.8


Pancreatic ca. CAPAN2
0.0
0.0


Pancreas Pool
3.0
1.1










[0675]

227





TABLE AI










Panel 1.2










Rel. Exp. (%)
Rel. Exp. (%)



Ag746, Run
Ag746, Run


Tissue Name
115163442
119442272












Endothelial cells
12.3
5.9


Heart (Fetal)
0.0
0.0


Pancreas
0.0
0.0


Pancreatic ca. CAPAN 2
0.0
0.0


Adrenal Gland
0.0
0.2


Thyroid
0.1
0.0


Salivary gland
0.0
0.0


Pituitary gland
0.2
0.1


Brain (fetal)
2.4
16.0


Brain (whole)
0.0
0.3


Brain (amygdala)
0.0
0.0


Brain (cerebellum)
0.0
0.0


Brain (hippocampus)
0.0
0.0


Brain (thalamus)
0.0
0.0


Cerebral Cortex
0.0
0.0


Spinal cord
0.0
0.0


glio/astro U87-MG
0.0
0.0


glio/astro U-118-MG
0.0
0.0


astrocytoma SW1783
0.0
0.0


neuro*; met SK-N-AS
0.0
0.2


astrocytoma SF-539
0.0
0.0


astrocytoma SNB-75
0.0
0.0


glioma SNB-19
0.0
0.0


glioma U251
0.0
0.0


glioma SF-295
0.0
0.0


Heart
0.0
0.0


Skeletal Muscle
0.0
0.0


Bone marrow
0.0
0.0


Thymus
1.2
2.8


Spleen
0.0
0.0


Lymph node
0.0
0.0


Colorectal Tissue
0.0
0.0


Stomach
0.0
0.0


Small intestine
0.0
0.0


Colon ca. SW480
0.0
0.0


Colon ca.* SW620 (SW480 met)
1.1
1.9


Colon ca. HT29
0.0
0.0


Colon ca. HCT-116
0.0
0.0


Colon ca. CaCo-2
46.3
56.6


Colon ca. Tissue (ODO3866)
0.0
0.0


Colon ca. HCC-2998
0.0
0.0


Gastric ca.* (liver met) NCI-N87
0.0
0.0


Bladder
0.0
0.0


Trachea
0.0
0.0


Kidney
0.0
0.0


Kidney (fetal)
0.1
0.9


Renal ca. 786-0
0.0
0.0


Renal ca. A498
0.0
0.0


Renal ca. RXF 393
0.0
0.0


Renal ca. ACHN
0.0
0.0


Renal ca. UO-31
0.0
0.0


Renal ca. TK-10
0.0
0.0


Liver
32.8
51.2


Liver (fetal)
7.2
100.0


Liver ca. (hepatoblast) HepG2
100.0
94.0


Lung
0.0
0.0


Lung (fetal)
0.0
0.0


Lung ca. (small cell) LX-1
0.0
0.0


Lung ca. (small cell) NCI-H69
0.0
0.0


Lung ca. (s. cell var.) SHP-77
0.0
0.0


Lung ca. (large cell) NCI-H460
0.0
0.0


Lung ca. (non-sm. cell) A549
0.0
0.0


Lung ca. (non-s. cell) NCI-H23
0.0
0.0


Lung ca. (non-s. cell) HOP-62
0.0
0.0


Lung ca. (non-s. cl) NCI-H522
63.7
90.1


Lung ca. (squam.) SW 900
0.0
0.0


Lung ca. (squam.) NCI-H596
0.0
0.0


Mammary gland
0.7
3.6


Breast ca.* (pl. ef) MCF-7
0.0
0.0


Breast ca.* (pl. ef) MDA-MB-231
0.0
0.0


Breast ca.* (pl. ef) T47D
0.0
0.0


Breast ca. BT-549
0.0
0.0


Breast ca. MDA-N
0.0
0.0


Ovary
0.5
11.7


Ovarian ca. OVCAR-3
0.0
0.0


Ovarian ca. OVCAR-4
0.0
0.0


Ovarian ca. OVCAR-5
0.0
0.0


Ovarian ca. OVCAR-8
0.0
0.0


Ovarian ca. IGROV-1
0.0
0.0


Ovarian ca. (ascites) SK-OV-3
0.0
0.0


Uterus
0.0
0.0


Placenta
34.4
39.5


Prostate
0.0
0.0


Prostate ca.* (bone met) PC-3
0.0
0.0


Testis
1.0
3.5


Melanoma Hs688(A).T
0.0
0.0


Melanoma* (met) Hs688(B).T
0.0
0.0


Melanoma UACC-62
0.0
0.0


Melanoma M14
0.0
0.0


Melanoma LOX IMVI
0.0
0.0


Melanoma* (met) SK-MEL-5
0.0
0.0










[0676]

228





TABLE AJ










Panel 2D










Rel. Exp. (%)
Rel. Exp. (%)



Ag746, Run
Ag746, Run


Tissue Name
147127131
148019631












Normal Colon
18.3
21.8


CC Well to Mod Diff (ODO3866)
16.5
21.7


CC Margin (ODO3866)
3.1
0.0


CC Gr.2 rectosigmoid (ODO3868)
0.0
0.8


CC Margin (ODO3868)
0.5
2.0


CC Mod Diff (ODO3920)
1.2
2.3


CC Margin (ODO3920)
1.3
2.6


CC Gr.2 ascend colon (ODO3921)
3.4
4.4


CC Margin (ODO3921)
1.3
0.0


CC from Partial Hepatectomy
8.4
1.9


(ODO4309) Mets


Liver Margin (ODO4309)
49.7
41.5


Colon mets to lung (OD04451-01)
0.3
5.3


Lung Margin (OD04451-02)
0.0
1.8


Normal Prostate 6546-1
9.1
12.1


Prostate Cancer (OD04410)
2.0
9.7


Prostate Margin (OD04410)
16.8
20.3


Prostate Cancer (OD04720-01)
13.5
14.4


Prostate Margin (OD04720-02)
14.0
22.4


Normal Lung 061010
6.8
11.7


Lung Met to Muscle (ODO4286)
1.8
0.7


Muscle Margin (ODO4286)
11.5
13.1


Lung Malignant Cancer (OD03126)
1.5
6.0


Lung Margin (OD03126)
4.8
2.4


Lung Cancer (OD04404)
4.2
2.3


Lung Margin (OD04404)
9.0
10.4


Lung Cancer (OD04565)
0.3
0.0


Lung Margin (OD04565)
0.4
0.3


Lung Cancer (OD04237-01)
10.7
11.1


Lung Margin (OD04237-02)
4.9
5.4


Ocular Mel Met to Liver (ODO4310)
10.5
11.9


Liver Margin (ODO4310)
22.4
32.8


Melanoma Mets to Lung (OD04321)
0.0
0.0


Lung Margin (OD04321)
0.6
0.0


Normal Kidney
5.3
5.3


Kidney Ca, Nuclear grade 2
39.8
43.8


(OD04338)


Kidney Margin (OD04338)
4.8
6.4


Kidney Ca Nuclear grade 1/2
3.0
0.3


(OD04339)


Kidney Margin (OD04339)
5.4
10.0


Kidney Ca, Clear cell type
18.2
19.2


(OD04340)


Kidney Margin (OD04340)
9.0
10.4


Kidney Ca, Nuclear grade 3
5.2
8.3


(OD04348)


Kidney Margin (OD04348)
6.9
4.7


Kidney Cancer (OD04622-01)
41.8
45.4


Kidney Margin (OD04622-03)
1.9
1.4


Kidney Cancer (OD04450-01)
9.2
6.2


Kidney Margin (OD04450-03)
10.2
9.0


Kidney Cancer 8120607
2.2
1.7









Kidney Margin 8120608
6.5
6.4


Kidney Cancer 8120613
2.2
0.7


Kidney Margin 8120614
6.3
3.0


Kidney Cancer 9010320
10.9
16.5


Kidney Margin 9010321
9.0
11.3


Normal Uterus
4.3
6.3


Uterus Cancer 064011
13.4
17.7


Normal Thyroid
9.1
14.9


Thyroid Cancer 064010
6.4
5.9


Thyroid Cancer A302152
4.4
5.1


Thyroid Margin A302153
12.0
22.1


Normal Breast
9.9
14.3









Breast Cancer (OD04566)
0.4
0.2


Breast Cancer (OD04590-01)
5.3
3.9


Breast Cancer Mets (OD04590-03)
4.0
10.4


Breast Cancer Metastasis (OD04655-05)
7.2
4.4


Breast Cancer 064006
5.2
3.3


Breast Cancer 1024
12.1
18.6


Breast Cancer 9100266
2.7
5.3


Breast Margin 9100265
5.0
5.8


Breast Cancer A209073
0.5
1.8


Breast Margin A209073
1.7
0.4


Normal Liver
39.5
47.0


Liver Cancer 064003
4.2
0.6


Liver Cancer 1025
66.4
74.2


Liver Cancer 1026
36.1
42.6


Liver Cancer 6004-T
100.0
100.0


Liver Tissue 6004-N
22.8
34.4


Liver Cancer 6005-T
39.2
35.4


Liver Tissue 6005-N
33.2
38.2


Normal Bladder
6.6
4.9


Bladder Cancer 1023
1.0
4.8


Bladder Cancer A302173
2.6
0.7


Bladder Cancer (OD04718-01)
0.0
0.7


Bladder Normal Adjacent
3.5
14.4


(OD04718-03)


Normal Ovary
50.7
47.3


Ovarian Cancer 064008
10.2
7.4


Ovarian Cancer (OD04768-07)
73.7
80.7


Ovary Margin (OD04768-08)
2.6
0.8


Normal Stomach
2.9
2.9


Gastric Cancer 9060358
0.0
1.1


Stomach Margin 9060359
2.4
0.3


Gastric Cancer 9060395
0.5
1.1


Stomach Margin 9060394
5.2
2.0


Gastric Cancer 9060397
3.4
7.0


Stomach Margin 9060396
1.4
0.0


Gastric Cancer 064005
1.3
6.0










[0677]

229





TABLE AK










Panel 4.1D











Rel.
Rel.
Rel.



Exp. (%)
Exp. (%)
Exp. (%)



Ag1294b,
Ag4470,
Ag4726,



Run
Run
Run


Tissue Name
200065765
191882058
204150067













Secondary Th1 act
15.3
21.8
8.4


Secondary Th2 act
7.2
14.9
0.4


Secondary Tr1 act
5.5
11.3
3.1


Secondary Th 1 rest
6.7
5.3
0.5


Secondary Th2 rest
1.0
1.8
2.6


Secondary Tr1 rest
1.3
2.3
0.5


Primary Th1 act
26.6
42.0
24.8


Primary Th2 act
34.2
37.6
19.8


Primary Tr1 act
40.3
42.3
27.9


Primary Th1 rest
0.3
1.1
0.0


Primary Th2 rest
0.5
1.3
0.0


Primary Tr1 rest
0.0
0.0
1.1


CD45RA CD4 lymphocyte
7.7
5.9
2.2


act


CD45RO CD4 lymphocyte
10.9
9.9
16.5


act


CD8 lymphocyte act
11.0
19.2
9.9


Secondary CD8
11.8
10.4
8.9


lymphocyte rest


Secondary CD8
4.7
4.5
1.9


lymphocyte act


CD4 lymphocyte none
0.0
0.6
0.0


2ry Th1/Th2/Tr1_anti-
1.7
4.9
2.5


CD95 CH11


LAK cells rest
0.0
1.1
1.4


LAK cells IL-2
3.1
3.5
1.7


LAK cells IL-2 + IL-
2.9
1.4
1.1


12


LAK cells IL-2 + IFN
0.5
0.0
1.3


gamma


LAK ceils IL-2 + IL-
0.5
2.3
1.1


18


LAK cells PMA/
1.0
3.3
4.2


ionomycin


NK Cells IL-2 rest
1.4
3.9
2.0


Two Way MLR 3 day
3.1
4.8
1.8


Two Way MLR 5 day
5.0
9.3
4.2


Two Way MLR 7 day
4.7
9.4
4.0


PBMC rest
0.6
0.0
0.0


PBMC PWM
11.5
20.6
9.9


PBMC PHA-L
7.2
18.3
14.1


Ramos (B cell) none
1.8
4.5
2.0


Ramos (B cell)
3.4
9.2
2.7


ionomycin


B lymphocytes PWM
20.2
20.3
17.6


B lymphocytes CD40L and
12.2
10.4
11.0


IL-4


EOL-1 dbcAMP
1.5
1.9
3.2


EOL-1 dbcAMP PMA/
1.1
2.7
0.5


ionomycin


Dendritic cells none
8.5
5.1
4.0


Dendritic cells LPS
6.4
6.7
5.9


Dendritic cells anti-
8.7
7.9
4.7


CD40


Monocytes rest
0.0
1.0
0.0


Monocytes LPS
1.1
1.6
2.2


Macrophages rest
8.8
13.0
4.8


Macrophages LPS
0.0
0.0
0.0


HUVEC none
10.1
18.3
8.5


HUVEC starved
7.6
11.5
11.4


HUVEC IL-1beta
5.6
11.1
10.2


HUVEC IFN gamma
21.9
29.9
11.3


HUVEC TNFalpha + IFN
3.5
4.5
1.1


gamma


HUVEC TNFalpha + IL4
31.2
45.7
19.1


HUVEC IL-11
17.7
28.3
20.7


Lung Microvascular EC
65.1
71.2
61.6


none


Lung Microvascular EC
34.4
27.7
30.4


TNFalpha + IL-1beta


Microvascular Dermal
42.3
38.4
29.9


EC none


Microvascular Dermal
16.7
24.1
7.6


EC TNFalpha + IL-


1beta


Bronchial epithelium
2.4
5.0
4.4


TNFalpha + IL-1beta


Small airway
1.7
6.6
4.2


epithelium none


Small airway
2.5
1.3
2.4


epithelium TNFalpha +


IL-1beta


Coronery artery SMC
9.0
10.3
2.1


rest


Coronery artery SMC
5.2
1.8
4.1


TNFalpha + IL-1beta


Astrocytes rest
2.1
1.4
0.8


Astrocytes TNFalpha +
2.2
3.1
1.2


IL-1beta


KU-812 (Basophil) rest
10.2
29.5
14.9


KU-812 (Basophil)
11.1
18.9
8.6


PMA/ionomycin


CCD1106
0.0
2.3
0.9


(Keratinocytes) none


CCD1106 (Keratinocytes)
0.6
0.0
0.0


TNFalpha + IL-1beta


Liver cirrhosis
6.8
10.2
6.0


NCI-H292 none
21.3
16.6
10.3


NCI-H292 IL-4
11.5
9.0
7.3


NCI-H292 IL-9
13.8
32.5
17.4


NCI-H292 IL-13
19.9
5.3
6.7


NCI-H292 IFN gamma
7.3
15.5
13.8


HPAEC none
20.4
37.9
28.9


HPAEC TNFalpha +
21.5
17.4
15.4


IL-1beta


Lung fibroblast none
23.5
22.7
15.7


Lung fibroblast TNF
8.8
11.7
9.2


alpha + IL-1 beta


Lung fibroblast IL-4
21.2
17.7
24.7


Lung fibroblast IL-9
16.8
36.1
18.2


Lung fibroblast IL-13
33.2
36.1
19.8


Lung fibrobast IFN
19.1
11.7
7.8


gamma


Dermal fibroblast
2.9
1.3
0.1


CCD1070 rest


Dermal fibroblast
0.0
0.8
0.2


CCD1070 TNF alpha


Dermal fibroblast
1.5
1.6
4.5


CCD1070 IL-1 beta


Dermal fibroblast IFN
45.1
5.4
32.8


gamma


Dermal fibroblast IL-4
100.0
100.0
100.0


Dermal Fibroblast rest
53.6
39.5
39.2


Neutrophils TNFa +
1.5
0.0
0.6


LPS


Neutrophils rest
10.2
0.5
0.1


Colon
1.5
0.5
1.6


Lung
1.7
0.7
1.3


Thymus
40.1
59.9
25.0


Kidney
1.5
0.7
0.0










[0678]

230





TABLE AL










Panel 4D










Rel. Exp. (%)
Rel. Exp. (%)



Ag1294b, Run
Ag1294b, Run


Tissue Name
138944262
139408252












Secondary Th1 act
10.9
7.7


Secondary Th2 act
6.4
8.0


Secondary Tr1 act
11.3
9.3


Secondary Th1 rest
3.4
2.7


Secondary Th2 rest
1.5
2.5


Secondary Tr1 rest
1.4
2.0


Primary Th1 act
48.0
46.0


Primary Th2 act
38.7
27.7


Primary Tr1 act
72.2
55.5


Primary Th1 rest
3.1
2.3


Primary Th2 rest
1.0
0.8


Primary Tr1 rest
1.1
0.5


CD45RA CD4 lymphocyte act
2.9
1.8


CD45RO CD4 lymphocyte act
18.6
12.2


CD8 lymphocyte act
17.8
6.8


Secondary CD8 lymphocyte rest
6.8
6.0


Secondary CD8 lymphocyte act
5.5
4.1


CD4 lymphocyte none
0.0
0.2


2ry Th1/Th2/Tr1_anti-CD95 CH11
2.9
3.1


LAK cells rest
1.4
0.3


LAK cells IL-2
3.8
2.2


LAK cells IL-2 + IL-12
3.0
0.8


LAK ceils IL-2 + IFN gamma
2.0
1.7


LAK cells IL-2 + IL-18
0.5
0.2


LAK cells PMA/ionomycin
0.7
1.3


NK Cells IL-2 rest
0.7
0.7


Two Way MLR 3 day
1.1
2.5


Two Way MLR 5 day
2.5
2.8


Two Way MLR 7 day
4.5
5.0


PBMC rest
0.0
0.0


PBMC PWM
41.8
29.1


PBMC PHA-L
34.4
21.8


Ramos (B cell) none
4.7
2.4


Ramos (B cell) ionomycin
9.2
5.8


B lymphocytes PWM
51.8
51.4


B lymphocytes CD40L and IL-4
10.2
12.3


EOL-1 dbcAMP
0.3
0.2


EOL-1 dbcAMP PMA/ionomycin
0.4
1.8


Dendritic cells none
6.7
3.8


Dendritic cells LPS
4.7
3.1


Dendritic cells anti-CD40
6.0
5.6


Monocytes rest
0.0
0.0


Monocytes LPS
0.7
0.8


Macrophages rest
19.8
9.9


Macrophages LPS
0.7
0.5


HUVEC none
9.3
10.2


HUVEC starved
19.2
13.1


HUVEC IL-1beta
4.1
1.7


HUVEC IFN gamma
21.0
13.7


HUVEC TNF alpha + IFN gamma
2.8
0.6


HUVEC TNF alpha + IL4
30.8
25.7


HUVEC IL-11
11.6
7.3


Lung Microvascular EC none
24.1
20.0


Lung Microvascular EC TNFalpha +
8.0
12.2


IL-1beta


Microvascular Dermal EC none
64.6
45.7


Microvascular Dermal EC TNFalpha +
18.4
11.7


IL-1beta


Bronchial epithelium TNFalpha +
5.2
5.4


IL1beta


Small airway epithelium none
4.0
3.2


Small airway epithelium TNFalpha +
8.2
4.5


IL-1beta


Coronery artery SMC rest
5.8
6.3


Coronery artery SMC TNFalpha +
4.5
5.1


IL-1beta


Astrocytes rest
0.8
0.5


Astrocytes TNFalpha + IL-1beta
3.6
1.9


KU-812 (Basophil) rest
16.0
11.1


KU-812 (Basophil) PMA/ionomycin
12.3
9.5


CCD1106 (Keratinocytes) none
0.0
0.5


CCD1106 (Keratinocytes) TNFalpha +
0.7
0.4


IL-1beta


Liver cirrhosis
8.4
3.8


Lupus kidney
2.0
3.2


NCI-H292 none
21.9
25.7


NCI-H292 IL-4
15.7
12.3


NCI-H292 1L-9
20.6
14.7


NCI-H292 IL-13
8.3
5.7


NCI-H292 IFN gamma
5.1
8.2


HPAEC none
18.7
23.8


HPAEC TNFalpha + IL-1beta
11.9
12.9


Lung fibroblast none
15.7
13.5


Lung fibroblast TNF alpha + IL-1
6.9
4.7


beta


Lung fibroblast IL-4
25.0
16.6


Lung fibroblast IL-9
14.7
15.8


Lung fibroblast IL-13
40.3
32.5


Lung fibroblast IFN gamma
15.4
17.4


Dermal fibroblast CCD1070 rest
0.5
0.9


Dermal fibroblast CCD1070 TNF alpha
0.9
0.8


Dermal fibroblast CCD1070 IL-1 beta
0.6
0.6


Dermal fibroblast IFN gamma
32.1
18.4


Dermal fibroblast IL-4
100.0
100.0


IBD Colitis 2
0.0
0.0


IBD Crohn's
0.3
0.8


Colon
1.4
0.5


Lung
0.5
0.8


Thymus
2.9
4.3


Kidney
65.5
47.3










[0679]

231





TABLE AM










general oncology screening panel_v_2.4











Rel. Exp. (%)




Ag4470, Run



Tissue Name
260280484














Colon cancer 1
1.0



Colon NAT 1
0.3



Colon cancer 2
0.0



Colon NAT 2
0.3



Colon cancer 3
1.1



Colon NAT 3
0.0



Colon malignant cancer 4
2.2



Colon NAT 4
0.0



Lung cancer 1
0.4



Lung NAT 1
0.2



Lung cancer 2
58.2



Lung NAT 2
0.0



Squamous cell carcinoma 3
1.3



Lung NAT 3
46.3



Metastatic melanoma 1
28.9



Melanoma 2
1.4



Melanoma 3
0.3



Metastatic melanoma 4
26.2



Metastatic melanoma 5
16.3



Bladder cancer 1
0.3



Bladder NAT 1
0.0



Bladder cancer 2
1.0



Bladder NAT 2
0.1



Bladder NAT 3
0.0



Bladder NAT 4
1.1



Prostate adenocarcinoma 1
4.3



Prostate adenocarcinoma 2
1.5



Prostate adenocarcinoma 3
1.8



Prostate adenocarcinoma 4
4.4



Prostate NAT 5
1.0



Prostate adenocarcinoma 6
0.5



Prostate adenocarcinoma 7
0.2



Prostate adenocarcinoma 8
0.7



Prostate adenocarcinoma 9
1.7



Prostate NAT 10
0.6



Kidney cancer 1
9.5



Kidney NAT 1
3.7



Kidney cancer 2
100.0



Kidney NAT 2
2.2



Kidney cancer 3
71.7



Kidney NAT 3
1.9



Kidney cancer 4
75.8



Kidney NAT 4
0.9











[0680] AI_comprehensive panel_v1.0 Summary: Ag1294b/Ag4470 Two experiments with two different probe and primer sets Expression of this gene in this panel confirms expression of this gene in cells involved in the immune response. Highest expression of this gene is seen in normal lung (CT=30.5). Please see Panel 4D for discussion of utility of this gene in inflammation.


[0681] CNS_neurodegeneration_v1.0 Summary: Ag1294b/Ag4470/Ag4726 Three experiments with different probe and primer sets produce results that are in reasonable agreement. This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at low but significant levels in the brain. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0682] General_screening_panel_v1.4 Summary: Ag4470/Ag4726 Two experiments with different probe and primer sets produce results that are in excellent agreement. Highest expression of this gene is seen in a liver cancer cell line (CTs=30), with moderate levels of expression seen in fetal and adult liver, and cell lines derived from colon, renal and lung cancers. Thus, expression of this gene could be used to differentiate liver derived tissue from other samples on this panel.


[0683] Panel 1.2 Summary: Ag746 Two experiments with the same probe and primer set produce results that are in excellent agreement, with highest expression of this gene in a liver cancer cell line (CTs=27). High levels of expression are also seen in fetal and adult liver tissue, a colon cancer cell line and a lung cancer cell line. Thus, expression of this gene could be used to differentiate liver derived samples, the colon cancer cell line and the lung cancer cell line from other samples on this panel. Expression of this gene could also be used as a diagnostic marker to detect the presence of colon and lung cancers.


[0684] Moderate expression is also seen in the fetal brain, placenta, and endothelial cells.


[0685] Panel 2D Summary: Ag746 Two experiments with the same probe and primer set produce results that are in excellent agreement, with highest expression of this gene in liver cancer (CTs=31). The prominent expression in liver derived tissue is consistent with the results in Panel 1.2. Moderate levels of expression are also evident in samples from ovarian cancer and kidney cancer. Furthermore, expression of this gene is higher in these cancers than in the normal adjacent tissue. Thus, expression of this gene could be used to differentiate between liver derived samples and other samples on this panel and as a marker to detect the presence of liver, kidney, and ovarian cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of liver, kidney, and ovarian cancers.


[0686] Panel 4.1D Summary: Ag1294b/Ag4470/Ag4726 Results from three experiments with three different probe and primer sets are in agreement with the expression profile in Panel 4D, with highest expression of this gene in this experiment in IL-4 treated dermal fibroblasts (CTs=30). In addition, this experiment shows low but significant levels of expression in resting neutrophils (CT-33.2), a sample absent in Panel 4D. Please see Panel 4D for discussion of utility of this gene in inflammation.


[0687] Panel 4D Summary: Ag1294b Two experiments with the same probe and primer set produce results that are in excellent agreement, with highest expression of this gene in IL-4 treated dermal fibroblasts (CTs=30). In addition, this gene is expressed at moderate levels in IFN gamma stimulated dermal fibroblasts, activated lung fibroblasts, HPAECs, lung and dermal microvasculature, activated small airway and bronchial epithelium, activated NCI-H1292 cells, acutely activated T cells, and activated B cells.


[0688] Based on these levels of expression in T cells, activated B cells and cells in lung and skin, therapeutics that block the function of this gene product may be useful as therapeutics that reduce or eliminate the symptoms in patients with autoimmune and inflammatory diseases in which activated B cells present antigens in the generation of the aberrant immune response and in treating T-cell mediated diseases, including Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, allergy, emphysema, rheumatoid arthritis, or psoriasis.


[0689] general oncology screening panel_v2.4 Summary: Ag4470 Highest expression of this gene is seen in kidney cancer (CT=30). In addition, this gene is more highly expressed in lung and kidney cancer than in the corresponding normal adjacent tissue. Thus, expression of this gene could be used as a marker of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene product may be useful in the treatment of lung and kidney cancer.


[0690] B. NOV2a (CG122729-01): Novel SPTM Protein.


[0691] Expression of gene CG122729-01 was assessed using the primer-probe sets Ag1441, Ag1447 and Ag4533, described in Tables BA, BB and BC. Results of the RTQ-PCR runs are shown in Tables BD, BE and BF.
232TABLE BAProbe Name Ag1441StartPrimersSequencesLengthPositionSEQ ID NoForward5′-acttctacggtgacagaatgga-3′222804220ProbeTET-5′-cctcatcaaaagcaccatcctggg-3′-242847221TAMRAReverse5′-ctgtccaaagttgctgacaaac-3′222871222


[0692]

233






TABLE BB










Probe Name Ag1447
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-gatcggagtaaggcctttaaaa-3′
22
1969
223






Probe
TET-5′-ctgctctttccaacccagcctgaag-3′-
25
1995
224



TAMRA





Reverse
5′-cggggtatctccttagattgag-3′
22
2044
225










[0693]

234






TABLE 13L










Probe Name Ag433
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-ccaaatgaagacgtgaaagaaa-3′
22
757
226






Probe
TET-5′-accaagtttgagtgatgtccaacaca-3′-
26
792
227



TAMRA





Reverse
5′-tctgcactgtcttctggatgt-3′
21
818
228










[0694]

235





TABLE BD










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag4533, Run



Tissue Name
224702760














AD 1 Hippo
26.2



AD 2 Hippo
2.2



AD 3 Hippo
25.2



AD 4 Hippo
16.3



AD 5 Hippo
25.3



AD 6 Hippo
100.0



Control 2 Hippo
48.3



Control 4 Hippo
29.1



Control (Path) 3 Hippo
8.6



AD 1 Temporal Ctx
9.2



AD 2 Temporal Ctx
30.4



AD 3 Temporal Ctx
12.9



AD 4 Temporal Ctx
25.9



AD 5 Inf Temporal Ctx
27.9



AD 5 Sup Temporal Ctx
43.5



AD 6 Inf Temporal Ctx
28.9



AD 6 Sup Temporal Ctx
58.6



Control 1 Temporal Ctx
17.1



Control 2 Temporal Ctx
18.4



Control 3 Temporal Ctx
12.2



Control 3 Temporal Ctx
16.8



Control (Path) 1 Temporal Ctx
17.4



Control (Path) 2 Temporal Ctx
13.0



Control (Path) 3 Temporal Ctx
3.2



Control (Path) 4 Temporal Ctx
19.9



AD 1 Occipital Ctx
5.1



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
13.7



AD 4 Occipital Ctx
26.4



AD 5 Occipital Ctx
12.8



AD 6 Occipital Ctx
7.3



Control 1 Occipital Ctx
19.2



Control 2 Occipital Ctx
27.2



Control 3 Occipital Ctx
13.6



Control 4 Occipital Ctx
14.9



Control (Path) 1 Occipital Ctx
24.5



Control (Path) 2 Occipital Ctx
5.0



Control (Path) 3 Occipital Ctx
2.0



Control (Path) 4 Occipital Ctx
15.6



Control 1 Parietal Ctx
17.3



Control 2 Parietal Ctx
40.9



Control 3 Parietal Ctx
6.1



Control (Path) 1 Parietal Ctx
17.7



Control (Path) 2 Parietal Ctx
12.7



Control (Path) 3 Parietal Ctx
3.7



Control (Path) 4 Parietal Ctx
26.1











[0695]

236





TABLE BE










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4533, Run



Tissue Name
222735045














Adipose
13.9



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.0



Testis Pool
2.1



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
1.9



Placenta
3.4



Uterus Pool
0.9



Ovarian ca. OVCAR-3
0.1



Ovarian ca. SK-OV-3
1.2



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
4.0



Breast ca. MCF-7
0.1



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.1



Breast ca. MDA-N
0.0



Breast Pool
10.4



Trachea
13.1



Lung
1.2



Fetal Lung
21.6



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.2



Lung ca. SHP-77
0.3



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
1.3



Fetal Liver
11.9



Liver ca. HepG2
0.0



Kidney Pool
8.2



Fetal Kidney
3.4



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
25.3



Gastric ca. (liver met.) NCI-N87
0.2



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.3



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.2



Colon cancer tissue
13.6



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
12.2



Small Intestine Pool
4.3



Stomach Pool
3.3



Bone Marrow Pool
3.2



Fetal Heart
2.9



Heart Pool
2.5



Lymph Node Pool
7.6



Fetal Skeletal Muscle
3.5



Skeletal Muscle Pool
0.7



Spleen Pool
100.0



Thymus Pool
32.1



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.3



Brain (Amygdala) Pool
6.7



Brain (cerebellum)
4.8



Brain (fetal)
2.6



Brain (Hippocampus) Pool
8.2



Cerebral Cortex Pool
6.1



Brain (Substantia nigra) Pool
6.1



Brain (Thalamus) Pool
11.5



Brain (whole)
12.0



Spinal Cord Pool
15.5



Adrenal Gland
9.2



Pituitary gland Pool
1.8



Salivary Gland
6.9



Thyroid (female)
1.7



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
7.7











[0696]

237





TABLE BF










Panel 4.1D











Rel. Exp. (%)




Ag4533, Run



Tissue Name
198383974














Secondary Th1 act
0.1



Secondary Th2 act
0.1



Secondary Tr1 act
0.1



Secondary Th1 rest
0.1



Secondary Th2 rest
0.1



Secondary Tr1 rest
0.1



Primary Th1 act
0.1



Primary Th2 act
0.4



Primary Tr1 act
0.2



Primary Th1 rest
0.3



Primary Th2 rest
0.3



Primary Tr1 rest
1.3



CD45RA CD4 lymphocyte act
3.6



CD45RO CD4 lymphocyte act
1.9



CD8 lymphocyte act
1.2



Secondary CD8 lymphocyte rest
0.5



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
1.4



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.1



LAK cells rest
33.7



LAK cells IL-2
2.2



LAK cells IL-2 + IL-12
3.6



LAK cells IL-2 + IFN gamma
3.3



LAK cells IL-2 + IL-18
4.0



LAK cells PMA/ionomycin
22.5



NK Cells IL-2 rest
3.6



Two Way MLR 3 day
20.4



Two Way MLR 5 day
12.2



Two Way MLR 7 day
4.1



PBMC rest
6.9



PBMC PWM
5.7



PBMC PHA-L
10.7



Ramos (B cell) none
33.2



Ramos (B cell) ionomycin
41.2



B lymphocytes PWM
17.9



B lymphocytes CD40L and IL-4
100.0



EOL-1 dbcAMP
20.0



EOL-1 dbcAMP PMA/ionomycin
52.5



Dendritic cells none
46.7



Dendritic cells LPS
26.1



Dendritic cells anti-CD40
53.6



Monocytes rest
15.2



Monocytes LPS
15.6



Macrophages rest
42.0



Macrophages LPS
12.4



HUVEC none
0.0



HUVEC starved
0.1



HUVEC IL-1beta
0.0



HUVEC IFN gamma
0.1



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.7



Lung Microvascular EC none
0.0



Lung Microvascular EC TNFalpha +
0.0



IL-1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC TNFalpha +
0.0



IL-1beta



Bronchial epithelium TNFalpha +
0.0



IL1beta



Small airway epithelium none
0.1



Small airway epithelium TNFalpha +
0.2



IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMC TNFalpha +
0.0



IL-1beta



Astrocytes rest
0.1



Astrocytes TNFalpha + IL-1beta
0.0



KU-812 (Basophil) rest
0.1



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
0.0



CCD1106 (Keratinocytes) TNFalpha +
0.0



IL-1beta



Liver cirrhosis
0.5



NCI-H292 none
0.0



NCI-H292 IL-4
0.0



NCI-H292 IL-9
0.0



NCI-H292 IL-13
0.0



NCI-H292 IFN gamma
0.0



HPAEC none
0.0



HPAEC TNF alpha + IL-1beta
0.1



Lung fibroblast none
0.0



Lung fibroblast TNF alpha + IL-1
0.0



beta



Lung fibroblast IL-4
0.0



Lung fibroblast IL-9
0.0



Lung fibroblast IL-13
0.0



Lung fibroblast IFN gamma
0.0



Dermal fibroblast CCD1070 rest
0:0



Dermal fibroblast CCD1070 TNF alpha
0.0



Dermal fibroblast CCD1070 IL-1 beta
0.1



Dermal fibroblast IFN gamma
0.2



Dermal fibroblast IL-4
1.8



Dermal Fibroblasts rest
0.6



Neutrophils TNFa + LPS
6.3



Neutrophils rest
22.4



Colon
3.0



Lung
2.2



Thymus
11.6



Kidney
1.2











[0697] CNS_neurodegeneration_v1.0 Summary: Ag4533 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at low levels in the brain. Please see Panel 1.4 for discussion of utility of this gene in the central nervous system.


[0698] General_screening_panel_v1.4 Summary: Ag4533 Highest expression of this gene is seen in the spleen (CT=28.4). In addition, low to moderate levels of expression are seen in all regions of the CNS examined, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex.


[0699] Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0700] Panel 4.1D Summary: Ag4553 Highest expression of this gene is seen in CD40/IL-40 treated B lymphocytes (CT=27.3). In addition, prominent levels of expression are seen in dendritic cells, eosinophils, macrophages, monocytes, and PBMCs. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0701] C. NOV3a (CG122777-01): P-type Trefoil Domain Containing Protein


[0702] Expression of gene CG122777-01 was assessed using the primer-probe set Ag4528, described in Table CA. Results of the RTQ-PCR runs are shown in Tables CB and CC.
238TABLE CAProbe Name Ag4528SEQ IDPrimersSequencesLengthStart PositionNoForward5′-cagcatctgcttgttctggt-3′20302229ProbeTET-5′-gtgctgcatatgcccggtttcct-3′-23339230TAMRAReverse5′-gacggacttggacatgtcac-3′20373231


[0703]

239





TABLE CB










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4528, Run



Tissue Name
222262771














Adipose
0.0



Melanoma* Hs688(A).T
1.6



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
1.0



Testis Pool
31.4



Prostate ca.* (bone met) PC-3
0.5



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
1.3



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
3.8



Ovarian ca. OVCAR-5
2.3



Ovarian ca. IGROV-1
1.2



Ovarian ca. OVCAR-8
3.7



Ovary
0.4



Breast ca. MCF-7
1.1



Breast ca. MDA-MB-231
0.4



Breast ca. BT 549
0.0



Breast ca. T47D
8.7



Breast ca. MDA-N
0.0



Breast Pool
0.9



Trachea
100.0



Lung
0.0



Fetal Lung
19.3



Lung ca. NCI-N417
0.0



Lung ca. LX-1
2.9



Lung ca. NCI-H146
0.9



Lung ca. SHP-77
0.4



Lung ca. A549
5.5



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
4.2



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
9.5



Lung ca. NCI-H522
6.0



Liver
0.0



Fetal Liver
0.8



Liver ca. HepG2
15.2



Kidney Pool
0.0



Fetal Kidney
0.0



Renal ca. 786-0
2.1



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
7.2



Renal ca. TK-10
3.7



Bladder
0.0



Gastric ca. (liver met.) NCI-N87
8.3



Gastric ca. KATO III
1.1



Colon ca. SW-948
1.5



Colon ca. SW480
1.5



Colon ca.* (SW480 met) SW620
0.3



Colon ca. HT29
0.4



Colon ca. HCT-116
1.0



Colon ca. CaCo-2
1.7



Colon cancer tissue
0.4



Colon ca. SW1116
1.4



Colon ca. Colo-205
2.5



Colon ca. SW-48
2.7



Colon Pool
0.0



Small Intestine Pool
1.1



Stomach Pool
0.5



Bone Marrow Pool
0.0



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.3



Fetal Skeletal Muscle
0.5



Skeletal Muscle Pool
0.0



Spleen Pool
0.0



Thymus Pool
1.8



CNS cancer (glio/astro) U87-MG
1.3



CNS cancer (glio/astro) U-118-MG
4.0



CNS cancer (neuro; met) SK-N-AS
1.5



CNS cancer (astro) SF-539
2.2



CNS cancer (astro) SNB-75
1.9



CNS cancer (glio) SNB-19
1.2



CNS cancer (glio) SF-295
0.4



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
1.2



Brain (fetal)
0.4



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.6



Brain (Thalamus) Pool
0.0



Brain (whole)
0.0



Spinal Cord Pool
1.5



Adrenal Gland
0.8



Pituitary gland Pool
6.7



Salivary Gland
0.0



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.5



Pancreas Pool
1.8











[0704]

240





TABLE CC










Panel 4.1D











Rel. Exp. (%)




Ag4528, Run



Tissue Name
198361170














Secondary Th1 act
0.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
0.0



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.0



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
0.0



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0



LAK cells rest
0.0



LAK cells IL-2
0.0



LAK cells IL-2 + IL-12
0.0



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.0



LAK cells PMA/ionomycin
0.0



NK Cells IL-2 rest
0.0



Two Way MLR 3 day
0.0



Two Way MLR 5 clay
0.0



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.0



PBMC PHA-L
0.0



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
0.0



EOL-1 dbcAMP
2.2



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
0.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.0



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
0.0



Macrophages LPS
0.0



HUVEC none
0.0



HUVEC starved
0.0



HUVEC IL-1beta
0.0



HUVEC IFN gamma
0.0



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.0



Lung Microvascular EC none
0.0



Lung Microvascular EC TNFalpha +
0.0



IL-1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC TNFalpha +
0.0



IL-1beta



Bronchial epithelium TNFalpha +
3.1



IL1beta



Small airway epithelium none
0.0



Small airway epithelium TNFalpha +
0.0



IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMC TNFalpha +
0.0



IL-1beta



Astrocytes rest
0.0



Astrocytes TNFalpha + IL-1beta
5.3



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
3.1



CCD1106 (Keratinocytes) TNFalpha +
0.0



IL-1beta



Liver cirrhosis
0.0



NCI-H292 none
49.0



NCI-H292 IL-4
45.1



NCI-H292 IL-9
50.0



NCI-H292 IL-13
7.7



NCI-H292 IFN gamma
20.3



HPAEC none
0.0



HPAEC TNF alpha + IL-1 beta
0.0



Lung fibroblast none
2.6



Lung fibroblast TNF alpha + IL-1
3.3



beta



Lung fibroblast IL-4
0.0



Lung fibroblast IL-9
0.0



Lung fibroblast IL-13
0.0



Lung fibroblast IFN gamma
0.0



Dermal fibroblast CCD1070 rest
0.0



Dermal fibroblast CCD1070 TNF alpha
0.0



Dermal fibroblast CCD1070 IL-1 beta
9.9



Dermal fibroblast IFN gamma
0.0



Dermal fibroblast IL-4
0.0



Dermal Fibroblasts rest
2.2



Neutrophils TNFa + LPS
0.0



Neutrophils rest
0.0



Colon
0.0



Lung
0.0



Thymus
2.8



Kidney
100.0











[0705] CNS_neurodegeneration_v1.0 Summary: Ag4528 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0706] General_screening_panel_v1.4 Summary: Ag4528 Highest expression of this gene is seen in the trachea (CT=30.5). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker of this tissue. Low but significant levels of expression are also seen in testis, fetal lung and cell lines derived from gastric, renal, breast, liver and lung cancers.


[0707] Panel 4.1D Summary: Ag4528 This gene is only expressed at detectable levels in the kidney (CT=34). Thus, expression of this gene could be used to differentiate the kidney derived sample from other samples on this panel and as a marker of kidney tissue. In addition, therapeutic targeting of the expression or function of this gene may modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephiritis.


[0708] D. NOV4a (CG124229-01): Insulin Like Growth Factor Binding Protein 3


[0709] Expression of gene CG124229-01 was assessed using the primer-probe set Ag6776, described in Table DA. Results of the RTQ-PCR runs are shown in Tables DB, DC, DD and DE.
241TABLE DAProbe Name Ag6776StartSEQ IDPrimersSequencesLengthPositionNoForward5′-atatggtccctgccgtagag-3′201703232ProbeTET-5′-tgaatcacctgaagttcctcaatgtgc-3′-27738233TAMRAReverse5′-tgtacacccctgggactca-3′19765234


[0710]

242





TABLE DB










AI_comprehensive panel_v1.0











Rel. Exp. (%)




Ag6776, Run



Tissue Name
283839691














110967 COPD-F
2.0



110980 COPD-F
18.6



110968 COPD-M
1.2



110977 COPD-M
41.8



110989 Emphysema-F
14.0



110992 Emphysema-F
3.7



110993 Emphysema-F
1.4



110994 Emphysema-F
1.7



110995 Emphysema-F
9.5



110996 Emphysema-F
1.3



110997 Asthma-M
2.5



111001 Asthma-F
6.3



111002 Asthma-F
8.1



111003 Atopic Asthma-F
7.9



111004 Atopic Asthma-F
6.3



111005 Atopic Asthma-F
4.2



111006 Atopic Asthma-F
0.6



111417 Allergy-M
5.9



112347 Allergy-M
0.1



112349 Normal Lung-F
0.1



112357 Normal Lung-F
4.6



112354 Normal Lung-M
9.9



112374 Crohns-F
2.5



112389 Match Control Crohns-F
3.9



112375 Crohns-F
2.5



112732 Match Control Crohns-F
0.5



112725 Crohns-M
2.4



112387 Match Control Crohns-M
16.4



112378 Crohns-M
0.2



112390 Match Control Crohns-M
25.7



112726 Crohns-M
1.3



1112731 Match Control Crohns-M
12.0



112380 Ulcer Col-F
8.8



112734 Match Control Ulcer Col-F
1.4



112384 Ulcer Col-F
12.5



112737 Match Control Ulcer Col-F
0.6



112386 Ulcer Col-F
4.8



112738 Match Control Ulcer Col-F
0.8



112381 Ulcer Col-M
0.2



112735 Match Control Ulcer Col-M
0.5



112382 Ulcer Col-M
6.9



112394 Match Control Ulcer Col-M
2.8



112383 Ulcer Col-M
9.9



112736 Match Control Ulcer Col-M
5.1



112423 Psoriasis-F
1.5



112427 Match Control Psoriasis-F
100.0



112418 Psoriasis-M
2.4



112723 Match Control Psoriasis-M
0.3



112419 Psoriasis-M
4.0



112424 Match Control Psoriasis-M
6.5



112420 Psoriasis-M
35.8



112425 Match Control Psoriasis-M
79.6



104689 (MF) OA Bone-Backus
15.8



104690 (MF) Adj “Normal” Bone-Backus
11.0



104691 (MF) OA Synovium-Backus
1.7



104692 (BA) OA Cartilage-Backus
0.0



104694 (BA) OA Bone-Backus
4.2



104695 (BA) Adj “Normal” Bone-Backus
4.3



104696 (BA) OA Synovium-Backus
3.6



104700 (SS) OA Bone-Backus
3.2



104701 (SS) Adj “Normal” Bone-Backus
7.5



104702 (SS) OA Synovium-Backus
3.7



117093 OA Cartilage Rep7
17.7



112672 OA Bone5
21.8



112673 OA Synovium5
9.2



112674 OA Synovial Fluid cells5
12.7



117100 OA Cartilage Rep14
2.8



112756 OA Bone9
1.7



112757 OA Synovium9
0.2



112758 OA Synovial Fluid Cells9
1.3



117125 RA Cartilage Rep2
1.8



113492 Bone2 RA
0.6



113493 Synovium2 RA
0.3



113494 Syn Fluid Cells RA
0.5



113499 Cartilage4 RA
0.6



113500 Bone4 RA
0.6



113501 Synovium4 RA
0.4



113502 Syn Fluid Cells4 RA
0.4



113495 Cartilage3 RA
0.4



113496 Bone3 RA
0.5



113497 Synovium3 RA
0.3



113498 Syn Fluid Cells3 RA
0.6



117106 Normal Cartilage Rep20
2.0



113663 Bone3 Normal
0.0



113664 Synovium3 Normal
0.0



113665 Syn Fluid Cells3 Normal
0.1



117107 Normal Cartilage Rep22
2.7



113667 Bone4 Normal
24.1



113668 Synovium4 Normal
31.6



113669 Syn Fluid Cells4 Normal
36.1











[0711]

243





TABLE DC










CNS_neurodegeneration_v1.0











Rel. Exp. (%) Ag6776,



Tissue Name
Run 278368013














AD 1 Hippo
16.6



AD 2 Hippo
26.8



AD 3 Hippo
11.3



AD 4 Hippo
4.6



AD 5 Hippo
83.5



AD 6 Hippo
100.0



Control 2 Hippo
32.1



Control 4 Hippo
14.3



Control (Path) 3 Hippo
44.8



AD 1 Temporal Ctx
26.8



AD 2 Temporal Ctx
30.6



AD 3 Temporal Ctx
9.2



AD 4 Temporal Ctx
14.3



AD 5 Inf Temporal Ctx
45.4



AD 5 Sup Temporal Ctx
41.5



AD 6 Inf Temporal Ctx
55.9



AD 6 Sup Temporal Ctx
80.1



Control 1 Temporal Ctx
2.4



Control 2 Temporal Ctx
25.3



Control 3 Temporal Ctx
23.5



Control 3 Temporal Ctx
8.2



Control (Path) 1 Temporal Ctx
40.6



Control (Path) 2 Temporal Ctx
31.0



Control (Path) 3 Temporal Ctx
52.9



Control (Path) 4 Temporal Ctx
23.5



AD 1 Occipital Ctx
13.5



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
13.8



AD 4 Occipital Ctx
19.6



AD 5 Occipital Ctx
61.6



AD 6 Occipital Ctx
48.6



Control 1 Occipital Ctx
3.6



Control 2 Occipital Ctx
87.7



Control 3 Occipital Ctx
35.6



Control 4 Occipital Ctx
13.4



Control (Path) 1 Occipital Ctx
43.5



Control (Path) 2 Occipital Ctx
7.5



Control (Path) 3 Occipital Ctx
56.6



Control (Path) 4 Occipital Ctx
10.9



Control 1 Parietal Ctx
4.1



Control 2 Parietal Ctx
26.1



Control 3 Parietal Ctx
16.4



Control (Path) 1 Parietal Ctx
37.9



Control (Path) 2 Parietal Ctx
25.5



Control (Path) 3 Parietal Ctx
69.3



Control (Path) 4 Parietal Ctx
28.5











[0712]

244





TABLE DD










General_screening_panel_v1.6











Rel. Exp. (%) Ag6776,



Tissue Name
Run 277729935














Adipose
2.0



Melanoma* Hs688(A).T
68.8



Melanoma* Hs688(B).T
41.8



Melanoma* M14
0.7



Melanoma* LOXIMVI
1.1



Melanoma* SK-MEL-5
0.2



Squamous cell carcinoma SCC-4
0.5



Testis Pool
0.3



Prostate ca.* (bone met) PC-3
0.8



Prostate Pool
0.9



Placenta
10.2



Uterus Pool
1.3



Ovarian ca. OVCAR-3
4.1



Ovarian ca. SK-OV-3
11.4



Ovarian ca. OVCAR-4
10.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
2.9



Ovarian ca. OVCAR-8
0.4



Ovary
0.7



Breast ca. MCF-7
0.7



Breast ca. MDA-MB-231
0.6



Breast ca. BT 549
1.7



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
3.6



Trachea
1.5



Lung
0.9



Fetal Lung
0.9



Lung ca. NCI-N417
0.0



Lung ca. LX-1
1.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
6.2



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.3



Lung ca. NCI-H460
5.8



Lung ca. HOP-62
0.3



Lung ca. NCI-H522
0.3



Liver
1.3



Fetal Liver
8.7



Liver ca. HepG2
0.0



Kidney Pool
6.8



Fetal Kidney
0.6



Renal ca. 786-0
29.9



Renal ca. A498
51.8



Renal ca. ACHN
0.3



Renal ca. UO-31
0.2



Renal ca. TK-10
2.6



Bladder
0.7



Gastric ca. (liver met.) NCI-N87
1.8



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.3



Colon ca. SW480
1.3



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.1



Colon cancer tissue
2.0



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.1



Colon ca. SW-48
0.0



Colon Pool
2.5



Small Intestine Pool
8.0



Stomach Pool
3.0



Bone Marrow Pool
1.7



Fetal Heart
1.6



Heart Pool
0.8



Lymph Node Pool
2.2



Fetal Skeletal Muscle
1.6



Skeletal Muscle Pool
0.1



Spleen Pool
1.5



Thymus Pool
1.6



CNS cancer (glio/astro) U87-MG
8.5



CNS cancer (glio/astro) U-118-MG
100.0



CNS cancer (neuro; met) SK-N-AS
0.1



CNS cancer (astro) SF-539
4.6



CNS cancer (astro) SNB-75
51.1



CNS cancer (glio) SNB-19
2.9



CNS cancer (glio) SF-295
58.6



Brain (Amygdala) Pool
0.1



Brain (cerebellum)
0.1



Brain (fetal)
0.5



Brain (Hippocampus) Pool
0.2



Cerebral Cortex Pool
0.2



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.1



Brain (whole)
0.3



Spinal Cord Pool
0.1



Adrenal Gland
0.2



Pituitary gland Pool
0.6



Salivary Gland
0.1



Thyroid (female)
0.1



Pancreatic ca. CAPAN2
5.4



Pancreas Pool
0.3











[0713]

245





TABLE DE










Panel 4.1D











Rel. Exp. (%)




Ag6776, Run



Tissue Name
277729707














Secondary Th1 act
0.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
38.4



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.0



Secondary CD8 lymphocyte act
0.1



CD4 lymphocyte none
0.1



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0



LAK cells rest
0.0



LAK cells IL-2
0.0



LAK cells IL-2 + IL-12
0.0



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.1



LAK cells PMA/ionomycin
0.1



NK Cells IL-2 rest
0.2



Two Way MLR 3 day
0.0



Two Way MLR 5 day
0.0



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.0



PBMC PHA-L
0.0



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
0.1



EOL-1 dbcAMP
0.0



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
0.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.0



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
0.0



Macrophages LPS
0.0



HUVEC none
0.2



HUVEC starved
0.1



HUVEC IL-1beta
0.2



HUVEC IFN gamma
0.2



HUVEC TNF alpha + IFN gamma
0.1



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.1



Lung Microvascular EC none
0.1



Lung Microvascular EC TNFalpha +
0.0



IL-1beta



Microvascular Dermal EC none
0.2



Microsvasular Dermal EC TNFalpha +
0.1



IL-1beta



Bronchial epithelium TNFalpha +
0.5



IL1beta



Small airway epithelium none
0.3



Small airway epithelium TNFalpha +
2.2



IL-1beta



Coronery artery SMC rest
37.4



Coronery artery SMC TNFalpha +
31.4



IL-1beta



Astrocytes rest
13.5



Astrocytes TNFalpha + IL-1beta
7.8



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
0.3



CCD1106 (Keratinocytes) TNFalpha +
0.1



IL-1beta



Liver cirrhosis
3.6



NCI-H292 none
14.5



NCI-H292 IL-4
4.8



NCI-H292 IL-9
17.7



NCI-H292 IL-13
5.6



NCI-H292 IFN gamma
5.3



HPAEC none
0.3



HPAEC TNF alpha + IL-1 beta
1.0



Lung fibroblast none
0.3



Lung fibroblast TNF alpha + IL-1
1.4



beta



Lung fibroblast IL-4
0.2



Lung fibroblast IL-9
0.5



Lung fibroblast IL-13
0.2



Lung fibroblast IFN gamma
0.3



Dermal fibroblast CCD1070 rest
93.3



Dermal fibroblast CCD1070 TNF alpha
100.0



Dermal fibroblast CCD1070 IL-1 beta
56.6



Dermal fibroblast IFN gamma
22.8



Dermal fibroblast IL-4
69.3



Dermal Fibroblasts rest
14.6



Neutrophils TNFa + LPS
0.0



Neutrophils rest
0.0



Colon
0.5



Lung
1.4



Thymus
0.2



Kidney
3.0











[0714] AI_comprehensive panel_v1.0 Summary: Ag6776 Highest expression of this gene is seen in normal tissue adjacent to psoriasis (CT=19.7). Overall, this gene is highly expressed in many samples on this panel, including clusters of samples derived from psoriasis derived tissue. Please see Panel 4.1 D for discussion of utility of this gene in autoimmune disease.


[0715] CNS_neurodegeneration_v1.0 Summary: Ag6776 This panel does not show differential expression of this gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene at moderate levels in the brain. The insulin and insulin-like growth factors belong to a family of polypeptides essential for proper regulation of physiologic processes such as energy metabolism, cell proliferation, development, and differentiation. The insulin-like growth factors bind to IGF with high affinity and compete with the IGF receptor for IGF binding. Transgenic mice overexpressing insulin-like growth factor binding proteins (IGFBPs) tend to show brain developmental abnormalities, suggesting a role for these proteins in neurodevelopment. Furthermore, treatment with glycosaminoglycans (which increases muscle re-innervation after motor neuron death) upregulates serum levels of both IGF and IGFBP. Thus, on the basis of its homology to other established IGFBPs, the novel IGFBP encoded by this gene may be useful in the treatment of diseases such as ALS, multiple sclerosis, and peripheral nerve injury on the basis of its homology to other established IGFBPs. [Dave Stone]


[0716] General_screening_panel_v1.6 Summary: Ag6776 Highest expression of this gene is seen in a brain cancer cell line (CT=20.5). In addition, high levels of expression are seen in a cluster of brain cancer cell lines, melanoma cell lines, renal cancer cell lines, and ovarian cancer cell lines. This gene encodes a putative insulin like growth factor binding protein 3 (IGFBP3). IGFBP-3 enhances the p53-dependent apoptotic response of colorectal cells to DNA damage and is inversely associated with risk for colorectal cancer. Expression of IGFBP-3 induces growth inhibition and differentiation of the human colon carcinoma cell line, Caco-2. Thus, therapeutic targeting modulation of this gene product may be useful in the treatment of cancer, especially in those cancer types, like brain and renal tumors where the gene is overexpressed in the tumor cell line compared to the normal tissue sample.


[0717] This gene is also expressed at moderate levels in all regions of the CNS examined. Please see Panel CNS_neurodegeneration_v1.0 for discussion of utility of this gene in the CNS.


[0718] Among tissues with metabolic function, this gene is expressed at high to moderate levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. Cortizo et. al has suggested that alterations in IGFBP3 levels may result in diabetic complications (Acta Diabetol 1998 July;35(2):85-90). This expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0719] Panel 4.1D Summary: Ag6776 Highest expression of this gene is seen in TNF-alpha stimulated dermal fibroblasts (CT=25.3). In addition, high levels of expression are seen in a cluster of treated and untreated samples derived from dermal fibroblasts. Miura has suggested that dermal fibroblasts promote IGFBP mediated keratinocyte proliferation and may contribute to the epidermal hyperplasia manifest in psoriasis (Arch Dermatol Res 2000 December;292(12):590-7). Thus, based on the homology of this gene to IGFBP3 and the expression in dermal fibroblasts and psoriasis related tissue on AI_comprehensive panel_v1.0, modulation of the expression or function of this gene may be useful in the clinical management of this disease.


[0720] E. NOV5a (CG124445-02): Transmembrane Kuzbanian


[0721] Expression of gene CG124445-02 was assessed using the primer-probe set Ag7026, described in Table EA.
246TABLE EAProbe Name Ag/7026StartPrimersSequencesLengthPositionSEQ ID NoForward5′-gattatcttacaatgtggattcattacac-3′29330235ProbeTET-5′-accagcgtgccaaaagagcagtctct-3′-26366236TAMRAReverse5′-aacttcgtgagcaaaagtaatgtg-3′24392237


[0722] CNS_neurodegeneration_v1.0 Summary: Ag7026 Expression of the CG124445-02 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0723] General_screening_panel_v1.6 Summary: Ag7026 Expression of the CG124445-02 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0724] Panel 4.1D Summary: Ag7026 Expression of the CG124445-02 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0725] F. NOV6a (CG124590-02): Integrin Beta-4 Precursor


[0726] Expression of gene CG124590-02 was assessed using the primer-probe set Ag6832, described in Table FA. Results of the RTQ-PCR runs are shown in Tables FB and EC. Please note that CG124590-02 represents a full-length physical clone.
247TABLE FAProbe Name Ag6832StartPrimersSequencesLengthPositionSEQ ID NoForward5′-atgatctggacaacctcaagaa-3′22493238ProbeTET-5′-ctcaggacccgagccaggttctgc-3′-24521239TAMRAReverse5′-gtggcgctggtgagct-3′16547240


[0727]

248





TABLE FB










CNS_neurodegeneration_v1.0











Rel. Exp. (%) Ag6832,



Tissue Name
Run 278022742














AD 1 Hippo
14.4



AD 2 Hippo
45.1



AD 3 Hippo
8.4



AD 4 Hippo
22.4



AD 5 Hippo
19.5



AD 6 Hippo
100.0



Control 2 Hippo
18.9



Control 4 Hippo
50.0



Control (Path) 3 Hippo
8.4



AD 1 Temporal Ctx
16.8



AD 2 Temporal Ctx
26.1



AD 3 Temporal Ctx
5.0



AD 4 Temporal Ctx
20.2



AD 5 Inf Temporal Ctx
44.4



AD 5 Sup Temporal Ctx
45.7



AD 6 Inf Temporal Ctx
67.4



AD 6 Sup Temporal Ctx
74.2



Control 1 Temporal Ctx
7.2



Control 2 Temporal Ctx
12.9



Control 3 Temporal Ctx
9.1



Control 3 Temporal Ctx
17.2



Control (Path) 1 Temporal Ctx
11.5



Control (Path) 2 Temporal Ctx
7.4



Control (Path) 3 Temporal Ctx
10.4



Control (Path) 4 Temporal Ctx
12.9



AD 1 Occipital Ctx
6.3



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
4.8



AD 4 Occipital Ctx
16.2



AD 5 Occipital Ctx
12.4



AD 6 Occipital Ctx
13.7



Control 1 Occipital Ctx
4.6



Control 2 Occipital Ctx
11.0



Control 3 Occipital Ctx
9.0



Control 4 Occipital Ctx
14.7



Control (Path) 1 Occipital Ctx
23.3



Control (Path) 2 Occipital Ctx
4.0



Control (Path) 3 Occipital Ctx
4.1



Control (Path) 4 Occipital Ctx
4.3



Control 1 Parietal Ctx
10.8



Control 2 Parietal Ctx
33.9



Control 3 Parietal Ctx
9.4



Control (Path) 1 Parietal Ctx
15.5



Control (Path) 2 Parietal Ctx
9.2



Control (Path) 3 Parietal Ctx
7.4



Control (Path) 4 Parietal Ctx
12.7











[0728]

249





TABLE FC










Panel 4.1D











Rel. Exp. (%)




Ag6832, Run



Tissue Name
278022641














Secondary Th1 act
0.0



Secondary Th2 act
0.1



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
0.0



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.0



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
0.0



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0



LAK cells rest
0.0



LAK cells IL-2
0.0



LAK cells IL-2 + IL-12
0.0



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.0



LAK cells PMA/ionomycin
0.0



NK Cells IL-2 rest
0.0



Two Way MLR 3 day
0.0



Two Way MLR 5 day
0.0



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.0



PBMC PHA-L
0.1



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
0.1



EOL-1 dbcAMP
0.0



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
0.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.0



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
0.0



Macrophages LPS
0.0



HUVEC none
0.3



HUVEC starved
0.2



HUVEC IL-1beta
0.1



HUVEC IFN gamma
0.4



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.7



Lung Microvascular EC none
4.9



Lung Microvascular EC TNFalpha +
0.3



IL-1beta



Microvascular Dermal EC none
1.5



Microsvasular Dermal EC TNFalpha +
0.4



IL-1beta



Bronchial epithelium TNFalpha +
50.0



IL1beta



Small airway epithelium none
50.3



Small airway epithelium TNFalpha +
75.3



IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMC TNFalpha +
0.0



IL-1beta



Astrocytes rest
0.0



Astrocytes TNFalpha + IL-1beta
0.3



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
100.0



CCD1106 (Keratinocytes) TNFalpha +
33.4



IL-1beta



Liver cirrhosis
1.2



NCI-H292 none
20.7



NCI-H292 IL-4
34.6



NCI-H292 IL-9
25.2



NCI-H292 IL-13
40.9



NCI-H292 IFN gamma
17.2



HPAEC none
3.0



HPAEC TNF alpha + IL-1 beta
1.5



Lung fibroblast none
0.0



Lung fibroblast TNF alpha + IL-1
0.0



beta



Lung fibroblast IL-4
0.0



Lung fibroblast IL-9
0.0



Lung fibroblast IL-13
0.0



Lung fibroblast IFN gamma
0.0



Dermal fibroblast CCD1070 rest
0.0



Dermal fibroblast CCD1070 TNF alpha
0.0



Dermal fibroblast CCD1070 IL-1 beta
0.0



Dermal fibroblast IFN gamma
0.0



Dermal fibroblast IL-4
0.0



Dermal Fibroblasts rest
0.0



Neutrophils TNFa + LPS
0.1



Neutrophils rest
0.2



Colon
1.7



Lung
0.3



Thymus
0.4



Kidney
0.9











[0729] CNS_neurodegeneration_v1.0 Summary: Ag6832 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Expression of this gene in the brain suggests that the protein encoded by this gene may play a role in central nervous system disorders such as Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0730] General_screening_panel_v1.6 Summary: Ag6832 Results from one experiment with the CG124590-02 gene are not included. The amp plot indicates that there were experimental difficulties with this run.


[0731] Panel 4.1D Summary: Ag6832 Highest expression of the CG124590-02 gene is detected in keratinocytes (CT=25). High levels of expression of this gene is also detected in small airway epithelium, cytokine treated bronchial epithelium, and NCI-H292 cells. Therefore, expression of this gene may be used to distinguish these samples from other samples in this panel. In addition, moderate levels of expression of this gene is also seen in HPAEC, HUVEC, lung microvascular EC, microvascular dermal EC and neutrophils. Therefore, therapeutic modulation of this gene may be useful in the treatment of autoimmune and inflammatory diseases that involve endothelial cells, such as lupus erythematosus, asthma, emphysema, Crohn's disease, ulcerative colitis, rheumatoid arthritis, osteoarthritis, and psoriasis.


[0732] Low to moderate levels of expression of this gene is also seen in normal tissues represented by colon, lung, thymus and kidney. Therefore, therapeutic modulation of the protein encoded this gene may be useful in the treatment of autoimmune and inflammatory diseases that affect these tissues.


[0733] G. NOV7a (CG124916-01): Selenoprotein P


[0734] Expression of gene CG124916-01 was assessed using the primer-probe set Ag7029, described in Table GA.
250TABLE GAProbe Name Ag7029StartSEQ IDPrimersSequencesLengthPositionNoForward5′-cagtgactgtggttgctcttct-3′22158241ProbeTET-5′-tcaagcctcattttatgtatttcttccca-3′-29180242TAMRAReverse5′-ttactcgcaggtcttctaatctaaaatat-3′29210243


[0735] CNS_neurodegeneration_v1.0 Summary: Ag7029 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0736] General_screening_panel_v1.6 Summary: Ag7029 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0737] Panel 4.1D Summary: Ag7029 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0738] H. NOV8a (CG126224-01): Novel Type II Membrane Protein with 3 C2 Domains


[0739] Expression of gene CG126224-01 was assessed using the primer-probe set Ag4713, described in Table HA. Results of the RTQ-PCR runs are shown in Tables HB, HC and HD.
251TABLE HAProbe Name Ag4713StartSEQ IDPrimersSequencesLengthPositionNoForward5′-agttaaacaggcccacagatgt-3′22551244ProbeTET-5′-tctgaaagatcctcattatcctgacca-3′-27582245TAMRAReverse5′-gagcaaaatgattccaagatca-3′22609246


[0740]

252





TABLE HB










CNS_neurodegeneration_v1.0











Rel. Exp. (%) Ag4713,



Tissue Name
Run 224705458














AD 1 Hippo
7.2



AD 2 Hippo
22.5



AD 3 Hippo
9.9



AD 4 Hippo
3.4



AD 5 Hippo
91.4



AD 6 Hippo
51.4



Control 2 Hippo
42.0



Control 4 Hippo
4.6



Control (Path) 3 Hippo
4.8



AD 1 Temporal Ctx
8.9



AD 2 Temporal Ctx
29.3



AD 3 Temporal Ctx
4.8



AD 4 Temporal Ctx
11.5



AD 5 Inf Temporal Ctx
97.9



AD 5 Sup Temporal Ctx
3.4



AD 6 Inf Temporal Ctx
56.3



AD 6 Sup Temporal Ctx
50.7



Control 1 Temporal Ctx
5.4



Control 2 Temporal Ctx
69.3



Control 3 Temporal Ctx
13.3



Control 4 Temporal Ctx
7.3



Control (Path) 1 Temporal Ctx
82.4



Control (Path) 2 Temporal Ctx
28.1



Control (Path) 3 Temporal Ctx
4.0



Control (Path) 4 Temporal Ctx
35.1



AD 1 Occipital Ctx
8.4



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
4.2



AD 4 Occipital Ctx
8.2



AD 5 Occipital Ctx
20.7



AD 6 Occipital Ctx
61.6



Control 1 Occipital Ctx
20.7



Control 2 Occipital Ctx
52.5



Control 3 Occipital Ctx
8.7



Control 4 Occipital Ctx
2.4



Control (Path) 1 Occipital Ctx
100.0



Control (Path) 2 Occipital Ctx
6.0



Control (Path) 3 Occipital Ctx
2.6



Control (Path) 4 Occipital Ctx
11.4



Control 1 Parietal Ctx
4.7



Control 2 Parietal Ctx
42.3



Control 3 Parietal Ctx
15.2



Control (Path) 1 Parietal Ctx
98.6



Control (Path) 2 Parietal Ctx
18.3



Control (Path) 3 Parietal Ctx
4.0



Control (Path) 4 Parietal Ctx
41.2











[0741]

253





TABLE HC










General_screening_panel_v1.4











Rel. Exp. (%) Ag4713,



Tissue Name
Run 222825921














Adipose
18.8



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
39.8



Melanoma* LOXIMVI
42.6



Melanoma* SK-MEL-5
65.5



Squamous cell carcinoma SCC-4
10.5



Testis Pool
4.3



Prostate ca.* (bone met) PC-3
72.7



Prostate Pool
2.8



Placenta
1.3



Uterus Pool
5.8



Ovarian ca. OVCAR-3
17.0



Ovarian ca. SK-OV-3
79.0



Ovarian ca. OVCAR-4
0.1



Ovarian ca. OVCAR-5
42.9



Ovarian ca. IGROV-1
1.1



Ovarian ca. OVCAR-8
5.1



Ovary
2.1



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
11.1



Breast ca. BT 549
16.8



Breast ca. T47D
66.9



Breast ca. MDA-N
57.4



Breast Pool
9.6



Trachea
8.7



Lung
1.3



Fetal Lung
10.4



Lung ca. NCI-N417
0.0



Lung ca. LX-1
59.5



Lung ca. NCI-H146
10.5



Lung ca. SHP-77
7.2



Lung ca. A549
6.7



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
2.5



Lung ca. NCI-H460
29.9



Lung ca. HOP-62
21.2



Lung ca. NCI-H522
7.4



Liver
0.3



Fetal Liver
4.3



Liver ca. HepG2
0.1



Kidney Pool
18.0



Fetal Kidney
2.5



Renal ca. 786-0
17.0



Renal ca. A498
9.9



Renal ca. ACHN
39.2



Renal ca. UO-31
41.5



Renal ca. TK-10
30.4



Bladder
15.0



Gastric ca. (liver met.) NCI-N87
34.2



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
9.3



Colon ca.* (SW480 met) SW620
16.6



Colon ca. HT29
9.0



Colon ca. HCT-116
0.3



Colon ca. CaCo-2
0.9



Colon cancer tissue
20.6



Colon ca. SW1116
0.0



Colon ca. Colo-205
3.8



Colon ca. SW-48
0.0



Colon Pool
9.9



Small Intestine Pool
5.7



Stomach Pool
6.9



Bone Marrow Pool
4.0



Fetal Heart
1.0



Heart Pool
4.2



Lymph Node Pool
8.8



Fetal Skeletal Muscle
4.5



Skeletal Muscle Pool
4.8



Spleen Pool
10.3



Thymus Pool
9.4



CNS cancer (glio/astro) U87-MG
100.0



CNS cancer (glio/astro) U-118-MG
9.2



CNS cancer (neuro; met) SK-N-AS
1.9



CNS cancer (astro) SF-539
2.5



CNS cancer (astro) SNB-75
0.2



CNS cancer (glio) SNB-19
1.3



CNS cancer (glio) SF-295
0.9



Brain (Amygdala) Pool
20.4



Brain (cerebellum)
33.9



Brain (fetal)
30.1



Brain (Hippocampus) Pool
20.6



Cerebral Cortex Pool
34.6



Brain (Substantia nigra) Pool
26.8



Brain (Thalamus) Pool
40.3



Brain (whole)
28.5



Spinal Cord Pool
5.4



Adrenal Gland
2.4



Pituitary gland Pool
2.7



Salivary Gland
0.6



Thyroid (female)
1.3



Pancreatic ca. CAPAN2
11.0



Pancreas Pool
7.7











[0742]

254





TABLE HD










Panel 4.1D











Rel. Exp. (%)




Ag4713, Run



Tissue Name
202012796














Secondary Th1 act
0.2



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.2



Secondary Th2 rest
0.1



Secondary Tr1 rest
0.2



Primary Th1 act
0.9



Primary Th2 act
0.5



Primary Tr1 act
1.4



Primary Th1 rest
1.7



Primary Th2 rest
0.7



Primary Tr1 rest
1.0



CD45RA CD4 lymphocyte act
0.4



CD45RO CD4 lymphocyte act
0.2



CD8 lymphocyte act
0.1



Secondary CD8 lymphocyte rest
0.9



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
1.2



2ry Th1/Th2/Tr1_anti-CD95 CH11
1.5



LAK cells rest
20.0



LAK cells IL-2
0.7



LAK cells IL-2 + IL-12
2.5



LAK cells IL-2 + IFN gamma
1.3



LAK cells IL-2 + IL-18
0.7



LAK cells PMA/ionomycin
33.9



NK Cells IL-2 rest
0.4



Two Way MLR 3 day
27.2



Two Way MLR 5 day
12.0



Two Way MLR 7 day
1.8



PBMC rest
5.3



PBMC PWM
3.7



PBMC PHA-L
6.4



Ramos (B cell) none
0.2



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
2.6



B lymphocytes CD40L and IL-4
2.8



EOL-1 dbcAMP
35.4



EOL-1 dbcAMP PMA/ionomycin
41.8



Dendritic cells none
8.1



Dendritic cells LPS
12.7



Dendritic cells anti-CD40
6.8



Monocytes rest
41.8



Monocytes LPS
88.3



Macrophages rest
20.4



Macrophages LPS
22.4



HUVEC none
25.7



HUVEC starved
82.4



HUVEC IL-1beta
55.1



HUVEC IFN gamma
100.0



HUVEC TNF alpha + IFN gamma
63.3



HUVEC TNF alpha + IL4
91.4



HUVEC IL-11
33.7



Lung Microvascular EC none
50.3



Lung Microvascular EC TNFalpha +
58.2



IL-1beta



Microvascular Dermal EC none
11.8



Microsvasular Dermal EC TNFalpha +
20.7



IL-1beta



Bronchial epithelium TNFalpha +
6.3



IL1beta



Small airway epithelium none
1.2



Small airway epithelium TNFalpha +
1.8



IL-1beta



Coronery artery SMC rest
0.2



Coronery artery SMC TNFalpha +
1.2



IL-1beta



Astrocytes rest
1.2



Astrocytes TNFalpha + IL-1beta
0.7



KU-812 (Basophil) rest
2.8



KU-812 (Basophil) PMA/ionomycin
11.7



CCD1106 (Keratinocytes) none
0.2



CCD1106 (Keratinocytes) TNFalpha +
0.3



IL-1beta



Liver cirrhosis
3.5



NCI-H292 none
7.9



NCI-H292 IL-4
7.7



NCI-H292 IL-9
12.9



NCI-H292 IL-13
5.0



NCI-H292 IFN gamma
5.2



HPAEC none
7.1



HPAEC TNF alpha + IL-1 beta
15.1



Lung fibroblast none
0.7



Lung fibroblast TNF alpha + IL-1
1.5



beta



Lung fibroblast IL-4
1.2



Lung fibroblast IL-9
2.5



Lung fibroblast IL-13
1.5



Lung fibroblast IFN gamma
1.2



Dermal fibroblast CCD1070 rest
0.1



Dermal fibroblast CCD1070 TNF alpha
0.4



Dermal fibroblast CCD1070 IL-1 beta
0.6



Dermal fibroblast IFN gamma
0.4



Dermal fibroblast IL-4
0.4



Dermal Fibroblasts rest
0.2



Neutrophils TNFa + LPS
71.2



Neutrophils rest
18.0



Colon
1.3



Lung
5.9



Thymus
10.3



Kidney
1.3











[0743] CNS_neurodegeneration_v1.0 Summary: Ag4713 This panel confirms the expression of the CG126224-01 gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.


[0744] General_screening_panel_v1.4 Summary: Ag4713 Highest expression of the CG126224-01 gene is detected in CNS cancer U87-MG cell line (CT=28.8). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0745] Among tissues with metabolic or endocrine function, this gene is expressed at moderate to low levels in pancreas, adipose, adrenal gland, pituitary gland, skeletal muscle, heart, fetal liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0746] Interestingly, this gene is expressed at much higher levels in fetal (CT=32-33) when compared to adult lung and liver (CT=35-37). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung and liver, respectively. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver and lung growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver and lung related diseases.


[0747] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0748] Panel 4.1D Summary: Ag4713 Highest expression of the CG126224-01 gene is detected in IFN gamma treated HUVEC cells (CT=28). High to moderate levels of expression in LAK cells, two way MLR, PBMC, B lymphocytes, eosinophils, dendritic cells, monocytes, macrophages, endothelial cells, small airway epithelium, basophils, NCI-H292, lung fibroblast and activated neutrophils. In addition, moderate to low levels of expression of this gene is also seen in liver cirrhosis and normal tissues represented by colon, lung, thymus and kidney. Therefore, therapeutic modulation of this gene may be useful in the treatment of inflammatory and autoimmune diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, osteoarthritis and liver cirrhosis.


[0749] I. NOV9a (CG126233-01): ctl2


[0750] Expression of gene CG 126233-01 was assessed using the primer-probe set Ag4722, described in Table IA. Results of the RTQ-PCR runs are shown in Tables IB, IC and ID.
255TABLE IAProbe Name Ag4722StartSEQ IDPrimersSequencesLengthPositionNoForward5′-gcatgtactttgaactgcaaca-3′22947247ProbeTET-5′-catggttcacatttatgataatactctgca-309712483′-TAMRAReverse5′-agcatgaggatgacaatcactt-3′221007249


[0751]

256





TABLE IB










CNS_neurodegeneration_v1.0











Rel. Exp. (%) Ag4722,



Tissue Name
Run 224706358














AD 1 Hippo
4.2



AD 2 Hippo
11.7



AD 3 Hippo
2.5



AD 4 Hippo
4.1



AD 5 hippo
93.3



AD 6 Hippo
27.9



Control 2 Hippo
18.3



Control 4 Hippo
8.0



Control (Path) 3 Hippo
3.0



AD 1 Temporal Ctx
4.6



AD 2 Temporal Ctx
21.0



AD 3 Temporal Ctx
2.2



AD 4 Temporal Ctx
14.9



AD 5 Inf Temporal Ctx
35.8



AD 5 Sup Temporal Ctx
20.4



AD 6 Inf Temporal Ctx
35.4



AD 6 Sup Temporal Ctx
26.8



Control 1 Temporal Ctx
1.7



Control 2 Temporal Ctx
26.4



Control 3 Temporal Ctx
11.7



Control 4 Temporal Ctx
5.5



Control (Path) 1 Temporal Ctx
56.6



Control (Path) 2 Temporal Ctx
23.5



Control (Path) 3 Temporal Ctx
2.0



Control (Path) 4 Temporal Ctx
34.4



AD 1 Occipital Ctx
5.3



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
3.1



AD 4 Occipital Ctx
12.3



AD 5 Occipital Ctx
14.8



AD 6 Occipital Ctx
29.1



Control 1 Occipital Ctx
2.9



Control 2 Occipital Ctx
69.7



Control 3 Occipital Ctx
13.6



Control 4 Occipital Ctx
4.8



Control (Path) 1 Occipital Ctx
100.0



Control (Path) 2 Occipital Ctx
15.9



Control (Path) 3 Occipital Ctx
0.7



Control (Path) 4 Occipital Ctx
25.5



Control 1 Parietal Ctx
3.1



Control 2 Parietal Ctx
24.3



Control 3 Parietal Ctx
2.2



Control (Path) 1 Parietal Ctx
65.5



Control (Path) 2 Parietal Ctx
15.9



Control (Path) 3 Parietal Ctx
1.7



Control (Path) 4 Parietal Ctx
37.4











[0752]

257





TABLE IC










General_screening_panel_v1.4











Rel. Exp. (%) Ag4722,



Tissue Name
Run 222842372














Adipose
0.3



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.4



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
9.0



Testis Pool
7.4



Prostate ca.* (bone met) PC-3
0.1



Prostate Pool
0.3



Placenta
4.7



Uterus Pool
0.2



Ovarian ca. OVCAR-3
6.4



Ovarian ca. SK-OV-3
1.7



Ovarian ca. OVCAR-4
0.2



Ovarian ca. OVCAR-5
8.8



Ovarian ca. IGROV-1
8.8



Ovarian ca. OVCAR-8
3.5



Ovary
1.9



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.2



Breast ca. BT 549
0.3



Breast ca. T47D
11.3



Breast ca. MDA-N
0.2



Breast Pool
0.5



Trachea.
4.0



Lung
0.8



Fetal Lung
1.8



Lung ca. NCI-N417
3.6



Lung ca. LX-1
40.9



Lung ca. NCI-H146
17.3



Lung ca. SHP-77
42.9



Lung ca. A549
1.4



Lung ca. NCI-H526
10.7



Lung ca. NCI-H23
52.1



Lung ca. NCI-H460
6.1



Lung ca. HOP-62
5.2



Lung ca. NCI-H522
0.2



Liver
0.0



Fetal Liver
2.1



Liver ca. HepG2
12.4



Kidney Pool
1.2



Fetal Kidney
6.9



Renal ca. 786-0
0.1



Renal ca. A498
0.7



Renal ca. ACHN
0.3



Renal ca. UO-31
5.8



Renal ca. TK-10
5.0



Bladder
1.8



Gastric ca. (liver met.) NCI-N87
100.0



Gastric ca. KATO III
10.6



Colon ca. SW-948
3.2



Colon ca. SW480
4.8



Colon ca.* (SW480 met) SW620
13.2



Colon ca. HT29
8.0



Colon ca. HCT-116
4.9



Colon ca. CaCo-2
24.0



Colon cancer tissue
0.2



Colon ca. SW1116
2.9



Colon ca. Colo-205
0.4



Colon ca. SW-48
2.6



Colon Pool
0.4



Small Intestine Pool
0.5



Stomach Pool
0.6



Bone Marrow Pool
0.1



Fetal Heart
2.4



Heart Pool
0.1



Lymph Node Pool
0.4



Fetal Skeletal Muscle
0.2



Skeletal Muscle Pool
5.7



Spleen Pool
0.7



Thymus Pool
0.8



CNS cancer (glio/astro) U87-MG
0.4



CNS cancer (glio/astro) U-118-MG
0.6



CNS cancer (neuro; met) SK-N-AS
5.2



CNS cancer (astro) SF-539
2.2



CNS cancer (astro) SNB-75
0.9



CNS cancer (glio) SNB-19
10.2



CNS cancer (glio) SF-295
1.5



Brain (Amygdala) Pool
3.3



Brain (cerebellum)
0.4



Brain (fetal)
94.0



Brain (Hippocampus) Pool
2.8



Cerebral Cortex Pool
5.2



Brain (Substantia nigra) Pool
4.2



Brain (Thalamus) Pool
4.6



Brain (whole)
6.4



Spinal Cord Pool
2.1



Adrenal Gland
1.0



Pituitary gland Pool
1.9



Salivary Gland
0.2



Thyroid (female)
0.3



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
2.2











[0753]

258





TABLE ID










Panel 4.1D











Rel. Exp. (%)




Ag4722, Run



Tissue Name
204172542














Secondary Th1 act
0.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.7



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.9



Primary Th2 rest
0.8



Primary Tr1 rest
3.3



CD45RA CD4 lymphocyte act
0.0



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.6



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
1.5



2ry Th1/Th2/Tr1_anti-CD95 CH11
3.6



LAK cells rest
0.0



LAK cells IL-2
0.0



LAK cells IL-2 + IL-12
0.0



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.0



LAK cells PMA/ionomycin
0.0



NK Cells IL-2 rest
1.0



Two Way MLR 3 day
0.0



Two Way MLR 5 day
0.0



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.6



PBMC PHA-L
0.0



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
0.6



EOL-1 dbcAMP
0.0



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
0.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.0



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
0.8



Macrophages LPS
0.0



HUVEC none
3.8



HUVEC starved
7.7



HUVEC IL-1beta
2.0



HUVEC IFN gamma
9.3



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
4.2



HUVEC IL-11
6.3



Lung Microvascular EC none
16.2



Lung Microvascular EC TNFalpha +
6.3



IL-1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC TNFalpha +
0.0



IL-1beta



Bronchial epithelium TNFalpha +
0.0



IL1beta



Small airway epithelium none
6.8



Small airway epithelium TNFalpha +
5.7



IL-1beta



Coronery artery SMC rest
0.8



Coronery artery SMC TNFalpha + IL-
2.5



1beta



Astrocytes rest
5.7



Astrocytes TNFalpha + IL-1beta
4.6



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
0.0



CCD1106 (Keratinocytes) TNFalpha +
0.0



IL-1beta



Liver cirrhosis
0.0



NCI-H292 none
50.0



NCI-H292 IL-4
53.6



NCI-H292 IL-9
100.0



NCI-H292 IL-13
71.2



NCI-H292 IFN gamma
39.8



HPAEC none
7.4



HPAEC TNF alpha + IL-1 beta
9.5



Lung fibroblast none
0.0



Lung fibroblast TNF alpha + IL-1
0.0



beta



Lung fibroblast IL-4
0.0



Lung fibroblast IL-9
0.6



Lung fibroblast IL-13
0.0



Lung fibroblast IFN gamma
0.0



Dermal Fibroblast CCD1070 rest
0.0



Dermal fibroblast CCD1070 TNF alpha
0.9



Dermal fibroblast CCD1070 IL-1 beta
0.6



Dermal fibroblast IFN gamma
0.0



Dermal fibroblast IL-4
0.0



Dermal Fibroblasts rest
0.0



Neutrophils TNFa + LPS
0.0



Neutrophils rest
0.0



Colon
0.0



Lung
0.0



Thymus
4.0



Kidney
0.7











[0754] CNS_neurodegeneration_v1.0 Summary: Ag4722 This panel does not show differential expression of this gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.4 for discussion of utility of this gene in the central nervous system.


[0755] General_screening_panel_v1.4 Summary: Ag4722 This gene is expressed at moderate levels throughout many of the samples in this panel. Highest expression is detected in an gastric cancer cell line (CT=29). In addition, this gene is also expressed in a cluster of samples derived from lung cancer cell lines and at low but significant levels in cell lines derived from ovarian, colon and brain cancers. Therefore, therapeutic modulation of this gene or its protein product, through the use of antibodies, might be useful in the treatment of these cancers.


[0756] Among tissues involved in metabolic function, this gene is expressed in the pancreas, pituitary, fetal liver, fetal heart and skeletal muscle. Therefore, this gene or its protein product may be important in the pathogenesis and/or treatment of disease of obesity and diabetes.


[0757] There is widespread moderate expression of this gene across many of the samples derived from the CNS, including the amygdala, hippocampus, thalamus, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0758] Panel 4.1D Summary: Ag4722 This transcript is most highly expressed in NCI-H292 cells stimulated by IL-9 (CT=32.5). The gene is also expressed in a cluster of treated and untreated samples derived from the NCI-H292 cell line, a human airway epithelial cell line that produces mucins. Mucus overproduction is an important feature of bronchial asthma and chronic obstructive pulmonary disease samples. The transcript is also expressed at lower but still significant levels in small airway epithelium treated with IL-1 beta and TNF-alpha. The expression of the transcript in this mucoepidermoid cell line that is often used as a model for airway epithelium (NCI-H292 cells) suggests that this transcript may be important in the proliferation or activation of airway epithelium. Therefore, therapeutics designed with the protein encoded by the transcript may reduce or eliminate symptoms caused by inflammation in lung epithelia in chronic obstructive pulmonary disease, asthma, allergy, and emphysema.


[0759] J. NOV10a (CG126600-01): Fibronectin Type III Domain-Membrane Protein


[0760] Expression of gene CG126600-01 was assessed using the primer-probe set Ag7030, described in Table JA. Results of the RTQ-PCR runs are shown in Tables JB, JC and JD.
259TABLE IAProbe Name Ag7030StartSEQ IDPrimersSequencesLengthPositionNoForward5′-acatccaccactactqgatacaa-3′2389250ProbeTET-5′-ttctcttttgtctgcccctattgtaagtgc-301342513′-TAMRAReverse5′-cagaataacctgttgtgttccat-3′23166252


[0761]

260





TABLE JB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag7030, Run



Tissue Name
282263009














AD 1 Hippo
12.9



AD 2 Hippo
33.2



AD 3 Hippo
9.3



AD 4 Hippo
8.2



AD 5 hippo
59.0



AD 6 Hippo
100.0



Control 2 Hippo
32.1



Control 4 Hippo
11.3



Control (Path) 3 Hippo
5.9



AD 1 Temporal Ctx
19.8



AD 2 Temporal Ctx
26.4



AD 3 Temporal Ctx
4.9



AD 4 Temporal Ctx
29.3



AD 5 Inf Temporal Ctx
62.4



AD 5 Sup Temporal Ctx
40.9



AD 6 Inf Temporal Ctx
57.8



AD 6 Sup Temporal Ctx
67.4



Control 1 Temporal Ctx
4.6



Control 2 Temporal Ctx
32.5



Control 3 Temporal Ctx
13.1



Control 4 Temporal Ctx
8.0



Control (Path) 1 Temporal Ctx
47.0



Control (Path) 2 Temporal Ctx
38.4



Control (Path) 3 Temporal Ctx
4.4



Control (Path) 4 Temporal Ctx
25.3



AD 1 Occipital Ctx
12.5



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
5.1



AD 4 Occipital Ctx
11.5



AD 5 Occipital Ctx
31.9



AD 6 Occipital Ctx
33.0



Control 1 Occipital Ctx
7.5



Control 2 Occipital Ctx
38.2



Control 3 Occipital Ctx
7.6



Control 4 Occipital Ctx
5.8



Control (Path) 1 Occipital Ctx
64.2



Control (Path) 2 Occipital Ctx
10.6



Control (Path) 3 Occipital Ctx
2.5



Control (Path) 4 Occipital Ctx
11.4



Control 1 Parietal Ctx
4.8



Control 2 Parietal Ctx
32.3



Control 3 Parietal Ctx
18.0



Control (Path) 1 Parietal Ctx
45.4



Control (Path) 2 Parietal Ctx
18.4



Control (Path) 3 Parietal Ctx
2.8



Control (Path) 4 Parietal Ctx
34.4











[0762]

261





TABLE JC










General_screening_panel_v1.6











Rel. Exp. (%)




Ag7030, Run



Tissue Name
281813484














Adipose
10.0



Melanoma* Hs688(A).T
8.7



Melanoma* Hs688(B).T
9.5



Melanoma* M14
14.3



Melanoma* LOXIMVI
13.1



Melanoma* SK-MEL-5
100.0



Squamous cell carcinoma SCC-4
6.9



Testis Pool
21.8



Prostate ca.* (bone met) PC-3
13.5



Prostate Pool
14.4



Placenta
75.3



Uterus Pool
6.4



Ovarian ca. OVCAR-3
4.5



Ovarian ca. SK-OV-3
57.8



Ovarian ca. OVCAR-4
4.4



Ovarian ca. OVCAR-5
34.9



Ovarian ca. IGROV-1
25.7



Ovarian ca. OVCAR-8
20.6



Ovary
16.2



Breast ca. MCF-7
18.8



Breast ca. MDA-MB-231
24.8



Breast ca. BT 549
55.9



Breast ca. T47D
2.1



Breast ca. MDA-N
4.9



Breast Pool
24.1



Trachea
29.1



Lung
5.8



Fetal Lung
38.4



Lung ca. NCI-N417
4.8



Lung ca. LX-I
58.6



Lung ca. NCI-H146
8.9



Lung ca. SHP-77
19.1



Lung ca. A549
13.6



Lung ca. NCI-H526
4.8



Lung ca. NCI-H23
52.9



Lung ca. NCI-H460
45.4



Lung ca. HOP-62
6.8



Lung ca. NCI-H522
8.3



Liver
2.6



Fetal Liver
17.7



Liver ca. HepG2
9.8



Kidney Pool
39.0



Fetal Kidney
19.2



Renal ca. 786-0
22.1



Renal ca. A498
3.7



Renal ca. ACHN
14.0



Renal ca. UO-31
27.0



Renal ca. TK-10
27.7



Bladder
42.9



Gastric ca. (liver met.) NCI-N87
53.6



Gastric ca. KATO III
22.8



Colon ca. SW-948
4.6



Colon ca. SW480
26.8



Colon ca.* (SW480 met) SW620
18.7



Colon ca. HT29
5.1



Colon ca. HCT-116
17.9



Colon ca. CaCo-2
18.8



Colon cancer tissue
13.9



Colon ca. SW1116
3.7



Colon ca. Colo-205
4.5



Colon ca. SW-48
5.3



Colon Pool
19.2



Small Intestine Pool
24.3



Stomach Pool
19.6



Bone Marrow Pool
9.9



Fetal Heart
8.2



Heart Pool
11.7



Lymph Node Pool
38.7



Fetal Skeletal Muscle
4.2



Skeletal Muscle Pool
1.5



Spleen Pool
13.5



Thymus Pool
21.9



CMS cancer (glio/astro) U87-MG
14.3



CNS cancer (glio/astro) U-118-MG
73.2



CNS cancer (neuro; met) SK-N-AS
34.6



CNS cancer (astro) SF-539
5.8



CNS cancer (astro) SNB-75
17.0



CNS cancer (glio) SNB-19
27.5



CNS cancer (glio) SF-295
55.9



Brain (Amygdala) Pool
5.8



Brain (cerebellum)
13.1



Brain (fetal)
14.5



Brain (Hippocampus) Pool
9.9



Cerebral Cortex Pool
11.8



Brain (Substantia nigra) Pool
6.0



Brain (Thalamus) Pool
14.7



Brain (whole)
6.0



Spinal Cord Pool
8.0



Adrenal Gland
19.1



Pituitary gland Pool
9.7



Salivary Gland
7.2



Thyroid (female)
9.3



Pancreatic ca. CAPAN2
18.3



Pancreas Pool
33.7











[0763]

262





TABLE JD










Panel 4.1D











Rel. Exp. (%)




Ag7030, Run



Tissue Name
281810532














Secondary Th1 act
9.1



Secondary Th2 act
13.5



Secondary Tr1 act
6.6



Secondary Th1 rest
0.9



Secondary Th2 rest
1.9



Secondary Tr1 rest
1.6



Primary Th1 act
2.8



Primary Th2 act
8.0



Primary Tr1 act
7.7



Primary Th1 rest
1.1



Primary Th2 rest
0.9



Primary Tr1 rest
1.6



CD45RA CD4 lymphocyte act
100.0



CD45RO CD4 lymphocyte act
11.0



CD8 lymphocyte act
3.1



Secondary CD8 lymphocyte rest
5.8



Secondary CD8 lymphocyte act
1.0



CD4 lymphocyte none
1.4



2ry Th1/Th2/Tr1_anti-CD95 CH11
2.1



LAK cells rest
9.8



LAK cells IL-2
3.2



LAK cells IL-2 + IL-12
1.9



Lak cells IL-2 + IFN gamma
2.2



LAK cells IL-2 + IL-18
2.5



Lak cells PMA/ionomycin
42.3



NK Cells IL-2 rest
8.5



Two Way MLR 3 day
3.4



Two Way MLR 5 day
1.1



Two Way MLR 7 day
2.2



PBMC rest
1.1



PBMC PWM
2.2



PBMC PHA-L
1.9



Ramos (B cell) none
8.5



Ramos (B cell) ionomycin
16.8



B lymphocytes PWM
3.6



B lymphocytes CD40L and IL-4
4.4



EOL-1 dbcAMP 1
5.7



EOL-1 dbcAMP PMA/ionomycin
7.7



Dendritic cells none
12.1



Dendritic cells LPS
10.2



Dendritic cells anti-CD40
7.0



Monocytes rest
2.5



Monocytes LPS
21.2



Macrophages rest
3.3



Macrophages LPS
8.1



HUVEC none
2.9



HUVEC starved
3.7



HUVEC IL-1beta
7.0



HUVEC IFN gamma
6.8



HUVEC TNF alpha + IFN gamma
3.0



HUVEC TNF alpha + IL4
1.7



HUVEC IL-11
2.7



Lung Microvascular EC none
12.0



Lung Microvascular EC TNFalpha + IL-
4.1



1beta



Microvascular Dermal EC none
1.7



Microsvasular Dermal EC TNFalpha + IL-
1.3



1beta



Bronchial epithelium TNFalpha + IL1beta
2.0



Small airway epithelium none
1.4



Small airway epithelium TNFalpha + IL-
2.1



1beta



Coronery artery SMC rest
3.7



Coronery artery SMC TNFalpha + IL-1beta
6.2



Astrocytes rest
3.6



Astrocytes TNFalpha + IL-1beta
0.7



KU-812 (Basophil) rest
1.8



KU-812 (Basophil) PMA/ionomycin
11.1



CCD1106 (Keratinocytes) none
2.5



CCD1106 (Keratinocytes) TNFalpha + IL-
3.7



1beta



Liver cirrhosis
1.4



NCI-H292 none
6.8



NCI-H292 IL-4
17.1



NCI-H292 IL-9
10.8



NCI-H292 IL-13
22.8



NCI-H292 IFN gamma
7.5



HPAEC none
2.2



HPAEC TNF alpha + IL-1 beta
8.4



Lung fibroblast none
8.2



Lung fibroblast TNF alpha + IL-1 beta
16.8



Lung fibroblast IL-4
2.4



Lung fibroblast IL-9
8.6



Lung fibroblast IL-13
4.0



Lung fibroblast IFN gamma
12.7



Dermal fibroblast CCD1070 rest
12.8



Dermal fibroblast CCD1070 TNF alpha
17.9



Dermal fibroblast CCD1070 IL-1 beta
16.2



Dermal fibroblast IFN gamma
8.3



Dermal fibroblast IL-4
20.4



Dermal Fibroblasts rest
6.8



Neutrophils TNFa + LPS
8.5



Neutrophils rest
7.6



Colon
2.2



Lung
1.5



Thymus
3.9



Kidney
10.0











[0764] CNS_neurodegeneration v1.0 Summary: Ag7030 This panel confirms the expression of the CG1 26600-01 gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.6 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.


[0765] General_screening_panel_v1.6 Summary: Ag7030 1lighest expression of the CG126600-01 gene is detected in melanoma SK-MEL-5 cell line (CT=25.7). High levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0766] Among tissues with metabolic or endocrine function, this gene is expressed at high levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0767] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0768] Panel 4.1D Summary: Ag7030 Highest expression of the CG126600-01 gene is detected in activated CD45RA CD4 lymphocyte (CT=26.6). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.6 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0769] K. NOV11a (CG127888-01): Novel Secretory Protein


[0770] Expression of gene CG127888-01 was assessed using the primer-probe set Ag4756, described in Table KA. Results of the RTQ-PCR runs are shown in Table KB.
263TABLE KAProbe Name Ag4756StartSEQ IDPrimersSequencesLengthPositionNoForward5′-ctttcagaataatggcaaatgg-3′22989253ProbeTET-5′-ccagtaacatcttccaaagaaattcgga-3′-281018254TAMRAReversetctcccagattcatgttgactt-3′221050255


[0771]

264





TABLE KB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag4756, Run



Tissue Name
224721730














AD 1 Hippo
0.0



AD 2 Hippo
0.0



AD 3 Hippo
0.0



AD 4 Hippo
0.0



AD 5 hippo
0.0



AD 6 Hippo
0.0



Control 2 Hippo
0.0



Control 4 Hippo
0.0



Control (Path) 3 Hippo
0.0



AD 1 Temporal Ctx
0.0



AD 2 Temporal Ctx
0.0



AD 3 Temporal Ctx
0.0



AD 4 Temporal Ctx
0.0



AD 5 Inf Temporal Ctx
0.0



AD 5 Sup Temporal Ctx
0.0



AD 6 Inf Temporal Ctx
0.0



AD 6 Sup Temporal Ctx
0.0



Control 1 Temporal Ctx
100.0



Control 2 Temporal Ctx
0.0



Control 3 Temporal Ctx
0.0



Control 4 Temporal Ctx
0.0



Control (Path) 1 Temporal Ctx
0.0



Control (Path) 2 Temporal Ctx
0.0



Control (Path) 3 Temporal Ctx
0.0



Control (Path) 4 Temporal Ctx
0.0



AD 1 Occipital Ctx
0.0



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
0.0



AD 4 Occipital Ctx
0.0



AD 5 Occipital Ctx
0.0



AD 6 Occipital Ctx
0.0



Control 1 Occipital Ctx
0.0



Control 2 Occipital Ctx
0.0



Control 3 Occipital Ctx
0.0



Control 4 Occipital Ctx
0.0



Control (Path) 1 Occipital Ctx
0.0



Control (Path) 2 Occipital Ctx
0.0



Control (Path) 3 Occipital Ctx
0.0



Control (Path) 4 Occipital Ctx
0.0



Control 1 Parietal Ctx
0.0



Control 2 Parietal Ctx
0.0



Control 3 Parietal Ctx
0.0



Control (Path) 1 Parietal Ctx
0.0



Control (Path) 2 Parietal Ctx
0.0



Control (Path) 3 Parietal Ctx
0.0



Control (Path) 4 Parietal Ctx
0.0











[0772] CNS_neurodegeneration_v1.0 Summary: Ag4756 Low expression of this gene is seen in control temporal cortex (CT=34.6). Therefore, expression of this gene may be used to distinguish this sample from other samples used in this panel. In addition, therapeutic modulation of this gene may be useful for the treatment of neurological disorders.


[0773] General_screening_panel_v1.4 Summary: Ag4756 Expression of the CG127888-01 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0774] Panel 4.1D Summary: Ag4756 Expression of the CG 127888-01 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0775] L. NOV12a (CG128249-02): Ephrin-A4 Precursor


[0776] Expression of gene CG128249-02 was assessed using the primer-probe set Ag6833, described in Table LA. Results of the RTQ-PCR runs are shown in Table LB. Please note that CG128249-02 represents a full-length physical clone.
265TABLE LAProbe Name Ag6833StartPrimersSequencesLengthPositionSEQ ID NoForward5′-gccatgttcaattctcagagaa-3′22338256ProbeTET-5′-cttcacacccttctccctcggctt3′-24369257TAMRAReverse5′-gccactctctccaggtaagaa-3′21397258


[0777]

266





TABLE LB










General_screening_panel_v1.6











Rel. Exp. (%)




Ag6833, Run



Tissue Name
278019620














Adipose
0.9



Melanoma* Hs688(A).T
4.5



Melanoma* Hs688(B).T
4.5



Melanoma* M14
3.8



Melanoma* LOXIMVI
8.0



Melanoma* SK-MEL-5
16.5



Squamous cell carcinoma SCC-4
6.7



Testis Pool
3.6



Prostate ca.* (bone met) PC-3
22.1



Prostate Pool
7.2



Placenta
10.2



Uterus Pool
0.0



Ovarian ca. OVCAR-3
75.3



Ovarian ca. SK-OV-3
34.2



Ovarian ca. OVCAR-4
13.9



Ovarian ca. OVCAR-5
100.0



Ovarian ca. IGROV-1
32.3



Ovarian ca. OVCAR-8
3.1



Ovary
10.7



Breast ca. MCF-7
48.6



Breast ca. MDA-MB-231
17.4



Breast ca. BT 549
40.6



Breast ca. T47D
26.4



Breast ca. MDA-N
18.9



Breast Pool
7.2



Trachea
13.8



Lung
2.1



Fetal Lung
17.0



Lung ca. NCI-N417
1.3



Lung ca. LX-1
10.7



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
2.0



Lung ca. A549
9.5



Lung ca. NCI-H526
3.7



Lung ca. NCI-H23
15.4



Lung ca. NCI-H460
31.9



Lung ca. HOP-62
10.0



Lung ca. NCI-H522
25.0



Liver
0.8



Fetal Liver
0.0



Liver ca. HepG2
10.1



Kidney Pool
7.0



Fetal Kidney
6.6



Renal ca. 786-0
37.9



Renal ca. A498
9.8



Renal ca. ACHN
18.8



Renal ca. UO-31
16.6



Renal ca. TK-10
46.0



Bladder
12.9



Gastric ca. (liver met.) NCI-N87
32.1



Gastric ca. KATO III
79.0



Colon ca. SW-948
10.5



Colon ca. SW480
65.1



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
31.0



Colonca. HCT-116
30.6



Colon ca. CaCo-2
21.8



Colon cancer tissue
26.2



Colon ca. SW1116
14.7



Colon ca. Colo-205
10.4



Colon ca. SW-48
43.5



Colon Pool
4.7



Small Intestine Pool
5.9



Stomach Pool
5.1



Bone Marrow Pool
2.7



Fetal Heart
7.7



Heart Pool
2.5



Lymph Node Pool
7.4



Fetal Skeletal Muscle
1.5



Skeletal Muscle Pool
0.0



Spleen Pool
3.8



Thymus Pool
9.8



CNS cancer (glio/astro) U87-MG
4.1



CNS cancer (glio/astro) U-118-MG
13.7



CNS cancer (neuro; met) SK-N-AS
33.2



CNS cancer (astro) SF-539
13.3



CNS cancer (astro) SNB-75
37.6



CNS cancer (glio) SNB-19
36.3



CNS cancer (glio) SF-295
40.1



Brain (Amygdala) Pool
1.0



Brain (cerebellum)
2.0



Brain (fetal)
1.9



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.0



Brain (whole)
4.6



Spinal Cord Pool
2.6



Adrenal Gland
8.7



Pituitary gland Pool
0.0



Salivary Gland
12.7



Thyroid (female)
4.0



Pancreatic ca. CAPAN2
34.4



Pancreas Pool
10.4











[0778] CNS_neurodegeneration_v1.0 Summary: Ag6833 Expression of the CG128249-02 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0779] General_screening_panel_v1.6 Summary: Ag6833 Highest expression of the CG128249-02 gene is detected in ovarian OVCAR-5 cell line (CT=32.8). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Interestingly, this gene is expressed at low/undectactable levels in normal tissues (CTs>35). Thus, expression of this gene could be used to distinguish cancer cell lines from the normal tissue samples in this panel and also as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0780] Panel 4.1 D Summary: Ag6833 Expression of the CG128249-02 (gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0781] M. NOV13a (CGt28785-01): alt Spliced SPUF


[0782] Expression of gene CG128785-01 was assessed using the primer-probe set Ag5883, described in Table MA.
267TABLE MAProbe Name Ag5883StartPrimersSequencesLengthPositionSEQ ID NoForward5′-gcttttcaccgaggaggag-3′19135259ProbeTET-5′-agcttctcccctgctttctaggaaga-3′-26176260TAMRAReverse5′-ttcactgccaagtagatggg-3′20206261


[0783] General_screening_panel_v1.5 Summary: Ag5883 Expression of the CG128785-01 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0784] Panel 4.1D Summary: Ag5883 Expression of the CG128785-01 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0785] N. NOV14a (CG129005-01): 54TM Splice Variant.


[0786] Expression of gene CG129005-01 was assessed using the primer-probe set Ag4799, described in Table NA. Results of the RTQ-PCR runs are shown in Tables NB and NC.
268TABLE NAProbe Name Ag4799StartPrimersSequencesLengthPositionSEQ ID NoForward5′-tgcagtacagtcgtgatgct-3′20373262ProbeTET-5′-aagacctcaacqcccctgacctctat-3′-26409263TAMRAReverse5′-ccaggagcacgtaagtaatgaa-3′22450264


[0787]

269





TABLE NB










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4799, Run



Tissue Name
223203328














Adipose
0.6



Melanoma* Hs688(A).T
21.0



Melanoma* Hs688(B).T
21.8



Melanoma* M14
18.6



Melanoma* LOXIMVI
18.8



Melanoma* SK-MEL-5
15.8



Squamous cell carcinoma SCC-4
12.2



Testis Pool
1.6



Prostate ca.* (bone met) PC-3
39.8



Prostate Pool
1.5



Placenta
4.8



Uterus Pool
1.2



Ovarian ca. OVCAR-3
11.4



Ovarian ca. SK-OV-3
19.8



Ovarian ca. OVCAR-4
18.2



Ovarian ca. OVCAR-5
41.5



Ovarian ca. IGROV-1
21.8



Ovarian ca. OVCAR-8
14.2



Ovary
2.3



Breast ca. MCF-7
17.7



Breast ca. MDA-MB-231
21.3



Breast ca. BT 549
20.4



Breast ca. T47D
100.0



Breast ca. MDA-N
9.9



Breast Pool
2.7



Trachea
3.1



Lung
0.7



Fetal Lung
3.1



Lung ca. NCI-N417
16.4



Lung ca. LX-1
8.7



Lung ca. NCI-H146
3.5



Lung ca. SHP-77
14.3



Lung ca. A549
15.9



Lung ca. NCI-H526
9.6



Lung ca. NCI-H23
8.8



Lung ca. NCI-H460
8.2



Lung ca. HOP-62
9.5



Lung ca. NCI-H522
11.4



Liver
3.0



Fetal Liver
8.4



Liver ca. HepG2
10.9



Kidney Pool
3.4



Fetal Kidney
1.3



Renal ca. 786-0
14.6



Renal ca. A498
4.9



Renal ca. ACHN
8.2



Renal ca. UO-31
15.5



Renal ca TK-10
11.8



Bladder
4.6



Gastric ca. (liver met.) NCI-N87
22.7



Gastric ca. KATO III
38.2



Colon ca. SW-948
12.6



Colon ca. SW480
28.1



Colon ca.* (SW480 met) SW620
12.9



Colon ca. HT29
14.7



Colon ca. HCT-116
9.9



Colon ca. CaCo-2
21.5



Colon cancer tissue
7.6



Colon ca. SW1116
4.0



Colon ca. Colo-205
7.4



Colon ca. SW-48
9.7



Colon Pool
3.4



Small Intestine Pool
1.5



Stomach Pool
1.2



Bone Marrow Pool
1.3



Fetal Heart
1.4



Heart Pool
1.4



Lymph Node Pool
3.5



Fetal Skeletal Muscle
1.0



Skeletal Muscle Pool
4.4



Spleen Pool
1.3



Thymus Pool
1.9



CNS cancer (glio/astro) U87-MG
36.3



CNS cancer (glio/astro) U-118-MG
31.9



CNS cancer (neuro; met) SK-N-AS
7.6



CNS cancer (astro) SF-539
15.9



CNS cancer (astro) SNB-75
41.5



CNS cancer (glio) SNB-19
18.0



CNS cancer (glio) SF-295
22.4



Brain (Amygdala) Pool
2.5



Brain (cerebellum)
4.7



Brain (fetal)
1.4



Brain (Hippocampus) Pool
1.9



Cerebral Cortex Pool
1.4



Brain (Substantia nigra) Pool
3.0



Brain (Thalamus) Pool
1.9



Brain (whole)
2.6



Spinal Cord Pool
2.7



Adrenal Gland
4.0



Pituitary gland Pool
1.5



Salivary Gland
2.6



Thyroid (female)
4.4



Pancreatic ca. CAPAN2
15.4



Pancreas Pool
4.2











[0788]

270





TABLE NC










Panel 4.1D











Rel. Exp. (%)




Ag4799, Run



Tissue Name
223235948














Secondary Th1 act
23.0



Secondary Th2 act
25.7



Secondary Tr1 act
24.0



Secondary Th1 rest
4.3



Secondary Th2 rest
6.0



Secondary Tr1 rest
3.2



Primary Th1 act
15.2



Primary Th2 act
23.2



Primary Tr1 act
24.5



Primary Th1 rest
4.0



Primary Th2 rest
1.7



Primary Tr1 rest
6.9



CD45RA CD4 lymphocyte act
37.4



CD45RO CD4 lymphocyte act
26.4



CD8 lymphocyte act
22.5



Secondary CD8 lymphocyte rest
14.1



Secondary CD8 lymphocyte act
12.9



CD4 lymphocyte none
1.5



2ry Th1/Th2/Tr1_anti-CD95 CH11
5.2



LAK cells rest
10.7



LAK cells IL-2
11.4



LAK cells IL-2 + IL-12
8.2



LAK cells IL-2 + IFN gamma
7.9



LAK cells IL-2 + IL-18
16.5



LAK cells PMA/ionomycin
10.1



NK Cells IL-2 rest
13.5



Two Way MLR 3 day
8.7



Two Way MLR 5 day
12.1



Two Way MLR 7 day
7.3



PBMC rest
2.5



PBMC PWM
20.7



PBMC PHA-L
16.7



Ramos (B cell) none
35.1



Ramos (B cell) ionomycin
55.9



B lymphocytes PWM
12.7



B lymphocytes CD40L and IL-4
9.9



EOL-1 dbcAMP
17.1



EOL-1 dbcAMP PMA/ionomycin
6.9



Dendritic cells none
14.8



Dendritic cells LPS
7.1



Dendritic cells anti-CD40
14.6



Monocytes rest
5.7



Monocytes LPS
12.4



Macrophages rest
17.3



Macrophagcs LPS
5.6



HUVEC none
23.7



HUVEC starved
39.8



HUVEC IL-1beta
42.0



HUVEC IFN gamma
25.7



HUVEC TNF alpha + IFN gamma
44.8



HUVEC TNF alpha + IL4
46.3



HUVEC IL-11
12.8



Lung Microvascular EC none
100.0



Lung Microvascular EC TNFalpha + IL-
69.3



1beta



Microvascular Dermal EC none
24.0



Microsvasular Dermal EC TNFalpha + IL-
34.9



1beta



Bronchial epithelium TNFalpha + IL1beta
26.1



Small airway epithelium none
17.0



Small airway epithelium TNFalpha + IL-
31.6



1beta



Coronery artery SMC rest
39.0



Coronery artery SMC TNFalpha + IL-1beta
48.0



Astrocytes rest
15.4



Astrocytes TNFalpha + IL-1beta
16.7



KU-812 (Basophil) rest
25.2



KU-812 (Basophil) PMA/ionomycin
45.7



CCD1106 (Keratinocytes) none
44.4



CCD1106 (Keratinocytes) TNFalpha + IL-
24.0



1beta



Liver cirrhosis
2.3



NCI-H292 none
20.4



NCI-H292 IL-4
38.2



NCI-H292 IL-9
40.6



NCI-H292 IL-13
39.0



NCI-H292 IFN gamma
44.8



HPAEC none
13.4



HPAEC TNF alpha + IL-1 beta
54.7



Lung fibroblast none
30.6



Lung fibroblast TNF alpha + IL-1 beta
33.0



Lung fibroblast IL-4
33.4



Lung fibroblast IL-9
45.4



Lung fibroblast IL-13
37.1



Lung fibroblast IFN gamma
41.8



Dermal fibroblast CCD1070 rest
55.9



Dermal fibroblast CCD1070 TNF alpha
40.9



Dermal fibroblast CCD1070 IL-1 beta
35.8



Dermal fibroblast IFN gamma
20.9



Dermal fibroblast IL-4
26.6



Dermal Fibroblasts rest
38.7



Neutrophils TNFa + LPS
0.3



Neutrophils rest
0.9



Colon
7.6



Lung
12.2



Thymus
3.0



Kidney
17.3











[0789] General_screening_panel_v1.4 Summary: Ag4799 Highest expression of the CG129005-01 gene is detected in breast cancer T47D cell line (CT=23.9). High levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0790] Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0791] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0792] Panel 4.1D Summary: Ag4799 Highest expression of the CG129005-01 gene is detected in lung microvascular EC cells (CT=27.3). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0793] O. NOV15a (CG132086-01): Novel Membrane Protein


[0794] Expression of gene CG132086-01 was assessed using the primer-probe set Ag4809, described in Table OA. Results of the RTQ-PCR runs are shown in Table OB.
271TABLE GAProbe Name Ag4809StartPrimersSequencesLengthPositionSEQ ID NoForward5′-gatgccacagaggagttcatt-3′216986265ProbeTET-5′-tccctqgactctactacagatgaagaaga-3′-297010266Reverse5′-ccatcacaccagccatttta-3′207057267


[0795]

272





TABLE OB










Panel 4.1D











Rel. Exp. (%)




Ag4809, Run



Tissue Name
223273407














Secondary Th1 act
49.7



Secondary Th2 act
55.5



Secondary Tr1 act
36.3



Secondary Th1 rest
12.0



Secondary Th2 rest
24.7



Secondary Tr1 rest
14.1



Primary Th1 act
20.6



Primary Th2 act
32.1



Primary Tr1 act
34.2



Primary Th1 rest
9.8



Primary Th2 rest
8.0



Primary Tr1 rest
18.2



CD45RA CD4 lymphocyte act
50.7



CD45RO CD4 lymphocyte act
48.3



CD8 lymphocyte act
38.4



Secondary CD8 lymphocyte rest
35.4



Secondary CD8 lymphocyte act
16.0



CD4 lymphocyte none
9.9



2ry Th1/Th2/Tr1_anti-CD95 CH11
27.2



LAK cells rest
24.8



LAK cells IL-2
25.9



LAK cells IL-2 + IL-12
14.7



LAK cells IL-2 + IFN gamma
16.6



LAK cells IL-2 + IL-18
23.2



LAK cells PMA/ionomycin
33.9



NK Cells IL-2 rest
30.1



Two Way MLR 3 day
29.3



Two Way MLR 5 day
32.1



Two Way MLR 7 day
18.7



PBMC rest
8.5



PBMC PWM
31.6



PBMC PHA-L
33.0



Ramos (B cell) none
29.1



Ramos (B cell) ionomycin
36.9



B lymphocytes PWM
41.8



B lymphocytes CD40L and IL-4
37.6



EOL-1 dbcAMP
21.0



EOL-1 dbcAMP PMA/ionomycin
27.7



Dendritic cells none
29.3



Dendritic cells LPS
24.5



Dendritic cells anti-CD40
21.2



Monocytes rest
15.4



Monocytes LPS
100.0



Macrophages rest
22.7



Macrophages LPS
21.9



HUVEC none
17.3



HUVEC starved
30.8



HUVEC IL-1beta
27.2



HUVEC IFN gamma
34.6



HUVEC TNF alpha + IFN gamma
24.8



HUVEC TNF alpha + IL4
26.4



HUVEC IL-11
19.9



Lung Microvascular EC none
36.6



Lung Microvascular EC TNFalpha + IL-
29.9



1beta



Microvascular Dermal EC none
26.6



Microsvasular Dermal EC TNFalpha + IL-
24.8



1beta



Bronchial epithelium TNFalpha +
31.2



IL1beta



Small airway epithelium none
16.8



Small airway epithelium TNFalpha + IL-
27.0



1beta



Coronery artery SMC rest
17.7



Coronery artery SMC TNFalpha + IL-
26.2



1beta



Astrocytes rest
13.4



Astrocytes TNFalpha + IL-1beta
13.3



KU-812 (Basophil) rest
59.0



KU-812 (Basophil) PMA/ionomycin
97.9



CCD1106 (Keratinocytes) none
25.3



CCD1106 (Keratinocytes) TNFalpha + IL-
29.3



1beta



Live cirrhosis
6.7



NCI-H292 none
12.5



NCI-H292 IL-4
20.6



NCI-H292 IL-9
22.1



NCI-H292 IL-13
22.1



NCI-H292 IFN gamma
12.7



HPAEC none
15.5



HPAEC TNF alpha + IL-1 beta
51.4



Lung fibroblast none
37.9



Lung fibroblast TNF alpha + IL-1 beta
36.9



Lung fibroblast IL-4
14.7



Lung fibroblast IL-9
15.8



Lung fibroblast IL-13
18.6



Lung fibroblast IFN gamma
25.3



Dermal fibroblast CCD1070 rest
51.4



Dermal fibroblast CCD1070 TNF alpha
84.1



Dermal fibroblast CCD1070 IL-1 beta
52.1



Dermal fibroblast IFN gamma
15.0



Dermal fibroblast IL-4
33.2



Dermal Fibroblasts rest
17.7



Neutrophils TNFa + LPS
11.7



Neutrophils rest
12.5



Colon
6.8



Lung
11.6



Thymus
32.8



Kidney
9.8











[0796] General_screening_panel_v1.4 Summary: Ag4809 Results from one experiment with the CG132086-01 gene are not included. The amp plot indicates that there were experimental difficulties with this run.


[0797] Panel 4.1D Summary: Ag4809 Highest expression of the CG132086-01 gene is detected in LPS treated monocytes and PMA/ionomycin treated basophils (CTs=29.5). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This expression pattern suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0798] P. NOV16a and NOV16b (CG132297-01 and CG132297-02): Elastin


[0799] Expression of gene CG132297-01 and CG132297-02 was assessed using the primer-probe set Ag7016, described in Table PA. Results of the RTQ-PCR runs are shown in Tables PB, PC and PD. Please note that CG132297-01 represents a full-length physical clone.
273TABLE PAProbe Name Ag7016StartPrimersSequencesLengthPositionSEQ ID NoForward5′-gctgccactccgtatttagct-3′21101268ProbeTET-5′-agctggaggtatacctccaaggcccc-3′-26136269TAMRAReverse5′-ggagggcttggagttcc-3′17170270


[0800]

274





TABLE PB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag7016, Run



Tissue Name
282263005














AD 1 Hippo
29.3



AD 2 Hippo
50.3



AD 3 Hippo
13.8



AD 4 Hippo
39.8



AD 5 Hippo
43.2



AD 6 Hippo
77.9



Control 2 Hippo
42.9



Control 4 Hippo
55.9



Control (Path) 3 Hippo
19.8



AD 1 Temporal Ctx
30.1



AD 2 Temporal Ctx
55.1



AD 3 Temporal Ctx
7.2



AD 4 Temporal Ctx
55.1



AD 5 Inf Temporal Ctx
57.8



AD 5 Sup Temporal Ctx
68.8



AD 6 Inf Temporal Ctx
68.3



AD 6 Sup Temporal Ctx
100.0



Control 1 Temporal Ctx
14.7



Control 2 Temporal Ctx
34.2



Control 3 Temporal Ctx
11.6



Control 3 Temporal Ctx
45.7



Control (Path) 1 Temporal Ctx
71.2



Control (Path) 2 Temporal Ctx
31.2



Control (Path) 3 Temporal Ctx
24.5



Control (Path) 4 Temporal Ctx
24.1



AD 1 Occipital Ctx
31.4



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
9.2



AD 4 Occipital Ctx
59.5



AD 5 Occipital Ctx
77.9



AD 6 Occipital Ctx
81.2



Control 1 Occipital Ctx
14.7



Control 2 Occipital Ctx
26.8



Control 3 Occipital Ctx
21.3



Control 4 Occipital Ctx
66.4



Control (Path) 1 Occipital Ctx
36.3



Control (Path) 2 Occipital Ctx
22.7



Control (Path) 3 Occipital Ctx
18.6



Control (Path) 4 Occipital Ctx
29.3



Control 1 Parietal Ctx
30.1



Control 2 Parietal Ctx
67.4



Control 3 Parietal Ctx
20.3



Control (Path) 1 Parietal Ctx
35.6



Control (Path) 2 Parietal Ctx
47.6



Control (Path) 3 Parietal Ctx
27.2



Control (Path) 4 Parietal Ctx
58.6











[0801]

275





TABLE PC










General_screening_panel_v1.6











Rel. Exp. (%)




Ag7016, Run



Tissue Name
282263474














Adipose
9.9



Melanoma* Hs688(A).T
42.0



Melanoma* Hs688(B).T
21.8



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.0



Testis Pool
5.3



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
4.4



Placenta
6.9



Uterus Pool
2.7



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.1



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.1



Ovary
3.8



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
4.6



Trachea
7.0



Lung
1.3



Fetal Lung
100.0



Lung ca. NCI-N417
27.9



Lung ca. LX-1
0.1



Lung ca. NCI-H146
0.2



Lung ca. SHP-77
1.3



Lung ca. A549
0.1



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
0.2



Fetal Liver
2.9



Liver ca. HepG2
0.1



Kidney Pool
10.2



Fetal Kidney
5.3



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.1



Bladder
6.0



Gastric ca. (liver met.) NCI-N87
0.1



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.1



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon cancer tissue
7.6



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.2



Colon ca. SW-48
0.2



Colon Pool
7.6



Small Intestine Pool
6.7



Stomach Pool
3.7



Bone Marrow Pool
6.2



Fetal heart
21.0



Heart Pool
3.3



Lymph Node Pool
8.5



Fetal Skeletal Muscle
10.6



Skeletal Muscle Pool
1.1



Spleen Pool
3.2



Thymus Pool
3.0



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
6.9



CNS cancer (neuro; met) SK-N-AS
0.8



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.1



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
0.4



Brain (cerebellum)
5.1



Brain (fetal)
2.6



Brain (Hippocampus) Pool
1.3



Cerebral Cortex Pool
0.7



Brain (Substantia nigra) Pool
0.6



Brain (Thalamus) Pool
0.6



Brain (whole)
1.2



Spinal Cord Pool
2.5



Adrenal Gland
1.9



Pituitary gland Pool
0.7



Salivary Gland
1.4



Thyroid (female)
0.6



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
1.7











[0802]

276





TABLE PD










Panel 4.1D











Rel. Exp. (%)




Ag7016, Run



Tissue Name
282263182














Secondary Th1 act
0.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
15.6



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.0



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
0.0



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0



LAK cells rest
0.0



LAK cells IL-2
0.0



LAK cells IL-2 + IL-12
0.0



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.0



LAK cells PMA/ionomycin
0.0



NK Cells IL-2 rest
0.0



Two Way MLR 3 day
0.0



Two Way MLR 5 day
0.0



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.0



PBMC PHA-L
0.0



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
0.2



EOL-1 dbcAMP
0.0



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
0.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.0



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
0.0



Macrophages LPS
0.0



HUVEC none
0.0



HUVEC starved
0.1



HUVEC IL-1beta
0.0



HUVEC IFN gamma
0.0



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.0



Lung Microvascular EC none
0.5



Lung Microvascular EC TNFalpha + IL-
0.0



1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC TNFalpha +
0.0



IL-1beta



Bronchial epithelium TNFalpha +
0.0



IL1beta



Small airway epithelium none
0.2



Small airway epithelium TNFalpha +
0.0



IL-1beta



Coronery artery SMC rest
0.4



Coronery artery SMC TNFalpha + IL-
0.1



1beta



Astrocytes rest
7.9



Astrocytes TNFalpha + IL-1beta
27.4



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
0.0



CCD1106 (Keratinocytes) TNFalpha +
0.0



IL-1beta



Liver cirrhosis
2.4



NCI-H292 none
0.0



NCI-H292 IL-4
0.0



NCI-H292 IL-9
0.0



NCI-H292 IL-13
0.0



NCI-H292 IFN gamma
0.0



HPAEC none
0.1



HPAEC TNF alpha + IL-1beta
0.1



Lung fibroblast none
4.5



Lung fibroblast TNF alpha + IL-1 beta
22.2



Lung fibroblast IL-4
6.0



Lung fibroblast IL-9
6.8



Lung fibroblast IL-13
7.9



Lung fibroblast IFN gamma
7.9



Dermal fibroblast CCD1070 rest
47.0



Dermal fibroblast CCD1070 TNF alpha
46.0



Dermal fibroblast CCD1070 IL-1 beta
100.0



Dermal fibroblast IFN gamma
0.6



Dermal fibroblast IL-4
1.6



Dermal Fibroblasts rest
1.1



Neutrophils TNFa + LPS
0.0



Neutrophils rest
0.0



Colon
0.7



Lung
6.4



Thymus
0.2



Kidney
0.5











[0803] CNS_neurodegeneration_v1.0 Summary: Ag7016 This panel confirms the expression of the CG 132297-01 gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.6 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.


[0804] General_screening_panel_v1.6 Summary: Ag7016 Highest expression of the CG132297-01 gene of this gene is detected in fetal lung (CT=26.3). Interestingly, this gene is expressed at much higher levels in fetal (CTs=26-31) when compared to adult lung and liver (CT=32-35). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung and liver, respectively. In addition, the relative overexpression of this gene in fetal tissues suggests that the elastin encoded by this gene may enhance growth or development of lung and liver in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the elastin encoded by this gene could be useful in treatment of lung and liver related diseases.


[0805] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0806] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0807] Moderate levels of expression of this gene is also seen in colon cancer and in number of cancer cell lines derived from melanoma, brain, and lung cancer cell lines. Therefore, therapeutic modulation of the elastin encoded by this gene may be useful in the treatment of melanoma, colon, brain and lung cancer.


[0808] Panel 4.1D Summary: Ag7016 Highest expression of the CG132297-01 gene of this gene is detected in IL-1 beta treated dermal fibroblasts CCD1070 (CT=28.1). In addition, moderate to low levels of expression of this gene is also seen in dermal and lung fibroblasts, activated CD45RA CD4 lymphocyte and lung. CD45RA CD4 lymphocytes represent activated naive T cells. In activated memory cells (CD45RO CD4 lymphocyte) or CD4 Th1 or Th2 cells, resting CD4 cells (CTs=40), the expression of this gene is strongly down regulated suggesting a role for this putative protein in differentiation or activation of naive T cells. Therefore, modulation of the expression and/or activity of this putative protein encoded by this gene might be beneficial for the control of autoimmune diseases and T cell mediated diseases such as COPD, emphysema, atopic asthma, asthma, arthritis, psoriasis, IBD and allergy.


[0809] Q. NOV17a (CG132343-01): Novel Transmembrane Protein.


[0810] Expression of gene CGI132343-01 was assessed using the primer-probe set Ag4819, described in Table QA. Results of the RTQ-PCR runs are shown in Tables QB and QC.
277TABLE PAProbe Name Ag4819StartPrimersSequencesLengthPositionSEQ ID NoForward5′-gagttacccatacaccggctat-3′2288271ProbeTET-5′-atttcacggccaggagagtcctcttt-3′-26110272TAMRAReverse5′-taaqgatgatgcccatacaaag-3′22163273


[0811]

278





TABLE QB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag4819, Run



Tissue Name
228783855














Adipose
0.2



Melanoma* Hs688(A).T
0.8



Melanoma* Hs688(B).T
1.0



Melanoma* M14
1.3



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.1



Squamous cell carcinoma SCC-4
0.1



Testis Pool
12.8



Prostate ca.* (bone met) PC-3
0.3



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.2



Ovarian ca. OVCAR-3
1.0



Ovarian ca. SK-OV-3
2.3



Ovarian ca. OVCAR-4
0.4



Ovarian ca. OVCAR-5
0.7



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
0.6



Breast ca. MCF-7
0.6



Breast ca. MDA-MB-231
2.0



Breast ca. BT 549
1.0



Breast ca. T47D
100.0



Breast ca. MDA-N
1.1



Breast Pool
0.0



Trachea
0.0



Lung
0.7



Fetal Lung
0.7



Lung ca. NCI-N417
0.3



Lung ca. LX-I
2.4



Lung ca. NCI-H146
0.3



Lung ca. SHP-77
1.0



Lung ca. A549
0.9



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
2.1



Lung ca. NCI-H460
2.9



Lung ca. HOP-62
0.6



Lung ca. NCI-H522
1.2



Liver
0.2



Fetal Liver
0.7



Liver ca. HepG2
1.2



Kidney Pool
2.1



Fetal Kidney
0.6



Renal ca. 786-0
0.4



Renal ca. A498
0.9



Renal ca. ACHN
0.0



Renal ca. UO-31
0.5



Renal ca. TK-10
2.5



Bladder
0.5



Gastric ca. (liver met.) NCI-N87
2.9



Gastric ca. KATO III
0.6



Colon ca. SW-948
0.0



Colon ca. SW480
1.1



Colon ca.* (SW480 met) SW620
2.1



Colon ca. HT29
0.2



Colon ca. HCT-116
2.3



Colon ca. CaCo-2
4.4



Colon cancer tissue
0.9



Colon ca. SW1116
1.5



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.9



Small Intestine Pool
0.2



Stomach Pool
0.5



Bone Marrow Pool
0.0



Fetal Heart
0.5



Heart Pool
0.5



Lymph Node Pool
0.6



Fetal Skeletal Muscle
0.5



Skeletal Muscle Pool
0.1



Spleen Pool
0.5



Thymus Pool
0.7



CNS cancer (glio/astro) U87-MG
1.1



CNS cancer (glio/astro) U-118-MG
3.9



CNS cancer (neuro; met) SK-N-AS
2.5



CNS cancer (astro) SF-539
1.0



CNS cancer (astro) SNB-75
5.0



CNS cancer (glio) SNB-19
0.3



CNS cancer (glio) SF-295
4.7



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
2.4



Brain (fetal)
0.5



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.2



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
1.6



Brain (whole)
0.2



Spinal Cord Pool
0.3



Adrenal Gland
0.3



Pituitary gland Pool
0.3



Salivary Gland
0.0



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.6



Pancreas Pool
0.8











[0812]

279





TABLE QC










Panel 4.1D











Rel. Exp. (%)




Ag4819, Run



Tissue Name
223302997














Secondary Th1 act
57.4



Secondary Th2 act
25.7



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
26.1



Primary Th1 rest
7.6



Primary Th2 rest
0.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
28.7



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
70.7



Secondary CD8 lymphocyte rest
64.6



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
19.5



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0



LAK cells rest
14.5



LAK cells IL-2
45.1



LAK cells IL-2 + IL-12
22.1



LAK cells IL-2 + IFN gamma
40.1



LAK cells IL-2 + IL-18
0.0



LAK cells PMA/ionomycin
20.3



NK Cells IL-2 rest
50.7



Two Way MLR 3 day
0.0



Two Way MLR 5 day
32.1



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
44.1



PBMC PHA-L
0.0



Ramos (B cell) none
15.5



Ramos (B cell) ionomycin
50.7



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
8.8



EOL-1 dbcAMP
46.7



EOL-1 dbcAMP PMA/ionomycin
27.2



Dendritic cells none
38.7



Dendritic cells LPS
34.2



Dendritic cells anti-CD40
15.2



Monocytes rest
18.9



Monocytes LPS
8.8



Macrophages rest
29.5



Macrophages LPS
0.0



HUVEC none
0.0



HUVEC starved
0.0



HUVEC IL-1beta
33.7



HUVEC IFN gamma
55.9



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
13.4



HUVEC IL-11
0.0



Lung Microvascular EC none
51.4



Lung Microvascular EC TNFalpha + IL-
0.0



1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC TNFalpha +
0.0



IL-1beta



Bronchial epithelium TNFalpha +
15.4



IL1beta



Small airway epithelium none
15.2



Small airway epithelium TNFalpha +
61.6



IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMC TNFalpha + IL-
0.0



1beta



Astrocytes rest
51.1



Astrocytes TNFalpha + IL-1beta
14.4



KU-812 (Basophil) rest
25.3



KU-812 (Basophil) PMA/ionomycin
51.1



CCD1106 (Keratinocytes) none
18.2



CCD1106 (Keratinocytes) TNFalpha +
55.1



IL-1beta



Liver cirrhosis
0.0



NCI-H292 none
17.7



NCI-H292 IL-4
16.6



NCI-H292 IL-9
14.6



NCI-H292 IL-13
31.0



NCI-H292 IFN gamma
30.4



HPAEC none
0.0



HPAEC TNF alpha + IL-1 beta
12.1



Lung fibroblast none
23.2



Lung fibroblast TNF alpha + IL-1 beta
0.0



Lung fibroblast IL-4
42.0



Lung fibroblast IL-9
47.3



Lung fibroblast IL-13
30.8



Lung fibroblast IFN gamma
36.3



Dermal fibroblast CCD1070 rest
27.7



Dermal fibroblast CCD1070 TNF alpha
28.1



Dermal fibroblast CCD1070 IL-1 beta
10.2



Dermal fibroblast IFN gamma
15.7



Dermal fibroblast IL-4
34.2



Dermal Fibroblasts rest
22.5



Neutrophils TNFa + LPS
0.0



Neutrophils rest
0.0



Colon
0.0



Lung
0.0



Thymus
0.0



Kidney
100.0











[0813] General_screening_panel_v1.5 Summary: Ag4819 Expression of this gene is restricted to a few samples in this panel, with highest expression in a breast cancer cell line (CT=29). Low, but significant levels of expression are seen in cell lines derived from brain, renal and gastric cancers, as well as in normal testis. Thus, the expression of this gene could be used to distinguish the breast cancer cell line sample from other samples on this panel, and as a marker of breast cancer. In addition, therapeutic modulation of this gene or its protein product may be useful in the treatment of breast, gastric, renal and brain cancers.


[0814] Panel 4.1D Summary: Ag4819 This gene is only expressed at detectable levels in the kidney (CT=34.5). Thus, expression of this gene could be used to differentiate the kidney derived sample from other samples on this panel and as a marker of kidney tissue. In addition, therapeutic targeting of the expression or function of this gene may modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.


[0815] R. NOV18a (CG132423-01): Pregnancy-specific Beta-1-glycoprotein 2 Precursor.


[0816] Expression of gene CG132423-01 was assessed using the primer-probe set Ag7021, described in Table RA.
280TABLE RAProbe Name Ag7021StartPrimersSequencesLengthPositionSEQ ID NoForward5′-aggtccctgatttggacaag-3′20848274ProbeTET-5′-aagaacatccttcccctcggacactt-3′-26871275TAMRAReverse5′-ctgcccaagtcatgattgaa-3′20910276


[0817] CNS_neurodegeneration_v1.0 Summary: Ag7021 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0818] General_screening_panel_v1.6 Summary: Ag7021 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0819] Panel 4.1D Summary: Ag7021 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0820] S. Nov19a and NOV19b (CG132541-01 and CG132541-02): Protocadherin 16 Precursor.


[0821] Expression of gene CG132541 -01 and CG132541-02 was assessed using the primer-probe sets Ag1076, Ag1311, Ag482, and Ag6709 described in Tables SA, SB, SC, and SD. Results of the RTQ-PCR runs are shown in Tables SE, SF, SG, SH, SI, SJ, SK and SL. Please note that probe and primer set Ag6709 is specific for CG132541-01 and probe Ag482 is specific for CG132541-02.
281TABLE SAProbe Name Ag1076StartPrimersSequencesLengthPositionSEQ ID NoForward5′-tgacagacactgtggtgcttag-3′226228277ProbeTET-5′-accatccactgcactcacagaaaagg-3′-266187278TAMRAReverse5′-agagaacagtgtcccagctaca-3′226165279


[0822]

282






TABLE SB










Probe Name Ag1311
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-tccagtacctgagctggtagtt-3′
22
1016
280






Probe
TET-5′-tggaccgagagaaccgctcacactat-3′-
26
1048
281



TAMRA





Reverse
5′-atcataggcctccagctgtag-3′
21
1077
282










[0823]

283






TABLE SC










Probe Name Ag482
















Start
SEQ ID



Primers
Sequences
Length
Position
No















Forward
5′-acagtgcttgtggaggatgtca-3′
22
7497
283






Probe
TET-5′-aatgcacctgccttctcacagagcctc-3′-
27
7524
284



TAMRA





Reverse
5′-gctcaagcagcattacctggt-3′
21
7552
285










[0824]

284






TABLE SD










Probe Name Ag6709
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-tcatcgacaccaatgacaatc-3′
21
6800
286






Probe
TET-5′-ctgacactcggagctcccagggtt-3′-
24
6836
287



TAMRA





Reverse
5′-acacatggcttgccatctt-3′
19
6860
288










[0825]

285





TABLE SE










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag1311, Run



Tissue Name
273207795














AD 1 Hippo
27.0



AD 2 Hippo
44.4



AD 3 Hippo
15.7



AD 4 Hippo
21.3



AD 5 Hippo
75.8



AD 6 Hippo
100.0



Control 2 Hippo
41.2



Control 4 Hippo
33.9



Control (Path) 3 Hippo
20.7



AD 1 Temporal Ctx
31.2



AD 2 Temporal Ctx
48.3



AD 3 Temporal Ctx
16.3



AD 4 Temporal Ctx
35.4



AD 5 Inf Temporal Ctx
91.4



AD 5 Sup Temporal Ctx
50.3



AD 6 Inf Temporal Ctx
82.4



AD 6 Sup Temporal Ctx
88.9



Control 1 Temporal Ctx
36.3



Control 2 Temporal Ctx
64.6



Control 3 Temporal Ctx
33.2



Control 3 Temporal Ctx
28.9



Control (Path) 1 Temporal Ctx
72.2



Control (Path) 2 Temporal Ctx
45.7



Control (Path) 3 Temporal Ctx
24.7



Control (Path) 4 Temporal Ctx
47.3



AD 1 Occipital Ctx
27.2



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
24.1



AD 4 Occipital Ctx
22.5



AD 5 Occipital Ctx
52.1



AD 6 Occipital Ctx
21.5



Control 1 Occipital Ctx
30.1



Control 2 Occipital Ctx
61.1



Control 3 Occipital Ctx
39.0



Control 4 Occipital Ctx
25.3



Control (Path) 1 Occipital Ctx
90.1



Control (Path) 2 Occipital Ctx
16.7



Control (Path) 3 Occipital Ctx
18.6



Control (Path) 4 Occipital Ctx
20.7



Control 1 Parietal Ctx
31.6



Control 2 Parietal Ctx
59.0



Control 3 Parietal Ctx
31.0



Control (Path) 1 Parietal Ctx
77.4



Control (Path) 2 Parietal Ctx
38.7



Control (Path) 3 Parietal Ctx
24.5



Control (Path) 4 Parietal Ctx
55.9











[0826]

286





TABLE SF










General_screening_panel_v1.4











Rel. Exp. (%)




Ag1311, Run



Tissue Name
213323270














Adipose
7.6



Melanoma* Hs688(A).T
16.4



Melanoma* Hs688(B).T
1.0



Melanoma* M14
2.2



Melanoma* LOXIMVI
0.1



Melanoma* SK-MEL-5
0.3



Squamous cell carcinoma SCC-4
0.1



Testis Pool
0.8



Prostate ca.* (bone met) PC-3
0.1



Prostate Pool
6.0



Placenta
17.8



Uterus Pool
6.3



Ovarian ca. OVCAR-3
1.1



Ovarian ca. SK-OV-3
12.2



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.2



Ovarian ca. IGROV-1
2.9



Ovarian ca. OVCAR-8
0.2



Ovary
21.5



Breast ca. MCF-7
0.1



Breast ca. MDA-MB-231
0.3



Breast ca. BT 549
1.1



Breast ca. T47D
0.1



Breast ca. MDA-N
0.3



Breast Pool
45.7



Trachea
7.0



Lung
2.6



Fetal Lung
43.8



Lung ca. NCI-N417
0.1



Lung ca. LX-1
0.9



Lung ca. NCI-H146
10.2



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
4.4



Lung ca. NCI-H23
2.5



Lung ca. NCI-H460
0.6



Lung ca. HOP-62
0.4



Lung ca. NCI-H522
1.9



Liver
1.1



Fetal Liver
0.0



Liver ca. HepG2
0.0



Kidney Pool
67.8



Fetal Kidney
14.5



Renal ca. 786-0
0.2



Renal ca. A498
0.1



Renal ca. ACHN
0.6



Renal ca. UO-31
0.2



Renal ca. TK-10
0.0



Bladder
5.1



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.1



Colon ca. SW480
0.4



Colon ca.* (SW480 met) SW620
0.4



Colon ca. HT29
0.1



Colon ca. HCT-116
0.2



Colon ca. CaCo-2
0.9



Colon cancer tissue
10.1



Colon ca. SW1116
0.2



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.1



Colon Pool
59.0



Small Intestine Pool
29.5



Stomach Pool
21.0



Bone Marrow Pool
17.2



Fetal Heart
23.0



Heart Pool
16.6



Lymph Node Pool
52.1



Fetal Skeletal Muscle
13.6



Skeletal Muscle Pool
2.8



Spleen Pool
8.4



Thymus Pool
19.3



CNS cancer (glio/astro) U87-MG
0.4



CNS cancer (glio/astro) U-118-MG
5.8



CNS cancer (neuro; met) SK-N-AS
46.0



CNS cancer (astro) SF-539
4.1



CNS cancer (astro) SNB-75
2.5



CNS cancer (glio) SNB-19
3.1



CNS cancer (glio) SF-295
33.2



Brain (Amygdala) Pool
3.3



Brain (cerebellum)
17.1



Brain (fetal)
100.0



Brain (Hippocampus) Pool
5.2



Cerebral Cortex Pool
5.6



Brain (Substantia nigra) Pool
5.9



Brain (Thalamus) Pool
4.5



Brain (whole)
14.1



Spinal Cord Pool
2.1



Adrenal Gland
4.4



Pituitary gland Pool
0.4



Salivary Gland
0.8



Thyroid (female)
2.5



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
27.4











[0827]

287





TABLE SG










HASS Panel v1.0











Rel. Exp. (%)



Tissue
Ag1311, Run



Name
268362648














MCF-7 C1
0.1



MCF-7 C2
0.0



MCF-7 C3
0.0



MCF-7 C4
0.1



MCF-7 C5
0.0



MCF-7 C6
0.1



MCF-7 C7
0.0



MCF-7 C9
0.0



MCF-7 C10
0.0



MCF-7 C11
0.0



MCF-7 C12
0.0



MCF-7 C13
0.0



MCF-7 C15
0.0



MCF-7 C16
0.0



MCF-7 C17
0.1



T24 D1
3.2



T24 D2
3.0



T24 D3
3.6



T24 D4
4.5



T24 D5
1.9



T24 D6
3.1



T24 D7
1.4



T24 D9
1.7



T24 D10
1.7



T24 D11
1.3



T24 D12
1.8



T24 D13
1.1



T24 D15
3.4



T24 D16
1.6



T24 D17
2.0



CAPaN B1
0.0



CAPaN B2
0.0



CAPaN B3
0.0



CAPaN B4
0.0



CAPaN B5
0.1



CAPaN B6
0.1



CAPaN B7
0.0



CAPaN B8
0.0



CAPaN B9
0.0



CAPaN B10
0.2



CAPaN B11
0.0



CAPaN B12
0.0



CAPaN B13
0.0



CAPaN B14
0.0



CAPaN B15
0.0



CAPaN B16
0.0



CAPaN B17
0.1



U87-MG F1 (B)
0.2



U87-MG F2
0.9



U87-MG F3
1.5



U87-MG F4
0.5



U87-MG F5
2.4



U87-MG F6
1.1



U87-MG F7
0.9



U87-MG F8
1.4



U87-MG F9
1.0



U87-MG F10
0.8



U87-MG F11
0.6



U87-MG F12
0.3



U87-MG F13
1.4



U87-MG F14
1.5



U87-MG F15
0.9



U87-MG F16
1.4



U87-MG F17
1.9



LnCAP A1
0.3



LnCAP A2
0.6



LnCAP A3
0.2



LnCAP A4
0.5



LnCAP A5
0.7



LnCAP A6
0.1



LnCAP A7
0.9



LnCAP A8
1.3



LnCAP A9
0.3



LnCAP A10
0.1



LnCAP A11
2.4



LnCAP A12
0.1



LnCAP A13
0.1



LnCAP A14
0.7



LnCAP A15
0.4



LnCAP A16
0.4



LnCAP A17
1.3



Primary Astrocytes
29.1



Primary Renal Proximal Tubule
0.1



Epithelial cell A2



Primary melanocytes A5
2.8



126443-341 medullo
2.3



126444-487 medullo
77.4



126445-425 medullo
3.4



126446-690 medullo
90.8



126447-54 adult glioma
0.2



126448-245 adult glioma
6.0



126449-317 adult glioma
38.4



126450-212 glioma
100.0



126451-456 glioma
27.4











[0828]

288





TABLE SH










Oncology_cell_line_screening_panel_v3.2











Rel. Exp. (%)




Ag1311, Run



Tissue Name
264977450














94905_Daoy_Medulloblastoma/
1.0



Cerebellum_sscDNA



94906_TE671_Medulloblastoma/
15.4



Cerebellum_sscDNA



94907_D283 Med_Medulloblastoma/
4.7



Cerebellum_sscDNA



94908_PFSK-1_Primitive Neuroectodermal/
1.1



Cerebellum_sscDNA



94909_XF-498_CNS_sscDNA
2.0



94910_SNB-78_CNS/glioma_sscDNA
0.0



94911_SF-268_CNS/glioblastoma_sscDNA
0.9



94912_T98G_Glioblastoma_sscDNA
0.6



96776_SK-N-SH_Neuroblastoma
16.2



(metastasis)_sscDNA



94913_SF-295_CNS/glioblastoma_sscDNA
10.2



132565_NT2 pool_sscDNA
4.2



94914_Cerebellum_sscDNA
5.7



96777_Cerebellum_sscDNA
8.9



94916_NCI-H292_Mucoepidermoid lung
0.5



carcinoma_sscDNA



94917_DMS-114_Small cell lung
7.7



cancer_sscDNA



94918_DMS-79_Small cell lung
100.0



cancer/neuroendocrine_sscDNA



94919_NCI-H146_Small cell lung
24.3



cancer/neuroendocrine_sscDNA



94920_NCI-H526_Small cell lung
11.4



cancer/neuroendocrine_sscDNA



94921_NCI-N417_Small cell lung
0.0



cancer/neuroendocrine_sscDNA



94923_NCI-H82_Small cell lung
28.5



cancer/neuroendocrine_sscDNA



94924_NCI-H157_Squamous cell
0.4



lung cancer (metastasis)_sscDNA



94925_NCI-H1155_Large cell lung
25.3



cancer/neuroendocrine_sscDNA



94926_NCI-H1299_Large cell lung
0.3



cancer/neuroendocrine_sscDNA



94927_NCI-H727_Lung carcinoid
0.2



sscDNA



94928_NCI-UMC-11_Lung carcinoid
0.8



sscDNA



94929_LX-1_Small cell lung
0.2



cancer_sscDNA



94930_Colo-205_Colon cancer_sscDNA
0.0



94931_KM12_Colon cancer_sscDNA
0.1



94932_KM20L2_Colon cancer_sscDNA
0.1



94933_NCI-H716_Colon cancer_sscDNA
0.5



94935_SW-48_Colon adenocarcinoma
0.0



sscDNA



94936_SW1116_Colon
0.6



adenocarcinoma_sscDNA



94937_LS 174T_Colon
0.1



adenocarcinoma_sscDNA



94938_SW-948_Colon
0.0



adenocarcinoma_sscDNA



94939_SW-480_Colon
0.0



adenocarcinoma_sscDNA



94940_NCI-SNU-5_Gastric
0.1



carcinoma_sscDNA



112197_KATO III_Stomach_sscDNA
0.0



94943_NCI-SNU-16_Gastric
0.0



carcinoma_sscDNA



94944_NCI-SNU-1_Gastric
0.1



carcinoma_sscDNA



94946_RF-1_Gastric
0.3



adenocarcinoma_sscDNA



94947_RF-48_Gastric
0.4



adenocarcinoma_sscDNA



96778_MKN-45_Gastric
0.0



carcinoma_sscDNA



94949_NCI-N87_Gastric
0.0



carcinoma_sscDNA



94951_OVCAR-5_Ovarian
0.0



carcinoma_sscDNA



94952_RL95-2_Uterine
0.0



carcinoma_sscDNA



94953_HelaS3_Cervical
0.0



adenocarcinoma_sscDNA



94954_Ca Ski_Cervical
0.0



epidermoid carcinoma



(metastasis)_sscDNA



94955_ES-2_Ovarian clear
2.2



cell carcinoma_sscDNA



94957_Ramos/6 h stim_Stimulated
0.0



with PMA/ionomycin 6 h_sscDNA



94958_Ramos/14 h stim_Stimulated
0.2



with PMA/ionomycin 14 h_sscDNA



94962_MEG-01_Chronic myelogenous
0.3



leukemia (megokaryoblast)_sscDNA



94963_Raji_Burkitt's lymphoma
0.0



sscDNA



94964_Daudi_Burkitt's lymphoma
0.0



sscDNA



94965_U266_B-cell plasmacytoma/
0.1



myeloma_sscDNA



94968_CA46_Burkitt's lymphoma_sscDNA
0.0



94970_RL_non-Hodgkin's B-cell
0.0



lymphoma_sscDNA



94972_JM1_pre-B-cell lymphoma/
0.4



leukemia_sscDNA



94973_Jurkat_T cell leukemia_sscDNA
0.3



94974_TF-1_Erythroleukemia_sscDNA
0.0



94975_HUT 78_T-cell lymphoma_sscDNA
0.0



94977_U937_Histiocytic lymphoma
0.2



sscDNA



94980_KU-812_Myelogenous
0.1



leukemia_sscDNA



94981_769-P_Clear cell renal
0.2



carcinoma_sscDNA



94983_Caki-2_Clear cell renal
0.1



carcinoma_sscDNA



94984_SW 839_Clear cell renal
0.0



carcinoma_sscDNA



94986_G401_Wilms' tumor_sscDNA
0.2



126768_293 cells_sscDNA
1.6



94987_Hs766T_Pancreatic carcinoma
0.3



(LN metastasis)_sscDNA



94988_CAPAN-1_Pancreatic
0.0



adenocarcinoma (liver



metastasis)_sscDNA



94989_SU86.86_Pancreatic
1.0



carcinoma (liver



metastasis)_sscDNA



94990_BxPC-3_Pancreatic
0.4



adenocarcinoma_sscDNA



94991_HPAC_Pancreatic
0.0



adenocarcinoma_sscDNA



94992_MIA PaCa-2_Pancreatic
0.2



carcinoma_sscDNA



94993_CFPAC-1_Pancreatic ductal
0.1



adenocarcinoma_sscDNA



94994_PANC-1_Pancreatic
1.3



epithelioid ductal



carcinoma_sscDNA



94996_T24_Bladder carcinma
0.2



(transitional cell)_sscDNA



94997_5637_Bladder carcinoma
0.0



sscDNA



94998_HT-1197_Bladder carcinoma
0.1



sscDNA



94999_UM-UC-3_Bladder carcinma
0.0



(transitional cell)_sscDNA



95000_A204_Rhabdomyosarcoma_sscDNA
0.3



95001_HT-1080_Fibrosarcoma
0.6



sscDNA



95002_MG-63_Osteosarcoma (bone)
5.0



sscDNA



95003_SK-LMS-1_Leiomyosarcoma
3.5



(vulva)_sscDNA



95004_SJRH30_Rhabdomyosarcoma (met
6.4



to bone marrow)_sscDNA



95005_A431_Epidermoid carcinoma
0.1



sscDNA



95007_WM266-4_Melanoma_sscDNA
0.1



112195_DU 145_Prostate_sscDNA
0.0



95012_MDA-MB-468_Breast
0.1



adenocarcinoma_sscDNA



112196_SSC-4_Tongue_sscDNA
0.0



112194_SSC-9_Tongue_sscDNA
0.1



112191_SSC-15_Tongue_sscDNA
0.1



95017_CAL 27_Squamous cell
0.0



carcinoma of tongue_sscDNA











[0829]

289





TABLE SI










Panel 1











Rel. Exp. (%)




Ag482, Run



Tissue Name
121039178














Endothelial cells
21.3



Endothelial cells (treated)
17.6



Pancreas
10.4



Pancreatic ca. CAPAN2
0.0



Adrenal gland
12.2



Thyroid
5.5



Salivary gland
6.6



Pituitary gland
35.4



Brain (fetal)
49.0



Brain (whole)
10.7



Brain (amygdala)
18.0



Brain (cerebellum)
11.2



Brain (hippocampus)
14.8



Brain (substantia nigra)
11.0



Brain (thalamus)
13.6



Brain (hypothalamus)
14.9



Spinal cord
8.1



glio/astro U87-MG
0.0



glio/astro U-118-MG
2.7



astrocytoma SW1783
3.8



neuro*; met SK-N-AS
61.6



astrocytoma SF-539
1.3



astrocytoma SNB-75
0.1



glioma SNB-19
17.2



glioma U251
0.6



glioma SF-295
23.7



Heart
38.2



Skeletal muscle
8.0



Bone marrow
3.6



Thymus
20.6



Spleen
18.2



Lymph node
9.9



Colon (ascending)
19.9



Stomach
11.3



Small intestine
20.4



Colon ca. SW480
2.1



Colon ca.* SW620 (SW480 met)
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
4.5



Colon ca. HCT-15
0.0



Colon ca. HCC-2998
5.1



Gastric ca.* (liver met) NCI-N87
0.0



Bladder
15.3



Trachea
7.6



Kidney
21.6



Kidney (fetal)
33.4



Renal ca. 786-0
0.1



Renal ca. A498
0.0



Renal ca. RXF 393
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Liver
13.2



Liver (fetal)
14.2



Liver ca. (hepatoblast) HepG2
0.0



Lung
17.1



Lung (fetal)
10.2



Lung ca. (small cell) LX-1
2.6



Lung ca. (small cell) NCI-H69
1.6



Lung ca. (s. cell var.) SHP-77
0.0



Lung ca. (large cell)NCI-H460
3.0



Lung ca. (non-sm. cell) A549
0.0



Lung ca. (non-s. cell) NCI-H23
2.4



Lung ca. (non-s. cell) HOP-62
1.9



Lung ca. (non-s. cl) NCI-H522
5.4



Lung ca. (squam.) SW 900
0.0



Lung ca. (squam.) NCI-H596
1.5



Mammary gland
57.4



Breast ca.* (pl. ef) MCF-7
0.1



Breast ca.* (pl. ef) MDA-MB-231
0.1



Breast ca.* (pl. ef) T47D
0.0



Breast ca. BT-549
0.0



Breast ca. MDA-N
0.1



Ovary
100.0



Ovarian ca. OVCAR-3
4.4



Ovarian ca. OVCAR-4
0.0



ovarian ca. OVCAR-5
0.0



Ovarian ca. OVCAR-8
19.9



Ovarian ca. IGROV-1
3.3



Ovarian ca. (ascites) SK-OV-3
13.1



Uterus
17.6



Placenta
30.4



Prostate
17.2



Prostate ca.* (bone met) PC-3
0.0



Testis
22.7



Melanoma Hs688(A).T
11.7



Melanoma* (met) Hs688(B).T
3.8



Melanoma UACC-62
1.6



Melanoma M14
0.4



Melanoma LOX IMVI
0.0



Melanoma* (met) SK-MEL-5
0.0



Melanoma SK-MEL-28
0.0











[0830]

290





TABLE SJ










Panel 1.2











Rel. Exp. (%)




Ag1311, Run



Tissue Name
129674732














Endothelial cells
30.1



Heart (Fetal)
100.0



Pancreas
3.3



Pancreatic ca. CAPAN 2
0.0



Adrenal Gland
8.4



Thyroid
2.7



Salivary gland
4.8



Pituitary gland
4.8



Brain (fetal)
10.9



Brain (whole)
4.7



Brain (amygdala)
3.8



Brain (cerebellum)
4.5



Brain (hippocampus)
7.2



Brain (thalamus)
2.9



Cerebral Cortex
25.7



Spinal cord
4.2



glio/astro U87-MG
0.3



glio/astro U-118-MG
2.2



astrocytoma SW1783
1.0



neuro*; met SK-N-AS
22.5



astrocytoma SF-539
2.1



astrocytoma SNB-75
0.7



glioma SNB-19
4.6



glioma U251
0.2



glioma SF-295
0.2



Heart
36.9



Skeletal Muscle
5.8



Bone marrow
0.3



Thymus
2.2



Spleen
2.7



Lymph node
5.0



Colorectal Tissue
3.1



Stomach
9.4



Small intestine
9.3



Colon ca. SW480
0.0



Colon ca.* SW620 (SW480 met)
0.1



Colon ca. HT29
0.0



Colon ca. HCT-116
0.1



Colon ca. CaCo-2
0.4



Colon ca. Tissue (ODO3866)
4.1



Colon ca. HCC-2998
0.1



Gastric ca.* (liver met) NCI-N87
0.0



Bladder
9.3



Trachea
2.5



Kidney
7.6



Kidney (fetal)
26.8



Renal ca. 786-0
0.1



Renal ca. A498
0.1



Renal ca. RXF 393
0.0



Renal ca. ACHN
0.1



Renal ca. UO-31
0.1



Renal ca. TK-10
0.0



Liver
5.8



Liver (fetal)
3.3



Liver ca. (hepatoblast) HepG2
0.2



Lung
4.9



Lung (fetal)
7.0



Lung ca. (small cell) LX-1
0.2



Lung ca. (small cell) NCI-H69
0.9



Lung ca. (s. cell var.) SHP-77
0.0



Lung ca. (large cell) NCI-H460
1.1



Lung ca. (non-sm. cell) A549
0.1



Lung ca. (non-s. cell)NCI-H23
0.2



Lung ca. (non-s. cell) HOP-62
4.4



Lung ca. (non-s. cl) NCI-H522
1.3



Lung ca. (squam.) SW 900
0.2



Lung ca. (squam.) NCI-H596
0.6



Mammary gland
12.6



Breast ca.* (pl. ef) MCF-7
0.0



Breast ca.* (pl. ef) MDA-MB-231
0.1



Breast ca.* (pl. ef) T47D
0.0



Breast ca. BT-549
0.1



Breast ca. MDA-N
0.2



Ovary
41.5



Ovarian ca. OVCAR-3
0.3



Ovarian ca. OVCAR-4
0.1



Ovarian ca. OVCAR-5
0.1



Ovarian ca. OVCAR-8
1.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. (ascites) SK-OV-3
4.0



Uterus
12.4



Placenta
19.6



Prostate
7.0



Prostate ca.* (bone met) PC-3
0.1



Testis
3.2



Melanoma Hs688(A).T
4.6



Melanoma* (met) Hs688(B).T
13.0



Melanoma UACC-62
0.3



Melanoma M14
0.1



Melanoma LOX IMVI
0.0



Melanoma* (met) SK-MEL-5
0.1











[0831]

291





TABLE SK










Panel 4D











Rel. Exp. (%)




Ag1311, Run



Tissue Name
138960982














Secondary Th1 act
0.4



Secondary Th2 act
2.0



Secondary Tr1 act
1.6



Secondary Th1 rest
0.2



Secondary Th2 rest
0.1



Secondary Tr1 rest
0.3



Primary Th1 act
0.7



Primary Th2 act
1.2



Primary Tr1 act
0.6



Primary Th1 rest
2.8



Primary Th2 rest
2.4



Primary Tr1 rest
0.7



CD45RA CD4 lymphocyte act
11.8



CD45RO CD4 lymphocyte act
2.2



CD8 lymphocyte act
1.4



Secondary CD8 lymphocyte rest
1.2



Secondary CD8 lymphocyte act
0.3



CD4 lymphocyte none
8.5



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.5



LAK cells rest
5.9



LAK cells IL-2
0.6



LAK cells IL-2 + IL-12
2.2



LAK cells IL-2 + IFN gamma
2.5



LAK cells IL-2 + IL-18
1.3



LAK cells PMA/ionomycin
8.5



NK Cells IL-2 rest
3.7



Two Way MLR 3 day
1.7



Two Way MLR 5 day
2.4



Two Way MLR 7 day
2.4



PBMC rest
1.4



PBMC PWM
1.2



PBMC PHA-L
1.7



Ramos (B cell) none
0.3



Ramos (B cell) ionomycin
1.4



B lymphocytes PWM
1.6



B lymphocytes CD40L and IL-4
1.0



EOL-1 dbcAMP
0.1



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
2.8



Dendritic cells LPS
0.6



Dendritic cells anti-CD40
0.9



Monocytes rest
1.0



Monocytes LPS
1.1



Macrophages rest
1.7



Macrophages LPS
1.4



HUVEC none
45.7



HUVEC starved
75.8



HUVEC IL-1beta
22.4



HUVEC IFN gamma
100.0



HUVEC TNF alpha + IFN gamma
11.7



HUVEC TNF alpha + IL4
24.5



HUVEC IL-11
38.2



Lung Microvascular EC none
54.3



Lung Microvascular EC TNFalpha + IL-
24.3



1beta



Microvascular Dermal EC none
79.0



Microsvasular Dermal EC TNFalpha +
51.4



IL-1beta



Bronchial epithelium TNFalpha +
0.0



IL1beta



Small airway epithelium none
0.0



Small airway epithelium TNFalpha +
1.2



IL-1beta



Coronery artery SMC rest
2.1



Coronery artery SMC TNFalpha + IL-
3.5



1beta



Astrocytes rest
19.3



Astrocytes TNFalpha + IL-1beta
8.2



KU-812 (Basophil) rest
0.3



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
0.7



CCD1106 (Keratinocytes) TNFalpha +
0.6



IL-1beta



Liver cirrhosis
3.3



Lupus kidney
1.4



NCI-H292 none
1.6



NCI-H292 IL-4
1.4



NCI-H292 IL-9
0.7



NCI-H292 IL-13
1.7



NCI-H292 IFN gamma
2.1



HPAEC none
56.6



HPAEC TNF alpha + IL-1 beta
41.8



Lung fibroblast none
22.4



Lung fibroblast TNF alpha + IL-1 beta
14.8



Lung fibroblast IL-4
33.4



Lung fibroblast IL-9
23.2



Lung Fibroblast IL-13
50.7



Lung fibroblast IFN gamma
52.1



Dermal fibroblast CCD1070 rest
23.5



Dermal fibroblast CCD1070 TNF alpha
19.3



Dermal fibroblast CCD1070 IL-1 beta
19.9



Dermal fibroblast IFN gamma
29.7



Dermal fibroblast IL-4
62.0



IBD Colitis 2
2.1



IBD Crohn's
2.6



Colon
20.0



Lung
75.3



Thymus
29.7



Kidney
32.5











[0832]

292





TABLE SL










general oncology screening panel_v_2.4











Rel. Exp. (%)




Ag1311, Run



Tissue Name
259733190














Colon cancer 1
10.6



Colon cancer NAT 1
7.6



Colon cancer 2
6.6



Colon cancer NAT 2
3.1



Colon cancer 3
9.4



Colon cancer NAT 3
12.9



Colon malignant cancer 4
8.2



Colon normal adjacent tissue 4
2.0



Lung cancer 1
4.3



Lung NAT 1
2.1



Lung cancer 2
50.3



Lung NAT 2
2.9



Squamous cell carcinoma 3
9.9



Lung NAT 3
0.6



metastatic melanoma 1
24.5



Melanoma 2
2.7



Melanoma 3
0.7



metastatic melanoma 4
100.0



metastatic melanoma 5
87.7



Bladder cancer 1
1.5



Bladder cancer NAT 1
0.0



Bladder cancer 2
2.8



Bladder cancer NAT 2
0.5



Bladder cancer NAT 3
0.4



Bladder cancer NAT 4
6.5



Prostate adenocarcinoma 1
43.2



Prostate adenocarcinoma 2
3.5



Prostate adenocarcinoma 3
2.7



Prostate adenocarcinoma 4
7.6



Prostate cancer NAT 5
2.9



Prostate adenocarcinoma 6
2.1



Prostate adenocarcinoma 7
5.6



Prostate adenocarcinoma 8
1.8



Prostate adenocarcinoma 9
28.7



Prostate cancer NAT 10
1.4



Kidney cancer 1
17.6



Kidney NAT 1
2.6



Kidney cancer 2
20.2



Kidney NAT 2
5.2



Kidney cancer 3
8.7



Kidney NAT 3
3.0



Kidney cancer 4
11.2



Kidney NAT 4
2.4











[0833] CNS_neurodegeneration_v1.0 Summary: Ag1311 This panel confirms the expression of this gene at moderate levels in the brain in an independent group of individuals. This gene appears to be slightly down-regulated in the temporal cortex of Alzheimer's disease patients. Therefore, up-regulation of this gene or its protein product, or treatment with specific agonists for this receptor may be of use in reversing the dementia, memory loss, and neuronal death associated with this disease. Ag6709 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0834] General_screening_panel_v1.4 Summary: Ag1311 Highest expression of this gene is seen in the fetal brain (CT=25). Thus, expression of this gene could be used to differentiate between fetal and adult brain tissue. Moderate levels of expression are seen in all regions of the CNS examined. This gene has homology to cadherin, transmembrane glycoproteins that are involved in many biological processes such as cell adhesion, cytoskeletal organization and morphogenesis. Cadherins can act as axon guidance and cell adhesion proteins, specifically during development and in the response to injury (Ranscht B. Int. J. Dev. Neurosci. 18: 643-651). Therefore, manipulation of levels of this protein may be of use in inducing a compensatory synaptogenic response to neuronal death in Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, progressive supranuclear palsy, ALS, head trauma, stroke, or any other disease/condition associated with neuronal loss.


[0835] As in Panel 1.2, this gene is expressed at high to moderate levels in metabolic tissues, including pancreas, pituitary, adipose, adrenal gland, pancreas, thyroid, liver and adult and fetal skeletal muscle, and heart. Please see Panel 1.2 for discussion of utility of this gene in metabolic disease.


[0836] Moderate levels of expression are also seen in cancer cell lines derived from melanoma, ovarian, lung, colon and brain cancers.


[0837] General_screening_panel_v1.6 Summary: Ag6709 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0838] HASS Panel v1.0 Summary: Ag1311 Highest expression of this gene is detected in glioma cells (CT=27.3). This gene is expressed at a low to moderate level in samples of brain cancer as well as primary astrocytes in culture. Expression is also slightly increased in LnCAP and U87 cells that are subjected to cell stresses such as reduced oxygen, low serum or an acidotic environment which are some of the conditions seen in tumors.


[0839] Oncology_cell_line_screening_panel_v3.2 Summary: Ag1311 Highest expression of this gene is seen in a lung cancer cell line (CT=27.5). Moderate levels of expression of this gene are also seen in a cluster of samples derived from lung cancer cell lines, bone cancer cell lines and brain cancer cell lines. Please see Panels 1.2 and 2.4 for discussion of utility of this gene in cancer.


[0840] Panel 1 Summary: Ag482 Highest expression is seen in ovary (CT=24.3), with high levels of expression in many samples on this panel including melanoma, ovarian, and brain cancer cell lines and normal lung, liver, heart, muscle, brain, pancreas, adrenal, and endothelial cells. This expression is in agreement with results of panels run with Ag1311. Please see those experiments for discussion of utility of this gene in metabolic and autoimmune disorders and cancer.


[0841] Panel 1.2 Summary: Ag1311 The protein encoded by this gene is homologous to cadherin, a cell-adhesion protein and is highly expressed in a number of samples on panel 1.2. Specifically, the highest expression is detected in fetal heart (CT value=22.6), although it is also highly expressed in adult heart. This may suggest a potential role for this gene in cardiovascular diseases such as cardiomyopathy, atherosclerosis, hypertension congenital heart defects, aortic stenosis, atrial septal defect (asd), atrioventricular (a-v) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (vsd), and valve diseases. Overall, gene expression in this panel is associated with normal tissues rather than cancel cell lines. Loss of function of the related E-cadherin protein has been described in many tumors, along with an increased invasiveness and a decreased prognosis of many carcinomas, including tumors of endocrine glands and their target systems (ref 1). Thus, this gene product might similarly be useful as a protein therapeutic to treat a variety of tumors, since it is found in normal cells but missing from cancer cells.


[0842] In addition, this gene is highly expressed in pituitary gland, adrenal gland, thyroid, pancreas, skeletal muscle, and liver, reflecting the widespread role of cadherins in cell-cell adhesion. This observation may suggest that the gene plays a role in normal metabolic and neuroendocrine function and that disregulated expression of this gene may contribute to metabolic diseases (such as obesity and diabetes) or neuroendocrine disorders.


[0843] Expression of this gene is also high in many regions of the brain, including the amygdala, thalamus, cerebellum, and cerebral cortex, with highest expression in the hippocampus. Expression is also detected in the spinal cord. Cadherins can act as axon guidance and cell adhesion proteins, specifically during development and in the response to injury (ref 2). Manipulation of levels of this protein may be of use in inducing a compensatory synaptogenic response to neuronal death in Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, progressive supranuclear palsy, ALS, head trauma, stroke, or any other disease/condition associated with neuronal loss.


[0844] Reference:


[0845] 1. Potter E., Bergwitz C., Brabant G. (1999) The cadherin-catenin system: implications for growth and differentiation of endocrine tissues. Endocr. Rev. 20: 207-239.


[0846] 2. Ranscht B. (2000) Cadherins: molecular codes for axon guidance and synapse formation. Int. J. Dev. Neurosci. 18: 643-651.


[0847] Panel 4D Summary: Ag1311 Expression of this gene is primarily in endothelial cells and in fibroblasts. However, this gene is also expressed in the kidney, thymus, lung and colon. The expression of this gene is high in normal tissue and untreated cells and is not affected by most treatments with the exception of IL-1 alpha and TNFbeta, which reduce expression of this gene by half in treated HUVECs and reduce expression 10-fold in gamma interferon treated HUVECs. Therefore, the protein encoded for by this gene may be important in normal function of endothelium and fibroblasts. Protein therapeutics designed with the protein encoded for by this transcript could reduce or block inflammation in diseases such as asthma, emphysema, allergy, arthritis, IBD and psoriasis.


[0848] Panel 4.1D Summary: Ag6709 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0849] general oncology screening panel_v2.4 Summary: Ag1311 Highest expression of this gene is seen in a sample from metastatic melanoma (CT=27). Moderate to high levels of expression are also seen samples from colon, kidney, bladder, and prostate cancers. In addition, higher levels of expression are seen in prostate, lung, and kidney cancers when compared to expression in normal adjacent tissue. This gene encodes a putative cadherin, similar to VE cadherin that shows specific expression in mesenchymal cells, fibroblasts and endothelial cells. On Panel 4 this gene shows expression in fibroblasts and endothelial cells and is induced by starvation in Huvec. Activated fibroblasts have shown to be involved in supporting tumor cells (Okada, Lab Invest 2000 November;80(11): 1617-28). Corada et al (Blood Mar 15, 2001;97(6):1679-84) has shown that there are epitopes in VE Cadherin that are only exposed upon activation of the endothelial cells, probably due to changes in cell-cell adhesions. mAbs against those epitopes have antitumor activities without inducing bleeding. Therefore, based on the expression of this gene in fibroblasts and tumors, and the homology of the protein product to cadherin, targeting of this gene product with a human monoclonal antibody that results in an inhibition of the activity of this protein, preferably as it relates to endothelial and fibroblast activation by tumor cells, may have therapeutic effect on all solid tumors that depend on angiogenesis, and specifically on colon, lung, kidney, melanoma, prostate and bladder. Results from a second experiment with the same probe and primer set, run 263102793, are not included because the amp plot indicates there were experimental difficulties with this run.


[0850] T. NOV20a (CG132888-02): M130 Antigen.


[0851] Expression of gene CG132888-02 was assessed using the primer-probe set Ag4955, described in Table TA. Results of the RTQ-PCR runs are shown in Tables TB, TC and TD.
293TABLE TAProbe Name Ag4955StartPrimersSequencesLengthPositionSEQ ID NoForward5′-gaggagacctggatcacatgt-3′212841289ProbeTET-5′-aagacttcaggaaggacccacttcct-3′-262873290TAMRAReverse5′-agatctccacacgtccagaac-3′212899291


[0852]

294





TABLE TB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag4955, Run



Tissue Name
228886961














Adipose
27.7



Melanoma* Hs688(A).T
0.2



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.1



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.2



Testis Pool
6.5



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
2.4



Placenta
8.2



Uterus Pool
6.8



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
11.2



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.4



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
5.6



Trachea
5.1



Lung
1.0



Fetal Lung
5.0



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
9.0



Fetal Liver
29.5



Liver ca. HepG2
0.0



Kidney Pool
15.8



Fetal Kidney
2.1



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
100.0



Gastric ca. (liver met.) NCI-N87
1.8



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.1



Colon cancer tissue
38.4



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
10.0



Small Intestine Pool
5.3



Stomach Pool
18.3



Bone Marrow Pool
4.1



Fetal Heart
0.9



Heart Pool
3.3



Lymph Node Pool
5.1



Fetal Skeletal Muscle
2.3



Skeletal Muscle Pool
11.7



Spleen Pool
28.1



Thymus Pool
14.2



CNS cancer (glio/astro) U87-MG
0.1



CNS cancer (glio/astro) U-118-MG
0.1



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.1



Brain (Amygdala) Pool
0.5



Brain (cerebellum)
1.2



Brain (fetal)
2.4



Brain (Hippocampus) Pool
1.3



Cerebral Cortex Pool
1.2



Brain (Substantia nigra) Pool
0.3



Brain (Thalamus) Pool
0.6



Brain (whole)
4.6



Spinal Cord Pool
4.4



Adrenal Gland
41.2



Pituitary gland Pool
0.7



Salivary Gland
1.0



Thyroid (female)
3.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
10.4











[0853]

295





TABLE TC










Panel 4.1D











Rel. Exp. (%)




Ag4955, Run



Tissue Name
223629644














Secondary Th1 act
0.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.1



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
0.0



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.3



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
0.2



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0



LAK cells rest
12.2



LAK cells IL-2
0.1



LAK cells IL-2 + IL-12
0.2



LAK cells 1L-2 + IFN gamma
0.1



LAK cells IL-2 + IL-18
0.3



LAK cells PMA/ionomycin
14.6



NK Cells IL-2 rest
0.0



Two Way MLR 3 day
10.6



Two Way MLR 5 day
4.6



Two Way MLR 7 day
0.6



PBMC rest
10.0



PBMC PWM
0.8



PBMC-PHA-L
7.8



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
0.0



EOL-1 dbcAMP
0.2



EOL-1 dbcAMP PMA/ionomycin
1.5



Dendritic cells none
36.3



Dendritic cells LPS
1.9



Dendritic cells anti-CD40
20.3



Monocytes rest
60.7



Monocytes LPS
100.0



Macrophages rest
59.5



Macrophages LPS
10.2



HUVEC none
0.0



HUVEC starved
0.0



HUVEC IL-1beta
0.0



HUVEC IFN gamma
0.0



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.2



Lung Microvascular EC none
0.0



Lung Microvascular EC TNFalpha +
0.0



IL-1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC TNFalpha +
0.0



IL-1beta



Bronchial epithelium TNFalpha +
0.0



IL1beta



Small airway epithelium none
0.0



Small airway epithelium TNFalpha +
0.0



IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMC TNFalpha + IL-
0.0



1beta



Astrocytes rest
0.0



Astrocytes TNFalpha + IL-1beta
0.0



KU-812 (Basophil) rest
0.1



KU-812 (Basophil) PMA/ionomycin
0.1



CCD1106 (Keratinocytes) none
0.1



CCD1106 (Keratinocytes) TNFalpha +
0.0



IL-1beta



Liver cirrhosis
12.5



NCI-H292 none
0.0



NCI-H292 IL-4
0.0



NCI-H292 IL-9
0.0



NCI-H292 IL-13
0.0



NCI-H292 IFN gamma
0.0



HPAEC none
0.0



HPAEC TNF alpha + IL-1 beta
0.0



Lung fibroblast none
0.0



Lung fibroblast TNF alpha + IL-1
0.2



beta



Lung fibroblast IL-4
0.0



Lung fibroblast IL-9
0.0



Lung fibroblast IL-13
0.5



Lung fibroblast IFN gamma
0.1



Dermal fibroblast CCD1070 rest
0.0



Dermal fibroblast CCD1070 TNF alpha
0.0



Dermal fibroblast CCD1070 IL-1 beta
0.1



Dermal fibroblast IFN gamma
0.2



Dermal fibroblast IL-4
0.2



Dermal Fibroblasts rest
0.5



Neutrophils TNFa + LPS
0.4



Neutrophils rest
0.2



Colon
3.7



Lung
55.1



Thymus
11.3



Kidney
2.6











[0854]

296





TABLE TD










Panel 5 Islet











Rel. Exp. (%)




Ag4955, Run



Tissue Name
263594804














97457_Patient-02go_adipose
1.1



97476_Patient-07sk_skeletal muscle
4.8



97477_Patient-07ut_uterus
9.3



97478_Patient-07pl_placenta
42.6



99167_Bayer Patient 1
0.0



97482_Patient-08ut_uterus
63.7



97483_Patient-08pl_placenta
2.3



97486_Patient-09sk_skeletal muscle
0.7



97487_Patient-09ut_uterus
7.1



97488_Patient-09pl_placenta
33.7



97492_Patient-10ut_uterus
29.3



97493_Patient-10pl_placenta
100.0



97495_Patient-11go_adipose
0.1



97496_Patient-11sk_skeletal muscle
1.1



97497_Patient-11ut_uterus
12.2



97498_Patient-11pl_placenta
12.1



97500_Patient-12go_adipose
84.1



97501_Patient-12sk_skeletal muscle
24.1



97502_Patient-12ut_uterus
1.0



97503_Patient-12pl_placenta
1.8



94721_Donor 2 U - A_Mesenchymal Stem
0.0



Cells



94722_Donor 2 U - B Mesenchymal Stem
0.0



Cells



94723_Donor 2 U - C_Mesenchymal Stem
0.1



Cells



94709_Donor 2 AM - A_adipose
0.9



94710_Donor 2 AM - B_adipose
0.0



94711_Donor 2 AM - C_adipose
0.0



94712_Donor 2 AD - A_adipose
0.0



94713_Donor 2 AD - B_adipose
0.0



94714_Donor 2 AD - C_adipose
0.3



94742_Donor 3 U - A_Mesenchymal
0.0



Stem Cells



94743_Donor 3 U - B_Mesenchymal
0.0



Stem Cells



94730_Donor 3 AM - A_adipose
0.0



94731_Donor 3 AM - B_adipose
0.0



94732_Donor 3 AM - C_adipose
0.0



94733_Donor 3 AD - A_adipose
0.0



94734_Donor 3 AD - B_adipose
0.0



94735_Donor 3 AD - C_adipose
1.0



77138_Liver_HepG2untreated
0.0



73556_Heart Cardiac stromal cells
0.0



(primary)



81735_Small Intestine
24.5



72409_Kidney_Proximal Convoluted
0.0



Tubule



82685_Small intestine_Duodenum
51.1



90650_Adrenal_Adrenocortical
3.8



adenoma



72410_Kidney_HRCE
0.0



72411_Kidney_HRE
0.0



73139_Uterus_Uterine smooth
0.0



muscle cells











[0855] General_screening_panel_v1.5 Summary: Ag4955 Highest expression of this gene is detected in bladder (CT=26.8). Therefore, expression of this gene may be useful in distinguishing bladder from other samples used in this panel. In addition, therapeutic modulation of this gene may be useful in the treatment of bladder related diseases. Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0856] In addition, this gene is expressed at moderate to low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0857] Panel 4.1D Summary: Ag4955 Highest expression of this gene is detected in LPS treated monocytes (CT=28.3). In addition, moderate to low levels of expression of this gene is also seen in LAK cells, two way MLRs, PBMC, dendritic cells, activated eosinophils and normal tissues represented by colon, lung, thymus and kidney. This gene encodes splice variant of M130 antigen (CD163) precursor. CD163 is a macrophage-associated antigen belonging to the scavenger receptor cysteine rich (SRCR) domain family and it scavenges haemoglobin by mediating endocytosis of haptoglobin-haemoglobin complexes (Kristiansen, 2001, Nature 409(6817):198-201, PMID: 11196644). CD163 is expressed exclusively on human monocytes and macrophages and it is significantly upregulated by glucocorticoids and IL-10. The highly purified CD163 protein is shown to inhibit phorbol ester-induced human T-lymphocyte activation, thus attenuating the immune response to the inflammatory mediator (Hogger P, Sorg C., 2001, Biochem Biophys Res Commun Nov. 9, 2001;288(4):841-3, PMID: 11688984). Furthermore, macrophages expressing the scavenger receptor CD163 are shown to be increased in synovium and in colonic mucosa in patients with spondyloarthropathy (SpA). Therefore, therapeutic modulation of the CD163 encoded by this gene may be useful in the treatment of asthma, emphysema, inflammatory bowel disease, arthritis, psoriasis and SpA.


[0858] Moderate levels of expression of this gene is also seen in liver cirrhosis sample. Therefore, therapeutic modulation of this gene may be beneficial in the treatment of liver cirrhosis.


[0859] Panel 5 Islet Summary: Ag4955 Highest expression of this gene is detected in placenta (CT=30.2). In addition, moderate to low levels of expression of this gene is also seen in uterus, skeletal muscle, adipose and small intestine. Please see panel 1.5 for the discussion on utility of this gene.


[0860] U. NOV22a (CGI33508-01): Synaptotagmin VI.


[0861] Expression of gene CG133508-01 was assessed using the primer-probe set Ag4837, described in Table UA. Results of the RTQ-PCR runs are shown in Tables UB, UC and UD.
297TABLE UAProbe Name Ag4837SEQ IDPrimersSequencesLengthStart PositionNoForward5′-ggagagatcatgttctcccttt-3′221147292ProbeTET-5′-caggcaggctcaccctcacagtg-3′-231184293TAMRAReverse5′-ccttgaggttccgacacttaat-3′221207294


[0862]

298





TABLE UB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag4837, Run



Tissue Name
249271251














AD 1 Hippo
4.4



AD 2 Hippo
10.1



AD 3 Hippo
1.8



AD 4 Hippo
4.7



AD 5 Hippo
100.0



AD 6 Hippo
17.8



Control 2 Hippo
9.2



Control 4 Hippo
3.8



Control (Path) 3 Hippo
1.4



AD 1 Temporal Ctx
7.0



AD 2 Temporal Ctx
5.8



AD 3 Temporal Ctx
2.7



AD 4 Temporal Ctx
3.6



AD 5 Inf Temporal Ctx
17.3



AD 5 Sup Temporal Ctx
17.7



AD 6 Inf Temporal Ctx
7.0



AD 6 Sup Temporal Ctx
9.3



Control 1 Temporal Ctx
0.6



Control 2 Temporal Ctx
7.4



Control 3 Temporal Ctx
3.1



Control 3 Temporal Ctx
1.1



Control (Path) 1 Temporal Ctx
8.4



Control (Path) 2 Temporal Ctx
4.5



Control (Path) 3 Temporal Ctx
0.8



Control (Path) 4 Temporal Ctx
2.6



AD 1 Occipital Ctx
16.6



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
0.7



AD 4 Occipital Ctx
2.6



AD 5 Occipital Ctx
26.1



AD 6 Occipital Ctx
26.6



Control 1 Occipital Ctx
1.3



Control 2 Occipital Ctx
82.4



Control 3 Occipital Ctx
19.1



Control 4 Occipital Ctx
0.9



Control (Path) 1 Occipital Ctx
34.9



Control (Path) 2 Occipital Ctx
6.0



Control (Path) 3 Occipital Ctx
0.5



Control (Path) 4 Occipital Ctx
28.9



Control 1 Parietal Ctx
1.0



Control 2 Parietal Ctx
6.2



Control 3 Parietal Ctx
5.1



Control (Path) 1 Parietal Ctx
11.9



Control (Path) 2 Parietal Ctx
4.5



Control (Path) 3 Parietal Ctx
0.8



Control (Path) 4 Parietal Ctx
10.9











[0863]

299





TABLE UC










General_screening_panel_v1.5











Rel. Exp. (%)




Ag4837, Run



Tissue Name
228787809














Adipose
0.2



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.8



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.1



Squamous cell carcinoma SCC-4
0.0



Testis Pool
2.9



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
1.5



Placenta
0.6



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.4



Ovary
9.0



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
0.5



Trachea
0.8



Lung
2.9



Fetal Lung
5.5



Lung ca. NCI-N417
2.4



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
1.4



Lung ca. NCI-H526
51.1



Lung ca. NCI-H23
0.3



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
0.0



Fetal Liver
0.6



Liver ca. HepG2
0.0



Kidney Pool
0.4



Fetal Kidney
5.6



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
5.1



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.4



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
1.0



Colon cancer tissue
0.1



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.4



Small Intestine Pool
0.3



Stomach Pool
0.7



Bone Marrow Pool
0.3



Fetal Heart
0.1



Heart Pool
0.0



Lymph Node Pool
0.2



Fetal Skeletal Muscle
3.3



Skeletal Muscle Pool
3.6



Spleen Pool
0.4



Thymus Pool
0.5



CNS cancer (glio/astro) U87-MG
0.4



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
10.2



Brain (cerebellum)
6.2



Brain (fetal)
100.0



Brain (Hippocampus) Pool
12.6



Cerebral Cortex Pool
12.1



Brain (Substantia nigra) Pool
14.2



Brain (Thalamus) Pool
15.0



Brain (whole)
22.5



Spinal Cord Pool
13.0



Adrenal Gland
0.8



Pituitary gland Pool
0.4



Salivary Gland
0.4



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
1.2











[0864]

300





TABLE UD










Panel 4.1D











Rel. Exp. (%)




Ag4837, Run



Tissue Name
223335536














Secondary Th1 act
0.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.6



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
1.1



CD45RA CD4 lymphocyte act
0.0



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.5



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
0.0



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.4



LAK cells rest
0.0



LAK cells IL-2
0.0



LAK cells IL-2 + IL-12
0.5



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.0



LAK cells PMA/ionomycin
8.2



NK Cells IL-2 rest
0.0



Two Way MLR 3 day
0.0



Two Way MLR 5 day
0.8



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.0



PBMC PHA-L
0.0



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
0.0



EOL-1 dbcAMP
0.0



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
3.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.7



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
0.4



Macrophages LPS
0.0



HUVEC none
0.0



HUVEC starved
0.0



HUVEC IL-1beta
0.0



HUVEC IFN gamma
0.0



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.0



Lung Microvascular EC none
0.0



Lung Microvascular EC TNFalpha +
0.0



IL-1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC TNFalpha +
0.0



IL-1beta



Bronchial epithelium TNFalpha +
0.0



IL1beta



Small airway epithelium none
0.0



Small airway epithelium TNFalpha +
0.0



IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMC TNFalpha + IL-
0.0



1beta



Astrocytes rest
1.6



Astrocytes TNFalpha + IL-1beta
0.0



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
1.6



CCD1106 (Keratinocytes) TNFalpha +
0.0



IL-1beta



Liver cirrhosis
0.0



NCI-H292 none
0.0



NCI-H292 IL-4
0.0



NCI-H292 IL-9
0.0



NCI-H292 IL-13
0.0



NCI-H292 IFN gamma
0.0



HPAEC none
0.0



HPAEC TNF alpha + IL-1 beta
0.0



Lung fibroblast none
0.0



Lung fibroblast TNF alpha + IL-1
0.0



beta



Lung fibroblast IL-4
0.0



Lung fibroblast IL-9
0.0



Lung fibroblast IL-13
0.5



Lung fibroblast IFN gamma
0.0



Dermal fibroblast CCD1070 rest
0.0



Dermal fibroblast CCD1070 TNF alpha
0.0



Dermal fibroblast CCD1070 IL-1 beta
0.0



Dermal fibroblast IFN gamma
0.4



Dermal fibroblast IL-4
0.0



Dermal Fibroblasts rest
1.9



Neutrophils TNFa + LPS
0.0



Neutrophils rest
1.1



Colon
6.0



Lung
4.3



Thymus
14.1



Kidney
100.0











[0865] CNS_neurodegeneration_v1.0 Summary: Ag4837 Expression of this gene is ubiquitous throughout the samples in this panel, with highest expression in the hippocampus of a patient with Alzheimer's disease (CT=28). While no association between the expression of this gene and the presence of Alzheimer's disease is detected in this panel, these results confirm the expression of this gene in areas that degenerate in Alzheimer's disease, including the cortex, hippocampus, amygdala and thalamus. Synaptotagmin expression is altered in the brain of Alzheimer's patients, possibly explaining impaired synaptogenesis and/or synaptosomal loss secondary to neuronal loss observed in the neurodegenerative disorder. It may also represent, reflect or account for the impaired neuronal transmission in Alzheimer's disease (AD), caused by deterioration of the exocytic machinery. Since this gene is a homolog of synaptotagmin, agents that potentiate the expression or function of the protein encoded by this gene may be useful in the treatment of Alzheimer's disease.


[0866] References:


[0867] Sze C I, Bi H, Kleinschmidt-DeMasters B K, Filley C M, Martin L J. (2000) J Neurol Sci. 175:81-90.


[0868] Masliah F, Mallory M, Alford M, DeTeresa R, Hansen L A, McKeel D W Jr, Morris J C. (2001)Neurology 56:127-9.


[0869] Yoo B C, Cairns N, Fountoulakis M, Lubec G. (2001) Dement Geriatr Cogn Disord. 12:219-25.


[0870] General_screening_panel_v1.5 Summary: Ag4837 This gene encodes a homolog of synaptotagmin which appears to be almost exclusively expressed in the brain. This experiment shows moderate to high expression across all brain regions with highest expression in the fetal brain (CT=28.3). Synaptotagmin is a presynaptic protein involved in synaptic vesicle release, making this an ideal drug target for diseases such as epilepsy, in which reduction of neurotransmission is beneficial. Selective inhibition of this gene or its protein product may therefore be useful in the treatment of seizure disorders. Furthermore, selective inhibition of neural transmission through antagonism of the protein encoded by this gene may show therapeutic benefit in psychiatric diseases where it is believed that inappropriate neural connections have been established, such as schizophrenia and bipolar disorder. In addition, antibodies against synaptotagmin may cause Lambert-Eaton myasthenic syndrome. Therefore, peptide fragments of the protein encoded by this gene may serve to block the action of these antibodies and treat Lambert-Eaton myasthenic syndrome.


[0871] References:


[0872] Takamori M, Komai K, Iwasa K. (2000) Am J Med Sci. 319:204-8.


[0873] Sokolov B P, Tcherepanov A A, Haroutunian V, Davis K L. (2000) Biol Psychiatry. 48:184-96.


[0874] Panel 4.1D Summary: Ag4837 This gene is expressed at detectable levels in the kidney (CT=29.8). Thus, expression of this gene could be used to differentiate the kidney derived sample from other samples on this panel and as a marker of kidney tissue. In addition, therapeutic targeting of the expression or function of this gene may modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.


[0875] V. NOV23a and NOV23b (CG133548-01 and CG133548-02): 1300003P13RIK Protein Homolog (TmMP)


[0876] Expression of gene CG133548-01 and CG133548-02 was assessed using the primer-probe set Ag4839, described in Table VA. Results of the RTQ-PCR runs are shown in Tables VB and VC.
301TABLE VAProbe Name Ag4839StartPrimersSequencesLengthPositionSEQ ID NoForward5′-ttccaatgttctttggttttgt-3′221216295ProbeTET-5′-tctgctgctcttatggccaggtttct-3′-261250296TAMRAReverse5′-gaaactcgaagtcctcaaatcc-3′221293297


[0877]

302





TABLE VB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag4839, Run



Tissue Name
228787839














Adipose
3.3



Melanoma* Hs688(A).T
21.8



Melanoma* Hs688(B).T
26.2



Melanoma* M14
13.9



Melanoma* LOXIMVI
9.0



Melanoma* SK-MEL-5
44.4



Squamous cell carcinoma SCC-4
6.8



Testis Pool
5.6



Prostate ca.* (bone met) PC-3
8.1



Prostate Pool
8.8



Placenta
3.0



Uterus Pool
4.5



Ovarian ca. OVCAR-3
100.0



Ovarian ca. SK-OV-3
34.2



Ovarian ca. OVCAR-4
14.3



Ovarian ca. OVCAR-5
46.7



Ovarian ca. IGROV-1
14.6



Ovarian ca. OVCAR-8
9.2



Ovary
8.6



Breast ca. MCF-7
21.5



Breast ca. MDA-MB-231
25.2



Breast ca. BT 549
10.5



Breast ca. T47D
4.7



Breast ca. MDA-N
16.3



Breast Pool
7.6



Trachea
10.5



Lung
4.4



Fetal Lung
18.7



Lung ca. NCI-N417
1.9



Lung ca. LX-1
20.3



Lung ca. NCI-H146
4.5



Lung ca. SHP-77
14.8



Lung ca. A549
27.4



Lung ca. NCI-H526
2.6



Lung ca. NCI-H23
33.2



Lung ca. NCI-H460
19.2



Lung ca. HOP-62
12.0



Lung ca. NCI-H522
18.3



Liver
0.8



Fetal Liver
16.3



Liver ca. HepG2
29.1



Kidney Pool
0.0



Fetal Kidney
12.6



Renal ca. 786-0
27.0



Renal ca. A498
5.6



Renal ca. ACHN
49.7



Renal ca. UO-31
33.9



Renal ca. TK-10
32.3



Bladder
20.6



Gastric ca. (liver met.) NCI-N87
33.7



Gastric ca. KATO III
17.6



Colon ca. SW-948
5.1



Colon ca. SW480
39.2



Colon ca.* (SW480 met) SW620
14.9



Colon ca. HT29
6.5



Colon ca. HCT-116
5.5



Colon ca. CaCo-2
39.2



Colon cancer tissue
20.0



Colon ca. SW1116
1.4



Colon ca. Colo-205
2.5



Colon ca. SW-48
4.9



Colon Pool
5.5



Small Intestine Pool
8.3



Stomach Pool
7.5



Bone Marrow Pool
3.5



Fetal Heart
4.7



Heart Pool
3.8



Lymph Node Pool
10.0



Fetal Skeletal Muscle
3.6



Skeletal Muscle Pool
16.4



Spleen Pool
7.2



Thymus Pool
5.6



CNS cancer (glio/astro) U87-MG
21.6



CNS cancer (glio/astro) U-118-MG
25.2



CNS cancer (neuro; met) SK-N-AS
12.2



CNS cancer (astro) SF-539
8.5



CNS cancer (astro) SNB-75
17.6



CNS cancer (glio) SNB-19
15.4



CNS cancer (glio) SF-295
37.4



Brain (Amygdala) Pool
3.4



Brain (cerebellum)
13.5



Brain (fetal)
7.9



Brain (Hippocampus) Pool
3.7



Cerebral Cortex Pool
3.4



Brain (Substantia nigra) Pool
2.6



Brain (Thalamus) Pool
5.1



Brain (whole)
2.7



Spinal Cord Pool
3.4



Adrenal Gland
21.8



Pituitary gland Pool
2.1



Salivary Gland
5.7



Thyroid (female)
5.9



Pancreatic ca. CAPAN2
17.7



Pancreas Pool
12.2











[0878]

303





TABLE VC










Panel 4.1D











Rel. Exp. (%)




Ag4839, Run



Tissue Name
223335453














Secondary Th1 act
54.0



Secondary Th2 act
56.6



Secondary Tr1 act
23.0



Secondary Th1 rest
11.7



Secondary Th2 rest
12.9



Secondary Tr1 rest
18.4



Primary Th1 act
32.3



Primary Th2 act
37.1



Primary Tr1 act
40.9



Primary Th1 rest
13.3



Primary Th2 rest
13.5



Primary Tr1 rest
24.8



CD45RA CD4 lymphocyte act
54.7



CD45RO CD4 lymphocyte act
34.9



CD8 lymphocyte act
34.2



Secondary CD8 lymphocyte rest
26.8



Secondary CD8 lymphocyte act
20.4



CD4 lymphocyte none
8.1



2ry Th1/Th2/Tr1_anti-CD95 CH11
26.1



LAK cells rest
48.3



LAK cells IL-2
27.2



LAK cells IL-2 + IL-12
30.8



LAK cells IL-2 + IFN gamma
27.4



LAK cells IL-2 + IL-18
42.6



LAK cells PMA/ionomycin
43.8



NK Cells IL-2 rest
36.6



Two Way MLR 3 day
36.6



Two Way MLR 5 day
29.7



Two Way MLR 7 day
31.0



PBMC rest
7.3



PBMC PWM
27.4



PBMC PHA-L
29.1



Ramos (B cell) none
50.3



Ramos (B cell) ionomycin
53.2



B lymphocytes PWM
27.5



B lymphocytes CD40L and IL-4
33.0



EOL-1 dbcAMP
33.7



EOL-1 dbcAMP PMA/ionomycin
50.3



Dendritic cells none
64.6



Dendritic cells LPS
55.1



Dendritic cells anti-CD40
49.0



Monocytes rest
29.7



Monocytes LPS
76.8



Macrophages rest
60.3



Macrophages LPS
44.8



HUVEC none
30.1



HUVEC starved
47.6



HUVEC IL-1beta
55.1



HUVEC IFN gamma
45.7



HUVEC TNF alpha + IFN gamma
33.4



HUVEC TNF alpha + IL4
44.4



HUVEC IL-11
22.1



Lung Microvascular EC none
100.0



Lung Microvascular EC TNFalpha +
85.9



IL-1beta



Microvascular Dermal EC none
53.6



Microsvasular Dermal EC
41.2



TNFalpha + IL-1beta



Bronchial epithelium TNFalpha +
59.0



IL1beta



Small airway epithelium none
32.8



Small airway epithelium
60.7



TNFalpha + IL-1beta



Coronery artery SMC rest
37.1



Coronery artery SMC TNFalpha +
25.5



IL-1beta



Astrocytes rest
51.4



Astrocytes TNFalpha + IL-1beta
61.1



KU-8l2 (Basophil) rest
12.2



KU-812 (Basophil) PMA/ionomycin
33.2



CCD1106 (Keratinocytes) none
53.2



CCD1106 (Keratinocytes)
37.4



TNFalpha + IL-1beta



Liver cirrhosis
14.6



NCI-H292 none
40.6



NCI-H292 IL-4
69.3



NCI-H292 IL-9
75.8



NCI-H292 IL-13
56.3



NCI-H292 IFN gamma
55.1



HPAEC none
28.3



HPAEC TNF alpha + IL-1 beta
61.1



Lung fibroblast none
62.0



Lung fibroblast TNF alpha +
56.6



IL-1 beta



Lung fibroblast IL-4
82.4



Lung fibroblast IL-9
95.9



Lung fibroblast IL-13
62.9



Lung fibroblast IFN gamma
0.0



Dermal fibroblast CCD1070 rest
80.7



Dermal fibroblast CCD1070 TNF
81.8



alpha



Dermal fibroblast CCD 1070 IL-1
42.6



beta



Dermal fibroblast IFN gamma
51.8



Dermal fibroblast IL-4
96.6



Dermal Fibroblasts rest
58.2



Neutrophils TNFa + LPS
8.1



Neutrophils rest
16.8



Colon
32.1



Lung
22.5



Thymus
55.1



Kidney
64.6











[0879] General_screening_panel_v1.5 Summary: Ag4839 Highest expression of the CG133548-01 gene is detected in ovarian cancer OVCAR-3 cell line (CT=24.8). High to moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0880] Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0881] In addition, this gene is expressed at high to moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0882] Interestingly, this gene is expressed at much higher levels in fetal (CT=27.8) when compared to adult kidney (CT=40). This observation suggests that expression of this gene can be used to distinguish fetal from adult kidney. In addition, the relative overexpression of this gene in fetal kidney suggests that the protein product may enhance kidney growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of kidney related diseases.


[0883] Panel 4.1D Summary: Ag4839 Highest expression of the CG133548-01 gene is detected in lung microvascular EC (CT=27.4). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.5 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0884] W. NOV24a and NOV24b (CG133569-01 and CG133569-02): Type I Membrane Protein with SH3 Domain


[0885] Expression of gene CG133569-01 and CG133569-02 was assessed using the primer-probe set Ag4843, described in Table WA. Results of the RTQ-PCR runs are shown in Tables WB and WC.
304TABLE WAProbe Name Ag4843StartSEQ IDPrimersSequencesLengthPositionNoForward5′-gagcaatggaagagatgcaa-3′203170298ProbeTET-5′-ccactgcatgaagataatttctcacga-3′-273190299TAMRAReverse5′-cttcaggaacctgcacattaag-3′223232300


[0886]

305





TABLE WB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag4843, Run



Tissue Name
228796268














Adipose
18.7



Melanoma* Hs688(A).T
36.9



Melanoma* Hs688(B).T
42.0



Melanoma* M14
17.2



Melanoma* LOXIMVI
10.5



Melanoma* SK-MEL-5
25.0



Squamous cell carcinoma SCC-4
16.4



Testis Pool
22.7



Prostate ca.* (bone met) PC-3
80.7



Prostate Pool
44.1



Placenta
2.8



Uterus Pool
29.5



Ovarian ca. OVCAR-3
18.4



Ovarian ca. SK-OV-3
16.5



Ovarian ca. OVCAR-4
2.1



Ovarian ca. OVCAR-5
27.9



Ovarian ca. IGROV-1
17.0



Ovarian ca. OVCAR-8
10.4



Ovary
12.3



Breast ca. MCF-7
25.0



Breast ca. MDA-MB-231
35.1



Breast ca. BT 549
63.3



Breast ca. T47D
14.8



Breast ca. MDA-N
6.0



Breast Pool
27.7



Trachea
18.8



Lung
7.6



Fetal Lung
32.1



Lung ca. NCI-N417
4.5



Lung ca. LX-1
21.3



Lung ca. NCI-H146
8.8



Lung ca. SHP-77
46.0



Lung ca. A549
21.3



Lung ca. NCI-H526
1.9



Lung ca. NCI-H23
25.3



Lung ca. NCI-H460
31.9



Lung ca. HOP-62
15.8



Lung ca. NCI-H522
31.6



Liver
2.9



Fetal Liver
25.9



Liver ca. HepG2
13.7



Kidney Pool
41.2



Fetal Kidney
17.4



Renal ca. 786-0
23.8



Renal ca. A498
11.7



Renal ca. ACHN
11.7



Renal ca. UO-31
12.5



Renal ca. TK-10
34.2



Bladder
32.8



Gastric ca. (liver met.) NCI-N87
28.5



Gastric ca. KATO III
45.7



Colon ca. SW-948
5.9



Colon ca. SW480
14.8



Colon ca.* (SW480 met) SW620
18.0



Colon ca. HT29
18.8



Colon ca. HCT-116
21.6



Colon ca. CaCo-2
23.3



Colon cancer tissue
11.2



Colon ca. SW1116
3.1



Colon ca. Colo-205
2.9



Colon ca. SW-48
2.5



Colon Pool
26.8



Small Intestine Pool
19.9



Stomach Pool
15.3



Bone Marrow Pool
11.8



Fetal Heart
15.6



Heart Pool
9.5



Lymph Node Pool
29.5



Fetal Skeletal Muscle
5.6



Skeletal Muscle Pool
24.3



Spleen Pool
11.3



Thymus Pool
18.8



CNS cancer (glio/astro) U87-MG
37.1



CNS cancer (glio/astro) U-118-MG
47.6



CNS cancer (neuro; met) SK-N-AS
47.3



CNS cancer (astro) SF-539
19.1



CNS cancer (astro) SNB-75
100.0



CNS cancer (glio) SNB-19
15.3



CNS cancer (glio) SF-295
92.7



Brain (Amygdala) Pool
l3.4



Brain (cerebellum)
30.8



Brain (fetal)
19.1



Brain (Hippocampus) Pool
16.5



Cerebral Cortex Pool
21.6



Brain (Substantia nigra) Pool
10.8



Brain (Thalamus) Pool
22.2



Brain (whole)
9.2



Spinal Cord Pool
7.7



Adrenal Gland
8.5



Pituitary gland Pool
8.3



Salivary Gland
5.6



Thyroid (female)
5.1



Pancreatic ca. CAPAN2
6.9



Pancreas Pool
26.1











[0887]

306





TABLE WC










Panel 4.1D











Rel. Exp. (%)




Ag4843, Run



Tissue Name
223335454














Secondary Th1 act
31.6



Secondary Th2 act
30.8



Secondary Tr1 act
27.5



Secondary Th1 rest
15.8



Secondary Th2 rest
22.2



Secondary Tr1 rest
23.3



Primary Th1 act
23.2



Primary Th2 act
35.4



Primary Tr1 act
28.9



Primary Th1 rest
14.4



Primary Th2 rest
19.6



Primary Tr1 rest
38.4



CD45RA CD4 lymphocyte act
47.0



CD45RO CD4 lymphocyte act
41.8



CD8 lymphocyte act
49.0



Secondary CD8 lymphocyte rest
27.7



Secondary CD8 lymphocyte act
19.5



CD4 lymphocyte none
32.3



2ry Th1/Th2/Tr1_anti-CD95 CH11
24.8



LAK cells rest
36.1



LAK cells IL-2
35.6



LAK cells IL-2 + IL-12
23.0



LAK cells IL-2 + IFN gamma
40.6



LAK cells IL-2 + IL-18
44.8



LAK cells PMA/ionomycin
20.3



NK Cells IL-2 rest
42.3



Two Way MLR 3 day
54.0



Two Way MLR 5 day
25.5



Two Way MLR 7 day
24.5



PBMC rest
25.7



PBMC PWM
23.8



PBMC PHA-L
26.8



Ramos (B cell) none
59.0



Ramos (B cell) ionomycin
52.9



B lymphocytes PWM
37.1



B lymphocytes CD40L and IL-4
32.8



EOL-1 dbcAMP
34.6



EOL-1 dbcAMP PMA/ionomycin
17.4



Dendritic cells none
28.3



Dendritic cells LPS
20.6



Dendritic cells anti-CD40
37.4



Monocytes rest
48.3



Monocytes LPS
44.8



Macrophages rest
24.5



Macrophages LPS
10.7



HUVEC none
35.1



HUVEC starved
38.2



HUVEC IL-1beta
50.3



HUVEC IFN gamma
49.3



HUVEC TNF alpha + IFN gamma
31.0



HUVEC TNF alpha + IL4
46.7



HUVEC IL-11
36.9



Lung Microvascular EC none
66.0



Lung Microvascular EC TNFalpha +
56.6



IL-1beta



Microvascular Dermal EC none
54.7



Microsvasular Dermal EC TNFalpha +
37.4



IL-1beta



Bronchial epithelium TNFalpha +
48.6



IL1beta



Small airway epithelium none
11.6



Small airway epithelium TNFalpha +
20.0



IL-1beta



Coronery artery SMC rest
42.9



Coronery artery SMC TNFalpha + IL-
46.0



1beta



Astrocytes rest
28.5



Astrocytes TNFalpha + IL-1beta
13.5



KU-812 (Basophil) rest
49.7



KU-812 (Basophil) PMA/ionomycin
100.0



CCD1106 (Keratinocytes) none
20.7



CCD1106 (Keratinocytes) TNFalpha +
22.2



IL-1beta



Liver cirrhosis
28.9



NCI-H292 none
25.7



NCI-H292 IL-4
39.0



NCI-H292 IL-9
44.8



NCI-H292 IL-13
41.5



NCI-H292 IFN gamma
38.4



HPAEC none
40.6



HPAEC TNF alpha + IL-1 beta
72.2



Lung fibroblast none
88.3



Lung fibroblast TNF alpha + IL-1
88.3



beta



Lung fibroblast IL-4
50.7



Lung fibroblast IL-9
84.1



Lung fibroblast IL-13
47.0



Lung fibroblast IFN gamma
37.9



Dermal fibroblast CCD1070 rest
51.8



Dermal fibroblast CCD1070 TNF alpha
69.7



Dermal fibroblast CCD1070 IL-1 beta
59.9



Dermal fibroblast IFN gamma
42.9



Dermal fibroblast IL-4
75.8



Dermal Fibroblasts rest
66.9



Neutrophils TNFa + LPS
8.1



Neutrophils rest
23.8



Colon
22.7



Lung
38.2



Thymus
41.8



Kidney
35.8











[0888] General_screening_panel_v1.5 Summary: Ag4843 Highest expression of the CG133569-01 gene is detected in CNS cancer SNB-75 cell line (CT=26). High levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0889] Among tissues with metabolic or endocrine function, this gene is expressed at moderate to high levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0890] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0891] Panel 4.1D Summary: Ag4843 Highest expression of the CG133569-01 gene is detected in PMA/ionomycin treated basophils (CT=29). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel v1.5 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0892] X. NOV26a and NOV26b (CG134100-01 and CG134100-02): Amidase2 Domain Protein


[0893] Expression of gene CG134100-01 and CG134100-02 was assessed using the primer-probe sets Ag44387, Ag4893 and Ag4894, described in Tables XA, XB and XC. Results of the RTQ-PCR runs are shown in Tables XD, XE, XF and XG.
307TABLE XAProbe Name Ag4387StartSEQ IDPrimersSequencesLengthPositionNoForward5′-tgtatccacagactgccagact-3′22753301ProbeTET-5′-tcgtccgaaacatacagtcctttcaca-3′-27776302TAMRAReverse5′-atgtcacaaaagttccgtgtgt-3′22806303


[0894]

308






TABLE XB










Probe Name Ag4893
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-aacatcatcaaacgatctgctt-3′
22
646
304






Probe
TET-5′-cacactgccctaaaatgaacctccca-3′-
26
683
305



TAMRA





Reverse
5′-tggatgatgatgacatatttgg-3′
22
710
306










[0895]

309






TABLE XC










Probe Name Ag4894
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-aacatcatcaaacgatctgctt-3′
22
646
307






Probe
TET-5′-cacactgccctaaaatgaacctccca-3′-
26
683
308



TAMRA





Reverse
5′-tggatgatgatgacatatttgg-3′
22
710
309










[0896]

310





TABLE XD










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4387, Run



Tissue Name
222567011














Adipose
0.5



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
4.4



Testis Pool
1.8



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
15.9



Ovarian ca. OVCAR-3
2.8



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.4



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
0.0



Breast ca. MCF-7
1.1



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.7



Breast ca. MDA-N
0.0



Breast Pool
0.0



Trachea
10.1



Lung
0.0



Fetal Lung
0.4



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
1.7



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
1.5



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
0.0



Fetal Liver
0.0



Liver ca. HepG2
0.0



Kidney Pool
0.7



Fetal Kidney
0.0



Renal ca. 786-0
0.5



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
7.8



Gastric ca. (liver met.) NCI-N87
4.6



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
1.2



Colon ca. CaCo-2
0.0



Colon cancer tissue
0.0



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.0



Small Intestine Pool
0.0



Stomach Pool
0.0



Bone Marrow Pool
100.0



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.0



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
0.0



Spleen Pool
0.0



Thymus Pool
1.3



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.6



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
0.5



Brain (cerebellum)
0.0



Brain (fetal)
0.0



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.0



Brain (whole)
0.0



Spinal Cord Pool
0.0



Adrenal Gland
0.0



Pituitary gland Pool
0.0



Salivary Gland
2.4



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
0.0











[0897]

311





TABLE XE










General_screening_panel_v1.5










Rel. Exp. (%)
Rel. Exp. (%)



Ag4893, Run
Ag4894, Run


Tissue Name
228829406
228829491












Adipose
0.0
1.0


Melanoma* Hs688(A).T
0.0
0.0


Melanoma* Hs688(B).T
0.0
0.0


Melanoma* M14
0.0
0.0


Melanoma* LOXIMVI
0.0
0.0


Melanoma* SK-MEL-5
0.0
0.0


Squamous cell carcinoma SCC-4
7.6
11.4


Testis Pool
0.0
2.5


Prostate ca.* (bone met) PC-3
0.0
0.0


Prostate Pool
0.0
0.0


Placenta
0.0
1.9


Uterus Pool
43.2
48.6


Ovarian ca. OVCAR-3
3.7
2.8


Ovarian ca. SK-OV-3
0.0
0.0


Ovarian ca. OVCAR-4
0.0
0.0


Ovarian ca. OVCAR-5
0.0
0.8


Ovarian ca. IGROV-1
0.0
0.0


Ovarian ca. OVCAR-8
0.0
0.0


Ovary
0.0
0.5


Breast ca. MCF-7
0.0
0.0


Breast ca. MDA-MB-231
0.0
0.0


Breast ca. BT 549
0.0
0.0


Breast ca. T47D
0.0
0.0


Breast ca. MDA-N
0.0
0.0


Breast Pool
0.0
0.5


Trachea
15.4
14.6


Lung
0.0
0.0


Fetal Lung
3.6
1.1


Lung ca. NCI-N417
0.0
0.0


Lung ca. LX-1
0.0
0.0


Lung ca. NCI-H146
0.0
0.0


Lung ca. SHP-77
0.0
0.0


Lung ca. A549
0.0
0.0


Lung ca. NCI-H526
0.0
0.0


Lung ca. NCI-H23
0.0
0.0


Lung ca. NCI-H460
0.0
0.0


Lung ca. HOP-62
0.0
0.0


Lung ca. NCI-H522
0.0
0.0


Liver
0.0
0.0


Fetal Liver
0.0
0.0


Liver ca. HepG2
0.0
0.0


Kidney Pool
0.0
0.8


Fetal Kidney
0.0
0.0


Renal ca. 786-0
0.0
0.0


Renal ca. A498
0.0
0.0


Renal ca. ACHN
0.0
0.0


Renal ca. UO-31
0.0
0.0


Renal ca. TK-10
0.0
0.0


Bladder
9.2
5.7


Gastric ca. (liver-met.) NCI-N87
7.9
8.0


Gastric ca. KATO III
0.0
0.0


Colon ca. SW-948
0.0
1.7


Colon ca. SW480
0.0
0.0


Colon ca.* (SW480 met) SW620
0.0
0.0


Colon ca. HT29
0.0
0.0


Colon ca. HCT-116
0.0
0.0


Colon ca. CaCo-2
0.0
0.0


Colon cancer tissue
0.0
0.0


Colon ca. SW1116
0.0
0.0


Colon ca. Colo-205
0.0
0.0


Colon ca. SW-48
0.0
0.7


Colon Pool
0.0
0.0


Small Intestine Pool
0.0
0.0


Stomach Pool
0.0
0.0


Bone Marrow Pool
100.0
100.0


Fetal Heart
0.0
0.0


Heart Pool
0.0
0.9


Lymph Node Pool
0.0
0.0


Fetal Skeletal Muscle
0.0
0.0


Skeletal Muscle Pool
0.0
0.0


Spleen Pool
0.0
0.0


Thymus Pool
2.0
1.7


CNS cancer (glio/astro) U87-MG
0.0
0.0


CNS cancer (glio/astro) U-118-MG
0.0
0.0


CNS cancer (neuro; met) SK-N-AS
0.0
0.0


CNS cancer (astro) SF-539
0.0
0.0


CNS cancer (astro) SNB-75
0.0
0.0


CNS cancer (glio) SNB-19
0.0
0.0


CNS cancer (glio) SF-295
0.0
0.0


Brain (Amygdala) Pool
0.0
0.0


Brain (cerebellum)
0.0
0.7


Brain (fetal)
0.0
1.7


Brain (Hippocampus) Pool
0.0
0.0


Cerebral Cortex Pool
0.0
0.0


Brain (Substantia nigra) Pool
0.0
0.0


Brain (Thalamus) Pool
0.0
0.0


Brain (whole)
0.0
0.0


Spinal Cord Pool
0.0
0.6


Adrenal Gland
0.0
0.0


Pituitary gland Pool
0.0
0.0


Salivary Gland
3.0
1.7


Thyroid (female)
0.0
0.0


Pancreatic ca. CAPAN2
0.0
0.0


Pancreas Pool
0.0
0.0










[0898]

312





TABLE XF










Oncology_cell_line_screening_panel_v3.1









Rel. Exp. (%)



Ag4893, Run


Tissue Name
225052585











Daoy Medulloblastoma/Cerebellum
0.0


TE671 Medulloblastom/Cerebellum
0.0


D283 Med Medulloblastoma/Cerebellum
0.0


PFSK-1 Primitive Neuroectodermal/Cerebellum
0.0


XF-498_CNS
0.0


SNB-78_CNS/glioma
0.6


SF-268_CNS/glioblastoma
0.0


T98G_Glioblastoma
0.0


SK-N-SH_Neuroblastoma (metastasis)
0.0


SF-295_CNS/glioblastoma
0.0


Cerebellum
0.0


Cerebellum
0.0


NCI-H292_Mucoepidermoid lung ca.
0.5


DMS-114_Small cell lung cancer
0.0


DMS-79_Small cell lung cancer/neuroendocrine
0.0


NCI-H146_Small cell lung cancer/
0.0


neuroendocrine


NCI-H526_Small cell lung cancer/
0.0


neuroendocrine


NCI-N417_Small cell lung cancer/
0.0


neuroendocrine


NCI-H82_Small cell lung cancer/
0.0


neuroendocrine


NCI-H157_Squamous cell lung cancer
0.0


(metastasis)


NCI-H1155_Large cell lung cancer/
0.0


neuroendocrine


NCI-H1299_Large cell lung cancer/
0.0


neuroendocrine


NCI-H727_Lung carcinoid
0.0


NCI-UMC-11_Lung carcinoid
0.0


LX-1_Small cell lung cancer
0.0


Colo-205_Colon cancer
0.0


KM12_Colon cancer
0.0


KM20L2_Colon cancer
0.0


NCI-H716 Colon cancer
0.0


SW-48_Colon adenocarcinoma
0.0


SW1116_Colon adenocarcinoma
0.0


LS 174T_Colon adenocarcinoma
0.0


SW-948_Colon adenocarcinoma
0.0


SW-480_Colon adenocarcinoma
0.0


NCI-SNU-5_Gastric ca
0.0


KATO III_Stomach
0.0


NCI-SNU-16_Gastric ca.
0.0


NCI-SNU-1_Gastric ca.
0.0


RF-1_Gastric adenocarcinoma
0.0


RF-48_Gastric adenocarcinoma
1.1


MKN-45_Gastric ca
2.0


NCI-N87_Gastric ca.
20.3


OVCAR-5_Ovarian ca.
0.0


RL95-2_Uterine carcinoma
6.3


HelaS3_Cervical adenocarcinoma
0.0


Ca Ski_Cervical epidermoid carcinoma
0.0


(metastasis)


ES-2_Ovarian clear cell carcinoma
0.0


Ramos/6 h stim_Stimulated with PMA/
0.0


ionomycin 6 h


Ramos/14 h stim_Stimulated with PMA/
0.0


ionomycin 14 h


MEG-01_Chronic myelogenous leukemia
0.0


(megokaryoblast)


Raji_Burkitt's lymphoma
0.0


Daudi_Burkitt's lymphoma
0.0


U266_B-cell plasmacytoma/myeloma
0.0


CA46_Burkitt's lymphoma
0.0


RL_non-Hodgkin's B-cell lymphoma
0.0


JM1_pre-B-cell lymphoma/leukemia
0.0


Jurkat_T cell leukemia
0.0


TF-1_Erythroleukemia
0.0


HUT 78_T-cell lymphoma
100.0


U937_Histiocytic lymphoma
0.0


KU-812 Myelogenous leukemia
19.6


769-P_Clear cell renal ca.
0.0


Caki-2_Clear cell renal ca.
0.0


SW 839_Clear cell renal ca.
0.0


G401_Wilms' tumor
0.0


Hs766T_Pancreatic ca. (LN metastasis)
0.0


CAPAN-1_Pancreatic adenocarcinoma (liver
0.0


metastasis)


SU86.86_Pancreatic carcinoma (liver
2.1


metastasis)


BxPC-3_Pancreatic adenocarcinoma
1.2


HPAC_Pancreatic adenocarcinoma
0.0


MIA PaCa-2_Pancreatic ca.
0.0


CFPAC-1_Pancreatic ductal adenocarcinoma
10.4


PANC-1_Pancreatic epithelioid ductal ca.
0.0


T24_Bladder ca. (transitional cell)
0.0


5637_Bladder ca.
0.6


HT-1197_Bladder ca.
3.7


UM-UC-3_Bladder ca. (transitional cell)
0.0


A204_Rhabdomyosarcoma
0.0


HT-1080_Fibrosarcoma
0.0


MG-63_Osteosarcoma (bone)
0.0


SK-LMS-1_Leiomyosarcoma (vulva)
0.0


SJRH30_Rhabdomyosarcoma (met to bone
0.0


marrow)


A431_Epidermoid ca.
69.7


WM266-4_Melanoma
0.0


DU 145_Prostate
0.0


MDA-MB-468_Breast adenocarcinoma
1.5


SSC-4_Tongue
1.7


SSC-9_Tongue
2.7


SSC-15_Tongue
24.0


CAL 27_Squamous cell ca. of tongue
14.5










[0899]

313





TABLE XG










Panel 4.1D











Rel. Exp. (%)




Ag4387, Run



Tissue Name
186501500














Secondary Th1 act
0.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.3



Primary Th2 rest
0.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
0.0



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.0



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
0.0



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0



LAK cells rest
0.6



LAK cells IL-2
1.0



LAK cells IL-2 + IL-12
0.9



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.9



LAK cells PMA/ionomycin
0.6



NK Cells IL-2 rest
0.0



Two Way MLR 3 day
0.0



Two Way MLR 5 day
0.0



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.9



PBMC PHA-L
0.0



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.5



B lymphocytes CD40L and IL-4
0.0



EOL-1 dbcAMP
0.0



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
0.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.0



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
0.0



Macrophages LPS
0.0



HUVEC none
0.0



HUVEC starved
0.0



HUVEC IL-1beta
0.0



HUVEC IFN gamma
0.0



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.9



Lung Microvascular EC none
0.0



Lung Microvascular EC TNFalpha +
0.0



IL-1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC TNFalpha +
0.0



IL-1beta



Bronchial epithelium TNFalpha +
4.6



IL1beta



Small airway epithelium none
20.0



Small airway epithelium TNFalpha +
22.4



IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMC TNFalpha + IL-
0.0



1beta



Astrocytes rest
0.0



Astrocytes TNFalpha + IL-1beta
0.0



KU-812 (Basophil) rest
6.7



KU-812 (Basophil) PMA/ionomycin
16.3



CCD1106 (Keratinocytes) none
0.4



CCD1106 (Keratinocytes) TNFalpha +
2.5



IL-1beta



Liver cirrhosis
0.0



NCI-H292 none
0.4



NCI-H292 IL-4
0.9



NCI-H292 IL-9
0.0



NCI-H292 IL-13
0.0



NCI-H292 IFN gamma
0.0



HPAEC none
0.0



HPAEC TNF alpha + IL-1 beta
0.0



Lung fibroblast none
1.0



Lung fibroblast TNF alpha + IL-1
0.4



beta



Lung fibroblast IL-4
0.0



Lung fibroblast IL-9
0.0



Lung fibroblast IL-13
0.8



Lung fibroblast IFN gamma
0.0



Dermal fibroblast CCD1070 rest
0.0



Dermal fibroblast CCD1070 TNF
0.0



alpha



Dermal fibroblast CCD1070 IL-1
0.0



beta



Dermal fibroblast IFN gamma
0.0



Dermal fibroblast IL-4
0.0



Dermal Fibroblasts rest
0.0



Neutrophils TNFa + LPS
0.0



Neutrophils rest
1.8



Colon
2.0



Lung
2.1



Thymus
18.4



Kidney
100.0











[0900] CNS_neurodegeneration_v1.0 Summary: Ag4387 Expression of the CG134100-01 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0901] General_screening_panel v1.4 Summary: Ag4387 Highest expression of the CG134100-01 gene is detected in bone marrow (CT=30.6). Therefore, expression of this gene may be used to distinguish this sample from other samples used in this panel. In addition, therapeutic modulation of this gene product may be useful in the bone marrow related diseases such as leukemia.


[0902] Low levels of expression of this gene is also seen in uterus, trachea and bladder. Therefore, therapeutic modulation of this gene may be useful in the treatment of diseases that affect these tissues.


[0903] General_screening_panel_v1.5 Summary: Ag4893/Ag4894 Two experiments with same probe and primer sets are in excellent agreement. Highest expression of the CG134100-01 gene is detected in bone marrow (CT=30-34). Therefore, expression of this gene may be used to distinguish this sample from other samples used in this panel. In addition, therapeutic modulation of this gene product may be useful in the bone marrow related diseases such as leukemia.


[0904] Oncology_cell_line_screening_panel_v3.1 Summary: Ag4893 Highest expression of the CG134100-01 gene is detected in T cell lymphoma (CT=29.6). In addition, high to moderate levels of expression of this gene is also seen number of cancer samples derived from tongue squamous cell carcinoma, epidermoid carcinoma, bladder carcinoma, pancreatic ductal adenocarcinoma, myelogenous leukemia, uterine and gastric carcinoma. Therefore, expression of this gene may be useful as marker to detect the presence of these cancers.


[0905] Ag4894 Results from one experiment with this gene are not included. The amp plot indicates that there were experimental difficulties with this run.


[0906] Panel 4.1D Summary: Ag4387 Highest expression of the CG134100-01 gene is detected in kidney (CT=30.9). Therefore, expression of this gene may be used to distinguish kidney from other samples used in this panel. In addition, therapeutic modulation of this gene may be beneficial in the treatment of autoimmune of inflammatory disease that affect kidney including lupus and glomerulonephritis.


[0907] Moderate to low levels of expression of this gene is also seen in thymus, basophils, and small airway epithelium. Therefore, therapeutic modulation of this gene product may be beneficial in the treatment of asthma, allergies, COPD, and emphysema, inflammatory bowel disease, and autoimmune diseases.


[0908] Y. NOV27a (CG134403-01): 2510042P03RIK Homolog (TmSP)


[0909] Expression of gene CG134403-01 was assessed using the primer-probe set Ag4871, described in Table YA. Results of the RTQ-PCR runs are shown in Tables YB and YC. Table YA. Probe Name Ag4871
314TABLE YAProbe Name Ag4871StartPrimersSequencesLengthPositionSEQ ID NoForward5′-cctaacagatttcttgcgacaa-3′227310ProbeTET-5′-agtcttccgcttccggttgctctgtt-3′-2639311TAMRAReverse5′-tgttatgggtgcggttactatg-3′2267312


[0910]

315





TABLE YB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag4871, Run



Tissue Name
228903633














Adipose
2.2



Melanoma* Hs688(A).T
8.3



Melanoma* Hs688(B).T
5.7



Melanoma* M14
25.5



Melanoma* LOXIMVI
9.6



Melanoma* SK-MEL-5
10.3



Squamous cell carcinoma SCC-4
6.0



Testis Pool
26.8



Prostate ca.* (bone met) PC-3
13.0



Prostate Pool
3.2



Placenta
1.4



Uterus Pool
2.7



Ovarian ca. OVCAR-3
28.5



Ovarian ca. SK-OV-3
29.7



Ovarian ca. OVCAR-4
3.0



Ovarian ca. OVCAR-5
15.3



Ovarian ca. IGROV-1
7.7



Ovarian ca OVCAR-8
6.2



Ovary
4.3



Breast ca. MCF-7
9.5



Breast ca. MDA-MB-231
15.5



Breast ca. BT 549
8.1



Breast ca. T47D
6.0



Breast ca. MDA-N
14.1



Breast Pool
13.4



Trachea
3.9



Lung
0.5



Fetal Lung
4.6



Lung ca. NCI-N417
6.5



Lung ca. LX-1
13.4



Lung ca. NCI-H146
18.3



Lung ca. SHP-77
11.0



Lung ca. A549
14.7



Lung ca. NCI-H526
5.8



Lung ca. NCI-H23
10.1



Lung ca. NCI-H460
6.0



Lung ca. HOP-62
4.3



Lung ca. NCI-H522
11.3



Liver
0.7



Fetal Liver
7.5



Liver ca. HepG2
9.2



Kidney Pool
8.5



Fetal Kidney
19.2



Renal ca. 786-0
17.2



Renal ca. A498
5.4



Renal ca. ACHN
8.4



Renal ca. UO-31
8.1



Renal ca. TK-10
12.4



Bladder
3.0



Gastric ca. (liver met.) NCI-N87
31.9



Gastric ca. KATO III
8.0



Colon ca. SW-948
1.8



Colon ca. SW480
30.1



Colon ca.* (SW480 met) SW620
9.5



Colon ca. HT29
9.3



Colon ca. HCT-116
9.7



Colon ca. CaCo-2
15.9



Colon cancer tissue
2.6



Colon ca. SW1116
5.0



Colon ca. Colo-205
4.1



Colon ca. SW-48
2.1



Colon Pool
9.7



Small Intestine Pool
3.0



Stomach Pool
2.1



Bone Marrow Pool
1.3



Fetal Heart
5.6



Heart Pool
1.5



Lymph Node Pool
8.3



Fetal Skeletal Muscle
4.7



Skeletal Muscle Pool
4.8



Spleen Pool
2.7



Thymus Pool
4.3



CNS cancer (glio/astro) U87-MG
20.3



CNS cancer (glio/astro) U-118-MG
27.0



CNS cancer (neuro; met) SK-N-AS
100.0



CNS cancer (astro) SF-539
8.9



CNS cancer (astro) SNB-75
13.2



CNS cancer (glio) SNB-19
12.8



CNS cancer (glio) SF-295
22.4



Brain (Amygdala) Pool
4.5



Brain (cerebellum)
5.4



Brain (fetal)
8.3



Brain (Hippocampus) Pool
3.7



Cerebral Cortex Pool
5.9



Brain (Substantia nigra) Pool
4.3



Brain (Thalamus) Pool
6.3



Brain (whole)
6.4



Spinal Cord Pool
9.6



Adrenal Gland
4.1



Pituitary gland Pool
3.0



Salivary Gland
2.9



Thyroid (female)
3.4



Pancreatic ca. CAPAN2
8.8



Pancreas Pool
8.0











[0911]

316





TABLE YC










Panel 4.1D











Rel. Exp. (%)




Ag4871, Run



Tissue Name
223458798














Secondary Th1 act
21.9



Secondary Th2 act
25.0



Secondary Tr1 act
23.8



Secondary Th1 rest
11.5



Secondary Th2 rest
4.2



Secondary Tr1 rest
0.0



Primary Th1 act
1.5



Primary Th2 act
34.6



Primary Tr1 act
40.1



Primary Th1 rest
0.0



Primary Th2 rest
8.4



Primary Tr1 rest
17.6



CD45RA CD4 lymphocyte act
29.7



CD45RO CD4 lymphocyte act
34.9



CD8 lymphocyte act
27.4



Secondary CD8 lymphocyte rest
5.3



Secondary CD8 lymphocyte act
24.7



CD4 lymphocyte none
26.2



2ry Th1/Th2/Tr1_anti-CD95 CH11
24.8



LAK cells rest
9.8



LAK cells IL-2
26.4



LAK cells IL-2 + IL-12
20.4



LAK cells IL-2 + IFN gamma
35.8



LAK cells IL-2 + IL-18
21.3



LAK cells PMA/ionomycin
21.9



NK Cells IL-2 rest
14.7



Two Way MLR 3 day
7.2



Two Way MLR 5 day
12.7



Two Way MLR 7 day
12.4



PBMC rest
18.6



PBMC PWM
39.8



PBMC PHA-L
10.4



Ramos (B cell) none
4.3



Ramos (B cell) ionomycin
25.9



B lymphocytes PWM
2.4



B lymphocytes CD40L and IL-4
31.6



EOL-1 dbcAMP
9.7



EOL-1 dbcAMP PMA/ionomycin
5.0



Dendritic cells none
17.2



Dendritic cells LPS
9.4



Dendritic cells anti-CD40
1.0



Monocytes rest
11.5



Monocytcs LPS
20.3



Macrophages rest
21.2



Macrophages LPS
15.2



HUVEC none
18.7



HUVEC starved
50.7



HUVEC IL-1beta
60.7



HUVEC IFN gamma
100.0



HUVEC TNF alpha + IFN gamma
70.2



HUVEC TNF alpha + IL4
28.3



HUVEC IL-11
28.7



Lung Microvascular EC none
90.1



Lung Microvascular EC TNFalpha +
39.8



IL-1beta



Microvascular Dermal EC none
49.0



Microsvasular Dermal EC TNFalpha +
10.9



IL-1beta



Bronchial epithelium TNFalpha +
27.2



IL1beta



Small airway epithelium none
11.0



Small airway epithelium TNFalpha +
21.5



IL-1beta



Coronery artery SMC rest
22.7



Coronery artery SMC TNFalpha + IL-
71.7



1beta



Astrocytes rest
8.7



Astrocytes TNFalpha + IL-1beta
9.3



KU-812 (Basophil) rest
30.4



KU-812 (Basophil) PMA/ionomycin
25.7



CCD1106 (Keratinocytes) none
37.9



CCD1106 (Keratinocytes) TNFalpha +
47.6



IL-1beta



Liver cirrhosis
9.7



NCI-H292 none
39.8



NCI-H292 IL-4
47.6



NCI-H292 IL-9
79.6



NCI-H292 IL-13
59.0



NCI-H292 IFN gamma
45.1



HPAEC none
43.2



HPAEC TNF alpha + IL-1 beta
40.3



Lung fibroblast none
46.0



Lung fibroblast TNF alpha + IL-1
46.7



beta



Lung fibroblast IL-4
18.9



Lung fibroblast IL-9
42.6



Lung fibroblast IL-13
17.2



Lung fibroblast IFN gamma
26.8



Dermal fibroblast CCD1070 rest
25.3



Dermal fibroblast CCD1070 TNF alpha
57.8



Dermal fibroblast CCD1070 IL-1 beta
20.6



Dermal fibroblast IFN gamma
38.4



Dermal fibroblast IL-4
25.2



Dermal Fibroblasts rest
12.7



Neutrophils TNFa + LPS
0.7



Neutrophils rest
13.8



Colon
3.4



Lung
23.5



Thymus
36.3



Kidney
32.3











[0912] General_screening_panel_v1.5 Summary: Ag4871 Highest expression of this gene is detected in CNS cancer SK-N-AS cell line (CT=28.5). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of gastric, colon, lung, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0913] Among tissues with metabolic or endocrine function, this gene is expressed at moderate to low levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0914] Interestingly, this gene is expressed at much higher levels in fetal (CTs=32.2-32.9) when compared to adult liver and lung, respectively (CTs=36). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver and lung, respectively. In addition, the relative overexpression of this gene in fetal tissues suggests that the protein product may enhance growth or development of liver and lung in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver and lung related diseases.


[0915] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0916] Panel 4.1D Summary: Ag4871 Highest expression of this gene is detected in IFN gamma treated HUVEC cells (CT=31.9). This gene is expressed at low to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.5 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0917] Z. NOV32a (CG56711-01): Kallistatin Precursor.


[0918] Expression of gene CG56711-01 was assessed using the primer-probe set Ag1689, described in Table ZA. Results of the RTQ-PCR runs are shown in Tables ZB, ZC and ZD. Please note that CG56711-01 represents a full-length physical clone
317TABLE ZAProbe Name Ag1689StartPrimersSequencesLengthPositionSEQ ID NoForward5′-aatgaggtggaacaacttgttg-3′22894313ProbeTET-5′-caagaagctagagttgcatcttccca-3′-26933314TAMRAReverse5′-ataggagccagaaatggagaac-3′22960315


[0919]

318





TABLE ZB










Panel 1.3D










Rel. Exp. (%)
Rel. Exp. (%)



Ag1689, Run
Ag1689, Run


Tissue Name
159350722
165534829












Liver adenocarcinoma
0.0
0.0


Pancreas
12.7
18.4


Pancreatic ca. CAPAN 2
0.0
0.0


Adrenal gland
0.0
0.0


Thyroid
0.0
0.0


Salivary gland
0.0
0.0


Pituitary gland
0.0
0.0


Brain (fetal)
0.0
0.0


Brain (whole)
0.0
0.0


Brain (amygdala)
0.0
0.0


Brain (cerebellum)
0.0
0.0


Brain (hippocampus)
0.0
0.0


Brain (substantia nigra)
0.0
0.0


Brain (thalamus)
0.0
0.0


Cerebral Cortex
0.0
0.0


Spinal cord
0.0
0.1


glio/astro U87-MG
0.0
0.0


glio/astro U-118-MG
0.0
0.0


astrocytoma SW1783
0.0
0.0


neuro*; met SK-N-AS
0.0
0.0


astrocytoma SF-539
0.0
0.0


astrocytoma SNB-75
0.0
0.0


glioma SNB-19
0.0
0.0


glioma U251
0.0
0.0


glioma SF-295
0.0
0.0


Heart (fetal)
0.0
0.0


Heart
0.0
0.0


Skeletal muscle (fetal)
0.0
0.0


Skeletal muscle
0.0
0.0


Bone marrow
0.0
0.0


Thymus
0.0
0.0


Spleen
0.0
0.8


Lymph node
0.0
0.0


Colorectal
0.0
0.0


Stomach
8.7
10.5


Small intestine
0.0
0.0


Colon ca. SW480
0.0
0.0


Colon ca.* SW620 (SW480 met)
0.0
0.0


Colon ca. HT29
0.5
0.3


Colon ca. HCT-116
0.0
0.0


Colon ca. CaCo-2
2.5
3.0


Colon ca. tissue (ODO3866)
1.9
0.4


Colon ca. HCC-2998
0.0
0.0


Gastric ca.* (liver met) NCI-N87
0.0
0.0


Bladder
7.2
12.4


Trachea
0.0
0.0


Kidney
2.0
0.1


Kidney (fetal)
10.9
8.4


Renal ca. 786-0
0.0
0.0


Renal ca. A498
0.0
0.0


Renal ca. RXF 393
0.0
0.0


Renal ca. ACHN
0.0
0.0


Renal ca. UO-31
0.0
0.0


Renal ca. TK-10
0.0
0.0


Liver
91.4
100.0


Liver (fetal)
100.0
93.3


Liver ca. (hepatoblast) HepG2
14.0
25.9


Lung
0.0
0.0


Lung (fetal)
0.0
0.0


Lung ca. (small cell) LX-1
0.0
0.1


Lung ca. (small cell) NCI-H69
0.0
0.0


Lung ca. (s. cell var.) SHP-77
0.0
0.0


Lung ca. (large cell) NCI-H460
0.0
0.0


Lung ca. (non-sm. cell) A549
0.0
0.1


Lung ca. (non-s. cell) NCI-H23
0.0
0.0


Lung ca. (non-s. cell) HOP-62
0.0
0.0


Lung ca. (non-s. cl) NCI-H522
0.0
0.0


Lung ca. (squam.) SW 900
0.0
0.0


Lung ca. (squam.) NCI-H596
0.0
0.0


Mammary gland
0.1
0.2


Breast ca.* (pl. ef) MCF-7
0.0
0.1


Breast ca.* (pl. ef) MDA-MB-231
0.0
0.0


Breast ca.* (pl. ef) T47D
0.0
0.1


Breast ca. BT-549
0.0
0.0


Breast ca. MDA-N
0.0
0.0


Ovary
0.0
0.0


Ovarian ca. OVCAR-3
0.0
0.0


Ovarian ca. OVCAR-4
0.0
0.1


Ovarian ca. OVCAR-5
0.0
0.0


Ovarian ca. OVCAR-8
0.0
0.0


Ovarian ca. IGROV-1
0.0
0.0


Ovarian ca.* (ascites) SK-OV-3
0.0
0.0


Uterus
0.0
0.0


Placenta
0.0
0.0


Prostate
0.1
0.4


Prostate ca.* (bone met) PC-3
0.0
0.0


Testis
0.3
0.2


Melanoma Hs688(A).T
0.0
0.0


Melanoma* (met) Hs688(B).T
0.0
0.0


Melanoma UACC-62
0.0
0.0


Melanoma M14
0.0
0.0


Melanoma LOX IMVI
0.0
0.0


Melanoma* (met) SK-MEL-5
0.0
0.0


Adipose
0.0
0.0










[0920]

319





TABLE ZC










Panel 2D











Rel. Exp. (%)




Ag1689, Run



Tissue Name
159352635














Normal Colon
0.8



CC Well to Mod Diff (ODO3866)
0.9



CC Margin (ODO3866)
0.0



CC Gr.2 rectosigmoid (ODO3868)
0.1



CC Margin (ODO3868)
0.0



CC Mod Diff (ODO3920)
0.3



CC Margin (ODO3920)
0.0



CC Gr.2 ascend colon (ODO3921)
0.1



CC Margin (ODO3921)
0.0



CC From Partial Hepatectomy (ODO4309)
9.9



Mets



Liver Margin (ODO4309)
100.0



Colon mets to lung (OD04451-01)
0.1



Lung Margin (OD04451-02)
0.0



Normal Prostate 6546-1
0.1



Prostate Cancer (OD04410)
0.0



Prostate Margin (OD04410)
0.1



Prostate Cancer (OD04720-01)
0.0



Prostate Margin (OD04720-02)
0.0



Normal Lung 061010
0.5



Lung Met to Muscle (ODO4286)
0.0



Muscle Margin (ODO4286)
0.0



Lung Malignant Cancer (OD03126)
0.1



Lung Margin (OD03126)
0.0



Lung Cancer (OD04404)
0.0



Lung Margin (OD04404)
0.0



Lung Cancer (OD04565)
0.0



Lung Margin (OD04565)
0.0



Lung Cancer (OD04237-01)
0.0



Lung Margin (OD04237-02)
0.0



Ocular Mel Met to Liver (ODO4310)
0.0



Liver Margin (ODO4310)
69.7



Melanoma Mets to Lung (OD04321)
0.0



Lung Margin (OD04321)
3.6



Normal Kidney
3.9



Kidney Ca, Nuclear grade 2 (OD04338)
0.3



Kidney Margin (OD04338)
3.1



Kidney Ca Nuclear grade 1/2 (OD04339)
0.2



Kidney Margin (OD04339)
4.8



Kidney Ca, Clear cell type (OD04340)
0.0



Kidney Margin (OD04340)
1.1



Kidney Ca, Nuclear grade 3 (OD04348)
0.0



Kidney Margin (OD04348)
1.2



Kidney Cancer (OD04622-01)
0.0



Kidney Margin (OD04622-03)
0.5



Kidney Cancer (OD04450-01)
0.0



Kidney Margin (OD04450-03)
1.3



Kidney Cancer 8120607
0.0



Kidney Margin 8120608
1.3



Kidney Cancer 8120613
0.0



Kidney Margin 8120614
2.7



Kidney Cancer 9010320
0.1



Kidney Margin 9010321
1.4



Normal Uterus
0.0



Uterus Cancer 064011
2.7



Normal Thyroid
0.0



Thyroid Cancer 064010
0.6



Thyroid Cancer A302152
0.0



Thyroid Margin A302153
0.0



Normal Breast
0.0



Breast Cancer (OD04566)
0.0



Breast Cancer (OD04590-01)
0.0



Breast Cancer Mets (OD04590-03)
0.0



Breast Cancer Metastasis (OD04655-05)
0.0



Breast Cancer 064006
1.0



Breast Cancer 1024
0.0



Breast Cancer 9100266
0.1



Breast Margin 9100265
0.0



Breast Cancer A209073
0.0



Breast Margin A209073
0.0



Normal Liver
72.7



Liver Cancer 064003
21.0



Liver Cancer 1025
73.7



Liver Cancer 1026
63.3



Liver Cancer 6004-T
84.7



Liver Tissue 6004-N
5.5



Liver Cancer 6005-T
40.1



Liver Tissue 6005-N
48.3



Normal Bladder
33.7



Bladder Cancer 1023
0.1



Bladder Cancer A302173
0.2



Bladder Cancer (OD04718-01)
0.8



Bladder Normal Adjacent (OD04718-03)
0.0



Normal Ovary
0.0



Ovarian Cancer 064008
0.0



Ovarian Cancer (OD04768-07)
0.8



Ovary Margin (OD04768-08)
0.0



Normal Stomach
3.7



Gastric Cancer 9060358
0.7



Stomach Margin 9060359
9.9



Gastric Cancer 9060395
0.1



Stomach Margin 9060394
4.9



Gastric Cancer 9060397
8.6



Stomach Margin 9060396
2.2



Gastric Cancer 064005
0.2











[0921]

320





TABLE ZD










Panel 4D










Rel. Exp. (%)
Rel. Exp. (%)



Ag1689, Run
Ag1689, Run


Tissue Name
159350723
165725926












Secondary Th1 act
0.0
0.0


Secondary Th2 act
0.0
0.0


Secondary Tr1 act
0.0
0.0


Secondary Th1 rest
0.0
0.0


Secondary Th2 rest
0.0
0.0


Secondary Tr1 rest
0.0
0.0


Primary Th1 act
0.0
0.0


Primary Th2 act
0.0
0.0


Primary Tr1 act
0.0
0.0


Primary Th1 rest
0.0
0.0


Primary Th2 rest
0.0
0.0


Primary Tr1 rest
0.0
0.0


CD45RA CD4 lymphocyte act
0.0
0.0


CD45RO CD4 lymphocyte act
0.0
0.0


CD8 lymphocyte act
0.0
0.0


Secondary CD8 lymphocyte rest
0.0
0.0


Secondary CD8 lymphocyte act
0.0
0.0


CD4 lymphocyte none
0.0
0.0


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0
0.0


LAK cells rest
0.0
0.0


LAK cells IL-2
0.0
0.0


LAK cells IL-2 + IL-12
0.0
0.0


LAK cells IL-2 + IFN gamma
0.0
0.0


LAK cells IL-2 + IL-18
0.0
0.0


LAK cells PMA/ionomycin
0.0
0.0


NK Cells IL-2 rest
0.0
0.0


Two Way MLR 3 day
0.0
0.0


Two Way MLR 5 day
0.0
0.0


Two Way MLR 7 day
0.0
0.0


PBMC rest
0.0
0.0


PBMC PWM
0.0
0.0


PBMC PHA-L
0.0
0.0


Ramos (B cell) none
0.0
0.0


Ramos (B cell) ionomycin
0.0
0.0


B lymphocytes PWM
0.0
0.0


B lymphocytes CD40L and IL-4
0.0
0.0


EOL-1 dbcAMP
0.0
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0
0.0


Dendritic cells none
0.0
0.0


Dendritic cells LPS
0.0
0.0


Dendritic cells anti-CD40
0.0
0.0


Monocytes rest
0.0
0.0


Monocytes LPS
0.0
0.0


Macrophages rest
0.0
0.0


Macrophages LPS
0.0
0.0


HUVEC none
0.0
0.0


HUVEC starved
0.0
0.0


HUVEC IL-1beta
0.0
0.0


HUVEC IFN gamma
0.0
0.0


HUVEC TNF alpha + IFN gamma
0.0
0.0


HUVEC TNF alpha + IL4
0.0
0.0


HUVEC IL-11
0.0
0.0


Lung Microvascular EC none
0.3
0.0


Lung Microvascular EC TNF alpha +
0.0
0.0


IL-1beta


Microvascular Dermal EC none
0.0
0.0


Microsvasular Dermal EC TNF
0.0
0.0


alpha + IL-1beta


Bronchial epithelium TNF alpha +
0.0
0.0


IL1beta


Small airway epithelium none
0.0
0.0


Small airway epithelium
0.0
0.0


TNFalpha + IL-1beta


Coronery artery SMC rest
0.0
0.0


Coronery artery SMC TNFalpha +
0.0
0.0


IL-1beta


Astrocytes rest
0.0
0.0


Astrocytes TNF alpha + IL-1beta
0.0
0.0


KU-812 (Basophil) rest
0.0
0.0


KU-812 (Basophil) PMA/ionomycin
0.0
0.0


CCD1106 (Keratinocytes) none
0.0
0.0


CCD1106 (Keratinocytes) TNF
0.0
0.0


alpha + IL-1beta


Liver cirrhosis
100.0
100.0


Lupus kidney
5.7
4.6


NCI-H292 none
0.0
0.0


NCI-H292 IL-4
0.0
0.0


NCI-H292 IL-9
0.0
0.0


NCI-H292 IL-13
0.0
0.0


NCI-H292 IFN gamma
0.0
0.0


HPAEC none
0.0
0.0


HPAEC TNF alpha + IL-1 beta
0.0
0.0


Lung fibroblast none
0.0
0.0


Lung fibroblast TNF alpha + IL-1
0.0
0.0


beta


Lung fibroblast IL-4
0.0
0.0


Lung fibroblast IL-9
0.0
0.0


Lung fibroblast IL-13
0.0
0.0


Lung fibroblast IFN gamma
0.0
0.0


Dermal fibroblast CCD1070 rest
0.0
0.0


Dermal fibroblast CCD1070 TNF
0.0
0.0


alpha


Dermal fibroblast CCD1070 IL-1 beta
0.0
0.0


Dermal fibroblast IFN gamma
0.0
0.0


Dermal fibroblast IL-4
0.0
0.0


IBD Colitis 2
0.0
0.0


IBD Crohn's
0.0
0.2


Colon
0.7
0.4


Lung
0.5
0.1


Thymus
45.1
17.9


Kidney
0.0
0.1










[0922] CNS_neurodegeneration_v1.0 Summary: Ag1689 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0923] Panel 1.3D Summary: Ag1689 Two experiment with same probe and primer sets arc in excellent agreement with highest expression of the CG56711-01 gene in adult and fetal liver (CTs=27-29). Therefore, expression of this gene may be used to distinguish these samples from other samples in this panel. Moderate to low expression of this gene is also seen in liver cancer and colon cancer cell line. Therefore, therapeutic modulation of this gene may be useful in the treatment of liver related diseases, liver and colon cancers.


[0924] Moderate levels of expression of this gene is also seen in pancreas and stomach. This gene codes for a kallistatin precursor, a serine proteinase inhibitor (serpin) with Phe-Phe residues at the P2 and P1 positions. Kallistatin inhibits the proliferation, migration and adhesion of endothelial cells in vitro and angiogenesis in the rat model of hindlimb ischemia. It induces vasorelaxation of isolated aortic rings and reduces renal perfusion pressure in isolated rat kidneys. It also inhibits the proliferation, migration and adhesion of endothelial cells in vitro and angiogenesis in the rat model of hindlimb ischemia (Chao et al., 2001, Biol Chem 382(1):15-21, PMID: 11258665). Furthermore, kallistatin expression is lower in the eye of patients suffering from diabetes and thus may be involved in diabetic retinopathy (Ma et al., 1996, Curr Eye Res 1996 November;15(11):1117-23, PMID: 8950506). Thus, therapeutic modulation of the activity of the kallistatin precursor encoded by this gene, through the use of protein therapeutics or antibodies, may be useful in the treatment of diabetes, diabetic retinopathy, blood pressure regulation and vascular remodeling.


[0925] Panel 2D Summary: Ag1689 Highest expression of the CG56711-01 gene is detected in liver (ODO4309)(CT=25.8). Interestingly, expression of this gene is much lower in the samples derived hepatectomy (ODO4309) metastasis and occular cancer metastasis to liver (ODO4310) (CT=29-40) as compared to corresponding adjacent control samples (CTs=25-26). High levels of expression of this gene is also seen in normal and liver cancer samples. Therefore, therapeutic modulation of expression of this gene or use of the protein encoded by this gene in the form of protein therapeutics may be useful in the treatment of these cancers and their metastasis.


[0926] Moderate to low levels of expression of this gene is also seen in gastric and kidney normal tissue samples compared with the adjacent tumor sample. It is also expressed in a sample of uterine and breast cancer. It may thus be used as a marker for these cancers and modulation of the activity of this gene or its protein product, through the use of protein therapeutics or antibodies, might be beneficial in the treatment of these cancers.


[0927] Panel 4D Summary: Ag1689 Two experiment with same probe and primer sets are in excellent agreement with highest expression of the CG56711-01 gene in liver cirrhosis (CTs=27-3 1). Therefore, expression of this gene may be useful distinguishing this sample from other samples in this panel and also as a marker for the diagnosis of liver cirrhosis. Furthermore, therapeutic modulation of this gene or its product may be beneficial in the treatment of liver cirrhosis.


[0928] In addition, moderate levels of expression of this gene is also seen in thymus. Thus, drugs that inhibit the function of this protein may regulate T cell development in the thymus and reduce or eliminate the symptoms of T cell mediated autoimmune or inflammatory diseases, including asthma, allergies, inflammatory bowel disease, lupus erythematosus, or rheumatoid arthritis. Additionally, small molecule or antibody therapeutics designed against this putative protein may disrupt T cell development in the thymus and function as an immunosuppresant for tissue transplant.


[0929] AA. NOV40a and NOV21a (CG95205-02 and CG133159-01): TEM-1 Splice Variant.


[0930] Expression of gene CG95205-02 and CG133159-01 was assessed using the primer-probe sets Ag389, Ag4808 and Ag4834, described in Tables AAA, AAB and AAC. Results of the RTQ-PCR runs are shown in Tables AAD, AAE, AAF, AAG, AAH, AAI and AAJ. Please note that the probes and primer sets Ag4808 and Ag4834 are specific for CG95205-02.
321TABLE AAAProbe Name Ag389StartSEQ IDPrimersSequencesLengthPositionNoForward5′-catgtccctcgctacaataacact-3′241006316ProbeTET-5′-agccaccaacgtagttgacacacatctgc-3′-29974317TAMRAReverse5′-gccagattgccggtgtg-3′17952318


[0931]

322






TABLE AAB










Probe Name Ag4808
















Start




Primers
Sequences
Length
Position
SEQ ID No















Forward
5′-gggtcctctctcaaccactaga-3′
22
1346
319






Probe
TET-5′-cttggctctcaggaactctgcttcct-3′-
26
1368
320



TAMRA





Reverse
5′-aggtcttaagggctttggtgta-3′
22
1417
321










[0932]

323






TABLE AAC










Probe Name Ag4834












Primers
Sequences
Length
Start Position
SEQ ID No















Forward
5′-ggagcccacctggcca-3′
16
1280
322






Probe
TET-5′-gctgcccagctggacagat-3′-TAMRA
19
1301
323





Reverse
5′-cctggggagcaggaagc-3′
17
1321
324










[0933]

324





TABLE AAD










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4808, Run



Tissue Name
223204451














Adipose
17.8



Melanoma* Hs688(A).T
71.7



Melanoma* Hs688(B).T
100.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.5



Testis Pool
4.5



Prostate ca.* (bone met) PC-3
0.1



Prostate Pool
3.1



Placenta
20.0



Uterus Pool
3.1



Ovarian ca. OVCAR-3
0.2



Ovarian ca. SK-OV-3
0.1



Ovarian ca. OVCAR-4
0.3



Ovarian ca. OVCAR-5
0.1



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
6.3



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.1



Breast ca. BT 549
1.1



Breast ca. T47D
0.3



Breast ca. MDA-N
0.0



Breast Pool
8.1



Trachea
6.6



Lung
5.2



Fetal Lung
24.1



Lung ca. NCI-N417
5.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
3.2



Lung ca. A549
0.1



Lung ca. NCI-H526
0.1



Lung ca. NCI-H23
0.5



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.1



Lung ca. NCI-H522
0.8



Liver
0.0



Fetal Liver
4.2



Liver ca. HepG2
0.8



Kidney Pool
16.2



Fetal Kidney
6.8



Renal ca. 786-0
0.0



Renal ca. A498
0.1



Renal ca. ACHN
0.0



Renal ca. UO-31
0.1



Renal ca. TK-10
0.1



Bladder
12.9



Gastric ca. (liver met.) NCI-N87
0.2



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.1



Colon ca.* (SW480 met) SW620
0.2



Colon ca. HT29
0.0



Colon ca. HCT-116
0.3



Colon ca. CaCo-2
0.6



Colon cancer tissue
29.1



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
7.2



Small Intestine Pool
9.4



Stomach Pool
8.5



Bone Marrow Pool
2.9



Fetal Heart
2.7



Heart Pool
4.0



Lymph Node Pool
7.7



Fetal Skeletal Muscle
4.4



Skeletal Muscle Pool
8.3



Spleen Pool
2.7



Thymus Pool
13.6



CNS cancer (glio/astro) U87-MG
0.5



CNS cancer (glio/astro) U-118-MG
0.9



CNS cancer (neuro; met) SK-N-AS
58.2



CNS cancer (astro) SF-539
0.3



CNS cancer (astro) SNB-75
1.4



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
0.6



Brain (cerebellum)
1.4



Brain (fetal)
2.3



Brain (Hippocampus) Pool
1.1



Cerebral Cortex Pool
0.9



Brain (Substantia nigra) Pool
1.4



Brain (Thalamus) Pool
0.4



Brain (whole)
0.6



Spinal Cord Pool
0.6



Adrenal Gland
3.9



Pituitary gland Pool
0.3



Salivary Gland
0.9



Thyroid (female)
2.9



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
17.0











[0934]

325





TABLE AAE










HASS Panel v1.0











Rel. Exp. (%)




Ag389, Run



Tissue Name
268362650














MCF-7 C1
0.3



MCF-7 C2
0.5



MCF-7 C3
1.1



MCF-7 C4
0.1



MCF-7 C5
0.2



MCF-7 C6
0.6



MCF-7 C7
0.1



MCF-7 C9
0.8



MCF-7 C10
0.2



MCF-7 C11
0.2



MCF-7 C12
0.3



MCF-7 C13
0.4



MCF-7 C15
0.3



MCF-7 C16
0.5



MCF-7 C17
0.8



T24 D1
0.1



T24 D2
0.1



T24 D3
0.5



T24 D4
0.2



T24 D5
0.2



T24 D6
0.0



T24 D7
0.2



T24 D9
0.0



T24 D10
0.0



T24 D11
0.3



T24 D12
0.1



T24 D13
0.3



T24 D15
0.1



T24 D16
0.1



T24 D17
0.0



CAPaN B1
0.0



CAPaN B2
0.0



CAPaN B3
0.1



CAPaN B4
0.0



CAPaN B5
0.0



CAPaN B6
0.2



CAPaN B7
0.0



CAPaN B8
0.0



CAPaN B9
0.0



CAPaN B10
0.0



CAPaN B11
0.0



CAPaN B12
0.0



CAPaN B13
0.0



CAPaN B14
0.0



CAPaN B15
0.0



CAPaN B16
0.0



CAPaN B17
0.0



U87-MG F1 (B)
0.2



U87-MG F2
0.1



U87-MG F3
1.2



U87-MG F4
0.0



U87-MG F5
0.5



U87-MG F6
0.9



U87-MG F7
0.4



U87-MG F8
0.1



U87-MG F9
0.1



U87-MG F10
0.9



U87-MG F11
2.0



U87-MG F12
0.2



U87-MG F13
0.3



U87-MG F14
0.5



U87-MG F15
0.4



U87-MG F16
0.3



U87-MG F17
0.4



LnCAP A1
0.0



LnCAP A2
0.0



LnCAP A3
0.0



LnCAP A4
0.6



LnCAP A5
0.2



LnCAP A6
0.7



LnCAP A7
0.2



LnCAP A8
0.3



LnCAP A9
0.2



LnCAP A10
0.0



LnCAP A11
1.3



LnCAP A12
0.0



LnCAP A13
0.0



LnCAP A14
0.0



LnCAP A15
0.1



LnCAP A16
0.0



LnCAP A17
0.2



Primary Astrocytes
52.5



Primary Renal Proximal Tubule
0.0



Epithelial cell A2



Primary melanocytes A5
100.0



126443 - 341 medullo
0.7



126444 - 487 medullo
61.1



126445 - 425 medullo
0.0



126446 - 690 medullo
0.7



126447 - 54 adult glioma
0.5



126448 - 245 adult glioma
0.1



126449 - 317 adult glioma
3.0



126450 - 212 glioma
0.9



126451 - 456 glioma
1.1











[0935]

326





TABLE AAF










Panel 1.1










Rel. Exp. (%)
Rel. Exp. (%)



Ag389, Run
Ag389, Run


Tissue Name
109668399
129785554












Adrenal gland
8.7
8.0


Bladder
15.8
13.8


Brain (amygdala)
0.4
0.5


Brain (cerebellum)
2.9
2.4


Brain (hippocampus)
1.4
2.2


Brain (substantia nigra)
6.6
3.8


Brain (thalamus)
1.7
1.3


Cerebral Cortex
3.1
1.9


Brain (fetal)
3.0
3.0


Brain (whole)
2.1
1.5


glio/astro U-118-MG
0.1
0.2


astrocytoma SF-539
0.0
0.1


astrocytoma SNB-75
0.0
0.0


astrocytoma SW1783
1.7
1.2


glioma U251
0.0
0.0


glioma SF-295
0.0
0.0


glioma SNB-19
0.0
0.0


glio/astro U87-MG
0.0
0.1


neuro*; met SK-N-AS
95.3
100.0


Mammary gland
85.3
80.7


Breast ca. BT-549
5.6
5.1


Breast ca. MDA-N
0.0
0.0


Breast ca.* (pl. ef) T47D
0.1
0.1


Breast ca.* (pl. ef) MCF-7
0.0
0.0


Breast ca.* (pl. ef) MDA-MB-231
0.0
0.0


Small intestine
51.4
37.6


Colorectal
0.8
0.8


Colon ca. HT29
0.1
0.1


Colon ca. CaCo-2
0.5
0.3


Colon ca HCT-15
0.1
0.1


Colon ca. HCT-116
0.0
0.0


Colon ca. HCC-2998
0.3
0.2


Colon ca. SW480
0.0
0.0


Colon ca.* SW620 (SW480 met)
0.1
0.1


Stomach
8.8
20.4


Gastric ca. (liver met) NCI-N87
0.0
0.1


Heart
45.7
41.2


Skeletal muscle (Fetal)
24.0
27.4


Skeletal muscle
44.1
31.6


Endothelial cells
0.0
0.0


Heart (Fetal)
20.3
18.6


Kidney
13.5
11.0


Kidney (fetal)
27.2
16.2


Renal ca. 786-0
0.0
0.0


Renal ca. A498
0.0
0.1


Renal ca. ACHN
0.0
0.0


Renal ca TK-10
0.0
0.0


Renal ca. UO-31
0.1
0.0


Renal ca. RXF 393
0.0
0.0


Liver
5.3
3.5


Liver (fetal)
4.8
3.2


Liver ca. (hepatoblast) HepG2
0.0
0.0


Lung
4.8
4.9


Lung (fetal)
17.8
17.4


Lung ca. (non-s. cell) HOP-62
0.8
0.4


Lung ca. (large cell) NCI-H460
0.1
0.0


Lung ca. (non-s. cell) NCI-H23
0.2
0.2


Lung ca. (non-s. cl) NCI-H522
1.7
0.7


Lung ca. (non-sm. cell) A549
0.0
0.1


Lung ca. (s. cell var.) SHP-77
1.9
1.4


Lung ca. (small cell) LX-1
0.1
0.2


Lung ca. (small cell) NCI-H69
1.0
0.7


Lung ca. (squam.) SW 900
0.1
0.0


Lung ca. (squam.) NCI-H596
2.8
2.7


Lymph node
9.3
10.6


Spleen
3.2
3.3


Thymus
7.1
3.5


Ovary
23.0
22.1


Ovarian ca. IGROV-1
0.0
0.0


Ovarian ca. OVCAR-3
0.0
0.0


Ovarian ca. OVCAR-4
0.3
0.2


Ovarian ca. OVCAR-5
0.7
0.2


Ovarian ca. OVCAR-8
0.1
0.1


Ovarian ca.* (ascites) SK-OV-3
0.1
0.0


Pancreas
12.7
9.5


Pancreatic ca. CAPAN 2
0.0
0.0


Pituitary gland
4.5
1.8


Placenta
87.1
89.5


Prostate
11.1
5.1


Prostate ca.* (bone met) PC-3
0.2
0.2


Salivary gland
10.9
13.5


Trachea
17.1
8.9


Spinal cord
5.5
3.7


Testis
3.7
2.9


Thyroid
24.1
15.8


Uterus
19.6
9.4


Melanoma M14
0.0
0.0


Melanoma LOX IMVI
0.0
0.0


Melanoma UACC-62
0.0
0.0


Melanoma SK-MEL-28
0.0
0.0


Melanoma* (met) SK-MEL-5
0.0
0.0


Melanoma Hs688(A).T
69.7
66.0


Melanoma* (met) Hs688(B).T
100.0
95.9










[0936]

327





TABLE AAG










Panel 1.2










Rel. Exp. (%)
Rel. Exp. (%)



Ag389, Run
Ag389, Run


Tissue Name
139735024
142359249












Endothelial cells
0.0
0.0


Heart (Fetal)
77.9
74.2


Pancreas
0.3
2.4


Pancreatic ca. CAPAN 2
0.0
0.0


Adrenal Gland
25.0
22.1


Thyroid
1.2
1.8


Salivary gland
12.2
20.0


Pituitary gland
1.1
2.5


Brain (fetal)
0.3
0.4


Brain (whole)
0.1
0.8


Brain (amygdala)
1.2
0.8


Brain (cerebellum)
0.2
0.9


Brain (hippocampus)
2.8
2.0


Brain (thalamus)
2.2
1.6


Cerebral Cortex
7.1
6.5


Spinal cord
0.8
1.0


glio/astro U87-MG
0.0
0.1


glio/astro U-118-MG
0.1
0.2


astrocytoma SW1783
1.6
1.6


neuro*; met SK-N-AS
63.3
62.4


astrocytoma SF-539
0.0
0.0


astrocytoma SNB-75
0.0
0.0


glioma SNB-19
0.0
0.0


glioma U251
0.0
0.0


glioma SF-295
0.0
0.0


Heart
85.3
82.9


Skeletal Muscle
33.0
40.6


Bone marrow
0.9
1.2


Thymus
1.5
1.1


Spleen
3.0
3.0


Lymph node
1.1
1.3


Colorectal Tissue
3.6
1.8


Stomach
3.1
5.7


Small intestine
45.1
44.1


Colon ca. SW480
0.0
0.0


Colon ca.* SW620 (SW480 met)
0.0
0.0


Colon ca. HT29
0.0
0.0


Colon ca. HCT-116
0.0
0.0


Colon ca. CaCo-2
0.1
0.2


Colon ca. Tissue (ODO3866)
6.8
5.2


Colon ca. HCC-2998
0.1
0.3


Gastric ca.* (liver met) NCI-N87
0.8
0.0


Bladder
37.4
29.5


Trachea
0.9
1.6


Kidney
19.8
20.2


Kidney (fetal)
13.3
22.1


Renal ca. 786-0
0.0
0.0


Renal ca. A498
0.0
0.0


Renal ca. RXF 393
0.0
0.0


Renal ca. ACHN
0.0
0.0


Renal ca. UO-31
0.0
0.1


Renal ca. TK-10
0.0
0.0


Liver
5.9
5.2


Liver (fetal)
5.4
4.2


Liver ca. (hepatoblast) HepG2
1.1
1.6


Lung
0.8
0.9


Lung (fetal)
3.3
2.7


Lung ca. (small cell) LX-1
0.1
0.1


Lung ca. (small cell) NCI-H69
0.8
0.8


Lung ca. (s. cell var.) SHP-77
1.3
1.1


Lung ca. (large cell) NCI-H460
0.0
0.0


Lung ca. (non-sm. cell) A549
0.0
0.0


Lung ca. (non-s. cell) NCI-H23
0.1
0.3


Lung ca. (non-s. cell) HOP-62
0.1
0.2


Lung ca. (non-s. cl) NCI-H522
1.2
1.7


Lung ca. (squam.) SW 900
0.0
0.0


Lung ca. (squam.) NCI-H596
3.0
2.8


Mammary gland
20.0
44.8


Breast ca.* (pl. ef) MCF-7
0.0
0.0


Breast ca.* (pl. ef) MDA-MB-231
0.0
0.0


Breast ca.* (pl. ef) T47D
0.0
0.1


Breast ca. BT-549
4.6
4.1


Breast ca. MDA-N
0.0
0.1


Ovary
48.3
42.3


Ovarian ca. OVCAR-3
0.0
0.0


Ovarian ca. OVCAR-4
0.4
0.4


Ovarian ca. OVCAR-5
0.3
0.7


Ovarian ca. OVCAR-8
0.0
0.1


Ovarian ca. IGROV-1
0.0
0.1


Ovarian ca. (ascites) SK-OV-3
0.0
0.0


Uterus
9.9
10.0


Placenta
8.0
24.7


Prostate
7.7
9.8


Prostate ca.* (bone met) PC-3
0.1
0.1


Testis
0.5
0.5


Melanoma Hs688(A).T
87.1
83.5


Melanoma* (met) Hs688(B).T
100.0
100.0


Melanoma UACC-62
0.0
0.0


Melanoma M14
0.0
0.0


Melanoma LOX IMVI
0.0
0.0


Melanoma* (met) SK-MEL-5
0.0
0.0










[0937]

328





TABLE AAH










Panel 2D










Rel. Exp. (%)




Ag389, Run


Tissue Name
145188404












Normal Colon
26.2



CC Well to Mod Diff (ODO3866)
21.6


CC Margin (ODO3866)
15.6


CC Gr.2 rectosigmoid (ODO3868)
10.4


CC Margin (ODO3868)
3.3


CC Mod Diff (ODO3920)
2.8


CC Margin (ODO3920)
4.5


CC Gr.2 ascend colon (ODO3921)
13.0


CC Margin (ODO3921)
10.2


CC from Partial Hepatectomy (ODO4309) Mets
5.9


Liver Margin (ODO4309)
1.5


Colon mets to lung (OD04451-01)
8.5


Lung Margin (OD04451-02)
5.8


Normal Prostate 6546-1
9.5


Prostate Cancer (OD04410)
8.0


Prostate Margin (OD04410)
11.7


Prostate Cancer (OD04720-01)
5.5


Prostate Margin (OD04720-02)
12.6


Normal Lung 061010
12.7


Lung Met to Muscle (ODO4286)
2.6


Muscle Margin (ODO4286)
54.0


Lung Malignant Cancer (OD03126)
31.6


Lung Margin (OD03126)
7.3


Lung Cancer (OD04404)
10.4


Lung Margin (OD04404)
47.6


Lung Cancer (OD04565)
9.0


Lung Margin (OD04565)
5.0


Lung Cancer (OD04237-01)
7.3


Lung Margin (OD04237-02)
17.4


Ocular Mel Met to Liver (ODO4310)
0.6


Liver Margin (ODO4310)
0.7


Melanoma Mets to Lung (OD04321)
1.3


Lung Margin (OD04321)
12.5


Normal Kidney
14.4


Kidney Ca, Nuclear grade 2 (OD04338)
2.7


Kidney Margin (OD04338)
6.9


Kidney Ca Nuclear grade 1/2 (OD04339)
1.1


Kidney Margin (OD04339)
11.0


Kidney Ca, Clear cell type (OD04340)
19.9


Kidney Margin (OD04340)
11.8


Kidney Ca, Nuclear grade 3 (OD04348)
23.5


Kidney Margin (OD04348)
13.7


Kidney Cancer (OD04622-01)
24.0


Kidney Margin (OD04622-03)
2.6


Kidney Cancer (OD04450-01)
0.4


Kidney Margin (OD04450-03)
10.2


Kidney Cancer 8120607
7.1


Kidney Margin 8120608
13.6


Kidney Cancer 8120613
1.8


Kidney Margin 8120614
9.2


Kidney Cancer 9010320
64.2


Kidney Margin 9010321
16.6


Normal Uterus
16.2


Uterus Cancer 064011
17.9


Normal Thyroid
22.7


Thyroid Cancer 064010
6.6


Thyroid Cancer A302152
5.3


Thyroid Margin A302153
5.4


Normal Breast
32.1


Breast Cancer (OD04566)
6.0


Breast Cancer (OD04590-01)
26.6


Breast Cancer Mets (OD04590-03)
37.4


Breast Cancer Metastasis (OD04655-05)
8.4


Breast Cancer 064006
15.1


Breast Cancer 1024
26.6


Breast Cancer 9100266
16.8


Breast Margin 9100265
16.4


Breast Cancer A209073
32.1


Breast Margin A209073
27.7


Normal Liver
1.0


Liver Cancer 064003
0.5


Liver Cancer 1025
1.5


Liver Cancer 1026
13.0


Liver Cancer 6004-T
2.3


Liver Tissue 6004-N
3.5


Liver Cancer 6005-T
12.8


Liver Tissue 6005-N
1.5


Normal Bladder
14.2


Bladder Cancer 1023
6.9


Bladder Cancer A302173
4.8


Bladder Cancer (OD04718-01)
11.7


Bladder Normal Adjacent (OD04718-03)
100.0


Normal Ovary
19.6


Ovarian Cancer 064008
15.5


Ovarian Cancer (OD04768-07)
5.0


Ovary Margin (OD04768-08)
40.6


Normal Stomach
18.3


Gastric Cancer 9060358
9.9


Stomach Margin 9060359
7.9


Gastric Cancer 9060395
13.1


Stomach Margin 9060394
9.2


Gastric Cancer 9060397
13.3


Stomach Margin 9060396
3.6


Gastric Cancer 064005
9.7










[0938]

329





TABLE AAI










Panel 4D










Rel. Exp. (%)
Rel. Exp. (%)



Ag389, Run
Ag389, Run


Tissue Name
139853806
140196439












Secondary Th1 act
0.0
0.0


Secondary Th2 act
0.0
0.0


Secondary Tr1 act
0.0
0.0


Secondary Th1 rest
0.0
0.0


Secondary Th2 rest
0.0
0.1


Secondary Tr1 rest
0.0
0.0


Primary Th1 act
0.0
0.0


Primary Th2 act
0.0
0.0


Primary Tr1 act
0.1
0.0


Primary Th1 rest
0.2
0.5


Primary Th2 rest
0.1
0.2


Primary Tr1 rest
0.6
0.5


CD45RA CD4 lymphocyte act
11.0
11.2


CD45RO CD4 lymphocyte act
0.1
0.1


CD8 lymphocyte act
0.8
0.7


Secondary CD8 lymphocyte rest
0.0
0.0


Secondary CD8 lymphocyte act
0.0
0.1


CD4 lymphocyte none
0.1
0.1


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0
0.1


LAK cells rest
0.1
0.1


LAK cells IL-2
0.1
0.2


LAK cells IL-2 + IL-12
0.1
0.3


LAK cells IL-2 + IFN gamma
0.2
0.2


LAK cells IL-2 + IL-18
0.1
0.4


LAK cells PMA/ionomycin
0.0
0.0


NK Cells IL-2 rest
0.1
0.1


Two Way MLR 3 day
0.2
0.3


Two Way MLR 5 day
0.1
0.2


Two Way MLR 7 day
0.1
0.1


PBMC rest
0.1
0.2


PBMC PWM
0.1
0.3


PBMC PHA-L
0.7
1.2


Ramos (B cell) none
0.0
0.0


Ramos (B cell) ionomycin
0.0
0.0


B lymphocytes PWM
0.1
0.2


B lymphocytes CD40L and IL-4
0.2
0.1


EOL-1 dbcAMP
0.1
0.0


EOL-1 dbcAMP PMA/ionomycin
0.1
0.0


Dendritic cells none
0.0
0.1


Dendritic cells LPS
0.0
0.0


Dendritic cells anti-CD40
0.0
0.0


Monocytes rest
0.0
0.0


Monocytes LPS
0.0
0.0


Macrophages rest
0.0
0.0


Macrophages LPS
0.0
0.0


HUVEC none
0.0
0.0


HUVEC starved
0.0
0.0


HUVEC IL-1beta
0.0
0.0


HUVEC IFN gamma
0.0
0.0


HUVEC TNF alpha + IFN gamma
0.0
0.0


HUVEC TNF alpha + IL4
0.0
0.0


HUVEC IL-11
0.0
0.0


Lung Microvascular EC none
0.0
0.0


Lung Microvascular EC TNFalpha +
0.0
0.0


IL-1beta


Microvascular Dermal EC none
0.0
0.0


Microsvasular Dermal EC TNF
0.0
0.0


alpha + IL-1beta


Bronchial epithelium TNFalpha +
0.0
0.0


IL1beta


Small airway epithelium none
0.2
0.5


Small airway epithelium TNF
0.0
0.0


alpha + IL-1beta


Coronery artery SMC rest
6.2
6.7


Coronery artery SMC TNF alpha +
6.0
4.4


IL-1beta


Astrocytes rest
0.3
0.4


Astrocytes TNFalpha + IL-1beta
1.1
1.5


KU-812 (Basophil) rest
0.0
0.0


KU-812 (Basophil) PMA/ionomycin
0.0
0.0


CCD1106 (Keratinocytes) none
0.0
0.0


CCD1106 (Keratinocytes)
0.0
0.0


TNFalpha + IL-1beta


Liver cirrhosis
0.8
0.7


Lupus kidney
0.7
1.0


NCI-H292 none
0.0
0.0


NCI-H292 IL-4
0.0
0.0


NCI-H292 IL-9
0.0
0.0


NCI-H292 IL-13
0.0
0.0


NCI-H292 IFN gamma
0.0
0.0


HPAEC none
0.0
0.0


HPAEC TNF alpha + IL-1 beta
0.0
0.0


Lung fibroblast none
24.3
25.7


Lung fibroblast TNF alpha + IL-1
3.8
5.4


beta


Lung fibroblast IL-4
22.5
31.2


Lung fibroblast IL-19
20.6
24.7


Lung fibroblast IL-13
41.2
59.0


Lung fibroblast IFN gamma
24.1
29.9


Dermal fibroblast CCD1070 rest
61.6
69.3


Dermal fibroblast CCD1070 TNF alpha
25.9
28.9


Dermal fibroblast CCD1070 IL-1 beta
55.1
42.6


Dermal fibroblast IFN gamma
51.1
42.3


Dermal fibroblast IL-4
100.0
100.0


IBD Colitis 2
0.0
0.1


IBD Crohn's
0.6
0.6


Colon
1.6
2.1


Lung
9.8
13.2


Thymus
1.0
1.4


Kidney
1.5
1.4










[0939]

330





TABLE AAJ










Panel 5 Islet









Rel. Exp. (%)



Ag4808, Run


Tissue Name
259154757











97457_Patient-02go_adipose
80.7


97476_Patient-07sk_skeletal muscle
22.4


97477_Patient-07ut_uterus
35.8


97478_Patient-07pl_placenta
12.9


99167_Bayer Patient 1
1.8


97482_Patient-08ut_uterus
32.8


97483_Patient-08pl_placenta
6.1


97486_Patient-09sk_skeletal muscle
3.3


97487_Patient-09ut_uterus
11.9


97488_Patient-09pl_placenta
8.3


97492_Patient-10ut_uterus
23.2


97493_Patient-10pl_placenta
15.0


97495_Patient-11go_adipose
6.9


97496_Patient-11sk_skeletal muscle
5.0


97497_Patient-11ut_uterus
27.4


97498_Patient-11pl_placenta
12.8


97500_Patient-12go_adipose
72.7


97501_Patient-12sk_skeletal muscle
22.2


97502_Patient-12ut_uterus
54.7


97503_Patient-12pl_placenta
3.5


94721_Donor 2 U - A_Mesenchymal Stem Cells
49.0


94722_Donor 2 U - B_Mesenchymal Stem Cells
46.7


94723_Donor 2 U - C_Mesenchymal Stem Cells
57.0


94709_Donor 2 AM - A adipose
46.0


94710_Donor 2 AM - B_adipose
46.0


94711_Donor 2 AM - C_adipose
41.5


94712_Donor 2 AD - A_adipose
30.6


94713_Donor 2 AD - B_adipose
53.6


94714_Donor 2 AD - C_adipose
49.0


94742_Donor 3 U - A_Mesenchymal Stem Cells
69.3


94743_Donor 3 U - B_Mesenchymal Stem Cells
82.4


94730_Donor 3 AM - A_adipose
100.0


94731_Donor 3 AM - B_adipose
67.8


94732_Donor 3 AM - C_adipose
80.1


94733_Donor 3 AD - A_adipose
85.9


94734_Donor 3 AD - B_adipose
69.7


94735_Donor 3 AD - C_adipose
62.4


77138_Liver_HepG2untreated
4.8


73556_Heart_Cardiac stromal cells (primary)
0.0


81735_Small Intestine
9.4


72409_Kidney_Proximal Convoluted Tubule
0.0


82685_Small intestine_Duodenum
0.9


90650_Adrenal_Adrenocortical adenoma
3.9


72410_Kidney_HRCE
0.0


72411_Kidney_HRE
0.1


73139_Uterus_Uterine smooth muscle cells
28.1










[0940] AI_comprehensive panel_v1.0 Summary: Ag4834 Expression of the CG95205-02 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0941] General_screening_panel_v1.4 Summary: Ag4808 Highest expression of this gene is detected in melanoma Hs688(B).T cell line (CT=26.7). In addition, high to moderate expression of this is also seen in colon cancer, melanoma melanoma Hs688(A).T cell line, and cell lines derived from brain, liver, lung and breast cancers. This gene codes for endosialin (TEM1) protein, a cell surface glycoprotein identified with monoclonal antibody FB5. It is a highly expressed by tumor blood vessel endothelium in a broad range of human cancers but not detected in blood vessels or other cell types in many normal tissues (Carson-Walter et al., 2001, Cancer Res 61(18):6649-55, PMID: 11559528; Christian et al., 2001, J Biol Chem 276(10):7408-14, PMID: 11084048). Therefore, therapeutic modulation of the protein encoded by this gene through the use of antibody or small molecule drug, may be beneficial in the treatment of these cancers.


[0942] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, fetal liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0943] Interestingly, this gene is expressed at much higher levels in fetal (CT=31.2) when compared to adult liver (CT=37.9). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver. In addition, the relative overexpression of this gene in fetal skeletal muscle suggests that the protein product may enhance liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the TEM1 encoded by this gene could be useful in treatment of liver related diseases.


[0944] In addition, this gene is expressed at moderate to low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0945] General_screening_panel_v1.5 Summary: Ag4834 Expression of the CG95205-02 gene (Runs 228726951 and 228783170) is low/undetectable (CTs>35) across all of the samples on this panel.


[0946] HASS Panel v1.0 Summary: Ag389 Highest expression of this gene is detected in primary melanocytes A5 (CT=29.5). Moderate levels of expression of this gene is detected in a sample of brain cancer, as well as, in cultured primary melanocytes and astrocytes.


[0947] Oncology_cell_line_screening_panel_v3.1 Summary: Ag4834 Expression of the CG95205-02 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0948] Panel 1.1 Summary: Ag4808 Two experiment with same probe and primer sets are in excellent agreement. Highest expression of this gene is detected in melanoma Hs688(B).T and neuronial metastatic SK-N-AS cell lines (CTs=22-24). In addition, high to moderate expression of this is also seen in colon cancer, melanoma melanoma Hs688(A).T cell line, and cell lines derived from brain, liver, lung and breast cancers. Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, fetal liver and the gastrointestinal tract. In addition, this gene is expressed at moderate to low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Please see panel 1.4 for discussion on utility of this gene.


[0949] Panel 1.2 Summary: Ag389 Two experiment with same probe and primer sets are in excellent agreement. Highest expression of this gene is detected in melanoma Hs688(B).T (CTs=25). In addition, high to moderate expression of this is also seen in colon cancer, melanoma melanoma Hs688(A).T cell line, and cell lines derived from brain, liver, lung and breast cancers Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, fetal liver and the gastrointestinal tract. In addition, this gene is expressed at moderate to low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Please see panel 1.4 for discussion on utility of this gene.


[0950] Results from two experiments (Runs 138522289 and 138564094) with this gene are not included. The amp plot indicates that there were experimental difficulties with this run.


[0951] Panel 2D Summary: Ag389 Highest expression of this gene is detected in normal bladder (CT=30). Moderate to low expression of this gene is seen in both normal and cancer samples derived from colon, stomach, ovary, bladder, liver, thyroid, uterus, kidney, lung, and prostate. Therefore, therapeutic modulation of the protein encoded by this gene through the use of antibody or small molecule drug, may be beneficial in the treatment of these cancers. Please see panel 1.4 for more discussion.


[0952] Panel 4.1D Summary: Ag4834 Expression of the CG95205-02 gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0953] Panel 4D Summary: Ag389 Two experiment with same probe and primer sets are in excellent agreement. Highest expression of this gene is detected in IL-4 treated dermal fibroblast (CTs=27.4). In addition, high to moderate expression of this gene is seen in lung and dermal fibroblasts, coronary artery SMC, PHA-L activated PBMC cells, and normal tissues represented by colon, lung, thymus and kidney. Moderate expression of this gene is also detected in CD45RA CD4 lymphocytes, which represents activated naive T cells. Interestingly, the expression of this gene is strongly down regulated in activated memory T cells (CD45RO CD4 lymphocyte) or CD4 Th1 or Th2 cells, resting CD4 cells (CTs>35), suggesting a role for this putative protein in differentiation or activation of naive T cells. Therefore, modulation of the expression and/or activity of this putative protein encoded by this gene might be beneficial for the control of autoimmune diseases and T cell mediated diseases such as arthritis, IBD, asthma, COPD and skin disorders such as psoriasis and emphysema.


[0954] Panel 5 Islet Summary: Ag4808 Highest expression of this gene is detected in midway differentiated adipose (CT=28.3). Moderate to low expression of this gene is also seen in differentiated adipocytes and undifferentiated mesenchymal cells, skeletal muscle, islet cells, small intestine, placenta and uterus. Please see panel 1.4 for further discussion on the utility of this gene.


[0955] General oncology screening panel_v2.4 Summary: Ag4834 Expression of the CG95205-02 gene is low/undetectable (CTs>35) across all of the samples on this panel.



Example D

[0956] Identification of Single Nucleotide Polymorphisms in NOVX Nucleic Acid Sequences


[0957] Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a “CSNP” to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP may be due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele. SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.


[0958] SeqCalling assemblies produced by the exon linking process were selected and extended using the following criteria. Genomic clones having regions with 98% identity to all or part of the initial or extended sequence were identified by BLASTN searches using the relevant sequence to query human genomic databases. The genomic clones that resulted were selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences were analyzed for putative coding regions as well as for similarity to the known DNA and protein sequences. Programs used for these analyses include Grail, Genscan, BLAST, HMMER, FASTA, Hybrid and other relevant programs.


[0959] Some additional genomic regions may have also been identified because selected SeqCalling assemblies map to those regions. Such SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified was manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database. SeqCalling fragments suitable for inclusion were identified by the CuraTools™ program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.


[0960] The regions defined by the procedures described above were then manually integrated and corrected for apparent inconsistencies that may have arisen, for example, from miscalled bases in the original fragments or from discrepancies between predicted exon junctions, EST locations and regions of sequence similarity, to derive the final sequence disclosed herein. When necessary, the process to identify and analyze SeqCalling assemblies and genomic clones was reiterated to derive the full length sequence (Alderborn et al., Determination of Single Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing. Genome Research. 10 (8) 1249-1265, 2000).


[0961] Variants are reported individually but any combination of all or a select subset of variants are also included as contemplated NOVX embodiments of the invention. Ps NOV1a SNP Data:


[0962] Four ploymorphic variants of NOV1a have been identified and are shown in Table D1.
331TABLE D1NucleotidesAmino AcidsBaseBasePositionWild-PositionWild-Variantof SNPtypeVariantof SNPtypeVariant13379739743CG215ArgGly13379740910CT270AlaAla13379741975GA292GlyAsp133797381500TC467ValAla


[0963] NOV4a SNP Data:


[0964] Two polymorphic variants of NOV4a have been identified and are shown in Table D2.
332TABLE D2NucleotidesAmino AcidsBaseBasePositionWild-PositionWild-Variantof SNPtypeVariantof SNPtypeVariant13379812153GC32GlyAla13379809954CT0


[0965] NOV5a SNP Data:


[0966] Two polymorphic variants of NOV5a have been identified and are shown in Table D3.
333TABLE D3NucleotidesAmino AcidsBaseBasePositionWild-PositionWild-Variantof SNPtypeVariantof SNPtypeVariant13379756409CT60HisHis13379755966GT246GlyVal


[0967] NOV6a SNP Data:


[0968] One polymorphic variant of NOV6a has been identified and is shown in Table D4.
334TABLE D4NucleotidesAmino AcidsBaseBasePositionWild-PositionWild-Variantof SNPtypeVariantof SNPtypeVariant13378086216GA52AlaThr


[0969] NOV7a SNP Data:


[0970] Two polymorphic variants of NOV7a were identified and are shown in Table D5.
335TABLE D5NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant13379781534AG173GlyGly13379782715GA234AlaThr


[0971] NOV9a SNP Data:


[0972] One polymorphic variant of NOV9a has been identified and is shown in Table D6.
336TABLE D6NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant1337981084GA28LysLys


[0973] NOV10a SNP Data:


[0974] Four polymorphic variants of NOv10a have been identified and are shown in Table D7.
337TABLE D7NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant133797763528CT1150ProSer133797753619TC1180LeuPro133797854588TG0133798135742AG0


[0975] NOV11a SNP Data:


[0976] One polymorphic variant of NOV11a has been identified and is shown in Table D8.
338TABLE D8NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant1337981162CT21ProLeu


[0977] NOV12a SNP Data:


[0978] Two polymorphic variants of NOV12a have been identified and are shown in Table D9.
339TABLE D9NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant13377332461TC145LeuPro13377331473TC149LeuPro


[0979] NOV13a SNP Data:


[0980] One polymorphic variant of NOV13a has been identified and is shown in Table D10.
340TABLE D10NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant13379842236TC79ValAla


[0981] NOV14a SNP Data:


[0982] Four polymorphic variants of NOV14a have been identified and are shown in Table D11.
341TABLE D11NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant1337982914TC013379827124CT37ProLeu13379825576CT188LeuPhe13379824675CT221LeuLeu


[0983] NOV15a SNP data:


[0984] Ten polymorphic variants of NOV15a have been identified and are shown in Table D12.
342TABLE D12NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant133798651039AG290GlyGly133798641884TC572ValAla133798633619GC1150LeuLeu133798607248TC2360LeuPro133798597505CA2446LeuIle133798588017GA2616LysLys133798578237AT2690MetLeu133798568515TC2782HisHis133798678611GA2814ProPro133798688689TC2840PhePhe


[0985] NOV16a SNP data:


[0986] One polymorphic variant of NOV16a has been identified and is shown in Table D13.
343TABLE D13NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant133798171300AG427SerGly


[0987] NOV22a SNP data:


[0988] One polymorphic variant of NOV22a has been identified and is shown in Table D14.
344TABLE D14NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant133799401864AG0


[0989] NOV25a SNP data:


[0990] One polymorphic variant of NOV25a has been identified and is shown in Table D15.
345TABLE D15NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant13379938994TC332CysArg


[0991] NOV27a SNP data:


[0992] Five polymorphic variants of NOV27a have been identified and are shown in Table D16.
346TABLE D16NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant133798751309TC403AsnAsn133798741709GA537AspAsn133798731713AG538LysArg133798721777TC559AsnAsn133798711843CT581AspAsp


[0993] NOV28a SNP data:


[0994] Four polymorphic variants of NOV28a have been identified and are shown in Table D17.
347TABLE D17NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant13379839248CT78LeuLeu13379838880CT288AsnAsn13379837883CG289ThrThr133798361078GT354ValVal


[0995] NOV32a SNP data:


[0996] Eleven polymorphic variants of NOV32a have been identified and are shown in D18.
348TABLE D18NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant1337818933GT11LeuLeu1337833268AG23HisArg13375660197TC66IleThr13376793266TC89LeuPro13379841699TC233PhePhe13375659833TC278PheSerc110.58261145GC382SerThrc110.63241146CG382SerArg133778671193GA398ArgGln133767921247TC416LeuPro133746181264GA422ValIle


[0997] NOV40a SNP data:


[0998] Two polymorphic variants of NOV40a have been identified and are shown in Table D19.
349TABLE D19NucleotidesAmino AcidsBaseBasePositionPositionofWild-ofWild-VariantSNPtypeVariantSNPtypeVariant13379845722CT239AsnAsn133798461298CT431ProPro



Example E

[0999] Each of the clones listed below is related to a clone or family of clones listed in Example A. The relationship is identifiable as the clone listed below will have the same NOVX number as the clones to which it is related. For example, NOV30g below is related to the NOV30 family of Example A.


[1000] The NOV30g and NOV30h clones were analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table E1.
350TABLE E1SEQ ID NO: 111728 bpNOV30g,AGTCTTGCCTTCTTTTGAGCCTAAGTCATGAGTTGGATGTTCCTCAGAGATCTCCTGAGTCG56315-01DNA SequenceGGAGTAAATAAATACTCCACTGGGACTGGATGGATTTGGCTGGCTGTCGTGTTTGTCTTCCGTTTGCTGGTCTACATGGTGGCAGCAGAGCACGTGTGGAAAGATGAGCAGAAAGAGTTTGAGTGCAACAGTAGACAGCCCGGTTGCAAAAATGTGTGTTTTGATGACTTCTTCCCCATTTCCCAAGTCAGACTTTGGGCCTTACAACTGATAATGGTCTCCACACCTTCACTTCTGGTGGTTTTACATGTAGCCTATCATGAGGGTAGAGAGAAAAGGCACAGAAAGAAACTCTATGTCAGCCCAGGTACAATGGATGGGGGCCTATGGTACGCTTATCTTATCAGCCTCATTGTTAAAACTGGTTTTGAAATTGGCTTCCTTGTTTTATTTTATAAGCTATATGATGGCTTTAGTGTTCCCTACCTTATAAAGTGTGATTTGAAGCCTTGTCCCAACACTGTGGACTGCTTCATCTCCAAACCCACTGAGAAGACGATCTTCATCCTCTTCTTGGTCATCACCTCATGCTTGTGTATTGTGTTGAATTTCATTGAACTGAGTTTTTTGGTTCTCAAGTGCTTTATTAAGTGCTGTCTCCAAAAATATTTAAAAAAACCTCAAGTCCTCAGTGTGTGAGTGCCACAGCCTCAGATATGTTGAATGTGSEQ ID NO: 112223 aaNOV30g,MSWMFLRDLLSGVNKYSTGTGWIWLAVVFVFRLLVYMVAAEHVWKDEQKEFECNSRQPGCCG56315-01Protein SequenceKNVCFDDFFPISQVRLWALQLIMVSTPSLLVVLHVAYHEGREKRHRKKLYVSPGTMDGGLWYAYLISLIVKTGFEIGFLVLFYKLYDGFSVPYLIKCDLKPCPNTVDCFISKPTEKTIFILFLVITSCLCIVLNFIELSFLVLKCFIKCCLQKYLKKPQVLSVSEQ ID NO: 113727 bpNOV30h,AGTCTTGCTTCTTTTGAGCCTAAGTCATGAGTTGGATGTTCCTCAGAGATCTCCTGAGTGCG56315-02DNA SequenceGAGTAAATAAATACTCCACTGGGATTGGATGGATTTGGCTGGCTGTCGTGTTTGTCTTCCGTTTGCTGGTCTACATGGTGGCAGCAGAGCACGTGTGGAAAGATGAGCAGAAAGAGTTTGAGTGCAACAGTAGACAGCCCGGTTGCAAAAATGTGTGTTTTGATGACTTCTTCCCCATTTCCCAAGTCAGACTTTGGGCCTTACAACTGATAATGGTCTCCACACCTTCACTTCTGGTGGTTTTACATGTAGCCTATCATGAGGGTAGAGAGAAAAGGCACAGAAAGAAACTCTATGTCAGCCCAGGTACAATGGATGGGGGCCTATGGTACGCTTATCTTATCAGCCTCATTGTTAAAACTGGTTTTGAAATTGGCTTCCTTGTTTTATTTTATAAGCTATATGATGGCTTTAGTGTTCCCTACCTTATAAAGTGTGATTTGAAGCCTTGTCCCAACACTGTGGACTGCTTCATCTCCAAACCCACTGAGAAGACGATCTTCATCCTCTTCTTGGTCATCACCTCATGCTTGTGTATTGTGTTGAATTTCATTGAACTGAGTTTTTTGGTTCTCAAGTGCTTTATTAAGTGCTGTCTCCAAAAATATTTAAAAAAACCTCAAGTCCTCAGTGTGTGAGTGCCACAGCCTCAGATATGTTGAATGTGSEQ ID NO: 114223 aaNOV30h,MSWMFLRDLLSGVNKYSTGIGWIWLAVVFVFRLLVYMVAAEHVWKDEQKEFECNSRQPGCCG56315-02Protein SequenceKNVCFDDFFPISQVRLWALQLIMVSTPSLLVVLHVAYHEGREKRHRKKLYVSPGTMDGGLWYAYLISLIVKTGFEIGFLVLFYKLYDGFSVPYLIKCDLKPCPNTVDCFISKPTEKTIFILFLVITSCLCIVLNFIELSFLVLKCFIKCCLQKYLKKPQVLSV


[1001] The NOV33g clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table E2.
351TABLE E2SEQ ID NO: 1471120 bpNOV33gGAGGCCATGCCCGCTTCCTCTCTTCCAGGAAAGCTCTGGTTCGTCCTCACGATGCTGCTGCG57658-01DNA SequenceCGGATGCTGGTGATTGTCTTGGCGGGGCGACCCGTCTACCAGGACGAGCAGGAGAGGTTTGTCTGCAACACGCTGCAGCCGGGATGCGCCAATGTTTGCTACGACGTCTTCTCCCCCGTGTCTCACCTGCGGTTCTGGCTGATCCAGGGCGTGTGCGTCCTCCTCCCCTCCGCCGTCTTCAGCGTCTATGTCCTGCACCGAGGAGCCACGCTCGCCGCGCTGGGCCCCCGCCGCTGCCCCGACCCCCGGGAGCCGGCCTCCGGGCAGAGACGCTGCCCGCGGCCATTCGGGGAGCGCGGCGGCCTCCAGGTGCCCGACTTTTCGGCCGGCTACATCATCCACCTCCTCCTCCGGACCCTGCTGGAGGCAGCCTTCGGGGCCTTGCACTACTTTCTCTTTGGATTCCTGGCCCCGAAGAAGTTCCCTTGCACGCGCCCTCCGTGCACGGGCGTGGTGGACTGCTACGTGTCGCGGCCCACAGAGAAGTCCCTGCTGATGCTGTTCCTCTGGGCGGTCAGCGCGCTGTCTTTTCTGCTGGGCCTCGCCGACCTGGTCTGCAGCCTGCGGCGGCGGATGCGCAGGAGGCCGGGACCCCCCACAAGCCCCTCCATCCGGAAGCAGAGCGGAGCCTCAGGCCACGCGGAGGGACGCCGGACTGACGAGGAGGGTGGGCGGGAGGAAGAGGGGGCACCGGCGCCCCCGGGTGCACGCGCCGGAGGGGAGGGGGCTGGCAGCCCCAGGCGTACATCCAGGGTGTCAGGGCACACGAAGATTCCGGATGAGGATGAGAGTGAGGTGACATCCTCCGCCAGCGAAAAGCTGGGCAGACAGCCCCGGGGCAGGCCCCACCGAGAGGCCGCCCAGGACCCCAGGGGCTCAGGATCCGAGGAGCAGCCCTCAGCAGCCCCCAGCCGCCTGGCCGCGCCCCCTTCCTGCAGCAGCCTGCAGCCCCCTGACCCGCCTGCCAGCTCCAGTGGTGCTCCCCACCTGAGAGCCAGGAAGTCTGAGTGGGTGTGAAAAAAACAGCACCTGGCGGTGCCCCGGGGCTCACGCCTGTAATSEQ ID NO: 148356 aaNOV33g,MPASSLPGKLWFVLTMLLRMLVIVLAGRPVYQDEQERFVCNTLQPGCANVCYDVFSPVSHCG57658-01Protein SequenceLRFWLIQGVCVLLPSAVFSVYVLHRGATLAALGPRRCPDPREPASGQRRCPRPFGERGGLQVPDFSAGYIIHLLLRTLLEAAFGALHYFLFGFLAPKKFPCTRPPCTGVVDCYVSRPTEKSLLMLFLWAVSALSFLLGLADLVCSLRRRMRRRPGPPTSPSIRKQSGASGHAEGRRTDEEGGREEEGAPAPPGARAGGEGAGSPRRTSRVSGHTKIPDEDESEVTSSASEKLGRQPRGRPHREAAQDPRGSGSEEQPSAAPSRLAAPPSCSSLQPPDPPASSSGAPHLRARKSEWV


[1002] The NOV34b clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table E3.
352TABLE E3SEQ ID NO: 1511400 bpNOV34b,ATTCTCCCCAAACGCCAGGGATGGGGGTCATGGCTCCCCGAACCCTCCTCCTGCTGCTCTCG57664-01DNA SequenceTGGGGGCCCTGGCCCTGACCGAGACCTGGGCCGGTGAGTGCGGGGTCGGGAGGGAAAGGGCCTCTGCGGGGAGAAGCGAGTGGCCCGCCCGGCCCGGGGAGCCGCGCCTCAGCCTCTCCTCGCCTCCAGGCTCCCACTCCTTGAGGTATTTCAGCACCGCAGTGTCCCAGCCCGGCCGCGGGGAGCCCCGGTTCATCGCCGTGGGCTACGTGGACGACACAGAGTTCGTGCGGTTCGACAGCGACTCCGTGAGTCCGAGGATGGAGCGGCGGGCGCCGTGGGTGGAGCAGGAGGGGCTGGAGTATTGGGACCAGGAGACACGGAACGCCAAGGGCCACGCGCAGATTTACCGAGTGAACCTGCGGACCCTGCTCCGCTATTACAACCAGAGCGAGGCCGGTGGTTCTCACACCATCCAGAGGAAGCATGACTGCGACGTGGGCCCGACAGGCGGGCCCGACAGGCGCCTCCTCCGCAGGTATGAACAGTTCGCCTACGATGGCAAGGATTACATCGCCCTGAACGAGGACCTGCCCTCCTGGACCGCCGCGAACACAGCGGCTCAGATCTCCCAGCACAAGTGGGAAGCGGACAAATACTCAGAGCAGGTCAGGGCCTACCTGAGGGCAAGTGCATGGAGTGGCGAGGGCAAGTGCATGGAGTGGCTCCGCAGACACCTGGAGAACGGGAAGGAGACGCTGCAGCGCGCGTCAGATCCCCCAAAGGCACATGTGACCCAGCACCCCGTCTCTGACCATGAGGCCACCCTTGAGGTGCTGGGCCCTGGGCCTCTACCCTTGAGGTGCTGGGCCCTGGGCCTCTACCCTGCGGAGATCACACTGACCTGGCAGCAGGATGGGGAGGACCAGACCCAGGACACGGAGCTTGTGGAGACCAGGCCTGCAGGGGACGGAACCTTCCAGAAGTGGGTGGCTGTAGTGGTGCCTTCCGGAGAGGAGCAGAGATACATGTGCCATGTGCAGCATGAGGGGCTGCCAGAGCCCCTCACCCTGAGATGGCCCTCACCTCCCTCTCCTTTCCCAGAGCCGTCTTCTCAGCCCACCATCCCCATCGTGGGCATCGTTGCTGGCCTGTTTCTCCTTGGAGCTGTGGTCACTGGAGCTGTGGTTGCTGCTGTGATGAAGAGGAAGAAAAGCTCAGGTAGGGAAGGGGTGAGAGGTGGGATCTGGGTTTTCTTGTTCCACTGTGGGTTTCAAGCCACAGGTAGAATTGTGACTTGCTTCATCACTGGGAAGCACCGTCCACACACAGGCCGACCTAGCCTGGGGCCCTGTGTGCCAACACTTGCTCTTTTGTGAAGCACATGTGAAAACGAAGGASEQ ID NO: 152452 aaNOV34b,MGVMAPRTLLLLLLGALALTETWAGECGVGRERASAGRSEWPARPGEPRLSLSSPPGSHSCG57664-01Protein SequenceLRYFSTAVSQPGRGEPRFIAVGYVDDTEFVRFDSDSVSPRMERPAPWVEQEGLEYWDQETRNAKGHAQIYRVNLRTLLRYYNQSEAGGSHTIQRKHDCDVGPTGGPDRRLLRRYEQFAYDGKDYIALNEDLPSWTAANTAAQISQHKWEADKYSEQVRAYLRASAWSGEGKCMEWLRRHLENGKETLQRASDPPKAHVTQHPVSDHEATLEVLGPGPLPLRCWALGLYPAEITLTWQQDGEDQTQDTELVETRPAGDGTFQKWVAVVVPSGEEQRYMCHVQHEGLPEPLTLRWPSPPSPFPEPSSQPTIPIVGIVAGLFLLGAVVTGAVVAAVMKRKKSSGREGVRGGIWVFLFHCGFQATGRIVTCFITGKHRPHTGRPSLGPCVPTLALL


[1003] The NOV35b clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table E4.
353TABLE E4SEQ ID NO: 1551159 bpNOV35b,TCTCCCCAGACGCCGAGGATGGTGCTCATGGCGCCCCGAACCCTCCTCCTGCTGCTCTCACG57668-01DNA SequenceGGGGCCCTGACCCAGACCTGGGCGCGTTCCCACTCCATGAGGTATTTCTACACCACCATGTCCCGGCCCGGCCGCGGGGAGCCCCGCTTCATCTCCGTCGGCTACGTGGACTATACGCAGTTCGTGCGGTTCGACAGCGACGACGCGAGTCCGAGAGAGGAGCCGCGGGCGCCGTGGATGGAGCGGGAGGGGCCGGAGTATTGGGACCGGAACACACAGATCTGCAAGGCCCAAGCACGGACTGAACGAGAGAACCTGCGGATCGCGCTCCGCTACTACAACCAGAGCGAGGGCGGTGGTTCCCACACCATGCAGGTGATGTATGGCTGCGACGTGGGGCCCGACGGGCGCTTCCTCCGCGGGTATGAACAGCACGCCTACGACGGCAAGGATTACATCGCTCTGAACGAGGACCTGCGCTCCTGGACCGCGGCGGACATGGCAGCTCAGATCACCAAGCGCAAGTGGGAGGCGGCCCGTGTGGCGGAGCAGCTGAGAGCCTACCTGGAGGGCGAGTTCGTGGAGTGGCTCCGCAGATACCTGGAGAACGGGAAGGAGACGCTGCAGCGCGCGTCAGACCCCCCCAAGACACATATGACCCACTACCCCATCTCTGACCATGAGGCCACCCTGAGGTGCTGGGCCCTGGGCTTCTACCCTGCGGAGATCACACTGACCTGGCAGCGGGATGGGGAGGACCAGACCACGGAGCTCGTGGAGACCAGGCCTGCAGGGGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGAGAGGAGCAGAGATACACCTGCCATGTGCAGCATGAGGGTCTGCCCGAGCCCCTCACCCTGAGATGGCAGGGTCAGGGTCCCTCACCTTCCCCCCTTTTCCCAGAGCCATCTTCCCAGCCCACCATCCCCATCGTGGGCATCATTGCTGGCCTGGTTCTACTTGTAGCTGTGGTCACTGGAGCTGTGGTCACTGCTGTAATGTGGAGGAAGAAGAGCTCAGGTAAGGAAGGGGATGGGTATTCTACTCCAGGCGGCAACAGTGCCCAGGGCTCTGATGTGTCTCTCACGGCGTGAAAGGTGAGACCTTGGGGGGCCTGATSEQ ID NO: 156371 aaNOV35b,MVLMAPRTLLLLLSGALTQTWARSHSMRYFYTTMSRPGRGEPRFISVGYVDYTQFVRFDSCG57668-01Protein SequenceDDASPREEPRAPWMEREGPEYWDRNTQICKAQARTERENLRIALRYYNQSEGGGSHTMQVMYGCDVGPDGRFLRGYEQHAYDGKDYIALNEDLRSWTAADMAAQITKRKWEAARVAEQLRAYLEGEFVEWLRRYLENGKETLQRASDPPKTHMTHYPISDHEATLRCWALGFYPAEITLTWQRDGEDQTTELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHVQHEGLPEPLTLRWQGQGPSPSPLFPEPSSQPTIPIVGIIAGLVLLVAVVTGAVVTAVMWRKKSSGKEGDGYSTPGGNSAQGSDVSLTA


[1004] The NOV36b clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table E5.
354TABLE E5SEQ ID NO: 1591210 bpNOV36b,TCGCTCACCCACCCGGACTCATTCTCCCCAGACGCCAAGGATGGTGGTCATGGCACCCCGCG59256-01DNA SeuenceAACCCTCTTCCTGCTACTCTCGGGGGCCCTGACCCTGACCGAGACCTGGGCGGGCTCCCACTCCATGAGGTATTTCAGCGCCGCCGTGTCCCGGCCCGCCCGCCGGGAGCCCCGCTTCATCGCCATGGGCTACGTGGACGACACGCAGTTCGTGCGGTTCGACAGCGACTCGGCGTGTCCGAGGATGGAGCCGCGGGCGCCGTGGGTGGAGCAGGAGGGGCCAGAGTATTGGGAAGAGGAGACACGGAACACCAAGGCCCACGCACAGACTGACAGAATGAACCTGCAGACCCTGCGCGGCTACTACAACCAGAGCGAGGGGGTGGGGCCAGGTTCTCATACCCTCCAGTGGATGATTGGCTGCGACCTGGGGTCCGACGGACGCCTCCTCCGCGGGTATGAACAGTATGCCTACGATGGCAAGGATTACCTCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCACCGGACACTGCGGCTCAGATCTCCAAGCGCAAGTGTGAGGCGGCCAATGTGGCTGAACAAAGGAGAGCCTACCTGCACGGCACGTGCGTGGAGTGGCTCCACAGATACCTGGAGAACGGGAAGGAGATGCTGCAGCGCGCGGACCCCCCCAAGACACACGTGACCCACCACCCTGTCTTTGACTATCAGGCCACCCTGAGGTGCTGGGCCCTGGGCTTCTACCCTGCGGAGATCATACTGACCTGGCACCGGGATCGGGAGGACCAGACCCAGGACGTGGAGCTCGTGGAGACCAGGCCTGCAGGGGATGGAACCTTCCAGAAGTGGCCAGCTGTGGTGGTGCCTTCTGGAGAGGAGCAGAGATACACGTGCCATGTGCAGCATGAGGGGCTGCCGGAGCCCCTCATGCTGAGATGGGAGCAGTCTTCCCTGCCCACCATCCCCATCATGGGTATCGTTGCTGGTCTGGTTGTCCTTGCAGCTGTAGTCACTGGAGCTGCGGTCGCTGCTGTGCTGTGGAGGAAGAAGAGCTCAGGTAAGAAAGGAGGGAGCTACTCTCAQGCTGCAAGTAGTGACAGTGCCCAGGGCTCTAATGTGTCTCTCACGGCTTGTAAATGTGACACCCCGGGGGGCCTGATGTGTGTGGGTTGTTGAGGGAAACAGTGGACATAGCTGTGCTATGACSEQ ID NO: 160379 aaNOV36b,MVVMAPRTLFLLLSGALTLTETWAGSHSMRYFSAAVSRPGRGEPRFIAMGYVDDTQFVRFCG59256-01Protein SequenceDSDSACPRMEPRAPWVEQEGPEYWEEEThNTKAHAQTDRMNLQTLRGYYNQSEGVGPGSHTLQWMIGCDLGSDGRLLRGYEQYAYDGKDYLALNEDLRSWTAADTAAQISKRKCEAANVAEQRRAYLEGTCVEWLHRYLENCKEMLQRADPPKTHVTHHPVFDYEATLRCWALGFYPAEIILTWQRDGEDQTQDVELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHVQHEGLPEPLMLRWEQSSLPTIPIMGIVAGLVVLAAVVTGAAVAAVLWRKKSSGKKGGSYSQAASSDSAQGSNVSLTACKCDTPGGLMCVGC


[1005] The NOV39b clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table E6.
355TABLE E6SEQ ID NO: 1731266 bpNOV39b, ATGGCGCCCCGAACCCTCCTCCTGCTGCTCTCGGGGACCCTGGCCCTGGCCGAGACCTGGCG94630-01,DNA SequenceGCGGGCTCCCACTCCATGAGGTATTTCAGCACCGCCGTTTCCTGGCCGGGCCGCGGGGAGCCCAGCTTCATTGCCGTGGGCTACGTGGACGACACGCAGTTCGTGCGGGTCGACAGTGACGCCGTGAGTCTGACCATGAAGACGCGGGCGCGGTGGGTGGAGCAGGAGGGGCCGGAGTATTGGGACCTACAGACACTGGGCGCCAAGGCCCAGGCACAGACTGACCGAGTGAACCTGCGGACCCTGCTCCGCTACTACAACCAGAGCGAGGCGGGGTATCACATCCTCCAGGGAATGTTTGGCTGCGACCTGGGGCCCGACGGGCGTCTCCTCCGCGGGTATGAGCAGTATGCCTACGACGGCAAGGATTACATCGCCCTGAACGAGGACCTCCCCTCCTGGACCGCCGCGGATACCGCGGCTCAGATTACCCAGCGCAAGTATGAGGCGGCCAATGTGGCTGAGCAAAGGAGAGCCTACCTGGAGGGCACCTGCATGQAQTGGCTCCGCAGACACCTGGAGAACGGGAAGGAGACCCTGCAGCGCGCGGGCATAACGAGGTCCTGGGTTCTGGGCTTCTACCCTGCGGAGATCACATTGACCTGGCAGCGGGATGGGGAGGACCAGACCCAGGACATGGAGCTCGTGGAGACCAGGCCCACAGGGGATGGAACCTTCCAGAAGTGGGCGGTTGTGGTAGTGCCTTCTGGAGAGGAACAGAGATACACATGCCATGTGCAGCACAAGGGGCTGCCCAAGCCCCTCATCCTGAGATGGGAGCCCTCTCCCCAGCCCACCATCCCCATTGTGGGTATCATTGCTGGCCTGGTTCTCCTTGGAGCTGTGGTCACTGGAGCTGTGGTCACTGCTGTGATGTGGAGGAAGAAGAGCTCAGATAGAAAAGGAGGGAGCTACTCTCAGGCTGCAAAAAACATCATTAAAGTAAAAACAGAAAAATTTCTGGCCTTGTGGTGTATACGTTCTAGATGCAAGCTTGTCCAACCTGCAGCTCTCGGGCTGCGTGTGGCCCGGGACAGCTTTGAATTTCCCTCCCTTGACTCCATCAACATCGGCACCTGCCAGACGCCCACCACCCACCATCGAAGTGCTGAGAAGAAGTGCAAGGTACTCAACCTGCTCTGGGGATACAGCAGGAAAGCAGAGTGTTTACGGATTTCACATTCCATCAAAGAAAATCCATTTTGASEQ ID NO: 174421 aaNOV39b,MAPRTLLLLLSGTLALAETWAGSHSMRYFSTAVSWPGRGEPSFIAVGYVDDTQFVRVDSDCG94630-01Protein SequenceAVSLRMKTRARWVEQEGPEYWDLQTLGAKAQAQTDRVNLRTLLRYYNQSEAGYHILQGMFGCDLGPDGRLLRGYEQYAYDGKDYIALNEDLRSWTAADTAAQITQRKYEAANVAEQRRAYLEGTCMEWLRRHLENGKETLQRAGITRSNXTLGFYPAEITLTWQRDGEDQTQDMELVETRPTGDGTFQKWAVVVVPSGEEQRYTCHVQHKGLPKPLILRWEPSPQPTIPIVGIIAGLVLLGAVVTGAVVTAVMWRKKSSDRKGGSYSQAAKNIIKVKTEKFLALWCIRSRCKLVQPAALCLRVARDSFEFPSLDSINIGTCQTPTTHHRSAEKKCKVLNLLWGYSRKAECLRISHSIKENPF



Example F

[1006] Polynucleotide and Polypeptide Sequences, and Homology Data



Example 1

[1007] The NOV41 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table F1A.
356TABLE F1ANOV41 Sequence AnalysisSEQ ID NO: 1771050 bpNOV41a,TCGCCATGTACAACGGGTCGTGCTGCCGCATCGAGGGGGACACCATCTCCCAGGTGATCG55676-01DNA SequenceGCCGCCGCTGCTCATTGTGGCCTTTGTGCTGGGCGCACTAGGCAATCGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGAAGCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGGCTCTTCACGTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCGGACAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCCTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGGAGAACCATCTCTGCGTGCAAGAGACGGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATOCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCTATTTCCTCTGGACGGTGCCCTCGAGTGCCTGCGATCCCTCTGTCCATGGGGCCCTGCACATAACCCTCAGCTTCACCTACATGAACAGCATGCTGGATCCCCTGGTGTATTATTTTTCAAGCCCCTCCTTTCCCAAATTCTACAACAAGCTCAAAATCTGCAGTCTGAAACCCAAGCAGCCAGGACACTCAAAAACACAAAGGCCGGAAGAGATGCCAATTTCGAACCTCGGTCGCAGGAGTTGCATCAGTGTGGCAAATAGTTTCCAAAGCCAGTCTGATGGGCAATGGGATCCCCACATTGTTGAGTGGCACTGAACAAORE Start: ATG at 6ORE Stop: TGA at 1044SEQ ID NO: 178346 aaMW at 39294.8kDNOV41a,MYNGSCCRIEGDTISQVNPPLLIVAFVLGALGNGVALCGFCFHMKTWKPSTVYLFNLACG55676-01Protein SequenceVADFLLMICLPFRTDYYLRRRHWAFGDIPCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESANGWHDIMPQLEFPMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKPKQPGHSKTQRPEEMPISNLGRRSCISVANSFQSQSDGQWDPHIVEWHSEQ ID NO: 1791104 bpNOV41b,GTGCCATTGTGGGGACTCCCTGGGCTGCTCTGCACCCGGACACTTGCTCTGTCCCCGCCG55676-02DNA SequenceCATGTACAACGGGTCGTGCTGCCGCATCGAGGGGGACACCATCTCCCAGGTGATGCCGCCGCTGCTCATTGTGGCCTTTGTGCTGGGCGCACTAGGCAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGAAGCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGGACAGACTATTACCTCAOACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGGCTCTTCACGTTGGCCATGAACAGGGCCGGCAGCATCGTGTTCCTTACGGTGGTGGCTGCGGGCAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGGAGAACCATCTCTGCGTGCAAGAGACGGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATGCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGCTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCTATTTCCTCTGGACGGTGCCCTCGAGTGCCTGCGATCCCTCTGTCCATGGGGCCCTGCACATAACCCTCAGCTTCACCTACATGAACAGCATGCTGGATCCCCTGGTGTATTATTTTTCAAGCCCCTCCTTTCCCAAATTCTACAACAAGCTCAAAATCTGCACTCTGAAACCCAAGCAGCCAGGACACTCAAAAACACAAAGGCCGGAAGAGATGCCAATTTCGAACCTCGGTCGCAGGAGTTGCATCAGTGTGGCAAATAGTTTCCAAAGCCAGTCTGATGGGCAATGGGATCCCCACATTGTTGAGTGGCACTGAACAAORF Start: ATG at 60ORF Stop: TGA at 1098SEQ ID NO: 180346 aaMW at 39236.8kDNOV41b,MYNGSCCRIEGDTISQVMPPLLIVAFVLGALGNGVALCGFCFHMKTWKPSTVYLFNLACG55676-02Protein SequenceVADFLLMICLPFRTDYYLRRRHWAFGDIPCRVGLFTLAMNRAGSIVFLTVVAAGRYFKVVHPHHAVNTTSTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESEIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKPKQPGHSKTQRPEEMPISNLGRRSCISVANSFQSQSDGQWDPHIVEWHSEQ ID NO: 1811104 bpNOV41c,GTGCCATTGTGGGGACTCCCTGGGCTGCTCTGCACCCGGACACTTGCTCTGTCCCCGCCG55676-03DNA SequenceCATGTACAACGGGTCGTGCTGCCGCATCGAGGGGGACACCATCTCCCAGGTGATGCCGCCGCTGCTCATTGTGGCCTTTGTGCTGGGCGCACTAGACAATGGGGTCCCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGPAGCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTCGGGCTCTTCACGTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCGGCCAGGTATTTCAAAGTGGTCCACCCCCACCACCCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGGAGAACCATCTCTGCGTGCAAGAGACGGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATGCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCTATTTCCTCTGGACGGTGCCCTCGAGTGCCTGCGATCCCTCTGTCCATGGGGCCCTGCACATAACCCTCAGCTTCACCTACATGAACAGCATGCTGGATCCCCTGGTGTATTATTTTTCAAGCCCCTCCTTTCCCAAATTCTACAACAAGCTCAAAATCTGCAGTCTGAAACCCPAGCAGCCAGGACACTCAAAAACACAAAGGCCGGAAGAGATGCCAATTTCGAACCTCGGTCGCAGGAGTTGCATCAGTGTGGCAAATAGTTTCCAAAGCCAGTCTGATGGGCAATGGGATCCCCACATTGTTGAGTGGCACTGAACAAORF Start: ATG at 60ORF Stop: TGA at 1098SEQ ID NO: 182346 aaMW at 39294.8kDNOV41c,MYNGSCCRIEGDTISQVMPPLLIVAFVLGALDNGVALCGFCFHMKTWKPSTVYLFNLACG55676-03Protein SequenceVADFLLMICLPFRTDYYLRRRHWAFGDIPCRVGLFTLAMNRAGSIVFLTVVAAGRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESANGWHDIMFQLEFPMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKRKQPGHSKTQRPEEMPISNLGRRSCISVANSFQSQSDGQWDPHIVEWHSEQ ID NO: 1831057 bpNOV41d,CACCAGATCTATGTACAACGGGTCGTGCTGCCGCATCGAGGGGGACACCATCTCCCAGCG55676-04DNA SequenceGTGATGCCGCCGCTGCTCATTGTGGCCTTTGTGCTGGGCGCACTAGGCAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGAAGCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATCATCTGCCTGCCTTTTCGGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGGCTCTTCACGTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTCGTCGCTGCGGACAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGGAGAACCATCTCTGCGTGCAAGAGACGGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATGCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCACCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCTATTTCCTCTGGACGGTGCCCTCGAGTGCCTGCGATCCCTCTGTCCATGGGGCCCTGCACATAACCCTCAGCTTCACCTACATGAACAGCATGCTGGATCCCCTGGTGTATTATTTTTCAAGCCCCTCCTTTCCCAAATTCTACAACAAGCTCAAAATCTGCAGTCTGAAACCCAAGCAGCCAGGACACTCAAAAACACAAAGGCCGGAAGAGATGCCAATTTCGAACCTCGGTCGCAGGAGTTCCATCAGTGTGGCAAATAGTTTCCAAAGCCAGTCTGATGGGCAATGCGATCCCCACATTGTTGAGTGGCACAAGCTTGGCORF Start: ATG at 11ORF Stop: at 1049SEQ ID NO: 184346 aaMW at 39294.8kDNOV41d,MYNGSCCRIEGDTISQVMPPLLIVAFVLGALGNGVALCGFCFHMKTWKPSTVYLFNLACG55676-04Protein SequenceVADFLLMICLPFRTDYYLRRRHWAFGDIPCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKPKQPGHSKTQRPEEMPISNLGRRSCISVANSPQSQSDGQWDPHIVEWHSEQ ID NO: 185961 bpNOV41e,CACCAGATCTAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGAAGCG55676-05Protein SequenceCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGGCTCTTCACGTTCGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCGGACAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATCCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCTATTTCCTCTGGACGGTGCCCTCGAGTGCCTGCGATCCCTCTGTCCATGGGGCCCTGCACATAACCCTCAGCTTCACCTACATGAACAGCATGCTGGATCCCCTGGTGTATTATTTTTCAAGCCCCTCCTTTCCCAAATTCTACAACAAGCTCAAAATCTGCAGTCTGAAACCCAAGCAGCCAGGACACTCAAAAACACAAAGGCCGGAAGAGATGCCAATTTCGAACCTCGGTCGCAGGAGTTGCATCAGTGTGGCAAATAGTTTCCAAAGCCAGTCTGATGGGCAATGGGATCCCCACATTGTTGAGTGGCACAAGCTTGGCORE Start: at 11ORE Stop: at 953SEQ ID NO: 186314 aaMW at 35943.9kDNOV41e,NGVALCGFCFHMKTWKPSTVYLFNLAVADFLLMICLPFRTDYYLRRRHWAFGDIPCRVCG55676-05Protein SequenceGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKPKQPGHSKTQRPEEMPISNLGRRSCISVANSPQSQSDGQWDPHIVEWHSEQ ID NO: 1871060 bpNOV41f,CACCTCGCGAACCATGTACAACGGGTCGTGCTGCCGCATCGAGGGGGACACCATCTCCCG55676-06DNA SequenceCAGGTGATGCCGCCGCTGCTCATTGTGGCCTTTGTGCTGGGCGCACTAGGCAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGAAGCCCACCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGCACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGCCTCTTCACGTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCGGACAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGCGAACAGTCTATCTTTTGCTGGAGAACCATCTCTGCGTGCAACAGACCCCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCACCTGCAGTTCTTTATCCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCTATTTCCTCTGGACGGTGCCCTCGAGTGCCTGCQATCCCTCTGTCCATGGGGCCCTGCACATAACCCTCAGCTTCACCTACATGAACAGCATGCTGGATCCCCTGGTCTATTATTTTTCAAGCCCCTCCTTTCCCAAATTCTACAACAAGCTCAAAATCTGCAGTCTGAAACCCAAGCAGCCAGGACACTCAAAAACACAAACCCCGGAAGAGATGCCAATTTCGAACCTCGGTCGCAGGAGTTGCATCAGTGTGGCAAATAGTTTCCAAAGCCAGTCTGATGGGCAATGGGATCCCCACATTGTTGAGTGCCACGTCGACGGCORF Start: at 14ORF Stop: at 1052SEQ ID NO: 188346 aaMW at 39294.8kDNOV41f,MYNGSCCRIEGDTISQVNPPLLIVAFVLGALGNGVALCGFCFHMKTWKPSTVYLFNLACG55676-06Protein SequenceVADFLLMICLPFRTDYYLRRRHWAFGDIPCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESAVGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKPKQPGHSKTQRPEEMPISNLGRRSCISVANSFQSQSDGQWDPHIVEWHSEQ ID NO: 189961 bpNOV41g,CACCTCGCGAAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGAAGCG556676-07DNA SequenceCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGGCTCTTCACGTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCGGACAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGGAGAACCATCTCTGCGTGCAAGAGACGGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATGCCCCTCGGCATCATCTTATTTTCCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCTATTTCCTCTGGACGGTGCCCTCGAGTGCCTGCGATCCCTCTGTCCATGGGGCCCTGCACATAACCCTCAGCTTCACCTACATGAACAGCATGCTGGATCCCCTGGTGTATTATTTTTCAAGCCCCTCCTTTCCCAAATTCTACAACAAGCTCAAAATCTGCAGTCTGAAACCCAAGCAGCCAGGACACTCAAAAACACAAAGGCCGGAAGAGATGCCAATTTCGAACCTCGGTCGCAGGAGTTGCATCAGTGTGGCAAATAGTTTCCAAAGCCAGTCTGATGGGCAATGGGATCCCCACATTGTTGAGTGGCACGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 190320 aaMW at 36559.5kDNOV41g,TSRNGVALCGFCFHMKTWKPSTVYLFNLAVADFLLMICLPFRTDYYLRRRHWAFGDIPCG55676-07Protein SequenceCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLYFLWTVPSSACDPSVHGALHITLSPTYMNSMLDPLVYYFSSRSFRKFYNKLKICSLKPKQPGHSKTQRPEEMPISNLGRRSCISVANSFQSQSDGQWDPHIVEWHVDGSEQ ID NO: 1911057 bpNOV41h,CACCAGATCTATGTACAACGGGTCGTGCTGCCGCATCGAGGGGGACACCATCTCCCAG248209538 DNASequenceGTGATGCCGCCGCTGCTCATTGTGGCCTTTGTGCTGGGCGCACTAGGCAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGAAGCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGCACATTCCCTGCCGAGTGGGGCTCTTCACGTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCCGACAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGCAGAACCATCTCTGCGTGCAAGAGACGGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATCCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGACGCGGAOGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTCGTCCCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCTATTTCCTCTGGACGGTGCCCTCGAGTGCCTGCGATCCCTCTGTCCATGGGGCCCTGCACATAACCCTCAGCTTCACCTACATGAACAGCATGCTGGATCCCCTGGTGTATTATTTTTCAAGCCCCTCCTTTCCCAAATTCTACAACAAGCTCAAAATCTGCAGTCTGAAACCCAAGCAGCCAGGACACTCAAAAACACAAAGGCCGGAAGAGATGCCAATTTCGAACCTCGGTCGCAGGAGTTGCATCAGTGTGGCAAATAGTTTCCAAAGCCAGTCTGATGGGCAATGGGATCCCCACATTGTTGAGTGGCACAAGCTTGGCORE Start: at 2ORF Stop: end of sequenceSEQ ID NO: 192352 aaMW at 39937.6kDNOV41h,TRSMYNGSCCRIEGDTISQVMPPLLIVAFVLGALGNGVALCGFCFHMKTWKPSTVYLF24820938Protein SequenceNLAVADFLLMICLPFRTDYYLRRRHWAFGDIPCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKPKQPGHSKTQRPEEMPISNLGRRSCISVANSFQSQSDGQWDPHIVEWHKLGSEQ ID NO: 193961 bpNOV41j,CACCAGATCTAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGAAG248209591 DNASequenceCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGGCTCTTCACCTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCGGACAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGGAGAACCATCTCTGCGTGCAAGAGACGGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATGCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGACCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCCGATGAAGAAGGCGACCCGGTTCATCATGGTGGTCGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCTATTTCCTCTGGACGGTGCCCTCGAGTGCCTGCGATCCCTCTGTCCATGGGGCCCTGCACATAACCCTCAGCTTCACCTACATGAACAGCATGCTGGATCCCCTGGTGTATTATTTTTCAAGCCCCTCCTTTCCCAAATTCTACAACAAGCTCAAAATCTGCAGTCTGAAACCCAAGCAGCCAGGACACTCAAAAACACAAAGGCCGGAAGAGATGCCAATTTCGAACCTCGGTCGCAGGAGTTGCATCAGTGTGGCAAATAGTTTCCAAAGCCAGTCTGATGGGCAATGGGATCCCCACATTGTTGAGTGGCACAAGCTTGGCORE Start: at 2ORF Stop: end of sequenceSEQ ID NO: 194320 aaMW at 36586.6kDNOV41i,TRSNGVALCGFCFHMKTWKPSTVYLFNLAVADFLLMICLPFRTDYYLRRRHWAFGDIP248209591Protein SequenceCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLYFLWTVP2SACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKPKQPGHSKTQRREEMPISNLGRRSCISVANSFQSQSDGQWDPHIVEWHKLGSEQ ID NO: 195742 bpNOV41j,CACCAGATCTATGTACAACGGCTCGTCCTCCCCCATCCACCGCGACACCATCTCCCAG248209663 DNASequenceGTGATGCCGCCGCTGCTCATTGTGGCCTTTGTGCTGGGCGCACTAGGCAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATCAAGACCTGGAAGCCCAGCACTGTTTACCTTTTCAATTTGGCCGTCGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCCGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGGCTCTTCACGTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCGGACAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGGAGAACCATCTCTGCGTGCAAGAGACCGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATGCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCAAGCTTGGCORE Start: at 2ORE Stop: end of sequenceSEQ ID NO: 196247 aaMW at 27932.0kDNOV41j,TRSMYNGSCCRIEGDTISQVMPPLLIVAFVLGALGNGVALCGFCFHMKTWKPSTVYLF248209663Protein SequenceNLAVADFLLMICLPFRTDYYLRRRHWAFGDIPCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLKLGSEQ ID NO: 197646 bpNOV41k,CACCAGATCTAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGGAAG24809745 DNASequenceCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGGCTCTTCACGTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCGGACAGGTATTTCAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGGAGAACCATCTCTGCGTGCAAGAGACGGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATGGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATGCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCAAGCTTGGCORE Start: at 2ORF Stop: end of sequenceSEQ ID NO: 198215 aaMW at 24581.1kDNOV41k,TRSNGVALCGFCFHMKTWKPSTVYLFNLAVADFLLMICLPFRTDYYLRRRHWAFGDIP24809745Protein SequenceCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCESFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSARLKLG


[1008] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table F1B.
357TABLE F1BComparison of NOV41a against NOV41b through NOV41k.Identities/ProteinNOV41a Residues/Similarities forSequenceMatch Residuesthe Matched RegionNOV41b1 . . . 346333/346 (96%)1 . . . 346333/346 (96%)NOV41c1 . . . 346332/346 (95%)1 . . . 346332/346 (95%)NOV41d1 . . . 346334/346 (96%)1 . . . 346334/346 (96%)NOV41e33 . . . 346 302/314 (96%)1 . . . 314302/314 (96%)NOV41f1 . . . 346334/346 (96%)1 . . . 346334/346 (96%)NOV41g33 . . . 346 302/314 (96%)4 . . . 317302/314 (96%)NOV41h1 . . . 346334/346 (96%)4 . . . 349334/346 (96%)NOV41i33 . . . 346 302/314 (96%)4 . . . 317302/314 (96%)NOV41j1 . . . 241229/241 (95%)4 . . . 244229/241 (95%)NOV41k33 . . . 241 197/209 (94%)4 . . . 212197/209 (94%)


[1009] Further analysis of the NOV41a protein yielded the following properties shown in Table F1C.
358TABLE F1CProtein Sequence Properties NOV41aPSort0.6850 probability located in endoplasmic reticulumanalysis:(membrane); 0.6400 probability located in plasmamembrane; 0.4600 probability located in Golgi body;0.1000 probability located in endoplasmic reticulum(lumen)SignalPCleavage site between residues 33 and 34analysis:


[1010] A search of the NOV41a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table F1D.
359TABLE F1DGeneseq Results for NOV41aNOV41aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB08596Human lipocyte-originated G1 . . . 346346/346 (100%)0.0protein-coupled receptor protein1 . . . 346346/346 (100%)TGR13 - Homo sapiens, 346 aa.[WO200202767-A1, 10 JAN 2002]AAO14788Human purinergic-like G-protein1 . . . 346346/346 (100%)0.0coupled receptor (AXOR87) -1 . . . 346346/346 (100%)Homo sapiens, 346 aa.[GB2365868-A, 27 FEB 2002]AAE17077Human G-protein coupled receptor1 . . . 346346/346 (100%)0.0(GPCRx14) protein - Homo1 . . . 346346/346 (100%)sapiens, 346 aa.[WO200198330-A2, 27 DEC 2001]AAE16172Human G-protein coupled receptor 31 . . . 346346/346 (100%)0.0(GCREC-3) protein - Homo1 . . . 346346/346 (100%)sapiens, 346 aa.[WO200187937-A2, 22 NOV 2001]AAU11401HM74-like G-protein coupled receptor1 . . . 346346/346 (100%)0.0(GPCR) - Homo sapiens, 346 aa.1 . . . 346346/346 (100%)[WO200177320-A2, 18 OCT 2001]


[1011] In a BLAST search of public sequence datbases, the NOV41a protein was found to have homology to the proteins shown in the BLASTP data in Table F1E.
360TABLE F1EPublic BLASTP Results for NOV41aNOV41aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9BXC0Putative chemokine receptor1 . . . 346 346/346 (100%)0.0(G protein-coupled receptor)1 . . . 346 346/346 (100%)(Putative G-protein coupledreceptor) - Homo sapiens (Human),346 aa.Q8TDS4Putative G-protein coupled receptor -5 . . . 340180/341 (52%)6e−94Homo sapiens (Human), 363 aa.17 . . . 355 227/341 (65%)BAC06083Seven transmembrane helix5 . . . 340178/341 (52%)1e−93receptor - Homo sapiens (Human),17 . . . 355 227/341 (66%)387 aa.P49019Probable G protein-coupled5 . . . 340178/341 (52%)1e−93receptor HM74 - Homo sapiens17 . . . 355 227/341 (66%)(Human), 387 aa.Q9EP66Putative seven transmembrane5 . . . 316176/317 (55%)4e−92spanning receptor - Mus musculus14 . . . 329 215/317 (67%)(Mouse), 360 aa.


[1012] PFam analysis predicts that the NOV41a protein contains the domains shown in the Table F1F.
361TABLE F1FDomain Analysis of NOV41aIdentities/Similarities forPfamNOV41athe MatchedExpectDomainMatch RegionRegionValue7tm_132 . . . 27872/272 (26%)5.3e−42175/272 (64%) 



Example 2

[1013] The NOV42 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table F2A.
362TABLE F2ANOV42 Sequence AnalysisSEQ ID NO: 1991012 bpNOV42a,GCATTCACAAGCAGGATGTTCCTTCCCAATGACACCCAGTTTCACCCCTCCTCCTTCCCG53677-01DNA SequenceTGTTGCTGGGGATCCCAGGACTAGAAACACTTCACATCTGGATCGGCTTTCCCTTCTGTGCTGTGTACATGATCGCACTCATAGGGAACTTCACTATTCTACTTGTGATCAAGACTGACAGCAGCCTACACCAGCCCATGTTCTACTTCCTGGCCATGTTGGCCACCACTGATGTGGGTCTCTCAACAGCTACCATCCCTAAGATGCTTGGAATCTTCTGGATCAACCTCAGAGGGATCATCTTTGAAGCCTGCCTCACCCAGATGTTTTTTATCCACAACTTCACACTTATGGAGTCAGCAGTCCTTGTGGCAATGGCTTATGACAGCTATGTGGCCATCTGCAATCCACTCCAATATAGCGCCATCCTCACCAACAAGGTTGTTTCTGTGATTGGTCTTGGTGTGTTTGTGAGGGCTTTAATTTTCGTCATTCCCTCTATACTTCTTATATTGCGGTTGCCCTTCTGTGGGAATCATGTAATTCCCCACACCTACTGTGAGCACATGGGTCTTGCTCATCTATCTTGTGCCAGCATCAAAATCAATATTATTTATGGTTTATGTGCCATTTGTAATCTGQTGTTTGACATCACAGTCATTGCCCTCTCTTATGTGCATATTCTTTGTGCTGTTTTCCGTCTTCCTACTCATGAGCCCCGACTCAAGTCCCTCAGCACATGTGGTTCACATGTGTGTGTAATCCTTGCCTTCTATACACCAGCCCTCTTTTCCTTTATGACTCATTGCTTTGGCCGAAATGTGCCCCGCTATATCCATATACTCCTAGCCAATCTCTATGTTGTGGTGCCACCAATGCTCAATCCTGTCATATATGGAGTCAGAACCAAGCAGATCTATAAATGTGTAAAGAAAATATTATTGCAGGAACAAGGAATGGAAAAGGAAGAGTACCTAATACATACGAGGTTCTGAATGCAATTTTATGAAATTTORF Start: ATG at 16ORE Stop: TGA at 991SEQ ID NO: 200325 aaMW at 36602.5kDNOV42a,MFLPNDTQFHPSSFLLLGIPGLETLHIWIGFPFCAVYMIALIGNFTILLVIKTDSSLHCG53677-01Protein SequenceQPMFYFLAMLATTDVGLSTATIPKMLGIFWINLRGIIFEACLTQMFFIHNFTLMESAVLVANAYDSYVAICNPLQYSAILTNKVVSVIGLGVFVRALIFVIPSILLILRLPFCGNHVIPHTYCEHMGLAHLSCASIKINIIYGLCAICNLVFDITVIALSYVHILCAVFRLPTHEPRLKSLSTCGSHVCVILAFYTPALFSFMTHCFGRNVPRYIHILLANLYVVVPPMLNPVIYGVRTKQIYKCVKKILLQEQGMEKEEYLIHTRFSEQ ID NO: 201988 bpNOV42b,TAGGATGTTCCTTCCCAATGACACCCAGTTTCACCCCTCCTCCTTCCTGTTGCTGGGGCG53677-02DNA SequenceATCCCAGGACTAGAAACACTTCACATCTGGATCGGCTTTCCCTTCTGTGCTGTGTACATGATCGCACTCATAGGGAACTTCACTATTCTACTTGTGATCAAGACTGACAGCAGCCTACACCAGCCCATGTTCTACTTCCTGGCCATGTTGGCCACCACTGATGTGGGTCTCTCAACAGCTACCATCCCTAAGATGCTTGGAATCTTCTGGATCAACCTCAGAGGGATCATCTTTGAAGCCTGCCTCACCCAGATGTTTTTTATCCACAACTTCACACTTATGCAGTCAGCAGTCCTTGTGGCAATGGCTTATGACAGCTATGTGGCCATCTGCAATCCACTCCAATATAGCGCCATCCTCACCAACAAGGTTGTTTCTGTGATTGGTCTTGGTGTGTTTGTGAGGGCTTTAATTTTCGTCATTCCCTCTATACTTCTTATATTGCGGTTGCCCTTCTGTGGGAATCATGTAATTCCCCACACCTACTGTGAGCACATGGGTCTTGCTCATCTATCTTGTGCCAGCATCAAAATCAATATTATTTATGGTTTATGTGCCATTTGTAATCTAGTGTTTGACATCACAGTCATTGCCCTTTCTTATGTGCATATTCTTTGTGCTGTTTTCCGTCTTCCTACTCATGAAGCCCGACTCAAGTCCCTCAGCACATGTGGTTCACATGTGTGTGTAATCCTTGCCTTCTATACACCAGCCCTCTTTTCCTTTATGACTCATCGCTTTGGCCGAAATGTGCCCCGCTATATCCATATACTCCTAGCCAATCTCTATGTTGTGGTGCCACCAATGCTCAATCCTGTCATATATGGAGTCAGAACCAAGCAGATCTATAAATGTGTGAAGAAAATATTATTGCAGCAACAAGGAATGGAAAAGGAAGAGTACCTAATACATACGAGGTTCTGAATGCAAORF Start: ATG at 5ORE Stop: TGA at 980SEQ ID NO: 202325 aaMW at 36629.6kDNOV42b,MFLPNDTQFHPSSFLLLGIPGLETLHIWIGFPFCAVYMIALIGNFTILLVIKTDSSLHCG53677-02Protein SequecneQPMFYFLAMLATTDVGLSTATIPKMLGIPWINLRGIIFEACLTQMFFIHNFTLMESAVLVAMAYDSYVAICNPLQYSAILTNKVVSVIGLGVFVRALIFVIPSILLILRLPPCGNHVTPHTYCEHMGLAHLSCASIKINIIYGLCAICNLVFDITVIALSYVHILCAVFRLPTHEARLKSLSTCGSHVCVILAFYTPALFSFMThRFGRNVPRYIHILLANLYVVVPPMLNPIVIYGVRTKQIYKCVKKILLQEQGMEKEEYLILHTRFSEQ ID NO: 203646 bpNOV42c,CACCAGATCTAATGGGGTCGCCCTGTGTGGTTTCTGCTTCCACATGAAGACCTGCAAG116781634 DNASequenceCCCAGCACTGTTTACCTTTTCAATTTGGCCGTGGCTGATTTCCTCCTTATGATCTGCCTGCCTTTTCGGACAGACTATTACCTCAGACGTAGACACTGGGCTTTTGGGGACATTCCCTGCCGAGTGGGGCTCTTCACGTTGGCCATGAACAGGGCCGGGAGCATCGTGTTCCTTACGGTGGTGGCTGCGGACAGGTATTTcAAAGTGGTCCACCCCCACCACGCGGTGAACACTATCTCCACCCGGGTGGCGGCTGGCATCGTCTGCACCCTGTGGGCCCTGGTCATCCTGGGAACAGTGTATCTTTTGCTGGAGAACCATCTCTGCGTGCAAGAGACGGCCGTCTCCTGTGAGAGCTTCATCATGGAGTCGGCCAATCGCTGGCATGACATCATGTTCCAGCTGGAGTTCTTTATGCCCCTCGGCATCATCTTATTTTGCTCCTTCAAGATTGTTTGGAGCCTGAGGCGGAGGCAGCAGCTGGCCAGACAGGCTCGGATGAAGAAGGCGACCCGGTTCATCATGGTGGTGGCAATTGTGTTCATCACATGCTACCTGCCCAGCGTGTCTGCTAGACTCAAGCTTGGCORF Start: at 288ORE Stop: TGA at 522SEQ ID NO: 20478 aaMW a 8506.6kDNOV42c,TLSPPGWRLASSAPCGPWSSWEQCIFCWRTISACKRRPSPVRASSWSRPMAGMTSCSS116781634Protein SequenceWSSLCPSASSYFAPSRLFGA


[1014] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table F2B.
363TABLE F2BComparison of NOV42a against NOV42b and NOV42c.Identities/Similarities forProteinNOV42a Residues/the MatchedSequenceMatch ResiduesRegionNOV42b1 . . . 325323/325 (99%)1 . . . 325323/325 (99%)NOV42cNo Significant Alignment Found.


[1015] Further analysis of the NOV42a protein yielded the following properties shown in Table F2C.
364TABLE F2CProtein Sequence Properties NOV42aPSort0.6850 probability located in endoplasmic reticulumanalysis:(membrane); 0.6400 probability located in plasmamembrane; 0.4600 probability located in Golgibody; 0.1000 probability located in endoplasmicreticulum (lumen)SignalPCleavage site between residues 56 and 57analysis:


[1016] A search of the NOV42a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table F2D.
365TABLEF2DGeneseq Results for NOV42aNOV42aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU95728Human olfactory and pheromone G1 . . 325325/325 (100%)0.0protein-coupled receptor #215 -1 . . 325325/325 (100%)Homo sapiens, 325 aa.[WO200224726-A2, 28 MAR.2002]AAU85190G-coupled olfactory receptor #51 -1 . . 325325/325 (100%)0.0Homo sapiens, 325 aa.1 . . 325325/325 (100%)[WO200198526-A2, 27 DEC.2001]AAU24570Human olfactory receptor1 . . 325325/325 (100%)0.0AOLFR60 - Homo sapiens, 325 aa.1 . . 325325/325 (100%)[WO200168805-A2, 20 SEP. 2001]ABB44531Human GPCR6a polypeptide SEQ1 . . 325325/325 (100%)0.0ID NO 22 - Homo sapiens, 325 aa.1 . . 325325/325 (100%)[WO200174904-A2, 11 OCT.2001]ABB44532Human GPCR6b polypeptide SEQ1 . . 325323/325 (99%) 0.0ID NO 24 - Homo sapiens, 325 aa.1 . . 325323/325 (99%) [WO200174904-A2, 11 OCT.2001]


[1017] In a BLAST search of public sequence datbases, the NOV42a protein was found to have homology to the proteins shown in the BLASTP data in Table F2E.
366TABLE F2EPublic BLASTP Results for NOV42aNOV42aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedNumberProtein/Organism/LengthResiduesPortionExpect ValueBAC06019Seven transmembrane helix1 . . 325324/325 (99%)0.0receptor - Homo sapiens1 . . 325324/325 (99%)(Human), 325 aa.Q8VGV8Olfactory receptor MOR32-3 -1 . . 317264/317 (83%)e−155Mus musculus (Mouse), 317 aa.1 . . 317284/317 (89%)BAC06020Seven transmembrane helix5 . . 311216/307 (70%)e−126receptor - Homo sapiens2 . . 308252/307 (81%)(Human), 308 aaQ8VG26Olfactory receptor MOR32-5 -1 . . 308216/308 (70%)e−124Mus musculus (Mouse), 313 aa.1 . . 308251/308 (81%)BAC06036Seven transmembrane helix5 . . 312211/308 (68%)e−124receptor - Homo sapiens5 . . 312251/308 (80%)(Human), 312 aa.


[1018] PFam analysis predicts that the NOV42a protein contains the domains shown in the Table F2F.
367TABLE F2FDomain Analysis of NOV42aIdentities/NOV42aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValue7tm_143 . . 29354/270 (20%)6.3e−11166/270 (61%) 



Example G

[1019] Quantitative Expression Analysis of Clones in Various Cells and Tissues


[1020] The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoimmune diseases), Panel CNSD.01 (containing central nervous system samples from normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).


[1021] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[1022] First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.


[1023] In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript 11 (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 μg of total RNA were performed in a volume of 20 μl and incubated for 60 minutes at 42° C. This reaction can be scaled up to 50 μg of total RNA in a final volume of 100 μl. sscDNA samples are then normalized to reference nucleic acids as described previously, using 1×TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions.


[1024] Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version 1 for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration=250 nM, primer melting temperature (Tm) range 58°-60° C., primer, optimal Tm=59° C., maximum primer difference=2° C., probe does not have 5′G, probe Tm must be 10° C. greater than primer Tm, amplicon size 75 bp to 100 bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, Tex., USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5′ and 3′ ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900 nM each, and probe, 200 nM.


[1025] PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR plate (Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48° C. for 30 minutes followed by amplification/PCR cycles as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.


[1026] When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using 1×TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were analyzed and processed as described previously.


[1027] Panels 1, 1.1, 1.2, and 1.3D


[1028] The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung, cancel, breast cancer, melanoma, colon cancel, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.


[1029] In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used:


[1030] ca.=carcinoma,


[1031] *=established from metastasis,


[1032] met=metastasis,


[1033] s cell var=small cell variant,


[1034] non-s=non-sm=non-small,


[1035] squam=squamous,


[1036] pl. eff=pl effusion=pleural effusion,


[1037] glio=glioma,


[1038] astro=astrocytoma, and


[1039] neuro=neuroblastoma.


[1040] General_screening_panel_v1.4


[1041] The plates for Panel 1.4 include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in Panel 1.4 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panel 1 4 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panel 1.4 are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.


[1042] Panels 2D and 2.2


[1043] The plates for Panels 2D and 2.2 generally include 2 control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI). The tissues arc derived from human malignancies and in cases where indicated many malignant tissues have “matched margins” obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted “NAT” in the results below. The tumor tissue and the “matched margins” are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI or CHTN). This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, Calif.), Research Genetics, and Invitrogen.


[1044] Panel 3D


[1045] The plates of Panel 3D are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines arc generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancel cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D and 1.3D are of the most common cell lines used in the scientific literature.


[1046] Panels 4D, 4R, and 4.1D


[1047] Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, Calif.) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, Calif.). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, Pa.).


[1048] Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, Md.) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5 ng/ml, TNF alpha at approximately 5-10 ng/ml, IFN gamma at approximately 20-50 ng/ml, IL-4 at approximately 5-10 ng/ml, IL-9 at approximately 5-10 ng/ml, IL-13 at approximately 5-10 ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.


[1049] Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco/Life Technologies, Rockville, Md.), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20 ng/ml PMA and 1-2 μg/ml ionomycin, IL-12 at 5-10 ng/ml, IFN gamma at 20-50 ng/ml and IL-18 at 5-10 ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogell) at approximately 5 μg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2×106cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol (5.5×10−5M) (Gibco), and 10 mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1-7 days for RNA preparation.


[1050] Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions. Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, Utah), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco), 50 ng/ml GMCSF and 5 ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50 ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100 ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10 μg/ml for 6 and 12-14 hours.


[1051] CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and plated at 106cells/ml onto Falcon 6 welt tissue culture plates that had been coated overnight with 0.5 μg/ml anti-CD28 (Pharmingen) and 3 ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.


[1052] To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). To activate the cells, we used PWM at 5 μg/ml or anti-CD40 (Pharmingen) at approximately 10 μg/ml and IL-4 at 5-10 ng/ml. Cells were harvested for RNA preparation at 24, 48 and 72 hours.


[1053] To prepare the primary and secondary Th1/Th2 and Tr1 cells, six-well Falcon plates were coated overnight with 10 μg/ml anti-CD28 (Pharmingen) and 2 μg/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, German Town, Md.) were cultured at 105-106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (4 ng/ml). IL-12 (5 ng/ml) and anti-IL4 (1 μg/ml) were used to direct to Th1, while IL-4 (5 ng/ml) and anti-IFN gamma (1 μg/ml) were used to direct to Th2 and IL-10 at 5 ng/ml was used to direct to Tr1. After 4-5 days, the activated Th1, Th2 and Tr1 lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (1 ng/ml). Following this, the activated Th1, Th2 and Tr1 lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L (1 μg/ml) to prevent apoptosis. After 4-5 days, the Th1, Th2 and Tr1 lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Th1 and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Th1, Th2 and Tr1 alter 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.


[1054] The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1 mM dbcAMP at 5×105cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5×105cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10 ng/ml and ionomycin at 1 μg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). CCD1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1 mg/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5 ng/ml IL-4, 5 ng/ml IL-9, 5 ng/ml IL-13 and 25 ng/ml IFN gamma.


[1055] For these cell lines and blood cells, RNA was prepared by lysing approximately 107 cells/ml using Trizol (Gibco BRL). Briefly, 1/10 volume of bromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15 ml Falcon Tube. An equal volume of isopropanol was added and left at −20° C. overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 μl of RNAse-free water and 35 μl buffer (Promega) 5 μl DTT, 7 μl RNAsin and 8 μl DNAse were added. The tube was incubated at 37° C. for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with 1/10 volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse flee water. RNA was stored at −80° C.


[1056] AI_comprehensive panel_v1.0


[1057] The plates for AI_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, Md.). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.


[1058] Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.


[1059] Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.


[1060] Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.


[1061] Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-lanti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.


[1062] In the labels employed to identify tissues in the AI_comprehensive panel_v1.0 panel, the following abbreviations are used:


[1063] AI=Autoimmunity


[1064] Syn=Synovial


[1065] Normal=No apparent disease


[1066] Rep22 /Rep20=individual patients


[1067] RA=Rheumatoid arthritis


[1068] Backus=From Backus Hospital


[1069] OA=Osteoarthritis


[1070] (SS)(BA)(MF)=Individual patients


[1071] Ad=Adjacent tissue


[1072] Match control=adjacent tissues


[1073] -M=Male


[1074] -F=Female


[1075] COPD=Chronic obstructive pulmonary disease


[1076] Panels 5D and 5I


[1077] The plates for Panel 5D and 5I include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.


[1078] In the Gestational Diabetes study subjects are young (18 - 40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:
368Patient 2Diabetic Hispanic, overweight, not on insulinPatient 7-9Nondiabetic Caucasian and obese (BMI > 30)Patient 10Diabetic Hispanic, overweight, on insulinPatient 11Nondiabetic African American and overweightPatient 12Diabetic Hispanic on insulin


[1079] Adipocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr. 2, 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:


[1080] Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose


[1081] Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated


[1082] Donor 2 and 3 AD: Adipose, Adipose Differentiated


[1083] Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.


[1084] Panel 5I contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 5I.


[1085] In the labels employed to identify tissues in the 5D and 5I panels, the following abbreviations are used:


[1086] GO Adipose=Greater Omentum Adipose


[1087] SK=Skeletal Muscle


[1088] UT=Uterus


[1089] Plt=Placenta


[1090] AD=Adipose Differentiated


[1091] AM=Adipose Midway Differentiated


[1092] U=Undifferentiated Stem Cells


[1093] Panel CNSD.01


[1094] The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvazia of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathlologists to confirm diagnoses with clear associated neuropathology.


[1095] Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supernuclear Palsy, Depression, and “Normal controls”. Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.


[1096] In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:


[1097] PSP=Progressive supranuclear palsy


[1098] Sub Nigra=Substantia nigra


[1099] Glob Palladus=Globus palladus


[1100] Temp Pole=Temporal pole


[1101] Cing Gyr=Cingulate gyrus


[1102] BA 4=Brodman Area 4


[1103] Panel CNS_Neurodegeneration_V1.0


[1104] The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[1105] Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from “Normal controls” who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0=no evidence of plaques, 3=severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital coitex is spared in AD and therefore acts as a “control” region within AD patients. Not all brain regions are represented in all cases.


[1106] In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used:


[1107] AD=Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy


[1108] Control=Control brains; patient not demented, showing no neuropathology


[1109] Control (Path)=Control brains; patient not demented but showing sever AD-like pathology


[1110] SupTemporal Ctx=Superior Temporal Cortex


[1111] Inf Temporal Ctx=Inferior Temporal Cortex


[1112] GA. NOV41b and NOV41c (CG55676-02 and CG55676-03): GPCR-like


[1113] Expression of genes CG55676-02 and CG55676-03 were assessed using the primer-probe set Ag2378, described in Table GA. Results of the RTQ-PCR runs are shown in Tables GB-GF.
369TABLE GAProbe Name Ag2378StartPrimersSequencesLengthPositionSEQ ID NoForward5′-GTTCAGTGCCACTCAACAATG-3′213325ProbeFAM-5′-ATCCCATTGCCCATCAGACTGGCTTT-3′-2629326TAMRAReverse5′-GCATCAGTGTGGCAAATAGTTT-3′2257327


[1114]

370





TABLE GB










Panel A/I











Rel. Exp. (%)




tm8262f



Tissue Name
Ag2378_A2














110967 COPD-F
2.0



110980 COPD-F
0.0



110968 COPD-M
1.7



110977 COPD-M
2.6



110989 Emphysema-F
3.1



110992 Emphysema-F
0.9



110993 Emphysema-F
2.2



110994 Emphysema-F
1.1



110995 Emphysema-F
2.9



110996 Emphysema-F
1.1



110997 Asthma-M
1.5



111001 Asthma-F
0.7



111002 Asthma-F
0.7



111003 Atopic Asthma-F
3.5



111004 Atopic Asthma-F
3.8



111005 Atopic Asthma-F
2.2



111006 Atopic Asthma-F
0.9



111417 Allergy-M
2.3



112347 Allergy-M
0.7



112349 Normal Lung-F
0.1



112357 Normal Lung-F
5.6



112354 Normal Lung-M
2.4



112374 Crohns-F
0.3



112389 Match Control Crohns-F
1.1



112375 Crohns-F
0.3



112732 Match Control Crohns-F
0.0



112725 Crohns-M
0.0



112387 Match Control Crohns-M
0.4



112378 Crohns-M
1.1



112390 Match Control Crohns-M
3.1



112726 Crohns-M
3.4



112731 Match Control Crohns-M
7.3



112380 Ulcer Col-F
2.5



112734 Match Control Ulcer Col-F
0.0



112384 Ulcer Col-F
1.6



112737 Match Control Ulcer Col-F
3.6



112386 Ulcer Col-F
0.0



112738 Match Control Ulcer Col-F
0.0



112381 Ulcer Col-M
1.3



112735 Match Control Ulcer Col-M
0.0



112382 Ulcer Col-M
1.1



112394 Match Control Ulcer Col-M
0.0



112383 Ulcer Col-M
3.3



112736 Match Control Ulcer Col-M
1.3



112423 Psoriasis-F
0.7



112427 Match Control Psoriasis-F
2.6



112418 Psoriasis-M
0.4



112723 Match Control Psoriasis-M
2.6



112419 Psoriasis-M
3.0



112424 Match Control Psoriasis-M
2.6



112420 Psoriasis-M
4.9



112425 Match Control Psoriasis-M
2.3



104689 (MF) OA Bone-Backus
30.4



104690 (MF) Adj “Normal” Bone-Backus
56.1



104691 (MF) OA Synovium-Backus
11.4



104692 (BA) OA Cartilage-Backus
5.0



104694 (BA) OA Bone-Backus
9.0



104695 (BA) Adj “Normal” Bone-Backus
75.1



104696 (BA) OA Synovium-Backus
10.1



104700 (SS) OA Bone-Backus
19.4



104701 (SS) Adj “Normal” Bone-Backus
23.4



104702 (SS) OA Synovium-Backus
100.0



117093 OA Cartilage Rep7
1.8



112672 OA Bone5
3.1



112673 OA Synovium5
1.1



112674 OA Synovial Fluid cells5
0.5



117100 OA Cartilage Rep 14
0.0



112756 OA Bone9
55.5



112757 OA Synovium9
0.9



112758 OA Synovial Fluid Cells9
0.4



117125 RA Cartilage Rep2
1.2



113492 Bone2 RA
5.9



113493 Synovium2 RA
1.1



113494 Syn Fluid Cells RA
3.5



113499 Cartilage4 RA
1.0



113500 Bone4 RA
2.2



113501 Synovium4 RA
0.2



113502 Syn Fluid Cells4 RA
0.3



113495 Cartilage3 RA
2.6



113496 Bone3 RA
1.6



113497 Synovium3 RA
1.1



113498 Syn Fluid Cells3 RA
1.7



117106 Normal Cartilage Rep20
0.1



113663 Bone3 Normal
0.3



113664 Synovium3 Normal
0.1



113665 Syn Fluid Cells3 Normal
0.2



117107 Normal Cartilage Rep22
1.2



113667 Bone4 Normal
0.8



113668 Synovium4 Normal
1.3



113669 Syn Fluid Cells4 Normal
1.3











[1115]

371





TABLE GC










Panel 1.3D











Rel. Exp., %




1.3dx4tm4870f



Tissue Name
ag2378_a1














Liver adenocarcinoma
0



Pancreas
0



Pancreatic ca. CAPAN 2
4.1



Adrenal gland
0.2



Thyroid
0.5



Salivary gland
0.5



Pituitary gland
0.2



Brain (fetal)
0



Brain (whole)
0



Brain (amygdala)
0



Brain (cerebellum)
0



Brain (hippocampus)
0.1



Brain (substantia nigra)
0



Brain (thalamus)
0



Cerebral Cortex
0.9



Spinal cord
1



glio/astro U87-MG
0



glio/astro U-118-MG
0



astro SW1783
0.2



neuro; met SK-N-AS
0



astro SF-539
0.2



astro SNB-75
2.3



glio SNB-19
0



glio U251
0



glio SF-295
0



Heart (fetal)
0



Heart
0



Fetal Skeletal
2.4



Skeletal muscle
0.1



Bone marrow
0



Thymus
2.2



Spleen
1.9



Lymph node
0.2



Colorectal
0.4



Stomach
0.3



Small intestine
0



Colon SW480
0



Colon SW620(SW480 met)
0



Colon HT29
41.3



Colon HCT-116
0



Colon CaCo-2
9.4



Colon Ca. tissue(ODO3866)
100



Colon HCC-2998
0



Gastric(liver met) NCI-N87
2.8



Bladder
0.2



Trachea
2.1



Kidney
1



Kidney (fetal)
0.8



Renal 786-0
0



Renal A498
0



Renal RXF 393
0.2



Renal ACHN
0



Renal UO-31
4.9



Renal TK-10
0



Liver
0



Liver (fetal)
0.2



Liver (hepatoblast) HepG2
8.7



Lung
0.5



Lung (fetal)
0.4



Lung (small cell) LX-1
0



Lung (small cell) NCI-H69
0



Lung (s. cell var.) SHP-77
9.6



Lung (large cell)NCI-H460
0



Lung (non-sm. cell) A549
0



Lung (non-s. cell) NCI-H23
1



Lung (non-s. cell) HOP-62
1.6



Lung (non-s. cl) NCI-H522
0



Lung (squam.) SW 900
6.1



Lung (squam.) NCI-H596
0.2



Mammary gland
7.6



Breast (pl. ef) MCF-7
19.6



Breast (pl. ef) MDA-MB-231
0.3



Breast (pl. ef) T47D
4.2



Breast BT-549
0.8



Breast MDA-N
0



Ovary
2.5



Ovarian OVCAR-3
1.3



Ovarian OVCAR-4
0



Ovarian OVCAR-5
9.6



Ovarian OVCAR-8
0.2



Ovarian IGROV-1
0



Ovarian (ascites) SK-OV-3
0



Uterus
0



Plancenta
0.5



Prostate
0.9



Prostate (bone met)PC-3
2.3



Testis
1.1



Melanoma Hs688(A).T
0



Melanoma (met) Hs688(B).T
0



Melanoma UACC-62
0



Melanoma M14
0



Melanoma LOXIMVI
0



Melanoma (met) SK-MEL-5
0



Adipose
6.3











[1116]

372





TABLE GD










Panel 2D











Rel. Expr., %




2dx4tm4693f



Tissue Name
ag2378_a2














Normal Colon
1.7



CCa 1
1.1



CCa 1 Margin
0.2



CCa 2
0



CCa 2 Margin
0.1



CCa 3
2.4



CCa 3 Margin
0.3



CCa 4
0.1



CCa 4 Margin
0.2



CCa 5 Metastasis
0



CCa 5 Margin (Liver)
0



CCa 6 Metastatsis
1.1



CCa 6 Margin (Lung)
0.6



Normal Prostate
14.6



PCa 1
2.2



PCa 1 Margin
3.7



PCa 2
1.2



PCa 2 Margin
1.5



Normal Lung
2.1



LCa 1 Metastasis
8



LCa 1 Margin (muscle)
0.7



LCa 2
3.9



LCa 2 Margin
0.6



LCa 3
0.7



LCa 3 Margin
1.9



LCa 4
1.6



LCa 4 Margin
0.6



LCa 5
3.2



LCa 5 Margin
0.3



Ocular Melanoma Metastasis
0.3



Liver Margin
0



Melanoma Metastasis
0.1



Lung Margin
1.2



Normal Kidney
3.2



RCC 1
0.6



RCC 1 Margin
2.1



RCC 2
1.1



RCC 2 Margin
2.6



RCC 3
0.2



RCC 3 Margin
2.3



RCC 4
0.2



RCC 4 Margin
1.4



RCC 5
0.4



RCC 5 Margin
0.8



RCC 6
3.1



RCC 6 Margin
5



RCC 7
0.1



RCC 7 Margin
1.2



RCC 8
19.2



RCC 8 Margin
2



RCC 9
3.2



RCC 9 Margin
1.5



Normal Uterus
0



UtCa
0.4



Normal Thyroid
3.6



ThyCa 1
2.6



ThyCa 2
2.1



ThyCa 2 Margin
4.8



Normal Breast
28.2



BCa 1
30.2



BCa 2
37.3



BCa 3 Metastasis
27.6



BCa 4 Metastasis
100



BCa 5
4.1



BCa 6
63.1



BCa 7
73.3



BCa 7 Margin
37.8



BCa 8
24



BCa 8 Margin
14



Normal Liver
0



HCC 1
0



HCC 2
0.2



HCC 3
0



HCC 4
0



HCC 4 Margin
0.5



HCC 5
0



HCC 5 Margin
0



Normal Bladder
0.5



TCC 1
0.3



TCC 2
0.3



TCC 3
25.9



TCC 3 Margin
0



Normal Ovary
1.3



OVCa 2
0



OVCa 2 Margin
0.7



Normal Stomach
1.9



GaCa 1
0.3



GaCa 1 Margin
1.3



GaCa 2
0



GaCa 2 Margin
0.6



GaCa 3
0



GaCa 3 Margin
0.8



GaCa 4
3.3











[1117]

373





TABLE GE










Panel 3D











Rel. Exp., %




3dx4tm5123f



Tissue Name
ag2378_b1














Daoy- Medulloblastoma
0



TE671- Medulloblastoma
0



D283 Med- Medulloblastoma
0



PFSK-1- Primitive Neuroectodermal
0.9



XF-498- CNS
0.5



SNB-78- Glioma
0



SF-268- Glioblastoma
0



T98G- Glioblastoma
0



SK-N-SH- Neuroblastoma (metastasis)
0



SF-295- Glioblastoma
0



Cerebellum
0.1



Cerebellum
0.2



NCI-H292- Mucoepidermoid lung carcinoma
12.3



DMS-114- Small cell lung cancer
0



DMS-79- Small cell lung cancer
100



NCI-H146- Small cell lung cancer
1.6



NCI-H526- Small cell lung cancer
16.9



NCI-N417- Small cell lung cancer
0



NCI-H82- Small cell lung cancer
0



NCI-H157- Squamous cell lung cancer
0.2



(metastasis)



NCI-H1155- Large cell lung cancer
0.6



NCI-H1299- Large cell lung cancer
0



NCI-H727- Lung carcinoid
6.4



NCI-UMC-11- Lung carcinoid
0



LX-1- Small cell lung cancer
0



Colo-205- Colon cancer
0.4



KM12- Colon cancer
0



KM20L2- Colon cancer
29.9



NCI-H716- Colon cancer
0



SW-48- Colon adenocarcinoma
0



SW1116- Colon adenocarcinoma
0



LS 174T- Colon adenocarcinoma
0.3



SW-948- Colon adenocarcinoma
0



SW-480- Colon adenocarcinoma
0



NCI-SNU-5- Gastric carcinoma
0



KATO III- Gastric carcinoma
1



NCI-SNU-16- Gastric carcinoma
3.7



NCI-SNU-1- Gastric carcinoma
0.5



RF-1- Gastric adenocarcinoma
0



RF-48- Gastric adenocarcinoma
0.1



MKN-45- Gastric carcinoma
7.2



NCI-N87- Gastric carcinoma
8.7



OVCAR-5- Ovarian carcinoma
7.7



RL95-2- Uterine carcinoma
0



HelaS3- Cervical adenocarcinoma
0



Ca Ski- Cervical epidermoid carcinoma
0



(metastasis)



ES-2- Ovarian clear cell carcinoma
0.4



Ramos- Stimulated with PMA/ionomycin 6 h
0



Ramos- Stimulated with PMA/ionomycin 14 h
0



MEG-01- Chronic myelogenous leukemia
0



(megokaryoblast)



Raji- Burkitt's lymphoma
0



Daudi- Burkitt's lymphoma
0



U266- B-cell plasmacytoma
0



CA46- Burkitt's lymphoma
0



RL- non-Hodgkin's B-cell lymphoma
0



JM1- pre-B-cell lymphoma
0



Jurkat- T cell leukemia
0.2



TF-1- Erythroleukemia
0



HUT 78- T-cell lymphoma
0.1



U937- Histiocytic lymphoma
0



KU-812- Myelogenous leukemia
0



769-P- Clear cell renal carcinoma
0



Caki-2- Clear cell renal carcinoma
0



SW 839- Clear cell renal carcinoma
0



G401- Wilms' tumor
0



Hs766T- Pancreatic carcinoma (LN
11.8



metastasis)



CAPAN-1- Pancreatic adenocarcinoma
9.7



(liver metastasis)



SU86.86- Pancreatic carcinoma (liver
15.1



metastasis)



BxPC-3- Pancreatic adenocarcinoma
14.4



HPAC- Pancreatic adenocarcinoma
8.8



MIA PaCa-2- Pancreatic carcinoma
0



CFPAC-1- Pancreatic ductal adenocarcinoma
24.4



PANC-1- Pancreatic epithelioid ductal
0



carcinoma



T24- Bladder carcinma (transitional cell)
10.3



5637- Bladder carcinoma
12.6



HT-1197- Bladder carcinoma
4



UM-UC-3- Bladder carcinma (transitional
0



cell)



A204- Rhabdomyosarcoma
17.4



HT-1080- Fibrosarcoma
0



MG-63- Osteosarcoma
0.1



SK-LMS-1- Leiomyosarcoma (vulva)
0



SJRH30- Rhabdomyosarcoma (met to
0



bone marrow)



A431- Epidermoid carcinoma
0



WM266-4- Melanoma
1.6



DU 145- Prostate carcinoma (brain
0



metastasis)



MDA-MB-468- Breast adenocarcinoma
4.9



SCC-4- Squamous cell carcinoma of tongue
0.5



SCC-9- Squamous cell carcinoma of tongue
0



SCC-15- Squamous cell carcinoma of tongue
0



CAL27- Squamous cell carcinoma of tongue
0











[1118]

374





TABLE GF










Panel 4D











Rel. Exp., %




4dx4tm4604f



Tissue Name
ag2378_b2














Secondary Th1 act
10.3



Secondary Th2 act
20.2



Secondary Tr1 act
13.4



Secondary Th1 rest
0.4



Secondary Th2 rest
1.4



Secondary Tr1 rest
2.5



Primary Th1 act
38.1



Primary Th2 act
46.1



Primary Tr1 act
65.3



Primary Th1 rest
11



Primary Th2 rest
9.2



Primary Tr1 rest
4.2



CD45RA CD4 lymphocyte act
2.8



CD45RO CD4 lymphocyte act
10.4



CD8 lymphocyte act
0.4



Secondary CD8 lymphocyte rest
0.5



Secondary CD8 lymphocyte act
0.8



CD4 lymphocyte none
0



2ry Th1/Th2/Tr1_anti-CD95 CH11
9.7



LAK cells rest
0.9



LAK cells IL-2
0.9



LAK cells IL-2 + IL-12
2.5



LAK cells IL-2 + IFN gamma
2.9



LAK cells IL-2 + IL-18
2



LAK cells PMA/ionomycin
5.4



NK Cells IL-2 rest
0



Two Way MLR 3 day
0



Two Way MLR 5 day
0.8



Two Way MLR 7 day
1.9



PBMC rest
0



PBMC PWM
2.8



PBMC PHA-L
4.2



Ramos (B cell) none
0



Ramos (B cell) ionomycin
0



B lymphocytes PWM
8.3



B lymphocytes CD40L and IL-4
0.5



EOL-1 dbcAMP
0



EOL-1 dbcAMP PMA/ionomycin
0



Dendritic cells none
0.2



Dendritic cells LPS
0



Dendritic cells anti-CD40
0



Monocytes rest
0



Monocytes LPS
0



Macrophages rest
0



Macrophages LPS
0.4



HUVEC none
0



HUVEC starved
0



HUVEC IL-1beta
0.3



HUVEC IFN gamma
0



HUVEC TNF alpha + IFN gamma
0



HUVEC TNF alpha + IL4
0



HUVEC IL-11
0



Lung Microvascular EC none
1.3



Lung Microvascular EC TNFalpha +
0.3



IL-1beta



Microvascular Dermal EC none
0



Microsvasular Dermal EC TNFalpha +
0



IL-1beta



Bronchial epithelium TNFalpha +
0.3



IL1beta



Small airway epithelium none
0.4



Small airway epithelium TNFalpha +
4.4



IL-1beta



Coronery artery SMC rest
0.3



Coronery artery SMC TNFalpha +
0.5



IL-1beta



Astrocytes rest
0



Astrocytes TNFalpha + IL-1beta
0.7



KU-812 (Basophil) rest
0



KU-812 (Basophil) PMA/ionomycin
0



CCD1106 (Keratinocytes) none
1.3



CCD1106 (Keratinocytes) TNFalpha +
1.3



IL-1beta



Liver cirrhosis
1.4



Lupus kidney
0.3



NCI-H292 none
100



NCI-H292 IL-4
64.9



NCI-H292 IL-9
90.2



NCI-H292 IL-13
28.6



NCI-H292 IFN gamma
38.3



HPAEC none
0



HPAEC TNF alpha + IL-1 beta
0



Lung fibroblast none
2.2



Lung fibroblast TNF alpha + IL-1 beta
1.5



Lung fibroblast IL-4
0



Lung fibroblast IL-9
0.4



Lung fibroblast IL-13
0



Lung fibroblast IFN gamma
0.4



Dermal fibroblast CCD1070 rest
0.7



Dermal fibroblast CCD1070 TNF alpha
0.5



Dermal fibroblast CCD1070 IL-1 beta
0



Dermal fibroblast IFN gamma
0



Dermal fibroblast IL-4
0



IBD Colitis 1
0



IBD Colitis 2
0



IBD Crohn's
0



Colon
1.3



Lung
2



Thymus
11.8



Kidney
8.8











[1119] Expression in panel 4D: CG55676-02 is expressed highly during initial activation and polarization of T cells regardless of whether polarization is to Th1, Th2 or Tr1 pathway. It is not expressed in untreated CD4 T cells and the level of expression is much less in chronically activated T cells.


[1120] Role in inflammation: CG55676-02 is a putative GPCR and may play an important role in the regulation of or cell polarization, differentiation, and T cell trafficking.


[1121] Potential therapeutic value: Antagonistic antibodies, preferably fully human monoclonal antibodies directed against the protein encoded for by CG55676-02 could reduce or block inflammation by blocking ligand interaction with this putative GPCR and preventing T cell function in diseases such as asthma, emphysema, allergy, arthritis, diabetes, and psoriasis. Alternatively, if this putative GPCR down regulates T cell activation then agonistic antibodies (Ligand-like) could also block inflammation in these diseases (Bromley et al, J. Immunol. 165(1) 15-9).


[1122] Expression in panel of relevance to Oncology 1.3D and 2D: In Panel 1.3D, CG55676-02 is expressed in tumor derived cell lines especially from colon, lung, ovarian and breast cancers. In panel 2D it is overexpressed in breast, lung and bladder tumor tissues compared to normal adjacent tissues.


[1123] Role in inflammation: CG55676-02 is a putative GPCR and may play a role tumor cell growth


[1124] Potential therapeutic value: Antagonistic antibodies, preferably fully human monoclonal antibodies directed against the protein encoded for by CG55676-02 could reduce or block tumor growth by blocking ligand interaction with this putative GPCR resulting in therapeutic treatment for tumor like lung, breast, bladder, kidney and colon.


[1125] A/I panel: The transcript of CG55676-03 is found in bone of 4 out of 4 patients with osteoarthritis and in synovium from 1 out of 4 patients.


[1126] Role in inflammation: CG55676-03 encodes a transcript for a putative GPCR that is expressed on cells within the bone and in the synovium of patients with osteoarthritis.


[1127] Potential therapeutic value: Antagonistic antibodies, preferably fully human monoclonal antibodies or small molecule therapeutics directed against the protein encoded for by CG55676-03 could reduce or block inflammation by preventing ligand interaction with this putative GPCR and as asthma, emphysema, allergy, arthritis, diabetes, and psoriasis.


[1128] Other Embodiments


[1129] Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting in aterial, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims. The claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. Applicants reserve the right to pursue such inventions in later claims.


Claims
  • 1. An isolated polypeptide comprising the mature form of an amino acid sequenced selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102.
  • 2. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102.
  • 3. An isolated polypeptide comprising an amino acid sequence which is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102.
  • 4. An isolated polypeptide, wherein the polypeptide comprises an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102.
  • 5. The polypeptide of claim 1 wherein said polypeptide is naturally occurring.
  • 6. A composition comprising the polypeptide of claim 1 and a carrier.
  • 7. A kit comprising, in one or more containers, the composition of claim 6.
  • 8. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease selected from a pathlology associated with the polypeptide of claim 1, wherein the therapeutic comprises the polypeptide of claim 1.
  • 9. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to an antibody that binds immunospecifically to the polypeptide; and (c) determining the presence or amount of antibody bound to said polypeptide, thereby determining the presence or amount of polypeptide in said sample.
  • 10. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the polypeptide of claim 1 in a first mammalian subject, the method comprising: a) measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and b) comparing the expression of said polypeptide in the sample of step (a) to the expression of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, said disease, wherein an alteration in the level of expression of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to said disease.
  • 11. A method of identifying an agent that binds to the polypeptide of claim 1, the method comprising: (a) introducing said polypeptide to said agent; and (b) determining whether said agent binds to said polypeptide.
  • 12. The method of claim 11 wherein the agent is a cellular receptor or a downstream effector.
  • 13. A method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of the polypeptide of claim 1, the method comprising: (a) providing a cell expressing the polypeptide of claim 1 and having a property or function ascribable to the polypeptide; (b) contacting the cell with a composition comprising a candidate substance; and (c) determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition in the absence of the substance, the substance is identified as a potential therapeutic agent.
  • 14. A method for screening for a modulator of activity of or of latency or predisposition to a pathology associated with the polypeptide of claim 1, said method comprising: (a) administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of claim 1, wherein said test animal recombinantly expresses the polypeptide of claim 1;(b) measuring the activity of said polypeptide in said test animal after administering the compound of step (a); and (c) comparing the activity of said polypeptide in said test animal with the activity of said polypeptide in a control animal not administered said polypeptide, wherein a change in the activity of said polypeptide in said test animal relative to said control animal indicates the test compound is a modulator activity of or latency or predisposition to, a pathology associated with the polypeptide of claim 1.
  • 15. The method of claim 14, wherein said test animal is a recombinant test animal that expresses a test protein transgene or expresses said transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein said promoter is not the native gene promoter of said transgene.
  • 16. A method for modulating the activity of the polypeptide of claim 1, the method comprising contacting a cell sample expressing the polypeptide of claim 1 with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.
  • 17. A method of treating or preventing a pathology associated with the polypeptide of claim 1, the method comprising administering the polypeptide of claim 1 to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject.
  • 18. The method of claim 17, wherein the subject is a human.
  • 19. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 102 or a biologically active fragment thereof.
  • 20. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102.
  • 21. The nucleic acid molecule of claim 20, wherein the nucleic acid molecule is naturally occurring.
  • 22. A nucleic acid molecule, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102.
  • 23. An isolated nucleic acid molecule encoding the mature forth of a polypeptide having an amino acid sequence selected from the group consisting, of SEQ ID NO: 2n, wherein n is an integer between 1 and 102.
  • 24. An isolated nucleic acid molecule comprising a nucleic acid selected from the group consisting of 2n−1, wherein n is an integer between 1 and 102.
  • 25. The nucleic acid molecule of claim 20, wherein said nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102, or a complement of said nucleotide sequence.
  • 26. A vector comprising the nucleic acid molecule of claim 20.
  • 27. The vector of claim 26, further comprising a promoter operably linked to said nucleic acid molecule.
  • 28. A cell comprising the vector of claim 26.
  • 29. An antibody that immunospecifically binds to the polypeptide of claim 1.
  • 30. The antibody of claim 29, wherein the antibody is a monoclonal antibody.
  • 31. The antibody of claim 29, wherein the antibody is a humanized antibody.
  • 32. A method for determining the presence or amount of the nucleic acid molecule of claim 20 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to a probe that binds to said nucleic acid molecule; and (c) determining the presence or amount of said probe bound to said nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in said sample.
  • 33. The method of claim 32 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
  • 34. The method of claim 33 wherein the cell or tissue type is cancerous.
  • 35. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the nucleic acid molecule of claim 20 in a first mammalian subject, the method comprising: a) measuring the level of expression of the nucleic acid in a sample from the first mammalian subject; and b) comparing the level of expression of said nucleic acid in the sample of step (a) to the level of expression of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of expression of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
  • 36. A method of producing the polypeptide of claim 1, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising, a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102.
  • 37. The method of claim 36 wherein the cell is a bacterial cell.
  • 38. The method of claim 36 wherein the cell is an insect cell.
  • 39. The method of claim 36 wherein the cell is a yeast cell.
  • 40. The method of claim 36 wherein the cell is a mammalian cell.
  • 41. A method of producing, the polypeptide of claim 2, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 102.
  • 42. The method of claim 41 wherein the cell is a bacterial cell.
  • 43. The method of claim 41 wherein the cell is an insect cell.
  • 44. The method of claim 41 wherein the cell is a yeast cell.
  • 45. The method of claim 41 wherein the cell is a mammalian cell.
RELATED APPLICATIONS

[0001] This application claims priority to patent applications U.S. Ser. No. 60/193,664, filed Mar. 31, 2000; U.S. Ser. No. 60/239,613, filed Oct. 11, 2000; U.S. Ser. No. 60/263,604, filed Jan. 23, 2001; U.S. Ser. No. 60/309,501, filed Aug. 2, 2001; U.S. Ser. No. 60/310,291, filed Aug. 3, 2001; U.S. Ser. No. 60/310,544, filed Aug. 7, 2001; U.S. Ser. No. 60/310,951, filed Aug. 8, 2001; U.S. Ser. No. 60/311,292, filed Aug. 9, 2001; U.S. Ser. No. 60/311,979, filed Aug. 13, 2001; U.S. Ser. No. 60/312,892, filed Aug. 16, 2001; U.S. Ser. No. 60/313,201, filed Aug. 17, 2001; U.S. Ser. No. 60/313,415, filed Aug. 17, 2001; U.S. Ser. No. 60/313,702, filed Aug. 20, 2001; U.S. Ser. No. 60/313,643, filed Aug. 20, 2001; U.S. Ser. No. 60/314,031, filed Aug. 21, 2001; U.S. Ser. No. 60/314,466, filed Aug. 23, 2001; U.S. Ser. No. 60/315,403, filed Aug. 28, 2001; U.S. Ser. No. 60/315,853, filed Aug. 29, 2001; U.S. Ser. No. 60/322,716, filed Sep. 17, 2001; U.S. Ser. No. 60/323,994, filed Sep. 21, 2001; U.S. Ser. No. 60/340,233, filed Dec. 14, 2001; U.S. Ser. No. 60/365,478, filed Mar. 19, 2002; U.S. Ser. No. 60/373,814, filed Apr. 19, 2002; U.S. Ser. No. 60/373,825, filed April 19, 2002; U.S. Ser. No. 60/373,989, filed Apr. 19, 2002; and U.S. Ser. No. 60/374,632, filed Apr. 23, 2002; U.S. Ser. No. 60/354,591, filed Feb. 5, 2002; U.S. Ser. No. not yet assigned, filed Jun. 7, 2002 (Docket 15966-748U-C PRO), each of which is incorporated herein by reference in its entirety.

Provisional Applications (24)
Number Date Country
60309501 Aug 2001 US
60310291 Aug 2001 US
60310544 Aug 2001 US
60310951 Aug 2001 US
60311292 Aug 2001 US
60311979 Aug 2001 US
60312892 Aug 2001 US
60313201 Aug 2001 US
60313415 Aug 2001 US
60313702 Aug 2001 US
60313643 Aug 2001 US
60314031 Aug 2001 US
60314466 Aug 2001 US
60315403 Aug 2001 US
60315853 Aug 2001 US
60322716 Sep 2001 US
60323994 Sep 2001 US
60340233 Dec 2001 US
60365478 Mar 2002 US
60373814 Apr 2002 US
60373825 Apr 2002 US
60373989 Apr 2002 US
60374632 Apr 2002 US
60354591 Feb 2002 US