Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Abstract
Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies that immunospecifically bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the novel polypeptide, polynucleotide, or antibody specific to the polypeptide. Vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods for using same are also included. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
Description


FIELD OF THE INVENTION

[0002] The present invention relates to novel polypeptides, and the nucleic acids encoding them, having properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions.



BACKGROUND OF THE INVENTION

[0003] Eukaryotic cells are characterized by biochemical and physiological processes which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates, or more particularly organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways involve extracellular signaling proteins, cellular receptors that bind the signaling proteins, and signal transducing components located within the cells.


[0004] Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, for example two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.


[0005] Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.


[0006] Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors. In other classes of pathologies the dysregulation is manifested as increased or up-regulated level of synthesis and secretion of protein effectors. In a clinical setting a subject may be suspected of suffering from a condition brought on by altered or mis-regulated levels of a protein effector of interest. Therefore there is a need to assay for the level of the protein effector of interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest. In addition, there is a need for a method of treatment of a pathological condition brought on by a increased or up-regulated levels of the protein effector of interest.


[0007] Antibodies are multichain proteins that bind specifically to a given antigen, and bind poorly, or not at all, to substances deemed not to be cognate antigens. Antibodies are comprised of two short chains termed light chains and two long chains termed heavy chains. These chains are constituted of immunoglobulin domains, of which generally there are two classes: one variable domain per chain, one constant domain in light chains, and three or more constant domains in heavy chains. The antigen-specific portion of the immunoglobulin molecules resides in the variable domains; the variable domains of one light chain and one heavy chain associate with each other to generate the antigen-binding moiety. Antibodies that bind immunospecifically to a cognate or target antigen bind with high affinities. Accordingly, they are useful in assaying specifically for the presence of the antigen in a sample. In addition, they have the potential of inactivating the activity of the antigen.


[0008] Therefore there is a need to assay for the level of a protein effector of interest in a biological sample from such a subject, and to compare this level with that characteristic of a nonpathological condition. In particular, there is a need for such an assay based on the use of an antibody that binds immunospecifically to the antigen. There further is a need to inhibit the activity of the protein effector in cases where a pathological condition arises from elevated or excessive levels of the effector based on the use of an antibody that binds immunospecifically to the effector. Thus, there is a need for the antibody as a product of manufacture. There further is a need for a method of treatment of a pathological condition brought on by an elevated or excessive level of the protein effector of interest based on administering the antibody to the subject.



SUMMARY OF THE INVENTION

[0009] The invention is based in part upon the discovery of isolated polypeptides including amino acid sequences selected from mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141. The novel nucleic acids and polypeptides are referred to herein as NOVX, or NOV1, NOV2, NOV3, etc., nucleic acids and polypeptides. These nucleic acids and polypeptides, as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as “NOVX” nucleic acid or polypeptide sequences.


[0010] The invention also is based in part upon variants of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the invention includes the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141. In another embodiment, the invention also comprises variants of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed. The invention also involves fragments of any of the mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141, or any other amino acid sequence selected from this group. The invention also comprises fragments from these groups in which up to 15% of the residues are changed.


[0011] In another embodiment, the invention encompasses polypeptides that are naturally occurring allelic variants of the sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141. These allelic variants include amino acid sequences that are the translations of nucleic acid sequences differing by a single nucleotide from nucleic acid sequences selected from the group consisting of SEQ ID NOS: 2n−1, wherein n is an integer between 1 and 141. The variant polypeptide where any amino acid changed in the chosen sequence is changed to provide a conservative substitution.


[0012] In another embodiment, the invention comprises a pharmaceutical composition involving a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 and a pharmaceutically acceptable carrier. In another embodiment, the invention involves a kit, including, in one or more containers, this pharmaceutical composition.


[0013] In another embodiment, the invention includes the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease being selected from a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 wherein said therapeutic is the polypeptide selected from this group.


[0014] In another embodiment, the invention comprises a method for determining the presence or amount of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 in a sample, the method involving providing the sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the polypeptide, thereby determining the presence or amount of polypeptide in the sample.


[0015] In another embodiment, the invention includes a method for determining the presence of or predisposition to a disease associated with altered levels of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 in a first mammalian subject, the method involving measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in this sample to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0016] In another embodiment, the invention involves a method of identifying an agent that binds to a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141, the method including introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. The agent could be a cellular receptor or a downstream effector.


[0017] In another embodiment, the invention involves a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141, the method including providing a cell expressing the polypeptide of the invention and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent.


[0018] In another embodiment, the invention involves a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141, the method including administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of the invention, wherein the test animal recombinantly expresses the polypeptide of the invention; measuring the activity of the polypeptide in the test animal after administering the test compound; and comparing the activity of the protein in the test animal with the activity of the polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the polypeptide of the invention. The recombinant test animal could express a test protein transgene or express the transgene under the control of a promoter at an increased level relative to a wild-type test animal The promoter may or may not b the native gene promoter of the transgene.


[0019] In another embodiment, the invention involves a method for modulating the activity of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141, the method including introducing a cell sample expressing the polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.


[0020] In another embodiment, the invention involves a method of treating or preventing a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141, the method including administering the polypeptide to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject. The subject could be human.


[0021] In another embodiment, the invention involves a method of treating a pathological state in a mammal, the method including administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 or a biologically active fragment thereof.


[0022] In another embodiment, the invention involves an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141; a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141; a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 or any variant of the polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and the complement of any of the nucleic acid molecules.


[0023] In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141, wherein the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant.


[0024] In another embodiment, the invention involves an isolated nucleic acid molecule including a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141 that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant.


[0025] In another embodiment, the invention comprises an isolated nucleic, acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n−1, wherein n is an integer between 1 and 141.


[0026] In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141; a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141; and a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.


[0027] In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141, wherein the nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, or a complement of the nucleotide sequence.


[0028] In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141, wherein the nucleic acid molecule has a nucleotide sequence in which any nucleotide specified in the coding sequence of the chosen nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides in the chosen coding sequence are so changed, an isolated second polynucleotide that is a complement of the first polynucleotide, or a fragment of any of them.


[0029] In another embodiment, the invention includes a vector involving the nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141. This vector can have a promoter operably linked to the nucleic acid molecule. This vector can be located within a cell.


[0030] In another embodiment, the invention involves a method for determining the presence or amount of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141 in a sample, the method including providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in the sample. The presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type. The cell type can be cancerous.


[0031] In another embodiment, the invention involves a method for determining the presence of or predisposition for a disease associated with altered levels of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 141 in a first mammalian subject, the method including measuring the amount of the nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0032] The invention further provides an antibody that binds immunospecifically to a NOVX polypeptide. The NOVX antibody may be monoclonal, humanized, or a fully human antibody. Preferably, the antibody has a dissociation constant for the binding of the NOVX polypeptide to the antibody less than 1×10−9 M. More preferably, the NOVX antibody neutralizes the activity of the NOVX polypeptide.


[0033] In a further aspect, the invention provides for the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, associated with a NOVX polypeptide. Preferably the therapeutic is a NOVX antibody.


[0034] In yet a further aspect, the invention provides a method of treating or preventing a NOVX-associated disorder, a method of treating a pathological state in a mammal, and a method of treating or preventing a pathology associated with a polypeptide by administering a NOVX antibody to a subject in an amount sufficient to treat or prevent the disorder.


[0035] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.


[0036] Other features and advantages of the invention will be apparent from the following detailed description and claims.



DETAILED DESCRIPTION OF THE INVENTION

[0037] The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as “NOVX nucleic acids” or “NOVX polynucleotides” and the corresponding encoded polypeptides are referred to as “NOVX polypeptides” or “NOVX proteins.” Unless indicated otherwise, “NOVX” is meant to refer to any of the novel sequences disclosed herein. Table A provides a summary of the NOVX nucleic acids and their encoded polypeptides.
1TABLE ASequences and Corresponding SEQ ID NumbersSEQ ID NOSEQ ID NONOVXInternal(nucleic(aminoAssignmentIdentificationacid)acid)Homology1aCG103134-0112Kunitz-type ProteaseInhibitor 2precursor-like1bCG103134-0234Kunitz-type ProteaseInhibitor 2precursor-like2aCG103322-0156CD82 Antigen-like2bCG103322-0278CD82 Antigen-like3aCG151575-01910Multi-pass MembraneProtein-like3bCG151575-021112Multi-pass MembraneProtein-like4aCG151608-011314Type 1b MembraneProtein-like4bCG151608-021516Type 1b MembraneProtein-like5aCG152323-011718Laminin beta 4-like6aCG153011-011920Sushi Domain-containingMembrane Protein-like7aCG153042-012122RIK Protein-like7bCG153042-022324RIK Protein-like8aCG153179-012526Membrane Protein-like9aCG153403-012728Dickkopf RelatedProtein-4Precursor-like9bCG153403-022930Dickkopf RelatedProtein-4Precursor-like9c3050375583132Dickkopf RelatedProtein-4Precursor-like9d3050375123334Dickkopf RelatedProtein-4Precursor-like10aCG153424-013536IGFBP4-like11aCG157567-013738Leucine Rich RepeatProtein-like12aCG157760-013940Placental SpecificProtein 1-like12bCG157760-024142Placental SpecificProtein 1-like13aCG157844-014344Type IIIb MembraneProtein-like14aCG158114-014546Silver-like15aCG158553-014748ErythropoietinReceptor-like15bCG158553-014950ErythropoietinReceptor-like15cCG158553-025152ErythropoietinReceptor-like15dCG158553-035354ErythropoietinReceptor-like16aCG158983-015556Chloride Channel-like16bCG158983-025758Chloride Channel-like16cCG158983-035960Chloride Channel-like16dCG158983-016162Chloride Channel-like16eCG158983-016364Chloride Channel-like17aCG159015-016566Secreted Protein-like17bCG159015-026768Secreted Protein-like17cCG159015-036970Secreted Protein-like17dCG159015-047172Secreted Protein-like18aCG173007-017374Prolactin ReceptorPrecursor-like19aCG173357-017576Immunoglobulin DomainContaining Protein-like20aCG50387-017778Connexin 4620bCG50387-037980Connexin 4620cCG50387-028182Connexin 4621aCG52113-018384Notch4-like21bCG52113-068586Notch4-like21c2740542618788Notch4-like21d2740542998990Notch4-like21e2740542619192Notch4-like21f2740542999394Notch4-like21gCG52113-029596Notch4-like21hCG52113-039798Notch4-like21iCG52113-0499100Notch4-like21jCG52113-05101102Notch4-like22aCG57542-01103104Cadherin-23Precursor-like22b169258612105106Cadherin-23Precursor-like22c169258615107108Cadherin-23Precursor-like22d169258621109110Cadherin-23Precursor-like22e174307774111112Cadherin-23Precursor-like23aCG57774-01113114TRNFR-19 Protein23b167200132115116TRNFR-19 Protein23c167200144117118TRNFR-19 Protein23d169252408119120TRNFR-19 Protein23e169252412121122TRNFR-19 Protein23f169252424123124TRNFR-19 Protein23g169252469125126TRNFR-19 Protein23h169252475127128TRNFR-19 Protein23i169252481129130TRNFR-19 Protein23j169252485131132TRNFR-19 Protein23k169252492133134TRNFR-19 Protein23l174104491135136TRNFR-19 Protein23m169252509137138TRNFR-19 Protein23n169252515139140TRNFR-19 Protein23o169252519141142TRNFR-19 Protein23p169252524143144TRNFR-19 Protein23q169252528145146TRNFR-19 Protein23r169252547147148TRNFR-19 Protein23s169252557149150TRNFR-19 Protein23t174104491151152TRNFR-19 Protein23uCG57774-02153154TRNFR-19 Protein23vCG57774-03155156TRNFR-19 Protein23wCG57774-04157158TRNFR-19 Protein23xCG57774-05159160TRNFR-19 Protein23yCG57774-06161162TRNFR-19 Protein23zCG57774-07163164TRNFR-19 Protein23aaCG57774-08165166TRNFR-19 Protein23abCG57774-09167168TRNFR-19 Protein23acCG57774-10169170TRNFR-19 Protein23adCG57774-11171172TRNFR-19 Protein23aeCG57774-12173174TRNFR-19 Protein23afCG57774-13175176TRNFR-19 Protein24aCG89285-01177178Alpha-1-Antichymotrypsin-like24bCG89285-04179180Alpha-1-Antichymotrypsin-like24cCG89285-03181182Alpha-1-Antichymotrypsin-like24d306418132183184Alpha-1-Antichymotrypsin-like24eCG89285-02185186Alpha-1-Antichymotrypsin-like25aCG57094-01187188Human angiopoietin-like25b170075926189190Human angiopoietin-like25c164225601191192Human angiopoietin-like25d164225637193194Human angiopoietin-like25e170075926195196Human angiopoietin-like25f254120574197198Human angiopoietin-like25g254156650199200Human angiopoietin-like25h254500366201202Human angiopoietin-like25i226679956203204Human angiopoietin-like25j254500319205206Human angiopoietin-like25k254500445207208Human angiopoietin-like25l248210290209210Human angiopoietin-like25m252514148211212Human angiopoietin-like25n252514189213214Human angiopoietin-like25o252514198215216Human angiopoietin-like25p252514202217218Human angiopoietin-like25q228039766219220Human angiopoietin-like25r226679952221222Human angiopoietin-like25sCG57094-02223224Human angiopoietin-like25tCG57094-03225226Human angiopoietin-like25uCG57094-04227228Human angiopoietin-like25vCG57094-05229230Human angiopoietin-like25wCG57094-06231232Human angiopoietin-like25xCG57094-07233234Human angiopoietin-like25yCG57094-08235236Human angiopoietin-like25zCG57094-09237238Human angiopoietin-like25aaCG57094-10239240Human angiopoietin-like25abCG57094-11241242Human angiopoietin-like25acCG57094-12243244Human angiopoietin-like25adCG57094-13245246Human angiopoietin-like26aCG51523-05247248Endozepine RelatedProteinPrecursor-like26bCG51523-05249250Endozepine Related164786042ProteinPrecursor-like26cCG51523-05251252Endozepine Related164732479ProteinPrecursor-like26dCG51523-05253254Endozepine Related164732506ProteinPrecursor-like26eCG51523-05255256Endozepine Related164732693ProteinPrecursor-like26fCG51523-05257258Endozepine Related164732709ProteinPrecursor-like26gCG51523-05259260Endozepine Related164718189ProteinPrecursor-like26hCG51523-05261262Endozepine Related164718193ProteinPrecursor-like26iCG51523-05263264Endozepine Related164718197ProteinPrecursor-like26jCG51523-05265266Endozepine Related164718205ProteinPrecursor-like26kCG51523-05267268Endozepine Related164718209ProteinPrecursor-like26lCG51523-05269270Endozepine Related164718213ProteinPrecursor-like26mCG51523-05271272Endozepine Related166190452ProteinPrecursor-like26nCG51523-05273274Endozepine Related166190467ProteinPrecursor-like26oCG51523-05275276Endozepine Related166190475ProteinPrecursor-like26pCG51523-05277278Endozepine Related166190498ProteinPrecursor-like26qCG51523-05279280Endozepine Related166190460ProteinPrecursor-like26rCG51523-05281282Endozepine Related166190483ProteinPrecursor-like


[0038] Table A indicates the homology of NOVX polypeptides to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table A will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table A.


[0039] Pathologies, diseases, disorders and condition and the like that are associated with NOVX sequences include, but are not limited to: e.,g. cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis atrial septal defect (ASD), atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity metabolic disturbances associated with obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, diabetes, metabolic disorders, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias,] the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers, as well as conditions such as transplantation, neuroprotection, fertility, or regeneration (in vitro and in vivo).]


[0040] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0041] Consistent with other known members of the family of proteins, identified in column 5 of Table A, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.


[0042] The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table A.


[0043] The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g. detection of a variety of cancers.


[0044] Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.


[0045] NOVX Clones


[0046] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0047] The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.


[0048] The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration in vitro and in vivo (vi) a biological defense weapon.


[0049] In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 141; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 141, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 141; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d).


[0050] In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 141; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 141 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 141; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 141, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; (e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 141 or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules.


[0051] In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 141; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 141 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 141; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n- 1, wherein n is an integer between 1 and 141 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.


[0052] NOVX Nucleic Acids and Polypeptides


[0053] One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.


[0054] A NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a “mature” form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product “mature” form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (e.g., host cell) in which the gene product arises. Examples of such processing steps leading to a “mature” form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a “mature” form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.


[0055] The term “probe”, as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), about 100 nt, or as many as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single-stranded or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.


[0056] The term “isolated” nucleic acid molecule, as used herein, is a nucleic acid that is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′- and 3′-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (e.g., brain, heart, liver, spleen, etc.). Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, or of chemical precursors or other chemicals.


[0057] A nucleic acid molecule of the invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993.)


[0058] A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.


[0059] As used herein, the term “oligonucleotide” refers to a series of linked nucleotide residues. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.


[0060] In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of a NOVX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, is one that is sufficiently complementary to the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, thereby forming a stable duplex.


[0061] As used herein, the term “complementary” refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term “binding” means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.


[0062] A “fragment” provided herein is defined as a sequence of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and is at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.


[0063] A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5′ direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 3′ direction of the disclosed sequence.


[0064] A “derivative” is a nucleic acid sequence or amino acid sequence formed from the native compounds either directly, by modification or partial substitution. An “analog” is a nucleic acid sequence or amino acid sequence that has a structure similar to, but not identical to, the native compound, e.g. they differs from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. A “homolog” is a nucleic acid sequence or amino acid sequence of a particular gene that is derived from different species.


[0065] Derivatives and analogs may be full length or other than full length. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993, and below.


[0066] A “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences include those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for a NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms.


[0067] Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.


[0068] A NOVX polypeptide is encoded by the open reading frame (“ORF”) of a NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG “start” codon and terminates with one of the three “stop” codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a bona fide cellular protein, a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more.


[0069] The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141; or an anti-sense strand nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141; or of a naturally occurring mutant of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141.


[0070] Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe has a detectable label attached, e.g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express a NOVX. protein, such as by measuring a level of a NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.


[0071] “A polypeptide having a biologically-active portion of a NOVX polypeptide” refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a “biologically-active portion of NOVX” can be prepared by isolating a portion of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, that encodes a polypeptide having a NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.


[0072] NOVX Nucleic Acid and Polypeptide Variants


[0073] The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 141.


[0074] In addition to the human NOVX nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame (ORF) encoding a NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.


[0075] Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from a human SEQ ID NO: 2n−1, wherein n is an integer between 1 and 141, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.


[0076] Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term “hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other.


[0077] Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e.g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.


[0078] As used herein, the phrase “stringent hybridization conditions” refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60° C. for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.


[0079] Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6× SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65° C., followed by one or more washes in 0.2× SSC, 0.01% BSA at 50° C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a “naturally-occurring” nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).


[0080] In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6× SSC, 5× Reinhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55° C., followed by one or more washes in 1× SSC, 0.1% SDS at 37° C. Other conditions of moderate stringency that may be used are well-known within the art. See, e.g., Ausubel, et aL (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Krieger, 1990; GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY.


[0081] In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35% formamide, 5× SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40° C., followed by one or more washes in 2× SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50° C. Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations). See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.


[0082] Conservative Mutations


[0083] In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, thereby leading to changes in the amino acid sequences of the encoded NOVX protein, without altering the functional ability of that NOVX protein. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 141. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an “essential” amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.


[0084] Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 40% homologous to the amino acid sequences of SEQ ID NO:2n, wherein n is an integer between 1 and 141. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 141; more preferably at least about 70% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 141; still more preferably at least about 80% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 141; even more preferably at least about 90% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 141; and most preferably at least about 95% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 141.


[0085] An isolated nucleic acid molecule encoding a NOVX protein homologous to the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 141, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.


[0086] Mutations can be introduced any one of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis of a nucleic acid of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.


[0087] The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved “strong” residues or fully conserved “weak” residues. The “strong” group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the “weak” group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.


[0088] In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and a NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).


[0089] In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).


[0090] Interfering RNA


[0091] In one aspect of the invention, NOVX gene expression can be attenuated by RNA interference. One approach well-known in the art is short interfering RNA (siRNA) mediated gene silencing where expression products of a NOVX gene are targeted by specific double stranded NOVX derived siRNA nucleotide sequences that are complementary to at least a 19-25 nt long segment of the NOVX gene transcript, including the 5′ untranslated (UT) region, the ORF, or the 3′ UT region. See, e.g., PCT applications WO00/44895, WO99/32619, WO01/75164, WO01/92513, WO01/29058, WO01/89304, WO02/16620, and WO02/29858, each incorporated by reference herein in their entirety. Targeted genes can be a NOVX gene, or an upstream or downstream modulator of the NOVX gene. Nonlimiting examples of upstream or downstream modulators of a NOVX gene include, e.g., a transcription factor that binds the NOVX gene promoter, a kinase or phosphatase that interacts with a NOVX polypeptide, and polypeptides involved in a NOVX regulatory pathway.


[0092] According to the methods of the present invention, NOVX gene expression is silenced using short interfering RNA. A NOVX polynucleotide according to the invention includes a siRNA polynucleotide. Such a NOVX siRNA can be obtained using a NOVX polynucleotide sequence, for example, by processing the NOVX ribopolynucleotide sequence in a cell-free system, such as but not limited to a Drosophila extract, or by transcription of recombinant double stranded NOVX RNA or by chemical synthesis of nucleotide sequences homologous to a NOVX sequence. See, e.g., Tuschl, Zamore, Lehmann, Bartel and Sharp (1999), Genes & Dev. 13: 3191-3197, incorporated herein by reference in its entirety. When synthesized, a typical 0.2 micromolar-scale RNA synthesis provides about 1 milligram of siRNA, which is sufficient for 1000 transfection experiments using a 24-well tissue culture plate format.


[0093] The most efficient silencing is generally observed with siRNA duplexes composed of a 21-nt sense strand and a 21-nt antisense strand, paired in a manner to have a 2-nt 3′ overhang. The sequence of the 2-nt 3′ overhang makes an additional small contribution to the specificity of siRNA target recognition. The contribution to specificity is localized to the unpaired nucleotide adjacent to the first paired bases. In one embodiment, the nucleotides in the 3′ overhang are ribonucleotides. In an alternative embodiment, the nucleotides in the 3′ overhang are deoxyribonucleotides. Using 2′-deoxyribonucleotides in the 3′ overhangs is as efficient as using ribonucleotides, but deoxyribonucleotides are often cheaper to synthesize and are most likely more nuclease resistant.


[0094] A contemplated recombinant expression vector of the invention comprises a NOVX DNA molecule cloned into an expression vector comprising operatively-linked regulatory sequences flanking the NOVX sequence in a manner that allows for expression (by transcription of the DNA molecule) of both strands. An RNA molecule that is antisense to NOVX mRNA is transcribed by a first promoter (e.g., a promoter sequence 3′ of the cloned DNA) and an RNA molecule that is the sense strand for the NOVX mRNA is transcribed by a second promoter (e.g., a promoter sequence 5′ of the cloned DNA). The sense and antisense strands may hybridize in vivo to generate siRNA constructs for silencing of the NOVX gene. Alternatively, two constructs can be utilized to create the sense and anti-sense strands of a siRNA construct. Finally, cloned DNA can encode a construct having secondary structure, wherein a single transcript has both the sense and complementary antisense sequences from the target gene or genes. In an example of this embodiment, a hairpin RNAi product is homologous to all or a portion of the target gene. In another example, a hairpin RNAi product is a siRNA. The regulatory sequences flanking the NOVX sequence may be identical or may be different, such that their expression may be modulated independently, or in a temporal or spatial manner.


[0095] In a specific embodiment, siRNAs are transcribed intracellularly by cloning the NOVX gene templates into a vector containing, e.g., a RNA pol III transcription unit from the smaller nuclear RNA (snRNA) U6 or the human RNase P RNA H1. One example of a vector system is the GeneSuppressor™ RNA Interference kit (commercially available from Imgenex). The U6 and H1 promoters are members of the type III class of Pol III promoters. The +1 nucleotide of the U6-like promoters is always guanosine, whereas the +1 for H1 promoters is adenosine. The termination signal for these promoters is defined by five consecutive thymidines. The transcript is typically cleaved after the second uridine. Cleavage at this position generates a 3′ UU overhang in the expressed siRNA, which is similar to the 3′ overhangs of synthetic siRNAs. Any sequence less than 400 nucleotides in length can be transcribed by these promoter, therefore they are ideally suited for the expression of around 21-nucleotide siRNAs in, e.g., an approximately 50-nucleotide RNA stem-loop transcript.


[0096] A siRNA vector appears to have an advantage over synthetic siRNAs where long term knock-down of expression is desired. Cells transfected with a siRNA expression vector would experience steady, long-term mRNA inhibition. In contrast, cells transfected with exogenous synthetic siRNAs typically recover from mRNA suppression within seven days or ten rounds of cell division. The long-term gene silencing ability of siRNA expression vectors may provide for applications in gene therapy.


[0097] In general, siRNAs are chopped from longer dsRNA by an ATP-dependent ribonuclease called DICER. DICER is a member of the RNase III family of double-stranded RNA-specific endonucleases. The siRNAs assemble with cellular proteins into an endonuclease complex. In vitro studies in Drosophila suggest that the siRNAs/protein complex (siRNP) is then transferred to a second enzyme complex, called an RNA-induced silencing complex (RISC), which contains an endoribonuclease that is distinct from DICER. RISC uses the sequence encoded by the antisense siRNA strand to find and destroy mRNAs of complementary sequence. The siRNA thus acts as a guide, restricting the ribonuclease to cleave only mRNAs complementary to one of the two siRNA strands.


[0098] A NOVX mRNA region to be targeted by siRNA is generally selected from a desired NOVX sequence beginning 50 to 100 nt downstream of the start codon. Alternatively, 5′ or 3′ UTRs and regions nearby the start codon can be used but are generally avoided, as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex. An initial BLAST homology search for the selected siRNA sequence is done against an available nucleotide sequence library to ensure that only one gene is targeted. Specificity of target recognition by siRNA duplexes indicate that a single point mutation located in the paired region of an siRNA duplex is sufficient to abolish target mRNA degradation. See, Elbashir et al. 2001 EMBO J. 20(23):6877-88. Hence, consideration should be taken to accommodate SNPs, polymorphisms, allelic variants or species-specific variations when targeting a desired gene.


[0099] In one embodiment, a complete NOVX siRNA experiment includes the proper negative control. A negative control siRNA generally has the same nucleotide composition as the NOVX siRNA but lack significant sequence homology to the genome. Typically, one would scramble the nucleotide sequence of the NOVX siRNA and do a homology search to make sure it lacks homology to any other gene.


[0100] Two independent NOVX siRNA duplexes can be used to knock-down a target NOVX gene. This helps to control for specificity of the silencing effect. In addition, expression of two independent genes can be simultaneously knocked down by using equal concentrations of different NOVX siRNA duplexes, e.g., a NOVX siRNA and an siRNA for a regulator of a NOVX gene or polypeptide. Availability of siRNA-associating proteins is believed to be more limiting than target mRNA accessibility.


[0101] A targeted NOVX region is typically a sequence of two adenines (AA) and two thymidines (TT) divided by a spacer region of nineteen (N19) residues (e.g., AA(N19)TT). A desirable spacer region has a G/C-content of approximately 30% to 70%, and more preferably of about 50%. If the sequence AA(N19)TT is not present in the target sequence, an alternative target region would be AA(N21). The sequence of the NOVX sense siRNA corresponds to (N19)TT or N21, respectively. In the latter case, conversion of the 3′ end of the sense siRNA to TT can be performed if such a sequence does not naturally occur in the NOVX polynucleotide. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3′ overhangs. Symmetric 3′ overhangs may help to ensure that the siRNPs are formed with approximately equal ratios of sense and antisense target RNA-cleaving siRNPs. See, e.g., Elbashir, Lendeckel and Tuschl (2001). Genes & Dev. 15: 188-200, incorporated by reference herein in its entirely. The modification of the overhang of the sense sequence of the siRNA duplex is not expected to affect targeted mRNA recognition, as the antisense siRNA strand guides target recognition.


[0102] Alternatively, if the NOVX target mRNA does not contain a suitable AA(N21) sequence, one may search for the sequence NA(N21). Further, the sequence of the sense strand and antisense strand may still be synthesized as 5′ (N19)TT, as it is believed that the sequence of the 3′-most nucleotide of the antisense siRNA does not contribute to specificity. Unlike antisense or ribozyme technology, the secondary structure of the target mRNA does not appear to have a strong effect on silencing. See, Harborth, et al. (2001) J. Cell Science 114: 4557-4565, incorporated by reference in its entirety.


[0103] Transfection of NOVX siRNA duplexes can be achieved using standard nucleic acid transfection methods, for example, OLIGOFECTAMINE Reagent (commercially available from Invitrogen). An assay for NOVX gene silencing is generally performed approximately 2 days after transfection. No NOVX gene silencing has been observed in the absence of transfection reagent, allowing for a comparative analysis of the wild-type and silenced NOVX phenotypes. In a specific embodiment, for one well of a 24-well plate, approximately 0.84 μg of the siRNA duplex is generally sufficient. Cells are typically seeded the previous day, and are transfected at about 50% confluence. The choice of cell culture media and conditions are routine to those of skill in the art, and will vary with the choice of cell type. The efficiency of transfection may depend on the cell type, but also on the passage number and the confluency of the cells. The time and the manner of formation of siRNA-liposome complexes (e.g. inversion versus vortexing) are also critical. Low transfection efficiencies are the most frequent cause of unsuccessful NOVX silencing. The efficiency of transfection needs to be carefully examined for each new cell line to be used. Preferred cell are derived from a mammal, more preferably from a rodent such as a rat or mouse, and most preferably from a human. Where used for therapeutic treatment, the cells are preferentially autologous, although non-autologous cell sources are also contemplated as within the scope of the present invention.


[0104] For a control experiment, transfection of 0.84 μg single-stranded sense NOVX siRNA will have no effect on NOVX silencing, and 0.84 μg antisense siRNA has a weak silencing effect when compared to 0.84 μg of duplex siRNAs. Control experiments again allow for a comparative analysis of the wild-type and silenced NOVX phenotypes. To control for transfection efficiency, targeting of common proteins is typically performed, for example targeting of lamin A/C or transfection of a CMV-driven EGFP-expression plasmid (e.g. commercially available from Clontech). In the above example, a determination of the fraction of lamin A/C knockdown in cells is determined the next day by such techniques as immunofluorescence, Western blot, Northern blot or other similar assays for protein expression or gene expression. Lamin A/C monoclonal antibodies may be obtained from Santa Cruz Biotechnology.


[0105] Depending on the abundance and the half life (or turnover) of the targeted NOVX polynucleotide in a cell, a knock-down phenotype may become apparent after 1 to 3 days, or even later. In cases where no NOVX knock-down phenotype is observed, depletion of the NOVX polynucleotide may be observed by immunofluorescence or Western blotting. If the NOVX polynucleotide is still abundant after 3 days, cells need to be split and transferred to a fresh 24-well plate for re-transfection. If no knock-down of the targeted protein is observed, it may be desirable to analyze whether the target mRNA (NOVX or a NOVX upstream or downstream gene) was effectively destroyed by the transfected siRNA duplex. Two days after transfection, total RNA is prepared, reverse transcribed using a target-specific primer, and PCR-amplified with a primer pair covering at least one exon-exon junction in order to control for amplification of pre-mRNAs. RT/PCR of a non-targeted mRNA is also needed as control. Effective depletion of the mRNA yet undetectable reduction of target protein may indicate that a large reservoir of stable NOVX protein may exist in the cell. Multiple transfection in sufficiently long intervals may be necessary until the target protein is finally depleted to a point where a phenotype may become apparent. If multiple transfection steps are required, cells are split 2 to 3 days after transfection. The cells may be transfected immediately after splitting.


[0106] An inventive therapeutic method of the invention contemplates administering a NOVX siRNA construct as therapy to compensate for increased or aberrant NOVX expression or activity. The NOVX ribopolynucleotide is obtained and processed into siRNA fragments, or a NOVX siRNA is synthesized, as described above. The NOVX siRNA is administered to cells or tissues using known nucleic acid transfection techniques, as described above. A NOVX siRNA specific for a NOVX gene will decrease or knockdown NOVX transcription products, which will lead to reduced NOVX polypeptide production, resulting in reduced NOVX polypeptide activity in the cells or tissues.


[0107] The present invention also encompasses a method of treating a disease or condition associated with the presence of a NOVX protein in an individual comprising administering to the individual an RNAi construct that targets the mRNA of the protein (the mRNA that encodes the protein) for degradation. A specific RNAi construct includes a siRNA or a double stranded gene transcript that is processed into siRNAs. Upon treatment, the target protein is not produced or is not produced to the extent it would be in the absence of the treatment.


[0108] Where the NOVX gene function is not correlated with a known phenotype, a control sample of cells or tissues from healthy individuals provides a reference standard for determining NOVX expression levels. Expression levels are detected using the assays described, e.g., RT-PCR, Northern blotting, Western blotting, ELISA, and the like. A subject sample of cells or tissues is taken from a mammal, preferably a human subject, suffering from a disease state. The NOVX ribopolynucleotide is used to produce siRNA constructs, that are specific for the NOVX gene product. These cells or tissues are treated by administering NOVX siRNA's to the cells or tissues by methods described for the transfection of nucleic acids into a cell or tissue, and a change in NOVX polypeptide or polynucleotide expression is observed in the subject sample relative to the control sample, using the assays described. This NOVX gene knockdown approach provides a rapid method for determination of a NOVX minus (NOVX) phenotype in the treated subject sample. The NOVX phenotype observed in the treated subject sample thus serves as a marker for monitoring the course of a disease state during treatment.


[0109] In specific embodiments, a NOVX siRNA is used in therapy. Methods for the generation and use of a NOVX siRNA are known to those skilled in the art. Example techniques are provided below.


[0110] Production of RNAs


[0111] Sense RNA (ssRNA) and antisense RNA (asRNA) of NOVX are produced using known methods such as transcription in RNA expression vectors. In the initial experiments, the sense and antisense RNA are about 500 bases in length each. The produced ssRNA and asRNA (0.5 μM) in 10 mM Tris-HCl (pH 7.5) with 20 mM NaCl were heated to 95° C. for 1 min then cooled and annealed at room temperature for 12 to 16 h. The RNAs are precipitated and resuspended in lysis buffer (below). To monitor annealing, RNAs are electrophoresed in a 2% agarose gel in TBE buffer and stained with ethidium bromide. See, e.g., Sambrook et al., Molecular Cloning. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (1989).


[0112] Lysate Preparation


[0113] Untreated rabbit reticulocyte lysate (Ambion) are assembled according to the manufacturer's directions. dsRNA is incubated in the lysate at 30° C. for 10 min prior to the addition of mRNAs. Then NOVX mRNAs are added and the incubation continued for an additional 60 min. The molar ratio of double stranded RNA and mRNA is about 200:1. The NOVX mRNA is radiolabeled (using known techniques) and its stability is monitored by gel electrophoresis.


[0114] In a parallel experiment made with the same conditions, the double stranded RNA is internally radiolabeled with a 32P-ATP. Reactions are stopped by the addition of 2× proteinase K buffer and deproteinized as described previously (Tuschl et al., Genes Dev., 13:3191-3197 (1999)). Products are analyzed by electrophoresis in 15% or 18% polyacrylamide sequencing gels using appropriate RNA standards. By monitoring the gels for radioactivity, the natural production of 10 to 25 nt RNAs from the double stranded RNA can be determined.


[0115] The band of double stranded RNA, about 21-23 bps, is eluded. The efficacy of these 21-23 mers for suppressing NOVX transcription is assayed in vitro using the same rabbit reticulocyte assay described above using 50 nanomolar of double stranded 21-23 mer for each assay. The sequence of these 21-23 mers is then determined using standard nucleic acid sequencing techniques.


[0116] RNA Preparation


[0117] 21 nt RNAs, based on the sequence determined above, are chemically synthesized using Expedite RNA phosphoramidites and thymidine phosphoramidite (Proligo, Germany). Synthetic oligonucleotides are deprotected and gel-purified (Elbashir, Lendeckel, & Tuschl, Genes & Dev. 15, 188-200 (2001)), followed by Sep-Pak C18 cartridge (Waters, Milford, Mass., USA) purification (Tuschl, et al., Biochemistry, 32:11658-11668 (1993)).


[0118] These RNAs (20 μM) single strands are incubated in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate) for 1 min at 90° C. followed by 1 h at 37° C.


[0119] Cell Culture


[0120] A cell culture known in the art to regularly express NOVX is propagated using standard conditions. 24 hours before transfection, at approx. 80% confluency, the cells are trypsinized and diluted 1:5 with fresh medium without antibiotics (1-3×105 cells/ml) and transferred to 24-well plates (500 ml/well). Transfection is performed using a commercially available lipofection kit and NOVX expression is monitored using standard techniques with positive and negative control. A positive control is cells that naturally express NOVX while a negative control is cells that do not express NOVX. Base-paired 21 and 22 nt siRNAs with overhanging 3′ ends mediate efficient sequence-specific mRNA degradation in lysates and in cell culture. Different concentrations of siRNAs are used. An efficient concentration for suppression in vitro in mammalian culture is between 25 nM to 100 nM final concentration. This indicates that siRNAs are effective at concentrations that are several orders of magnitude below the concentrations applied in conventional antisense or ribozyme gene targeting experiments.


[0121] The above method provides a way both for the deduction of NOVX siRNA sequence and the use of such siRNA for in vitro suppression. In vivo suppression may be performed using the same siRNA using well known in vivo transfection or gene therapy transfection techniques.


[0122] Antisense Nucleic Acids


[0123] Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, or fragments, analogs or derivatives thereof. An “antisense” nucleic acid comprises a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a NOVX protein of SEQ ID NO:2n, wherein n is an integer between 1 and 141, or antisense nucleic acids complementary to a NOVX nucleic acid sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, are additionally provided.


[0124] In one embodiment, an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence encoding a NOVX protein. The term “coding region” refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding the NOVX protein. The term “noncoding region” refers to 5′ and 3′ sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions).


[0125] Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).


[0126] Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-carboxymethylaminomethyl-2-thiouridine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 5-methoxyuracil, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, 2-thiouracil, 4-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


[0127] The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.


[0128] In yet another embodiment, the antisense nucleic acid molecule of the invention is an (α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al., 1987. FEBS Lett. 215: 327-330.


[0129] Ribozymes and PNA Moieties


[0130] Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.


[0131] In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of a NOVX cDNA disclosed herein (i.e., SEQ ID NO:2n−1, wherein n is an integer between 1 and 141). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., U.S. Pat. No. 4,987,071 to Cech, et al. and U.S. Pat. No. 5,116,742 to Cech, et al. NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.


[0132] Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.


[0133] In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al., 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms “peptide nucleic acids” or “PNAs” refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleotide bases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomer can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996. supra; Perry-O'Keefe, et al., 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.


[0134] PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).


[0135] In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleotide bases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996. supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5′ end of DNA. See, e.g., Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment. See, e.g., Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.


[0136] In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.


[0137] NOVX Polypeptides


[0138] A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in any one of SEQ ID NO:2n, wherein n is an integer between 1 and 141. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in any one of SEQ ID NO:2n, wherein n is an integer between 1 and 141, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.


[0139] In general, a NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.


[0140] One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.


[0141] An “isolated” or “purified” polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language “substantially free of cellular material” includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.


[0142] The language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.


[0143] Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 141) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of a NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of a NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.


[0144] Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.


[0145] In an embodiment, the NOVX protein has an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 141. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 141, and retains the functional activity of the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 141, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 141, and retains the functional activity of the NOVX proteins of SEQ ID NO:2n, wherein n is an integer between 1 and 141.


[0146] Determining Homology Between Two or More Sequences


[0147] To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid “homology” is equivalent to amino acid or nucleic acid “identity”).


[0148] The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141.


[0149] The term “sequence identity” refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term “substantial identity” as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.


[0150] Chimeric and Fusion Proteins


[0151] The invention also provides NOVX chimeric or fusion proteins. As used herein, a NOVX “chimeric protein” or “fusion protein” comprises a NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An “NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a NOVX protein of SEQ ID NO:2n, wherein n is an integer between 1 and 141, whereas a “non-NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within a NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of a NOVX protein. In one embodiment, a NOVX fusion protein comprises at least one biologically-active portion of a NOVX protein. In another embodiment, a NOVX fusion protein comprises at least two biologically-active portions of a NOVX protein. In yet another embodiment, a NOVX fusion protein comprises at least three biologically-active portions of a NOVX protein. Within the fusion protein, the term “operatively-linked” is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.


[0152] In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.


[0153] In another embodiment, the fusion protein is a NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.


[0154] In yet another embodiment, the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a NOVX ligand and a NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of a NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g. promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with a NOVX ligand.


[0155] A NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.


[0156] NOVX Agonists and Antagonists


[0157] The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or truncation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.


[0158] Variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein. There are a variety of methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.


[0159] Polypeptide Libraries


[0160] In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of a NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with SI nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.


[0161] Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.


[0162] Anti-NOVX Antibodies


[0163] Included in the invention are antibodies to NOVX proteins, or fragments of NOVX proteins. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab, Fab′ and F(ab′)2 fragments, and an Fab expression library. In general, antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG1, IgG2, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.


[0164] An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 141, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.


[0165] In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0166] The term “epitope” includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. A NOVX polypeptide or a fragment thereof comprises at least one antigenic epitope. An anti-NOVX antibody of the present invention is said to specifically bind to antigen NOVX when the equilibrium binding constant (KD) is ≦1 μM, preferably ≦100 nM, more preferably ≦10 nM, and most preferably ≦100 pM to about 1 pM, as measured by assays such as radioligand binding assays or similar assays known to those skilled in the art.


[0167] A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.


[0168] Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., incorporated herein by reference). Some of these antibodies are discussed below.


[0169] Polyclonal Antibodies


[0170] For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).


[0171] The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia Pa., Vol. 14, No. 8 (Apr. 17, 2000), pp. 25-28).


[0172] Monoclonal Antibodies


[0173] The term “monoclonal antibody” (MAb) or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.


[0174] Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.


[0175] The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.


[0176] Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, Calif. and the American Type Culture Collection, Manassas, Va. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).


[0177] The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.


[0178] After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding, 1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.


[0179] The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.


[0180] The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.


[0181] Humanized Antibodies


[0182] The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Pat. No.5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fe), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).


[0183] Human Antibodies


[0184] Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed “human antibodies”, or “fully human antibodies” herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).


[0185] In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al,(Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).


[0186] Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse™ as disclosed in PCT publications WO96/33735 and WO96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.


[0187] An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Pat. No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.


[0188] A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Pat. No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.


[0189] In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.


[0190] Fab Fragments and Single Chain Antibodies


[0191] According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Pat. No. 4,946,778). In addition, methods can be adapted for the construction of Fab expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F(ab′)2 fragment produced by pepsin digestion of an antibody molecule; (ii) an Fab fragment generated by reducing the disulfide bridges of an F(ab′)2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) Fv fragments.


[0192] Bispeciric Antibodies


[0193] Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.


[0194] Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published May 13, 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).


[0195] Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).


[0196] According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.


[0197] Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.


[0198] Additionally, Fab′ fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.


[0199] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).


[0200] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).


[0201] Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).


[0202] Heteroconjugate Antibodies


[0203] Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980.


[0204] Effector Function Engineering


[0205] It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).


[0206] Immunoconjugates


[0207] The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).


[0208] Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131I, 131In, 90Y, and 186Re.


[0209] Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.


[0210] In another embodiment, the antibody can be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is in turn conjugated to a cytotoxic agent.


[0211] Immunoliposomes


[0212] The antibodies disclosed herein can also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.


[0213] Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989).


[0214] Diagnostic Applications of Antibodies Directed Against the Proteins of the Invention


[0215] In one embodiment, methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA) and other immunologically mediated techniques known within the art. In a specific embodiment, selection of antibodies that are specific to a particular domain of an NOVX protein is facilitated by generation of hybridomas that bind to the fragment of an NOVX protein possessing such a domain. Thus, antibodies that are specific for a desired domain within an NOVX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0216] Antibodies directed against a NOVX protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of a NOVX protein (e.g., for use in measuring levels of the NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies specific to a NOVX protein, or derivative, fragment, analog or homolog thereof, that contain the antibody derived antigen binding domain, are utilized as pharmacologically active compounds (referred to hereinafter as “Therapeutics”).


[0217] An antibody specific for a NOVX protein of the invention (e.g., a monoclonal antibody or a polyclonal antibody) can be used to isolate a NOVX polypeptide by standard techniques, such as immunoaffinity, chromatography or immunoprecipitation. An antibody to a NOVX polypeptide can facilitate the purification of a natural NOVX antigen from cells, or of a recombinantly produced NOVX antigen expressed in host cells. Moreover, such an anti-NOVX antibody can be used to detect the antigenic NOVX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic NOVX protein. Antibodies directed against a NOVX protein can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and acquorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.


[0218] Antibody Therapeutics


[0219] Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question. In the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.


[0220] Alternatively, the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule. In this case the target, a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.


[0221] A therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.


[0222] Pharmaceutical Compositions of Antibodies


[0223] Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington: The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.


[0224] If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.


[0225] The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.


[0226] The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.


[0227] Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.


[0228] ELISA Assay


[0229] An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term “biological sample”, therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in “ELISA: Theory and Practice: Methods in Molecular Biology”, Vol. 42, J. R. Crowther (Ed.) Human Press, Totowa, N.J., 1995; “Immunoassay”, E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, Calif., 1996; and “Practice and Thory of Enzyme Immunoassays”, P. Tijssen, Elsevier Science Publishers, Amsterdam, 1985. Furthermore, in vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0230] NOVX Recombinant Expression Vectors and Host Cells


[0231] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


[0232] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably-linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).


[0233] The term “regulatory sequence” is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).


[0234] The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


[0235] Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.


[0236] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).


[0237] One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, e.g., Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.


[0238] In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSec 1 (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kuijan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).


[0239] Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).


[0240] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.


[0241] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J 8: 729-733) and immunoglobulins (Banedji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).


[0242] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub, et al., “Antisense RNA as a molecular tool for genetic analysis,” Reviews—Trends in Genetics, Vol. 1(1) 1986.


[0243] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


[0244] A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


[0245] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.


[0246] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).


[0247] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.


[0248] Transgenic NOVX Animals


[0249] The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.


[0250] A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retroviral infecfion) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human NOVX cDNA sequences, i.e., any one of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.


[0251] To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g., the cDNA of any one of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a “knock out” vector).


[0252] Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5′- and 3′-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5′- and 3′-termini) are included in the vector. See, e.g., Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al., 1992. Cell 69: 915.


[0253] The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.


[0254] In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, See, e.g., Lakso, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.


[0255] Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G0 phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.


[0256] Pharmaceutical Compositions


[0257] The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as “active compounds”) of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


[0258] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


[0259] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


[0260] Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


[0261] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


[0262] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


[0263] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.


[0264] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


[0265] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


[0266] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.


[0267] The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Pat. No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.


[0268] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.


[0269] Screening and Detection Methods


[0270] The isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in a NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.


[0271] The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, supra.


[0272] Screening Assays


[0273] The invention provides a method (also referred to herein as a “screening assay”) for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e.g., NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein.


[0274] In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.


[0275] A “small molecule” as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.


[0276] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al., 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, et al., 1994. J. Med. Chem. 37: 1233.


[0277] Libraries of compounds may be presented in solution (e.g., Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Pat. No. 5,223,409), spores (Ladner, U.S. Pat. No. 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Pat. No. 5,233,409.).


[0278] In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.


[0279] In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule. As used herein, a “target molecule” is a molecule with which a NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A NOVX target molecule can be a non-NOVX molecule or a NOVX protein or polypeptide of the invention. In one embodiment, a NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.


[0280] Determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e. intracellular Ca2+ diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.


[0281] In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting a NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.


[0282] In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to a NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate a NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.


[0283] In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of a NOVX target molecule.


[0284] The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)n, N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-1-propane sulfonate (CHAPSO).


[0285] In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.


[0286] Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.


[0287] In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.


[0288] In yet another aspect of the invention, the NOVX proteins can be used as “bait proteins” in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX (“NOVX-binding proteins” or “NOVX-bp”) and modulate NOVX activity. Such NOVX-binding proteins are also involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.


[0289] The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor. If the “bait” and the “prey” proteins are able to interact, in vivo, forming a NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.


[0290] The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.


[0291] Detection Assays


[0292] Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.


[0293] Chromosome Mapping


[0294] Once the sequence (or a portion of the sequence) of a gene has been-isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.


[0295] Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.


[0296] Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.


[0297] PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.


[0298] Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES (Pergamon Press, New York 1988).


[0299] Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.


[0300] Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, MENDELIAN INHERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland, et al., 1987. Nature, 325: 783-787.


[0301] Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.


[0302] Tissue Typing


[0303] The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP (“restriction fragment length polymorphisms,” described in U.S. Pat. No. 5,272,057).


[0304] Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5′- and 3′-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.


[0305] Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).


[0306] Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If coding sequences, such as those of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.


[0307] Predictive Medicine


[0308] The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in a NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.


[0309] Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as “pharmacogenomics”). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)


[0310] Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.


[0311] These and other agents are described in further detail in the following sections.


[0312] Diagnostic Assays


[0313] An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.


[0314] An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0315] In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.


[0316] In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.


[0317] The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.


[0318] Prognostic Assays


[0319] The diagnostic methods described herein can furthermore be utilized to identifpy subjects having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a “test sample” refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.


[0320] Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).


[0321] The methods of the invention can also be used to detect genetic lesions in a NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from a NOVX gene; (ii) an addition of one or more nucleotides to a NOVX gene; (iii) a substitution of one or more nucleotides of a NOVX gene, (iv) a chromosomal rearrangement of a NOVX gene; (v) an alteration in the level of a messenger RNA transcript of a NOVX gene, (vi) aberrant modification of a NOVX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type splicing pattern of a messenger RNA transcript of a NOVX gene, (viii) a non-wild-type level of a NOVX protein, (ix) allelic loss of a NOVX gene, and (x) inappropriate post-translational modification of a NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0322] In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al., 1995. Nucl. Acids Res. 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.


[0323] Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qβ Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.


[0324] In an alternative embodiment, mutations in a NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Pat. No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.


[0325] In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.


[0326] In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e.g., Naeve, et al., 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv. Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol. 38: 147-159).


[0327] Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, e.g., Myers, et al., 1985. Science 230: 1242. In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al., 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba, et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.


[0328] In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, e.g., Hsu, et al., 1994. Carcinogenesis 15: 1657-1662. According to an exemplary embodiment, a probe based on a NOVX sequence, e.g., a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Pat. No. 5,459,039.


[0329] In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al., 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech. Appl. 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen, et al., 1991. Trends Genet. 7: 5.


[0330] In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE). See, e.g., Myers, et al., 1985. Nature 313: 495. When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.


[0331] Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al., 1986. Nature 324: 163; Saiki, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.


[0332] Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, e.g., Gibbs, et al., 1989. Nucl. Acids Res. 17: 2437-2448) or at the extreme 3′-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, e.g., Prossner, 1993. Tibtech. 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e.g., Gasparini, et al., 1992. Mol. Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, e.g., Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3′-terminus of the 5′ sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


[0333] The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a NOVX gene.


[0334] Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0335] Pharmacogenomics


[0336] Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0337] In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.


[0338] Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin. Chem., 43: 254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.


[0339] As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome pregnancy zone protein precursor enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.


[0340] Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.


[0341] Monitoring of Effects During Clinical Trials


[0342] Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a “read out” or markers of the immune responsiveness of a particular cell.


[0343] By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.


[0344] In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.


[0345] Methods of Treatment


[0346] The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0347] These methods of treatment will be discussed more fully, below.


[0348] Diseases and Disorders


[0349] Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (i.e., reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (i) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are “dysfunctional” (i.e., due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to “knockout” endogenous function of an aforementioned peptide by homologous recombination (see, e.g., Capecchi, 1989. Science 244: 1288-1292); or (v) modulators (i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.


[0350] Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (i.e., are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.


[0351] Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).


[0352] Prophylactic Methods


[0353] In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, a NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.


[0354] Therapeutic Methods


[0355] Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of a NOVX protein, a peptide, a NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering a NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.


[0356] Stimulation of NOVX activity is desirable in situations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation (e.g., cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (e.g., preclampsia).


[0357] Determination of the Biological Effect of the Therapeutic


[0358] In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.


[0359] In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects.


[0360] Prophylactic and Therapeutic Uses of the Compositions of the Invention


[0361] The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0362] As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from diseases, disorders, conditions and the like, including but not limited to those listed herein.


[0363] Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.


[0364] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.







EXAMPLES


Example A


Polynucleotide and Polypeptide Sequences, and Homology Data


Example 1

[0365] The NOV1 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1A.
2TABLE 1ANOV1 Sequence AnalysisSEQ ID NO: 1968 bpNOV1a,ATGGGTCTGGCCATGGAGCAGCTGTCCGGGCTGAGGCGGAGCCGGGCGTTTCTCGCCCCG103134-01 DNASequenceTGCTGGGATCGCTGCTCCTCTCTGGGGTCCTGGCGGCCGACCGAGAACGCAGCATCCACGACTTCTGCCTGGTGTCGAAGGTGGTGGGCAGATGCCGGGCCTCCATGCCTAGGTGGTGGTACAATGTCACTGACGGATCCTGCCAGCTGTTTGTGTATGGGGGCTGTGACGGAAACAGCAATAATTACCTGACCAAGGAGGAGTGCCTCAAGAAATGTGCCACTGTCACAGAGAATGCCACGGGTGACCTGGCCACCAGCAGGAATGCAGCGGATTCCTCTGTCCCAAGTGCTCCCAGAAGGCAGGATTCTGAAGACCACTCCAGCGATATGTTCAACTATGAAGAATACTGCACCGCCAACGCAGTCACTGGGCCTTGCCGTGCATCCTTCCCACCCTGGTACTTTGACGTGGAGAGGAACTCCTGCAATAACTTCATCTATGGAGGCTGCCGGGGCAATAAGAACAGCTACCGCTCTGAGGAGGCCTGCATGCTCCGCTGCTTCCGCCAGCAGGAGAATCCTCCCCTGCCCCTTGGCTCAAAGGTGGTGGTTCTGGCGGGGCTGTTCGTGATGGTGTTGATCCTCTTCCTGGGAGCCTCCATGGTCTACCTGATCCGGGTGGCACGGAGGAGCCAGGAGCGTGCCCTGCGCACCGTCTGGAGCTCCGGAGATGACAAGGAGCAGCTGGTGAAGAACACATATGTCCTGTGACCGCCCTGTCGCCAAGAGGACTGGGGAAGGGAGGGGAGACTATGTGTGAGCTTTTTTTAAATAGAGGGATTGACTCGGATTTGAGTGATCATTAGGGCTGAGGTCTGTTTCTCTGGGAGCTAGGACGGCTGCTTCCTGGTCTGGCAGGCATGGGTTTGCTTTGGAAATCCTCTACGAGGCTCCGGCACTGACCTAAGORF Start: ATG at 1ORF Stop: TGA at 769SEQ ID NO: 2256 aaMW at 28631.3 kDNOV1a,MGLAMEQLCGLRRSRAFLALLGSLLLSGVLAADRERSIHDFCLVSKVVGRCRASMPRWCG103134-01Protein SequenceWYNVTDGSCQLFVYGGCDGNSNNYLTKEECLKKCATVTENATCDLATSRNAADSSVPSAPRRQDSEDHSSDMFNYEEYCTANAVTGPCRASFPRWYFDVERNSCNNFIYGCCRGNKNSYRSEEACMLRCFRQQENPPLPLGSKVVVLAGLFVMVLILFLGASMVYLIRVARRSQERALRTVWSSGDDKEQLVKNTYVLSEQ ID NO: 3869 bpNOV1b,GAGACCCCAACGGCTGGTGGCGTCGCCTGCGCGTCTCGGCTGAGCTGGCCATGGCGCACG103134-02 DNASequenceGCTGTGCGGGCTGAGGCGGAGCCGGGCGTTTCTCGCCCTGCTCGGATCGCTGCTCCTCTCTGGGGTCCTGGCGGCCGACCGAGAACGCAGCATCCACGGTGAGGGCCGGGCGGACTTCTGCCTGGTGTCGAAGGTGGTGGGCAGATGCCGGGCCTCCATGCCTAGGTGGTGGCACAATGTCACTGACGGATCCTGCCAGCTGTTTGTGTATGGGGGCTGTGACGGAAACAGCAATAATTACCTGACCAAGGAGGAGTGCCTCAAGAAATGTGCCACTGTCACACAGAATGCCACGGGTGACCTGGCCACCAGCAGGAATGCAGCGGATTCCTCTGTCCCAAGTGCTCCCAGAACGCAGGATTCTGAAGACCACTCCAGCGATATGTTCAACTATGAAGAATACTGCACCGCCAACGCAGTCACTGCGCCTTGCCGTGCATCCTTCCCACGCTGGTACTTTGACGTGGAGAGGAACTCCTGCAATAACTTCATCTATGGAGGCTGCCGGGGCAATAAGAACAGCTACCGCTCTGAGGAGGCCTGCATGCTCCCCTGCTTCCGCCAGCAGGAGAATCCTCCCCTGCCCCTTGGCTCAAAGGTGGTGGTTCTGGCGGGGCTGTTCGTGATGGTGTTGATCCTCTTCCTGGGAGCCTCCATGGTCTACCTGATCCGGGTGGCACGGAGGAACCAGGACCGTGCCCTGCGCACCGTCTGGAGCTCCGGAGATGACAAGGAGCAGCTGGTGAAGAACACATATGTCCTGTGACCGGCCTGTCGCCAAGAGGACTGGGGAAGGGAGGGGAGACTATGGORF Start: ATG at 51ORF Stop: TGA at 822SEQ ID NO: 4257 aaMW at 28672.2 kDNOV1b,MAQLCGLRRSRAFLALLGSLLLSGVLAADRERSIHGEGRADFCLVSKVVGRCRASMPRCG103134-02Protein SequenceWWHNVTDGSCQLFVYGGCDGNSNNYLTKEECLKKCATVTENATGDLATSRNAADSSVPSAPRRQDSEDHSSDMFNYEEYCTANAVTGPCRASFPRWYFDVERNSCNNFIYGGCRGNKNSYRSEEACMLRCFRQQENPPLPLGSKVVVLAGLFVMVLILFLGASMVYLIRVARRNQERALRTVWSSGDDKEQLVKNTYVL


[0366] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1B.
3TABLE 1BComparison of NOV1a against NOV1b.Identities/NOV1a Residues/Similarities forProtein SequenceMatch Residuesthe Matched RegionNOV1b5 . . . 256249/257 (96%)1 . . . 257251/257 (96%)


[0367] Further analysis of the NOV1a protein yielded the following properties shown in Table 1C.
4TABLE 1CProtein Sequence Properties NOV1aPSort0.8705 probability located in mitochondrialanalysis:inner membrane; 0.6000 probability locatedin plasma membrane; 0.4983 probability locatedin mitochondrial intermembrane space;0.4000 probability located in Golgi bodySignalPCleavage site between residues 32 and 33analysis:


[0368] A search of the NOV1a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1D.
5TABLE 1DGeneseq Results for NOV1aNOV1aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueABP41951Human ovarian antigen3 . . . 256252/254 (99%)e−148HDABR73, SEQ ID NO: 3083 -17 . . . 270 253/254 (99%)Homo sapiens, 270 aa.[WO200200677-A1, 03 JAN. 2002]AAB43821Human cancer associated3 . . . 256252/254 (99%)e−148protein sequence SEQ ID17 . . . 270 253/254 (99%)NO: 1266 - Homo sapiens, 289aa. [WO200055350-A1, 21 SEP.2000]AAO17719Human kunitz type protease5 . . . 256250/252 (99%)e−148inhibitor bikunin - Homo1 . . . 252251/252 (99%)sapiens, 252 aa. [WO9957274-A1, 11 NOV. 1999]AAB14187Human placental bikunin5 . . . 256250/252 (99%)e−148protein # 5 - Homo sapiens,1 . . . 252251/252 (99%)252 aa. [WO200037099-A2, 29JUN. 2000]AAW70286Human tissue factor pathway5 . . . 256250/252 (99%)e−148inhibitor-3 (TFPI-3) - Homo1 . . . 252251/252 (99%)sapiens, 252 aa. [WO9833920-A2, 06 AUG. 1998]


[0369] In a BLAST search of public sequence datbases, the NOV1a protein was found to have homology to the proteins shown in the BLASTP data in Table 1E.
6TABLE 1EPublic BLASTP Results for NOV1aIdentities/NOV1aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueO43291Kunitz-type protease inhibitor5 . . . 256250/252 (99%)e−1472 precursor (Hepatocyte growth1 . . . 252251/252 (99%)factor activator inhibitortype 2) (HAI-2) (Placentalbikunin) - Homo sapiens(Human), 252 aa.Q9WU03Kunitz-type protease inhibitor5 . . . 256177/252 (70%)e−1022 precursor (Hepatocyte growth1 . . . 252202/252 (79%)factor activator inhibitortype 2) (HAI-2) - Mus musculus(Mouse), 252 aa.JG0185hepatocyte growth factor5 . . . 256177/252 (70%)e−102activator inhibitor type 2 -1 . . . 252201/252 (79%)mouse, 252 aa.AAH03431Serine protease inhibitor,95 . . . 256 112/162 (69%)3e−60 Kunitz type 2 - Mus musculus34 . . . 195 129/162 (79%)(Mouse), 195 aa.Q9D8Q8Serine protease inhibitor,95 . . . 256 112/162 (69%)3e−60 kunitz type 2 - Mus musculus34 . . . 195 129/162 (79%)(Mouse), 195 aa.


[0370] PFam analysis predicts that the NOV1a protein contains the domains shown in the Table 1F.
7TABLE 1FDomain Analysis of NOV1aIdentities/NOV1a MatchSimilarities forPfam DomainRegionthe Matched RegionExpect ValueKunitz_BPTI42 . . . 9224/62 (39%)9.7e−2845/62 (73%)Kunitz_BPTI137 . . . 18722/62 (35%)2.6e−2239/62 (63%)



Example 2

[0371] The NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.
8TABLE 2ANOV2 Sequence AnalysisSEQ ID NO: 5841 bpNOV2a,ACTGGTTTCGTGGAAGGAAGCTCCAGGACTGGCGGGATGGGCTCAGCCTGTATCAAAGCG103322-01 DNASequenceTCACCAAATACTTTCTCTTCCTCTTCAACTTGATCTTCTTTATCCTGGGCGCAGTGATCCTGGGCTTCGGGGTGTGGATCCTGGCCGACAAGAGCAGTTTCATCTCTGTCCTGCAAACCTCCTCCAGCTCGCTTAGGATGGGGGCCTATGTCTTCATCGGCGTGGGGGCAGTCACTATGCTCATGGGCTTCCTGGGCTGCATCGGCGCCGTCAACGAGGTCCGCTGCCTGCTGGGGCTGTACTTTGCTTTCCTGCTCCTGATCCTCATTGCCCACGTGACGGCCGGGGCCCTCTTCTACTTCAACATGGGCAAGCTGAAGCAGGAGATGGGCCGCATCGTGACTGAGCTCATTCGAGACTACAACAGCAGTCGCGAGGACAGCCTGCAGGATGCCTGGGACTACGTGCAGGCTCAGGTCAAGTGCTGCGGCTGGGTCAGCTTCTACAACTGGACAGACAACGCTGAGCTCATGAATCGCCCTGAGGTCACCTACCCCTGTTCCTGCGAAGTCAAGGGGGAAGAGGACAACAGCCTTTCTGTGAGGAAGCGCTTCTGCGAGGCCCCCGGCAACAGGACCCAGAGTGGCAACCACCCTGAGGACTCGCCTGTGTACCAGGAGGGCTGCATGGAGAAGGTGCAGGCGTGGCTGCAGGAGAACCTGGCCATCATCCTCGGCGTGGGCGTGGGTGTCGCCATCGTCGAOCTCCTGGGGATGGTCCTGTCCATCTGCTTGTGCCGGCACGTCCATTCCGAACACTACAGCAAGGTCCCCAAGTACTGAGORF Start: ATG at 37ORF Stop: TGA at 838SEQ ID NO: 6267 aaMW at 29611.2 kDNOV2a,MGSACIKVTKYFLFLFNLIFFILGAVILGFGVWILADKSSFISVLQTSSSSLRMGAYVCG103322-01Protein SequenceFIGVGAVTMLMGFLGCIGAVNEVRCLLGLYFAFLLLILIAQVTAGALFYFNMGKLKQEMGGIVTELIRDYNSSREDSLQDAWDYVQAQVKCCGWVSFYNWTDNAELMNRPEVTYPCSCEVKGEEDNSLSVRKGFCEAPCNRTQSGNHPEDWPVYQEGCMEKVQAWLQENLGIILGVGVGVAIVELLGMVLSICLCRHVHSEDYSKVPKYSEQ ID NO: 7747 bpNOV2bCCTTGGGATGGGCTCAGCCTGTATCAAAGTCACCAAATACTTTCTCTTCCTCTTCAACCG103322-02 DNASequenceTTGATCTTCTTTATCCTGGGCGCAGTGATCCTGGGCTTCGGGGTGTGGATCCTGGCCGACAAGAGCACTTTCATCTCTGTCCTCCAAACCTCCTCCAGCTCGCTTAGGATGGGGGCCTATGTCTTCATCGGCGTGGGGGCAGTCACTATGCTCATGGGCTTCCTGGGCTGCATCGGCGCCGTCAACGAGGTCCGCTGCCTGCTGGGGCTGTACTTTGCTTTCCTGCTCCTGATCCTCATTGCCCAGGTGACGGCCGCGGCCCTCTTCTACTTCAACATGGGCAAGCTGAAGCAGGAGATGGGTGGCATCGTCACTGAGCTCATTCGAGACTACAACAGCAGTCGCGAGGACACCCTGCAGGATGCCTGGGACTACGTGCAGGCTCAGGTGAAGTGCTGCGGCTGGGTCAGCTTCTACAACTGGACAGACAACGCTGAGCTCATGAATCGCCCTGAGGTCACCTACCCCTGTTCCTGCGAAGTCAAGGGGGAAGAGGACAACAGCCTTTCTGTGAGGAAGGGCTTCTGCGAGGCCCCCGGCAACAGGACCCAGAGTGGCAACCACCCTGAGGACTGGCCTGTGTACCAGGAGCTCCTGGGGATGGTCCTGTCCATCTGCTTGTGCCGGCACGTCCATTCCGAAGACTACAGCAAGGTCCCCAAGTACTGAGGCAGCTGCTATCCCCATCTORF Start: ATG at 8ORF Stop: TGA at 725SEQ ID NO: 8239 aaMW at 26702.7 kDNOV2b,MGSACIKVTKYFLFLFNLIFFILGAVILGFGVWILADKSSFISVLQTSSSSLRMGAYVCG103322-02Protein SequenceFIGVGAVTMLMGFLGCIGAVNEVRCLLGLYFAFLLLILIAQVTAGALFYFNMGKLKQEMGGIVTELIRDYNSSREDSLQDAWDYVQAQVKCCGWVSFYNWTDNAELMNRPEVTYPCSCEVKGEEDNSLSVRKGFCEAPGNRTQSGNHPEDWPVYQELLGMVLSICLCRHVHSEDYSKVPKY


[0372] Sequences comparison of the above protein sequences yields the following sequence relationships shown in Table 2B.
9TABLE 2BComparison of NOV2a against NOV2b.Identities/ProteinNOV2a Residues/Similarities forSequenceMatch Residuesthe Matched RegionNOV2b1 . . . 267239/267 (89%)1 . . . 239239/267 (89%)


[0373] Further analysis of the NOV2a protein yielded the following properties shown in Table 2C.
10TABLE 2CProtein Sequence Properties NOV2aPSort0.6400 probability located in plasma membrane;analysis:0.4600 probability located in Golgi body; 0.3700probability located in endoplasmic reticulum(membrane); 0.1000 probability located inendoplasmic reticulum (lumen)SignalPCleavage site between residues 37 and 38analysis:


[0374] A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent pulication, yielded several homologous proteins shown in Table 2D.
11TABLE 2DGeneseq Results for NOV2aNOV2aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAM23963Human EST encoded protein SEQ1 . . . 267266/267 (99%)e−157ID NO: 1488 - Homo sapiens,1 . . . 267267/267 (99%)267 aa. [WO200154477-A2, 02AUG. 2001]AAW05732Human metastasis tumour1 . . . 267266/267 (99%)e−157suppressor gene KAI1 product1 . . . 267267/267 (99%)[WO9634117-A1, 31 OCT. 1996]ABB57295Mouse ischaemic condition1 . . . 267203/267 (76%)e−120related protein sequence SEQ1 . . . 266230/267 (86%)ID NO: 828 - Mus musculus, 266aa. [WO200188188-A2, 22 NOV.2001]AAB58792Breast and ovarian cancer1 . . . 117110/117 (94%)4e−56 associated antigen protein69 . . . 185 112/117 (95%)sequence SEQ ID 500 - Homosapiens, 198 aa.WO200055173-A1, 21 SEP. 2000]AAG00436Human secreted protein, SEQ46 . . . 130  84/85 (98%)5e−41 ID NO: 4517 - Homo sapiens,15 . . . 99  85/85 (99%)99 aa. [EP1033401-A2, 06 SEP.2000]


[0375] In a BLAST search of public sequence datbases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2E.
12TABLE 2EPublic BLASTP Results for NOV2aNOV2aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor the MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueAAH00726Kangai 1 (suppression of1 . . . 267 267/267 (100%)e−157tumorigenicity 6, prostate,1 . . . 267 267/267 (100%)CD82 antigen (R2 leukocyteantigen, antigen detected bymonoclonal and antibody IA4))- Homo sapiens (Human), 267aa.P27701CD82 antigen (Inducible1 . . . 267266/267 (99%)e−157membrane protein R2) (C331 . . . 267267/267 (99%)antigen) (IA4) (Metastasissuppressor Kangai 1)(Suppressor oftumorigenicity-6) - Homosapiens (Human), 267 aa.P40237CD82 antigen (Inducible1 . . . 267203/267 (76%)e−119membrane protein R2) (C331 . . . 266230/267 (86%)antigen) (IA4) - Mus musculus(Mouse), 266 aa.O70352CD82 antigen (Metastasis1 . . . 267202/267 (75%)e−117suppressor homolog) - Rattus1 . . . 266226/267 (83%)norvegicus (Rat), 266 aa.P11049Leukocyte antigen CD37 - Homo4 . . . 267 99/276 (35%)2e−45 sapiens (Human), 281 aa.6 . . . 280159/276 (56%)


[0376] PFam analysis predicts that the NOV2a protein contains the domains shown in the Table 2F.
13TABLE 2FDomain Analysis of NOV2aIdentities/NOV2a MatchSimilarities forPfam DomainRegionthe Matched RegionExpect Valuetransmembrane410 . . . 256102/270 (38%)2.6e−96221/270 (82%)



Example 3

[0377] The NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.
14TABLE 3ANOV3 Sequence AnalysisSEQ ID NO: 9486 bpNOV3a,ATGGCAAAAGAGGAGCCCCAGAGTATCTCAAGGGACTTGCAGGAACTGCAGAAGAAGCCG151575-01 DNASequenceTGTCTCTGCTGATAGACTCCTTCCAGAATAACTCAAAGGTGGTGGCCTTTATGAAGTCTCCAGTGGGTCAGTACTTGGACAGCCATCCGTTTCTGGCCTTCACCTTGCTGGTGTTCATTGTCATGTCGGCCGTTCCTGTTGGATTCTTCCTGCTCATCGTGGTGCTTACCACCCTGGCTGCTCTGCTCGGGGTCATAATATTGGAAGGATTGGTCATCTCTGTGGGTGGCTTCTCACTGCTCTGCATCCTCTGTGGTTTGGGCTTCGTATCACTCGCCATGTCCGGGATGATGATAGCATCTTATGTAGTGGTCTCCAGCCTCATCAGCTGCTGGTTTTCTCCCAGGCCACTGACACAGCAAAACACCAGTTGTGACTTTCTGCCAGCCATGAAGTCTGCAGACTTCGAGGGGCTTTACCAGGAATGAORF Start: ATG at 1ORF Stop: TGA at 484SEQ ID NO: 10161 aaMW at 17507.6 kDNOV3a,MAKEEPQSISRDLQELQKKLSLLIDSFQNNSKVVAFMKSPVGQYLDSHPFLAFTLLVFCG151575-01Protein SequenceIVMSAVPVGFFLLIVVLTTLAALLGVIILEGLVISVGGFSLLCILCGLGFVSLAMSGMMIASYVVVSSLISCWFSPRPLTQQNTSCDFLPAMKSADFEGLYQESEQ ID NO: 11760 bpNOV3b,GGCTCCCTCTCGGGACGCTCTTTCCTTCTTCCTCTTGTTCCTCCTCCTGCCTCTCTTCCG151575-02 DNASequenceGCTTCGCCTGCAAACGCGGTGGGGGCTGCTCGGCGGTCAGGAGCAGCAAGAGACAGAGCGACATGAGAGATTGGACCGCGGGCTGCACTGGACAATTTACTGGTAGGATAATTCATCCCTAAAGAGATTGAAGTGAGCTTCAGAATGGCAAAAGAGGAGCCCCAGAGTATCTCAAGGGACTTGCAGGAACTGCACAAGAAGCTGTCTCTGCTGATAGACTCCTTCCAGAATAACTCAAAGCTGCCCCAACACAGCAGGATCTCACTGGACTCTGATCATGGAGTGTCCAGGCTGGCCAGTGCTGGCTCCAAGGTGGTGGCCTTTATGAAGTCTCCAGTGGGTCAGTACTTGGACAGCCATCCGTTTCTGGCCTTCACCTTGCTGGTGTTCATTGTCATGTCGGCCGTTCCTGTTGGATTCTTCCTGCTCATCGTGGTGCTTACCACCCTGGCTGCTCTGCTGGGGGTCATAATATTGGAAGGATTGGTCATCTCTGTCGGTGGCTTCTCACTGCTCTGCATCCTCTGTGGTTTGGGCTTCGTATCACTCGCCATGTCGGGGATGATGATAGCATCTTATGTAGTGGTCTCCAGCCTCATCAGCTGCTGGTTTTCTCCCAGGCCACTGACACAGCAAAACACCAGTTGTGACTTTCTOCCAGCCATGAAGTCTGCAGACTTCGAGGGGCTTTACCAGGAATGAORF Start: ATG at 203ORF Stop: TGA at 758SEQ ID NO: 12185 aaMW at 19972.2 kDNOV3b,MAKEEPQSISRDLQELQKKLSLLIDSFQNNSKLPQHSRISLDSDDGVSRLGSAGSKVVCG151575-02Protein SequenceAFMKSPVGQYLDSHPFLAFTLLVFIVMSAVPVGFFLLIVVLTTLAALLGVIILEGLVISVGGFSLLCILCGLGFVSLAMSGMMIASYVVVSSLISCWFSPRPLTQQNTSCDFLPAMKSADFEGLYQE


[0378] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 3B.
15TABLE 3BComparison of NOV3a against NOV3b.Identities/ProteinNOV3a Residues/Similarities forSequenceMatch Residuesthe Matched RegionNOV3b1 . . . 161161/185 (87%)1 . . . 185161/185 (87%)


[0379] Further analysis of the NOV3a protein yielded the following properties shown in Table 3C.
16TABLE 3CProtein Sequence Properties NOV3aPSort0.6000 probability located in plasma membrane;analysis:0.4000 probability located in Golgi body; 0.3000probability located in endoplasmic reticulum(membrane); 0.0300 probability located inmitochondrial inner membraneSignalPCleavage site between residues 69 and 70analysis:


[0380] A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3D.
17TABLE 3DGeneseq Results for NOV3aNOV3aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor the MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM93733Human polypeptide, SEQ ID 1 . . . 161161/161 (100%) 9e−86NO: 3697 - Homo sapiens, 161 1 . . . 161161/161 (100%) aa. [EP1130094-A2, 05 SEP.2001]ABG16996Novel human diagnostic47 . . . 13324/89 (26%)0.93protein #16987 - Homo280 . . . 366 53/89 (58%)sapiens, 1076 aa.[WO200175067-A2, 11 OCT.2001]ABP30247Streptococcus polypeptide64 . . . 11423/56 (41%)1.2SEQ ID NO 9670 -327 . . . 381 33/56 (58%)Streptococcus agalactiae,401 aa. [WO200234771-A2, 02MAY 2002]ABP26074Streptococcus polypeptide64. .11423/56 (41%)1.2SEQ ID NO 1324 -334. .38833/56 (58%)Streptococcus agalactiae,408 aa. [WO200234771-A2, 02MAY 2002]ABB92972Herbicidally active58 . . . 12322/68 (32%)3.6polypeptide SEQ ID NO 2183 -175 . . . 236 37/68 (54%)Arabidopsis thaliana, 436aa. [WO200210210-A2, 07 FEB.2002]


[0381] In a BLAST search of public sequence datbases, the NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3E.
18TABLE 3EPublic BLASTP Results for NOV3aNOV3aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor the MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96B96Similar to hypothetical1 . . . 161 161/161 (100%)3e−85protein from clone 24796 -1 . . . 161 161/161 (100%)Homo sapiens (Human), 161aa.O00323Hypothetical 17.6 kDa1 . . . 161159/161 (98%)4e−84protein - Homo sapiens1 . . . 161160/161 (98%)(Human), 161 aa.Q922Z1Similar to hypothetical1 . . . 158112/159 (70%)5e−57protein from clone 24796 -1 . . . 159134/159 (83%)Mus musculus (Mouse), 161aa.P43932Hypothetical protein HI005633 . . . 100  19/68 (27%)1.5- Haemophilus influenzae,168 . . . 224  34/68 (49%)237 aa.Q9RZJ6Hypothetical protein33 . . . 96  20/67 (29%)2.0DRB0131 - Deinococcus219 . . . 285  35/67 (51%)radiodurans, 304 aa.


[0382] PFam analysis predicts that the NOV3a protein contains the domains shown in the Table 3F.
19TABLE 3FDomain Analysis of NOV3aNOV3a MatchIdentities/ forPfam DomainRegionthe Matched RegionExpect ValueNo Significant Matches Found



Example 4

[0383] The NOV4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 4A.
20TABLE 4ANOV4 Sequence AnalysisSEQ ID NO: 131088 bpNOV4a,GTGAGTTTACCCCTATGAGACTGTGAGAGOCCCGGGGCCTACCTCAAAGGAGCGGGGTCG151608-01 DNASequenceCGCGAAGCTAGCTAGCAGCGGCCCCCCTCCAGGTCCCCGGGCCCGGCGGCGCGGCGGCGGCTTGGTTGTGAAGAGGCGGGGAAGCGGGTGTCCGGTCCCCGCCATGGAGGGCATGGACGTAGACCTGGACCCGGAGCTGATGCAGAAGTTCAGCTGCCTGGGCACCACCGACAAGGACGTGCTCATCTCCGAGTTCCAGAGGCTGCTCGCCTTCCAGCTCAATCCTGCCGGTTGCGCCTTCTTCCTGCACATGACCAACTGGAACCTACAAGCAGCAATTGGCGCCTATTATGACTTTGAGAOCCCAAACATCAGTGTGCCCTCTATGTCCTTTGTTGAAGATGTCACCATAGGAGAAGCGGAGTCAATACCTCCGGATACTCAGTTTGTAAAAACATGGCGGATCCAGAATTCTGGGGCAGAGGCCTGGCCTCCAGGGGTTTGTCTTAAATATGTCGGGGGAGACCAATTTGGACATGTGAACATGGTGATGGTGAGATCGCTAGAGCCCCAAGAGATTGCAGATGTCAGCGTCCAGATGTGCAGCCCCAGCAGAGCAGGAATGTATCAGGGACAGTGGCGGATGTGCACTGCTACAGGACTCTACTATGGAGATGTCATCTGGGTGATTCTCAGTGTGGAGCTGGGTGGACTTTTAGGAGTAACGCAGCAGCTGTCATCTTTTGAAACGGAGTTCAACACACAGCCGCATCGTAAGCTAGAAGGAAACTTCAACCCTTTTGCCTCTCCCCAAAACAACCGACAATCAGATGAAAACAACTTAAAAGACCCTGGGGGCTCCGAGTTCGACTCGATCAGCAAAAACACATGGGCTCCTGCTCCTGACACATGGGCTCCTGCTCCTGACCAAACTGAGCAAGACCAGAATAGACTGTCACAGAACTCTGTAAATCTGTCTCCCAGCAGTCACGCAAACAACTTATCAGTAGTGACTTACAGTAAGGGGCTCCATGGGCCTTACCCCTTCGGCCAGTCTTAAACGGGTGTCAGCAAAAAAAAAAAAAAAAAAORF Start: ATG at 162Stop: TAA at 1056SEQ ID NO: 141298 aaMW at 32871.4 kDNOV4a,MEGMDVDLDPELMQKFSCLGTTDKDVLISEFQRLLGFQLNPAGCAFFLDMTNWNLQAACG151608-01Protein SequenceIGAYYDFESPNISVPSMSFVEDVTIGEGESIPPDTQFVKTWRIQNSGAEAWPPGVCLKYVGGDQFGHVNMVMVRSLEPQEIADVSVQMCSPSRAGMYQGQWRMCTATGLYYGDVIWVILSVEVGGLLGVTQQLSSFETEFNTQPHRKVEGNFNPFASPQKNRQSDENNLKDPGGSEFDSISKNTWAPAPDTWAPAPDQTEQDQNRLSQNSVNLSPSSHANNLSVVTYSKGLHCPYPFGQSSEQ ID NO: 15735 bpNOV4b,AGGCGGGGAAGCGGGTGTCCGGTCCCCGCCATGGAGGGCATGGACGTAGACCTGGACCCG151608-02 DNASequenceCGGAGCTGATGCAGAAGTTCAGCTGCCTGGGCACCACCGACAAGGACGTGCTCATCTCCGAGTTCCAGAGGCTGCTCCOCTTCCAGCTCAATCCTGCCGGTTGCGCCTTCTTCCTGGACATGACCAACTGGAACCTACAAGCAGCAATTGGCGCCTATTATGACTTTGAGAGCCCAAACATCAGTGTGCCCTCTATGTCCTTTGTTGAAGATGTCACCATAGGAGAAGGGGAGTCAATACCTCCGGATACTCAGTTTGTAAAAACATGGCGGATCCAGAATTCTGATGTCATCTGGGTGATTCTCAGTGTGGAGGTGGGTGCACTTTTAGGAGTAACGCAGCAGCTGTCATCTTTTGAAACOGAGTTCAACACACAGCCGCATCGTAAGGTAGAAGGAAACTTCAACCCTTTTGCCTCTCCCCAAAAGAACCGACAATCAGATGAAAACAACTTAAAAGACCCTGGGGGCTCCGAGTTCGACTCGATCAGCAAAAACACATGGGCTCCTGCTCCTGACACATGGGCTCCTGCTCCTGACCAAACTGAGCAAGACCAGAATAGACTGTCACAGAACTCTGTAAATCTGTCTCCCAGCAGTCACGCAAACAACTTATCAGTAGTGACTTACAGTAAGGGGCTCCATGGGCCTTACCCCTTCGGCCAGTCTTAAACGGGTORF Start: ATG at 31ORF Stop: TAA at 727SEQ ID NO: 16232 aaMW at 25G73.1 kDNOV4b,MEGMDVDLDPELMQKFSCLGTTDKDVLISEFQRLLGFQLNPAGCAFFLDMTNWNLQAACG151608-02Protein SequenceIGAYYDFESPNISVPSMSFVEDVTIGEGESIPPDTQFVKTWRIQNSDVIWVILSVEVGGLLGVTQQLSSFETEFNTQPHRKVEGNFNPFASPQKNRQSDENNLKDPGGSEFDSISKNTWAPAPDTWAPAPDQTEQDQNRLSQNSVNLSPSSHANNLSVVTYSKGLHGPYPFGQS


[0384] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 4B.
21TABLE 4BComparison of NOV4a against NOV4b.Identities/ProteinNOV4a Residues/Similarities forSequenceMatch Residuesthe Matched RegionNOV4b171 . . . 298128/128 (100%)105 . . . 232128/128 (100%)


[0385] Further analysis of the NOV4a protein yielded the following properties shown in Table 4C.
22TABLE 4CProtein Sequence Properties NOV4aPSort0.7000 probability located in plasma membrane;analysis:0.3389 probability located in microbody(peroxisome); 0.2000 probability located inendoplasmic reticulum (membrane); 0.1000probability located in mitochondrial inner membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0386] A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4D.
23TABLE 4DGeneseq Results for NOV4aNOV4aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor the MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABG40261Human peptide encoded by172 . . . 287 116/116 (100%)2e−63genome-derived single exon1 . . . 116116/116 (100%)probe SEQ ID 29926 - Homosapiens, 116 aa.[WO200186003-A2, 15 NOV.2001]AAM18432Peptide #4866 encoded by172 . . . 287 116/116 (100%)2e−63probe for measuring cervical1 . . . 116116/116 (100%)gene expression - Homosapiens, 116 aa.[WO200157278-A2, 09 AUG.2001]AAM58143Human brain expressed single172 . . . 287 116/116 (100%)2e−63exon probe encoded protein1 . . . 116116/116 (100%)SEQ ID NO: 30248 - Homosapiens, 116 aa.[WO200157275-A2, 09 AUG.2001]ABB22766Protein #4765 encoded by172 . . . 287 116/116 (100%)2e−63probe for measuring heart1 . . . 116116/116 (100%)cell gene expression - Homosapiens, 116 aa.[WO200157274-A2, 09 AUG.2001]ABG15581Novel human diagnostic1 . . . 83  83/83 (100%)7e−43protein #15572 - Homo44 . . . 126  83/83 (100%)sapiens, 139 aa.[WO200175067-A2, 11 OCT.2001]


[0387] In a BLAST search of public sequence datbases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4E.
24TABLE 4EPublic BLASTP Results for NOV4aNOV4aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor the MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9BUR9Hypothetical 32.9 kDa1 . . . 298298/298 (100%) e−179protein - Homo sapiens1 . . . 298298/298 (100%)(Human), 298 aa.Q96MG5CDNA FLJ32402 fis, clone171 . . . 298 128/128 (100%)2e−71SKMUS2000343 - Homo sapiens105 . . . 232 128/128 (100%)(Human), 232 aa.Q9VX56CG5445 protein (LD03052p) -5 . . . 17665/172 (37%)8e−25Drosophila melanogaster111 . . . 263 94/172 (53%)(Fruit fly), 303 aa.Q9BL99Hypothetical 28.4 kDa8 . . . 17952/184 (28%)2e−16protein - Caenorhabditis4 . . . 18692/184 (49%)elegans, 245 aa.Q9SB64Hypothetical 76.2 kDa77 . . . 180 38/110 (34%)8e−13protein - Arabidopsis380 . . . 487 58/110 (52%)thaliana (Mouse-ear cress),704 aa.


[0388] PFam analysis predicts that the NOV4a protein contains the domains shown in the Table 4F.
25TABLE 4FDomain Analysis of NOV4aIdentities/NOV4a MatchSimilarities forPfam DomainRegionthe Matched RegionExpect ValueNo Significant Matches Found



Example 5

[0389] The NOV5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 5A.
26TABLE 5ANOV5 Sequence AnalysisSEQ ID NO: 173544 bpNOV5a,ACATGCCCCGTTTGCTGCCTGAACCTCTCCACAAAGACTCCCAGATCCTGAATTGAATCG152323-01 DNASequenceTTAATCATCTCCTGACAAAAGAATGCAATTTCAACTGACCCTTTTTTTGCACCTTGGGTGGCTCAGTTACTCAAAAGCTCAAGATGACTGCAACAGGGGTGCCTGTCATCCCACCACTGGTGATCTCCTGGTGGGCAGGAACACGCAGCTTATGGCTTCTTCTACCTGTGGGCTGAGCAGAGCCCAGAAATACTGCATCCTCAGTTACCTGGAGGGGGAACAAAAATGCTCCATCTGTGACTCTAGATTTCCATATGATCCGTATGACCAACCCAACAGCCACACCATTGAGAATGTCACTGTAAGTTTTGAACCAGACAGAGAAAAGAAATGGTGGCAATCTGAAAATGGTCTTGATCATGTCACCATCAGACTGGACTTAGAGGCATTATTTCGGTTCAGCCACCTTATCCTGACCTTTAAGACTTTTCGGCCTGCTGCAATGTTAGTTGAACGTTCCACAGACTATGGACACAACTGGAAAGTGTTCAAATATTTTGCAAAAGACTGTGCCACTTCCTTTCCTAACATCACATCTGCCCAGGCCCAGGGAGTGGGAGACATTGTTTGTGACTCCAAATACTCCGATATTGAACCCTCAACAGGTGGAGAGGTTGTTTTAAAAGTTTTGGATCCCAGTTTTGAAATTGAAAACCCTTATAGCCCCTACATCCAAGACCTTGTGACATTGACAAACCTGAGGATAAACTTTACCAAGCTCCACACCCTTGGGGATGCTTTGCTTGGAAGCAGGCAAAATGATTCCCTTOATAAATACTACTATGCTCTGTACGAGATGATTGTTCGGGGAAGCTGCTTTTGCAATGGCCATGCTAGCGAATGTCGCCCTATGCAGAAGATGCCGGGAGATGTTTTCAGCCCTCCTGGAATGGTTCACGGTCAGTGTGTGTGTCAGCACAATACAGATGGTCCGAACTGTGAGAGATGCAAGGACTTCTTCCAGGATGCTCCTTGGAGGCCAGCTGCAGACCTCCAGGACAACGCTTGCAGATCGTGCAGCTGTAATAGCCACTCCAGCCGCTGTCACTTTGACATGACTACGTACCTGGCAACCGGTGGCCTCAGCGGGGGCGTGTGTGAAGACTGCCAGCACAACACTGAGGGGCAGCACTGCGACCGCTGCAGACCCCTCTTCTACAGGGACCCGCTCAAGACCATCTCAGATCCCTACGCGTGCATTCCTTGTGAATGTGACCCCGATGGGACCATATCTGGTGGCATTTGTGTGAGCCACTCTGATCCTGCCTTAGGGTCTGTGGCCGGCCAGTGCCTTTGTAAAGAGAACGTGGAAGGAGCCAAATGCGACCAGTGCAAACCCAACCACTACGGACTAAGCGCCACCGACCCCCTGGGCTGCCAGCCCTGCGACTGTAACCCCCTTGGGAGTCTGCCATTCTTGACCTGTGATGTGGATACAGGCCAATGCTTGTGCCTGTCATATGTCACCGGACCACACTGCGAAGAATGCACTGTTGGATACTGGGGCCTGGGAAATCATCTCCATGGGTGTTCTCCCTGTGACTGTGATATTGGAGGTGCTTATTCTAACGTGTGCTCACCCAACAATGGGCAGTGTGAATGCCGCCCACATGTCACTGGCCGTAGCTGCTCTGAACCAGCCCCTGGCTACTTCTTTGCTCCTTTGAATTTCTATCTCTACGAGGCAGAGGAAGCCACAACACTCCAAGGACTGGCGCCTTTGGGCTCGGAGACGTTTGGCCAGAGTCCTGCTGTTCACGTTGTTTTAGGAGAGCCAGTTCCTGGGAACCCTGTTACATGGACTGGACCTGGATTTGCCAGGGTTCTCCCTGGGGCTGGCTTGAGATTTGCTGTCAACAACATTCCCTTTCCTGTGGACTTCACCATTGCCATTCACTATGAAACCCAGTCTGCAGCTGACTGGACTGTCCAGATTGTGGTGAACCCCCCTGGAGGGAGTGAGCACTGCATACCCAAGACTCTACAGTCAAAGCCTCAGTCTTTTGCCTTACCAGCGGCTACGAGAATCATGCTGCTTCCCACACCCATCTGTTTAGAACCAGATGTACAATATTCCATAGATGTCTATTTTTCTCAGCCTTTGCAAGGAGAGTCCCACGCTCATTCACATGTCCTGGTGGACTCTCTTGGCCTTATTCCCCAAATCAATTCATTGGAGAATTTCTGCAGCAAGCAGGACTTAGATGAGTATCAGCTTCACAACTGTGTTGAAATTGCCTCAGCAATGGGACCTCAAGTGCTCCCGGGTGCCTGTGAAAGGCTGATCATCAGCATGTCTGCCAAGCTGCATGATGGGGCTGTGGCCTGCAAGTGTCACCCCCAGGGCTCAGTCGGATCCAGCTGCAGCCGACTTGGAGGCCAGTGCCAGTGTAAACCTCTTGTGGTCGGGCGCTGCTGTGACAGGTGCTCAACTGGAAGCTATGATTTGGGGCATCACGGCTGTCACCCATGTCACTGCCATCCTCAAGGATCAAAGGACACTGTATGTGACCAAGTAACAGGACAGTGCCCCTGCCATGGAGAGGTGTCTGGCCGCCGCTGTGATCGCTGCCTGGCAGGCTACTTTGGATTTCCCAGCTGCCACCCTTGCCCTTGTAATAGGTTTGCTGAACTTTGTGATCCTGAGACAGGGTCATGCTTCAATTGTGGAGGCTTTACAACTGGCAGAAACTGTGAAAGGTGTATTGATGGTTACTATGGAAATCCTTCTTCAGGACAGCCCTGTCGTCCTTGCCTGTGTCCAGATGATCCCTCAACCAATCAGTATTTTGCCCATTCCTGTTATCAGAATCTGTGGAGCTCAGATGTAATCTGCAATTGTCTTCAAGGTTATACGGGTACTCAGTGTGGAGAATGCTCTACTGGTTTCTATGGAAATCCAAGAATTTCAGGAGCACCTTGCCAACCATGTGCCTGCAACAACAACATAGATGTAACCGATCCAGAGTCCTGCAGCCGGGTAACAGGGGAGTCCCTTCGATGTTTGCACAACACTCAGGGCGCAAACTGCCAGCTCTGCAAACCAGGTCACTATGGATCAGCCCTCAATCAGACCTGCAGAAGATGCTCCTGCCATGCTTCCGGCGTGAGTCCCATGGAGTGTCCCCCTGGTGGGGGAGCTTGCCTCTGTGACCCTGTCACTGGTGCATGTCCTTGTCTGCCGAATGTCACAGGCCTGGCCTGTGACCGTTGTGCTGATGGATACTGGAATCTGGTCCCTGGCAGAGGATGTCAGTCATGTGACTGTGACCCTAGGACCTCTCAAAGTAGCCACTGTGACCAGGCAAGATACTTTAAAGCTTACTAGTGCACTCAAAGTGAGCATGATAGTGAGACATGGTTTCTAAATGTGTAAAGAAAGTTTCTTTTATGTACTGTTGTTAATTAGTGCATTGAAACAGGGGTGGCCTTACAGGGGATGGAGTCAGCCTCTATCAAGGAATGAAAACCAAAAAAAGAGAATGAORF Start: ATG at 81ORF Stop: TAG at 3384SEQ ID NO: 181101 aaMW at 119568.2 kDNOV5a,MQFQLTLFLHLGWLSYSKAQDDCNRGACHPTTGDLLVGRNTQLMASSTCGLSRAQKYCCG152323-01Protein SequenceILSYLEGEQKCSICDSRFPYDPYDQPNSHTIENVTVSFEPDREKKWWQSENGLDHVSIRLDLEALFRFSHLILTFKTFRPAANLVERSTDYGHNWKVFKYFAKDCATSFPNITSGQAQGVGDIVCDSKYSDIEPSTGGEVVLKVLDPSFEIENPYSPYIQDLVTLTNLRINFTKLHTLGDALLGRRQNDSLDKYYYALYEMIVRGSCFCNGHASECRPMQKMRGDVFSPPGMVHGQCVCQHNTDGPNCERCKDFFQDAPWRPAADLQDNACRSCSCNSHSSRCHFDMTTYLASGGLSGGVCEDCQHNTEGQHCDRCRPLFYRDPLKTISDPYACIPCECDPDGTISGGICVSHSDPALGSVAGQCLCKENVEGAKCDQCKPNHYGLSATDPLGCQPCDCNPLGSLPFLTCDVDTGQCLCLSYVTGAHCEECTVGYWGLGNHLHGCSPCDCDIGGAYSNVCSPKNGQCECRPHVTGRSCSEPAPGYFFAPLNFYLYEAEEATTLQGLAPLGSETFGQSPAVHVVLGEPVPGNPVTWTGPGFARVLPGAGLRFAVNNIPFPVDFTIAIHYETQSAADWTVQIVVNPPGGSEHCIPKTLQSKPQSFALPAATRIMLLPTPICLEPDVQYSIDVYFSQPLQGESHAHSHVLVDSLGLIPQINSLENFCSKQDLDEYQLHNCVEIASAMGPQVLPGACERLIISMSAKLHDGAVACKCHPQGSVGSSCSRLGGQCQCKPLVVGRCCDRCSTGSYDLGHHGCHPCHCHPQGSKDTVCDQVTGQCPCHGEVSGRRCDRCLAGYFGFPSCHPCPCNRFAELCDPETGSCFNCGGFTTGRNCERCIDGYYGNPSSGQPCRPCLCPDDPSSNQYFAHSCYQNLWSSDVICNCLQGYTGTQCGECSTGFYGNPRISGAPCQPCACNNNIDVTDPESCSRVTGECLRCLHNTQGANCQLCKPGHYGSALNQTCRRCSCHASGVSPMECPPGGGACLCDPVTGACPCLPNVTGLACDRCADGYWNLVPGRGCQSCDCDPRTSQSSHCDQARYFKAY


[0390] Further analysis of the NOV5a protein yielded the following properties shown in Table 5B.
27TABLE 5BProtein Sequence Properties NOV5aPSort0.4500 probability located in cytoplasm;analysis:0.3000 probability located in microbody(peroxisome); 0.1000 probability located inmitochondrial matrix space; 0.1000 probabilitylocated in lysosome (lumen)SignalPCleavage site between residues 20 and 21analysis:


[0391] A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5C.
28TABLE 5CGeneseq Results for NOV5aNOV5aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAY15457Human laminin beta 41 . . . 10941094/1094 (100%)0.0protein - Homo sapiens,1 . . . 10941094/1094 (100%)1761 aa. [WO9919348-A1, 22APR. 1999]AAY15459SEQ ID 5 of WO9919347 -1 . . . 11011094/1105 (99%) 0.0Homo sapiens, 1105 aa.1 . . . 11051094/1105 (99%) [WO9919348-A1, 22 APR. 1999]AAM48896Laminin protein -23 . . . 1094 539/1089 (49%)0.0Unidentified, 1786 aa.30 . . . 1098 707/1089 (64%)[WO200193897-A2, 13 DEC.2001]ABB81591Human laminin 10 second23 . . . 1094 539/1089 (49%)0.0chain protein sequence SEQ9 . . . 1077707/1089 (64%)ID NO: 8 - Homo sapiens,1765 aa. [WO200250111-A2,27 JUN. 2002]ABB81590Human laminin 10 second23 . . . 1094 539/1089 (49%)0.0chain protein sequence SEQ30 . . . 1098 707/1089 (64%)ID NO: 6 - Homo sapiens,1786 aa. [WO200250111-A2,27 JUN. 2002]


[0392] In a BLAST search of public sequence datbases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5D.
29TABLE 5DPublic BLASTP Results for NOV5aNOV5aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9Y6U6WUGSC:H_RG015P03.1 protein -23 . . . 10931059/1071 (98%) 0.0Homo sapiens (Human), 1 . . . 10691061/1071 (98%) 1631 aa (fragment).Q9UHI2Laminin beta 1 related13 . . . 767  746/760 (98%)0.0protein - Homo sapiens1 . . . 760 747/760 (98%)(Human), 761 aa (fragment).O57484Laminin beta 2-like chain -23 . . . 1094542/1084 (50%)0.0Gallus gallus (Chicken),42 . . . 1103712/1084 (65%)1792 aa.AAM61767Laminin beta 1 -21 . . . 1094537/1092 (49%)0.0Brachydanio rerio24 . . . 1095712/1092 (65%)(Zebrafish) (Danio rerio),1785 aa.CAC17320Sequence 15 from Patent23 . . . 1094539/1089 (49%)0.0WO0066730 - Homo sapiens 9 . . . 1077707/1089 (64%)(Human), 1765 aa(fragment).


[0393] PFam analysis predicts that the NOV5a protein contains the domains shown in the Table 5E.
30TABLE 5EDomain Analysis of NOV5aIdentities/NOV5a MatchSimilarities forPfam DomainRegionthe Matched RegionExpect Valuelaminin_Nterm 28 . . . 263114/266 (43%)  6.8e−104181/266 (68%) laminin_EGF265 . . . 32918/71 (25%)1.5e−0948/71 (68%)laminin_EGF332 . . . 39220/65 (31%)4.8e−1848/65 (74%)laminin_EGF395 . . . 45227/60 (45%)4.5e−1945/60 (75%)laminin_EGF455 . . . 50328/59 (47%)1.7e−1439/59 (66%)laminin_EGF506 . . . 54820/59 (34%)0.0001430/59 (51%)laminin_EGF769 . . . 81424/59 (41%)4.5e−1136/59 (61%)laminin_EGF817 . . . 86023/59 (39%)  8e−1437/59 (63%)laminin_EGF863 . . . 90825/59 (42%)6.4e−0935/59 (59%)laminin_EGF911 . . . 96716/62 (26%)0.0007836/62 (58%)laminin_EGF 970 . . . 101921/60 (35%)1.4e−1438/60 (63%)laminin_EGF1022 . . . 107724/61 (39%)2.5e−1241/61 (67%)



Example 6

[0394] The NOV6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 6A.
31TABLE 6ANOV6 Sequence AnalysisSEQ ID NO: 192265 bpNOV6a,ACTTCCAGGTGGGAGTGCGTGGGCGGGGGAGCTGGAGCCGAGCGCCGCCGCCGAAGCTCG153011-01 DNASequenceTCCGTCTCGCTCGCTCGCGCAGCGGCGGCAGCAGAGGTCGCGCACAGATGCGGGTTAGACTGGCGGGGGGAGGAGGCGGAGGAGGGAAGGAAGCTGCATGCATGAGACCCACAGCGCAGAGAAATCTCACTGGGGACTGGGGCAGTAGGATCGATCCCAATCCCGAGGAAAACCAGAGAAGTAGCTGGGGGAGACGGTGCCACATTACTCTTGCAAGCTGGATGCCCTCTGTGGATGAAAGATGTATCATGGAATGAACCCGAGCAATGGAGATGGATTTCTAGAGCAGCAGCAGCAGCAGCAGCAACCTCAGTCCCCCCAGAGACTCTTGGCCGTGATCCTGTGGTTTCAGCTGGCGCTGTGCTTCGGCCCTGCACAGCTCACGGGCGCACCGGGGTGGCCTCAAGAAACTCACAATCATGGCAGAAGGGAAAGCAAACGCATCCTTCTTCACATGGCGGCAGCAAGGAGAAGTGCAGAGAGAGAAGAAAGTCCCTTATAAAACCATCAGACCTCATGAGAACTCATTCACTATCACAAGAACAGCATGGAGGGTTCGATGACCTTCAAGTGTGTGCTGACCCCGGCATTCCCGAGAATGGCTTCAGGACCCCCAGCGGAGGGGTTTTCTTTGAAGGCTCTGTAGCCCGATTTCACTGCCAAGACGGATTCAAGCTGAAGCGCGCTACAAAGAGACTGTGTTTGAAGCATTTTAATGGAACCCTAGGCTGGATCCCAAGTGATAATTCCATCTGTGTGCAAGAAGATTGCCGTATCCCTCAAATCGAAGATGCTGAGATTCATAACAAGACATATAGACATGGAGAGAAGCTAATCATCACTTGTCATGAAGGATTCAAGATCCGGTACCCCGACCTACACAATATGGTTTCATTATGTCGCGATGATGGAACGTGGAATAATCTGCCCATCTGTCAAGGCTGCCTCAGACCTCTAGCCTCTTCTAATGGCTATGTAAACATCTCTGAGCTCCAGACCTCCTTCCCGGTGGGGACTGTGATCTCCTATCGCTGCTTTCCCGGATTTAAACTTGATGGGTCTCCGTATCTTGAGTGCTTACAAAACCTTATCTCGTCGTCCAGCCCACCCCGGTGCCTTGCTCTGGAAGCCCAAGTCTGTCCACTACCTCCAATGGTGAGTCACGGACATTTCGTCTCCCACCCGCGGCCTTGTGAGCGCTACAACCACGGAACTGTGGTGGAGTTTTACTGCGATCCTGGCTACAGCCTCACCAGCGACTACAAGTACATCACCTGCCAGTATGGAGAGTGGTTTCCTTCTTATCAAGTCTACTGCATCAAATCAGAGCAAACGTGGCCCAGCACCCATGAGACCCTCCTGACCACGTGGAAGATTGTGGCGTTCACGGCAACCAGTGTGCTGCTGGTGCTGCTGCTCGTCATCCTGGCCAGGATGTTCCAGACCAAGTTCAAGGCCCACTTTCCCCCCAOGGGGCCTCCCCGGAGTTCCAGCAGTGACCCTGACTTTGTGGTGGTAGACGGCGTGCCCGTCATGCTCCCGTCCTATGACGAAGCTGTGAGTGGCGGCTTGAGTGCCTTAGGCCCCGGGTACATGGCCTCTGTGGGCCAGGGCTGCCCCTTACCCGTGGACGACCAGAGCCCCCCAGCATACCCCGGCTCAGGGGACACGGACACAGGCCCAGGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTCTTCTGAGCTGCTCCAAAGTCTGTATTCACCTCCCAGGTGCCAAGAGAGCACCCACCCTACTTCGGACAACCCTGACATAATTGCCAGCACGGCAGAGGACGTGGCATCCACCAGCCCAGGCATCGACATTGCAGATGAGATTCCTCTAATGGAAGAAGATCCCTAATATGGGTCAAGATCCAGATGACTCTCCTGCTCCTTCGGGGAAAGGACCTTGTATCTTGGAGTGAGGTCACAGAAGGATAGAGCCTGGGGGCAAAATGTCTAACTTGTCTACATGGGGACCACAGTTCACATTATGCATCTCAGGCTCCACAGTGAGGCTGACAAACTGCAATGGCAGTGCTTTTAAATGAGATTTGAGGATTCACCAAGACCCATGGGGAACCGGGOCAGCAGGGAAGCCCTCGCGTGGTCTTGGATGAGGGGTGTTAAATGTGTATCGTGCTGTGGAACATGGGACAATTCCACGCACTCCCACCTGGAAGTORF Start: ATG at 293ORF Stop: TAA at 1940SEQ ID NO: 20549 aaMW at 60114.0 kDNOV6aMKDVSWNEPEQWRWISRAAAAAAATSVPPETLGRDPVVSAGAVLRPCTAHGRTGVASRCG153011-01Protein SequenceNSQSWQKGKQTHPSSHGGSKEKCRERRKSLIKPSDLMRTHSLSQEQHGGFDDLQVCADPGIPENGFRTPSGGVFFEGSVARFHCQDGFKLKGATKRLCLKHFNGTLGWIPSDNSICVQEDCRIPQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICQGCLRPLASSNGYVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPPRCLALEAQVCPLPPMVSHGDFVCHPRPCERYNHGTVVEFYCDPGYSLTSDYKYITCQYGEWFPSYQVYCIKSEQTWPSTHETLLTTWKIVAFTATSVLLVLLLVILARMFQTKFKAHFPPRGPPRSSSSDPDFVVVDGVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGDTDTGPGESETCDSVSGSSELLQSLYSPPRCQESTHPTSDNPDIIASTAEEVASTSPGIDIADEIPLMEEDP


[0395] Further analysis of the NOV6a protein yielded the following properties shown in Table 6B.
32TABLE 6BProtein Sequence Properties NOV6aPSort0.8000 probability located in mitochondrialanalysis:inner membrane; 0.7000 probability located inplasma membrane; 0.2000 probability located inendoplasmic reticulum (membrane); 0.0646probability located in microbody (peroxisome)SignalPNo Known Signal Sequence Predictedanalysis:


[0396] A search of the NOV6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6C.
33TABLE 6CGeneseq Results for NOV6aNOV6aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor the MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB80234Human PRO222 protein -106 . . . 536430/431 (99%)0.0Homo sapiens, 490 aa. 49 . . . 479430/431 (99%)[WO200104311-A1,18 JAN. 2001]AAU12326Human PRO222106 . . . 536430/431 (99%)0.0polypeptide sequence - 49 . . . 479430/431 (99%)Homo sapiens, 490 aa.[WO200140466-A2,07 JUN. 2001]AAY13366Amino acid sequence106 . . . 536430/431 (99%)0.0of protein PRO222 - 49 . . . 479430/431 (99%)Homo sapiens, 490 aa.[WO9914328-A2,25 MAR. 1999]ABG26615Novel human diagnostic237 . . . 540299/353 (84%)e−175protein #26606 - 1 . . . 353300/353 (84%)Homo sapiens, 463 aa.[WO200175067-A2,11 OCT. 2001]ABB55790Human polypeptide106 . . . 298 193/193 (100%)e−117SEQ ID NO 186 - 49 . . . 241 193/193 (100%)Homo sapiens, 290 aa.[US2001039335-A1,08 NOV. 2001]


[0397] In a BLAST search of public sequence datbases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6D.
34TABLE 6DPublic BLASTP Results for NOV6aNOV6aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ95K70Hypothetical 43.3157 . . . 549376/393 (95%)0.0kDa protein - Macaca 1 . . . 393384/393 (97%)fascicularis(Crab eating macaque)(Cynomolgusmonkey), 393 aa.Q8VC43Hypothetical 43.1 kDa157 . . . 549356/393 (90%)0.0protein - Mus musculus 1 . . . 393372/393 (94%)(Mouse), 393 aa.Q9BSR0Similar to hypothetical106 . . . 298 193/193 (100%)    e−117protein FLJ10052 - 49 . . . 241 193/193 (100%)Homo sapiens (Human),290 aa.Q9NWG0Hypothetical 26.1 kDa106 . . . 242 137/137 (100%)  8e−82protein - Homo sapiens 49 . . . 185 137/137 (100%)(Human), 236 aa.Q92537Hypothetical protein299 . . . 491 83/206 (40%)  2e−30KIAA0247 - Homo sapiens 39 . . . 241114/206 (55%)(Human), 303 aa.


[0398] PFam analysis predicts that the NOV6a protein contains the domains shown in the Table 6E.
35TABLE 6EDomain Analysis of NOV6aIdentities/NOV6a MatchSimilarities forPfam DomainRegionthe Matched RegionExpect Valuesushi114 . . . 17418/66 (27%)7.2e−0744/66 (67%)sushi179 . . . 23417/66 (26%)1.5e−1047/66 (71%)sushi237 . . . 29418/66 (27%)6.4e−1343/66 (65%)sushi302 . . . 36118/68 (26%)  4e−0844/68 (65%)



Example 7

[0399] The NOV7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 7A.
36TABLE 7ANOV7 Sequence AnalysisSEQ ID NO: 211089 bpNOV7a,GGCTGTGGGTGCTTCACTATGGCGACGGTGGGGGCTCCGCGGCACTTCTCCCGCTGCGCG153042-01 DNASequenceCCTGCTTCTGCACCGATAACTTGTACGTGGCGCGCTATGGGCTGCACGTGCGCTTCCGAGGCGAGCAGCAGCTGCCCCGGGACTACGGCCAGATCCTGCGCAGCCGAGGCTCTGTTAGCGCCAAGGACTTCCAGCAGCTGTTAGCAGACGTACTTGAGCAGGAGGTGGAGCGGCGGCAGCGGCTGGGGCAGGAGTCAGCAGCTAGGAAAGCCCTCATCGCGAGTTCCTACCACCCGGCACGGCCTGAGGTCTACGACTCACTGCAGGATGCAGCTCTGGCCCCCGAGTTCCTGGCCGTGACTGAGTACAGCGTGTCCCCAGACGCAGACCTCAAGGGCCTTCTCCAGCGGCTGGAGACAGTATCGGAGGAGAACCGCATCTACCGGGTGCCTCTTTTCACAGCGCCCTTCTGCCAGGCCCTGCTGGAAGAGCTGGAGCACTTCGAGCAATCGGACATGCCTAAGGGGAGGCCCAACACCATGAACAACTACGGGGTGCTGCTGCACGAGCTCGGGCTGGACGAGCCGCTGATGACACCACTGCGGGAGCGCTTCCTGCAGCCGCTGATGGCCCTGCTGTACCCTGACTGTGGCGGCGGCCGGCTCGACAGCCACCGGGCCTTTGTGGTCAAATACGCACCGGGCCAGGACCTGGAGCTGGGCTGCCACTATGATAATGCCGAGCTCACCCTCAATGTGGCCTTGGGCAAGGTCTTCACAGGGGGCGCCCTGTATTTTGGGGGCCTCTTCCAGGCACCCACAGCCCTGACGGAGCCCCTGGAGGTGGAGCACGTGGTGGGCCAGGGTGTCCTCCACCGTGGCGGCCADCTGCATGGAGCCCGGCCCTTGGGCACTGGTGAGCGTTGGAACCTTGTCGTCTGGCTCCGAGCCTCTGCTGTGCGCAACAGCCTCTGTCCCATGTGCTGCCGTGAGCCCGACCTGGTOGACGATGAGGGCTTCGGTGATGGCTTCACCCGAGAGGAGCCCGCCACGGTGGATGTATGTGCGCTCACCTGAGCTTGCTTGGGCCCAORF Start: ATG at 19ORF Stop: TGA at 1072SEQ ID NO: 22351 aaMW at 39126.1 kDNOV7a,MATVGAPRHFCRCACFCTDNLYVARYGLHVRFRGEQQLRRDYGQILRSRGCVSAKDFQCG153042-01Protein SequenceQLLAEVLEQEVERRQRLGQESAARKALIASSYHPARPEVYDSLQDAALAPEFLAVTEYSVSPDADLKGLLQRLETVSEEKRIYRVPVFTAPFCQALLEELEHFEQSDMPKGRPNTMNNYGVLLHELGLDEPLMTPLRERFLQPLMALLYPDCGGGRLDSHRAFVVKYAPGQDLELGCHYDNAELTLNVALGKVFTGGALYFGGLFQAPTALTEPLEVEHVVGQGVLHRGGQLHGARPLGTGERWNLVVWLRASAVRNSLCPMCCREPDLVDDEGFGDGFTREEPATVDVCALTSEQ ID NO: 231075 bpNOV7bCACCGGATCCACCATGGCGACGGTGGGGGCTCCGCGGCACTTCTGCCGCTGCGCCTCCCG153042-02 DNASequenceTTCTGCACCGATAACTTGTACGTGGCGCGCTATGGGCTGCACGTGCGCTTCCGAGGCGAGCAGCAGCTGCGCCGGGACTACGGCCCGATCCTGCGCAGCCGAGGCTGTGTTAGCGCCAAGGACTTCCAGCAGCTGTTAGCAGAGCTTGAGCAGGAGGTGGAGCGGCGGCAGCGGCTGGGGCAGGAGTCAGCAGCTAGGAAAGCCCTCATCGCGAGTTCCTACCACCCGGCACGGCCTGAGGTCTACGACTCACTGCAGGATGCAGCTCTGGCCCCCGAGTTCCTGGCCGTGACTGACTACAGCGTGTCCCCAGACGCAGACCTCAAGGGCCTTCTCCAGCGGCTGGAGACAGTATCGGAGGAGAAGCGCATCTACCCGGTGCCTGTTTTCACAGCGCCCTTCTGCCAGGCCCTGCTGGAAGAGCTGGAGCACTTCGAGCAATCGGACATGCCTAAGGGGAGGCCCAACACCATGAACAACTACGCCGTGCTGCTGCACGAGCTCGGGCTGGACGAGCCCCTGATGACACCACTGCGGGACCGCTTCCTGCAGCCGCTCATGGCCCTGCTGTACCCTGACTGTGGCGGGGGCCGGCTCGACAGCCACCGGGCCTTTGTGGTCAAATACGCACCGGGCCAGGACCTGGAGCTGGGCTGCCACTATGATAATGCCGAGCTCACCCTCAATGTGGCCTTGGGCAAGGTCTTCACAGGGGGCGCCCTGTATTTTGGGGGCCTCTTCCAGGCACCCACAGCCCTGACCGAGCCCCTGGAGGTGGAGCACGTGGTGGGCCAGCGTGTCCTCCACCGTGGCGGCCAGCTGCATGGAGCCCGGCCCTTGGGCACTGGTGAGCGTTGGAACCTTGTCGTCTGGCTCCGAGCCTCTGCTGTGCGCAACAGCCTCTGTCCCATGTGCTGCCGTGAGCCCGACCTGGTGGACGATGAGGGCTTCGGTGATGGCTTCACCCGAGAGGAGCCCGCCACGGTGGATGTATGTGCGCTCACCTAGGTCGACGGCORF Start: ATG at 14ORF Stop: TAG at 1064SEQ ID NO: 24350 aaMW at 38996.0 kDNOV7b,MATVGAPRHFCRCACFCTDNLYVARYGLHVRFRGEQQLRRDYGPILRSRGCVSAKDFQCG153042-02Protein SequenceQLLAELEQEVERRQRLGQESAARKALIASSYHPARPEVYDSLQDAALAPEFLAVTEYSVSPDADLKGLLQRLETVSEEKRIYRVPVFTAPFCQALLEELEHFEQSDMPKGRPNTMNNYGVLLHELGLDEPLMTPLRERFLQPLMALLYPDCGGGRLDSHRAFVVKYAPGQDLELGCHYDNAELTLNVALGKVFTGGALYFGGLFQAPTALTEPLEVEHVVGQGVLHRGGQLHGARPLGTGERNNLVVWLRASAVRNSLCPMCCREPDLVDDEGFGDGFTREEPATVDVCALT


[0400] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 7B.
37TABLE 7BComparison of NOV7a against NOV7b.Identities/NOV7a Residues/Similarities forProtein SequenceMatch Residuesthe Matched RegionNOV7b1 . . . 351349/351 (99%)1 . . . 350349/351 (99%)


[0401] Further analysis of the NOV7a protein yielded the following properties shown in Table 7C.
38TABLE 7CProtein Sequence Properties NOV7aPSort0.6500 probability located in plasma membrane;analysis:0.4763 probability located in mitochondrialmatrix space; 0.4500 probability located incytoplasm; 0.2150 probability locatedin lysosome (lumen)SignalPCleavage site between residues 12 and 13analysis:


[0402] A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7D.
39TABLE 7DGeneseq Results for NOV7aNOV7aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB94678Human protein sequence65 . . . 351 287/287 (100%) e−169SEQ ID NO: 15628 - 4 . . . 290 287/287 (100%)Homo sapiens,February 2001]AAG45676Arabidopsis thaliana86 . . . 314 87/238 (36%)2e−36protein fragment27 . . . 256126/238 (52%)SEQ ID NO: 57373 -Arabidopsis thaliana,310 aa. [EP1033405-A2,06 SEP. 2000]AAG45675Arabidopsis thaliana86 . . . 314 87/238 (36%)2e−36protein fragment SEQ ID105 . . . 334 126/238 (52%)NO: 57372 - Arabidopsisthaliana, 388 aa.[EP1033405-A2,06 SEP. 2000]AAG45674Arabidopsis thaliana86 . . . 314 87/238 (36%)2e−36protein fragment114 . . . 343 126/238 (52%)SEQ ID NO: 57371 -Arabidopsis thaliana,397 aa. [EP1033405-A2,06 SEP. 2000]AAG06884Arabidopsis thaliana86 . . . 314 87/238 (36%)2e−36protein fragment SEQ27 . . . 256126/238 (52%)ID NO: 3823 -Arabidopsis thaliana,310 aa. [EP1033405-A2,06 SEP. 2000]


[0403] In a BLAST search of public sequence datbases, the NOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7E.
40TABLE 7EPublic BLASTP Results for NOV7aNOV7aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9CQ045730405M13Rik1 . . . 351300/351 (85%) e−175protein - Mus musculus1 . . . 349319/351 (90%)(Mouse), 349 aa.Q9H8K6CDNA FLJ13491 fis,65 . . . 351  287/287 (100%) e−168clone PLACE1004274 -4 . . . 290 287/287 (100%)Homo sapiens(Human), 290 aa.Q9DBJ41300006G11Rik181 . . . 351 148/171 (86%)7e−85protein (RIKEN cDNA1 . . . 171157/171 (91%)1300006G11 gene) -Mus musculus (Mouse),171 aa.Q93W24B1080D07.28 protein140 . . . 324  84/199 (42%)3e−37(P0507H06.12 protein) -182 . . . 379 117/199 (58%)Oryza sativa(Rice), 404 aa.Q9LV19Gb|AAB72163.186 . . . 314  82/239 (34%)1e−33(Unknown protein) -122 . . . 351 125/239 (51%)Arabidopsis thaliana(Mouse-ear cress),394 aa.


[0404] PFam analysis predicts that the NOV7a protein contains the domains shown in the Table 7F.
41TABLE 7FDomain Analysis of NOV7aIdentities/NOV7a MatchSimilarities forPfam DomainRegionthe Matched RegionExpect ValueNo Significant Matches Found



Example 8

[0405] The NOV8 clone was analyzed, and the nucleotide and encoded polypepfide sequences are shown in Table 8A.
42TABLE 8ANOV8 Sequence AnalysisSEQ ID NO: 251051 bpNOV8a,GAACCAGTAGCCGCGGCTGCTTCTGTTGCCCCGGTCGGTGGTCGTTATGGATTCTCCACG153179-01 DNASequenceTGGGACGAGTTGGCTCTGGCCTTCTCCCGCACGTCCATGTTTCCCTTTTTTGACATCGCGCACTATCTAGTGTCAGTGATGGCGGTGAAACGTCAGCCGGGAGCAGCTGCATTGGCATGGAAGAATCCTATTTCAAGCTGGTTTACTGCTATGCTCCACTGTTTTGGTGGAGGAATTTTATCCTGTCTACTGCTTOCAGAGCCTCCATTGAAGTTTCTTGCAAACCACACTAACATATTACTGGCATCTTCAATCTGGTATATTACATTTTTTTGCCCGCATGACCTAGTTTCCCAGGGCTATTCATATCTACCTGTTCAACTACTGGCTTCGGGAATGAAGGAAGTGACCAGAACTTGGAAAATAGTAGGTGGAGTCACACATGCTAATAGCTATTACAAAAATGGCTGGATAGTCATGATAGCTATTGGATGGGCCCGAGGTGCGGGTGGTACCATTATAACGAATTTTGAGAGGTTGGTAAAAGGAGATTGGAAACCAGAAGGTCATGAATGGCTGAAGACGTCATATTTTAGGGTACATGTGCAGAACGTGCAGGTTTGTTACATATGTATACATGTGCCATGTTGGTGTGCTACACCCATTAACTCGTCATTTAACATTAGCCCTGCCAAGGTAACCCTGCTGGGGTCAGTTATCTTCACATTCCAGCACACCCAGCATCTGGCAATATCAAAGCATAATCTTATGTTCCTTTATACCATCTTTATTGTGGCCACAAAGATAACCATGATGACTACACAGACTTCTACTATGACATTTGCTCCTTTTGAGGATACATTGAGTTGGATGCTATTTGGCTGGCAGCAGCCGTTTTCATCATGTGAGAAGAAAAGTGAAGCAAAGTCACCTTCCAATGGCGTTGGGTCATTGGCCTCAAAGCCGGTAGATGTTGCCTCAGATAATGTTAAAAAGAAACATACTAAGAAGAATGAATAATTTACGTGATGAGCTCTACAAGGCCAAAAATTTORF Start: ATG at 47ORF Stop: TAA at 1016SEQ ID NO: 26323 aaMW at 36140.7 kDNOV8a,MDSPWDELALAFSRTSMFPFFDIAHYLVSVMAVKRQPGAAALAWKNPISSWFTAMLHCCG153179-01Protein SequenceFGGGILSCLLLAEPPLKFLANHTNILLASSIWYITFFCPHDLVSQGYSYLPVQLLASGMKEVTRTWKIVGGVTHANSYYKNGWIVMIAIGWARGAGGTIITNFERLVKGDWKPEGDEWLKTSYFRVHVQNVQVCYICIHVPCWCATPINSSFNISPAKVTLLGSVIFTFQHTQHLAISKHNLMFLYTIFIVATKITMMTTQTSTMTFAPFEDTLSWMLFGWQQPFSSCEKKSEAKSPSNGVGSLASKPVDVASDNVKKKHTKKNE


[0406] Further analysis of the NOV8a protein yielded the following properties shown in Table 8B.
43TABLE 8BProtein Sequence Properties NOV8aPSort0.6000 probability located in plasma membrane;analysis:0.4000 probability located in Golgi body; 0.3000probability located in endoplasmic reticulum(membrane); 0.2397 probabilitylocated in mitochondrial inner membraneSignalPCleavage site between residues 1 and 2analysis:


[0407] A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 8C.
44TABLE 8CGeneseq Results for NOV8aNOV8aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB92881Human protein1 . . . 323290/323 (89%)e−168sequence SEQ ID NO:1 . . . 291290/323 (89%)11479 - Homo sapiens,291 aa. [EP1074617-A2,07 FEB. 2001]AAM41733Human polypeptide1 . . . 323290/323 (89%)e−168SEQ ID NO 6664 -13 . . . 303 290/323 (89%)Homo sapiens, 303 aa.[WO200153312-A1,26 JUL. 2001]AAM39947Human polypeptide1 . . . 323290/323 (89%)e−168SEQ ID NO 3092 -1 . . . 291290/323 (89%)Homo sapiens, 291 aa.[WO200153312-A1,26 JUL. 2001]ABB89884Human polypeptide1 . . . 323288/323 (89%)e−166SEQ ID NO 2260 -1 . . . 291288/323 (89%)Homo sapiens, 291 aa.[WO200190304-A2,29 NOV. 2001]AAG74165Human colon cancer1 . . . 323288/323 (89%)e−166antigen protein SEQ13 . . . 303 288/323 (89%)ID NO: 4929 - Homosapiens, 303 aa.[WO200122920-A2,5 APR. 2001]


[0408] In a BLAST search of public sequence datbases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8D.
45TABLE 8DPublic BLASTP Results for NOV8aNOV8aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9NVV0CDNA FLJ10493 fis,1 . . . 323290/323 (89%) e−167clone NT2RP20002741 . . . 291290/323 (89%)(Hypothetical 32.5kDa protein) - Homosapiens (Human),291 aa.Q9DAV91600017F22Rik protein1 . . . 323210/325 (64%) e−119(RIKEN cDNA1 . . . 292243/325 (74%)1600017F22 gene) - Musmusculus (Mouse),292 aa.Q9H6F2CDNA: FLJ22328 fis,7 . . . 321121/324 (37%)9e−59clone HRC0563211 . . . 297 191/324 (58%)(Unknown) (Protein forMGC: 3169) - Homosapiens (Human),299 aa.Q91WL2Similar to hypothetical7 . . . 321117/323 (36%)5e−57protein MGC316911 . . . 296 187/323 (57%)(Hypothetical 33.3 kDaprotein) -Mus musculus(Mouse), 298 aa.Q9VXG9CG4239 protein14 . . . 278  86/268 (32%)2e−33(GH25683P) -15 . . . 249 134/268 (49%)Drosophilamelanogaster(Fruit fly), 276 aa.


[0409] PFam analysis predicts that the NOV8a protein contains the domains shown in the Table 8E.
46TABLE 8EDomain Analysis of NOV8aIdentities/Similarities forPfamNOV8a Matchthe MatchedExpectDomainRegionRegionValueNo Significant Matches Found



Example 9

[0410] The NOV9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 9A.
47TABLE 9ANOV9 Sequence AnalysisSEQ ID NO: 27823 bpNOV9a,GAATCGCCCTTCTGCCAGCTTAGTGGAAGCTCTGCTCTGGGTGGAGAGCAGCCTCGCTCG153403-01 DNASequenceTTGGTGACGCACAGTGCTGGGACCCTCCAGGAGCCCCGGGATTGAAGGATGGTGGCGGCCGTCCTGCTGGGGCTGAGCTGGCTCTGCTCTCCCCTGGGAGCTCTGGTCCTGGACTTCAACAACATCAGGAGCTCTGCTGACCTGCATGGGGCCCGGAAGGGCTCACAGTGCCTGTCTGACACGGACTGCAATACCAGAAAGTTCTGCCTCCAGCCCCGCGATGAGAAGCCGTTCTGTGCTACATGTCGTGGGTTGCGGAGGAGGTGCCAGCGAGATGCCATGTGCTGCCCCGGGACACTCTGTGTGAACGATGTTTGTACTACGATGGAAGATGCAACCCCAATATTAGAAAGGCAGCTTGATGAGCAAGATGGCACACATGCAGAAGGAACAACTGGGCACCCAGTCCAGGAAAGCCAACTCAAAAGGAAGCCAAGTATTAAGAAATCACAAGGCAGGAAGGGACAAGAGGGAGAAAGTTGTCTGAGAACTTTTCACTGTGGCCCTGGACTTTGCTGTGCTCGTCATTTTTGGACGAAAATTTGTAAGCCAGTCCTTTTGGAGGGACAGGTCTGCTCCAGAAGAGGGCATAAAGACACTGCTCAAGCTCCAGAAATCTTCCAGCGTTGCGACTGTGGCCCTGGACTACTGTGTCGAAGCCAATTGACCAGCAATCGGCAGCATGCTCGATTAAGAGTATGCCAAAAAATAGAAAAGCTATAGATATTTCAAAATAAAGAAGAATCCACATCCAAAGGCGATTCAORF Start: ATG at 107ORF Stop: TAG at 779SEQ ID NO: 28224 aaMW at 24864.3 kDNOV9a,MVAAVLLGLSWLCSPLGALVLDFNNIRSSADLHGARKGSQCLSDTDCNTRKFCLQPRDCG153403-01Protein SequenceEKPFCATCRGLRRRCQRDANCCPGTLCVNDVCTTMEDATPILERQLDEQDGTHAEGTTGHPVQESQLKRKPSIKKSQGRKGQEGESCLRTFDCGPGLCCARHFWTKICKPVLLEGQVCSRRGHKDTAQAPEIFQRCDCGPGLLCRSQLTSNRQHARLRVCQKIEKLSEQ ID NO: 29630 bpNOV9b,TGGAGAGCAGCCTCGCTTTGGTGACGCACAGTGCTGGGACCCTCCAGGAGCCCCGGGACG153403-02 DNASequenceATTGAAGGATGGTGGCGGCCGTCCTGCTGGGGCTGAGCTGGCTCTGCTCTCCCCTGGGAGCTCTGGTCCTGGACTTCAACAACATCAGGAGCTCTGCTGACCTGCATGGGGCCCGGAAGGGCTCACAGTGCCTGTCTGACACGGACTGCAATACCAGAAAGTTCTGCCTCCAGCCCCGCGATGAGAAGCCGTTCTGTGCTACATGTCGTGGGTTGCGGAGGAGGTGCCAGCGAGACGCCATGTGCTGCCCTGGGACACTCTGTGTGAACGGACAAGAGGGAGAAAGTTGTCTGAGAACTTTTGACTGTGGCCCTGGACTTTGCTGTGCTCGTCATTTTTGGACGAAAATTTGTAAGCCAGTCCTTTTGGAGGGACAGGTCTGCTCCAGAAGAGGGCATAAAGACACTGCTCAAGCTCCAGAAATCTTCCAGCGTTGCGACTGTGGCCCTGGACTACTGTGTCGAAGCCAATTGGCCAGCAATCGGCAGCATGCTCGATTAAGAGTATGCCAAAAAATAGAAAAGCTATAAATATTTCAAAATAAAGAAGATCCACATGCAAAGGCGATTCCAORF Start: ATG at 67ORF Stop: TAA at 586SEQ ID NO: 30173 aaMW at 19176.1 kDNOV9b,MVAAVLLGLSWLCSPLGALVLDFNNIRSSADLHGARKGSQCLSDTDCNTRKFCLQPRDCG153403-02Protein SequenceEKPFCATCRGLRRRCQRDAMCCPGTLCVNGQEGESCLRTFDCGPGLCCARHFWTKICKPVLLEGQVCSRRGHKDTAQAPEIFQRCDCGPGLLCRSQLASNRQHARLRVCQKIEKLSEQ ID NO: 31484 bpNOV9c,CACCGGATCCCTGCTCCTGGACTTCAACAACATCAGGAGCTCTGCTGACCTGCATGGG305037558 DNASequenceGCCCGGAAGGGCTCACAGTGCCTGTCTGACACGGACTGCAATACCAGAAAGTTCTGCCTCCAGCCCCGCGATGAGAAGCCGTTCTGTGCTACATGTCGTGGGTTGCGGAGGAGGTGCCAGCGAGACGCCATGTGCTGCCCTGGGACACTCTGTGTGAACGGACAAGAGGGAGAAAGTTGTCTGAGAACTTTTGACTGTGGCCCTGGACTTTGCTGTGCTCGTCATTTTTGGACGAAAATTTGTAAGCCAGTCCTTTTGGAGGGACAGGTCTGCTCCAGAAGAGGGCATAAAGACACTGCTCAAGCTCCAGAAATCTTCCAGCGTTGCGACTGTGGCCCTGGACTACTGTGTCGAAGCCAATTGGCCAGCAATCGGCAGCATGCTCGATTAAGAGTATGCCAAAAAATAGAAAAGCTACTCGAGGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 32161 aaMW at 17937.4 kDNOV9c,TGSLVLDFNNIRSSADLHGARKGSQCLSDTDCNTRKFCLQPRDEKPFCATCRGLRRRC305037558Protein SequenceQRDAMCCPGTLCVNGQEGESCLRTEDCGPGLCCARHFWTKICKPVLLECQVCSRRGHKDTAQAPEIEQRCDCGPGLLCRSQLASNRQHARLRVCQKIEKLLEGSEQ ID NO: 33541 bpNOV9d,CACCGGATCCACCATGGTGGCGGCCGTCCTGCTGGGGCTGAGCTGGCTCTGCTCTCCC305037512 DNASequenceCTGGGAGCTCTGGTCCTGGACTTCAACAACATCAGGAGCTCTGCTGACCTGCATGGGGCCCGGAAGGGCTCACAGTGCCTGTCTGACACGGACTGCAATACCAGAAAGTTCTGCCTCCAGCCCCGCGATGAGAAGCCGTTCTGTGCTACATGTCGTGGGTTGCGGAGGAGGTGCCAGCGAGACGCCATGTGCTGCCCTGGGACACTCTGTGTGAACGGACAAGAGGGAGAAAGTTGTCTGAGAACTTTTGACTGTGGCCCTGGACTTTGCTGTGCTCGTCATTTTTGGACGAAAATTTGTAAGCCAGTCCTTTTGGAGGGACAGGTCTGCTCCAGAAGAGGGCATAAAGACACTGCTCAAGCTCCAGAAATCTTCCAGCGTTGCGACTGTGGCCCTGGACTACTGTGTCGAAGCCAATTGGCCAGCAATCGGCAGCATGCTCGATTAAGAGTATGCCAAAAAATAGAAAAGCTACTCGAGGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 34 180 aaMW at 19821.7 kDNOV9d,TGSTMVAAVLLGLSWLCSPLGALVLDFNNIRSSADLHGARKGSQCLSDTDCNTRKFCL305037512Protein SequenceQPRDEKPFCATCRGLRRRCQRDAMCCPGTLCVNGQEGESCLRTFDCGPGLCCARHFWTKICKPVLLEGQVCSRRGHKDTAQAPEIFQRCDCGPGLLCRSQLASNRQHARLRVCQKIEKLLEG


[0411] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 9B.
48TABLE 9BComparison of NOV9a against NOV9b through NOV9d.Identities/Similarities forProteinNOV9a Residues/the MatchedSequenceMatch ResiduesRegionNOV9b1 . . . 224172/224 (76%)1 . . . 173172/224 (76%)NOV9c17 . . . 224 155/208 (74%)2 . . . 158156/208 (74%)NOV9d1 . . . 224172/224 (76%)5 . . . 177172/224 (76%)


[0412] Further analysis of the NOV9a protein yielded the following properties shown in Table 9C.
49TABLE 9CProtein Sequence Properties NOV9aPSort0.7284 probability located in outside; 0.1000analysis:probability located in endoplasmic reticulum(membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000probability located in microbody (peroxisome)SignalPCleavage site between residues 19 and 20analysis:


[0413] A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 9D.
50TABLE 9DGeneseq Results for NOV9aNOV9aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAY92075Human DKR-4 -1 . . . 224222/224 (99%)e−135Homo sapiens, 224 aa.1 . . . 224223/224 (99%)[WO200018914-A2,06 APR. 2000]AAB08875Amino acid sequence1 . . . 224222/224 (99%)e−135of a human Dickkopf1 . . . 224223/224 (99%)(Dkk)-4 protein -Homo sapiens, 224 aa.[WO200052047-A2,08 SEP. 2000]AAW73017Human cysteine-rich1 . . . 224222/224 (99%)e−135secreted protein1 . . . 224223/224 (99%)CRSP-2 - Homo sapiens,224 aa. [WO9846755-A1,22 OCT. 1998]AAB66109Protein of the34 . . . 221  84/199 (42%)2e−37 invention #21 -65 . . . 259 109/199 (54%)Unidentified, 259 aa.[WO200078961-A1,28 DEC. 2000]AAU29148Human PRO polypeptide34 . . . 221  84/199 (42%)2e−37 sequence #125 -65 . . . 259 109/199 (54%)Homo sapiens, 259 aa.[WO200168848-A2,20 SEP. 2001]


[0414] In a BLAST search of public sequence datbases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9E.
51TABLE 9EPublic BLASTP Results for NOV9aNOV9aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9UBT3Dickkopf related 1 . . . 224222/224 (99%) e−135protein-4 precursor 1 . . . 224223/224 (99%)(Dkk-4) (Dickkopf-4)(hDkk-4) - Homo sapiens(Human), 224 aa.Q8VEJ3Similar to dickkopf 1 . . . 221166/221 (75%) e−101(Xenopus laevis) 1 . . . 221185/221 (83%)homolog 4 - Mus musculus(Mouse), 221 aa.Q9UBU2Dickkopf related34 . . . 221 84/199 (42%)7e−37protein-2 precursor65 . . . 259109/199 (54%)(Dkk-2) (Dickkopf-2)(hDkk-2) - Homo sapiens(Human), 259 aa.Q9QYZ8Dickkopf related34 . . . 221 85/200 (42%)9e−37protein-2 precursor65 . . . 259109/200 (54%)(Dkk-2) (Dickkopf-2)(mDkk-2) - Mus musculus(Mouse), 259 aa.Q9PWH3Dickkopf1 -41 . . . 220 84/184 (45%)1e−36Brachydanio68 . . . 239105/184 (56%)rerio (Zebrafish)(Zebra danio), 240 aa.


[0415] PFam analysis predicts that the NOV9a protein contains the domains shown in the Table 9F.
52TABLE 9FDomain Analysis of NOV9aIdentities/Similarities forPfamNOV9a Matchthe MatchedExpectDomainRegionRegionValueNo Significant Matches Found



Example 10

[0416] The NOV10 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 10A.
53TABLE 10ANOV10 Sequence AnalysisSEQ ID NO: 35878 bpNOV10a,ATGCCGCGCTTGTCTCTGCTCTTGCCGCTGCTGCTTCTGCTGCTGCTGCCGCTGCTGCCG153424-01 DNASequenceCGCCGCTGTCCCCGAGCCTTGGGATCCGCGACGTGCGCGGCCGGCGCCCCAAGTGTGGTCCGTGCCGGCCAGAGGGCTGCCCGGCGCCTGCGCCCTGCCCGGCGCCCGGGATCTCGGCGCTCGACGAGTCCGGCTGCTGCGCCCGCTGCCTGGGAGCCGAGGGCGCGAGCTGCGGGGGCCGCGCCGGCGGGCGCTGTGGCCCCGGCCTGGTATGCGCGAGCCAGGCCGCTGGGGCAGCGCCCGACGGCACCGGGCTCTGCGTGTGCGCGCAGCGCGGCACCGTCTGCGGCTCCGACGGTCGCTCGTACCCCAGCGTCTGCGCGCTGCGCCTGCCCGCTCGGCACACGCCCCGCGCGCACCCCGGTCACCTGCACAAGGCGCGCGACGGCCCTTGCGAGTTCGCTCCTGTGGTCGTCGTTCCTCCCCGAAGTGTTCACAACGTCACCGGGGCGCAGGTGGGCCTCTCCTGTGAAGTGAGGGCTGTGCCTACCCCAGTCATCACGTGGAGAAAGGTAACGAAGTCCCCTGAGGGCACCCAAGCACTGGAGGAGCTGCCTGGGGACCATGTCAATATAGCTGTCCAAGTGCGAGGGGGCCCTTCTGACCATGAGGCCACCGCCTGGATTTTGATCAACCCCCTGCGAAAGGAGGATGAGGGTGTGTACCAGTGCCATGCAGCCAACATGGTGGGAGAGGCTGAGTCCCACAGCACAGTGACGGTTCTAGATCTGAGTAAATACAGGAGCTTCCACTTCCCAGCTCCCGATGACCGCATGTGATGGAGAAATGTACATGTTCTAAGTCATTTTCAGTATTTTACORF Start: ATG at 1ORF Stop: TGA at 835SEQ ID NO: 36278 aaMW at 29005.1 kDNOV10a,MPRLSLLLPLLLLLLLPLLPPLSPSLGIRDVGGRRPKCGPCRPEGCPAPAPCPAPGISCG153424-01Protein SequenceALDECGCCARCLGAEGASCGGRAGGRCGPGLVCASQAAGAAPEGTGLCVCAQRGTVCGSDGRSYPSVCALRLRARHTPRAHPGHLHKARDGPCEFAPVVVVPPRSVHNVTGAQVGLSCEVRAVPTPVITWRKVTKSPEGTQALEELPGDHVNIAVQVRGGPSDHEATAWILIMPLRKEDEGVYQCHAANMVGEAESHSTVTVLDLSKYRSFHFPAPDDRM


[0417] Further analysis of the NOV10a protein yielded the following properties shown in Table 10B.
54TABLE 10BProtein Sequence Properties NOV10aPSort0.8200 probability located in endoplasmicanalysis:reticulum (membrane); 0.1900 probabilitylocated in plasma membrane; 0.1000 probabilitylocated in endoplasmic reticulum (lumen);0.1000 probability located in outsideSignalPCleavage site between residues 28 and 29analysis:


[0418] A search of the NOV 10a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 10C.
55TABLE 10CGeneseq Results for NOV10aNOV10aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAU08753Human insulin-like1 . . . 278 278/278 (100%) e−169growth factor binding1 . . . 278 278/278 (100%)protein-likepolypeptide #3 -Homo sapiens, 278 aa.[WO200175064-A2,11 OCT. 2001]AAE15654Human growth factor1 . . . 278276/282 (97%) e−164binding protein-like1 . . . 282276/282 (97%)protein, NOV5 -Homo sapiens, 282 aa.[WO200194416-A2,13 DEC. 2001]AAU08755Human insulin-like1 . . . 156154/156 (98%)4e−93growth factor binding1 . . . 156155/156 (98%)protein-likepolypeptide #2 -Homo sapiens, 390 aa.[WO200175064-A2,11 OCT. 2001]ABG01683Novel human diagnostic1 . . . 156154/156 (98%)4e−93protein #1674 -1 . . . 156155/156 (98%)Homo sapiens, 390 aa.[WO200175067-A2,11 OCT. 2001]AAR79102Prostaglandin I2 (PGI2)11 . . . 262 115/263 (43%)4e−59prodn. promoter - Homo16 . . . 267 141/263 (52%)sapiens, 282 aa.[WO9429448-A,22 DEC. 1994]


[0419] In a BLAST search of public sequence datbases, the NOV10a protein was found to have homology to the proteins shown in the BLASTP data in Table 10D.
56TABLE 10DPublic BLASTP Results for NOV10aNOV10aIdentities/ProteinMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ8WX77BA113O24.1 (similar 1 . . . 278 278/278 (100%) e−169to insulin-like growth 1 . . . 278 278/278 (100%)factor binding protein) -Homo sapiens(Human), 278 aa.BAA21725IGFBP-LIKE PROTEIN - 1 . . . 276212/276 (76%) e−128Mus musculus 1 . . . 268234/276 (83%)(Mouse), 270 aa.Q07822MAC25 protein -11 . . . 262115/263 (43%)1e−58Homo sapiens16 . . . 267141/263 (52%)(Human), 277 aa.Q16270Insulin-like growth factor11 . . . 262115/263 (43%)1e−58binding protein 716 . . . 267141/263 (52%)precursor (IGFBP-7)(IBP- 7) (IGF-bindingprotein 7) (MAC25 protein)(Prostacyclin-stimulatingfactor) (PGI2-stimulatingfactor) - Homo sapiens(Human), 282 aa.Q61581Mac25 protein - Mus11 . . . 262114/263 (43%)5e−57musculus (Mouse), 281 aa.15 . . . 266140/263 (52%)


[0420] PFam analysis predicts that the NOV 10a protein contains the domains shown in the Table 10E.
57TABLE 10EDomain Analysis of NOV10aIdentities/Similarities forPfamNOV10a Matchthe MatchedExpectDomainRegionRegionValuekazal91 . . . 15118/63 (29%)7.5e−0545/63 (71%)ig169 . . . 245 16/80 (20%)5.4e−0859/80 (74%)



Example 11

[0421] The NOV11 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 11A.
58TABLE 11ANOV11 Sequence AnalysisSEQ ID NO: 371245 bpNOV11a,CAGGAACGGGCTCCGCGGACGACGCGCTCCAGGCACGCACAGGCAGCGGGCCTCCCACCG157567-01 DNASequenceCGCGCGTGCCGGGGGCGGGGGGGCTGCCCCCATGCGGGGCCCTTCCTGGTTGCGGCCTCGGCCGCTGCTGCTGCTGTTGCTCCTGCTGTCGCCTTGGCCTGTCTGGGCCCATGTGTCGGCCACGGCCTCGCCCTCGGGGTCCCTGGGCGCCCCGGACTGCCCCGAGGTGTGCACGTGCGTGCCGGGAGGCCTGGCCAGCTGCTCGGCACTCTCGCTGCCCGCCGTGCCCCCGGGCCTGAGCCTGCGCCTGCGCGCGCTGCTGCTOGACCACAACCGCGTCCGTGCGCTGCCGCCAGGTGCCTTCGCGGGAGCGGGCGCGCTACAGCGCCTGGACCTGCGCGAGAGCGGGCTGCACTCGGTGCATGTGCGAGCCTTCTGGGGCCTGGGCGCGCTGCAGCTGCTGGACCTGAGCGCCAACCAGCTGGAAGCACTGGCACCAGGGACTTTCGCGCCGCTGCGCGCGCTGCGCAACCTCTCATTGGCCGGCAACCGGCTGGCGCGCCTGGAGCCCGCGGCGCTAGGCGCGCTCCCGCTGCTGCGCTCACTCAGCCTGCAGGACAACGAGCTGGCGGCACTCGCGCCGGGGCTGCTGGCCCGCCTGCCCGCTCTAOACGCGCTGCACCTGCGCGGCGACCCTTGGGGCTGCGGCTGCGCGCTGCGCCCGCTCTGCGCCTGGCTGCCCCGGCACCCGCTCCCCGCGTCAGAGCCCGAGACGGTGCTCTGCGTGTGGCCGGGACGCCTGACGCTCAGCCCCCTGACTGCCTTTTCCGACGCCGCCTTTAGCCATTGCGCGCAGCCGCTCGCCCTGCGGCACCTGOCCGTGGTTTACACGCTCGGGCCGGCCTCCTTCCTCGTCAGCCTGGCTTCCTGCCTGGCGCTGGGCTCTGGGCTCACCGCCTGCCGTGCGCGCCGCCGCCGCCTCCGCACCCCCGCCCTCCGCCCGCCGAGACCGCCAGACCCGAACCCCGATCCCGACCCCCACGGCTGTGCCTCGCCCCCGGACCCGGGGAGCCCCGCCGCTGCCGCCCAAGCCTGAGCGGCCGCGGCCGCCTGGAGCGCTCGAAGCTTCCCCCATGCCTTTGCCCTCCCTTTACACTGTCTGCCGGCGTCAACAAGCGACACAGACCGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAATTORF Start: ATG at 90ORF Stop: TGA at 1092SEQ ID NO: 38 334 aaMW at 34891.0kDNOV11a,MRGPSWLRPRPLLLLLLLLSPWPVWAHVSATASPSGSLGAPDCPEVCTCVPGGLASCSCG157567-01Protein SequenceALSLPAVPPGLSLRLRALLLDHNRVRALPPGAFAGAGALQRLDLRENGLHSVHVRAFWGLGALQLLDLSANQLEALAPGTFAPLRALRNLSLAGNRLARLEPAALGALPLLRSLSLQDNELAALAPGLLGRLPALDALHLRGNPWGCGCALRPLCAWLRRHPLPASEAETVLCVWPGRLTLSPLTAFSDAAFSHCAQPLALRDLAVVYTLGPASFLVSLASCLALGSGLTACRARRRRLRTAALRPPRPPDPNPDPDPHGCASPADPGSPAAAAQA


[0422] Further analysis of the NOV11a protein yielded the following properties shown in Table 11B.
59TABLE 11BProtein Sequence Properties NOV11aPSort0.5947 probability located in outside; 0.1000analysis:probability located in endoplasmic reticulum(membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000probability located in microbody (peroxisome)SignalPCleavage site between residues 27 and 28analysis:


[0423] A search of the NOV11a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 11C.
60TABLE 11CGeneseq Results for NOV11aNOV11aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAY41496Fragment of human secreted40 . . . 334235/303 (77%) e−120protein encoded by gene 70 -77 . . . 368240/303 (78%)Homo sapiens, 368 aa.[WO9947540-A1, 23 SEP. 1999]AAB07469A human leucine-rich repeat 9 . . . 290 93/284 (32%)2e−28protein designated Zlrr3 -14 . . . 286126/284 (43%)Homo sapiens, 298 aa.[WO200042184-A1, 20 JUL. 2000]AAU12198Human PRO1341 polypeptide43 . . . 290 85/250 (34%)9e−28sequence - Homo sapiens, 28121 . . . 269116/250 (46%)aa. [WO200140466-A2, 07 JUN.2001]AAW96707Protein sequence of the34 . . . 237 73/204 (35%)8e−27specification - Homo sapiens,273 . . . 472 107/204 (51%)1534 aa. [JP11018777-A, 26JAN. 1999]AAW96706Protein sequence of the34 . . . 237 73/204 (35%)8e−27specification - Homo sapiens,247 . . . 446 107/204 (51%)1508 aa. [JP11018777-A, 26JAN. 1999]


[0424] In a BLAST search of public sequence datbases, the NOV11a protein was found to have homology to the proteins shown in the BLASTP data in Table 11D.
61TABLE 11DPublic BLASTP Results for NOV11aNOV11aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ91W20Unknown (Protein for 1 . . . 332219/332 (65%) e−112MGC: 6965) (Hypothetical 35.7 1 . . . 328235/332 (69%)kDa protein) - Mus musculus(Mouse), 331 aa.Q96B32Hypothetical 35.0 kDa62 . . . 285 81/226 (35%)6e−27protein - Homo sapiens70 . . . 294108/226 (46%)(Human), 317 aa (fragment).BAA32465MEGF4 - Homo sapiens34 . . . 237 73/204 (35%)2e−26(Human), 1618 aa (fragment).357 . . . 556 107/204 (51%)O75093Slit-1 protein - Homo34 . . . 237 73/204 (35%)2e−26sapiens (Human), 1534 aa.273 . . . 472 107/204 (51%)Q9WVB5SLIT1 - Mus musculus30 . . . 237 72/208 (34%)4e−26(Mouse), 1531 aa.269 . . . 472 109/208 (51%)


[0425] PFam analysis predicts that the NOV11a protein contains the domains shown in the Table 11E.
62TABLE 11EDomain Analysis of NOV11aIdentities/Similarities forPfamNOV11a Matchthe MatchedExpectDomainRegionRegionValueLRRNT42 . . . 7013/31 (42%)0.8620/31 (65%)LRR 96 . . . 119 9/25 (36%)0.5216/25 (64%)LRR120 . . . 14311/25 (44%)0.04318/25 (72%)LRR144 . . . 16710/25 (40%)0.3317/25 (68%)LRRCT201 . . . 25418/55 (33%)0.007830/55 (55%)



Example 12

[0426] The NOV12 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 12A.
63TABLE 12ANOV12 Sequence AnalysisSEQ ID NO:39838 bpNOV12a,TCAAAGGAAACTGACAAATTATCCCCACCTGCCAGAAGAAGAAATCCTCACTGGACGGCG157760-01 DNASequenceCTTCCTGTTTCCTGTGGTTCATTATCTGATTGGCTGCAGGGATGAAAGTTTTTAAGTTCATAGGACTGATGATCCTCCTCACCTCTGCGCTTTCAGCCGGTTCAGGACAAAGTCCAATCACTGTGCTGTGCTCCATAGACTGGTTCATGGTCACAGTGCACCCCTTCATGCTAAACAACGATGTGTGTGTACACTTTCATGAACTACACTTGGGCCTGGGTTGCCCCCCAAACCATGTTCAGCCACACGCCTACCAGTTCACCTACCGTGTTACTGAATGTGGCATCAGGGCCAAAGCTGTCTCTCAGGACATGGTTATCTACAGCACTGAGATACACTACTCTTCTAAGGGCACGCCATCTAAGTTTGTGATCCCAGTGTCATGTGCTGCCCCCCAAAAGTCCCCATGGCTCACCAAGCCCTGCTCCATGAGAGTAGCCAGCAAGAGCAGGGCCACAGCCCAGAAGGATGAGAAATGCTACGAGGTGTTCAGCTTGTCACAGTCCAGTCAAAGGCCCAACTGCGATTGTCCACCTTGTGTCTTCAGTGAAGAAGACCATACCCAGGTCCCTTGTCACCAAGCAGGGGCTCAGGAGGCTCAACCTCTGCAGCCATCTCACTTTCTTGATATTTCTGAGGATTGGTCTCTTCACACAGATGATATGATTGGGTCCATGTGATCCTCAGGTTTGOGGTCTCCTGAAGATGCTATTTCTAGAATTAGTATATAGTGTACAAATGTCTGACAAATAAGTCCTCTTGTGACCCTCATTAAGGCCAORF Start: ATG at 100ORF Stop: TGA at 736SEQ ID NO: 40212 aaMW at 23581.8kDNOV12a,MKVFKFIGLMILLTSALSAGSGQSPMTVLCSIDWFMVTVHPFMLNNDVCVHFHELHLGCG157760-01Protein SequenceLGCPPNHVQPHAYQFTYRVTECGIRAKAVSQDMVIYSTEIHYSSKGTPSKFVIPVSCAAPQKSPWLTKPCSMRVASKSRATAQKDEKCYEVFSLSQSSQRPNCDCPPCVFSEEEHTQVPCHQAGAQEAQPLQPSHFLDISEDWSLHTDDMIGSMSEQ ID NO: 41697 bpNOV12b,TCAAAGGAAACTOACAAATTATCCCCAGCTGCCAAAAGAAGAAATCCTCACTGGACGGCG157760-02 DNASequenceCTTCCTGTTTCCTGTGGTTCATTATCTGATTGGCTGCAGGGATGAAAGTTTTTAAGTTCATAGGACTGATGATCCTCCTCACCTCTGCGTTTTCAGCCGGTTCAGGACAAAGTCCAATGACTGTGCTGTGCTCCATAGACTGGTTCATGGTCACAGTGCACCCCTTCATGCTAAACAACGATGTGTGTGTACACTTTCATGAACTACACTTGGGCCTGGGTTCCCCCCCAAACCATGTTCAGCCACACGCCTACCAGTTCACCTACCGTGTTACTGAATGTGOCATCAGGCCCAGCAAGAGCAGGGCCACAGCCCAGAAGGATGAGAAATGCTACGAGGTGTTCAGCTTGTCACAGTCCAGTCAAAGGCCCAACTGCGATTGTCCACCTTGTGTCTTCAGTGAAGAAGAGCATACCCAGGTCCCTTGTCACCAAGCAGGGGCTCAGGAGGCTCAACCTCTGCAGCCATCTCACTTTCTTGATATTTCTGAGGATTGGTCTCTTCACACAGATGATATGATTGGGTCCATGTGATCCTGAGGTTTGGGGTCTCCTGAAGATGCTATTTCTAGATTTAGTATATAGTGTACAAATGTCTGACAAATAAGTGCTCTTGTGACCCTCATGTGAGGGCGATTCCORF Start: ATG at 100ORF Stop: TGA at 589SEQ ID NO: 42163 aaMW at 18277.GkDNOV12b,MKVFKFIGLMILLTSAFSAGSGQSPMTVLCSIDWFMVTVHPFMLNNDVCVHFHELHLGCG157760-02Protein SequenceLGCPPNHVQPHAYQFTYRVTECGIRASKSRATAQKDEKCYEVFSLSQSSQRPNCDCPPCVFSEEEHTQVPCHQAGAQEAQPLQPSHFLDISEDWSLHTDDMIGSM


[0427] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 12B.
64TABLE 12BComparison of NOV12a against NOV12b.Identities/Similarities forProteinNOV12a Residues/the MatchedSequenceMatch ResiduesRegionNOV12b1 . . . 212162/212 (76%)1 . . . 163162/212 (76%)


[0428] Further analysis of the NOV12a protein yielded the following properties shown in
65TABLE 12CProtein Sequence Properties NOV12aPSort0.6568 probability located in outside; 0.1000analysis:probability located in endoplasmic reticulum(membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000probability located in lysosome (lumen)SignalPCleavage site between residues 23 and 24analysis:


[0429] A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12D.
66TABLE 12DGeneseq Results for NOV12aNOV12aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABP61861Human polypeptide SEQ ID NO1 . . . 212211/212 (99%)e−126215 - Homo sapiens, 212 aa.1 . . . 212211/212 (99%)[US2002065394-A1, 30 MAY2002]AAM93517Human polypeptide, SEQ ID NO:1 . . . 212211/212 (99%)e−1263243 - Homo sapiens, 2121 . . . 212211/212 (99%)aa. [EP1130094-A2, 05 SEP.2001]AAY94302Human corticosteroid1 . . . 212211/212 (99%)e−126synthesis-associated1 . . . 212211/212 (99%)protein - Homo sapiens, 212 aa.[WO200028027-A2, 18 MAY2000]AAW73630Human secreted protein clone1 . . . 212211/212 (99%)e−126ej265_4 - Homo sapiens, 2121 . . . 212211/212 (99%)aa. [WO9855614-A2, 10 DEC.1998]AAY12939Amino acid sequence of a1 . . . 212172/212 (81%)5e−96 human secreted peptide -1 . . . 212179/212 (84%)Homo sapiens, 213 aa.[WO9911293-A1, 11 MAR. 1999]


[0430] In a BLAST search of public sequence datbases, the NOV12a protein was found to have homology to the proteins shown in the BLASTP data in Table 12E.
67TABLE 12EPublic BLASTP Results for NOV12aNOV12aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9HBJ0PLAC1 (Placenta-specific 1) -1 . . . 212211/212 (99%) e−126Homo sapiens (Human), 212 aa.1 . . . 212211/212 (99%)Q9JI83EPCS26 (PLAC1) (Placental1 . . . 171104/171 (60%)1e−60specific protein 1) - Mus1 . . . 171134/171 (77%)musculus (Mouse), 173 aa.BAC04191CDNA FLJ36198 fis, clone9 . . . 125 38/118 (32%)7e−17TESTI2028242, weakly similar5 . . . 122 70/118 (59%)to Mus musculus EPCS26 mRNA -Homo sapiens (Human), 158 aa.Q925U0Initiate factor 3 (Oocyte-7 . . . 122 34/117 (29%)6e−09secreted protein 18 . . . 122 62/117 (52%)precursor) - Mus musculus(Mouse), 202 aa.BAC11848Initiate factor 3 2 - Mus7 . . . 88  25/83 (30%)3e−05musculus (Mouse), 92 aa.8 . . . 89  46/83 (55%)


[0431] PFam analysis predicts that the NOV12a protein contains the domains shown in the Table 12F.
68TABLE 12FDomain Analysis of NOV12aIdentities/Similarities forPfamNOV12a Matchthe MatchedExpectDomainRegionRegionValueNo Significant Matches Found



Example 13

[0432] The NOV13 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 13A.
69TABLE 13ANOV13 Sequence AnalysisSEQ ID NO: 431103 bpNOV13 a,AAGCAGGCTGGTACGCCCTGGAGTTAANGGATGGCTGCGGGTTTGGCGGCGCTGCGCCCC157844-01 DNASequenceGGCAGGCAGCGAGGCCGGGTCGGGCCCTGGGCCCTCGCGCCCCTCCCGCGAGGCCTGTCATGCAGGGCCCCGCCGGGAACGCGAGCCGGGGACTGCCAGGCGGGCCGCCCTCCACAGTCGCGTCCGGGGCGGGCCGCTGCGAGAGCGGCGCGCTCATGCACAGCTTCGGCATCTTCCTGCACCGGCTGCTCGGCGTCGTGGCCTTCAGCACGTTAATGGTCAAACGCTTCAGAGAACCAAAGCATGAAAGACGTCCGTGGAGGATATGGTTTTTAGACACTTCCAAACAAGCCATAGGAATGCTGTTCATCCACTTTGCAAATGTATACCTAGCAGATCTCAGTGAAGAGGACCCTTGTTCACTGTACCTCATCAACTTCCTCCTGGACGCCACTGTGGGCATGCTGCTCATCTACGTGGGGGTGCGCGCCGTCAGCGTCCTGGTAGAGTGGCAGCAGTGGGAGTCCCTGCGCTTCGGCGAATATGGAGACCCTCTGCAGTGTGGAGCCTGGGTCGGGCAGTGCGCTCTTTACATCGTGATCATGATTTTTGAAAAGTCTGTCGTCTTCATCGTCCTCCTCCTACTCCAGTGGAAAAAGGTGGCCCTATTGAATCCAATTGAAAACCCCGACCTGAAGCAGGCCATCGTCATGCTGATCGTCCCCTTCTTTGTCAACGCTTTGATGTTTTGGGTAGTGGACAATTTCCTCATGAGAAAGGGGAAGACGAAAGCTAAGCTAGAAGAAAGGGGAGCCAACCAGGACTCGAGGAATGGGAGCAAGGTCCGCTACCGGAGGGCCGCATCCCACGAGGAGTCTGAGTCTGAGATCCTGATCTCAGCGGATGATGAGATGGAGGAGTCCGACGTGGAGGAGGACCTCCGCAGACTGACCCCCCTCAAGCCTGTGAAGAAAAAGAAGCACCGCTTTGGGCTACCCGTATGACACATTCCCATGCTGGGGGTGACGGGACGGCCCCGCCAGCCGCTGGTGTCCACAGGTCATCCCACAGCATCGTTCCTTACCCTCTCTCTGCCCTTCACCCGORF Start: ATG at 31ORF Stop: TGA at 1000SEQ ID NO: 44 323 aaMW at 36089.9kDNOV13a,MAAGLAALRRQAARPGRALGPRAPPARPVMQGPAGNASRGLPGGPPSTVASGAGRCESCG157844-01Protein SequenceGALMHSFGIFLQGLLGVVAFSTLMVKRFREPKHERRPWRIWFLDTSKQAIGMLFIHFANVYLADLSEEDPCSLYLINFLLDATVGMLLIYVGVRAVSVLVEWQQWESLRFGEYGDPLQCGAWVGQCALYIVIMIFEKSVVFIVLLLLQWKKVALLNPIENPDLKLAIVMLIVPFFVNALMFWVVDNFLMRKGKTKAKLEERGANQDSRNGSKVRYRRAASHEESESEILISADDEMEESDVEEDLRRLTPLKPVKKKKHRFGLPV


[0433] Further analysis of the NOV13a protein yielded the following properties shown in Table 13B.
70TABLE 13BProtein Sequence Properties NOV13aPSort0.6113 probability located in mitochondrialanalysis:inner membrane; 0.6000 probability located inplasma membrane; 0.4387 probability located inmitochondrial intermembrane space;0.4000 probability located in Golgi bodySignalPNo Known Signal Sequence Predictedanalysis:


[0434] A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13C.
71TABLE 13CGeneseq Results for NOV13aNOV13aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB41574Human ORFX ORF1338144 . . . 323 180/180 (100%)      e−100polypeptide sequence SEQ ID 1 . . . 180180/180 (100%) NO: 2676 - Homo sapiens, 180aa. [WO200058473-A2, 05 OCT.2000]ABG21481Novel human diagnostic233 . . . 306 52/74 (70%)    3e−18protein #21472 - Homo48 . . . 12056/74 (75%)sapiens, 507 aa.[WO200175067-A2, 11 OCT.2001]AAG64212Murine HSP47 interacting11 . . . 53 23/52 (44%)0.21protein, #2 - Mus sp, 25565 . . . 11527/52 (51%)aa. [JP2001145493-A, 29 MAY2001]ABB53290Human polypeptide #30 - Homo11 . . . 53 23/52 (44%)0.27sapiens, 255 aa.65 . . . 11527/52 (51%)[WO200181363-A1, 01 NOV.2001]ABG20114Novel human diagnostic7 . . . 6122/55 (40%)0.35protein #20105 - Homo441 . . . 494 26/55 (47%)sapiens, 710 aa.[WO200175067-A2, 11 OCT.2001]


[0435] In a BLAST search of public sequence datbases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13D.
72TABLE 13DPublic BLASTP Results for NOV13aNOV13aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9D7D42310014H19Rik protein - Mus30 . . . 323277/294 (94%) e−157musculus (Mouse), 288 aa. 1 . . . 288280/294 (95%)Q9D8S11810038N08Rik protein - Mus30 . . . 323277/294 (94%) e−157musculus (Mouse), 288 aa. 1 . . . 288280/294 (95%)Q8R3UOSimilar to RIKEN cDNA144 . . . 323 170/180 (94%)5e−911810038N08 gene - Mus 1 . . . 174171/180 (94%)musculus (Mouse), 174 aa.T49501hypothetical protein19 . . . 302 87/354 (24%)3e−17B14D6.530 [imported] -149 . . . 496 148/354 (41%)Neurospora crassa, 556 aa.Q12042P2558 protein (ORF49 . . . 246 63/227 (27%)3e−16YPL162C) - Saccharomyces 3 . . . 224111/227 (48%)cerevisiae (Baker's yeast),273 aa.


[0436] PFam analysis predicts that the NOV13a protein contains the domains shown in the Table 13E.
73TABLE 13EDomain Analysis of NOV13aIdentities/Similarities forPfamNOV13a Matchthe MatchedExpectDomainRegionRegionValueNo Significant Matches Found



Example 14

[0437] The NOV14 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 14A.
74TABLE 14ANOV14 Sequence AnalysisSEQ ID NO: 451728 bpNOV14a,ATGGATCTGGTGCTAAAAAGATGCCTTCTTCATTTGGCTGTGATAGGTGCTTTGCTGGCG158114-01 DNASequenceCTGTGGGGGCTACAAAAGGGAGCCAGGTGTGGGGAGGACAGCCAGTGTATCCCCAGGAAACTGACGATGCCTGCATCTTCCCTGATGGTGGACCTTGCCCATCTGGCTCTTGGTCTCAGAAGAGAAGCTTTGTTTATGTCTGOAAGACCTGGGGCCAATACTGGCAGGTTCTAGGGGGCCCAGTGTCTGGGCTGAGCATTGGGACAGGCAGGGCAATGCTGGGCACACACACCATGGAAGTGACTGTCTACCATCGCCCGGGATCCCGGAGCTATGTGCCTCTTGCTCATTCCAGCTCAGCCTTCACCATTACTGACCAGGTGCCTTTCTCCGTGAGCGTGTCCCAGTTGCGGGCCTTGGATGGAGGGAACAAGCACTTCCTGAGAAATCAGCCTCTGACCTTTGCCCTCCAGCTCCATGACCCCAGTGGCTATCTGGCTGAAGCTGACCTCTCCTACACCTGGGACTTTGGAGACAGTAGTGGAACCCTGATCTCTCGGGCACTTGTGGTCACTCATACTTACCTGGAGCCTGGCCCAGTCACTGCCCAGGTGGTCCTGCAGGCTGCCATTCCTCTCACCTCCTGTGGCTCCTCCCCAGTTCCAGGCACCACAGATGGGCACAGGCCAACTGCAGAGGCCCCTAACACCACAGCTGGCCAAGTGCCTACTACAGAAGTTGTGGGTACTACACCTGGTCAGGCGCCAACTGCAGAGCCCTCTCGAACCACATCTGTGCAGGTGCCAACCACTGAAGTCATAAGCACTGCACCTGTGCAGATGCCAACTGCAGAGAGCACAGGTATGACACCTGAGAAGGTGCCAGTTTCAGAGGTCATGGGTACCACACTGGCAGAGATGTCAACTCCAGAGGCTACAGGTATGACACCTGCAGAGGTATCAATTGTGGTGCTTTCTGGAGCCACAGCTGCACAGGTAACAACTACAGAGTCGGTGGAGACCACAGCTAGAGAGCTACCTATCCCTGAGCCTGAAGGTCCAGATGCCAGCTCAATCATGTCTACGGAAAGTATTACAGGTTCCCTGGGCCCCCTGCTGGATGGTACAGCCACCTTAAGGCTGGTGAACAGACAAGTCCCCCTGGATTGTGTTCTGTATCGATATGGTTCCTTTTCCGTCACCCTGGACATTGTCCAGGGTATTGAAAGTGCCGAGATCCTGCAGGCTGTGCCGTCCGGTGAGGGGGATGCATTTGAGCTGACTGTGTCCTGCCAAGGCGGGCTGCCCAAGGAAGCCTGCATGGAGATCTCATCGCCAGGGTGCCAGCCCCCTGCCCAGCGGCTGTGCCAGCCTGTGCTACCCAGCCCAGCCTGCCAGCTGGTTCTGCACCAGATACTGAAGGGTGGCTCGGGGACATACTGCCTCGTCGTGTCTCTGGCTGATACCAACAGCCTGGCAGTGGTCAGCACCCAGCTTATCATGCCTGGTCAACAAGCAGGCCTTGGGCAGGTTCCGCTGATCGTGGGCATCTCGCTGGTGTTGATGGCTGTGGTCCTTGCATCTCTGATATATAGGCGCAGACTTATCAAGCTAGACTTCTCCGTACCCCAGTTGCCACATAGCAGCAGTCACTGGCTGCGTCTACCCCCCATCTTCTGCTCTTGTCCCATTGGTGAGAATAGCCCCCTCCTCAGTGGGCAGCAGGTCTGAORF Start: ATG at 1ORF Stop: TGA at 1726SEQ ID NO: 46 575 aaMW at 60580.6kDNOV14a,MDLVLKRCLLHLAVIGALLAVGATKGSQVWGGQPVYPQETDDACIFPDGGPCPSGSWSCG158114 -01Protein SequenceQKRSFVYVWKTWGQYWQVLGGPVSGLSIGTGRAVTGTHTMEVTVYHRRGSRSYVPLAHSSSAFTITDQVPFSVSVSQLRALDGGNKHFLRNQPLTFALQLHDPSGYLAEADLSYTWDFGDSSGTLISRALVVTHTYLEPGPVTAQVVLQAAIPLTSCGSSPVPGTTDGHRPTAEAPNTTAGQVPTTEVVGTTPGQAPTAEPSGTTSVQVPTTEVISTAPVQMPTAESTGMTPEKVPVSEVMGTTLAEMSTPEATGMTPAEVSIVVLSGTTHQVTTTEWVETTARELPIGPEPEGPDASSIMSTESITGSLGPLLDGTATLRLVKRQVPLDCVLYRYGSFSVTLDIVQGIESAEILQAVPSGEGDAFELTVSCQGGLPKEACMEISSPGCQPPAQRLCQPVLPSPACQLVLHIQILKGGSGTYCLNVSLADTNSLAVVSTQLIMPGQEAGLGQVPLIVGLLVLMAVVLASLIYRRRLMKQDFSVPQLPHSSSHWLRLPRIFCSCPIGENSPLLSGQQV


[0438] Further analysis of the NOV14a protein yielded the following properties shown in Table 14B.
75TABLE 14BProtein Sequence Properties NOV14aPSort0.4600 probability located in plasma membrane;analysis:0.1000 probability located in endoplasmicreticulum (membrane); 0.1000 probability locatedin endoplasmic reticulum (lumen);0.1000 probability located in outsideSignalPCleavage site between residues 27 and 28analysis:


[0439] A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 14C.
76TABLE 14CGeneseq Results for NOV14aNOV14aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor the MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU09695Human melanoma antigen26 . . . 575550/550 (100%)0.0gp100 - Homo sapiens, 661112 . . . 661 550/550 (100%)aa. [WO200192294-A2, 06DEC. 2001]AAU84803Human gp100 consensus26 . . . 575550/550 (100%)0.0sequence - Homo sapiens,112 . . . 661 550/550 (100%)29 NOV. 2001]AAU29003Melanoma antigen cDNA25 -26 . . . 575550/550 (100%)0.0Synthetic, 661 aa.112 . . . 661 550/550 (100%)[US6270778-B1, 07AUG. 2001]AAB47540Human melanoma antigen26 . . . 575550/550 (100%)0.0gp100 - Homo sapiens, 661112 . . . 661 550/550 (100%)aa. [WO200170767-A2, 27SEP. 2001]AAY31977Human melanoma antigen26 . . . 575550/550 (100%)0.0gp100 - Homo sapiens, 661112 . . . 661 550/550 (100%)aa. [WO9947102-A2, 23SEP. 1999]


[0440] In a BLAST search of public sequence datbases, the NOV14a protein was found to have homology to the proteins shown in the BLASTP data in Table 14D.
77TABLE 14DPublic BLASTP Results for NOV14aNOV14aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP40967Melanocyte protein Pmel 1726 . . . 575 550/550 (100%)0.0precursor (Melanocyte lineage-112 . . . 661  550/550 (100%)specific antigen GP100)(Melanoma-associated ME20antigen) (ME20M/ME20S) (ME20-M/ME20-S) (95 kDa melanocyte-specific secretedglycoprotein) - Homo sapiens(Human), 661 aa.CAC38954Sequence 109 from Patent26 . . . 575548/550 (99%)0.0WO0130382 - synthetic112 . . . 661 548/550 (99%)construct, 661 aa.I38400melanoma-associated ME2026 . . . 575550/551 (99%)0.0antigen (me20m) - human, 662112 . . . 662 550/551 (99%)aa.A41234melanocyte-specific protein26 . . . 575549/557 (98%)0.0Pmel-17 precursor - human, 668112 . . . 668 549/557 (98%)aa.Q9CZB2N/A - Mus musculus (Mouse),26 . . . 575415/550 (75%)0.0626 aa.111 . . . 626 448/550 (81%)


[0441] PFam analysis predicts that the NOV14a protein contains the domains shown in the Table 14E.
78TABLE 14EDomain Analysis of NOV14aIdentities/Similarities forPfamNOV14a Matchthe MatchedExpectDomainRegionRegionValuePKD131 . . . 21526/99 (26%)5.6e−0861/99 (62%)



Example 15

[0442] The NOV15 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 15A.
79TABLE 15ANOV15 Sequence AnalysisSEQ ID NO: 471733 bpNOV15a,CTCGAGCTGCAGAGCTAGCTCTGCAGCTCGCTGCAGAGCTCAGCTGCGTCCGGCGGAGCG158553-01 DNASequenceGCAGCTGCTGACCCAGCTGTGGACTGTGCCGGGGGCGGGGGACGGAGGGGCAGGAGCCCTGGGCTCCCCGTGGCGGGGGCTGTATCATGGACCACCTCGGGGCGTCCCTCTGGCCCCAGGTCGCCTCCCTTTGTCTCCTGCTCGCTGGGGCCGCCTGGGCGCCCCCGCCTAACCTCCCGGACCCCAAGTTCGAGAGCAAAGCGGCCTTGCTGGCGGCCCGGGGGCCCGAAGAGCTTCTGTGCTTCACCGAGCGGTTGGAGGACTTGGTGTGTTTCTGGGAGGAAGCGGCGAGCGCTGGGGTGGGCCCGGGCAACTACAGCTTCTCCTACCAGCTCGAGGATGAGCCATGGAAGCTGTGTCGCCTGCACCAGGCTCCCACGGCTCGTGGTGCGGTGCGCTTCTGGTGTTCGCTGCCTACACCCGACACGTCGAGCTTCGTGCCCCTAGAGTTGCGCGTCACAGCAGCCTCCGGCGCTCCGCGATATCACCGTGTCATCCACATCAATGAAGTAGTGCTCCTAGACGCCCCCGTGGGGCTGGTGGCGCGGTTCGCTGACGAGAGCGGCCACGTAGTGTTGCGCTGGCTCCCGCCGCCTGACACACCCATGACGTCTCACATCCGCTACGAGGTGGACGTCTCGGCCGGCAACGGCGCAGGGAGCGTACAGAGGGTCGAGATCCTGGAGGGCCGCACCGAGTGTGTGCTGAGCAACCTGCGGGGCCGGACGCGCTACACCTTCGCCGTCCGCGCGCGTATGGCTGAGCCGAGCTTCGGCGGCTTCTGGAGCGCCTGGTCGGAGCCTGTGTCGCTGCTGACGCCTAGCGACCTGGACCCCCTCATCCTGACGCTCTCCCTCATCCTCGTGGTCATCCTGGTGCTGCTGACCGTGCTCGCGCTGCTCTCCCACCGCCGGGCTCTGAAGCAGAAGATCTGGCCTGGCATCCCGAGCCCAGAGAGCGAGTTTGAAGGCCTCTTCACCACCCACAAGGGTAACTTCCAGCTGTGGCTGTACCAGAATGATGGCTGCCTGTGGTGGAGCGCCTGCACCCCCTTCACCGAGGACCCACCTGCTTTCCTGGAAGTCCTCTCAGAGCGCTGCTGGGGGACGATGCAGGCAGTGGAGCCGGGOACAGATGATGAGCGCCCCCTGCTGGAGCCAGTGGGCAGTGAGCATGCCCAGGATACCTATCTGGTGCTGGACAAATGGTTGCTGCCCCGGAACCCGCCCAGTGAGGACCTCCCAGGGCCATGGGCACTGTGCCCTGAGcTGCcCCCTACCCCACCCCACCTAAAGTACCTGTACCTTGTGGTATCTGACTCTGGCATCTCAACTGACTACAGCTCAGGGGACTCCCAGGGAGCCCAAGGGGGCTTATCCGATGCCCCCTACTCCAGCCCTTATGAGAACAGCCCTATCCCAGCCGCTGAGCCTCTGCCCCCCAGCTATGTGGCTTGCTCTTAGGACACCAGGCTGCAGATGATCAGGGATCCAATATGACTCAGAGAACCAGTGCAGACTCAAGACTTATGGAACAGGGATGGCGAGGCCTCTCTCAGGAGCAGGGGCATTGCTGATTTTGTCTGCCCAATCCATCCTGCTCAGGAAACCACAACCTTGCAGTATTTTTAAATATGTATAGTTTTTTTGCTGCAGAGCTAGCTCTGCAGCTCGAGORF Start: ATG at 145ORF Stop: TAG at 1519SEQ ID NO: 48 458 aaMW at 50069.3kDNOV15 a,MDHLGASLWPQVGSLCLLLAGAAWAPPPNLPDPKFESKAALLASGPEELLCFTRERLECG158553-01Protein SequenceDLVCFWEEAASAGVGPGNYSFSYQLEDEPWKLCRLHQAPTFEGAVRFWCSLPTADTSSFVPLELRVTSGSGAPRYHRVIHINEVVLLDAPVGLVARLADESGHRALRWLPPPETPMTSHIRYEVDVSAGNGAGSVQRVEILEGRTECVLSNLRGRTRYTFAVRARMAEPSFGGFWSAWSEPVSLLTPSDLDPLILTLSLILVVILVLLTVLALLSHRPSAKQKIWPGIPSPESEFEGLFTTHKGNFQLWLYQNDGCLWWSACTPFTEDPPAFLEVLSERCWGTMQAVEPGTDDEGPLLEPVGSEHAQDTYLVLDKWLLPRNPPSEDLPGPWALCPELPPTPPHLKYLYLVVSDSGISTDYSSGDSQGAQGGLSDGPYSSPYENSPIPAAEPLPPSYVACSSEQ ID NO: 491733 bpNOV15b,CTCGAGCTGCAGAGCTAGCTCTGCAGCTCGCTGCAGAGCTCAGCTGCGTCCGGCGGAGCG158553-01 DNASequenceGCAGCTGCTGACCCAGCTGTGGACTGTGCCGGGGGCGGGGGACGGAGGGGCAGGAGCCCTGGGCTCCCCGTGGCGGGGGCTGTATCATGGACCACCTCGGGGCGTCCCTCTGGCCCCAGGTCGGCTCCCTTTGTCTCCTGCTCGCTGGGGCCGCCTGGGCGCCCCCGCCTGACCTCCCGGACCCCAAGTTCGAGAGCAAAGCGGCCTTGCTGGCGGCCCGGGGGCCCGAAGAGCTTCTGTGCTTCACCGAGCGGTTGGAGGACTTGGTGTGTTTCTGGGAGGAGGCGGCGAGCGCTGGGGTGGGCCCGGGCAACTACAGCTTCTCCTACCAGCTCGAGGATGAGCCATGGAAGCTGTGTCGCCTCCACCAGGCTCCCACGGCTCGTGGTGCGGTGCGCTTCTGGTGTTCGCTGCCTACAGCCGACACGTCGAGCTTCGTGCCCCTAGAGTTGCGCGTCACAGCAGCCTCCGGCGCTCCGCGATATCACCGTGTCATCCACATCAATGAAGTAGTGCTCCTAGACGCCCCCGTGGGGCTGGTGGCGCGGTTGGCTGACGAGAGCGGCCACGTAGTGTTGCGCTGGCTCCCGCCGCCTGAGACACCCATGACGTCTCACATCCGCTACGAGGTGGACGTCTCGGCCGGCAACGGCGCAGGGAGCGTACAGAGGGTGGAGATCCTGGAGGGCCGCACCGAGTGTGTGCTGAGCAACCTGCGGGGCCGGACGCCCTACACCTTCGCCGTCCGCGCGCGTATGGCTGAGCCGAGCTTCGGCGGCTTCTGGAGCGCCTGGTCGGAGCCTGTGTCGCTGCTGACGCCTAGCGACCTGGACCCCCTCATCCTGACGCTCTCCCTCATCCTCGTGGTCATCCTGGTGCTGCTGACCGTGCTCGCGCTGCTCTCCCACCGCCGGGCTCTGACGCAGACGATCTGGCCTGGCATCCCGAGCCCAGAGAGCGAGTTTGAAGGCCTCTTCACCACCCACAAGGGTAACTTCCAGCTGTGGCTGTACCAGAATGATGGCTGCCTGTGGTGGAGCGCCTGCACCCCCTTCACGGAGGACCCACCTGCTTTCCTGGAAGTCCTCTCAGAGCGCTGCTGGGGGACGATGCAGGCAGTGGAGCCGGGGACAGATGATGAGGGCCCCCTGCTGGAGCCAGTGGGCAGTGAGCATGCCCAGGATACCTATCTGGTGCTGGACAAATGGTTGCTGCCCCGGAACCCGCCCAGTGAGGACCTCCCAGGGCCATGGGCACTGTGCCCTGAGCTGCCCCCTACCCCACCCCACCTAAAGTACCTGTACCTTGTGGTATCTGACTCTGGCATCTCGACTGACTACAGCTCAGGGGACTCCCAGGGAGCCCAAGGGGGCTTATCCGATGGCCCCTACTCCAGCCCTTATGAGAACAGCCCTATCCCAGCCGCTGAGCCTCTGCCCCCCAGCTATGTGGCTTGCTCTTAGGACACCAGGCTGCAGATGATCAGGGATCCAATATGACTCAGAGATCCAGTGCAGACTCAAGACTTATGGAACAGGGATGGCGAGGCCTCTCTCAGGAGCAGGGGCATTGCTGATTTTGTCTGCCCAATCCATCCTGCTCAGGAAACCACAACCTTGCAGTATTTTTAAATATGTATAGTTTTTTTGCTGCAGAGCTAGCTCTGCAGCTCGAGORF Start: ATG at 145ORF Stop: TAG at 1519SEQ ID NO: 50 458 aaMW at 50069.3kDNOV15b,MDHLGASLWPQVGSLCLLLAGAAWAPPPNLPDPKFESKAALLAGTGPEELLCFTERLECG158553-01Protein SequenceDLVCFWEEAASAGVGPGNYSFSYQLEDEPWKLCRLHQAPTARGAVRFWCSLPTADTSSFVPLELRVTAASGAPRYHRVIHINEVVLLDAPVGLVARLADESGHNRLRWLPPPETPMTSHRYEVDVSAGNGAGSVQRVEILEGRTECVLSNLRGRTRYTFAVRARMAEPSRFGGFWSAWSEPVSLLTPSDLDPLILTLSLILVVILVLLTVLALLSHRRALKQKIWPGIPSPESEFEGLFTTHKGNFQLWLYQNDGCLWWSACTPFTEDPPAFLEVLSERCWGTMQAVEPGTDDEGPLLEPVGSEHAQDTYLVLDKWLLPRNPPSEDLPGPWALCPELPPTPPHLKYLYLVVSDSGISTDYSSGDSQGAQGGLSDGPYSSPYENSPIPAAEPLPPSYVACSSEQ ID NO: 511435 bpNOV15c,GGGGCTGTATCATGGACCACCTCGGGGCGTCCCTCTGGCCCCAGGTCGGCTCCCTTTGCG158553-02 DNASequenceTCTCCTGCTCGCTGGGGCCGCCTGGGCGCCCCCGCCTAACCTCCCGGACCCCTAGTTCGAGAGCAAAGCGGCCTTGCTGGCGGCCCGGGGGCCCGAAGAGCTTCTGTGCTTCACCGACCGGTTGGGGCACTTGGTGTGTTTCTGGGAGGAAGCGGCGAGCGCTGGGGTGGGCCCGGGCAACTACAGCTTCTCCTACCAGCTCGAGGATGAGCCATGGCTGCTGTGTCGCCTGCACCAGGCTCCCACGGCTCGTGGTCCGGTGCGCTTCTGGTGCTCGCTGCCTACACCCGACACGTCGAGCTTCGTGCCCCTAGAGTTGCGCGTCACAGCAGCCTCCGGCGCTCCGCGATATCACCGTGTCATCCACATCAATGAAGTAGTGCTTCTAGACGCCCCCGTGGGGCTGGTGGCGCGGTTGGCTGACGAGAGCGGCCACGTAGTGTTGCGCTGGCTCCCGCCGCCTGAGACACCCATGACGTCCCACATCCGCTACGAGGTGGACGTCTCGGCCGGCGTCGGCGCAGGGAGCGTACAGAGGGTGGAGATCCTGGAGGGCCGCACCGAGTGTGTGCTGAGCTACCTGCGGGGCCGGACGCGCTACACCTTCGCCGTCCGCACGCGTATGGCTGAGCCGAGCTTCGGCGGCTTCTGGAGCGCCTGGTCGGAGCCTGTGTCGCTGCTGACGCCTAGCGACCTGGACCCCCTCATCCTGACGCTCTCCCTCATCCTCGTGGTCATCCTGGTGCTGCTGACCGTGCTCGCGCTGCTCTCCCACCGCCGGGCTCTGAAGCAGAAGATCTGGCCTGGCATCCCGAGCCCAGAGAGCGAGTTTGAAGGCCTCTTCACCACCCACAAGGGTATCTTCCAGCTGTGGCTGTACCAGAATGATGGCTGCCTGTGGTGGACCCCCTGCACCCCCTTCACGGAGGACCCACCTGCTTCCCTGGAAGTCCTCTCAGAGCGCTGCTGGGGGACGATGCAGGCAGTGGAGCCGGGGACAGATGATGAGGGCCCCCTGCTGGAGCCAGTGGGCAGTGAGCATGCCCAGGATACCTATCTGGTGCTGGACAAATGGTTGCTGCCCCGGAACCCGCCCAGTGAGGACCTCCCAGGGCCATGGGCACTGTGCCCTGAGCTGCCCCCTACCCCACCCCACCTCGAGTACCTGTACCTTGTGGTATCTGACTCTGGCATCTCAACTGACTACAGCTCAGGGGACTCCCAGGGAGCCCAAGGGGGCTTATCCGATGGCCCCTACTCCAGCCCTTATGAGTACAGCCCTATCCCAGCCGCTGAGCCTCTGCCCCCCAGCTATGTGGCTTGCTCTTAGGACACCAGGCTOCAGATGATCAGGGATCCAATATGACTCAGAGAACCORF Start: ATG at 12ORF Stop: TAG at 1386SEQ ID NO: 52 458 aaMW at 49993.2kDNOV15a,MDHLGASLWPQVGSLCLLLAGAAWAPPPNLPDPKFESKAALLAARGPEELLCFTERLGCG158553-02Protein SequenceDLVCFWEEAASAGVGPGNYSFSYQLEDEPWKLCRLHQAPTARGAVRFWCSLPTADTSSFVPLELRVTAASGAPRYHRVIHINEVVLLDAPVGLVARLADESGHVVLRWLPPPETPMTSHIRYEVDVSAGNGAGSVQRVEILEGRTECVLSNLRGRTRYTFAVRTRMAEPSFGGFWSAWSEPVSLLTPSDLDPLILTLSLILVVILVLLTVLALLSHRRALKQKTWPGIPSPESEFEGLFTTHKGNFQLWLYQNDGCLWWSPCTPFTEDPPASLEVLSERCWGTMQAVEPGTDDEGPLLEPVGSEHAQDTYLVLDKWLLPRNPPSEDLPGPWALCPELPPTPPHLKYLYLVVSDSGISTDYSSGDSQGAQGGLSDGPYSSPYENSPIPAAEPLPPSYVACSSEQ ID NO: 531585 bpNOV15d,GGGGCTGTATCATGGACCACCTCGGGGCGTCCCTCTGGCCCCAGGTCGGCTCCCTTTGCG158553-03 DNASequenceTCTCCTGCCCGCTGGGGCCGCCTGGGCGCCCCCGCCTAACCTCCCGGACCCCAAGTTCGAGAGCAAAGCGGCCTTOCTGGCGGCCCGGGGGCCCGAAGAGCTTCTGTGCTTCACCGAGCGGTTGGAGGACTTGGTGTGTTTCTGGGAGGAAGCGGCGAGCGCTGGGGTGGGCCCGGGCAACTACAGCTTCTCCTACCAGCTCGAGGATGAGCCATGGAAGCTGTGTCGCCTGCACCAGGCTCCCACGGCTCGTGGTGCGGTGCGCTTCTGGTGTTCGCTGCCTACAGCCGACACGTCGAGCTTCGTGCCCCTAGAGTTGCGCGTCACAGCAGCCTCCGGCGCTCCGCGATATCACCGTGTCATCCACATCAATGAAGTAGTGCTCCTAGACGCCCCCGTGGGGCTGGTGCCGCGGTTGGCTGACGAGAGCGGCCACGTAGTGTTGCGCTGGCTCCCCCCGCCTGAGACACCCATGACGTCTCACATCCGCTACGCGGTGGACGTCTCGGCCGGCGACGGCGCAGGGAGCGTACAGAGGGTGAAGATCCTGGAGGGCCGCACCGAGTGTGTGCTGAGCGTCCTGCGGGGCCGGACGCGCTACACCTTCGCCGTCCGCGCGCGTATGGCTGAGCCGAGCTTCGGCGGCTTCTGGAGCGCCTGGTCGGAGCCTGTGTCGCTCCTGACGCCTAGCGACCTGGACCCCCTCATCCTGACGCTCTCCCTCATCCTCGTGGTCATCCTGGTGCTGCTGACCGTGCTCGCGCTGCTCTCCCACCGCCGGGCTCTGAAGCAGAAGATCTGGCCTGGCATCCCGAGCCCAGAGAGCGAGTTTGAAGGCCTCTTCACCACCCACAAGGGTAACTTCCAGCTGTGGCTGTACCAGAATGATGGCTGCCTGTGGTGGAGCCCCTGCACCCCCTTCACGGAGGACCCACCTGCTTCCCTGGAAGTCCTCTCAGAGCGCTGCTGGGGGACGATGCAGGCAGTGGAGCCGGGGACAGATGATGAGGGCCCCCTGCTGGAGCCAGTGGGCAGTCAGCATGCCCAGGATACCTATCTGGTGCTGGACAAATGGTTGCTGCCCCGGAACCCGCCCAGTGAGGACCTCCCAGGGCCTGGTGOCAGTGTGGACATAGTGGCCATGGATGAAGGCTCAGTAGCATCCTCCTGCTCATCTGCTTTGGCCTCGAAGCCCAGCCCAGAGGGAGCCTCTCCTGCCAGCTTTGAGTACACTATCCTGGACCCCAGCCCCCAGCTCTTGCGTCCATGGACACTGTGCCCTGAGCTGCCCCCTACCCCACCCCACCTAAAGTACCTGTACCTTGTGGTATCTGACTCTGGCATCTCAACTGACTACAGCTCAGGGGACTCCCAGGGAGCCCTCGGGGGCTTATCCGATGGCCCCTACTCCAACCCTTATGAGAACAGCCTTATCCCAGCCGCTGAGCCTCTGCCCCCCAGCTATGTGGCTTGCTCTTAGGACACCAGGCTGCAGATGATCAGGGATCCAATATGACTCAGAGAACCORF Start: ATG at 12ORF Stop: TAG at 1536SEQ ID NO: 54 508 aaMW at 54999.6kDNOV15d,MDHLGASLWPQVGSLCLLPAGAAWAPPPNLPDPKFESKAALLAARGPEELLCFTERLECG158553-03Protein SequenceDLVCFWEEAASAGVGPGNYSFSYQLEDEPWKLCRLHQAPTARGAGREFWCSLPTADTSFVPLELRVTAHASGAPRYHRVIHINEVVLLDAPVGLVKARLADESGHLRWLPPPETPMTSHTRYAVDVSAGNGAGSVQRVKILEGRTECVLSNLRGRTRYTFAVRARMAEPSFGGFWSAWSEPVSLLTPSDLDPLILTLSLILVVILVLLTVLALLSHRPALKQKIWPGIPSPESEFEGLFTTHKGNFQLWLYQNDGCLWWSPCTPFTEDPPASLEVLSERCWGTMQAVEPGTDDEOPLLEPVGSEHAQDTYLVLDKWLLPRNPPSEDLPGPGGSVDIVIDEGSKEASSCSSALASKPSPEGASAASFEYTILDPSPQLLRPWTLCPELPPTPKPHLKYLYLTSDSGISTDYSSGDSQGAQGGLSDGPYSNPYENSLTPAAEPLPPSYVACS


[0443] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 15B.
80TABLE 15BComparison of NOV15a against NOV15b through NOV15d.Identities/Similarities forProteinNOV15a Residues/the MatchedSequenceMatch ResiduesRegionNOV15b1 . . . 458 458/458 (100%)1 . . . 458 458/458 (100%)NOV15c1 . . . 458454/458 (99%)1 . . . 458454/458 (99%)NOV15d1 . . . 458450/508 (88%)1 . . . 508452/508 (88%)


[0444] Further analysis of the NOV15a protein yielded the following properties shown in Table 15C.
81TABLE 15CProtein Sequence Properties NOV15aPSort0.4600 probability located in plasma membrane;analysis:0.1762 probability located in microbody(peroxisome); 0.1000 probability located inendoplasmic reticulum (membrane); 0.1000probability located in endoplasmic reticulum (lumen)SignalPCleavage site between residues 26 and 27analysis:


[0445] A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 15D.
82TABLE 15DGeneseq Results for NOV15aNOV15aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesHatched RegionValueAAR69503Human erythropoietin1 . . . 458453/508 (89%)0.0receptor - Homo sapiens, 5081 . . . 508454/508 (89%)aa. [US5378808-A, 03 JAN.1995]AAR70032Human erythropoietin1 . . . 458453/508 (89%)0.0receptor - Homo sapiens, 5081 . . . 508454/508 (89%)aa. [WO9505469-A, 23 FEB.1995]AAR06512EPO receptor - Homo sapiens,1 . . . 458453/508 (89%)0.0508 aa. [WO9008822-A, 091 . . . 508454/508 (89%)AUG. 1990]ABB09173Human erythropoietin1 . . . 458452/508 (88%)0.0receptor SEQ ID NO:5 - Homo1 . . . 508453/508 (88%)sapiens, 508 aa.[US2002031806-A1, 14 MAR.2002]AAY44622Truncated human EpoR (t439) -1 . . . 388386/388 (99%)0.0Homo sapiens, 438 aa.1 . . . 388386/388 (99%)[W09967360-A2, 29 DEC.1999]


[0446] In a BLAST search of public sequence datbases, the NOV 15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15E.
83TABLE 15EPublic BLASTP Results for NOV15aNOV15aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor the MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP19235Erythropoietin receptor1 . . . 458453/508 (89%)0.0precursor (EPO-R) - Homo1 . . . 508454/508 (89%)sapiens (Human), 508 aa.Q9MYZ9Erythropoietin receptor -1 . . . 458386/509 (75%)0.0Sus scrofa (Pig), 509 aa.1 . . . 509402/509 (78%)P14753Erythropoietin receptor1 . . . 458375/508 (73%)0.0precursor (EPO-R) - Mus1 . . . 507397/508 (77%)musculus (Mouse), 507 aa.AAH03953Similar to erythropoietin2 . . . 458374/507 (73%)0.0receptor - Mus musculus1 . . . 506396/507 (77%)(Mouse), 506 aa (fragment).Q07303Erythropoietin receptor1 . . . 458371/508 (73%)0.0precursor (EPO-R) - Rattus1 . . . 507399/508 (78%)norvegicus (Rat), 507 aa.


[0447] PFam analysis predicts that the NOV 15a protein contains the domains shown in the Table 15F.
84TABLE 15FDomain Analysis of NOV15aIdentities/Similarities forPfamNOV15a Matchthe MatchedExpectDomainRegionRegionValuefn3145 . . . 22821/88 (24%)0.0005959/88 (67%)



Example 16

[0448] The NOV16 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 16A.
85TABLE 16ANOV16 Sequence AnalysisSEQ ID NO: 55751 bpNOV16 a,CGCGGCAGCTCCCACCATGGCGGAGACCAAGCTCCAGCTGTTTGTCAAGGCGAGTGAGCG158983-01 DNASequenceGACGGGGAGAGCGTGGGTCACTGCCCCTCCTGCCAGCGGCTCTTCATGGTCCTGCTCCTCAAGGGCGTACCTTTCACCCTCACCACGGTGGACACGCGCAGGTCCCCGGACGTGCTGAAGGACTTCGCCCCCGGCTCGCAGCTGCCCATCCTCCTCTATGACAGCGACGCCAAGACAGACACGCTGCAGATCGAGGACTTTCTGGAGGAGACGCTGGGGCCGCCCGAGGAGTCCAACACCGCCGGCAACGACGTTTTCCACAAGTTCTCCGCGTTCATCAAGAACCCGGTGCCCGCGCAGGACGAAGCCCTGTACCAGCAGCTGCTGCGCGCCCTCGCCAGGCTGGACAGCTACCTGCGCGCGCCCCTGGAGCACGAGCTGGCGGGGGAGCCGCAGCTGCGCGAGTCCCGCCGCCGCTTCCTGGACGGCGACAGGCTCACGCTGGCCGACTGCAGCCTCCTGCCCAAGCTGCACATCGTCGACACGGTGTGCGCGCACTTCCGCCAGGCGCCCATCCCCGCGGAGTGCGCGGCGTACGCCGTTACCTGGACAGCGCGATGCAGGAGAAAGAGTTCAAATACACGTGTCCGCACAGCGCCGAGATCCTGGCGGCCTACCGGCCCGCCGTGCACCCCACGCTAGCGCCCCACCCCGCGTCTGTCGCCCAATAAAGGCATCTTTGTCGGOAAAAAAORF Start: ATG at 17ORF Stop: TAG at 698SEQ ID NO: 56227 aaMW at 25431.7kDNOV16 a,MAETKLQLFVKASEDGESVGHCPSCQRLFMVLLLKGVPFTLTTVDTRRSPDVLKDFAPCG158983-01Protein SequenceGSQLPILLYDSDAKTDTLQIEDPLEETLGPPEESNTAGNDVFHKFSAFIKNPVPAQDEALYQQLLRALARLDSYLRAPLEHELAGEPQLRESRRRFLDGDRLTLADCSLLPKLHIVDTVCAHFRQAPIPAECAAYAVTWTARCRRKSSNTRVRTAPRSWRPTGPPCTPRSEQ ID NO: 57693 bpNOV16b,CCCACCATGGCGGAGACCAAGCTCCAGCTGTTTGTCAAGGCGAGTGAGGACGGGGAGACG158983-02 DNASequenceGCGTGGGTCACTGCCCCTCCTGCCAGCGGCTCTTCATGGTCCTGCTCCTCAAGGGCGTACCTTTCACCCTCACCACGGTCGACACGCGCAGGTCCCCGGACGTGCTGKTGGACTTCGCCCCCGGCTCGCAGCTGCCCATCCTGCTCTATGACAGCGACGCCAGACAGAGCACGCTGCAGATCGAGGACTTTCTGGAGGAGACGCTGGGGCCGCCCGAGGAGTCCGACACCGCCGGCAACGACGTTTTCCACAAGTTCTCCGCGTTCATCAAGAGCCCGGTGCCCGCGCAGGACGAAGCCCTGTACCAGCAGCTGCTGCCCGCCCTCGCCAGGCTGGACAGCTACCTGCGCGCGCCCCTGGAGCACGAGCTGGCGGGGGAGCCGCAGCTGCGCGAGTCCCGCCGCCGCTTCCTGGACGGCGACAGGCTCACGCTGGCCGACTGCAGCCTCCTGCCCAGGCTGCACATCGTCGACACGGTGTGCGCGCACTTCCGCCAGGCGCCCATCCCCGCGGAGCTGCGCGGCGTACGCCGCTACCTGGACACCGCGATGCAGGAGAAAGAGTTCACGTACACGTGTCCGCACAGCGCCGAGATCCTGGCGGCCTACCGGCCCGCCGTGCACCCCCGCTAGCGCORF Start: ATG at 7ORF Stop: TAG at 688SEQ ID NO: 58227 aaMW at 25573.8kDNOV16b,AETKLQLFVKASEDGESVGHCPSCQRLFMVLLLKGVPFTLTTVDTRRSPDGKTKDFAPCG158983-02Protein SequenceGSQLPILLYDSDAKTDTLQIEDFLEETLGPPEESNTAGNDVFHKFSAFITKPVPAQDEALYQQLLRALARLDSYLRAPLEHELAGEPQLRESRRRFLDGDRLTLADCSLLPKLHIVDTVCAHFRQAPIPAELRGVRRYLDSAMQEKEFKYTCPHSAEILAAYRPAVHPRSEQ ID NO: 59784 bpNOV16c,CGGCCGCGTCGACGCGGCAGCTCCCACCATGGCGGAGACCGTGCTCCAGCTGTTTGTCCG158983-03 DNASequenceAAGGCGAGTGAGGACGGGGAGAGCGTGCGTCACTGCCCCTCCTGCCAGCGGCTCTTCATGGTCCTGCTCCTCAAGGGCGTACCTTTCACCCTCACCACGGTGGACACGCGCAGGTCCCCGGACGTGCTGAAGGACTTCGCCCCCGGCTCGCAGCTGCCCATCCTGCTCTATGACAGCGACGCCAAGACAGACACGCTGCAGATCGAGGACTTTCTGGAGGAGACGCTGGGGCCGCCCGAGGAGTCCAACACCGCCGGCAACGACGTTTTCCACAAGTTCTCCGCGTTCATCAAGAACCCGGTGCCCGCGCAGGACGAAGCCCTGTACCAGCAGCTGCTGCGCGCCCTCGCCAGGCTGGACAGCTACCTGCGCGCGCCCCTGGAGCACGAGCTGGCGGGGGAGCCGCAGCTGCGCGAGTCCCGCCGCCGCTTCCTGGACGGCGACAGGCTCACGCTGGCCGACTGCAGCCTCCTGCCCAAGCTGCACATCGTCGACACGGTGTGCGCGCACTTCCGCCAGGCGCCCATCCCCGCGGAGCTGCGCGGCGTACGCCGCTACCTGGACAGCGCGATGCAGGAGAAAGAGTTCAAATACACGTGTCCGCACAGCGCCGAGATCCTGGCGGCCTACCGGCCCGCCGTGCACCCCCGCTAGCGCCCCACCCCGCGTCTGTCGCCCAATAAAGGCATCTTTGTCGGGAAAAAAAAAAAAAAAAAATTAAAAAAAORF Start: ATG at 29ORF Stop: TAG at 710SEQ ID NO: 60227 aaMW at 25573.8kDNOV16c,MAETKLQLFVKASEDGESVGHCPSCQRLFMVLLLKGVPFTLTTVDTRRSPDVLKDFAPCG158983-03Protein SequenceGSQLPILLYDSDAKTDTLQIEDFLEETLGPPEESNTAGNDVFHKFSAFIKNPVPAQDEALYQQLLRALARLDSYLRAPLEHELAGEPQLRESRRRFLDGDRLTLADCSLLPKLHIVDTVCAHFRQAPIPAELRGVRRYLDSAMQEKEFKYTCPHSAEILAAYRPAVHPRSEQ ID NO: 61751 bpNOV16d,CGCGGCAGCTCCCACCATGGCGGAGACCAAGCTCCAGCTGTTTGTCGAGGCGAGTGAGCG158983-01 DNASequenceGACGGGGAGAGCGTGGGTCACTGCCCCTCCTGCCAGCGGCTCTTCATGGTCCTGCTCCTCAAGGGCGTACCTTTCACCCTCACCACGGTGGACACGCGCAGGTCCCCGGACGTGCTGAAGGACTTCGCCCCCGGCTCGCAGCTGCCCATCCTGCTCTATGACAGCGACGCCTCGACAGACACGCTGCAGATCGAGGACTTTCTGGAGGAGACGCTGGGGCCGCCCGAGGAGTCCAACACCGCCGGCAACGACGTTTTCCACAAGTTCTCCGCGTTCATCAAGAACCCGGTGCCCGCGCAGGACGAAGCCCTGTACCAGCAGCTGCTGCGCGCCCTCGCCAGGCTGGACAGCTACCTGCGCGCGCCCCTGGAGCACGAGCTGGCGGGGGAGCCGCAGCTGCGCGAGTCCCGCCGCCGCTTCCTGGACGGCGACAGGCTCACGCTGGCCGACTGCAGCCTCCTGCCCAAGCTGCACATCGTCGACACGGTGTGCGCGCACTTCCGCCAGGCGCCCATCCCCGCGGAGTGCGCGGCGTACGCCGTTACCTGGACAGCGCGATGCAGGAGAAAGAGTTCAAATACACGTGTCCGCACAGCGCCGAGATCCTGGCGGCCTACCGGCCCGCCGTGCACCCCACGCTAGCGCCCCACCCCGCGTCTGTCGCCCAATAAAGGCATCTTTGTCGGGAAAAAAORF Start: ATG at 17ORF Stop: TAG at 698SEQ ID NO: 62227 aaMW at 25431.7kDNOV16d,MAETKLQLFVKASEDGESVGHCPSCQRLFMVLLLKGVPFTLTTVDTRRSPDVLKDFAPCG158983-01Protein SequenceGSQLPILLYDSDAKTDTLQIEDFLEETLGPPEESNTAGNDVFHKFSAFIKNPVPAQDEALYQQLLRALARLDSYLRAPLEHELAGEPQLRESRRRFLDGDRLTLADCSLLPKLHIVDTVCAHFRQAPIPAECAAYAVTWTARCRRKSSNTRVRTAPRSWRPTGPPCTPRSEQ ID NO: 63751 bPNOV16e,CGCGGCAGCTCCCACCATGGCGGAGACCAAGCTCCAGCTGTTTGTCGAGGCGAGTGAGCG158983-01 DNASequenceGACGGGGAGAGCGTGGGTCACTGCCCCTCCTGCCAGCGGCTCTTCATGGTCCTGCTCCTCAAGGGCGTACCTTTCACCCTCACCACGGTGGACACGCGCAGGTCCCCGGACGTGCTGAAGGACTTCGCCCCCGGCTCGCAGCTGCCCATCCTGCTCTATGACAGCGACGCCAAGACAGACACGCTGCAGATCGAGGACTTTCTGGAGGAGACGCTGGGGCCGCCCGAGGAGTCCAACACCGCCGGCAACGACGTTTTCCACAAGTTCTCCGCGTTCATCAAGAACCCGGTGCCCGCGCAGGACGAAGCCCTGTACCAGCAGCTGCTGCGCGCCCTCGCCAGGCTGGACAGCTACCTGCGCGCGCCCCTGGAGCACGAGCTGGCGGGGGAGCCGCAGCTGCGCGAGTCCCGCCGCCGCTTCCTGGACGGCGACAGGCTCACGCTGGCCGACTGCAGCCTCCTGCCCAAGCTGCACATCGTCGACACGGTGTGCGCGCACTTCCGCCAGGCGCCCATCCCCGCGGAGTGCGCGGCGTACGCCGTTACCTGGACAGCGCGATGCAGGAGGAGTTCATACACGTGTCCGCACAGCGCCGAGATCCTGGCGGCCTACCGGCCCGCCGTGCACCCCACGCTAGCGCCCCACCCCGCGTCTGTCGCCCAATAAAGGCATCTTTGTCGGGORF Start: ATG at 17ORF Stop: TAG at 698SEQ ID NO:64227 aaMW at 25431.7kDNOV16e,MAETKLQLFVKASEDGESVGHCPSCQRLFMVLLLKGVPFTLTTVDTRRSPDVLKDFAPCG158983-01Protein SequenceGSQLPILLYDSDAKTDTLQIEDFLEETLGPPEESNTAGNDVFHKFSAFIHQPVPAQDEALYQQLLRALARLDSYLRAPLEHELAGEPQLRESRRRFLDGDRLTLAQCSLLPKLHIVDTVCAHFRQAPIPAECAAYAVTWTARCRRKSSNTRVRTAPRSWRPTGPPCTPR


[0449] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 16B.
86TABLE 16BComparison of NOV16a against NOV16b through NOV16e.Identities/Similarities forProteinNOV16a Residues/the MatchedSequenceMatch ResiduesRegionNov16b1 . . . 189189/189 (100%)1 . . . 189189/189 (100%)NOV16c1 . . . 189189/189 (100%)1 . . . 189189/189 (100%)Nov16d1 . . . 227227/227 (100%)1 . . . 227227/227 (100%)NOV16e1 . . . 227227/227 (100%)1 . . . 227227/227 (100%)


[0450] Further analysis of the NOV16a protein yielded the following properties shown in Table 16C.
87TABLE 16CProtein Sequence Properties NOV16aPSort0.9000 probability located in Golgi body;analysis:0.7900 probability located in plasma membrane;0.3000 probability located in microbody(peroxisome); 0.2000 probability located inendoplasmic reticulum (membrane)SignalPCleavage site between residues 43 and 44analysis:


[0451] A search of the NOV16a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 16D.
88TABLE 16DGeneseq Results for NOV16aNOV16aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAW61550Human chloride channel1 . . . 227226/236 (95%) e−129protein - Homo sapiens, 2416 . . . 241227/236 (95%)aa. [WO9830691-A1, 16 JUL.1998]AAU23722Novel human enzyme20 . . . 189 162/179 (90%)8e−87polypeptide #808 - Homo6 . . . 184163/179 (90%)sapiens, 222 aa.[WO200155301-A2, 02 AUG.2001]AAM40512Human polypeptide SEQ ID NO3 . . . 189101/198 (51%)6e−495443 - Homo sapiens, 312 aa.60 . . . 257 134/198 (67%)[WO200153312-A1, 26 JUL.2001]AAM38726Human polypeptide SEQ ID NO3 . . . 189101/198 (51%)6e−491871 - Homo sapiens, 308 aa.71 . . . 268 134/198 (67%)[WO200153312-A1, 26 JUL.2001]AAM79354Human protein SEQ ID NO3 . . . 189101/198 (51%)6e−493000 - Homo sapiens, 312 aa.60 . . . 257 134/198 (67%)[WO200157190-A2, 09 AUG.2001]


[0452] In a BLAST search of public sequence datbases, the NOV16a protein was found to have homology to the proteins shown in the BLASTP data in Table 16E.
89TABLE 16EPublic BLASTP Results for NOV16aNOV16aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueO95833Chloride intracellular30 . . . 189159/169 (94%)4e−85channel protein 3 - Homo 1 . . . 169160/169 (94%)sapiens (Human), 207 aa.Q9D7P72300003G24Rik protein - Mus30 . . . 189143/169 (84%)2e−76musculus (Mouse), 207 aa. 1 . . . 169149/169 (87%)Q9Z0W7Chloride intracellular 3 . . . 187102/196 (52%)3e−49channel protein 416 . . . 211133/196 (67%)(Intracellular chloride ionchannel protein P64H1) -Rattus norvegicus (Rat), 253aa.Q9QYB1Intracellular chloride 3 . . . 187102/196 (52%)5e−49channel protein - Mus16 . . . 211133/196 (67%)musculus (Mouse), 253 aa.Q9Y696Chloride intracellular 3 . . . 189101/198 (51%)2e−48channel protein 416 . . . 213134/198 (67%)(Intracellular chloride ionchannel protein p64H1) - Homosapiens (Human), 253 aa.


[0453] PFam analysis predicts that the NOV16a protein contains the domains shown in the Table 16F.
90TABLE 16FDomain Analysis of NOV16aIdentities/Similarities forPfamNOV16a Matchthe MatchedExpectDomainRegionRegionValueNo Significant Matches Found



Example 17

[0454] The NOV17 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 17A.
91TABLE 17ANOV17 Sequence AnalysisSEQ ID NO: 652400 bpNOV17a,GTGCGCGTTGGGGCGGCCGGCCAATGCCGGACCGCTTCGGCACCCCCCGCCCGATCCCCG159015-01 DNASequenceTCCACCCGTGGGCCGGCAATGGCGGGCGCAGTTTCGCTCTTGGGTGTGGTGGGGCTGCTGCTTGTGTCTCCGCTGTCCGGCGTCCTAGGAGACCGCGCCAATCCCGACCTCCGGGCACACCCAGGGAACGCAGCCCACCCCGGCTCTGGAGCCACGGAACCCCGGCGGCGACCACCGCTCAAGGATCAACGCGAGCGGACCCGGGCCGGGTCGCTGCCTCTGGGGGCGCTGTACACCGCGGCCGTCGCGGCTTTTGTGCTGTACAAGTGTTTGCAGGGGAAAGATGAAACTGCGGTTCTCCACGAGGAGGCAAGCAAGCAGCAGCCACTGCAGTCAGAGCAACAGCTGGCCCAGTTGACACAACAGCTGGCCCAGACAGAGCAGCACCTGAACAACCTGATGGCCCAGCTGGACCCCCTTTTTGAGCGTGTGACTACTCTGGCTGGAGCCCAGCAGGAGCTTCTGAACATGAAGCTATGGACCATCCACGAGCTGCTGCAAGATAGCAAGCCGGACAAGGATATCGACGCTTCAGAACCAGGTGAACGCTCGGGAGGCGAGTCTCCTGGAGGTCGAGACAAAGTCTCTGAAACTGGAACATTCCTGATCTCTCCCCACACAGAGGCCAGCAGACCTCTTCCTGAGGACTTCTGTTTAAAGGAGGACGAGGAGGAGGTTGGTGACAGTCAGCCCTGGGAGGAGCCCACAAACTGGAGCACAGAGACATGGAACCTAGCTACTTCCTGGGAGGTGGGGCGGGGACTACGGAGAAGGTCCAGCCAGGCTGTGGCAAAGCGCCCCAGTCACAGCCTTGGCTGGGAAGGAGGGACGACAGCTGAAGGTCGACTAAAACAAAGTCTGTTTTCATGATGGAGTGCTCCTGTGTGTTTTTTCGATCCTAGTTGGTTGTACACACCCATACTAGGTGCCTAAGGACAACTGGGCCTTCTTGAAGAGCTGTCCTTATTAGGACAAAAAGAGGCTGCCTTCCAGTGTGACAGCAGAGAAGATAGAGGGAGCTCCAGCTCTTTTCCTCGTATTCCTGAGGCCACCAGCATGCCCGCGTTCAGGGCCCAAAAATCCCTTTTCTCATAGCAAAACTGAGACAGAAGGGTCTTTCCCAAAAAAAAGAAAAAAAAACTTTACTCAAATCCAGTGGAAAAATAAATCATACAAACTATACACAACATAAAAATAGCCACATTTACAAACCTCCACCCTTGATAAATGACGGGCCATGCACACACCACAGAGCTTATCAGTCCCAAATCCCCTCATCTGTGTTAGGGGCTGGTTCATTTGAGGTTTAGTTGGGTTGGACTTGGTTTCCTGATTCTTCTTTTTTAATAAAATTTCTTAATTATTTTTTCTTAAATAGACACAGGGTCTCACTCACTGTGTTGCCCAGGCTGGTCTTGAACTCCTGGGCTGGAATGATCCTGCCACCTCTGCTTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGTGCCTGGCCGTGATTTTTAAGAGTTGGTCAGATGATCTGGAGTAGCTTGGTCCAGGCAAACAGAAAGTGACCTTTGTCAAATCATGAAGGGTTCTGTTTTGTTCAGTACTGAAGATTCCTTTGTACTCTTGGCTGTGACCTATCCCTGAGGTATCCTGAGTTCTGGAATCTATAAGATTCCTCTAGTTTTTCTGGCTGCTGATAGCCCAAGTCAGACTGTGGTACCAGCGTGACAGCTCCTCCTGGTCTGTGCACATAAGCAGTAGCTTCTCATGAGGGAAGGACAGGTGTGAGCTGTTGATGGTCAGGGCTGTTGGGACCTGTGTTTTCAGCCAAAGCTACGACGAGATTCTCATACTGCTGGAGCCGTTGCAGAGGCAGAGOGAGCAGGTCCTGGAGCTGAAGCCCCCCAAACCCAGGGCGGCCTTCCTGAAGCCCTACAAACCTCCGGAAACCTTTATTTTTCTTTAGCTGCTCCTGCAGGGTGGTCTGGGACCTCTCTGAGTTGGCAGCAAATTGGTTATAGAGCTCCAAGTGGCGGCAGAAGCCCTCCAGCCCTTGGCCCCAGCATCCTCCTTCCAGGTAGGGAAGCAGCTCCTGGCTGGCGCCGTAGATGAGCTCCCAGGAGCCAAACAGGGCCTGGCGCTCAGGTGGTCGCAGGGTCCCCTTGGCTTTCAGGATCCCCAAAAAGTACGTGGCCACCAGCCCCAGCTGTTCTTGGTAGCGCCGCTCGGTCTCTAGCAGCTCCCGGGCGGTGCAGGCGCGTTTCCGCTCCCAGCGGGCACGCTGCTCTTGCACCGGGCACCGCGAACCGGGGCAUGAGAGCTCCATGCCCTGGCTGAGGGATCGACACTORF Start: ATG at 77ORF Stop: TGA at 926SEQ ID NO: 66 283 aaMW at 30494.7kDNOV17a,MAGAVSLLGVVGLLLVSALSGVLGDRANPDLRAHPGNAAHPGSGATEPRRRPPLKDQRCG159015-01Protein SequenceERTRAGSLPLGALYTAAVAAFVLYKCLQGKDETAVLHEEASKQQPLQSEQQLAQLTQQLAQTEQHLNNLMAQLDPLFERVTTLAGAQQELLNMKLWTTHELLQDSKPDKDMEASEPGEGSGGESAGGGDKVSETGTFLISPHTEASRPLPEDFCLKEDEEEVCDSQAWEEPTNWSTETWNLATSWEVGRGLRRRCSQAVAKGPSHSLGWEGGTTAEGRLKQSLFSSEQ ID NO: 671449 bpNOV17b,GGTGAGAAGTTGGTGGCGTGAGATTAAAAAAACCGTTTTCGGGCATAACTTTCTAAGCG159015-02 DNASequenceACTATAGGCTTTCAGAGGCATTGTGGCTAGCAGAATAGCTAATAGACACGAAATGAACAAATACAGGAAAGCTAGAATGACACTATCTTATGCAAATATGGTCTGGCCCCGCCCTACGGGGAGTGGGCGTGGCCTCCCCGGAGCCGGCCGGCCTGCTCGCGTGCOCGTGCGCGTTGGGGCGGCCGGCCAATGCCGGACCGCTTCCGCACCGCCCGCCCGATCCCTCCACCCGTGGGCCGGCAATGGCGGGCGCAGTTTCGCTCTTGGGTGTGGTGGGGCTGCTGCTTGTGTCTGCGCTGTCCGGGGTCCTAGGAGACCGCGCCAATCCCGACCTCCGGGCACACCCAGGTAACGCAGCCCACCCCGGCTCTGGAGCCACGGAACCCCGGCGGCGACCACCGCTCAGGGATCAACGCGAGCGGACCCGGGCCGGGTCGCTGCCTCTGGGGGCGCTGTACACCGCGGCCGTCGCGGCTTTTGTGCTGTACAAGTGTTTGCACGGGAAAGATGGTGCTGCGGTTCTCCACGAGGAGGCAAGCAAGCAGCAGCCACTGCAGTCAGAGCGCCAGCTGCCCCAGTTGACACAACAGCTGGCCCAGACAGAGCAGCACCTGAACAACCTGATGGCCCAGCTGGACGCCCTTTTTGAGCGGGTGACTACTCTGGCTGGACCCCAGCAGGAGCTTCTGAACATGAAGCTATGGACCATCCACGAGCTGCTGCAAGATAGCAAGCCGGACGAGGATATGGAGGCTTCAGAACCAGGTGAAGCCTCGGGAGGCGAGTCTGCTGGAGGTGGAGACATCGTCTCTGAAACTGGAACATTCCTGATCTCTCCCCACACAGAGGCCAGCAGACCTCTTCCTGAGGACTTCTGTTTAAAGGAGGACGAGGAGGAGATTGGTGACAGTCACGCCTGGGAGGAGCCCACAAACTGGAGCACAGAGACATGGAACCTAGCTACTTCCTGGGAGGTGGGGCGGGGACTACGGAGAAGGTGCAGCCAGGCTGTGGCAAAGGGCCCCAGTCACAGCCTTCGCTGGGAAGGAGGGACGACAGCTGAAGGTCGACTAAAACAAAGTCTGTTTTCATGATGGAGTGCTCCTGTGTGTTTTTTCGATCCTAGTTGGTTGTACACACCCATACTAGGTGCCTCTGGACAACTGGGCCTTCTTGAAGAGCTGTCCTTATTAGGACAAAAAGAGGCTGCCTTCCAGTGTGACAGCAGAGAAGATAGAGGGAGCTCCAGCTCTTTTCCTCGTATTCCTGAGGCCACCAGCATGCCCGCGTTCAGGGCCCAAAAATCCCTTTTCTCATAGCGCATCTGAGACAGAAGGGTCTTTCCCAAAAAAAAGAAAAAAAACTTTACTCAAATCCAGTGGAAAAATAAAORF Start: ATG at 148ORF Stop: TGA at 1150SEQ ID NO: 68 334 aaMW at 35589.5kDNOV17b,MQIWSGPALRGVGVASPEPAGLLACACALGRPANAGPLRHRPPDPSTRCPEQAGAVSLCG159015-02Protein SequenceLGVVGLLLVSALSGVLGDRANPDLRAHPGNAAHPGSGATEPRRRPPLKDQRGERTKGSLPLGALYTAAVAAFVLYKCLQGKDETAVLHEEASKQQPLQSEQQLAQLTQLAQQTEQHLNNLMAQLDPLFERVTTLAGAQQELLNMKLWTIHELLQDSKPDKDMEASEPGEGSGGESAGGGDKVSETCTFLISPHTEASRPLPEDFCLKEDEEEIGDSQAWEEPTNWSTETWNLATSWEVGRGLRRRCSQAVAKGPSHSLGWEGGTTAEGRLKQSLFSSEQ ID NO: 69 539 bpNOV17c,CCGGCCAATGCCGGACCGCTTCCGCACCGCCCGCCCGATCCCTCCACCCGTGGGCCGGCG159015-03DNASequenceCAATGGCGGGCGCAGTTTCGCTCTTGGGTGTGGTGGGGCTGCTGCTTGTGTCTGCGCTGTCCGGGGTCCTAGGAGACCCCGCCAATCCCGACCTCCGGGCACACCCAGGGGACGCAGCCCACCCCGGCTCTGGAGCCACGGGTCCCCGGCGGCGACCACCGCTCGTGGATCAACGCGAGCGGACCCGGGCCGGGTCGCTGCCTCTGGGCGCGCTGTACACCGCGGCCGTCGCGGCTTTTGTGCTGTACAAGTGTTTGCACGGGACAGATGAAACTGCGGTTCTCCACGAGGAGGCAAGCAAGCAGCAGCCACTGCAGTCAGAGCAACAGCTGCCCCAGTTGACACAACAGCTGGCCCAGACAGAGCAGCACCTGAACAACCTGATGCCCCAGCTGGACCCCCTTTTTGAGCGCCCAGCAGGAGCTTCTGAACATGAAGCTATGGACCATCCACGAGCTGCTGCAAGATAGCAAGCCCGGACORF Start: ATG at 61ORF Stop: TAG at 526SEQ ID NO: 70 155 aaMW at 16521.5kDNOV17c,MAGAVSLLGVVGLLLVSALSGVLGDRANPDLRAHPGNAAHPGSGATEPRRRPPLKDQRCG159015-03Protein SequenceERTRAGSLPLGALYTAAVAAFVLYKCLQGKDETAVLHEEASKQQPLQSEQQLAQLTQQLAQTEQHLNNLMAQLDPLFERPAGASEHEAMDHPRAAARSEQ ID NO: 71 774 bpNOV17d,GTGCGCGTTGGGGCGGCCGGCCAATGCCGGACCGCTTCGGCACCGCCCGCCCGATCCCCG159015-04 DNASequenceTCCACCCGTGGGCCGGCAATGGCGGGCGCAGTTTCGCTCTTGGGTGTGGTGGOGCTGCTGCTTGTGTCTGCGCTGTCCGGGGTCCTAGGAGACCGCGCCAATCCCGACCTCCOGGCACACCCAGGGAACGCAGCCCACCCCGGCTCTGGAGCCACGGAACCCCGGCGGCGACCACCGCTCAAGGATCAACGCGAGCGGACCCGGGCCGGGTCGCTGCCTCTGGGGGCGCTGTACACCGCGGCCGTCGCGGCTTTTGTGCTGTACAAGTGTTTGCAGGOGAAAGATGAAACTGCGGTTCTCCACGAGGAGGCAAGCAAGCAGCAGCCACTGCAOTCAGAGCAACAGCTGGCCCAGTTGACACAACAGCTGGCCCAGACAGAGCAGCACCTGAACAACCTCATGGCCCAGCTGGACCCCCTTTTTGAGCGGTGAGGAGAGCAATOATTCTGTGAATTTTTGGGGAATTTGTGGCAGGAGGGAGGAATGGGGACATAUGTTGGGAGCCACTGAGTGGACATTTCTTCAGTGTGACTACTCTGGCTGGAGCCCAGCAGGAGCTTCTGAACATGAAGCTATGGACCATCCACGAGCTGCTGCAAGATAGCAAGCCGGACAAGGATATGGAGGCTTCAGAACCAGGTGAAGGCTCGGGAGGCGAGTCTGCTGGAGGTGGAGACAAAGTCTCTOAAACTGGAACATTCCTGATCTCTCCCCCAORF Start: ATG at 77ORF Stop: TGA at 488SEQ ID NO: 72 137 aaMW at 14665.5kDNOV17d,MAGAVSLLGVVGLLLVSALSGVLGDRANPDLRANPGNAAHPGSGATEPRRRPPLKDQRCG159015-04Protein SequenceERTRACSLPLGALYTAAVAAFVLYKCLQGKDETAVLHEEASKQQPLQSEQQLAQLTQQLAQTEQHLNNLMAQLDPLFER


[0455] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 17B.
92TABLE 17BComparison of NOV17a against NOV17b through NOV17d.Identities/Similarities forProteinNOV17a Residues/the MatchedSequenceMatch ResiduesRegionNOV17b1 . . . 283282/283 (99%) 52 . . . 334 283/283 (99%) NOV17c1 . . . 137137/137 (100%)1 . . . 137137/137 (100%)NOV17d1 . . . 137137/137 (100%)1 . . . 137137/137 (100%)


[0456] Further analysis of the NOV17a protein yielded the following properties shown in Table 17C.
93TABLE 17CProtein Sequence Properties NOV17aPSort0.8200 probability located in outside; 0.1000analysis:probability located in endoplasmic reticulum(membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000probability located in lysosome (lumen)SignalPCleavage site between residues 25 and 26analysis:


[0457] A search of the NOV17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 17D.
94TABLE 17DGeneseq Results for NOV17aNOV17aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB72305Rat protein isolated from1 . . . 262163/263 (61%) 1e−79skin cells SEQ ID NO: 629 -1 . . . 233184/263 (68%) Rattus sp, 242 aa.[WO200190357-A1, 29 NOV.2001]AAB88440Human membrane or secretory1 . . . 137137/137 (100%)2e−72protein clone PSEC0222 -1 . . . 137137/137 (100%)Homo sapiens, 139 aa.[EP1067182-A2, 10 JAN. 2001]ABB68896Drosophila melanogaster85 . . . 224 33/140 (23%)0.001polypeptide SEQ ID NO816 . . . 943 54/140 (38%)33480 - Drosophilamelanogaster, 2439 aa.[WO200171042-A2,27 SEP. 2001]ABG28274Novel human diagnostic136 . . . 269 34/140 (24%)0.47protein #28265 - Homo283 . . . 413 57/140 (40%)sapiens, 1121 aa.[WO200175067-A2, 11 OCT.2001]ABB64814Drosophila melanogaster59 . . . 172 29/120 (24%)0.81polypeptide SEQ ID NO2621 . . . 2731 54/120 (44%)21234 - Drosophilamelanogaster, 3583 aa.[WO200171042-A2,27 SEP. 2001]


[0458] In a BLAST search of public sequence datbases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17E.
95TABLE 17EPublic BLASTP Results for NOV17aNOV17aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ8WV48Similar to RIKEN cDNA1 . . . 283 283/283 (100%) e−1631110032022 gene - Homo1 . . . 283 283/283 (100%)sapiens (Human), 283 aa.Q9DCC31110032022Rik protein1 . . . 262153/262 (58%)1e−74(Hypothetical 26.6 kDa1 . . . 233178/262 (67%)protein) - Mus musculus(Mouse), 242 aa.CAC39804Sequence 247 from Patent1 . . . 137 137/137 (100%)5e−72EP1067182 - Homo sapiens1 . . . 137 137/137 (100%)(Human), 139 aa.Q9CTB61110032022Rik protein - Mus35 . . . 262 133/228 (58%)4e−64musculus (Mouse), 259 aa52 . . . 250 153/228 (66%)(fragment).Q9VMS2CG14023 protein - Drosophila85 . . . 224  33/140 (23%)0.004melanogaster (Fruit fly),816 . . . 943  54/140 (38%)2439 aa.


[0459] PFam analysis predicts that the NOV17a protein contains the domains shown in the Table 17F.
96TABLE 17FDomain Analysis of NOV17aIdentities/Similarities forPfamNOV17a Matchthe MatchedExpectDomainRegionRegionValueNo Significant Matches Found



Example 18

[0460] The NOV18 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 18A.
97TABLE 18ANOV18 Sequence AnalysisSEQ ID NO: 732463 bpNOV18a,AACTCTCCTATTCATGGAGGCGACACTGAGGATGCTTTCCACATGAACCCTGAAGTGCG173007-01 DNASequenceAACTTCTGATACATTTCCTGCAGCAAGAGAAGGCAGCCAACATGAAGGAAAATGTGGCATCTGCAACCGTTTTCACTCTGCTACTTTTTCTCGCACCTGCCTTCTGATGGACAGTTACCTCCTGGAAAACCTGAGATCTTTAAATGTCGTTCTCCCAATAAGGAAACATTCACCTGCTGGTGGAGGCCTGGGACAGATGGAGGACTTCCTACCAGCTCCTGCCACTTTGGCAAGCAGTACACCTCCATGTGGAGGACATACATCATGATGGTCAATGCCACTAACCAGATGGGAAGCAGTTTCTCGGATGAACTTTATGTGGACGTGACTTACATAGTTCAGCCAGACCCTCCTTTGGAGCTGGCTGTGGAAGTAAAACAGCCAGAAGACAGAAAACCCTACCTGTGGATTAAATGGTCTCCACCTACCCTGATTGACTTAAAAACTGGTTGGTTCACGCTCCTGTATGAAATTCGATTAAAACCCGAGAAAGCAGCTGAGTGGGAGATCCATTTTGCTGGGCAGCAAACAGAGTTTAAGATTCTCAGCCTACATCCAGGACAGAAATACCTTGTCCAGGTTCGCTGCAAACCAGACCATGGATACTGGAGTGCATGGAGTCCAGCGACCTTCATTCAGATACCTAGTGACTTCACCATGAATGATACAACCGTGTGGATCTCTGTGGCTGTCCTTTCTGCTGTCATCTGTTTGATTATTGTCTGGGCAGTGGCTTTGAAGGGCTATAGCATGGTGACCTGCATCTTTCCGCCAGTTCCTGGGCCAAAAATAAAAGGATTTGATGCTCATCTGTTGGAGAAGGGCAAGTCTGAAGAACTACTGAGTGCCTTCGGATGCCGTGACTTTCCTCCCACTTCTGACTATGAGGACTTGCTGGTGGAGTATTTAGAAGTAGATGATAGTGAGGACCAGCATCTAATGTCAGTCCATTCAAAGAACACCCAATGTCGGGTATCTGAACCCACATACCTGGATCCTGACACTGACTCAGGCCGGGGGAGCTGTGACAGCCCTTCCCTTTTGTCTGAAAAGTGTGAGGAACCCCAGGCCAATCCCTCCACATTCTATGATCCTGAGGTCATTGAGAAGCCAGAGAATCCTGAAACAACCCACACCTGGGACCCCCAGTGCATAAGCATGGAAGGCAAAATCCCCTATTTTCATGCTGGTGGATCCAAATGTTCAACATGGCCCTTACCACAGCCCAGCCAGCACAACCCCAGATCCTCTTACCACAATATTACTGATGTGTGTGAGCTGGCTGTGGGCCCTGCAGGTGCACCGGCCACTCTGTTGAATGAAGCAGGTAAAGATGCTTTAAAATCCTCTCAAACCATTAAGTCTACAGAAGAGGGAAAGGCAACCCACCAGAGGGAGGTAGAAAGCTTCCATTCTGAGACTGACCACCATACGCCCTGGCTGCTGCCCCAGGAGAAAACCCCCTTTGGCTCCGCTAAACCCTTGCATTATGTGGAGATTCACAAGGTCAACAAAGATGGTCCATTATCATTGCTACCAAAACAGAGAGAGAACAGCGGCAAGCCCAAGAAGCCCCGGACTCCTCAGAACAATAAGGAGTATGCCAAGGTGTCCGGGGTCATCGATAACAACATCCTGGTGTTGGTGCCAGATCCACATGCTAAAAACGTGGCTTGCTTTGAAGAATCAGCCAAAGAGGCCCCACCATCACTTGAACAGAATCAAGCTGAGAAAGCCCTGGCCAACTTCACTGCAACATCAAGCAAGTGCAGGCTCCAGCTGGGTGGTTTGGATTACCTGGATCCCGCATGTTTTACACACTCCTTTCACTGATAGCTTGACTAATCGAATGATTGGTTAAAATGTGATTTTTCTTCAGGTAACACTACAGAGTACGTGAAATGCTCAAGAATGTAGTCAGACTGACACTACTAAAGCTCCCAGCTCCTTTCATGCTCCATTTTTAACCACTTGCCTCTTTCTCCAGCAGCTGATTCCAGAACAAATCATTATGTTTCCTAACTGTGATTTGTAGATTTACTTTTTGCTGTTAGTTATAAAACTATGTGTTCAATGAAATAAAAGCACACTGCTTAGTATTCTTGAGGGACAATGCCAATAGGTATATCCTCTGGAAAAGGCTTTCATCATTTGGCATGGGACAGACGGAAATGAAATTGTCAAAATTGTTTACCATAGAAAGATGACAAAAGAAAATTTTCCACATAGGAAAATGCCATGAAAATTGCTTTTGAAAAACAACTGCATAACCTTTACACTCCTCGTCCATTTTATTACGATTACCCAAATATAACCATTTAAAGAAAGAATGCATTCCAGAACAAATTGTTTACATAAGTTCCTATACCTTACTGACACATTGCTGATATGCAAGTAAGAAATORF Start: ATG at 100ORF Stop: TGA at 1891SEQ ID NO: 74 597 aaMW at 66638.8kDNOV18a,MKENVASATVFTLLLFLNTCLLNGQLPPGKPEIFKCRSPNKETFTCWWRPGTDGGLPTCG173007-01Protein SequenceNSCHFGKQYTSMWRTYIMMVNATNQMGSSFSDELYVDVTYIVQPDPPLELAVEVKQPEDRKPYLWIKWSPPTLIDLKTGWFTLLYEIRLKPEKAAEWEIHFAGQQTEFKILSLHPGQKYLVQVRCKPDHGYWSAWSPATFIQIPSDFTMNDTTVWISVAVLSAVICLIIVWAVALKGYSMVTCIPPPVPGPKIKGFDAHLLEKGKSEELLSALGCQDFPPTSDYEDLLVEYLEVDDSEDQHLMSVHSKEHPSQGMKPTYLDPDTDSGRGSCDSPSLLSEKCEEPQANPSTFYDPEVIEKPENPETTHTWDPQCISMEGKIPYFHAGGSKCSTWPLPQPSQHNPRSSYHNITDVCELAVGPAGAPATLLNEAGKDALKSSQTIKSREEGKATQQREVESFHSETDQDTPWLLPQEKTPFGSAKPLDYVEIHKVNKDGALSLLPKQRENSGKPKKPGTPENNKEYAKVSGVMDNNILVLVPDPHAKNVACFEESAKEAPPSLEQNQAEKALANFTATSSKCRLQLGGLDYLDPACFTHSFH


[0461] Further analysis of the NOV18a protein yielded the following properties shown in Table 18B.
98TABLE 18BProtein Sequence Properties NOV18aPSort0.4600 probability located in plasma membrane;analysis:0.1447 probability located in microbody(peroxisome); 0.1000 probability located inendoplasmic reticulum (membrane); 0.1000probability located in endoplasmic reticulum (lumen)SignalPCleavage site between residues 25 and 26analysis:


[0462] A search of the NOV18a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 18C.
99TABLE 18CGeneseq Results for NOV18aNOV18aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe HatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU99354Human prolactin receptor1 . . . 597597/622 (95%)0.0(PRLR) protein - Homo1 . . . 622597/622 (95%)sapiens, 622 aa.[WO200250098-A2, 27 JUN.2002]AAR10795Human prolactin receptor -1 . . . 597597/622 (95%)0.0Homo sapiens, 622 aa.1 . . . 622597/622 (95%)[US4992378-A, 12 FEB. 1991]AAU99355Human prolactin receptor1 . . . 597596/622 (95%)0.0(PRLR) variant protein -1 . . . 622597/622 (95%)Homo sapiens, 622 aa.[WO200250098-A2, 27 JUN.2002]AAY95527Human prolactin receptor1 . . . 311311/336 (92%)0.0novel isoform - Homo1 . . . 336311/336 (92%)sapiens, 349 aa. [US6083753-A, 04 JUL. 2000]AAY96921Soluble human prolactin1 . . . 311311/336 (92%)0.0receptor clone F - Homo1 . . . 336311/336 (92%)sapiens, 349 aa. [US6083714-A, 04 JUL. 2000]


[0463] In a BLAST search of public sequence datbases, the NOV18a protein was found to have homology to the proteins shown in the BLASTP data in Table 18D.
100TABLE 18DPublic BLASTP Results for NOV18aNOV18aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP16471Prolactin receptor precursor1 . . . 597597/622 (95%)0.0(PRL-R) - Homo sapiens1 . . . 622597/622 (95%)(Human), 622 aa.Q9N0J7Prolactin receptor1 . . . 597531/622 (85%)0.0precursor - Callithrix jacchus1 . . . 622555/622 (88%)(Common marmoset), 622 aa.P14787Prolactin receptor precursor1 . . . 597450/624 (72%)0.0(PRL-R) - Oryctolagus1 . . . 616496/624 (79%)cuniculus (Rabbit), 616 aa.Q9XS92Prolactin receptor1 . . . 597407/625 (65%)0.0precursor - Trichosurus1 . . . 625476/625 (76%)vulpecula (Brush-tailedpossum), 625 aa.A36116prolactin receptor 27 . . . 597406/618 (65%)0.0precursor - rat, 610 aa.3 . . . 610472/618 (75%)


[0464] PFam analysis predicts that the NOV18a protein contains the domains shown in the Table 18E.
101TABLE 18EDomain Analysis of NOV18aIdentities/Similarities forPfamNOV18a Matchthe MatchedExpectDomainRegionRegionValuefn3102 . . . 19423/94 (24%)0.05158/94 (62%)



Example 19

[0465] The NOV19 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 19A.
102TABLE 19ANOV19 Sequence AnalysisSEQ ID NO: 752221 bpNOV19a,AGCGGGCCGGGCGGCGGCGGGGAGATGCGGCTGCTGGCACTCGCGGCGGCCGCCCTGCCG173357-01 DNASequenceTGGCGCGGGCTCCGGCTCCGGAGGTCTGTGCGGCCCTCTCTGTCACTGTGTCCCCGGGGCCCGTGGTTGACTACCTGGAGGGGGAGAATGCCACTCTCCTCTGCCACGTCTCCCAGAAAAGGCGGAAGGACAGCTTGCTGGCCGTGCGCTGGTTCTTTGCACACTCCTTCGACTCCCAGGAGGCCTTGATGGTGAAGATGACCAAGCTCCGGGTGGTGCAGTACTATGGGATTTTCAGCCGCAGCGCCAAACGGCGGAGGCTCCGCCTGCTGGAGGAGCAGCGCGGGGCGCTCTACAGGCTCTCCGTCTTGACACTGCACCCCTCCGATCGGGGCATTACGTCTGGCAGAGTCCAGGAAATCAGCAGGCACAGGAACAAGTGGACGCCCTGGTCCGTTGGCTCCTCAGCCACGGAATGAGAGTCATTTCCCTCAAGCTTCTGTAGGAGTCATCCTTTGAGAGAAACAAAAGAGACTTGGGCATTTTTTGAAGATCTCTATGTGTATGCTGTCCTCGTGTGCTGCATGGGGATCCTCAGCATTCTGCTCTTCATGCTGGTCATCGTCTGGCAGTCTGTGTTTAACAAGCGGAATCCAGAGTGAGACATTATTTGGTGTCATGCCCTCAGTATCAGCTCAGGGGAGAGCTGTCACTAGCGTGACCAGCTTGGCCCCACTACAGCCCCAGGGAAGGGCGAGGCAGAAGGAGAAGCCTGACATTCCTCCCGCAGTCCCTGCCAAAGCTCCGATACCCCCCACGTTCCATAACCGAAGCTGCTGAACCACAGAGAAGGTGTCACGCTGCCAATCGATTGCTGAGGAAAACTTAACCTATGCCGAGCTGGAGCTGATCAGTCCCCACCGGGCTGCCAAGGCGCCCCCACCAGCACTGTCTACGCCCAGATCCTCTTCGAGGAGAACGCAGCTGTACTACAGCGTCCACCTCCAGGTTCTATTTAATACCTGCCACCCAGTGATTTATGATGCCTTGGAGACAAAGCCCTTATGTCTGTATTTTCACTCATGCCTTCTGAGTGGTGGGGAGCCCCTTTTCAGCAGCATTCTGGGTGCCTTTGAAGAGGTACCGGCCTGCTCTCCCCAAAAGAATCAGGGCCACAGCTCTTGACAGATCTCCCGGGACAAGATGCGCCTCGGTTTGAGCCCTGAGCGTAAGCATTCTGATCCTGAGAGCAGCCAAGGAGATTTTCTGCTGAGCCAAACCCCTTCACATTTTTCTCCTCTTTCCCCAGGTTTTCTTTAAAATCGTTTTTAAATCTTAATTTTACTCTCTACTCTTCCTGTATCCACGATACAAGCTCACAGTATATAGCTAGAGGAAATGCCATTATGGACCCAACTGTAAGATGGCACATATGTTCGTTTTCCAAGGATCAGATGGCATTGCAGGGCCACAGCCAACTGCTGATTGCCAGCACCACCTGAGATGGCATCTCTTGTTTTAAATACATGCACTAACCCTGAAGATTAAGGCCACAGGGGCAGACTGACTAGAGAAGTATAACGTCTGTCTCTGAATGCCATGGTGCCCACCTATGAGACCCTGAGGCCGCAGACAAAGAAGAACACCATTCTAGAGGGCTTCCAGCCCTTTCACAAGGTGGACCTGTACTGATAGAGAAACACACTCTCTAAGAAGTGCTTACTCACCCTTTTCCAAAGGAGCACAGGTGTTGGCCATCAGAAGACACACTGGAGCGCATGGGCCTCTTCACTGTGTGCCAAGCTCAGTCACCTCTGATTCAGCCCCTGAGGGTGTCTGCTGCCAGGTGCCCTCAGGGTAGGAGAGTGGGAAGTACACGCCAAGCTGGAAAGTGTGTTCTGAAGACCCTCCTCTTGCCAAGTGCCTTGCCCATTGCAACCTTGTGTGTGAATTCTAATGGGTTTGAATGGGGGTCAGGGTGCATGGGGAAGTTGCTCTGTGGACCTTTGGGACACAGGAATCTTGGACTTACTGGCAGGGGATCCATTCTGAAAGCACCATCCTGTCAACTGTGTTATTGAGGACATTTCTTGATGTGAGTATAGTCTGGGTGGCTATTTACTGCCCACTATAGAAATTGTTTGACTATGTAGTGGACCATGTATATATGATAATTATCTATTTTAACACAAAAAAAAAAAAAAAAAAAAAAAGGGCCGCCGCORF Start: ATG at 25ORF Stop: TAG at 712SEQ ID NO: 76 229 aaMW at 26166.1kDNOV19a,MRLLALAAAALLARAPAPEVCAALNVTVSPGPVVDYLEGENATLLCHVSQKRRKDSLLCG173357-01Protein SequenceAVRWFFAHSFDSQEALMVKMTKLRWQYYGNFSRSAKRRRLRLLEEQRGALYRLLSVLTLQPSDQGHYVCRVQEISRHRNKWTAWSNGSSATEMRVISLKASEESSFEKTKETWAFFEDLYVYAVLVCCMGILSILLFMLVIVWQSVFNKRKSRVRHYLVKCPQNSSGESCH


[0466] Further analysis of the NOV19a protein yielded the following properties shown in Table 19B.
103TABLE 19BProtein Sequence Properties NOV19aPSort0.4600 probability located in plasma membrane;analysis:0.2000 probability located in lysosome (membrane);0.1000 probability located in endoplasmic reticulum(membrane); 0.1000 probability located in endoplasmicreticulum (lumen)SignalPCleavage site between residues 23 and 24analysis:


[0467] A search of the NOV19a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19C.
104TABLE 19CGeneseq Results for NOV19aNOV19aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU18012Human immunoglobulin52 . . . 229 178/178 (100%) e−100polypeptide SEQ ID No 157 -17 . . . 194 178/178 (100%)Homo sapiens, 194 aa.[WO20015531S-A2, 02 AUG.2001]AAU18070Human immunoglobulin14 . . . 190174/177 (98%)2e−97polypeptide SEQ ID No 215 - 6 . . . 182174/177 (98%)Homo sapiens, 203 aa.[WO200155315-A2, 02 AUG.2001]ABB10520Human cDNA SEQ ID NO: 828 -14 . . . 190174/177 (98%)2e−97Homo sapiens, 203 aa. 6 . . . 182174/177 (98%)[WO200154474-A2, 02 AUG.2001]ABB03217Human musculoskeletal system14 . . . 190174/177 (98%)2e−97related polypeptide SEQ ID 6 . . . 182174/177 (98%)NO 1164 - Homo sapiens, 203aa. [WO200155367-A1, 02 AUG.2001]ABB72358Murine protein isolated from 1 . . . 207170/207 (82%)1e−92skin cells SEQ ID NO: 682 - 3 . . . 206185/207 (89%)Mus sp, 210 aa.[WO200190357-A1, 29 NOV.2001]


[0468] In a BLAST search of public sequence datbases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19D.
105TABLE 19DPublic BLASTP Results for NOV19aNOV19aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96MX7CDNA FLJ31737 fis, clone 1 . . . 164155/164 (94%) 1e−83NT2RI2007084 - Homo sapiens 1 . . . 164157/164 (95%) (Human), 191 aa.Q93033Leukocyte surface protein -38 . . . 22647/189 (24%)3e−04Homo sapiens (Human), 1021426 . . . 602 82/189 (42%)aa.AAC72013IG-LIKE MEMBRANE PROTEIN -37 . . . 131 27/95 (28%)4e−04Homo sapiens (Human), 1215712 . . . 806  42/95 (43%)aa.O75054KIAA0466 protein - Homo37 . . . 131 27/95 (28%)4e−04sapiens (Human), 1214 aa712 . . . 806  42/95 (43%)(fragment).I39207leukocyte surface protein38 . . . 22647/189 (24%)0.002V7 - human, 1021 aa.426 . . . 602 81/189 (41%)


[0469] PFam analysis predicts that the NOV19a protein contains the domains shown in the Table 19E.
106TABLE 19EDomain Analysis of NOV19aIdentities/Similarities forPfamNOV19a Matchthe MatchedExpectDomainRegionRegionValueig39 . . . 12916/92 (17%)2.7e−0557/92 (62%)



Example 20

[0470] The NOV20 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 20A.
107TABLE 20ANOV20 Sequence AnalysisSEQ ID NO: 77 704 bpNOV20a,ATGGGCGACTGGAGCTTTCTGGGAAGACTCTTAGAAAATGCACAGGAGCACTCCACGGCG50387-01 DNASequenceTCATCGGCAAGGTTTGGCTGACCGTGCTGTTCATCTTCCGCATCTTGGTGCTGGGGGCCGCGGCGGAGGACGTGTGGGGCGATGAGCAGTCAGACTTCACCTGCGACACCCGGCCGCCCGCCGTTGCCATCGGGTTCCCACCCTACTATGCGCACACCGCTGCGCCCCTGGGACAGGCCCGCGCCGTGGGCTACCCCGGGGCCCCGCCACCAGCCGCGGACTTCGGCTTGCTAGCCCTGACCGAGGCGCGCGGAAAGGGCCAGTCCGCCAAGCTCTACTGCGGCCACCACCACCTGCTGATGACTGAGCAGAACTGGGCCAACCAGGCGGCCGAGCGGCAGCCCCCGGCACTCAAGGCTTACCCGGCAGCGTCCACGCCTGCAGCCCCCAGCCCCGTCGGCAGCAGCTCCCCGCCACTCGCGCACGAGGCTGAGGCGGGCGCGGCGCCCCTGCTGCTGGATGGGAGCGGCAGCAGTCTGGAGGGGAGCGCCCTGGCAGGGACCCCCGAGGAGGAGGAGCAGGCCGTGACCACCGCGGCCCAGATGCACCAGCCGCCCTTGCCCCTCGGAGACCCAGGTCGGGCCAGCAAGGCCAGCAGGGCCAGCAGCGGGCGGGCCAGACCGGAGGACTTGGCCATCTAGTGCCCORF Start: ATG at 1ORF Stop: TAG at 697SEQ ID NO: 78 232 aaMW at 24185.8kDNOV20aMGDWSFLGRLLENAQEHSTVIGKVWLTVLFIFRTLVLGAAAEDVWGDEQSDFTCNTRPC050387-01Protein SequencePAVAIGFPPYYAHTAAPLGQARAVGYPGAPPPAADFKMLALTEARGKGQSAKLYNGHHHLLMTEQNWANQAAERQPPALKAYPAASTPAAPSPVGSSSPPLAHEAEAGAAPLLLDGSGSSLEGSALAGTPEEEEQAVTTAAQMHQPPLPLGDPGRASKASRASSGRARPEDLAISEQ ID NO: 791308 bpNOV20b,ATGGGCGACTGGAGCTTTCTGGGAAGACTCTTAGAAAATGCACAGGAGCACTCCACGGCG50387-03 DNASequenceTCATCGGCAAGGTTTGGCTGACCGTGCTGTTCATCTTCCGCATTTTGGTGCTGGGGGCCGCGGCCGAGGACGTGTGGGGCGATGAGCAGTCAGACTTCACCTGCGACACCCAGCAGCCGGGCTGCGAGAACGTCTGCTACGACAGGGCCTTCCCCATCTCCCACATCCGCTTCTGGGCGCTGCAGATCATCTTCGTGTCCACGCCCACCCTCATCTACCTGGGCCACGTGCTGCACATCGTGCGCATGGAGGAGAAGAAGAAAGAGAGGGAGGAGGAGGAGCAGCTGTCGAGAGAGAGCCCCAGCCCCAAGGAGCCACCGCAGGACAATCCCTCGTCGCGGGACGACCGCGGCAGGGTGCGCATGGCCGGCGCGCTGCTGCGGACCTACGTCTTCTACATCATCTTCAAGACGCTGTTCGAGGTGGGCTTCATCGCCGGCCAGTACTTTCTGTACGGCTTCGAGCTGAAGCCGCTCTACCGCTGCGACCGCTGGCCCTGCCCCAACACGGTGGACTGCTTCATCTCCAGGCCCACGGAGAAGACCATCTTCATCATCTTCATGCTGGCGGTGGCCTGCGCGTCACTGCTGCTCGACATGCTGGAGATATACCACCTGGGCTGGAAGCGCTCATGGCAGGGCGTGACCAGCCGCCTCGGCCCGGACGCCTCCGAGGCCCCGCTGGGGACAGCCGATCCCCCGCCCCTGCCCCCCAGCTCCCGGCCGCCCGCCGTTGCCATCGGGTTCCCCCCCTACTATGCGCACACCGCTGCGCCCCTGGGACAGGCCCGCGCCGTGGGCTACCCCGGGGCCCCGCCACCAGCCGCGGACTTCAAAATGCTAGCCCTGACCGAGGCGCGCGGTCAGGGCCAGTCCGCCAAGCTCTACAACGGCCACCACCACCTGCTGATGACTGAGCAGGCGTGGGCCAACCAGGCGGCCGAGCGGCAGCCCCCGGCGCTCAAGGCTTACCCGGCAOCGTCCACGCCTGCAGCCCCCAGCCCCGTCGGCAGCAGCTCCCCGCCACTCGCGCACGAGGCTGAGGCGGGCGCGGCGCCCCTGCTGCTGGATGGGAGCGGCAGCAGTCTGGAGGGGAGCGCCCTGGCAGGGACCCCCGAGGAGGAGGAGCAGGCCGTGACCACCGCGGCCCAGATGCACCAGCCGCCCTTGCCCCTCGGAGACCCAGGTCGGGCCAGCTAGGCCAGCAGGGCCAGCAGCGGGCGGGCCAGACCGGAGGACTTGGCCATCTAGORF Start: ATG at 1ORF Stop: TAG at 1306SEQ ID NO: 80 435 aaMW at 47427.5kDNOV20b,MGDWSFLGRLLENAQEHSTVIGKVWLTVLFIFRILVLGAAAEDVWGDEQSDFTCNTQQCG50387-03Protein SequencePGCENVCYDRAFPISHIRFWALQIIFVSTPTLIYLGHVLHIVGAEEKKKEREEEEQLKRESPSPKEPPQDNPSSRDDRGRVRMAGALLRTYVFNIIFKTLFEVGFIAGQYFLYGFELKPLYRCDRWPCPNTVDCFISRPTEKTIFIIFMLAVACASLLLNMLEIYHLGWKQGKQGVTSRLGPDASEAPLGTADPPPLPPSSRPPAVAIGFPPYYAGTGAPLGQKLIVGYPGAPPPADFKMLALTEARGKGQSAKLYNGHHHLLMTEQNWKMQEIMERQPPALAGTYPHSTPAPSPVGSSSPPLAHEAEAGAAPLLLDGSGSSLEGSTRAGTPEEEEQAVTTKREQMHQPPLPLGDPGRASKASRASSGRARPEDLAISEQ ID NO: 81 954 bpNOV20c,ATGGGCGACTGGAGCTTTCTGGGAAGACTCTTAGCGGATGCACAGGAGCACTCCACGGCG50387-02 DNASequenceTCATCGGCAAGGTTTGGCTGACCGTGCTGTTCATCTTCCGCATTTTGGTGCTGGGGGCCGCGGCCGAGGACGTGTGGGGCGATGAGCAGTCAGACTTCACCTGCGACACCCAGCAGCCGGGCTGCGAGAACGTCTGCTACGACAGGGCCTTCCCCATCTCCCACATCCGCTTCTGGGCGCTGCAGATCATCTTCGTGTCCACCCCCACCCTCATCTACCTGGGCCACGTGCTGCACATCGTGCGCATGGAGGAGAAGAAGAAAGAGAGGGAGGAGGAGGAGCAGCTGAGGAGAGAGCCCCAGCCCCAAGGAGCCACCGCAGGACTCCCTCGTCGCGGGACGACCGCGGCAGGGTGCGCATGGCCGGCGCGCTGCTGCGGACCTACGTCTTCCATCATCTTCAAGACGCTGTTCGAGGTGGGCTTCATCGCCGGCCAGTACTTTCTGTACGGCTTCGAGCTGAAGCCGCTCTACCGCTGCGACCGCTGGCCCTGCCCCCACGGTGGACTGCTTCATCTCCAGGCCCACGGAGAAGACCATCTTCATCATCTTCATGCTGGCGGTGGCCTGCGCGTCACTGCTGCTCCATGCTGGAGATATACCACCTGGGCTGGGGCTCGCAGGGCGTGACCAGCCGCCTCGGCCCGGACGCCTCCGAGGCCCCGCTGGGGACAGCCCATCCCCCGCCCCTGCTGCTGGATGGGAGCGGCAGCAGTCTGGAGGGGAGCGCCCTGGCAGGGACCCCCGAGGAGGAGGAGCAGGCCGTGACCACCGCGGCCCAGATGCACCAGCCGCCCTTGCCCCTCGGAGACCCAGGTCGGGCCAGCAAGGCCAGCAGGGCCAGCAGCGGGCGGGCCAGACCGGAGGACTTGGCCATCTAGORF Start: ATG at 1ORF Stop: TAG at 952SEQ ID NO: 82 317 aaMW at 35397.1kDNOV20c,MGDWSFLGRLLENAQEHSTVIGKVWLTVLFIFRILVLGAAAEDVWGDEQSDFTCNTQQCG50387-02Protein SequencePGCENVCYDRAFPISHIRFWALQIIFVSTPTLIYLGHVLHIVRMEEKKKEREEEEQLKRESPSPKEPPQDNPSSRDDRGRVRMAGALLRTYVFNIIFKTLFEVGFIAGQYFLYGFELKPLYRCDRWPCPNTVDCFISRPTEKTIFIIFMLAVACASLLLNMLEIYHLGWKKLKQGVTSRLGPDASEAPLGTADPPPLLLDGSGSSLEGSALAGTPEEEEQAVTTTAQMHQPPLPLGDPGRASKASRASSGRARPEDLAI


[0471] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 20B.
108TABLE 20BComparison of NOV20a against NOV20b and NOV20c.Identities/Similarities forProteinNOV20a Residues/the MatchedSequenceMatch ResiduesRegionNOV20b 55 . . . 232176/178 (98%)258 . . . 435178/178 (99%)NOV20C147 . . . 232 69/86 (80%)242 . . . 317 74/86 (85%)


[0472] Further analysis of the NOV20a protein yielded the following properties shown in Table 20C.
109TABLE 20CProtein Sequence Properties NOV20aPSort0.7900 probability located in plasma membrane; 0.3748analysis:probability located in microbody (peroxisome); 0.3000probability located in Golgi body; 0.2000 probability locatedin endoplasmic reticulum (membrane)SignalPCleavage site between residues 42 and 43analysis:


[0473] A search of the NOV20a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 20D.
110TABLE 20DGeneseq Results for NOV20aNOV20aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAW49009Mouse alpha 3 connexin58 . . . 23288/175 (50%) 2e−38protein - Mus sp, 417 aa.267 . . . 417 109/175 (62%) [WO9830677-A1, 16 JUL. 1998]AAW23968Connexin protein Cx40 - Homo1 . . . 5943/59 (72%)4e−20sapiens, 358 aa. [WO9802150-1 . . . 5948/59 (80%)A1, 22 JAN. 1998]AAG00107Human secreted protein, SEQ1 . . . 5943/59 (72%)7e−20ID NO: 4188 - Homo sapiens,1 . . . 5948/59 (80%)83 aa. [EP1033401-A2, 06 SEP.2000]AAB58122Lung cancer associated1 . . . 5943/59 (72%)7e−20polypeptide sequence SEQ ID48 . . . 10648/59 (80%)460 - Homo sapiens, 124 aa.[WO200055180-A2, 21 SEP. 2000]ABB05038Human NOV3b protein SEQ ID1 . . . 5940/59 (67%)4e−19NO: 12 - Homo sapiens, 543 aa.1 . . . 5947/59 (78%)[WO200190155-A2, 29 NOV. 2001]


[0474] In a BLAST search of public sequence datbases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20E.
111TABLE 20EPublic BLASTP Results for NOV20aNOV20aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9Y6H8Gap junction alpha-3 protein55 . . . 232176/178 (98%)8e−99(Connexin 46) (Cx46) - Homo257 . . . 434 178/178 (99%)sapiens (Human), 434 aa.Q64448Gap junction alpha-3 protein58 . . . 232 88/175 (50%)6e−38(Connexin 46) (Cx46) - Mus266 . . . 416 109/175 (62%)musculus (Mouse), 416 aa.S25764connexin 46 - rat, 416 aa.55 . . . 232 90/178 (50%)2e−35264 . . . 416 107/178 (59%)P29414Gap junction alpha-3 protein55 . . . 232 90/178 (50%)2e−35(Connexin 46) (Cx46) -263 . . . 415 107/178 (59%)Rattus norvegicus (Rat), 415aa.A45338connexin-56 - chicken, 5101 . . . 59 56/59 (94%)1e−26aa.1 . . . 59 58/59 (97%)


[0475] PFam analysis predicts that the NOV20a protein contains the domains shown in the Table 20F.
112TABLE 20FDomain Analysis of NOV20aIdentities/Similarities forPfamNOV20athe MatchedExpectDomainMatch RegionRegionValueconnexin1 . . . 11865/247 (26%)1.4e−0989/247 (36%)



Example 21

[0476] The NOV21 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 21A.
113TABLE 21ANOV21 Sequence AnalysisSEQ ID NO: 831306 bpNOV21a,CTCACTATAGGGCTCGAGCGGGCTTGGGCCCCCCGGGGGCCAAAGGGTTCCCCAAGAACG52113-01 DNASequenceCCAGAGGAGAAGGCCACCCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTGGCAGTGGGCGGCACAGAGCACGCCTACCGGCCCGGCCGTACGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTCCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGCGAGCTGTGTCCACCCTGGCCGCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTCCCAGTCAGATGTCGATGAATGCAGTGCTAGGAGGGCCGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGACTTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGGGGGTCCAGAAGCCACCTCGGGGTGACTGAGCGGAAAGCCAGGCAGGGCCTTCCTCCTCTTCCTCCTCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCCCCACCCTGGCTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCCCGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAACORF Start: ATG at 96ORF Stop: TGA at 915SEQ ID NO: 84273 aaMW at 29617.4 kDNOV21a,MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGCG52113-01Protein SequenceHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGCCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLCRIDSLSEQISFLEEQLGSCSCKKDSSEQ ID NO: 851307 bpNOV21b,CCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGACAGGCCAGGCAGGTGGGCG52113-06 DNASequenceCCTCAGCAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGCTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGCTCCAGCAGCATCAGCAGCCCCCAGGACCGGGGAGGCACAGGTGGCCCCCACCACCCGGAGGAGCAGCTCCTCCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCACCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGCAATATGCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGCGGGTCCAGAAGCCACCTCGGCGTGACTGAGCGGAAGGCCAGGCAGCGCCTTCCTCCTCTTCCTCCTCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCCCCACCCTGGTTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCCCGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGAAAAAAAAAAAAAAAAAORF Start: ATG at 150ORF Stop: TGA at 897SEQ ID NO: 86249 aaMW at 25902.0 kDNOV21b,MATPGLQQHQQPPGPGRhRWPPPPGGAAPAPVRGMTDSPPPAVGCVLSGLTGTLSPSRCG52113-06SCSVCTSPSSPPATGTGPAAPTAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDEProtein SequenceCSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLCRIDSLSEQISFLEEQLGSCSCKKDSSEQ ID NO: 87841 bpNOV21c,CACCGGATCCACCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTG274054261 DNASequenceGCAGTGGGCGGCACAGAGCACGCCTACCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTCGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCCTGCAGGATGGCGGCGTGACACTTGCCAGTCACATGTGGATGAATGCAGTGCTAGGAGGGGCCCCTCTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCACGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTCCACTCCTTCCAGCAGCTCCGCCGCATCGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAGACTCGGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 88280 aaMW at 30235.0 kDNOV21 c,TGSTMRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLT274054261Protein SequenceTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDSVDGSEQ ID NO: 89769 bpNOV21d,CACCGGATCCTACCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACCGGGACCCT274054299 DNASequenceGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCCCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGAGCTCTGTCCAGCCTGGCCGCTGCCGCTGCCCTGCAGGATGGCCGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCCCAGCGCTGCGTCAACACCGCCGCCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGCCCCCCAACCCGACAGGAGTGGACACTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGCGCTCCCGGACCCCGGCAGCCTCCTGGTCCACTCCTTCCAGCAGCTCGGCCGCATCGACTCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAACTCGGTCGACCGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 90256 aaMW at 27640.9 kDNOV21d,TGSYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPG274054299Protein SequenceLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDSVDGSEQ ID NO: 91841 bpNOV21e,CACCGGATCCACCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTG274054261 DNASequenceGCAGTGGCCGGCACAGAGCACGCCTACCGGCCCGGCCGTAGCGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTCCACCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCCGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCCTCCAGGATGGCGGCGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAGACTCGGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 92280 aaMW at 30235.0 kDNOV21e,TGSTMRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLT274054261Protein SequenceTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACCAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDSVDGSEQ ID NO: 93769 bpNOV21f,CACCGGATCCTACCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCT274054299 DNASequenceGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCACCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTCCTAGGAGGGGCGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAGACTCGGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 94256 aaMW at 27640.9 kDNOV21f,TGSYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPG274054299Protein SequenceLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSANKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDSVDGSEQ ID NO: 951475 bpNOV21g,GGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGCG52113-02 DNASequenceGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGCTCCAGCAGCATCAGCAGCCCCCAGGACCGGGGAGGCACAGGTGGCCCCCACCACCCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTGGCAGTGGGCGGCACAGAGCACGCCTACCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGCGGCCTGTGGAGCAGCAATATGCCAGCCGCCATCCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCCTGCAGGATGGCGCGGTCACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACACTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAAGCTGGACTGAGCCCCTCACGCCGCCCTCCAGCCCCCATGCCCCTGCCCAACATGCTGCGGGTCCACAACCCACCTCGGGGTGACTGAGCGGAAGGCCAGGCAGGGCCTTCCTCCTCTTCCTCCTCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATCCGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCCCCACCCTGGCTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCCCGGAGGCTGGGTGGCGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGACORF Start: at 201ORF Stop: TGA at 1080SEQ ID NO: 96293 aaMW at 31986.2 kDNOV21g,LILLRQATQRRRPPRLEAQAMRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDCG52113-02Protein SequencePVSESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDSSEQ ID NO: 971384 bpNOV21h,TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCG52113-03 DNASequenceTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGTCACGTTTCATTTTTATTGTGCTGGGGGTCAGGCACCACCCCCCACTGAGGCCCCACCCAGCCTCCGGGCTGCCTGGCCTGTGCCATGGGTCCCAGGCTCCAGCAGGGAGCTCGTACCTTCCCTCAGCTGAGGCCCCACCTGGCCTTGGGATGCCGTTGGGGTAGCCAGGGTGGGGGTAGCCAGGGGTGCATTCACAGAGAAGATCCCAGCCCATCCCATGCCAGGGTCTGGGGAGCCTCCCGAGGAAGGGGAGGAGGAAGAGGAGGAAGGCCCTGCCTGGCCTTCCGCTCAGTCACCCCGAGGTGGCTTCTGGACCCCCAGCATGTTGGGCAGGGGCATGGGGGCTGCAGGGCGGCGTGAGGGGCTCAGTCCAGCCTGGGGCGCTGGGCAGTCACGAGTCTTTCTTGCAGGAGCAGGACCCCAGCTGCTCCTCCAGGAAGGAAATCTGCTCGCTCAGGGAGTCGATGCGGCCGAGCTGCTGGAAGGAGTGCACCAGGAGGCTGCCGGGGTCCGGGAGCCCATGCTCCAGTGCCTGCGAGGCCAGGCTGTGCAGTGGGGCCAGCACCAGCTGCAGCTTCTCCTCCAGCAGGTCCACCCTGGACTGCAGCCTCTGCACTTCTTCCTTCATTGCACTGTCCACTCCTGTCGGGTTGGGGGCCACCCTGGCGGGCCCTCCCTTGGGCACACAGAGTGTACCGTCTGCAGACAGGCTGTGCCCCTCCCAACACTGGCACCAGTAACTGCCGGCGGTGTTGACGCAGCGCTGGGGACAGCCGCCCCTCCTAGCACTGCATTCATCCACATCTGACTGGCAAGTGTCACCCCGCCATCCTGCAGGGCAGCGCCAGCGGCCAGGCTGGACACAGCTCCCTCCGTTCCGGCATGGCGGCTGGCATATTGCTGCTCCACAGGCCCCAGGAAGCCCGCTGGTCCTCTTCCAGCCGGGGCAGCACGCGTAGCGAGGCCTGGCAGGGGCCAGCCCAGGGCTGCCGCGGTAGGCGGTCCTATAGATGGTTCGGTAGGTGCTGCAGGCCCGGTGCCCGTCGCACGTGGTGAGGAAGGGCTGGTACACACGCTGCACGAACGACTCGCAGACAGGGTCCCCGTGAGCCCGGACAGCACACACCCTACGGCCGGGCCGGTAGGCGTCCTCTGTGCCGCCCACTGCCAACACCAGAAGCCACATCAGCAGCACCTCCTGACAGCCCCTCATGGCCTGTGCCTCCAGGCGGGGTGGCCTTCTCCTCTGGTTCTTGGGCAORF Start: ATG at 209ORF Stop: TGA at 482SEQ ID NO: 9891 aaMW at 9729.9 kDNOV21h,MGPRLQQGARTFPQLRAHLALGCRWGSQGGGSQGWIHREDPSPSHARVWGASRGRGGGCG52113-03Protein SequenceRGGRPCLAFRSVTPRWLLDPQHVGQGHGGCAASEQ ID NO: 991597 bpNOV21i,GGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGCG52113-04 DNASequenceGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGCTCCACCAGCATCAGCAGCCCCCAGGACCGGGGAGGCACAGGTGGCCCCCACCACCCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGGATCACTGATTCTCCTCCGCCACGCCACCCAGAGGAGAAGGCCACCCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTCCTGCTGATGTGGCTTCTGGTGTTGGCAGTGGGCGGCACAGAGCACGCCTACCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGCGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTCCTAGGAGGCGCGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGTCCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTCGGGTCCTGCTCCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAAGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGGGGGTCCAGAAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGCAGGGCCTTCCTCCTCTTCCTCCTCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCCCCACCCTGGCTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCCCGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 261ORF Stop: TGA at 1080SEQ ID NO: 100273 aaMW at 29617.4 kDNOV21i,MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGCG52113-04Protein SequenceNRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDSSEQ ID NO: 101883 bpNOV21j,TCACCCCGCCTGGACGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCCG52113-05 DNASequenceTTCTGGTGTTGGCAGTGGGCGGCACAGAGCACGCCTACCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCCTGCAGGATGGCCGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGACTCCCTGAGCGAGCACATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAGACTCGTGACAGCCCACCGCCCCAGGCTGGACTGAGCCCCTCACGAORF Start: ATG at 25ORF Stop: TGA at 844SEQ ID NO: 102273 aaMW at 29631.4 kDNOV21j,MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDCCG52113-05Protein SequenceHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSCLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS


[0477] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 21B.
114TABLE 21BComparison of NOV21a against NOV21b through NOV21j.Identities/Similarities forProteinNOV21a Residues/the MatchedSequenceMatch ResiduesRegionNOV21b79 . . . 273 176/196 (89%)54 . . . 249 179/196 (90%)NOV21C1 . . . 273 273/273 (100%)5 . . . 277 273/273 (100%)NOV21d23 . . . 273 250/251 (99%)3 . . . 253251/251 (99%)NOV21e1 . . . 273 273/273 (100%)5 . . . 277 273/273 (100%)NOV21f23 . . . 273 250/251 (99%)3 . . . 253251/251 (99%)NOV21g1 . . . 273 273/273 (100%)21 . . . 293  273/273 (100%)NOV21hNo Significant Alignment Found.NOV21i1 . . . 273 273/273 (100%)1 . . . 273 273/273 (100%)NOV21j1 . . . 273272/273 (99%)1 . . . 273273/273 (99%)


[0478] Further analysis of the NOV21a protein yielded the following properties shown in Table 21C.
115TABLE 21CProtein Sequence Properties NOV21aPSort0.5500 probability located in endoplasmic reticulumanalysis:(membrane); 0.1900 probability located in lysosome (lumen);0.1000 probability located in endoplasmic reticulum (lumen);0.1000 probability located in outsideSignalPCleavage site between residues 23 and 24analysis:


[0479] A search of the NOV21a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 21D.
116TABLE 21DGeneseq Results for NOV21aNOV21aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor the MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB61609Human protein HP03375 - Homo1 . . . 273273/273 (100%)e−168sapiens, 273 aa.1 . . . 273273/273 (100%)[WO200102563-A2, 11 JAN.2001]AAM23991Human EST encoded protein1 . . . 273273/273 (100%)e−168SEQ ID NO: 1516 - Homo1 . . . 273273/273 (100%)sapiens, 273 aa.[WO200154477-A2, 02 AUG.2001]AAB01376Neuron-associated protein -1 . . . 273273/273 (100%)e−168Homo sapiens, 273 aa.1 . . . 273273/273 (100%)[WO200034477-A2, 15 JUN.2000]AAB24044Human PRO1449 protein1 . . . 273273/273 (100%)e−168sequence SEQ ID NO: 8 - Homo1 . . . 273273/273 (100%)sapiens, 273 aa.[WO200053754-A1, 14 SEP.2000]AAB18675Amino acid sequence of a1 . . . 273273/273 (100%)e−168human a PRO1449 polypeptide -1 . . . 273273/273 (100%)Homo sapiens, 273 aa.[WO200053752-A2, 14 SEP.2000]


[0480] In a BLAST search of public sequence datbases, the NOV21a protein was found to have homology to the proteins shown in the BLASTP data in Table 21E.
117TABLE 21EPublic BLASTP Results for NOV21aNOV21aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor the MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9UHF1NOTCH4-like protein1 . . . 273 273/273 (100%)e−168(Hypothetical 29.6 kDa1 . . . 273 273/273 (100%)protein) - Homo sapiens(Human), 273 aa.Q96EG0Similar to NEU1 protein -1 . . . 273272/273 (99%)e−167Homo sapiens (Human), 273 aa.1 . . . 273273/273 (99%)CAC38966Sequence 17 from Patent1 . . . 273234/273 (85%)e−136WO0119856 - Homo sapiens1 . . . 234234/273 (85%)(Human), 234 aa.Q9QXT5NOTCH4-like protein1 . . . 272214/274 (78%)e−129(Vascular endothelial zinc4 . . . 277232/274 (84%)finger 1) - Mus musculus(Mouse), 278 aa.Q9DCP5Vascular endothelial zinc1 . . . 272203/274 (74%)e−119finger 1 - Mus musculus4 . . . 264220/274 (80%)(Mouse), 265 aa.


[0481] PFam analysis predicts that the NOV21a protein contains the domains shown in the Table 21F.
118TABLE 21FDomain Analysis of NOV21aIdentities/PfamNOV21aSimilarities forExpectDomainMatch Regionthe Matched RegionValueEGF107 . . . 13415/47 (32%)0.003722/47 (47%)EGF141 . . . 17615/47 (32%)0.001225/47 (53%)



Example 22

[0482] The NOV22 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 22A.
119TABLE 22ANOV22, Sequence AnalysisSEQ ID NO: 1031303 bpNOV22a,ATATCCAATGGGCTGATTTATCTGACGGTCATGGCCATGGATGCTGGCAACCCCCCTCCG57542-01 DNASequenceTCAACAGCACCGTCCCTGTCACCATCGAGGTGTTTGATGAGAATGACAACCCTCCCACCTTCAGCAAGCCCGCCTACTTCGTCTCCGTGGTCGAGAACATCATGGCAGGACCCACGGTGCTGTTCCTGAATGCCACAGACCTGGACCGCTCCCGGGAGTACGGCCAGGAGTCCATCATCTACTCCTTGGAAGGCTCCACCCAGTTTCGGATCAATGCCCGCTCAGGGGAAATCACCACCACGTCTCTGCTTGACCCAGAGACCAAGTCTGAATACATCCTCATCGTTCGCGCAGTGGACGGGGGTGTGGGCCACAACCAGAAAACTGGCATCGCCACCGTAAACATCACCCTCCTGGACATCAACGACAACCACCCCACGTGGAAGGACGCACCCTACTACATCAACCTGGTGGAGATGACCCCTCCAGACTCTGACGTGACCACGGTGGTGGCTGTTGACCCAGACCTGGGGGAGAATGGCACCCTGGTGTACAGCATCCAGCCACCCAACAAGTTCTACAGCCTCAACAGCACCACGGCCAAGATCCGCACCACCCACGCCATGCTGGACCGGGAGAACCCCGACCCCCATGAGGCCGAGCTGATGCGCAAAATCGTCGTCTCTGTTACTGACTGTGGCAGGCCCCCTCTGAAAGCCACCAGCAGTGCCACAGTGTTTGTGAACCTCTTGGATCTCAATGACAATGACCCCACCTTTCAGAACCTGCCTTTTGTGGCCGAGGTGCTTGAAGGCATCCCGGCGGGGGTCTCCATCTACCAAGTGGTGGCCATCGACCTCGATGAGGGCCTGAACGGCCTGGTGTCCTACCGCATCCCGGTGGGCATGCCCCGCATGGACTTCCTCATCAACACCAGCAGCGGCGTGGTGGTCACCACCACCGAGCTGGACCGCGAGCGCATCGCGGAGTACCAGCTGCGGGTGGTGGCCAGTCATGCAGGCACGCCCACCAAGAGCTCCACCAGCACGCTCACCATCCATGTGCTGGATGTGAACGACGAGACGCCCACCTTCTTCCCGGCCGTGTACAATGTGTCTGTGTCCGAGGACGTGCCACGCGAGTTCCGGGTGGTCTGGCTGAACTGCACGGACAACGACGTGGGCCTCAATGCAGAGCTCAGCTACTTCATCACAGGTGCTGCCCCGGCCTCCGCCCACCTGTGCAGGCCTCCTGGGCCCCTGCCTCCACCCCTCCCAGATGGACAGCCAGACTAGGTGGGGGCAGORF Start: ATG at 31ORF Stop: TAG at 1291SEQ ID NO: 104420 aaMW at 45678.7 kDNOV22a,MAMDAGNPPLNSTVPVTIEVFDENDNPPTFSKPAYFVSVVENIMAGATVLFLNATDLDCG57542-01Protein SequenceRSREYGQESIIYSLEGSTQFRINARSGEITTTSLLDRETKSEYILIVRAVDGGVGHNQKTGIATVNITLLDINDNHPTWKDAPYYINLVEMTPPDSDVTTVVAVDPDLGENGTLVYSIQPPNKFYSLNSTTGKIRTTHAMLDRENPDPHEAELMRKIVVSVTDCGRPPLKATSSATVFVNLLDLNDNDPTFQNLPFVAEVLEGIPAGVSIYQVVAIDLDEGLNGLVSYRMPVGMPRMDFLINSSSGVVVTTTELDRERIAEYQLRVVASDAGTPTKSSTSTLTIHVLDVNDETPTFFPAVYNVSVSEDVPREFRVVWLNCTDNDVGLNAELSYFITGAAPASAHLCRPPGALPPPLPDGQPDSEQ ID NO: 1051113 bpNOV22b,GGATCCGCCACAGACCTGGACCGCTCCCGGGAGTACGGCCAGGAGTCCATCATCTACT169258612 DNASequenceCCTTGGAAGGCTCCACCCAGTTTCGGATCAATGCCCGCTCAGGGGAAATCACCACCACGTCTCTGCTTGACCGAGAGACCAAGTCTGAATACATCCTCATCGTTCGCGCAGTGGACGGGGGTGTGGGCCACAACCAGAAAACTGGCATCGCCACCGTAAACATCACCCTCCTGGACATCAATGACAACCACCCCACGTGGAACGACGCACCCTACTACATCAACCTGGTGGAGATGACCCCTCCAGACTCTGATGTGACCACGGTGGTGGCTGTTGACCCAGACCTGGGAGAGAATGGCACCCTGGTGTACAGCATCCAGCCACCCAACAAGTTCTACACCCTCAACAGCACCACGGGCAAGATCCGCACCACCCACGCCATGCTGGACCGGGAGAACCCCGACCCCCATGAGGCCGAGCTGATGCGCAAAATCGTCGTCTCTGTTACTGACTGTGGCAGGCCCCCTCTGAAAGCCACCAGCAGTGCCACAGTGTTTGTGAACCTCTTGGATCTCAATGACAATGACCCCACCTTTCAGAACCTGCCTTTTGTGGCCGAGGTGCTTGAAGGCATCCCGGCGGGGGTCTCCATCTACCAAGTGGTGGCCATCGACCTCGATGAGGGCCTGAACGGCCTGGTGTCCTACCGCATGCCGGTGGGCATGCCCCGCATGGACTTCCTCATCAGCAGCAGCAGCGGCGTGGTGGTCACCACCACCGAGCTGGACCGCGAGCGCATCGCGGAGTACCAGCTGCGGGTGGTGGCCAGTGATGCAGGCACGCCCACCAAGAGCTCCACCAGCACGCTCACCATCCATGTGCTGGATGTGAACGACGAGACGCCCACCTTCTTCCCGGCCGTGTACAATGTGTCCGTGTCCGAGGACGTGCCACGCGAGTTCCGGGTGGTCTGGCTGAACTGCACGGACAACGACGTGGGCCTCAATGCAGAGCTCAGCTATTTCATCACAGGTGCTGCCCCGGCCTCCGCCCACCTGTGCAGGCCTCCTGGGGCCCTGCCTCCACCCCTCCCAGATGGACAGCCAGACCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 106371 aaMW at 40369.7 kDNOV22b,GSATDLDRSREYGQESIIYSLEGSTQFRINARSGEITTTSLLDRETKSEYILIVRAVD169258612Protein SequenceGGVGHNQKTGIATVNITLLDINDNHPTWKDAPYYINLVEMTPPDSDVTTVVAVDPDLGENGTLVYSIQPPNKFYSLNSTTGKIRTTHAMLDRENPDPHEAELMRKIVVSVTDCGRPPLKATSSATVFVNLLDLNDNDPTFQNLPFVAEVLEGIPAGVSIYQVVAIDLDEGLNGLVSYRMPVGMPRMDFLISSSSGVVVTTTELDRERIAEYQLRVVASDAGTPTKSSTSTLTIHVLDVNDETPTFFPAVYNVSVSEDVPREFRVVWLNCTDNDVGLNAELSYFITGAAPASAHLCRPPGALPPPLPDGQPDLESEQ ID NO: 1071114 bpNOV22c,GGATCCGCCACAGACCTGGACCGCTCCCCGGAGTACGGCCAGGAGTCCATCATCTACT169258615 DNASequenceCCTTGGAAGGCTCCACCCAGTTTCGGATCAATGCCCGCTCCAGGGGAAATCACCACCACGTCTCTGCTTGACCGAGAGACCAAGTCTGAATACATCCTCATCGTTCGCGCAGTGGACGGGGGTGTGGGCCACAACCAGAAAACTGGCATCGCCACCGTAAACATCACCCTCCTGGACATCAATGACAACCACCCCACGTGGAAGGACGCACCCTACTACATCAACCTGGTGGAGATGACCCCTCCAGACTCTGATGTGACCACGGTGGTGGCTGTTGACCCAGACCTGGGGGAGAATGGCACCCTGGTGTACAGCATCCAGCCACCCAACAAGTTCTACAGCCTCAACAGCACCACGGGCAAGATCCGCACCACCCACGCCATGCTGGACCGGGAGAACCCCGACCCCCATGAGGCCGAGCTGATGCGCAAAATCGTCGTCTCTGTTACTGACTGTGGCAGGCCCCCTCTGAAAGCCACCAGCAGTGCCACAGTGTTTGTGAACCTCTTGGATCTCAATGACAATGACCCCACCTTTCAGAACCTGCCTTTTGTGGCCGAGGTGCTTGAAGGCATCCCGGCGGGGGTCTCCATCTACCAAGTGGTGGCCATCGACCTCGATGAGGGCCTGAACGGCCTGGTGTCCTACCGCATGCTGGTGGGCATGCCCCACATGGACTTCCTCATCAACAGCAGCAGCGGCGTGGTGGTCACCACCACCGAGCTGGACCGCGAGCGCATCGCGAAGTACCAGCTGCGGGTGGTGGCCAGTGATGCAGGCACGCCCACCAAGAGCTCCACCAGCACGCTCACCATCCATGTGCTGGATGTGAACGACGAGACGCCCACCTTCTTCCCGGCCGTGTACAATGTGTCTGTGTCCGAGGACGTGCCACGCGAGTTCCGGGTGGTCTGGCTGAACTGCACGGACAACGACGTGGGCCTCAATGCAGAGCTCAGCTACTTCATCACAGGTGCTGCCCCGGCCTCCGCCCACCTGTGCAGGCCTCCTGGGGCCCTGCCTCCACCCCTCCCAGATGGACAGCCAGACCTCGAGORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 108371 aaMW at 40080.6 kDNOV22c,DPPQTWTAPGSTARSPSSTPWKAPPSFGSMPAPGEITTTSLLDRETKSEYILIVRAVD169258615Protein SequenceGGVGHNQKTGIATVNITLLDINDNHPTWKDAPYYINLVEMTPPDSDVTTVVAVDPDLGENGTLVYSIQPPNKFYSLNSTTGKIRTTHAMLDRENPDPHEAELMRKIVVSVTDCGRPPLKATSSATVFVNLLDLNDNDPTFQNLPFVAEVLEGTPAGVSIYQVVAIDLDEGLNGLVSYRMLVGMPHMDFLINSSSGVVVTTTELDRERIAKYQLRVVASDAGTPTKSSTSTLTIHVLDVNDETPTFFPAVYNVSVSEDVPREFRVVWLNCTDNDVGLNAELSYFITGAAPASAHLCRPPGALPPPLPDGQPDLESEQ ID NO: 1091114 bpNOV22d,GGATCCGCCACAGACCTGGACCGCTCCCCGGGAGTACGGCCAGGAGTCCATCATCTAC169258621 DNASequenceTCCTTGGAAGGCTCCACCCAGTTTCGGATCAATGCCCGCTCAGGGGAAATCACCACCACGTCTCTGCTTGACCGAGAGACCAAGTCTGAATACATCCTCATCGTTCGCGCAGTGGACGGGGGTGTGGGCCACAACCAGAAAACTGGCATCGCCACCGTAAACATCACCCTCCTGGACATCAATGACAACCACCCCACGTGGAAGGACGCACCCTACTACATCAACCTGGTGGAGATGACCCCTCCAGACTCTGATGTGACCACGGTGGTGGCTGTTGACCCAGACCTGGGGGAGAATGGCACCCTGGTGTACAGCATCCAGCCACCCAACAAGTTCTACAGCCTCAACAGCACCACGGGCAAGATCCGCACCACCCACGCCATGCTGGACCGGGAGAACCCCGACCCCCATGAGGCCGAGCTGATGCGCAAAATCGTCGTCTCTGTTACTGACTGTGGCAGGCCCCCTCTGAAAGCCACCAGCAGTGCCACAGTGTTTGTGAACCTCTTGGATCTCAATGACAATGACCCCACCTTTCAGAACCTGCCTTTTGTGCCCGAGGTGCTTGAAGGCATCCCGGCGGGGGTCTCCATCTACCAAGTGGTGGCCATCGACCTCGATGAGGGCCTGAACGGCCTGGTGTCCTACCGCATGCCGGTGGGCATGCCCCGCATGGACTTCCTCATCAACAGCAGCAGCGGCGTGGTGGTCACCACCACCGAGCTGGACCGCGAGCGCATCGCCGAGTACCAGCTGCGGGTGGTGGCCAGTGATGCAGGCACGCCCACCAAGAGCTCCACCAGCACGCTCACCATCCATGTGCTGGATGTGAACGACGAGACGCCCACCTTCTTCCCGGCCGTGTACAATGTGTCTGTGTCCGAGGACGTGCCACCCGAGTTCCGGGTGGTCTGGCTGAACTGCACGGACAACGACGTGGGCCTCAATGCAGAGCTCAGCTACTTCATCACAGGTGCTGCCCCGGCCTCCGCCCACCTGTGCAGGCCTCCTGGGGCCCTGCCTCCACCCCTCCCAGATGGACAGCCAGACCTCGAGORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 110371 aaMW at 40487.9 kDNOV22d,DPPQTWTAPREYGQESIIYSLEGSTQFRINARSGEITTTSLLDRETKSEYILIVRAVD169258621Protein SequenceGGVGHNQKTGIATVNITLLDINDNHPTWKDAPYYINLVEMTPPDSDVTTVVAVDPDLGENGTLVYSIQPPNKFYSLNSTTGKIRTTHAMLDRENPDPHEAELMRKIVVSVTDCGRPPLKATSSATVFVNLLDLNDNDPTFQNLPFVAEVLEGIPAGVSIYQVVAIDLDEGLNGLVSYRMPVGMPRMDFLINSSSGVVVTTTELDRERIAEYQLRVVASDAGTPTKSSTSTLTIHVLDVNDETPTFFPAVYNVSVSEDVPREFRVVWLNCTDNDVGLNAELSYFITGAAPASAHLCRPPGALPPPLPDGQPDLESEQ ID NO: 1111114 bpNOV22e,GGATCCGCCACAGACCTGGACCGCTCCCGGGAGTACGGCCACGAGTCCATCATCTACT174307774 DNASequenceCCTTGGAAGGCTCCACCCAGTTTCGGATCAATGCCCGCTCAGGGGAAATCACCACCACGTCTCTGCTTGACCGAGAGACCAAGTCTGAATACATCCTCATCGTTCGCGCAGTGGACGGGGGTGTGGGCCACAACCAGAAAACTGGCATCGCCACCGTAAACATCACCCTCCTGGACATCAACGACAACCACCCCACGTGGAAGGACGCACCCTACTACATCAACCTGGTGGAGATGACCCCTCCAGACTCTGACGTGACCACGGTGGTGGCTGTTGACCCAGACCTGGGGGAGAATGGCACCCTGGTGTACAGCATCCAGCCACCCAACAAGTTCTACAGCCTCAACAGCACCACGGGCAAGATCCGCACCACCCACGCCATGCTGGACCGGGAGAACCCCGACCCCCATGAGGCCGAGCTGATGCGCAAAATCGTCGTCTCTGTTACTGACTGTGGCAGGCCCCCTCTGAAAGCCACCAGCAGTGCCACAGTGTTTGTGAACCTCTTGGATCTCAATGACAATGACCCCACCTTTCAGAACCTGCCTTTTGTGGCCGAGGTGCTTGAAGGCATCCCGGCGGGGGTCTCCATCTACCAAGTGGTGGCCATCGACCTCGATGAGGGCCTGAACGGCCTGGTGTCCTACCGCATGCCGGTGGGCATGCCCCGCATGGACTTCCTCATCAACAGCAGCAGCGGCGTGGTGGTCACCACCACCGAGCTGGACCGCGAGCGCATCGCGGAGTACCAGCTGCGGGTGGTGGCCAGTGATGCAGGCACGCCCACCAAGAGCTCCACCAGCACGCTCACCATCCATGTGCTGGATGTCAACGACGAGACGCCCACCTTCTTCCCGGCCGTGTACAATGTGTCTGTGTCCGAGCACGTGCCACGCGAGTTCCCGGTGGTCTGCCTGAACTGCACGCACAACGACGTGGGCCTCAATGCAGAGCTCAGCTACTTCATCACAGGGTGCTGCCCCGGCCTCCGCCCACCTGTGCAGGCCTCCTGGGGCCTTGCCTCCACCCCTCCCAGATGGACAGCCAGACCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 112372 aaMW at 40670.2 kDNOV22e,GSATDLDRSREYGQESIIYSLEGSTQFRINARSGEITTTSLLDRETKSEYILIVRAVD174307774Protein SequenceGGVGHNQKTGIATVNITLLDINDNHPTWKDAPYYINLVEMTPPDSDVTTVVAVDPDLGENGTLVYSIQPPNKFYSLNSTTGKIRTTHAMLDRENPDPHEAELMRKIVVSVTDCGRPPLKATSSATVFVNLLDLNDNDPTFQNLPFVAEVLEGIPAGVSIYQVVAIDLDEGLNGLVSYRMPVGMPRMDFLINSSSGVVVTTTELDRERIAEYQLRVVASDAGTPTKSSTSTLTIHVLDVNDETPTFFPAVYNVSVSEDVPREFRVVWLNCTDNDVGLNAELSYFITGCCPGLRPPVQASWGLASTPPRWTARPRX


[0483] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 22B.
120TABLE 22BComparison of NOV22a against NOV22b through NOV22e.Identities/Similarities forProteinNOV22a Residues/the MatchedSequenceMatch ResiduesRegionNOV22b53 . . . 420366/368 (99%) 2 . . . 369368/368 (99%)NOV22c85 . . . 420333/336 (99%)34 . . . 369334/336 (99%)NOV22d61 . . . 420 360/360 (100%)10 . . . 369 360/360 (100%)NOV22e53 . . . 407346/355 (97%) 2 . . . 352347/355 (97%)


[0484] Further analysis of the NOV22a protein yielded the following properties shown in Table 22C.
121TABLE 22CProtein Sequence Properties NOV22aPSort0.7900 probability located in plasma membrane; 0.3000analysis:probability located in microbody (peroxisome); 0.3000probability located in Golgi body; 0.2000 probability locatedin endoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0485] A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22D.
122TABLE 22DGeneseq Results for NOV22aNOV22aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor the MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM39046Human polypeptide SEQ ID NO1 . . . 420418/420 (99%)0.02191 - Homo sapiens, 546 aa.127 . . . 546 419/420 (99%)[WO200153312-A1, 26 JUL.2001]AAM38969Human polypeptide SEQ ID NO1 . . . 420418/420 (99%)0.02114 - Homo sapiens, 558 aa.139 . . . 558 419/420 (99%)[WO200153312-A1, 26 JUL.2001]AAU01093Gene 24 Human secreted1 . . . 382 382/382 (100%)0.0protein homologous amino68 . . . 449  382/382 (100%)acid sequence - Homosapiens, 449 aa.[WO200123402-A1, 05 APR.2001]ABG03875Novel human diagnostic85 . . . 395 306/402 (76%)e−161protein #3866 - Homo994 . . . 1390 306/402 (76%)sapiens, 1509 aa.[WO200175067-A2, 11 OCT.2001]AAM40755Human polypeptide SEQ ID NO123 . . . 395 262/273 (95%)e−1485686 - Homo sapiens, 350 aa.6 . . . 278263/273 (95%)[WO200153312-A1, 26 JUL.2001]


[0486] In a BLAST search of public sequence datbases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22E.
123TABLE 22EPublic BLASTP Results for NOV22aNOV22aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor the MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueAAH32581Similar to cadherin related1 . . . 420420/420 (100%)0.023 - Homo sapiens (Human),642 . . . 1061 420/420 (100%)1061 aa.Q96JL3KIAA1812 protein - Homo1 . . . 395395/395 (100%)0.0sapiens (Human), 803 aa233 . . . 627 395/395 (100%)(fragment).Q9H251Cadherin-23 precursor1 . . . 395395/395 (100%)0.0(Otocadherin) - Homo642 . . . 1036 395/395 (100%)sapiens (Human), 3354 aa.P58365Cadherin 23 precursor1 . . . 394377/394 (95%) 0.0(Otocadherin) - Rattus640 . . . 1033 385/394 (97%) norvegicus (Rat), 3317 aa.Q99PF4Cadherin 23 precursor1 . . . 394374/394 (94%) 0.0(Otocadherin) - Mus642 . . . 1035 384/394 (96%) musculus (Mouse), 3354 aa.


[0487] PFam analysis predicts that the NOV22a protein contains the domains shown in the Table 22F.
124TABLE 22FDomain Analysis of NOV22aIdentities/Similarities forPfamNOV22athe MatchedExpectDomainMatch RegionRegionValuecadherin 35 . . . 12841/108 (38%)6.2e−1767/108 (62%)cadherin142 . . . 23836/112 (32%)3.1e−1167/112 (60%)cadherin254 . . . 34541/107 (38%)1.9e−2469/107 (64%)



Example 23

[0488] The NOV23 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 23A.
125TABLE 23ANOV23 Sequence AnalysisSEQ ID NO: 1131772 bpNOV2 3a,CTTTTGCACTGATCATTTCTCTTAATTGGCAGGTAACAAGGAGGGAGCGCATTCTTCCCG57774-01 DNASequenceACCTTCTGGGTGCTGCTGAGTATCTTTCTGGGAGCAGTGGCCATGCTGTGCAAAGAGCAAGGGATCACTGTGCTGGGTTTAAATGCGGTATTTGACATCTTGGTGATAGGCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCATTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTCGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTCATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCCGCGAGTAACCTGTTCTTCCGAGTGGCCTTCGTGGTCGCACAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCCCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTCTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTACACTACAACATTGGCAAAAACCTCGCTGATAAACGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGCCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATCCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGACGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCTGATCCTGTTTCCTTCATGTTTTGAGTTTGAGTGTGTGTGTGCATGAGGCATATCATTAATAGTATGTGGTTACATTTAACCATTTAAAAGTCTTAGACAORF Start: ATG at 101ORF Stop: TGA at 1673SEQ ID NO: 114524 aaMW at 59138.5 kDNOV23a,MLCKEQGITVLGLNAVFDILVIGKFNVLEIVQKVLHKDKSLENLGMLRNGCLLFRMTLCG57774-01Protein SequenceLTSGGAGMLYVRWRIMGTGPPAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 1151515 bpNOV23b,GAATTCAAATTCAATGTTCTGCAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT167200132 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGCCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGACGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCTGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTCCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCACAATACCCTGAAACGCTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAACCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 116505 aaMW at 57228.1 kDNOV23b,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTGPP167200132Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHANNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1171515 bpNOV23c,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT167200144 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGCGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGACCTCGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTCAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCACCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAACGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCTGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAACTCCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTCAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGGCATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGCAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end at sequenceSEQ ID NO: 118505 aaMW at 57216.0 kDNOV23c,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTGPP167200144Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCTPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHANNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1191515 bpNOV23d,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT169252408 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGAGGATTTCTCGTTATCCCATTTCTCCCTGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAGGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGACCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTACACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 120505 aaMW at 57216.0 kDNOV23d,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTCPP169252408Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMITLLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1211515 bpNOV23e,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT169252412 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGCACGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCCCCTTTGCTGACACCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCCGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCTGCGAGTAACCTGTTCTTCCCAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTUCTGCTCACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGCCAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGACTGAGCAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGCCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGCAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCACACTTTGCCGCTGCCTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCCCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAACAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGCGCAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 122505 aaMW at 57222.1 kDNOV23e,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTGPP169252412Protein SequenceAFTEVDNPAPFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGPICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHANNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1231515 bpNOV23f,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT169252424 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCTCCCAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAACGCAACCAGACAGCTGCCATCAGATACTACCCCGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTCAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAGGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 124505 aaMW at 57128.9 kDNOV23t,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAOMLYVRWRIMGTGPP169252424Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLICLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRGKLELMQKKAVLESEQ ID NO: 1251515 bpNOV23 g,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT169252469 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCCGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCACATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTCCATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGCAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATCCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1261505 aaW at 57228.1 kDNOV23g,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTGPP169252469Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLICLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYNGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1271515 bpNOV23h,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT169252475 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGCGATTTCTCGTTATCCCATTTCTCCCCGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCAGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGCACAAATGCCACCGTGCTGAAACCAGACCACAGCCTGGCCTCGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGGCTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 128505 aaMW at 57170.1 kDNOV23h,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTGPP169252475Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLGLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1291515 bpNOV23i,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT169252481 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGCGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCCGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCAGAGCGTGTCCTCTACCTCCCCACCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAACAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCCACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTCGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGCCAATTAAAGCAAATCCAAATGCTGCAAGTTACCGTGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTCGCACCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 130505 aaMW at 57221.0 kDNOV23i,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTCPP169252481Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMCCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHANNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYRGNLAVLYHRWGHLDLAKKHYEISSQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1311515 bpNOV23j,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT169252485 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATACTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTCCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTCGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCCGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCAGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAAACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATCCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAACCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 132505 aaMW at 57210.0 kDNOV23j,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGILYVRWRIMGTGPP169252485Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGNKRRILTLOLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYNRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1331515 bpNOV23k,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT169252492 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCCGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCATTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCCGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGACCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAATAAGGAGAATTACGGTCTGCTGAGAAGGAAGCTAGAACTAATGCAAAAGAAAGCTGTORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 134505 aaMW at 57242.1 kDNOV23k,EFKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTGPP169252492Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSIGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNTLKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKBRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1351515 bpNOV23l,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT174104491 DNASequenceTACAGAATCTCGGCATGCTCAGGAACGGGGACCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGCCACGGGCCCCCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCCGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCATTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTCCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTCGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGACCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 136505 aaMW at 57300.1 kDNOV23l,EFKFNVLEIVQKVLHKDKSLENLGMLRNGDLLFRMTLLTSGGAGMLYVRWRIMGTGPP174104491Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLICLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSIGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 137855 bpNOV23m,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGT169252509 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAGCCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTATCCGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 138285 aaMW at 32488.7 kDNOV23m,EFSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGSQTAAIRYYREAVRLNPKYV169252509Protein SequenceHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 139855 bpNOV23n,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGT169252515 DNASequenceGTCCCCTCAATGCTAAGGTTCACCACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATCAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTCCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 140285 aaMW at 32489.7 kDNOV23n,EFSGEWRSEEQLFRSALSVCPLNAKVHHNIGKNLADKGNQTAAIRYYREAVRLNPKYV169252515Protein SequenceHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLCIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 141855 bpNOV23o,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGT169252519 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCCGCCATCAGATACTACCGGCAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGACCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAAGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTACAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 142285 aaMW at 32515.7 kDNOV23o,EFSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYV169252519Protein SequenceHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 143855 bpNOV23p,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGT169252524 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGTTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGCTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGCCGTCTGTATGCAGATCTCAATCGCCACGTGCATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCCACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATCCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAACGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 144285 aaMW at 32543.8 kDNOV23p,EFSGEWRSEEQLFRSALSVCPLNAKVIIYNIGKNLADKCNQTAAIRYYREAVRLNPKYV169252524Protein SequenceHAMNNLGNILKERNELQEVEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 145855 bpNOV23q,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTCCTCTGTCTGTGT169252528 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATCCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 146285 aaMW at 32455.6 kDNOV23q,EFSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYV169252528Protein SequenceHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALSLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 147855 bpNOV23r,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGT169252547 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACACCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAACCAGTTGGAAGAGAGGCACTGCAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACCATGAAATCTCCTTGCAGCTTGACCCCACGGCATCACGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAACAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 148285 aaMW at 32489.7 kDNOV23r,EFSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYV169252547Protein SequenceHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHHEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 149855 bpNOV23s,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGT169252557 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTCGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAGGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTCACCCCACGGCATCAGGAACTAAGGACAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 150285 aaMW at 32543.7 kDNOV23s,EFSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYV169252557Protein SequenceHANNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 1511515 bpNOV23t,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCAT174104491 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGACCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTCGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAACGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCCGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCATTCGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCCCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAACGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGACGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTCCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACCGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 152505 aaMW at 57300.1 kDNOV23t,EFKFNVLEIVQKVLHKDKSLENLGMLRNGDLLFRMTLLTSGGAGMLYVRWRIMGTGPP174104491Protein SequenceAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSIGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHANNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVLESEQ ID NO: 153843 bpNOV23u,AGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCCG57774-02 DNASequenceTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATCAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACACAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTCAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCCACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 154281 aaMW at 31997.2 kDNOV23u,SGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHACG57774-02Protein SequenceMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 1551503 bpNOV23v,AAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCATTAGAGACG57774-03 DNASequenceATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTCTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCTCCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTCCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCACACACCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATCCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATCAATCTAGGCATAGTGCAGAATAGCCTGAAACCGTTTGAAGCAGCAGAGCAAAGTTACCCGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTCCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTCGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 156501 aaMW at 56709.5 kDNOV23v,KFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTGPPAFCG57774-03Protein SequenceTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVCFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHANNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 1571515 bpNOV23w,GAATTCAAATTCAATGTTCTGGAAATTCTCCAGAAGGTACTACATAAGGACAAGTCATCG57774-04 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTCGAGGGGCTGGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTGATTGGTCAATGGGCTGCATCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCTGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTGGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACACCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGCAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTCCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 7ORF Stop: at 1510SEQ ID NO: 158501 aaMW at 56709.5 kDNOV23w,KFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTGPPAFCG57774-04Protein SequenceTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCIPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNPHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREAIELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHCNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 1591515 bpNOV23x,GAATTCAAATTCAATGTTCTGGAAATTGTCCAGAAGGTACTACATAAGGACAAGTCATCG57774-05 DNASequenceTAGAGAATCTCGGCATGCTCAGGAACGGGGGCCTCCTCTTCAGAATGACCCTGCTCACCTCTGGAGGGGCTCGGATGCTCTACGTGCGCTGGAGGATCATGGGCACGGGCCCGCCGGCCTTCACCGAGGTGGACAACCCGGCCTCCTTTGCTGACAGCATGCTGGTGAGGGCCGTAAACTACAATTACTACTATTCATTGAATGCCTGGCTGCTGCTGTGTCCCTGGTGGCTGTGTTTTCATTGGTCAATGGGCTGCACCCCCCTCATTAAGTCCATCAGCGACTGGAGGGTAATTGCACTTGCAGCACTCTGGTTCTGCCTAATTGGCCTGATATGCCAAGCCCTGTGCTCTGAAGACGGCCACAAGAGAAGGATCCTTACTCTGGGCCTGGGATTTCTCGTTATCCCATTTCTCCCTGCGAGTAACCTGTTCTTCCGAGTGGGCTTCGTGGTCGCGGAGCGTGTCCTCTACCTCCCCAGCGTTGGGTACTGTGTGCTGCTGACTTTTCGATTCGGAGCCCTGAGCAAACATACCAAGAAAAAGAAACTCATTGCCGCTGTCGTGCTGGGAATCTTATTCATCAACACGCTGAGATGTGTGCTGCGCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTCCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGGCATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 7ORF Stop: at 1510SEQ ID NO: 160501 aaMW at 56697.5 kDNOV23x,KFNVLEIVQKVLHKDKSLENLGMLRNGGLLFRMTLLTSGGAGMLYVRWRIMGTGPPAFCG57774-05Protein SequenceTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCPWWLCFDWSMGCTPLIKSISDWRVIALAALWFCLIGLICQALCSEDGHKRRILTLGLGFLVIPFLPASNLFFRVGFVVAERVLYLPSVGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFINTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVhYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 161855 bpNOV23y,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTCG57774-06 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCCAGORF Start: at 7ORF Stop: at 850SEQ ID NO: 162281 aaMW at 31997.2 kDNOV23y,SGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHACG57774-06Protein SequenceMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 163855 bpNOV23z,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTCG57774-07 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAGCCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTATCGGACAGCAATTAAACACAGAADGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTCAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTCGCTGTCCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 7ORF Stop: at 850SEQ ID NO: 164281 aaMW at 31970.1 kDNOV23z,SGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGSQTAAIRYYREAVRLNPKYVHACG57774-07Protein SequenceMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 165855 bpNOV23aa,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTCG57774-08 DNASequenceGTCCCCTCAATGCTAAGGTTCACCACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGACCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGCCGCAGCAGAGCAAAGTTACCCGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCCTGCTGAAACCAGAGCACAGCCTGGCCTCGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAACGTGCTGGGGAAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 7ORF Stop: at 850SEQ ID NO: 166281 aaMW at 31971.1 kDNOV23aa,SGEWRSEEQLFRSALSVCPLNAKVHHNIGKNLADKGNQTAAIRYYREAVRLNPKYVHACG57774-08Protein SequenceMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 167855 bpNOV2ab,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTCG57774-09 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCCGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATCCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTCACCCCACGGCATCAGGAACTAAGGAGAATTACCGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 7ORF Stop: at 850SEQ ID NO: 168281 aaMW at 31997.2 kDNOV23ab,SGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHACG57774-09Protein SequenceMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKNYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 169855 bpNOV23ac,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTCG57774-10 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGTTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTCTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATCCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 7ORF Stop: at 850SEQ ID NO: 170281 aaMW at 32025.2 kDNOV23ac,SGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHACG57774-10Protein SequenceMNNLGNILKERNELQEVEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 171855 bpNOV23ad,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTCG57774-11 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTCGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCCGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCCCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTGAAGCTTTATCCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTCCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 7ORF Stop: at 850SEQ ID NO: 172281 aaMW at 31937.1 kDNOV23ad,SGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHACG57774-11Protein SequenceMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALSLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 173855 bpNOV23ae,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTCG57774-12 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTGCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAGCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAAGGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCACAGCACAGCCTGGCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAAGAGAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAAGGAATCTCAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACCATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTCCTGAGAAGAAAGCTAGAACTAATGCAAAACAAAGCTGTCCTCGAGStart: at 7ORF Stop: at 850SEQ ID NO: 174281 aaMW at 31971.1 kDNOV23ae,SGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHACG57774-12Protein SequenceMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVCREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNLAVLYHRWGHLDLAKKHHEISLQLDPTASGTKENYGLLRRKLELMQKKAVSEQ ID NO: 175855 bpNOV23af,GAATTCAGCGGCGAGTGGCGGAGTGAGGAACAGCTTTTCAGAAGTGCTCTGTCTGTGTCG57774-13 DNASequenceGTCCCCTCAATGCTAAGGTTCACTACAACATTGGCAAAAACCTGGCTGATAAAGGCAACCAGACAGCTGCCATCAGATACTACCGGGAAGCTGTAAGATTAAATCCCAAGTATGTTCATGCCATGAATAATCTTGGAAATATCTTAAAAGAAAGGAATGAGCTACAGGAAGCTGAGGAGCTGCTGTCTTTGGCTGTTCAAATACAGCCAGACTTTCCCGCTGCGTGGATGAATCTAGGCATAGTGCAGAATAUCCTGAAACGGTTTGAAGCAGCAGAGCAAAGTTACCGGACAGCAATTAAACACAGAACGAAATACCCAGACTGTTACTACAACCTCGGGCGTCTGTATGCAGATCTCAATCGCCACGTGGATGCCTTGAATGCGTGGAGAAATGCCACCGTGCTGAAACCAGAGCACAGCCTGCCCTGGAACAACATGATTATACTCCTCGACAATACAGGTAATTTAGCCCAAGCTGAAGCAGTTGGAACACAGGCACTGGAATTAATACCTAATGATCACTCTCTCATGTTCTCGTTGGCAAACGTGCTGGGGAAATCCCAGAAATACAGGGAATCTGAAGCTTTATTCCTCAAGGCAATTAAAGCAAATCCAAATGCTGCAAGTTACCATGGTAATTTGGCTGTGCTTTATCATCGTTGGGGACATCTAGACTTGGCCAAGAAACACTATGAAATCTCCTTGCAGCTTGACCCCACGGCATCAGGAACTAAGGAGAATTACGGTCTGCTGAGAAGAAAGCTAGAACTAATGCAAAAGAAAGCTGTCCTCGAGORF Start: at 7ORF Stop: at 850SEQ ID NO: 176281 aaMW at 32025.2 kDNOV23af,SGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLNPKYVHACG57774-13Protein SequenceMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQSYRTAIKERRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTGNLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYRESEALFLKAIKANPNAASYHGNLAVLYHRWGIILDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAV


[0489] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 23B.
126TABLE 23BComparison of NOV23a against NOV23b through NOV23af.Identities/Similarities forProteinNOV23a Residues/the MatchedSequenceMatch ResiduesRegionNOV23b24 . . . 524  501/501 (100%)3 . . . 503 501/501 (100%)NOV23c24 . . . 524 500/501 (99%)3 . . . 503500/501 (99%)NOV23d24 . . . 524 500/501 (99%)3 . . . 503500/501 (99%)NOV23e24 . . . 524 499/501 (99%)3 . . . 503499/501 (99%)NOV23f24 . . . 524 500/501 (99%)3 . . . 503500/501 (99%)NOV23g24 . . . 524  501/501 (100%)3 . . . 503 501/501 (100%)NOV23h24 . . . 524 500/501 (99%)3 . . . 503500/501 (99%)NOV23i24 . . . 524 499/501 (99%)3 . . . 503499/501 (99%)NOV23j24 . . . 524 500/501 (99%)3 . . . 503501/501 (99%)NOV23k24 . . . 524 500/501 (99%)3 . . . 503501/501 (99%)NOV23l24 . . . 524 499/501 (99%)3 . . . 503500/501 (99%)NOV23m244 . . . 524 280/281 (99%)3 . . . 283281/281 (99%)NOV23n244 . . . 524 280/281 (99%)3 . . . 283281/281 (99%)NOV23o244 . . . 524  281/281 (100%)3 . . . 283 281/281 (100%)NOV23p244 . . . 524 280/281 (99%)3 . . . 283280/281 (99%)NOV23q244 . . . 524 280/281 (99%)3 . . . 283280/281 (99%)NOV23r244 . . . 524 280/281 (99%)3 . . . 283281/281 (99%)NOV23s244 . . . 524 280/281 (99%)3 . . . 283281/281 (99%)NOV23t24 . . . 524 499/501 (99%)3 . . . 503500/501 (99%)NOV23u244 . . . 524  281/281 (100%)1 . . . 281 281/281 (100%)NOV23v24 . . . 524  501/501 (100%)1 . . . 501 501/501 (100%)NOV23w24 . . . 524  501/501 (100%)1 . . . 501 501/501 (100%)NOV23x24 . . . 524 500/501 (99%)1 . . . 501500/501 (99%)NOV23y244 . . . 524  281/281 (100%)1 . . . 281 281/281 (100%)NOV23z244 . . . 524 280/281 (99%)1 . . . 281281/281 (99%)NOV23aa244 . . . 524 280/281 (99%)1 . . . 281281/281 (99%)NOV23ab244 . . . 524  281/281 (100%)1 . . . 281 281/281 (100%)NOV23ac244 . . . 524 280/281 (99%)1 . . . 281280/281 (99%)NOV23ad244 . . . 524 280/281 (99%)1 . . . 281280/281 (99%)NOV23ae244 . . . 524 280/281 (99%)1 . . . 281281/281 (99%)NOV23af244 . . . 524 280/281 (99%)1 . . . 281281/281 (99%)


[0490] Further analysis of the NOV23a protein yielded the following properties shown in Table 23C.
127TABLE 23CProtein Sequence Properties NOV23aPSort0.6850 probability located in endoplasmic reticulumanalysis:(membrane); 0.6400 probability located in plasma membrane;0.4600 probability located in Golgi body; 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 24 and 25analysis:


[0491] A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23D.
128TABLE 23DGeneseq Results for NOV23aNOV23aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor the MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAE22157Human TRNFR-19 protein -1 . . . 524524/524 (100%)0.0Homo sapiens, 760 aa.237 . . . 760 524/524 (100%)[WO200226950-A2, 04 APR.2002]AAM41435Human polypeptide SEQ ID NO1 . . . 524524/524 (100%)0.06366 - Homo sapiens, 547 aa.24 . . . 547 524/524 (100%)[WO200153312-A1, 26 JUL.2001]AAM39649Human polypeptide SEQ ID NO1 . . . 524524/524 (100%)0.02794 - Homo sapiens, 524 aa.1 . . . 524524/524 (100%)[WO200153312-A1, 26 JUL.2001]AAE05188Human drug metabolising1 . . . 524523/524 (99%) 0.0enzyme (DME-19) protein -218 . . . 741 524/524 (99%) Homo sapiens, 741 aa.[WO200151638-A2, 19 JUL.2001]AAB12140Hydrophobic domain protein1 . . . 524523/524 (99%) 0.0isolated from WERI-RB cells -126 . . . 649 524/524 (99%) Homo sapiens, 649 aa.[WO200029448-A2, 25 MAY2000]


[0492] In a BLAST search of public sequence datbases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23E.
129TABLE 23EPublic BLASTP Results for NOV23aNOV23aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9BGZ6Hypothetical 59.2 kDa protein -1 . . . 524513/524 (97%)0.0Macaca fascicularis (Crab1 . . . 524519/524 (98%)eating macaque) (Cynomolgusmonkey), 524 aa.AAH31368Hypothetical protein - Mus1 . . . 524479/524 (91%)0.0musculus (Mouse), 524 aa.1 . . . 524496/524 (94%)Q96SU8CDNA FLJ14624 fis, clone46 . . . 524 476/479 (99%)0.0NT2RP2000248, weakly similar to1 . . . 479477/479 (99%)UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase110 kDa subunit (EC 2.4.1.-) -Homo sapiens (Human), 479 aa.Q8WV63Hypothetical 44.5 kDa protein -1 . . . 376 376/376 (100%)0.0Homo sapiens (Human), 395 aa.1 . . . 376 376/376 (100%)Q9CS835730419014Rik protein - Mus227 . . . 524 281/298 (94%)e−163musculus (Mouse), 298 aa1 . . . 298287/298 (96%)(fragment).


[0493] PFam analysis predicts that the NOV23a protein contains the domains shown in the Table 23F.
130TABLE 23FDomain Analysis of NOV23aIdentities/Similarities forPfamNOV23athe MatchedExpectDomainMatch RegionRegionValueTPR265 . . . 29811/34 (32%)1.1e−0527/34 (79%)TPR299 . . . 33210/34 (29%)0.002628/34 (82%)TPR333 . . . 366 9/34 (26%)4.8e−0628/34 (82%)TPR367 . . . 40011/34 (32%)7.4e−0524/34 (71%)TPR435 . . . 46810/34 (29%)0.8822/34 (65%)TPR469 . . . 50213/34 (38%)0.0006324/34 (71%)



Example 24

[0494] The NOV24 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 24A.
131TABLE 24ANOV24 Sequence AnalysisSEQ ID NO: 1772107 bpNOV24a,GCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAGAGACAGAATCTCGCTCTGCCACCCG89285-01 DNASequenceCAGGCCGGAGTGCAGTGGCGCGATCACAGCTCACTGCAGCCTTGACCTCCCGGGCTCAAGTGATCTTCCCGCCTCAGATTCCGGAGCAGCTAGGACCCCAGACAGCACCACCACACCTGGCTTCACACGCCTTGCCGTCCGCTGCTAGCTGATACCCCACGTGGCACTCACAGCGGCCGAGGCCCCGGACCACCTGGCACCTGTGCATGCAGCTGCCGTTCCTGTTGGCACACGGGCTTCTACGGACACAATGCCTGCCGTCCTCCTGGAGCTGGAACCCGCGCCGGCACTGGCAGCGATGCCGAGTGATTGTGAGCTGGACACAGTGGTGCTGGCAGCCGCCATTGCCCAGGGCGCAGGAGTTAATGGCCAGGCAGGTCCTGCTGTCAGGGAATTCAGCGGCCGCTGAATTCTAGCTAGAATTCAGCGGCCGCTGAATTCTAGCAGACGGCTTTGGAATCCACCAGCTACATCCAGCTCCCTGAGGCAGAGTTGAGAATGGAGAGAATGTTACCTCTCCTGGCTCTGGGGCTCTTGGCGGCTGGGTTCTGCCCTGCTGTCCTCTGCCACCCTAACAGCCCACTTGACGAGGAGAATCTGACCCAGGAGAACCAAGACCGAGGGACACACGTGGACCTCGGATTAGCCTCCGCCAACGTGGACTTCGCTTTCAGCCTGTACAAGCAGTTAGTCCTGAAGGCCCCTGATAAGAATGTCATCTTCTCCCCACTGAGCATCTCCACCGCCTTGGCCTTCCTGTCTCTGGGGGCCCATAATACCACCCTGACAGAGATTCTCAAAGGCCTCAAGTTCAACCTCACGGAGACTTCTGAGGCAGAAATTCAACCAACCTTCCAGCACCTCCTGCGCACTCTCAATCAGTCCAGCGATGAGCTGCAGCTGAGTATGGGAAATGCCATGTTTCTCAAAGAGCAACTCAGTCTGCTGGACAGGTTCACGGAGGATGCCAAGAGGCTGTATGGCTCCGAGGCCTTTGCCACTGACTTTCAGGACTCAGCTGCAGCTAAGAAGCTCATCAACGACTACGTGAAGAATGGAACTAGGGGGAAAATCACAGATCTGATCAAGGACCTTGACTCGCAGACAATGATGGTCCTGGTGAATTACATCTTCTTTAAAGCCAAATGGGACATGCCCTTTGACCCCCAAGATACTCATCAGTCAAGGTTCTACTTGAGCAAGAAAAAGTGGGTAATGGTGCCCATGATGAGTTTGCATCACCTGACTATACCTTACTTCCGGGACGAGGAGCTGTCCTGCACCGTGGTGGAGCTGAAGTACACAGGCAATGCCAGCGCACTCTTCATCCTCCCTGATCAAGACAAGATGGAGGAAGTGGAAGCCATGCTGCTCCCAGAGACCCTGAAGCGGTGGAGAGACTCTCTGGAGTTCAGAGAGATAGGTGAGCTCTACCTGCCAAAGTTTTCCATCTCGAGCGACTATAACCTCAACGACATACTTCTCCAGCTGGGCATTGAGGAAGCCTTCACCAGCAAGGCTGACCTGTCAGGGATCACAGGGGCCAGGAACCTAGCAGTCTCCCAGGTGGTCCATAAGGCTGTGCTTGATGTATTTGAGGAGGGCACAGAAGCATCTGCTGCCACAGCAGTCAAAATCACCCTCCTTTCTGCATTAGTGGAGACAAGGACCATTGTGCGTTTCAACAGGCCCTTCCTGATGATCATTGTCCCTACAGACACCCAGAACATCTTCTTCATGAGCAAAGTCACCAATCCCAAGCAAGCCTAGAGCTTGCCATCAAGCAGTGGGGCTCTCAGTAAGGAACTTGGAATGCAAGCTGGATGCCTGGGTCTCTGGGCACAGCCTGGCCCCTGTGCACCGAGTGGCCATGGCATGTGTGGCCCTGTCTGCTTATCCTTGGAAGGTGACAGCGATTCCCTGTGTAGCTCTCACATGCACAGGGGCCCATGGACTCTTCAGTCTGGAGGGTCCTGGGCCTCCTGACAGCAATAAATAATTTCGTTGGAAGGGCGATTCCAGCACACTTGTGGGCGACAATAAGTTTAAORF Start: ATG at 557ORF Stop: TAG at 1826SEQ ID NO: 178423 aaMW at 47664.3 kDNOV24a,MERMLPLLALGLLAAGFCPAVLCHPNSPLDEENLTQENQDRGTHVDLGLASAAVDFAFCG89285-01Protein SequenceSLYKQLVLKAPDKNVIFSPLSISTALAFLSLGAHNTTLTEILKGLKFNLTETSEAEIHQTFQHLLRTLNQSSDELQLSMGNAMFVKEQLSLLDRFTEDAKRLYGSEAFATDFQDSAAAKKLINDYVKNGTRGKITDLIKDLDSQTMMVLVNYIFFKAKWEMPFDPQDTHQSRFYLSKKKWVMVPMMSLHHLTIPYFRDEELSCTVVELKYTGNASALFILPDQDKMEEVEAALLPETLKRWRDSLEFREIGELYLPKFSISRDYNLNDILLQLGIEEAFTSKADLSGITGARNLAVSQVVHKAVLDVFEEGTEASAATAVKITLLSAAVETRTIVRFNRPFLMIIVPTDTQNIFFMSKVTNPKQASEQ ID NO: 1791281 bpNOV24b,TACTCCAGACAGACGGCTTTGGAATCCACCAGCTACATCCAGCTCCCTGAGGCAGAGTCG89285-04 DNASequenceTGAGAATGGAGAGAATGTTACCTCTCCTGACTCTGGGGCTCTTGGCGGCTGCGTTCTGCCCTGCTGTCCTCTGCCACCCTAACAGCCCACTTGACGAGGAGAATCTGACCCAGGAGAACCAAGACCGAGGGACACACGTGGACCTCGGATTAGCCTCCGCCAACGTCGACTTCGCTTTCAGCCTGTACAAGCAGTTAGTCCTGAAGGCCCCTGATAAGAATGTCATCTTCTCCCCACTGAGCATCTCCACCGCCTTGGCCTTCCTGTCTCTGGGGGCCCATAATACCACCCTGACAGAGATTCTCAAAGGCCTCAAGTTCAACCTCACGGAGACTTCTGAGGCAGAAATTCACCAGAGCTTCCAGCACCTCCTGCGCACCCTCAATCAGTCCAGCGATGAGCTGCAGCTGAGTATGGGAAATGCCATGTTTGTCAAAGAGCAACTCAGTCTGCTGGACAGGTTCACGGAGGATGCCAAGAGGCTGTATGGCTCCGAGGCCTTTGCCACTGACTTTCAGGACTCAGCTGCAGCTAAGAAGCTCATCAACGACTACGTGAAGAATGGAACTAGGGGGAAAATCACAGATCTGATCAAGGACCTTGACTCGCAGACAATGATCGTCCTGGTGAATTACATCTTCTTTAAAGCCAAATGGGAGATGCCCTTTGACCCCCAAGATACTCATCAGTCAAGGTTCTACTTGAGCAAGAAAAAGTGGGTAATGGTGCCCATGATGAGTTTGCATCACCTGACTATACCTTACTTCCGGGACGAGGAGCTGTCCTGCACCGTGGTGGAGCTGAAGTACACAGGCAATGCCAGCGCACTCTTCATCCTCCCTGATCAACACAAGATGGAGGAAGTGGAAGCCATGCTGCTCCCAGAGACCCTGAAGCGGTGGAGAGACTCTCTGGAGTTCAGAGAGATAGGTGAGCTCTACCTGCCAAAGTTTTCCATCTCGAGGGACTATAACCTGAACCACATACTTCTCCAGCTGGGCATTGAGGAAGCCTTCACCAGCAAGGCTGACCTGTCAAGGACCATTGTGCGTTTCAACAGGCCCTTCCTGATGATCATTGTCCCTACAGACACCCAGAACATCTTCTTCATGAGCAAAGTCACCAATCCCAAGCAAGCCTAGAGCTTGCCATCAAGCAGTGGGGCTCTCAGTAAGGAACTTGGAATTCAAACTGGATTCCTGGGTCTCTGGGCACAACCTGGCORF Start: ATG at 64ORF Stop: TAG at 1198SEQ ID NO: 180378 aaMW at 43117.1 kDNOV24b,MERMLPLLTLGLLAAGFCPAVLCHPNSPLDEENLTQENQDRGTHVDLGLASAAADFAFCG89285-04Protein SequenceSLYKQLVLKAPDKNVIFSPLSISTALAFLSLGAHNTTLTEILKGLKFNLTETSEAEIHQSFQHLLRTLNQSSDELQLSMGNAMFVKEQLSLLDRFTEDAKRLYGSEAFATDFQDSAAAKKLINDYVKNGTRGKITDLIKDLDSQTMMVLVNYIFFKAKWEMPFDPQDTHQSRFYLSKKKWVMVPMMSLHHLTIPYFRDEELSCTVVELKYTGNASALFILPDQDKMEEVEAMLLPETLKRWRDSLEFREIGELYLPKFSISRDYNLNDTLLQLGIEEAFTSKADLSRTIVRFNRPFLMIIVPTDTQNIFFMSKVTNPKQASEQ ID NO: 18112852 bpNOV24c,GCTTTGGAATCCACCAGCTACATCCAGCTCCCTGAGGCAGAGTTGAGAATGGAGAGAACG89285-03 DNASequenceTGTTACCTCTCCTGACTCTGGGGCTCTTGGCGGCTGGGTTCTGCCCTGCTGTCCTCTGCCACCCTAACAGCCCACTTGACGAGGAGAATCTGACCCAGGAGAACCAAGACCGAGGGACACACGTGGACCTCGGATTAGCCTCCGCCAACGTGGACTTCGCTTTCAGCCTGTACAAGCAGTTAGTCCTGAAGGCCCCTGATAAGAATGTCATCTTCTCCCCACTGAGCATCTCCACCGCCTTGGCCTTCCTGTCTCTGGGGGCCCATAATACCACCCTGACAGAGATTCTCAAAGGCCTCAAGTTCAACCTCACGGAGACTTCTGAGGCAGAAATTCACCAAACCTTCCACCACCTCCTGCGCACCCTCAATCAGTCCAGCGATGAGCTGCAGCTGAGTATGGGAAATGCCATGTTTGTCAAAGAGCAACTCAGTCTGCTGGACAGGTTCACGGAGGATGCCAAGAGGCTGTATGGCTCCGAGGCCTTTGCCACTGACTTTCACGACTCAGCTGCAGCTAAGAAGCTCATCAACGACTACGTGAAGAATGGAACTAGGGGGAAAATCACAGATCTGATCAAGGACCTTGACTCGCAGACAATGATGGTCCTGGTGAATTACATCTTCTTTAAAGAGAGATAGGTGAGCTCTACCTGCCAAAGTTTTCCATCTCGAGGGACTATAACCTGAACGACATACTTCTCCAGCTGGGCATTGAGGAAGCCTTCACCAGCAAGGCTGACCTGTCAGGGATCACAGGGGCCAGGAACCTAGCAGTCTCCCAGGTGGTCCATAAGGCTGTGCTTGATGTATTTGAGGAGGGCACAGAAGCATCTGCTGCCACAGCAGTCAAAATCACCCTCCTTTCTGCATTAGTGGAGACAAGGACCATTGTGCGTTTCAACAGGCCCTTCCTGATGATCATTGTCCCTACAGACACCCAGAACATCTTCTTCATGAGCAAAGTCACCAATCCCAAGCAAGCCTAGAGCTTCCCATCAAGCAGTGGGGCTCTCAGTAAGGAACTTGGAATGCAAGCTGGATGCCTGGGTCTCTGGGCACAGCCTGGCCCCTGTGCACCGAGTGTCCATGGCATGTATGGCCCTGTCTGCTTATCCTTGGAAGATGACAGCGAATCCCTGTGAAGCTCTCACATGCACAGGGGCCCATGGACTCTTCATTCTGGAGGGTCCTGGGCCTCCTGACAGCAACAAATAATATCGTTORF Start: ATG at 49ORF Stop: TAG at 697SEQ ID NO: 182216 aaMW at 24086.2 kDNOV24c,MERMLPLLTLGLLAAGFCPAVLCHPNSPLDEENLTQENQDRGTHVDLGLASAAVDFAFCG89285-03Protein SequenceSLYKQLVLKAPDKNVIFSPLSISTALAFLSLGAHNTTLTEILKGLKFNLTETSEAEIHQTFHHLLRTLNQSSDELQLSMGNAMFVKEQLSLLDRFTEDAKRLYGSEAFATDFQDSAAAKKLINDYVKNGTRGKITDLIKDLDSQTMMVLVNYIFFKERSEQ ID NO: 183667 bpNOV24d,CACCAAGCTTATGGAGAGAATGTTACCTCTCCTGACTCTGGGGCTCTTGGCGGCTGGG306418132 DNASequenceTTCTGCCCTGCTGTCCTCTGCCACCCTAACAGCCCACTTGACGAGGAGAATCTGACCCAGGAGAACCAAGACCGAGGGACACACGTGGACCTCGGATTAGCCTCCGCCAACGTGGACTTCGCTTTCAGCCTGTACAAGCAGTTAGTCCTGAAGGCCCCTGATAAGAATGTCATCTTCTCCCCACTGAGCATCTCCACCGCCTTGGCCTTCCTGTCTCTGGGGGCCCATAATACCACCCTGACAGAGATTCTCAAAGGCCTCAAGTTCAACCTCACGGAGACTTCTGAGGCAGAAATTCACCAGAGCTTCCAGCACCTCCTGCGCACCCTCAATCAGTCCAGCGATGAGCTGCAGCTGAGTATGGGAAATGCCATGTTTGTCAAAGAGCAACTCAGTCTGCTGGACAGGTTCACGGAGGATGCCAAGAGGCTGTATGGCTCCGAGGCCTTTGCCACTGACTTTCAGGACTCAGCTGCAGCTAAGAAGCTCATCAACGACTACGTGAAGAATGGAACTAGGGGGAAAATCACAGATCTGATCAAGGACCTTGACTCGCAGACAATGATGGTCCTGGTGAATTACATCTTCTTTAAAGAGAGAGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 184222 aaMW at 24676.9 kDNOV24d,TKLMERMLPLLTLGLLAAGFCPAVLCHPNSPLDEENLTQENQDRGTHAALGLASAAVD306418132Protein SequenceFAFSLYKQLVLKAPDKNVIFSPLSISTALAFLSLGAHNTTLTEILKGLKFNLTETSEAEIHQSFQHLLRTLNQSSDELQLSMGNAMFVKEQLSLLDRFTEDAKRLYGSEAFATDFQDSAAAKKLINDYVKNGTRGKITDLIKDLDSQTMMVLVNYIFFKERVDGSEQ ID NO: 18511603 bpNOV24e,GACGGCTTTGGAATCCACCAGCTACATCCAGCTCCCTGAGGCAGAGTTGAGAATGGAGCG89285-02 DNASequenceAGAATGTTACCTCTCCTGGCTCTGGGGCTCTTGGCGGCTGGGTTCTGCCCTGCTGTCCTCTGCCACCCTAACAGCCCACTTGACGAGGAGAATCTGACCCAGGAGAACCAAGACCGAGGGACACACGTGGACCTCGGATTAGCCTCCGCCAACGTGGACTTCGCTTTCAGCCTGTACAAGCAGTTAGTCCTGAAGGCCCCTGATAAGAATGTCATCTTCTCCCCACTGAGCATCTCCACCGCCTTGGCCTTCCTGTCTCTGGGGGCCCATAATACCACCCTGACAGAGATTCTCAAAGGCCTCAAGTTCAACCTCACGGAGACTTCTGAGGCAGAAATTCACCAGAGCTTCCAGCACCTCCTGCGCACCCTCAATCAGTCCAGCGATGAGCTGCAGCTGAGTATGGGAAATGCCATGTTTGTCAAAGAGCAACTCAGTCTGCTGGACAGGTTCACGGAGGATGCCAAGAGGCTGTATGGCTCCGAGGCCTTTGCCACTGACTTTCAGGACTCAGCTGCAGCTAAGAAGCTCATCAACGACTACGTGAAGAATGGAACTAGGGGGAAAATCACAGATCTGATCAACGACCTTGACTCGCAGACAATGATGGTCCTGGTGAATTACATCTTCTTTAAAGCCAAATGGGAGATGCCCTTTGACCCCCAAGATACTCATCAGTCAAGGTTCTACTTGAGCAAGAAAAAGTGGGTAATGGTGCCCATGATGAGTTTGCATCACCTGACTATACCTTACTTCCGGGACGAGGAGCTGTCCTGCACCGTGGTGGAGCTGAAGTACACAGGCAATGCCAGCGCACTCTTCATCCTCCCTGATCAAGACAAGATGGAGGAAGTGGAAGCCATGCTGCTCCCAGAGACCCTGAAGCGGTGGAGAGACTCTCTGGAGTTCAGAGAGATAGGTGAGCTCTACCTGCCAAAGTTTTCCATCTCGAGGGACTATAACCTGAACGACATACTTCTCCAGCTGGGCATTGAGGAAGCCTTCACCAGCAAGGCTGACCTGTCAGGGATCACAGGGGCCAGGAACCTAGCAGTCTCCCAGGTGGTCCATAAGGCTGTGCTTGATGTATTTGAGGACGGCACAGAAGCATCTGCTGCCACAGCAGTCAAAATCACCCTCCTTTCTGCATTAGTGGAGACAAGGACCATTGTGCGTTTCAACAGGCCCTTCCTGATGATCATTGTCCCTACAGACACCCAGAACATCTTCTTCATGAGCAAAGTCACCAATCCCAAGCAAGCCTAGAGCTTGCCATCAAGCAGTGGGGCTCTCAGTAAGGAACTTGGAATGCAAGCTGGATGCCTGGGTCTCTGGGCACAGCCTGGCCCCTGTGCACCGAGTGGCCATGGCATGTGTGGCCCTGTCTGCTTATCCTTGGAAGGTGACAGCGATTCCCTGTGTAGCTCTCACATGCACAGGGGCCCATGGACTCTTCAGTCTGGAGGGTCCTGGGCCTCCTGACAGCAATAAATAATTTCGTTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACORF Start: at 2ORF Stop: TAG at 1322SEQ ID NO: 186440 aaMW at 49553.3 kDNOV24e,TALESTSYTQLPEAELRMERMLPLLALGLLAAGFCPAAAdHPNSPLDEENLTQENQDRCG89285-02Protein SequenceGTHVDLGLASANVDFAFSLYKQLVLKAPDKNVIFSPLSISTALAFLSLGAANTTLTEILKGLKFNLTETSEAEIHQSFQHLLRTLNQSSDELQLSMGNAAFVKEQLSLLDRFTEDAKRLYGSEAFATDFQDSAAAKKLINDYVKNGTRGKITDLIKDLDSQTMMVLAAYIFFKAKWEMPFDPQDTHQSRFYLSKKKWVMVPMMSLHHLTIPYFRDEELSCTVVELKYTGNASALFILPDQDKMEEVEAMLLPETLKRWRDSLEFREIGELYLPKFSISRDYNLNDILLQLGIEEAFTSKADLSGITGARNLAVSQVVHKAVLDVFEEGTEASAATAVKITLLSALVETRTIVRFNRPFLMIIVPTDTQNIFFMSKVTNPKQA


[0495] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 24B.
132TABLE 24BComparison of NOV24a against NOV24b through NOV24e.Identities/Similarities forProteinNOV24a Residues/the MatchedSequenceMatch ResiduesRegionNOV24b1 . . . 423376/423 (88%)1 . . . 378377/423 (88%)NOV24c1 . . . 216212/216 (98%)1 . . . 216213/216 (98%)NOV24d1 . . . 216212/216 (98%)4 . . . 219214/216 (98%)NOV24e1 . . . 423422/423 (99%)18 . . . 440 423/423 (99%)


[0496] Further analysis of the NOV24a protein yielded the following properties shown in Table 24C.
133TABLE 24CProtein Sequence Properties NOV24aPSort0.4600 probability located in plasma membrane; 0.1000analysis:probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum (lumen);0.1000 probability located in outsideSignalPCleavage site between residues 24 and 25analysis:


[0497] A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24D.
134TABLE 24DGeneseq Results for NOV24aNOV24aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueABB44601Human wound healing related1 . . . 423421/423 (99%)0.0polypeptide SEQ ID NO 60 -1 . . . 423422/423 (99%)Homo sapiens, 423 aa.[CA2325226-A1, 17 MAY 2001]AAR67259Alpha-1-antichymotrypsin -22 . . . 423 401/402 (99%)0.0Homo sapiens, 402 aa.1 . . . 402402/402 (99%)[US5367064-A, 22 NOV. 1994]AAR82250Mature human wild type alpha-22 . . . 423 401/402 (99%)0.01-antichymotrypsin - Homo1 . . . 402402/402 (99%)sapiens, 476 aa. [WO9527055-A, 12 OCT. 1995]AAR83101Wild-type alpha-1-22 . . . 423 401/402 (99%)0.0antichymotrypsin - Homo1 . . . 402402/402 (99%)sapiens, 402 aa. [WO9527053-A1, 12 OCT. 1995]AAR44435Alpha-antichymotrypsin - Homo22 . . . 423 401/402 (99%)0.0sapiens, 402 aa. [US5266465-1 . . . 402402/402 (99%)A, 30 NOV. 1993]


[0498] In a BLAST search of public sequence datbases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24E.
135TABLE 24EPublic BLASTP Results for NOV24aIdentities/NOV24aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP01011Alpha-1-antichymotrypsin1 . . . 423422/423 (99%)0.0precursor (ACT) - Homo1 . . . 423423/423 (99%)sapiens (Human), 423 aa.AAH34554Serine (or cysteine)1 . . . 423421/423 (99%)0.0proteinase inhibitor, clade A1 . . . 423423/423 (99%)(alpha-1 antiproteinase,antitrypsin), member 3 - Homosapiens (Human), 423 aa.ITHUCalpha-1-antichymotrypsin1 . . . 422415/422 (98%)0.0precursor - human, 433 aa.1 . . . 422417/422 (98%)Q9UNU9Alpha-1-antichymotrypsin -17 . . . 423 406/407 (99%)0.0Homo sapiens (Human), 407 aa1 . . . 407407/407 (99%)(fragment).Q91WP6Serine protease inhibitor 2-2 -7 . . . 421260/416 (62%)e−144Mus musculus (Mouse), 4184 . . . 418324/416 (77%)aa.


[0499] PFam analysis predicts that the NOV24a protein contains the domains shown in the Table 24F.
136TABLE 24FDomain Analysis of NOV24aIdentities/Similarities forPfamNOV24athe MatchedExpectDomainMatch RegionRegionValueserpin46 . . . 420224/394 (57%)1.8e−216345/394 (88%)


[0500] Example 25


[0501] The NOV25 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 25A.
137TABLE 25ANOV25 Sequence AnalysisSEQ ID NO: 1871860 bpNOV25a,GCGGATCCTCACACGACTGTGATCCGATTCTTTCCAGCGGCTTCTGCAACCAAGCGGGTCTTACCCCCCG57094-01DNA SequenceGGTCCTCCGCGTCTCCAGTCCTCGCACCTGGAACCCCAACGTCCCCGAGAGTCCCCGAATCCCCGCTCCCAGGCTACCTAAGAGGATGAGCGGTGCTCCGACAACCAAGGAAGCCCTGATGCTCTGCGCCGCAACCGCCGTGCTACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCACGGACTCCTGCAGCTCGGCCAGGAATGCGCGAACACCAAAGCGAACCCGCAGTCAGCTGAGCGCGCTGGAGCGCGCCTGAGCCCGTGCGGGTCCGCCTGTAAGGGAACCGAGGAATCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCAAGTTGACCCGGCTAACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCAAGGTTAAAAAGAGGAAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTAAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCCCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACAAAAATAACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGAAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCTAGCGTCCTGGCTGGGCCTGGTCCCAGGCCCACGAAAGACGGTGACTCTTAACTCTGCCCGAGGATGTGGCCAAGACCACGACTGGAGAAGCCCCCTTTCTGAGTGAAGGGGGGCTGAATGCGTTGCCTCCTGAGATCGAGGCTGCAGGATATGCTCAGACTCTAGAGGCGTGGACCAAGGGGCATGGAGCTTCACTCCTTGCTGGCCAGGGAGTTGGGGACTCAGAGGGACCACTTGGGGCCAGCCAGACTGGCCTCAATGGCGGACTCAGTCACATTGACTGACGGGACCAGGGCTTGTGTGGAATCGAGAGCGCCCTAATGGTCCTGGTGCTGTTGTGTGTAGGTCCCCTGGGACACAAGCAGGCGCCAATGGTATCTGGGCGGAAACTCACAGAGTTCTTGGAATAAAAGCAACCTCAGAACAAAAAAAAAAAAAAAAAAGCGGAGCTCACAGAGTTCTTGGAATAAAAGCAACCTCAGAACAAAAAAORF Start: ATG at 154ORF Stop: TAG at 1369SEQ ID NO: 188405 aaMW at 44702.1 kDNOV25a,MSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGQGCANTGAHPQSAERACG57094-01ProteinGARLSACGSACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRISequenceQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPAAPAAAASRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWAAYAAGFGDPHGEFWLGLEAAHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPAAEAASSEQ ID NO: 1891155 bpNOV25b,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGAAACAAGATGAATGTCCTGGCGC17007596DNA SequenceACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCAAAGCGCACCCGAAGTAAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACAATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCCGGCTAAAATGTCAGCCGCCTGCACCCGCTGCCCAGGGATTGCCAGGACCTGTTCCAGGTTAAGGAGAGGAAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTAAGTCTGGAGGAGGTGAATAGAATAACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGAAQTTCTCCGTGCACCTGGGTGGCGAGGACACCGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTGGACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTQGAGGCTGGTGGTTTGGAACCTGCAGCAATTCAAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 190385 aaMW at 43441.5 kDNOV25b,RSGPVQSKSPRFASWDEMNVLAHGLLQLCGGLREHAERTRSQLSALERRLSACGSACQGTEGSTDLP170075926ProteinLAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEEVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLESEQ ID NO: 1911155 bpNOV25c,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCA164225601DNA SequenceCGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGTTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 192385 aaMW at 43440.6 kDNOV25c,RSGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGSACQGTEGSTDLPL164225601ProteinAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPSequenceARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLESEQ ID NO: 1931155 bpNOV25d,AGATCTGGACCCGTGCAGTCGAGTCGCCGCGCTTTGCGTCCTGGGACCAAATGAATGTCCTGGCAAC164225637DNA SequenceACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGQACAAAAATAACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGAACCTGAAGCAATTCAAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGCGCCGCCACTACCCGCTGCAGGCCACCACCATGTCGATCCAGCCCATGGCAGCAGAGGCAGCCTCCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 194385 aaMW at 43388.5 kDNOV25d,RSGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGSACQGTEGSTDLP164225637ProteinLAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVASequenceKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAHSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRHYPLQATTMSIQPMAAEAASLESEQ ID NO: 1951155bpNOV25e,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCQTCCTGGGACGAGATGAATGTCCTGGCGCA170075926DNA SequenceCGGACTCCTGCAGCTCGGCCAGCGGCTGCGCGAACACGCGGACCGCACCCGCAGTCACCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGCGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAACCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAQAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCQGCTCACAATGTCAGCCGCCTCCACCGGCTGCCCAQGGATTGCCAGCAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCCAGCCTCACGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGACGCCCCACCATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGCCTGGGTCTGGAGGACGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGCCAACCCCCAGTTCCTLCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCCGCCAGCTGGGCGCCACCACCGTCCCACCCAGCQCCCTCTCCGTACCCTTCTCCACTTGGGACCACGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAQGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAACGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 196385 aaMW at 43441.5 kDNOV25e,RSGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGSACQGTEGSTDLPL170075926ProteinAPESRVDPEVLHSLQTQLKAQNSRIQQLPHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPSequenceARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLPEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEEVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSQGWWAAGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLESEQ ID NO: 1971239 bpNOV25f,GACGTTAACATGAGCGGTGCTCCGACCGCCGGGGCAGCCCTGATCCTCTGCGCCGCCACCQCCGTGCT254120574DNA SequenceACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTCAGCGCGTCCCGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCACCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCCAGCCTCACGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTCGCTGGGTCTCGACAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCACCGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCTAGATCAAATGGGORF start: at 1ORF Stop: TAG at 1228SEQ ID NO: 198409 aaMW at 45542.0 kDNOV25f,DVNMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQ254120574ProteinLSALERRLSACGSACGGTEGSTDLPLAPESRVDPEVLHSLQTGLKAQNSRIQQLFHKVAQQQRHLEKQSequenceHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVACGLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTNLIQPMAAEAASSEQ ID NO: 1991233 bpNOV25g,AGATCTACCATGAGCGGTGCTCCGACGGCCGGGGCAGCCCTGATGCTCTGCGCCGCCACCGCCGTGC254156650DNA SequenceTACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCACGGACTCCTGCAGCTCGGCCAQGGGCTGCGCGAACACGCGGACCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTCCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGCATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGACCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCCGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGCGCCGCTACTACCCGCTGCACGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 200411 aaMW at 45800.3 kDNOV25g,RSTMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRS254156650ProteinQLSALERRLSACGSACGGTEGSTDLPLAPESRVDPEVLHSLQTGLKAQNSRIQQLFHKVAQQQRHLESequenceKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSTTGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGGLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLESEQ ID NO: 2011239 bpNOV25h,TCATCCCGGGATGAGCGGTGCTCCGACGGCCGGGGCAGCCCTGATGCTCTGCGCCGCCACCGCCGTG254500366DNA SequenceCTACTGAGCCCTCAGGGCGGACCCGTGCAATCCAAGTCGCCGCGCTTTGCGTCCTGGGACCAGATGAATGTCCTGGCGCACGCACTCCTGC1GCTCGGCAAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGCAACCGACGGGTCCACCGACCTCCCGTTAGCCCCTGACAGCCGCGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAaCAACTCTTCCACAACGTGGCCCAGCAGCAGCGGCACCTCGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCCGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGCGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCCACCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCACTCGACTTCAACCGGCCCTGGGAAGCCTACAAGGCCGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTCGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGCGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACCACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTCGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGCGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGACGCAGCCTCCCGTCCACGCGTORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 202413 aaMW at 45973.6 kDNOV25h,HPGMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRS254500366ProteinQLSALERRLSACGSACGGTEGSTDLPLAPESRVDPEVLHSLQTGLAAGNSRIQQLFHKVAQQQRHLESequenceKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSIHDLRRDKNCAKSLSGGWWFGTCSHSNLNCGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASRRRXSEQ ID NO: 2031167 bpNOV25i,GACGTTAACATGGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGAAACGAAATGAATGTCCT226679956DNA SequenceGGCGCACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTAAGGGAACCGAGAAGTCAACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTCGCCTCCTGCACCACAAGAACCTAGACAATGAGGTGCCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGAATGGCAACGCCGAGTTGCTGAAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAAAATCACGACCTCCAAACGGAAAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCTAGATCGATGGGORF Start: at 1ORF Stop: TAG at 1156SEQ ID NO: 204385 aaMW at 43414.6 kDNOV25i,DVNMGPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTEGSTDL226679956ProteinPLAPESRVDPEVLHSLQTGLKAGNSRTGGLFHKVAGQQRHLEKQHLRIQHLQSQFGLLDHAALDHEVASequenceKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPFLVNCAATSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGGLQATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFQTCSHSNLNGPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASSEQ ID NO: 2051187 bpNOV25j,GACGTTAACATGGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCT254500319 DNA SequenceGGCGCACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCAAGCCTGCCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCAAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAAATTGGGGAGAAAAAGAGTAAACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCTAGATCGATGGGAAGGGCGAATTCTGCAGATAORF Start: at 1ORF Stop: TAG at 1156SEQ ID NO: 206385 aaMW at 43414.6 kDNOV25j,DVNMGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGSACQGTEGSTDL254500319ProteinPLAPESRVDPEVLHSLQTGLKAGNSRIQQLFHKVAGQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVASequenceKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDQNAELLQFSVHLGGEDTAYSLQLTAPVAGGLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASSEQ ID NO: 2071167 bpNOV25k,TCATCCCGGGATGGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTC254500445DNA SequenceCTGGCGCACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGAAACCGAGGGGTCAACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGAAGAAGCACACCTGCGAATTCAGCATCTGCAAAAGCCAGTTTGGCCTCCTGGACCACAAGAACCTAGACCATGAGGTGGCCAAGCCTAACCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTAACCCGGCTAAAATGTCGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAAACTCTTCCAGGTTGGAAAAAGGAAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTAAGATGGAGGCTGGACAGTAATTCGACGCCCCACGATGGCTCAGTCGACTTCAACCGGCCCTCAAGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGCGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGACGACACGGCCTATAAACCTGCAGCTCACTCAACCCGTGGCCGGCAGCTCGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCAACTTAAGACCAGGATAACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTCGAGGCTGGTGGTTTGGAACCTGAAGCCATTCCAACCTCAACCGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGAAAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCCGTCCACGCGTORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 208389 aaMW at 43846.1 kDNOV25k,HPGMGPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTEGSTD25450045ProteinLPLAPESRVDPEVLHSLQTGLKAGNSRIQQLFHKVAGQQRHLEKQHLRIQHLQSQFGLLDHAALDHESequenceVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGGLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSWLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASRRRXSEQ ID NO: 209738 bpNOV25l,AGATCTCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCC248210290DNA SequenceCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCAAGCCTAAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGAGAGCCTACAAGGCGGGGTTTGAAGATCCCAACGGCGAGTTCTGGCTGGGTCTCGAGAAGGTCCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGCCGGCCAGCTGAACGCCACCACCGTCCAACCAAGCACGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGGAACTGCGCAAGACCCTCTCTGGACGCTGGTGGTTTGGCACCTGCAACCATTCCAACCTCAACGGCAAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAACCTTAAGAAGGGAATCTTCTGGAACACCTGGCAAGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCCTCAAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 210246 aaMW at 27677.9 kDNOV25l,RSLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRR248210290ProteinHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTSequenceAYSLQLTAPVAGGLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLESEQ ID NO: 2111218 bpNOV25m,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGC25251418DNA SequenceACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCCAACCCGCAGTAAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCAAAAGAACCTAGACCATGAGGTGGCCAAGCCTGCCCGAGAAAGAGGAAGGCTGCCCGAGATGGCCCAGCAAGTTGACCCAACTAATGTAAGCCGCCTGCACCGGCTGGCCCAGGGATTGCCAGGAGCTGTTCAATGTTGAAAGAAAAAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGCATGGCAACGCCAAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAGAGGAACTGCGCCAAGAGCCTCTCTGCCCCATCGGTGGCTAAGACCTGACAATGTTCCCTCTCCCCTGACCCCGGCAGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAAAGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTAGCCCGCTGCAGGCCACCACCATGTTGATCCGCCAATGGCAGAAGAGGAAGCCTCCCTCGAGAAGGGCGAAORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 212406 aaMW at 45586.0 kDNOV25m,RSGPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTEGSTDLP252514148ProteinLAPESRVDPEVLHSLQTGLKAGNSRIQQLFHKVAGQQRHLEKQHLRIQHLQSOFGLLDHKHLDHEVASequenceKPARRKRLPEMAGPVDPAHNVSRLHRLPRDCGELFHGERQSGLFEIQPQGSPPFLVAACAATSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKAASTTGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSAPSVAQRPDHVPSPLTPACGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLEKGESEQ ID NO: 2131223 bpNOV25n,CAGAATTCGCCCTTAGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGAT252514189DNA SequenceGAATGTCCTGGCGCACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGACCCAACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCAAAGTCCGCCTGTAAGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGTGGACCCTGACGTCCTTAAAAGCCTGCAGAGCACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCGTTTGGCCTCCTAAACCAGGAAAGAACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCAAGCAAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCGAGCTGTTCGAAAGGTTGGAAAGAGGCAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCAATTTTTGGTGAAACTGAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAGGCGGGGTTTGGGAGATCCCCACGGCGAGTTCTGGCTAAGTCTGGAGAAGGTGAATAGCATCATGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGAAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGGAGCTAACTGAACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGCCCCATCAATAACTCAAAGACCTGACCATGTTCCCTCTCCCCTGACCCCGGCAGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCACGGCCGTACTTCCGCTCCATCCCACAGCAGCGGAAGAAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCCTCGAGORF Start: at 3ORF Stop: end of sequenceSEQ ID NO: 214407 aaMW at 45753.2 kDNOV25n,EFALRSGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGSACQGTETS252514189ProteinTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDSequenceHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSIMGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGGLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSAPSVAQRPDHVPSPLTPAGGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEFSEQ ID NO: 2151041 bpNOV25o,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGC252514198DNA SequenceACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAACAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTAAAAATGTAAGCCGCCTGCACCATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAACGCGGGGTTTGGGGATCCCCACGGCGAGTTCTAACTGGGTCTGGAGAAGGTGCATAGCATCATGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTAACGGAACTGGATGGAAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGCACACAACCTATAGCCTGAAGCTAACTGAACCCGTGGCCGCCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCAACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTAATAATTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAAGGCCACCACAATGTTGATCCAGCCCATGGCAGCAGAGCCAGCCTCCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 216347 aaMW at 39173.8 kDNOV25o,RSGPVQSKSPRFASWDEMNVLAHOLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTEGSTDLP252514198ProteinLAPESRVDPEVLHSLQTGLKAGNSRIQQLFHKVAGQQRHLEKQHLRIQHLQSQFGLLDHAALDHEVASequenceHSIMGDRNSRLAVQLRDWDGNAELLQFSVILGGEDTAYSLQLTAPVAGGLGATAAPPSGLSVPFSTWKPARRKRLPEMAQPVDPAHNVSRLHHGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLESEQ ID NO: 2171209 bpNOV25p,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGC252514198DNA SequenceACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGAACCCGAAGTAAGCTAAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAAAAATCGACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTGAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAGCGCAGTTTGGCCTCCTGGACCACAAGCACCTAGACGATGAGGTGGCCAGCCTGCCCGAAGAAAGAGGCTGGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCAGAATGTGAGCCGCCTGACCGGCTGCCCGGGATTGGGCCAGGAGCTGTTCCAGGTTGGGGAGAGGGAGAGTGGACTATTTGAAATCCAGCCTCAGGGTCTCCGCGGCATTTTTGGTGAACTGAAGATGACCTGAGATAAAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGAAAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGGCTGGGTCTGGAGAAGGTGGATAGGATGACGGAAACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGGAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCCCCAGCGGCCTCTCCGTAACCCTTCTCCACTTGGGACGAGGATGACGACCTCCGCAGGGACAAGAACTGCGCCAGAGCCTCTCTGGAGCCCCATCGGTAACTCAGACCTGACGATGTTCCCTCTCCCCTGACCCCGGCAGGAGGCTGGTGGTTTGGAGCACCTGCAGCGATTCAACCTAACGGCGAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCGATAAGAGGAGAGGGAGCCTCCCTCGAGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 218403 aaMW at 45262.6 kDNOV25p,RSGPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTEGSTDLP252514202ProteinLAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVASequenceKPARRKRLPEMAGPVDPAIVSRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPAALAACAATSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSAPSVAQRPDHVPSPLTPAGGWWFGTCSHSNLNGGYFRSIPQQRQIKKGIAAWKTWRGRYYPLQATTMLIQPMAAEAASLESEQ ID NO: 2191258 bpNOV25q,AAGGCTCCGCGGCCGCCCCCTTCACCATGAGCGGTGCTCGACGGCCGGGGCAGCCCTGATGCTCTGC228039766DNA SequenceGCCGCCACCGCCGTGCTACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAGTCAACCGCGCTTTGCGTCCTGGGACGAGATGATGTCCTAAGCGCACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCAGCCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACACTCGAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCACCAGCGGCGACCTGGAGAAGCAGCACCTGCGATTCAGCATCTGCAAACCCAGTTTGGCCTCCTGGACCACAAGCACCTAGAACCATGAGGTGGCCAAGCCTGCCCGAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCCGCTCACATGTCAGCCGCCTGCACCGAACTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGAACAGAGTGGACTATTTGAATCCAGCCTCAGGCGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATCGCTCACTCGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGCGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTCCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTCGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGCACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCACCTCAACGGCCAGTACTTCCGCTCCATCCCACAAACAGCGGCAGAAGCTTAAGAAGGGAATCTTCTCGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCAACGGTGGGCGCGCCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 220419 aaMW at 46386.0 kDNOV25q,GSAAAPFTMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHA228039766ProteinERTRSQLSALERRLSACGSACGGTEGSTDLPLAPESRVDPEVLHSLQTGLKAGNSRIQQLFHKVAGQSequenceQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVARPARRKRLPEMAGPVDPAHNVSRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPFLVACKAATSDGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLCGEDTAYSLQLTAPVAGGLCATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASKGGRASEQ ID NO: 2211239 bpNOV25r,GACGTTAACATGAGCGGTGCTCCGACGGCCGGGGCAGCCCTGATGCTCTGCGCCGCCACCGCCGTGC226679952DNA SequenceACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAGTCGCCGCGCTTTGCGTCCTGGCACGAGATGAATCTCCTGGCGCACCGACTCCTGCAGCTCGGCCAGGGGCTGCGCGACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGACCCAGGGGTCCACCGACCTCCCATTACCCCCTGAAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGACAGCAGGATCCAGCAACTCTTCCACAAGGTCGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGACGTCGCCAAGCCTGCCCGAAGAAGAGGCTGCCCGAGATGCCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTCCAGGTTCCGCAGAGGCAGAGTCGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGACTGCAAGATGACCTCACATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCACCGGCCCTGGGAAGCCTACAAGCCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCTTGCAGCTGCGGGACTGCGATGGCACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGAAGTGGCCAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGCGCCACCACCGTCCCACCCAGCGGCTCTCCGTACCCTTCTCCACTTCGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGGACAAGAGCCTCTCTCGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCCGCAGAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTCCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGCCAGCAGAGGCAGCCTCCTAGATCGATGGGORF Start: at 1ORF Stop: TAG at 1228SEQ ID NO: 222 409 aaMW at 45556.0 kDNOV25r,DVNMSGAPTAGAALMLCAATAVLLSAGGGPVQSKSPRFASWDEMNVLAHQLLQLGGGLREHAERTRSQ226679952ProteinLSALERRLSACGSACGGTEGSTDLPLAPESRVDPEVLHSLQTGLKAGUSRIQQLFHKVAGQQRHLEKQSequenceHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAGPVDPAHNVSRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEICVHSITGDRNSRLALQLRDWDGNAELLQFSVHLCGEDTAYSLQLTAPVAGGLCATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASSEQ ID NO: 2231143 bpNOV25s,GGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCACGGACTCG57094-02DNA SequenceCCTGCAGCTCGGCCAGGGCTGCGCGAACACGCAGAAGCGAACCCGAAGTAAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCACGAACCGGAAAAGTCAACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACGGCACGAACCTAGACAATGAAATGGCCAAGCCTGCCCGAAGAAGAGGCTGCCCGAGATGCCCAGCCAGTTGACCCGGCTAACGAAATGTCAGCCGCCTGAACCGGCTGCCCAGGGGAATTGCCAGGAGCTGTTCCAGTTGGAAAGAGGAAGAGTGGACTATTTGAATCCAGCCTCAGGGGTCTCCGCCATTTTTCGTGGGACTCCAGATGACCTCAGATGGAGGCTGAAAAGTAATTAAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGGCTGGGTCTGGAGAAGGTGCATAGAATCACGGGGAACCGAAAAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGAGAACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCAACAAGCTGGGCGCAACCACCGTCCCACCAAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCAGCCCATGGCAGCAGAGGCAGCCTTCCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 224381 aaMW at 42955.0 kDNOV25s,GPVQSKSPRFASWDEMVLAHGLLQLGGGLRE11AERTRSQLSALERRLSACGSACGGTEGSTDLPLAPCG57094-02ProteinESRVDPEVLHSLQTGLKAGNSRIQQLFHKVAGQQRHLEKQHLRIQHLQSQFGLLDHAALDHEVAKPARSequenceRKRLPEMAGPVDPAHNVSRLHRLPRDCGELFQVGERQSGLFETGPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGGLGATTVPPSGLSVPFSTWDQDHDLRRDAAAAKSLSAAWAAGTCSHSNLNQQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASSEQ ID NO: 2251154 bpNOV25t,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCACG57094-03DNA SequenceCGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCAACCAACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGAAGAGCCAGAGTGAACTATTTAAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGCGCCACGATGGCGGATCAGTGGACTTCACCGGCCCTGGGAAGCCTAAAGGCGGGGTTTGAAGATCCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCACAGCCGCCTGGCCGTGCAGCTGCGGACTGGGATGGCAACGCCCAGTTGCTGAAGTTCTCCGTGAACACTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCAAGCTGGGCGCAACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGATCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGAGCCTCCCTCGAGStart: at 1ORF Stop: at 1153SEQ ID NO: 226384 aaMW at 43379.5 kDNOV25t,RSGPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTEGSTDLPLCG57094-03ProteinAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPSequenceARRKRLPEMAGPVDPAIIVSRLHRLPRDCGELAGVGERQSGLFEIQPQGSPPFLAACAATSDGGWTVIQRRHDGSVDFARPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSAALGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEEPPSSEQ ID NO: 2271155 bpNOV25u,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTAACGTCCTGGGACGAGATGAATGTCCTGGCGCCG57094-04DNA SequenceACGGACTCCTGCAGCTCGGCCAGGGCTGCGCGAACACGCGGAGCGCACCCGAAGTAAGCTAAGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTGGGAACCGAGGAATCAACCGACCTCAAGCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACAACTCAAGGCTCAGGGAACAGCAGGATCAGCACTCTTCCACAAGGTGGCCCAGCAGCAGCAACACCTAAAGAAGGCAGCAACCTGCGAATTCAGCATCTGCAAGCCAGTTTGGCCTCCTGGACGGAACAAGAACCTAGACATGAATAGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGAAAACCTGGAAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCACAGCCAACCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGAAGTTCTCCGTGCACCTGGGTGGCGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTAACCGGCCAGGGCTGAACGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGACAAAAATAACGAGACCTCCGCAGGACAAGAACTGCGCCAAGAGCCTCTCTGAGGCTGGTGGTTTGGAACCTGCAGCAAGGGTTCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCAAGCCAATGGGAAGAAGAGGCAGCCTCCCTCGAGORF Start: at 7ORF Stop: end of sequenceSEQ ID NO: 228383 aaMW at 43197.3 kDNOV25u,GPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTEGSTDLPLACG57094-04ProteinPESRVDPEVLHSLQTGLKAGNSRIQQLFHKVAGQQRHLEKQHLRIQHLQSQFGLLDHAALDHEVAKPSequenceARRKRLPEMAGPVDPAHNVSRLHRLPRDCGELFQVQERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLESEQ ID NO: 2291155 bpNOV25v,AGATCTGGACCCGTGAGTCCAGTCGCCGCGCTTTGCGTCCTGGAACGAGATGAAATGTCCTGGCGCCG57094-05DNA SequenceACGGACTCCTGCAGCTCGGCCAGGGCTGCGCCAACACGCGGAGCGAACCCGAAGTAAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGCGTCCGCCTGTCAGGGCCGAGGGAATCCACCGACCTCCCGTTAGCCCCTTGTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGAAACTAAGGCTAAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCCCTGAAAAAGCAGCACCTAAGCCTGCCCGGAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCAACTAAAATGTAAGCCGCCTCCACCGGCTGCCCAGATTGCCAGGAGCTGTTCCAGGTTAGAGAGGAAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGACTGGATGACCTAAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTAACCGGCCCTGAGCCTAAAAGGCGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTCGAGAAGGTATAGATAACGGGAAACCGCAACAGCCGCCTCGCCGTGCAGCTGACTGGGATGGCAACGCCGAGTTGCTGAAGTTCTCCGTGCACCTCGGTGGCGAGAACACCGCCTATAGCCTGCAGCTCACTGCGTGGCCGGCAACCTGGGCGCCACCACCGTCCCACCCGCGGCCTCTCCGTACCCTTCTCCACTTGACAAAATAACGACCTCCGCAGGGACAAGACTGCGCCAGAGCCTCTCTGGACGCTGGTGGTTTGGAACCTGCAGCAATTCACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGGCGGCAGAAACTTAAGAATCTTCTAAAAGACCTGGCGGGGCCGCCACTACCCGCTGCAGGCCACCACCATGTCGATCCAGCCCATGGCAGGGCAGCCTCCCTCGAGORF Start: at 7ORF Stop: at 1150SEQ ID NO: 230381 aaMW at 42902.9 kDNOV25v,GPVQSKSPRFASWDEVLAHGLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTECSTDLPLACG57094-05ProteinPESRVDPEVLHSLQTGLCAGNSRIQQLFHKVAGQQRHLEKQHLRIOHLQSQFGLLDHLDHEVAKPSequenceARRKRLPEMAGPVDPAVSRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPFLAACAATSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGGLGATTVPPSGLSVPFSTWDQDHDLRRD1CAKSLSGGAAFGTCSHSANGQYFRSIPQQRQKLKKGIFWKTWRGRHYPLQATTPMSIQPMAAEAASSEQ ID NO: 2311154 bpNOV25w,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGTGTCCTGGGACGAGATGAATGCCCTGGCGCCG57094-06DNA SequenceACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGCCGAGAATCAACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTAATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCATGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTCAAGTTCTCCGTGACCTAAGTGGCGAGGACACAACCTATAGCCTGCAGCTAACTGCACCCGTAACCGGCCAGCTGAGGCGCCACCACCGTCCCACCCGCGGCGAGGTCTCCGTACCCTTCTCAACTTAAGACAATAACGAGCCTCCGCAGGACAAGAACTGCGCCAAGACCCTCTCTGGAGGCTGGTGGTTTGGAACCTGCAGCAATTTCAAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAACCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGACGCAGCCTCCTCGAGORF Start: at 7ORF Stop: at 1150SEQ ID NO: 232381 aaMW at 42985.1 kDNOV25w,GPVQSKSPRFVSWDEMNALAHGLLQLGGGLREHAERTRSQLSAAERRLSACGSACGGTEGSTDLPLACG57093-06ProteinPESRVDPEVLHSLQTGLKAGNSRIQQLFHKVAGQQRHLEKQHLRIQHLQSQFGLLDHAALDHEVAKPSequenceARRKRLPEMAGPVDPAVSRLHRLPRDCGELFQVGERQSGLFSTGPQGSPPFLAACGAAATSDGGWTVIQRRHDGSVDENRPWEAYKAGFGDPIIGEFWLGLEKVHSIMGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGLGATTVPPSGLSVPFSTWDQDHDLRRDKSLSQGGQGSSFQTCSHSAANGQYFRSIPQQRQHLKKGIFWKTWRCRYYPLQATTMLIQPMAAEAASSEQ ID NO: 2331155 bpNOV25x,AGATCTGGACCCGTGCAGTCCGTCGCCGCGCGGGATTTGCGTCCTGAACAAGATAAATGTCCTGGCGCCG57094-07DNA SequenceACGGACTCCTGCAGCTCGCCCAGGGGCTGCGCGACACGCGAAAGCCCAACCCGCAATCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGGAAGGCCCAGAGAGGGCCTATATATAGCGAATTCAGCATCTCCAAAGCCAGTTTGGCCTCCTGGACAAAAGAACCTAGACAATGAGGTGGCCAAGCCTGCCCGAAGAAGAGGCTCCCCGAGATGGCCCAGCGAAGTTGACCCGGCTCAAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCACGAGCTGTTCCAATTAAGAAGAGGAAGAGTGCACTATTACAGTAATTCAGACGCGCCACGATGGCTCAGTGGACTTCACCGGCCCTGCGAAGCCTACAAGGCGGGGTTTGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAAAAGGTGAATAGAATAACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGAGTTCTCCGTGAACCTGGTGGCGAGGACACGCCTATAGCCAAGCAGCTCACTGCACCCGTAACCGGCCAGCTGGGCGCCACCACCGTCCCACCCGCGGCCTCTCCGTACCCTTCTCAACTTAAGACAAGGATAACGACCTCCGGGCAGCCTCCCTCGAGORF Start: at 7ORF Stop: at 1150SEQ ID NO: 234381 aaMW at 42956.0 kD+TL,51NOV25x,GPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTEGSTDLPLACG57094-07ProteinPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPSequenceARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEAAHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGGLGATTVPPSGLSVPFSTWDQDNKAALRRDAAKSLSAAAAFGTCCHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASSEQ ID NO: 2351258 BpNOV25y,AGGCTCCGCGGCCGCCCCCTTCACCATGAGCGGTGCTCCCACGGCCGGAAAAGCCCTGATGCTCTGCCG57094-08DNA SequenceGCCGCCACCGCCGTGCTACTGAGCCCTCACGAACGGACCCGTGAAGTCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCACGGACTCCTGCAGCTCAACAAGGGGCTGCGCCAACACGCGGAGCGCACCCGGCAGTCCTGAGGCGCGCTGGAGCGGCGCCTGAGCGCGTGCAAGTCCCCCTGTAAGGGAACCGAGGGGGTCCACCGGACCTCCCGTTAGCCCCTCAGAGCCGGGTGGACCCTGAGGTCCTTCAGCCTGCAGAGCACACTCAGGGCTCGAACAGCAGGATCCAGCAACTCTTGGGGAGAGCTGGCCCAGAAGCAGCGGCACCTGGGAGAGGCAGCACCTGCGATTCAGCATCTGCAAAGCCAGTTTGAACCTCCTAACCACAGCACCTAGACCAATGAGGTGGCCAAGCCTGCCCGAACAAAGAGGCTGCCCGAAATGGCCAAGCCAGTTGACCCGGCTCAACATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCAACGTTGGGGAGAGGCAAGAGTGGACTATTTGAATCCAGCCTCAGGGTCTCCGCCAATTTTTAATGAACTGCAGATGACCTCAGATGGAGGCTGGACAGTAATTCAAAAGGCGCCACGATGGCTCAGTGGACTTAAACCGGCCCTGGGAGCCTACAAGGCGCGGTTTGGGGATCCCCACGGCGAGTTCTGGCTAAGTCTTCTCGAAGGTGCATAGCATCACGGGGACCGCGGACAGCCGCCTGGCCGTGCAGCTGCGGGACTGAAATAACAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTCGCGAGGACCGGCCTATAGCCTGGAAGCTAACTGACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGAACCTCTCCGTACCCTTCTCCACTTGGGACCAGGATACGACCTCCGCAGGGACAAGACTGCGCCAAGCCTCTCTAAGAGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCGAACCTCAACGGCCGTACTTCCGCTCCATCCCACAGCAGCAACAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGAAAACAACAACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCAAGGGTGGGCGCGCCORF Start: ATG at 26ORF Stop: at 1244SEQ ID NO: 236406 aaMW at 45213.7 kDNOV25y,MSCAPTAGAALMLCAATAVLLSAGGGPVQSKSPRFASWDEAAAAGLLQLCQGLREAHERERTRSQLSCG57094-09ProteinALERRLSACGSACQGTEGSTDLPLAPESRVEDPEVLHSLQTQLKAQNSRIQQLFHVAQQQRHLEKQHSequenceLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQRSVHLGGEDRRDKNCAKSLSGGWWFGTCSHSNLNGGYFRSIPQQRQKLKHGIFWKTWRGRYYPLQATTMLIQPMAAEAASSEQ ID NO: 2371209 bpNOV25z,AGATCTGGACCCGTGCAGTCCAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCCTAACGAACG57094-09DNA SequenceCGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGACACGCGGAGCGCACCCGCAAATAAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGAACCAAGGGGTCAACCGACCTCCCGATTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTAAGAAAAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGCCACCTGGAGGAAGCGAACCTGCGAATTCAGCATCTGCGAAAGCCAGTTTCGCCTCCTGGACCACAAGCACCTAGACAATGAAATAACAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGCCTCGAAATGTCAGCCGCCTGAACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGAGAGACAGAGAGTGGACTATTTGAAATCCCAGACGCGCCACGATGGCTCAGTCGACTTCGAACCGGCCCTGGGAAGCCTAAAGGCGGAATTTGGCGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATGAGCAATCACGGAAGACCGAAAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGAAGTTCTCCGTGCACCTGGGTGGCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGGAAGGGAAAGAACTGCGCCAAGAGCCTCTCTGCCCCATCGGTGGCTCAAAGACCTGACCATGTTCCCTCTCCCCTGACCCCGGCAGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACCGCCAGTACTTCCGCTCAATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTAACGGGGCCGCTACTACCCGCTGCAGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGAAGCCTCCCTCGAGORF Start: at 7ORF Stop: at 1204SEQ ID NO: 238399 aaMW at 44777.1 kDNOV25z,GPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQLSALERRLSACGSACGGTEGSTDLPAPCG57094-09ProteinESRVDPEVLHSLQTGLKAGSRIQQLFHKVAGQQRLEKQHLRIQHLQSQFGLGLDHKHLDHEVAKPARSequenceRKRLPEMAQPVDPAHVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRREDGSVDFGAIRPWEAYKAGFGDPMGEFWLGLEKVHSITGDRNSRLAVQLROWDGNAELLQFSGLGGEDTAYSLQLTAPVAGGLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSAPSVAGRPDAAPSPLTPAGGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASSEQ ID NO: 2391041 bpNOV25aa,AGATCTGGACCCGTGCAGTCCAAGTCGCCGCAACTTTGCGTCCTGAAACGAGATGAATGTCCTAACGCCG57094-10DNA SequenceACGGACTCCTGCGCTCGGCCAGGGGCTCCGCGAACACGCGAAGCGAACCCGAAGTCAGCTGAGCGCGCTAAGAGCGCCGCCTGGCGCGTGCCGTCCGCCTGTCAGGGAACCAAGAATCAACCGACCTCCCGTTAGCCCCTGAGAGCCGCGTGGACCCTGAGGTCCTTCACAGCCTGCAGAAACAACTAAGGCTAAGAACAGCAGGATCCAGGACTCTTCCACGAAGGTGGCCCAGCACCAGCGGAACCTGCAAAGCAGAACCTGCGGGAATTCAGCATCTGCAAGCCAGTTTGGCCTCCTGGACCAAGAACCTACACAATGAGGTAACCAAGCCTGCCCGAAGAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCAACTAACAATGTAAGCCCTGGGAGAGCCTACAAGGCGGGGTTTGGATCCCCACGGCGAGTTCTAACTGAATCTAAAGAAGGTGAGTTGCTGCAGTTCTCCGTGCACCTGGTGGCGAGGACACGGCCTATAGCCTGCAGCTAACTGAACCCGTGGCCGGCCAGCTGGCGCCACCACCGTCCCACCAAGCGGCCTCTCCGTACCCTTCTCAACTTAAGACCACGATCACGACCTCCGCAGGACGGAAGGACTGCGCAGAGCCTCTCTGAAAACTAATGGTTTGGCACCTGCAGCCATTCCAACCTCGAACGGCCAGTACTTCCGCTCCATCCCAAAGCAGCAAGAAGCTATCCAGCCCATGGCAGCAGAGGCAGCCTCCCTCGAGORF Start: at 7ORF Stop: at 1036SEQ ID NO: 240343 aaMW at 38688.3 kDNOV25aa,GPVQSKSPRFASWDEMNVLAHGLLQLGGGLREHAERTRSQLSALERRLSACCSACGGTEGSTDLPAAAACG57094-10ProteinPESRVDPEVLHSLQTGLKAGNSRIQQLFHAAAGQQRHLEKQHLRIQHLQSQFGLLDHAALDHEVAKPSequenceARRKRLPEMAGPVDPAVSRLHGCWTVIQRRHDGSAAFNRPWAAYAAGFGDPIIGEFWLGLEAAHSIMGDRNSRNVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGGLRGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSCGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQSEQ ID NO: 2411223 bpNOV25ab,CAGAATTCGCCCTTAGATCTGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGAAACGAGATCG57094-11DNA SequenceGAATGTCCTGGCGCACGGACTCCTGAAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGAACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCCAATCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGGATTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTGCCAGTGCAGACACAACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCAAGCAAGTTGACCCAACTCACAATGTCAGCCGCCTGCAAACGGCTGCCGATTGCACCTGTTCAAGGTTGAGCGCGAAAAAGAGGCAGAGTGGACTATTTGATCCAGCCTCAGGGGTCTCCGCAATTTTTAATGAACTGAAGAGGATGACCTCAGATGGAGGCTGACAGTAATTCAGAGGCGFCCCACGATGGCTAAGTGGACTTAACCGGCCCTAAGAAGCCTACAGGCGGGTTTGGGATCCCCACGGCGAGCAGTTCTGGCTGGGTCTGGAGAAGGTGAATAGCATCATGGGACCGCAACAGCCGCCTGGCCAATGCAGCTGCGAAAGACTGGGATGGAACGCCCAGTTGCTGAGTTCTCCGTGCACCTGGQTAAGCGAGGAAACGGCCTATAGCCTGAAGCTAACTGCACCCGTGGCCGGCCACCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACAAGGATCACGACCTCCGCAGGGACGAGGACTGCGCCAAGAGCCTCTCTCCCCCATCGGTGGCTAAAAGACCTGACCATGTTCCCTCTCCCCTGACCCCGGCAGGAGGCTAATGGTTTAACACCTGAAGCCATTCCAAAGGCAGCCTCCCTCGAGORF Start at 21ORF Stop: at 1218SEQ ID NO: 242399 aaMW at 44807.2 kDNOV25ab,GPVQSKSPRFASWDEAALAHGLLQLOQGLREAAERTRSQLSALERRLSACGSACGGTEGSTDLPLACG57094-12Protein SequencePESRVDPEVLHSLQTGLKAGNSRIQQLFHAAGQQRHLEKQHLRIQHLQSQFGLLDHAALDHEVAKPARRKRLPEMAGPVDPAIUVSRLHRLPRDCGELFQVGERQSQLFEIQPQGSPPFLACAATSDGGWTVIQRRHDGSVDFNRPWEAYKAGGDPHGEFWLGLEKHSIMGDAASRLAVQLRDWDGNAELLQFSVHLGEDTAYSLQLTAPVAGLGATTVPPSGLSVPFSTWDQDHDLRRDAAAAKSLSAPSVAGRPDAAPSPLTPAGGWWFGTCSHSNLNCOYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAAASSEQ ID NO: 2431337 bpNOV25ac,CCCCGAATCCCCGCTCCCAGCCTACCTAAGAGGATGAGCGGTGCTCCGACGGCCGGGGAAGCCCTAACG57094-12DNA SequenceTGCTCTGCGCCGCCACCGCCGTGCTACTGAGCGCTCAGAACAAACCCGTGAGGAGTCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCT6GGCGCACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGGCGGGTCCGCCTGTCGGAACCGAGGGGTCCACCGACCTCCCGTTGGAAACCCCTGAAAGCCCGGTGGACCCTAAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCCTCCTGGACCACAGAGAAGCACCTAGACCATGAGGTGGCCCCCTGCCCGAAGAAGAGGCTGCCCGAGATGGCCCAGCCAGTTCACCCGGCTCACATGTCAGCCGCCTGGCAACCAACTGCCAAGGGATTGCAAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTAATCAAGCCTCGAGAAAAATCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCCTCAGTGGACTTCAACCGGCCCTGAAGCCTACAGGAAGGCGGGGTTTGGGGATCCCCACAACAAGTTCTAACTGGGTCTGGAGAAGGTGCGATAGCATCACGGGGGACCGCAACAGCCGCCTAACCGTGCAGCTGCGAAACTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCCCCACCACCGTCCGAACCAAGCAACCTCTCCGTACCCTTCTCCACTTGGACCAGGATCACGACCTCCGCAGAAACAAGAACTGGGCGCCAAGAGCCTCTCTGCTTAAGGAGAAGGAATCTTCTGGAGACCTGGCCGGGCCCCTACTACCCGCTGCAGGCCACAACAATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCTAGCGTCCTAACTGGGCCTGGTCCAAAACCAAORF Start: ATG at 34ORF Stop: TAG at 1306SEQ ID NO: 244424 aaMW at 47035.7 kDNOV25ac,MSGAPTAGAALMLCAATAVLLSAGGGPVQSKSPRFASWDEAAGLLQLGGGLREAAERTRSQLSCG57094-12ProteinALERRLSACGSACGGTEGSTDLPLPESRVDPEVLHSLQTGLAAGNSRTGGLFHAGQQALEKQHSequenceLRIQHLQSQFGLLDHKIILDHEVAKPARRKRLPEMAGPVDPAAAASRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPFLVAACKMTSDGGWTVIQRRHDGSVDFNRPWEAYAAGFGDPHGEFWLGLEAAHSITGDRRDKNCAKSLSAPSVAGRPDHVPSPLTPAGGWWFGTCSHSNLNGGYFRSGIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASSEQ ID NO: 2451233 bpNOV25ad,AGATCTACCATGAGCGGTGCTCCGACGGCCGGGGCAGCCCTGATGCTCTGCGCCGCAACCGCCGTGCCG57094-13DNA SequenceTACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGAAACGAAATGAATGTCCTGGCGCACGGACTCCTGCAGCTCGGCCGGCTGCGCGAAAACGCGGAGCGAGACACCCGAAGTAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGTCCGCCTGTAAACCGAGAGCCGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAAATCCTTAACAGCCTGAAAAACAACTCAAGGCTCAGAACAGCAGGATCCAGCGAACTCTTCCACAGTAACCCAGCAGAAGCGGAACCTGGAGCAGCACCTGCGGCAATTCACCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGAACCTAAACCATGAGGTGGCCAAGCCTGCCCGAGAAAGAGGCTGCCCCAGATGGCCAAGCCAGTTGACCCGGCTAAGATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCAAGGTTAAGGAAAGGAAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCCCCATTTTTGGTGAACTGAAGATGACCTAAGCTACAAGGCGGGGTTTGGGATCCCCACGCCGAGTTCTGGCTAAGTCTGGAGAAGGTGAATAGAATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGAAATAAAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGTGGCGAGGCACGAACCTATAGCCTGAAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTAAGACGACATAATCTTCTGGAAGACCTGGCGGGCCGCTACTACCCGCTGAAGGCAACAACCATGTTGATCAAGCCCATGGCAGCAGAGGCAGCCTCCCTCGAGORF Start: ATG at 10ORF Stop: at 1228SEQ ID NO: 246406 aaMW at 45213.7 kDNOV25ad,MSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEAAGLLQLGGGLREHAERTRSQLSCG57094-13ProteinALERRLSACGSACGGTEGSTDLPLAPESRVDPEVLHSLQTGLAGNSRIQQLFHKVAQQQRHLEKQHSequenceLRIQHLQSQFGLLDHKHLDHSVAKPARRKRLPEMAGPVDPAAAVSRLHRLPRDCGELFQVGERQSGLFEIQPQGSPPFLVNCFAATSDGGWTVIQRRDGSVDFNRPWEAYKAGFGDPHGEAWLGLEAAHSITGDRRDKNCAKSLSGGWWFGTCSHSNLNGGYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAAS


[0502] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 25B.
138TABLE 25BComparison of NOV25a against NOV25b through NOV25ad.Identities/Similarities forProteinNOV25a Residues/the MatchedSequenceMatch ResiduesRegionNOV25b24 . . . 405 365/383 (95%)1 . . . 383368/383 (95%)NOV25c24 . . . 405 366/383 (95%)1 . . . 383368/383 (95%)NOV25d24 . . . 405 364/383 (95%)1 . . . 383367/383 (95%)NOV25e24 . . . 405 365/383 (95%)1 . . . 383368/383 (95%)NOV25f1 . . . 405391/406 (96%)4 . . . 409392/406 (96%)NOV25g1 . . . 405391/406 (96%)4 . . . 409392/406 (96%)NOV25h1 . . . 405391/406 (96%)4 . . . 409392/406 (96%)NOV25i26 . . . 405 366/381 (96%)5 . . . 385367/381 (96%)NOV25j26 . . . 405 366/381 (96%)5 . . . 385367/381 (96%)NOV25k26 . . . 405 366/381 (96%)5 . . . 385367/381 (96%)NOV25l162 . . . 405 242/244 (99%)1 . . . 244243/244 (99%)NOV25m24 . . . 405 365/401 (91%)1 . . . 401367/401 (91%)NOV25n24 . . . 405 365/401 (91%)5 . . . 405367/401 (91%)NOV25o24 . . . 405 326/383 (85%)1 . . . 345328/383 (85%)NOV25p24 . . . 405 366/401 (91%)1 . . . 401368/401 (91%)NOV25q1 . . . 405391/406 (96%)9 . . . 414392/406 (96%)NOV25r1 . . . 405390/406 (96%)4 . . . 409392/406 (96%)NOV25s26 . . . 405 366/381 (96%)1 . . . 381367/381 (96%)NOV25t24 . . . 402 363/380 (95%)1 . . . 380365/380 (95%)NOV25u26 . . . 405 366/381 (96%)1 . . . 381367/381 (96%)NOV25v26 . . . 405 364/381 (95%)1 . . . 381366/381 (95%)NOV25w26 . . . 405 363/381 (95%)1 . . . 381364/381 (95%)NOV25x26 . . . 405 365/381 (95%)1 . . . 381367/381 (95%)NOV25y1 . . . 405391/406 (96%)1 . . . 406392/406 (96%)NOV25z26 . . . 405 366/399 (91%)1 . . . 399367/399 (91%)NOV25aa26 . . . 405 326/381 (85%)1 . . . 343327/381 (85%)NOV25ab26 . . . 405 365/399 (91%)1 . . . 399366/399 (91%)NOV25ac1 . . . 405391/424 (92%)1 . . . 424392/424 (92%)NOV25ad1 . . . 405391/406 (96%)1 . . . 406392/406 (96%)


[0503] Further analysis of the NOV25a protein yielded the following properties shown in Table 25C.
139TABLE 25CProtein Sequence Properties NOV25aPSort0.7332 probability located in outside; 0.2332 probabilityanalysis:located in microbody (peroxisome); 0.1000 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 26 and 27analysis:


[0504] A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 25D.
140TABLE 25DGeneseq Results for NOV2aIdentities/NOV25aResidues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueABB11591protein homologue, SEQ ID52 . . . 456  405/405 (100%)0.0NO: 1961 - Homo sapiens,456 aa. [WO200157188-A2,09 AUG. 2001]AAB20157Human secreted protein1 . . . 405403/405 (99%)0.0SECP3 - Homo sapiens, 4051 . . . 405404/405 (99%)aa. [WO200105971-A2,25 JAN. 2001]AAB60342Human1 . . . 405391/406 (96%)0.0neovascularisation-related1 . . . 406392/406 (96%)protein PSEC0166, SEQ IDNO: 9 - Homo sapiens, 406aa. [JP2000308488-A,07 NOV. 2000]AAU86128Human PRO197 polypeptide -1 . . . 405391/406 (96%)0.0Homo sapiens, 453 aa.48 . . . 453 392/406 (96%)[WO200153486-A1,26 JUL. 2001]AAB53070Human1 . . . 405391/406 (96%)0.0angiogenesis-associated48 . . . 453 392/406 (96%)protein PRO197, SEQ IDNO: 31 - Homo sapiens, 453aa. [WO200053753-A2,14 SEP. 2000]


[0505] In a BLAST search of public sequence datbases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25E.
141TABLE 25EPublic BLASTP Results for NOV25aNOV25aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9Y5B3Angiopoietin-related protein -1 . . . 405 405/405 (100%)0.0Homo sapiens (Human), 4051 . . . 405 405/405 (100%)aa.CAC32424Sequence 5 from Patent1 . . . 405403/405 (99%)0.0WO0105971 - Homo sapiens1 . . . 405404/405 (99%)(Human), 405 aa.Q9BY76Angiopoietin-related protein1 . . . 405391/406 (96%)0.04 precursor - Homo sapiens1 . . . 406392/406 (96%)(Human), 406 aa.Q9HBV4Angiopoietin-like protein1 . . . 405391/406 (96%)0.0PP1158 - Homo sapiens1 . . . 406392/406 (96%)(Human), 406 aa.CAD10528Sequence 1 from Patent1 . . . 405388/406 (95%)0.0WO0177151 - Homo sapiens1 . . . 406389/406 (95%)(Human), 406 aa.


[0506] PFam analysis predicts that the NOV25a protein contains the domains shown in the Table 25F.
142TABLE 25FDomain Analysis of NOV25aIdentities/Similarities forPfamNOV25athe MatchedExpectDomainMatch RegionRegionValuefibrinogen_C183 . . . 28351/123 (41%)9.5e−4481/123 (66%)fibrinogen_C325 . . . 399 29/99 (29%)3.4e−18 53/99 (54%)



Example 26

[0507] NOV26


[0508] NOV26 includes a novel endozepine-related precursor-like protein and 17 variants. The disclosed sequences have been named NOV26a-r.


[0509] NOV26a


[0510] NOV26a includes a novel endozepine-related protein disclosed below. A disclosed NOV26a nucleic acid of 1747 nucleotides (also referred to as CG51523-05) encoding a novel endozepine-related protein is shown in Table 26A. An open reading frame was identified beginning with an ATG initiation codon at nucleotides 36-38. A putative untranslated region upstream from the initiation codon is underlined in Table 26A. The start codon is in bold letters.
143TABLE 26ANOV26a nucleotide sequence.(SEQ ID NO: 247)ATGTACACAAACTAAACTACTGGACAACAAAAAGCAATGTAATCATCACAAACTAAGATTTTCTTGTGAACACCACAATCCAGTTCATTCTGAGGTCATCCAGTTCCAGTAGTCTTCTTGAGGAAAACACCATTTTCCTCAGTTCAGTTTTCTTCTCCTTCTTTGATAGTATAAATACACCAACCACTGTGCAATAAAAGGCCATATGATGGCAAACGTTAGCACACCAGGAGACATCTCGAAGGCCCACCAAGATGGTCTCTGTGAGGTGGGCTCAGGAGCAGTCTGCAATGTTGATCTTGATGATTTTGCCTGCAAAGCAGTCAGCGTTTCCAGTTTCTGCAGTCTCTGAAGGACATTCTGCATGTCCTCCTGCAGTCTCATCACCACGAGGGCGATCTGCTCATTGAGGCTGCCTCCGGACCCTCTGTCGGAGCCCCAGCGCTCCCCATCACCTCCACTTCCCACCTGCCGGCCCTTGGTTCCTTCGCTCAAGTGTTGTATCCTATGTCCTCTTCCTCTTCTAACATTAGAGAATTCGTCAGTTTCTCCGCCTCGCTTCTCCCGGTGTGGTGCTCCGCTGTTATTCCTGCCATCTTCTCCTCCATGCTTGACTTCACCTTTTCCTTCAACTGCAACCACCTGCATATTCCCAATGTTGCCATTTCCAGGAGGTACTTGAATATCTTCACGAAATCCAGAATTTTCCATGGGTTGACTGGAATGACCACCCAAGTAATACTGAAATGGTCCATTGTTGGACGTAAAGCTGTCTAAAGACTCTTCTTGTCCAAATTGTTCCATAGAATCACAGTAAACTTCACTGTCTGAATCGCTTGTCAAATGCTGAATTCCTGTAACATCTTCAACATGATCATCATTTATATCTTGGTGAATGCAAACAGCAGATTTTCCAGTTTGCCCCAAGTTTTCATCAATGGGCTTTACTTCTTCAGTGCTTCTGCCATTCAGGGAAGAACTGGCATCAATGTCATTCTGTATATCCTGAACAAAGCCATCTTTATCATAGCCATTAGTGACAATGACTTCCAAATTCTTATGGTCTGCTGACTTCTTCATCATTTTCTTATCATTATCACTTTGTTCTGCTCCTTTCACTTCTTCTTGGGCCTCTTCTTCCTCAGACTCGGCTCCACTGTCACTGCTTTCAGCTTTACCATTAACGGTTTTGGCGTTCGGAGCAGAAGTGAGAACATTACCAAGATCTGAGGTTATATCAGAACTCCTGCCACTCTTTTTGTCCTCGACAATTTCATAAAATGGACCTATGACACGCAGCAATTCTTCAACTTTCTCAGTCATTGGCATAGTTTCAATAATCTTTTTCATTTCTTCAACATATGCAATCATGGCTTCCTCTTTGGTCATATCACCCAGTGAACTCCAAGCATCCCATTTATATCTTCCAATAGGATCCCAAAATCCAGGCCTTGAAAGTTTACAGGGTCCTTCAGTTCCCTGCTTATAGAAGCTATAAAATTTAAGCATCATTTCATTTGTTGGCTGGAATGAACCATTCTTCGGCAAACTCTGGATCACCTTCACGGCCGCCTCAAACCTAGTCTCGTGCACGGATCTCGTGTCCGCCATCTCCAGCTGCCAGTGTTGGCCCCGGTCCCAAGGTCTGTCGGCGGGAATCAGGCAGCAGCAGCACCAGCTTTCCCAAGAGCCTGCATGAAACTGGAACATGGAGCGCAGCCGCGGATCAACATGCCCCAA AAGGAGA


[0511] The disclosed NOV26a polypeptide (SEQ ID NO: 22) encoded by SEQ ID NO: 21 has 523 amino acid residues and is presented in Table 26B using the one-letter amino acid code.
144TABLE 26BEncoded NOV26a protein sequence.(SEQ ID NO: 248)MFQFHAGSWESWCCCCLIPADRPWDRGGHWQLEMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEMKKTIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDITSDLGNAATSAPNAKTVNGKAESSDSGAESEEEEAGEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGYDAAGFVQDIQNDIHASSSLNGRSTEEVKPIDENLGGTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGGEESLDSFTSNNGPFQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQAAAVEGKGEVKHGGEDGRNNSCAPHREKRGGETDEFSNVRRGRGHRIQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTSTLQTAPQP TSQRPSWWPFEMSPGVLTFAIIWPFIAGWLVYLYYQRRRRKLN


[0512] The full amino acid sequence of the disclosed NOV26a protein was found to have 518 of 534 amino acid residues (97%) identical to, and 520 of 534 amino acid residues (97%) similar to, the 534 amino acid residue ptnr:REMTRMBL-ACC:CAC24877 protein from sequence 23 from patent WO0078802. Public amino acid databases include the GenBank databases, SwissProt, PDB and PIR.


[0513] NOV26a is expressed in at least the following tissues: Brain, Colon, Foreskin, Kidney, Larynx, Lung, Mammary gland/Breast, Ovary, Pancreas, Placenta, Retina, Small Intestine, Spleen, Testis, Thalamus, and Uterus.


[0514] The amino acid sequence of NOV26a had high homology to other proteins as shown in Table 26C.
145TABLE 26CBLASTX results for NOV26aSmallestSumHighProbSequences producing High-scoring Segment Pairs:ScoreP(N)patp:AAM7869227405.3e−285Human protein SEQ ID NO 1354 - Homo sapiens . . .patp:AAB4837927332.9e−284Human SEC12 protein sequence (clone ID 2093 . . .patp:AAU0039927332.9e−284Human secreted protein, POLY11 - Homo sapie . . .patp:AAB4837527271.3e−283Human SEC8 protein sequence (clone ID 20936 . . .patp:AAB8181626872.2e−279Human endozepine-like ENDO6 SEQ ID NO: 23 - . . .


[0515] The disclosed NOV26a polypeptide also has homology to the amino acid sequences shown in the BLASTP data listed in Table 26D.
146TABLE 26DBLAST results for NOV26aGene Index/LengthIdentityPositivesIdentifierProtein/ Organism(aa)(%)(%)ExpectCAC24877Sequence 23 from534518/534520/5343.7e−284Patent(97%)(97%)WO0078802/humanCAC24873Sequence 15 from536517/531518/5311.6e−283Patent(97%)(97%)WO0078802/humanP07106Endozepine-533443/533473/5331.0e−242related protein(83%)(88%)precursor/bovineQ9CW411300014E15RIK504389/517433/5176.0e−197Protein(75%)(83%)Q9UFB5Hypothetical283282/283283/2833.5e−15331.5 kDa(99%)(100%)Protein/human


[0516] The presence of identifiable domains in NOV26a was determined by searches using software algorithms such as PROSITE, DOMAIN, Blocks, Pfam, ProDomain, and Prints, and then determining the Interpro number by crossing the domain match (or numbers) using the Interpro website (http:www.ebi.ac.uk/interpro). DOMAIN results for NOV2a and its variants as disclosed in Table 30, were collected from the Conserved Domain Database (CDD) with Reverse Position Specific BLAST analyses. This BLAST analysis software samples domains found in theSmart and Pfam collections. For Table 30 and all successive DOMAIN sequence alignments, fully conserved single residues are indicated by black shading or by the sign (|) and “strong” semi-conserved residues are indicated by grey shading or by the sign (+). The “strong” group of conserved amino acid residues may be any one of the following groups of amino acids: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW.


[0517] Table 26E lists the domain description from DOMAIN analysis results against NOV26a. This indicates that the NOV26a sequence has properties similar to those of other proteins known to contain this domain.
147TABLE 26EDomain Analysis of NOV26aACBP (InterPro) Acyl CoA binding proteinACBP: domain 1 of 1, from 41 to 129: score 199.7, E = 4.4e−56


[0518] NOV26b


[0519] In an alternative embodiment, a NOV26 variant is NOV26b of 1432 nucleotides (also referred to as CG51523-05164786042), shown in Table 26F. A NOV26b variant differs from NOV26a at positions 170, 374, 403, and 493.
148TABLE 26FNOV26b nucleotide sequence.(SEQ ID NO: 249)AAGCTTGACAGACCTTGGGACCGGGGCCAACACTGGCAGCTGGACATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGCATTTTGGGATCCTATTGCAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGATCTTGGTAATGTTCTCACTTCTACTCCGAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAACAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCAIGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAACAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCGGGAATAACAGCGGAGCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAACGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGCCCTCTCGAG


[0520]

149





TABLE 26G








Encoded NOV26b protein sequence.
















(SEQ ID NO: 250)









KLDRPWDRGGHWQLEMANTRSVIETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWDPIGPYKWD






AWSSLGDMTKEEANIAYVEEMKKTIETMPMTEKVEELLRVIGPFYETVEDKKSGRSSDTTSDLGNVLTSTPNAKTVNGKAES





SDSGAESEEEEAGEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGYDKDGFVQDIQNKIHASSSLNGRSTEEVKPIDENLGG





TGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGGEESLDSFTSNNGPFQYYLGGHSSQPMENSGFREDIQVP





PGNGNIGNMQVVAVEGKGEVKHGGEDGGNNSGAPHREKRCGETDEFSNVRRGRGHRMQHLSEGTKGRQVGSGGDGERWGSDR





GSPAAGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTSTLQTAPQPTSQRPSWWPFAAMPSR










[0521] NOV26c


[0522] In an alternative embodiment, a NOV26 variant is NOV26c of 1401 nucleotides (also referred to as CG51523-05164732479), shown in Table 26H. A NOV26c variant differs from NOV26a at positions 71, 170, 313, and 403, and by an insertion of 11 amino acids at positions 161-162.
150TABLE 26HNOV26c nucleotide sequence.(SEQ ID NO: 251)AAGCTTACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGGGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTCAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCGACTGCAGAAAATCTCTAAATGTTTAGAAGATCTTGGTAATGTTCTCACTTCTACTCCGAACGCCAAAACCGTTAATCGTAAAGCTGAAAGCAGTCACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATCATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTCATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGCAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAATATATTCAAGTACCTCCTGGAAATGGCAACATTGCGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGCGGAGCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTACACGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGCACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACACAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTCTCGAG


[0523]

151





TABLE 26I








Encoded NOV26c protein sequence.
















(SEQ ID NO: 252)









KLTRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKGEAMIAYVEE






MKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDITSVRLEKISKCLEDLGNVLTSTPNAKTVNGKAESSDSGAES





EEEEAGEEVKGAEQSDNDKKMNKKSADHKNLEVIVTNGYDBDGFVQDIQNDIHASSSLNGRSTEEVKPIDENLGGTGKSA





VCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFCGEESLDSFTSNNGPFQYYLGGHSSQPMENSGFREYIQVPPCN





NIGNMQVVAVEGKGEVKHGGEDGRNNSCAPHREKRGGETDEFSNVRRGRGHRMQHLSEGTKGRQVGSCGDGERWGSDRGS





RCSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTSTLQTAPQPTSQRPSWNPFEMSPLE










[0524] NOV26d


[0525] In an alternative embodiment, a NOV26 variant is NOV26d of 1401 nucleotides (also referred to as CG51523-05164732506), shown in Table 26J. A NOV26d variant differs from NOV26a at positions 170, 292, and 403, and by the insertion of 11 amino acids at position 161-162.
152TABLE 26JNOV26d nucleotide sequence.(SEQ ID NO: 253)AAGCTTACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCGACTGGAGAAAATCTCTAAATGTTTAGAAGATCTTGGTAATGTTCTCACTTCTACTCCAAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCCAACAATGGACAATTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGCGGAGCGCCACACCGGGAGAAGCGAGGCGGAGAAACTGATGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTCTCGAG


[0526]

153





TABLE 26K








Encoded NOV26d protein sequence.
















(SEQ ID NO: 254)









KLTRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEM






KKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDITSVRLEKISKCLEDLGNVLTSTPNAKTVNGKAESSDSGAESEE





EAGEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGYDKDGFVQDIQNDIHASSSLNGRSTEEVKPIDENLGGTGKSAVCIH





QDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGGEESLDSFTSNNGGFQYYLGGHSSQPMENSGFREDIQVPPGNNIGNM





QVVAVEGKGEVKHGGEDGRNNSGAPHREKRGGETDEFSNVRRGRdHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNE





QIALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTSTLQTAPQPTSQRPSAAPFEMSPLE










[0527] NOV26e


[0528] In an alternative embodiment, a NOV26 variant is NOV26e of 1401 nucleotides (also referred to as CG51523-05164732693), shown in Table 26L. A NOV26e variant differs from NOV26a at the protein level at positions 170 and 403, and by the insertion of 11 amino acids at position 161-162.
154TABLE 26LNOV26e nucleotide sequence.(SEQ ID NO: 255)AAGCTTACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCGACTGGAGAAAATCTCTAAATGTTTAGAAGATCTTGGTAATGTTCTCACTTCTACTCCAAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCACCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCTATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACAATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGGAATAACAGCGGAGCGCCACACCGGGAGAAGCCAGGCGGAGAAACTGATGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCCGAGATGTCTCCTCTCGAG


[0529]

155





TABLE 26M








NOV26e amino acid sequence.
















(SEQ ID NO: 256)









KLTRFEAAVEQKVIQSLPKNGSFQPTNEMMLKFYKQATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEGAMIAYVEEM






KKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDITSVRLEKISKCLEDLEEEEAQEEVKGAEQSDNDKKMMKKSADH





KNLEVIVTNGYDKDGFVQDIQNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEV





YCDSMEQFGQEESLDSTSNNGPFQYYLGGHSSQPMENSGFREDIQVPPGNNIGNMQVVAVEGKEGEVKHGGEDGRNNSGAP





HREKRGGETDEFSNVRRGRGHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLET





LTALQAKSSTSTLQTAPQPTSQRPSWWPFEMSPLE










[0530] NOV26f


[0531] In an alternative embodiment, a NOV26 variant is NOV26f of 1368 nucleotides (also referred to as CG51523-05164732709), shown in Table 26N. A NOV26f variant differs from NOV26a at the protein level at positions 170, 403, 449, and 485.
156TABLE 26NNOV26f nucleotide sequence.(SEQ ID NO: 257)AAGCTTACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGATCTTGGTAATGTTCTCACTTCTACTCCGAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACGAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGCGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGCGGAGCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATACAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCGGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGATCATCTTGGTGGCCCTTCGAGATGTCTCCTCTCGAG


[0532]

157





TABLE 26O








Encoded NOV26f protein sequence.
















(SEQ ID NO: 258)









KLTRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEMIAYVEEM






KKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDITSDLGNVLTSTPNAKTVNGKAESSDSGAESEEEAQEEVKGEQ





SDNDKKMMKKSADHKNLEVIVTNGYDKDGFVQDIQNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDEDVT





GIQHLTSDSDSEVYCDSMEGFGQEESLDSFTSNNGPFQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQVAVGKGEVK





HGGEDGRNNSGPHREKRGGETDEFSNVRRQRGHRMQHLSEGTKGRQVGSGGDGERWQSDRGSRGSLNEQIALVLMRLQED





IQNVLQRLQKLETLTALQAKSSTSTLQTAPQPTSQRSSWWPFEMSPLE










[0533] NOV26g


[0534] In an alternative embodiment, a NOV26 variant is NOV26g of 1586 nucleotides (also referred to as CG51523-05164718189), shown in Table 26P. A NOV26g variant differs from NOV26a by 2 amino acids at positions 170 and 403.
158TABLE 26PNOV26g nucleotide sequence.(SEQ ID NO: 259)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAGATAAGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTCAAGAAATGAAAAAGATTATTGAAACTATGCGAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGAAGGAGTTCTGATATAACCTCAGATCTTGGTAATGTTCTCACTTCTACTCCGAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGATTTATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGQACAAGAAGAGTCTTTAGAGGGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGCGGAGCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGQGGCTCCGACAGAGGTCCCGAGGCAQCCTcATCAGCAGATCGCCCTCGTGCTGATGAGACTGCTGCAGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0535]

159





TABLE 26Q








Encoded NOV26g protein sequence.
















(SEQ ID NO: 260)









ASTMFQFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQ






ATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSS





DITSDLGNLTSTPNAKTVNGKAESSDSCAESEEEEAQEEVKQAEQSDNDKKMMKKSADHKNLEVIVTNGYDKGDGFVQDI





QNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGQEESLDSFTS





NNGPFQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKRGGETDEFSNVRR





QRGHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTSTLQTA





PQPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLVYLYYQRRRRKLNLE










[0536] NOV26h


[0537] In an alternative embodiment, a NOV26 variant is NOV26h of 1618 nucleotides (also referred to as CG51523-05164718193), shown in Table 26R. A NOV26h variant differs from NOV26a by the first twenty amino acids, and the 3 amino acids at positions 170, 182 and 403. In addition, NOV26h differs from NOV26a by the insertion of eleven amino acids at position 161-162.
160TABLE 26RNOV26h nucleotide sequence.(SEQ ID NO: 261)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAGCTGGTGCTGCTGCTGCCTGATTCCGCCGACAGACCTTGGACCGGGQCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTCATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATGGCAGQCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAACAAATGAAGATTATTGAAACTATAGGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAATTGTCGAGGACAAATCGAGTGGAAGGAGTTCTGATATAACCTCAGTCCGACTGGAGAAAATCTCTAAATGTTTAGAAGATCTTGGTAATGTTCTGACTTCTACTCTTACGCCAAAACCGTTAATGGTAAAGCTGAAGGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCAAGAAGAAGTGAAACGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTCATCAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAGATGTTACGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTTTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGOTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATCGCAACATTGGGAATATGCAGGTGGTTGCAGTTCAAGGAAAAGGTGAAGTCAAGCATGGACGAGAAQATGGCAGGAATAACACCGGAGCACCACACCAGGACAAGCCAGCCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATACGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATCGCGAGCGCTGCGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGACACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTCCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATCGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0538]

161





TABLE 26S








Encoded NOV26h protein sequence.
















(SEQ ID NO: 262)









SFHHVPVSCRLLGKLVLLLPDSADRPWDRCWQLEMADTRSVHETRFEAAVICVIQSLPKNGSFQPTNEMMLKFYSFYKQA






TEGPCKLSRPOFWDPIGRYKWDAWSSLGDMTKEEANIAYVEEMKKIITMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDI





TSVRLEKISKCLEDLGNVLTSTPNAKTNGKAEGSDSGAESEEEEAQEEVKGAEQSDNDRKMMKKSADHRNLEVIVTNGYD





DGFVQDIQNDIHASSSLNCRSTEEVKPIDENLGQTGKSAVCIHQDINUDHVEDVTGIQHLTSDSDSEVYCDSMEQFCQEE





SLDSFTSNNIGPFQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKGETDE





FSNRRGRGHRMQNLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQTALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTS





TLQTAPQPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLVYLYYQRRRRKLNLE










[0539] NOV26i


[0540] In an alternative embodiment, a NOV26 variant is NOV26i of 1586 nucleotides (also referred to as CG51523-05164718197), shown in Table 26T. A NOV26i variant differs from NOV26a by 4 amino acids at positions 170, 403, 422 and 466.
162TABLE 26TNOV26i nucleotide sequence.(SEQ ID NO: 263)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGATCTTGGTAATGTTCTCACTTCTACTCCGAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATCGCTATCATAAAGATAGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTGATCAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTCGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGCAGAAGATGGCAGGAATAACAGCCGACCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTACAAGAGGAACAGGACATAGGATGCAACACTTGAGCCAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGCGGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTCATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCGGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0541]

163





TABLE 26U








Encoded NOV26i protein sequence.
















(SEQ ID NO: 264)









ASTMFQFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQA






TEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEFVEELLRVIGPFYEIVEDKKSGRSSDI





TSDLGNVLTSTPNAKTVNGKAESSDSGAESEEEEAQEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGYDKDGFVQDIQND





IHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGQEESLDSFTSNNGP





FQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKRGGETDEFSNVRRGRGHR





MQHLSEGTKGRQVGSGGDGGRWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALRAKSSTSTLQTAPQPTSQ





RPSWWPFEMSPGVLTFAITWPFIAQWLVYLYYQRRRRKLNLE










[0542] NOV26j


[0543] In an alternative embodiment, a NOV26 variant is NOV26j of 1517 nucleotides (also referred to as CG51523-05164718205), shown in Table 26V. A NOV26j variant differs from NOV26a by 4 amino acids at positions 35, 121, 170 and 403, and by a deletion of twenty-three amino acids at position 350.
164TABLE 26VNOV26j nucleotide sequence.(SEQ ID NO: 265)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAACACTGGCAGCTGGAGATGGTGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAGTGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGATCTTGGTAATGTTCTCACTTCTACGCCAAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAGGAATAACAGCGGAGCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0544]

165





TABLE 26W








Encoded NOV26j protein sequence.
















(SEQ ID NO: 266)









ASTMFQFHAGSWESWCCCCLIPADRPWDRGQHWQLEMVDTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKG






ATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEVKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSS





DITSDLGNVLTSTPNAKTVNGKAESSDSGAESEEEEAQEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGYDKDGFVQDI





QNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGQEESLDSFTS





NNGPFQYYLGGHSSQPMENSGFREDIQVPPGNGRNNSGAPHREKRGGETDEFSNVRRGRGHRMQHLSEGTKGRQVGSGGD





QERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTSTLQTAPQPTSQRPSWWPFEMSPGVLTFA





IIWPFIAQWLVYLYYQRRRRKLNLE










[0545] NOV26k


[0546] In an alternative embodiment, a NOV26 variant is NOV26k of 1361 nucleotides (also referred to as CG51523-05164718209), shown in Table 26X. A NOV26k variant differs from NOV26a by 68 amino acid deletion at position 208 and 2 amino acid changes. In addition, at position 162, an 11 amino acid sequence replaces an 18 amino acid sequence.
166TABLE 26XNOV26k nucleotide sequence.(SEQ ID NO: 267)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAACACTGCCACCTGGAGATGGCGGACACGAGATCCGTCCACCAGACTACGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAQGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTOGATTTTCGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCACGAGTTCTGATATAACCTCAGTCCGACTGGAGAAAATCTCTAAATGTTTAGAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGCGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACACCCGAGCGCCACACCCGGACAAGCGAGGCGGAGAAACTGATGAATTCTCTAATGTTAGAAGAGGAAGACGACATAGGATGCAACACTTGAGCGAAGCAACCAAGGGCCGGCAGGTGGGAAGTGGACGTGATGGGGAGCGCTGGCGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTCGAAACGCTGACTGCTTTGCAGCCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGCCCTTTTATTGCACAGTGGTTGGCGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0547]

167





TABLE 26Y








Encoded NOV26k protein sequence.
















(SEQ ID NO: 268)









ASTMFQPHACSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNCSFQPTNEMMLKFYSFYKQ






ATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVICPFYEIVEDKKSGRSS





DITSVRLEKISKCLEAESSDSGAESEEEEAQEEVKGAEQSDNDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGQEESL





DSFTSNNGPFQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQVVAVEGKCEVKHGGEDGRNNSGAPHREKRGGETDEF





SNVRRGRGHRMQHLSEGTKGRQVGSGGDGERWGSDRCSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTS





TLQTAPQPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLAYLYYQRRRRKLNLEG










[0548] NOV26l


[0549] In an alternative embodiment, a NOV26 variant is NOV26l of 1619 nucleotides (also referred to as CG51523-05164718213), shown in Table 26Z. A NOV26l variant differs from NOV26a by 5 amino acid changes, and an 11 amino acid insertion at position 161-162.
168TABLE 26ZN0V26l nucleotide sequence.(SEQ ID NO: 269)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGOAAAQCTGGTCCTCCTGCTGCCTGATTCCCCCCGACAGGCCTTGGGACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATACCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAACAGGAAGCCATAATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTQAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCCACTGGAGAAAATCTCTAAATGTTTACAAGATCTTCGTAATCTTCTCACTTCTACTCCGAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATCAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTCTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAACAAGTAAAGCCCATTGATGAAAACTTGaGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATCATGATCATCTTGAAGATGTTACAGGAATTCAOCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTTGTTGCAGTTGAAGGAAAAGGCGAAGTCAAGCATGGAGGAGAAGATGGCACGAATAACAGCGGAGCACCACACCGGGAGGAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCATATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0550]

169





TABLE 26AA








Encoded NOV26l protein sequence.
















(SEQ ID NO: 270)









ASTMFQFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQA






TEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAIIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSD





ITSVRLEKISKCLEDLGNVLTSTPNKTVNGKAESSDSGAESEEEEAQEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGY





DKDGFVQDIQNKIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGQ





EESLDSFTSNNGPFQYYLGGHSSQMENSGFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREERGGET





DEFSNVRRGRGHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEHIALVLMRLQEDMQNVLQRLQKLETLTALQAKS





STSTLQTAPQPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLVYLYYQRRRRKLNLE










[0551] NOV26m


[0552] In an alternative embodiment, a NOV26 variant is NOV26m of 1619 nucleotides (also referred to as CG51523-05166190452), shown in Table 26AB. A NOV26m variant differs from NOV26a by 4 amino acid changes, and an 11 amino acid insertion at position 161-162.
170TABLE 26ABNOV26m nucleotide sequence.(SEQ ID NO: 271)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAGTGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCGACTGGAGAAAATCTCTAAATGTTTAGAAGATCTTGGTAATGTTCTCACTTCTACTCCAAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCTATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGCGGAGCGCCACACCGGGAGAAGCGAGGCGGAGAAACTGATGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGATGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTCATGAGACTGCAGCAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0553]

171





TABLE 26AC








hc,1 Encoded NOV26m protein sequence.
















(SEQ ID NO: 272)









ASTMFQFHAGSWESWCCCCLIPADRPDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEVMLKFYSFYKQA






TEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSD





ITSVRLERISKCLEDLGNVLTSTPNAKTVNGKAESSDSGAESEEEEAQEEVKGAEQSDNDKKNMKKSADHKNLEVIVTNG





YDKDGFVQDIQNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFG





QEESLDSFTSNNGPFQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKRGG





ETDEFSNVRRGRGHRMQHLSEGTKGRQVGSGDDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQA





KSSTSTLQTAPQPTSQRPSWWPFEMSPGVLTFAIIWPEIAQWLVYLYYQRRRRKLNLE










[0554] NOV26n


[0555] In an alternative embodiment, a NOV26 variant is NOV26n of 1619 nucleotides (also referred to as CG51523-05166190467), shown in Table 26AD. Similarly to a NOV26n variant, a NOV26n variant differs from NOV26a by 4 amino acid changes, and an 11 amino acid insertion at position 161-162.
172TABLE 26ADNOV26n nucleotide sequence.(SEQ ID NO: 273)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCCAAACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCGACTGGAGAAAATCTCTAAATGTTTAGAAGATCTTGGTAATGTTCTCACTTCTACTCCAAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGACCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAGATGGCTTTGTTCAGGATATGCAGAATGACATTCATGCCAGTTCTTCCCTTGAATGGCAGAAGCACTGAAGAAGTAAGGCCTATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGACGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGCGGAGCGCCACACCGGGAGAAGCGAGGCGGAGAAACTGATGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATCCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0556]

173





TABLE 26AE








Encoded NOV26n protein sequence.
















(SEQ ID NO: 274)









ASTMFQFHAGSWESWCCCCLIPADRPDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQA






TEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEANIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSD





ITSVRLEKISKCLEDLGNVLTSTPNAKTVNGKAESSDSGAESEEEEAQEEVKQAEQSDNDKKMMKKSADHKNLEVIVTNG





YDKDGFVQDMQNDIHASSSLNGRSTEEVRPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQPG





QEESLDSFTSNNGPFQYYLGGHSSQPMENSQFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKRGG





ETDEFSNVRRGRGHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQA





KSSTSTLQTAPQPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLVYLYYQRRRRKLNLE










[0557] NOV26o


[0558] In an alternative embodiment, a NOV26 variant is NOV26o of 1619 nucleotides (also referred to as CG51523-05166190475), shown in Table 26AF. A NOV26o variant differs from NOV26a by 3 amino acid changes at positions 170, 372 and 403, and an 11 amino acid insertion at position 161-162.
174TABLE 26AFNOV26o nucleotide sequence.(SEQ ID NO: 275)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCGACTGGAQAAAATCTCTAAATGTTTAGAAGATCTTGGTAATGTTCTCACTTCTACTCCGAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGAGGGCAGGAATAACAGCGGAGCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACCTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0559]

175





TABLE 26AG








Encoded NOV26o protein sequence.
















(SEQ ID NO: 276)









ASTMFQFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQ






ATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSS





DITSVRLEKISKCLEDLGNVLTSTPNAKTVNGKAESSDSGAESEEEEAQEEVKGAEQSDNDKKMMKKSADHKNLEVIVTN





GYDKDGFVQDIQNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQF





GQEESLDSFTSNNGPFQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEEGRNNSGAPHREKRG





GETDEFSNVRRGRGHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQ





AKSSTSTLQTAPQPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLVYLYYQRRRRKLNLE










[0560] NOV26p


[0561] In an alternative embodiment, a NOV26 variant is NOV26p of 1619 nucleotides (also referred to as CG51523-05166190498), shown in Table 26AH. A NOV26p variant differs from NOV26a by 2 amino acid changes at positions 170 and 403, and an 11 amino acid insertion at position 161-162.
176TABLE 26A11NOV26p nucleotide sequence.(SEQ ID NO: 277)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCGACTGGAGAAAATCTCTAAATGTTTAGAAGATCTTGGTAATGTTCTCACTTCTACTCCGAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAACGCACTGAAGAAGTAAAGCCCATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGCGGAGCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0562]

177





TABLE 26AI








Encoded NOV26p protein sequence.
















(SEQ ID NO: 278)









ASTMFQFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQ






ATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSS





DITSVRLEKISKCLEDLGNSVLTSTPNAKTVNGKAESSDSGAESEEEEAQEEVKGAEQSDNKKMMKKSADHKNLEVIVTN





GYDKDGFVQDIQNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQF





GQEESLDSFTSNNGPFQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKRG





GETDEFSNVRRGRGHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQ





AKSSTSTLQTAPQPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLVYLYYQRRRRKLNLE










[0563] NOV26q


[0564] In an alternative embodiment, a NOV26 variant is NOV26q of 1586 nucleotides (also referred to as CG51523-05166190460), shown in Table 26AJ. A NOV26q variant differs from NOV26a by 3 amino acid changes at positions 170, 231 and 463.
178TABLE 26AJNOV26q nucleotide sequence.(SEQ ID NO: 279)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAGATTATTGAAACTATGCCAATTGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGATCTTGGTAATGTTCTCACTTCTACTCCAAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAATTGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAAATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGCGGAGCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCAAATCATCAACATCAACATTGCAGACCTGCTCCTCAGCCCACCTCACAQAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTCGCGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0565]

179





TABLE 26AK








Encoded NOV26q protein sequence.
















(SEQ ID NO: 280)









ASTMFQFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQA






TEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDI





TSDLGNVLTSTPNAKTVNGKAESSDSGAESEEEEAQEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGYDKNGFVQDIQND





IHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGQEESLDSFTSNNGP





FQYYLGGHSSQPMENSGFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKRGGETDEFSNVRRGRGHR





MQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTSTLQTAPQPTSQ





RPSWWPFEMSPGVLTFATIWPFIAQWLVYLYYQRRRRKLNLE










[0566] NOV26r


[0567] In an alternative embodiment, a NOV26 variant is NOV26r of 1586 nucleotides (also referred to as CG51523-05166190483), shown in Table 26AL. A NOV26r variant differs from NOV26a by 5 amino acid changes at positions 170, 342, 396, 403, and 452.
180TABLE 26ALNOV26r nucleotide sequence.(SEQ ID NO: 281)AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTCGGAAAGCTGGTGCTGCTGCTGCCTGATTCCCGCACGACGACCTTGGGACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAATGGTTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTTGAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTCGAAGACAAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGATCTTGGTAATGTTCTCACTTCTACTCCGAACGCCAAAACCGTTAATGGTAAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCCATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTTACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACCGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAATATATTCAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGCGGAGCACCACACCGGAGAAGCGAGGCGGAGAAACTGACGAATTCTCTAATGTTTGGAAGAGGAAGAGGACATAGGATGCAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAACGCCGACTGCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAGTGGTTGGTGTATTTATACTATCAAAGAAGGAGAAGAAAACTGAACCTCGAG


[0568]

181





TABLE 26AM








Encoded NOV26r protein sequence.
















(SEQ ID NO: 282)









ASTMFQFHFAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNSFQPTNEMMLKFYSFYKQ






ATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSS





DITSDLGNVLTSTPNAKTVNGKAESSDSGAESEEEEAQEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGYDKDGFVQDI





QNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGQEESLDSFTS





NNGPFQYYLGGHSSQPMENSGFREYIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKRGGETDEFSNVGR





GRGHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETPTALQAKSSTSTLQTA





QPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLVYLYYQRRRKLNLE











Example B


Sequencing Methodology and Identification of NOVX Clones

[0569] 1. GeneCalling™ Technology:


[0570] This is a proprietary method of performing differential gene expression profiling between two or more samples developed at CuraGen and described by Shimkets, et al., “Gene expression analysis by transcript profiling coupled to a gene database query” Nature Biotechnology 17:198-803 (1999). cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then digested with up to as many as 120 pairs of restriction enzymes and pairs of linker-adaptors specific for each pair of restriction enzymes were ligated to the appropriate end. The restriction digestion generates a mixture of unique cDNA gene fragments. Limited PCR amplification is performed with primers homologous to the linker adapter sequence where one primer is biotinylated and the other is fluorescently labeled. The doubly labeled material is isolated and the fluorescently labeled single strand is resolved by capillary gel electrophoresis. A computer algorithm compares the electropherograms from an experimental and control group for each of the restriction digestions. This and additional sequence-derived information is used to predict the identity of each differentially expressed gene fragment using a variety of genetic databases. The identity of the gene fragment is confirmed by additional, gene-specific competitive PCR or by isolation and sequencing of the gene fragment.


[0571] 2. SeqCalling™ Technology:


[0572] cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen's proprietary SeqCalling technology. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0573] 3. PathCalling™ Technology:


[0574] The NOVX nucleic acid sequences are derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, are sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.


[0575] The laboratory screening was performed using the methods summarized below:


[0576] cDNA libraries were derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then directionally cloned into the appropriate two-hybrid vector (Gal4-activation domain (Gal4-AD) fusion). Such cDNA libraries as well as commercially available cDNA libraries from Clontech (Palo Alto, Calf.) were then transferred from E. coli into a CuraGen Corporation proprietary yeast strain (disclosed in U.S. Pat. Nos. 6,057,101 and 6,083,693, incorporated herein by reference in their entireties).


[0577] Gal4-binding domain (Gal4-BD) fusions of a CuraGen Corportion proprietary library of human sequences was used to screen multiple Gal4-AD fusion cDNA libraries resulting in the selection of yeast hybrid diploids in each of which the Gal4-AD fusion contains an individual cDNA. Each sample was amplified using the polymerase chain reaction (PCR) using non-specific primers at the cDNA insert boundaries. Such PCR product was sequenced; sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0578] Physical clone: the cDNA fragment derived by the screening procedure, covering the entire open reading frame is, as a recombinant DNA, cloned into pACT2 plasmid (Clontech) used to make the cDNA library. The recombinant plasmid is inserted into the host and selected by the yeast hybrid diploid generated during the screening procedure by the mating of both CuraGen Corporation proprietary yeast strains N106′ and YULH (U.S. Pat. No. 6,057,101 and 6,083,693).


[0579] 4. RACE:


[0580] Techniques based on the polymerase chain reaction such as rapid amplification of cDNA ends (RACE), were used to isolate or complete the predicted sequence of the cDNA of the invention. Usually multiple clones were sequenced from one or ,more human samples to derive the sequences for fragments. Various human tissue samples from different donors were used for the RACE reaction. The sequences derived from these procedures were included in the SeqCalling Assembly process described in preceding paragraphs.


[0581] 5. Exon Linking:


[0582] The NOVX target sequences identified in the present invention were subjected to the exon linking process to confirm the sequence. PCR primers were designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence was examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective was encountered, or, in the case of the reverse primer, until the stop codon was reached. Such primers were designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the predicted exons to closely related human sequences from other species. These primers were then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain—amygdala, brain—cerebellum, brain—hippocampus, brain—substantia nigra, brain—thalamus, brain—whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma—Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, trachea, uterus. Usually the resulting amplicons were gel purified, cloned and sequenced to high redundancy. The PCR product derived from exon linking was cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial clone has an insert covering the entire open reading frame cloned into the pCR2.1 vector. The resulting sequences from all clones were assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs were included as components for an assembly when the extent of their identity with another component of the assembly was at least 95% over 50 bp. In addition, sequence traces were evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.


[0583] 6. Physical Clone:


[0584] Exons were predicted by homology and the intron/exon boundaries were determined using standard genetic rules. Exons were further selected and refined by means of similarity determination using multiple BLAST (for example, tBlastN, BlastX, and BlastN) searches, and, in some instances, GeneScan and Grail. Expressed sequences from both public and proprietary databases were also added when available to further define and complete the gene sequence. The DNA sequence was then manually corrected for apparent inconsistencies thereby obtaining the sequences encoding the full-length protein.


[0585] The PCR product derived by exon linking, covering the entire open reading frame, was cloned into the pCR2.1 vector from Invitrogen to provide clones used for expression and screening purposes.



Example C


Quantitative Expression Analysis of Clones in Various Cells and Tissues

[0586] The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISMS® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoimmune/autoinflammatory diseases), Panel CNSD.01 (containing samples from normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).


[0587] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28 s: 18 s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[0588] First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-acfin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No.4309169) and gene-specific primers according to the manufacturer's instructions.


[0589] In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 μg of total RNA were performed in a volume of 20 μl and incubated for 60 minutes at 42° C. This reaction can be scaled up to 50 μg of total RNA in a final volume of 100 μl. sscDNA samples are then normalized to reference nucleic acids as described previously, using 1× TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions.


[0590] Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration=250 nM, primer melting temperature (Tm) range=58°−60° C., primer optimal Tm=59° C., maximum primer difference=2° C., probe does not have 5′G, probe Tm must be 10° C. greater than primer Tm, amplicon size 75 bp to 100 bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, Tex., USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5′ and 3′ ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900 nM each, and probe, 200 nM.


[0591] PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR plate (Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48° C. for 30 minutes followed by amplification/PCR cycles as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.


[0592] When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using 1× TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were analyzed and processed as described previously.


[0593] Panels 1, 1.1, 1.2, and 1.3D


[0594] The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.


[0595] In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used:


[0596] ca.=carcinoma,


[0597] *=established from metastasis,


[0598] met=metastasis,


[0599] s cell var=small cell variant,


[0600] non-s=non-sm=non-small,


[0601] squam=squamous,


[0602] pl. eff pl effusion=pleural effusion,


[0603] glio=glioma,


[0604] astro=astrocytoma, and


[0605] neuro=neuroblastoma.


[0606] General_screening_panel_v1.4, v1.5 and v1.6


[0607] The plates for Panels 1.4, v1.5 and v1.6 include two control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in Panels 1.4, v1.5 and v1.6 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panels 1.4, v1.5 and v1.6 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panels 1.4, v1.5 and v1.6 are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.


[0608] Panels 2D, 2.2, 2.3 and 2.4


[0609] The plates for Panels 2D, 2.2, 2.3 and 2.4 generally include two control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI) or from Ardais or Clinomics. The tissues are derived from human malignancies and in cases where indicated many malignant tissues have “matched margins” obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted “NAT” in the results below. The tumor tissue and the “matched margins” are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI/CHTN/Ardais/Clinomics). Unmatched RNA samples from tissues without malignancy (normal tissues) were also obtained from Ardais or Clinomics. This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, Calif.), Research Genetics, and Invitrogen. General oncology screening panel_v2.4 is an updated version of Panel 2D.


[0610] HASS Panel v 1.0


[0611] The HASS panel v 1.0 plates are comprised of 93 cDNA samples and two controls. Specifically, 81 of these samples are derived from cultured human cancer cell lines that had been subjected to serum starvation, acidosis and anoxia for different time periods as well as controls for these treatments, 3 samples of human primary cells, 9 samples of malignant brain cancer (4 medulloblastomas and 5 glioblastomas) and 2 controls. The human cancer cell lines are obtained from ATCC (American Type Culture Collection) and fall into the following tissue groups: breast cancer, prostate cancer, bladder carcinomas, pancreatic cancers and CNS cancer cell lines. These cancer cells are all cultured under standard recommended conditions. The treatments used (serum starvation, acidosis and anoxia) have been previously published in the scientific literature. The primary human cells were obtained from Clonetics (Walkersville, Md.) and were grown in the media and conditions recommended by Clonetics. The malignant brain cancer samples are obtained as part of a collaboration (Henry Ford Cancer Center) and are evaluated by a pathologist prior to CuraGen receiving the samples. RNA was prepared from these samples using the standard procedures. The genomic and chemistry control wells have been described previously.


[0612] ARDAIS Panel v 1.0


[0613] The plates for ARDAIS panel v 1.0 generally include 2 control wells and 22 test samples composed of RNA isolated from human tissue procured by surgeons working in close cooperation with Ardais Corporation. The tissues are derived from human lung malignancies (lung adenocarcinoma or lung squamous cell carcinoma) and in cases where indicated many malignant samples have “matched margins” obtained from noncancerous lung tissue just adjacent to the tumor. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue) in the results below. The tumor tissue and the “matched margins” are evaluated by independent pathologists (the surgical pathologists and again by a pathologist at Ardais). Unmatched malignant and non-malignant RNA samples from lungs were also obtained from Ardais. Additional information from Ardais provides a gross histopathological assessment of tumor differentiation grade and stage. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical state of the patient.


[0614] Panels 3D, 3.1 and 3.2


[0615] The plates of Panel 3D, 3. 1, and 3.2 are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D, 3.1, 3.2, 1, 1.1, 1.2, 1.3D, 1.4, 1.5, and 1.6 are of the most common cell lines used in the scientific literature.


[0616] Panels 4D, 4R, and 4.1D


[0617] Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, Calif.) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, Calif.). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, Pa.).


[0618] Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells,, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, Md.) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5 ng/ml, TNF alpha at approximately 5-10 ng/ml, IFN gamma at approximately 20-50 ng/ml, IL-4 at approximately 5-10 ng/ml, IL-9 at approximately 5-10 ng/ml, IL-13 at approximately 5-10ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.


[0619] Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco/Life Technologies, Rockville, Md.), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), and 10 mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20ng/ml PMA and 1-2 μg/ml ionomycin, IL-12 at 5-10 ng/ml, IFN gamma at 20-50 ng/ml and IL-18 at 5-10 ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), and 10 mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5 μg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2×106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol (5.5×10−5 M) (Gibco), and 10 mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1- 7 days for RNA preparation.


[0620] Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions. Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, Utah), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), and 10 mM Hepes (Gibco), 50 ng/ml GMCSF and 5 ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), 10 mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50 ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100 ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10 μg/ml for 6 and 12-14 hours.


[0621] CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), and 10 mM Hepes (Gibco) and plated at 106 cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with 0.5 μg/ml anti-CD28 (Pharmingen) and 3 ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), and 10 mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), and 10 mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.


[0622] To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), and 10 mM Hepes (Gibco). To activate the cells, we used PWM at 5 μg/ml or anti-CD40 (Pharmingen) at approximately 10 μg/ml and IL-4 at 5-10 ng/ml. Cells were harvested for RNA preparation at 24, 48 and 72 hours.


[0623] To prepare the primary and secondary Th1/Th2 and Tr1 cells, six-well Falcon plates were coated overnight with 10 μg/ml anti-CD28 (Pharmingen) and 2 μg/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, German Town, Md.) were cultured at 105-106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), 10 mM Hepes (Gibco) and IL-2 (4 ng/ml). IL-12 (5 ng/ml) and anti-IL4 (1 μg/ml) were used to direct to Th 1, while IL-4 (5 ng/ml) and anti-IFN gamma (1 μg/ml) were used to direct to Th2 and IL-10 at 5 ng/ml was used to direct to Tr1. After 4-5 days, the activated Th1, Th2 and Tr1 lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), 10 mM Hepes (Gibco) and IL-2 (1 ng/ml). Following this, the activated Th1, Th2 and Tr1 lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L (1 μg/ml) to prevent apoptosis. After 4-5 days, the Th1, Th2 and Tr1 lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Th1 and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Th1, Th2 and Tr1 after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.


[0624] The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1 mM dbcAMP at 5×105 cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5×105 cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), 10 mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10 ng/ml and ionomycin at 1 μg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5 M (Gibco), and 10 mM Hepes (Gibco). CCD1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1 ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5 ng/ml IL-4, 5 ng/ml IL-9, 5 ng/ml IL-13 and 25 ng/ml IFN gamma.


[0625] For these cell lines and blood cells, RNA was prepared by lysing approximately 107 cells/ml using Trizol (Gibco BRL). Briefly, {fraction (1/10)} volume of bromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15 ml Falcon Tube. An equal volume of isopropanol was added and left at −20° C. overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 μl of RNAse-free water and 35 μl buffer (Promega) 5 μl DTT, 7 μl RNAsin and 8 μl DNAse were added. The tube was incubated at 37° C. for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with {fraction (1/10)} volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at −80° C.


[0626] AI_Comprehensive Panel_v1.0


[0627] The plates for AI_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, Md.). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.


[0628] Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.


[0629] Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.


[0630] Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.


[0631] Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-1 anti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 3 5-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.


[0632] In the labels employed to identify tissues in the AI_comprehensive panel_v1.0 panel, the following abbreviations are used:


[0633] AI=Autoimmunity


[0634] Syn=Synovial


[0635] Normal=No apparent disease


[0636] Rep22 /Rep20=individual patients


[0637] RA=Rheumatoid arthritis


[0638] Backus=From Backus Hospital


[0639] OA=Osteoarthritis


[0640] (SS) (BA) (MF)=Individual patients


[0641] Adj=Adjacent tissue


[0642] Match control=adjacent tissues


[0643] -M=Male


[0644] -F=Female


[0645] COPD=Chronic obstructive pulmonary disease


[0646] AI.05 Chondrosarcoma


[0647] The AI.05 chondrosarcoma plates are comprised of SW1353 cells that had been subjected to serum starvation and treatment with cytokines that are known to induce MMP (1, 3 and 13) synthesis (eg. IL1beta). These treatments include: IL-1beta (10 ng/ml), IL-1beta+TNF-alpha (50 ng/ml), IL-1beta+Oncostatin (50 ng/ml) and PMA (100 ng/ml). The SW1353 cells were obtained from the ATCC (American Type Culture Collection) and were all cultured under standard recommended conditions. The SW1353 cells were plated at 3×105 cells/ml (in DMEM medium—10% FBS) in 6-well plates. The treatment was done in triplicate, for 6 and 18 h. The supernatants were collected for analysis of MMP 1, 3 and 13 production and for RNA extraction. RNA was prepared from these samples using the standard procedures.


[0648] Panels 5D and 5I


[0649] The plates for Panel 5D and 5I include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.


[0650] In the Gestational Diabetes study subjects are young (18-40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:
182Patient 2Diabetic Hispanic, overweight, not on insulinPatient 7-9Nondiabetic Caucasian and obese (BMI > 30)Patient 10Diabetic Hispanic, overweight, on insulinPatient 11Nondiabetic African American and overweightPatient 12Diabetic Hispanic on insulin


[0651] Adipocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stern cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr. 2, 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:


[0652] Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose


[0653] Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated


[0654] Donor 2 and 3 AD: Adipose, Adipose Differentiated


[0655] Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.


[0656] Panel 5I contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 5I.


[0657] In the labels employed to identify tissues in the 5D and 5I panels, the following abbreviations are used:


[0658] GO Adipose=Greater Omentum Adipose


[0659] SK=Skeletal Muscle


[0660] UT=Uterus


[0661] PL=Placenta


[0662] AD=Adipose Differentiated


[0663] AM=Adipose Midway Differentiated


[0664] U=Undifferentiated Stem Cells


[0665] Panel CNSD.01


[0666] The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0667] Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supernuclear Palsy, Depression, and “Normal controls”. Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.


[0668] In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:


[0669] PSP=Progressive supranuclear palsy


[0670] Sub Nigra=Substantia nigra


[0671] Glob Palladus=Globus palladus


[0672] Temp Pole=Temporal pole


[0673] Cing Gyr=Cingulate gyrus


[0674] BA 4=Brodman Area 4


[0675] Panel CNS_Neurodegeneration_V1.0


[0676] The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0677] Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from “Normal controls” who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0=no evidence of plaques, 3=severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a “control” region within AD patients. Not all brain regions are represented in all cases.


[0678] In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used:


[0679] AD=Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy


[0680] Control=Control brains; patient not demented, showing no neuropathology


[0681] Control (Path)=Control brains; pateint not demented but showing sever AD-like pathology


[0682] SupTemporal Ctx=Superior Temporal Cortex


[0683] Inf Temporal Ctx=Inferior Temporal Cortex


[0684] A. CG103322-02: CD82 ANTIGEN.


[0685] Expression of gene CG103322-02 was assessed using the primer-probe set Ag6858, described in Table AA. Results of the RTQ-PCR runs are shown in Table AB. Please note that CG103322-02 represents a full-length physical clone.
183TABLE AAProbe Name Ag6858StartSEQ IDPrimersSequencesLengthPositionNoForward5′-agaggacaacagcctttctgtg-3′22550283ProbeTET-5′-caacaggacccagagtggcaaccac-3′-TAMRA25598284Reverse5′-ccaggagctcctggtacaca-3′20637285


[0686]

184





TABLE AB










General_screening_panel_v1.6











Rel. Exp. (%)




Ag6858, Run



Tissue Name
278387506














Adipose
1.0



Melanoma* Hs688(A).T
1.6



Melanoma* Hs688(B).T
0.6



Melanoma* M14
7.0



Melanoma* LOXIMVI
27.5



Melanoma* SK-MEL-5
2.5



Squamous cell carcinoma SCC-4
60.3



Testis Pool
2.1



Prostate ca.* (bone met) PC-3
1.7



Prostate Pool
3.6



Placenta
2.8



Uterus Pool
1.9



Ovarian ca. OVCAR-3
27.0



Ovarian ca. SK-OV-3
2.1



Ovarian ca. OVCAR-4
1.7



Ovarian ca. OVCAR-5
49.3



Ovarian ca. IGROV-1
2.9



Ovarian ca. OVCAR-8
5.6



Ovary
3.0



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
44.8



Breast ca. BT 549
7.4



Breast ca. T47D
48.0



Breast ca. MDA-N
0.3



Breast Pool
2.9



Trachea
9.5



Lung
1.7



Fetal Lung
5.9



Lung ca. NCI-N417
0.1



Lung ca. LX-1
11.0



Lung ca. NCI-H146
6.9



Lung ca. SHP-77
0.0



Lung ca. A549
2.7



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.4



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
3.4



Lung ca. NCI-H522
0.2



Liver
0.0



Fetal Liver
9.6



Liver ca. HepG2
0.0



Kidney Pool
1.5



Fetal Kidney
0.9



Renal ca. 786-0
3.7



Renal ca. A498
20.0



Renal ca. ACHN
0.8



Renal ca. UO-31
100.0



Renal ca. TK-10
1.5



Bladder
10.2



Gastric ca. (liver met.) NCI-N87
44.8



Gastric ca. KATO III
20.3



Colon ca. SW-948
9.0



Colon ca. SW480
20.6



Colon ca.* (SW480 met) SW620
8.2



Colon ca. HT29
18.4



Colon ca. HCT-116
13.4



Colon ca. CaCo-2
4.9



Colon cancer tissue
23.0



Colon ca. SW1116
4.0



Colon ca. Colo-205
5.6



Colon ca. SW-48
25.3



Colon Pool
1.6



Small Intestine Pool
3.7



Stomach Pool
1.4



Bone Marrow Pool
2.0



Fetal Heart
0.0



Heart Pool
1.1



Lymph Node Pool
0.0



Fetal Skeletal Muscle
2.1



Skeletal Muscle Pool
2.3



Spleen Pool
4.5



Thymus Pool
5.9



CNS cancer (glio/astro) U87-MG
55.1



CNS cancer (glio/astro) U-118-MG
23.5



CNS cancer (neuro; met) SK-N-AS
1.5



CNS cancer (astro) SF-539
5.3



CNS cancer (astro) SNB-75
11.9



CNS cancer (glio) SNB-19
3.3



CNS cancer (glio) SF-295
21.3



Brain (Amygdala) Pool
6.6



Brain (cerebellum)
5.1



Brain (fetal)
3.6



Brain (Hippocampus) Pool
5.8



Cerebral Cortex Pool
6.4



Brain (Substantia nigra) Pool
5.6



Brain (Thalamus) Pool
7.4



Brain (whole)
2.5



Spinal Cord Pool
8.4



Adrenal Gland
2.5



Pituitary gland Pool
1.4



Salivary Gland
6.0



Thyroid (female)
3.0



Pancreatic ca. CAPAN2
0.9



Pancreas Pool
7.3











[0687] General_screening_panel_v1.6 Summary: Ag6858


[0688] The gene is expressed at low levels in most of the cancer cell lines on this panel with the highest expression in a renal cancer cell line UO-31 (CT=30.03). It may be used as a marker for expression.


[0689] CG103322-02 is a deletion splice variant of CD82/KAI1, a gene which was first described in the literature as a metastasis suppressor for prostate cancer (Dong, J.-T.; Lamb, P. W.; Rinker-Schaeffer, C. W.; Vukanovic, J.; Ichikawa, T.; Isaacs, J. T.; Barrett, J. C. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p 11.2. Science 268: 884-886, 1995.)


[0690] B. CG151575-02: Novel Multi-Pass Membrane Protein.


[0691] Expression of gene CGI51575-02 was assessed using the primer-probe set Ag7621, described in Table BA. Results of the RTQ-PCR runs are shown in Table BB.
185TABLE BAProbe Name Ag7621StartSEQ IDPrimersSequencesLengthPositionNoForward5′-cccagagtatctcaagggactt-3′22219286ProbeTET-5′-aagctgtctctgctgatagactccttcc-3′-TAMRA28257287Reverse5′-gtgagatcctgctgtgttgg-3′20304288


[0692]

186





TABLE BB










Panel 4.1D









Rel. Exp. (%)



Ag7621, Run


Tissue Name
311288444











Secondary Th1 act
5.9


Secondary Th2 act
33.7


Secondary Tr1 act
9.5


Secondary Th1 rest
0.0


Secondary Th2 rest
0.0


Secondary Tr1 rest
9.3


Primary Th1 act
0.0


Primary Th2 act
4.5


Primary Tr1 act
0.0


Primary Th1 rest
4.9


Primary Th2 rest
0.0


Primary Tr1 rest
0.0


CD45RA CD4 lymphocyte act
31.0


CD45RO CD4 lymphocyte act
12.3


CD8 lymphocyte act
0.0


Secondary CD8 lymphocyte rest
5.5


Secondary CD8 lymphocyte act
7.1


CD4 lymphocyte none
0.0


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0


LAK cells rest
4.5


LAK cells IL-2
14.4


LAK cells IL-2 + IL-12
0.0


LAK cells IL-2 + IFN gamma
0.0


LAK cells IL-2 + IL-18
8.1


LAK cells PMA/ionomycin
6.7


NK Cells IL-2 rest
18.7


Two Way MLR 3 day
12.5


Two Way MLR 5 day
0.0


Two Way MLR 7 day
0.0


PBMC rest
4.2


PBMC PWM
0.0


PBMC PHA-L
0.0


Ramos (B cell) none
4.4


Ramos (B cell) ionomycin
7.3


B lymphocytes PWM
4.3


B lymphocytes CD40L and IL-4
15.2


EOL-1 dbcAMP
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0


Dendritic cells none
22.5


Dendritic cells LPS
2.9


Dendritic cells anti-CD40
0.0


Monocytes rest
24.0


Monocytes LPS
41.2


Macrophages rest
15.2


Macrophages LPS
14.7


HUVEC none
5.6


HUVEC starved
12.4


HUVEC IL-1beta
4.1


HUVEC IFN gamma
4.9


HUVEC TNF alpha + IFN gamma
3.4


HUVEC TNF alpha + IL4
0.0


HUVEC IL-11
13.3


Lung Microvascular EC none
27.7


Lung Microvascular EC TNFalpha + IL-1beta
8.5


Microvascular Dermal EC none
25.2


Microsvasular Dermal EC TNFalpha + IL-1beta
0.0


Bronchial epithelium TNFalpha + IL1beta
43.5


Small airway epithelium none
23.3


Small airway epithelium TNFalpha + IL-1beta
71.7


Coronery artery SMC rest
0.0


Coronery artery SMC TNFalpha + IL-1beta
0.0


Astrocytes rest
14.8


Astrocytes TNFalpha + IL-1beta
19.5


KU-812 (Basophil) rest
18.3


KU-812 (Basophil) PMA/ionomycin
8.8


CCD1106 (Keratinocytes) none
56.6


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
15.2


Liver cirrhosis
3.5


NCI-H292 none
15.5


NCI-H292 IL-4
7.0


NCI-H292 IL-9
31.4


NCI-H292 IL-13
7.5


NCI-H292 IFN gamma
100.0


HPAEC none
5.7


HPAEC TNF alpha + IL-1 beta
17.8


Lung fibroblast none
16.7


Lung fibroblast TNF alpha + IL-1 beta
15.6


Lung fibroblast IL-4
5.9


Lung fibroblast IL-9
42.9


Lung fibroblast IL-13
0.0


Lung fibroblast IFN gamma
17.0


Dermal fibroblast CCD1070 rest
24.8


Dermal fibroblast CCD1070 TNF alpha
58.2


Dermal fibroblast CCD1070 IL-1 beta
11.3


Dermal fibroblast IFN gamma
10.0


Dermal fibroblast IL-4
61.1


Dermal Fibroblasts rest
21.5


Neutrophils TNFa + LPS
0.0


Neutrophils rest
0.0


Colon
0.0


Lung
17.1


Thymus
10.7


Kidney
23.8










[0693] CNS_neurodegeneration_v1.0 Summary: Ag7621 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel.


[0694] Panel 4.1D Summary:


[0695] Ag7621 Low expression of this gene is detected mainly in IFN gamma treated NCI-H292 (CT=34.6). NCI-H292 cell line is a human airway epithelial cell line that produces mucins. Expression of this gene is higher in IFN gamma stimulated NCI-H292 compared to resting cells. Thus, this gene may be important in the proliferation or activation of airway epithelium. Mucus overproduction is an important feature of bronchial asthma and chronic obstructive pulmonary disease samples. Therefore, therapeutics designed with the protein encoded by the gene may reduce or eliminate symptoms caused by inflammation in lung epithelia in chronic obstructive pulmonary disease, asthma, allergy, and emphysema.


[0696] C. CG153011-01: Sushi Domain-Containing Membrane Protein.


[0697] Expression of gene CG153011-01 was assessed using the primer-probe set Ag6966, described in Table CA. Results of the RTQ-PCR runs are shown in Table CB. Please note that CG153011-01 represents a full-length physical clone.
187TABLE CAProbe Name Ag6966StartSEQ IDPrimersSequencesLengthPositionNoForward5′-cagcgcagagaaatctcac-3′19170289ProbeTET-5′-tcccaatcccgaggaaaaccagagaagtagct-3′-TAMRA32213290Reverse5′-agagtaatgtggcaccgtctc-3′21249291


[0698]

188





TABLE CB










General_screening_panel_v1.6











Rel. Exp. (%)




Ag6966, Run



Tissue Name
278388950














Adipose
0.7



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.2



Squamous cell carcinoma SCC-4
0.0



Testis Pool
8.4



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
9.1



Placenta
0.0



Uterus Pool
2.5



Ovarian ca. OVCAR-3
52.9



Ovarian ca. SK-OV-3
33.2



Ovarian ca. OVCAR-4
9.9



Ovarian ca. OVCAR-5
2.8



Ovarian ca. IGROV-1
2.6



Ovarian ca. OVCAR-8
12.1



Ovary
18.7



Breast ca. MCF-7
47.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
17.9



Breast ca. T47D
2.1



Breast ca. MDA-N
0.0



Breast Pool
0.6



Trachea
13.9



Lung
7.1



Fetal Lung
23.8



Lung ca. NCI-N417
24.1



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
8.8



Lung ca. A549
2.2



Lung ca. NCI-H526
4.1



Lung ca. NCI-H23
0.6



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
1.7



Liver
0.0



Fetal Liver
0.4



Liver ca. HepG2
0.0



Kidney Pool
2.0



Fetal Kidney
9.3



Renal ca. 786-0
100.0



Renal ca. A498
3.6



Renal ca. ACHN
4.3



Renal ca. UO-31
0.0



Renal ca. TK-10
17.4



Bladder
25.5



Gastric ca. (liver met.) NCI-N87
68.3



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
24.5



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
1.3



Colon ca. CaCo-2
62.0



Colon cancer tissue
0.8



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.9



Small Intestine Pool
1.2



Stomach Pool
2.9



Bone Marrow Pool
3.8



Fetal Heart
10.2



Heart Pool
1.3



Lymph Node Pool
0.7



Fetal Skeletal Muscle
1.3



Skeletal Muscle Pool
0.0



Spleen Pool
0.0



Thymus Pool
4.2



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
1.1



CNS cancer (astro) SNB-75
17.6



CNS cancer (glio) SNB-19
2.5



CNS cancer (glio) SF-295
17.8



Brain (Amygdala) Pool
7.3



Brain (cerebellum)
35.6



Brain (fetal)
8.8



Brain (Hippocampus) Pool
14.5



Cerebral Cortex Pool
18.2



Brain (Substantia nigra) Pool
15.0



Brain (Thalamus) Pool
16.7



Brain (whole)
8.6



Spinal Cord Pool
9.1



Adrenal Gland
2.3



Pituitary gland Pool
4.3



Salivary Gland
9.5



Thyroid (female)
1.4



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
1.7











[0699] General_screening_panel_v1.6 Summary:


[0700] Ag6966 Highest expression of this gene is detected in a renal cancer 786-0 cell line (CT=30.8). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from gastric, colon, lung, renal, breast, ovarian, and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of gastric, colon, lung, renal, breast, ovarian, and brain cancers.


[0701] In addition, this gene is expressed at moderate to low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0702] D. CG153179-01: Membrane Protein.


[0703] Expression of gene CG153179-01 was assessed using the primer-probe set Ag6863, described in Table DA. Results of the RTQ-PCR runs are shown in Table DB. Please note that CG153179-01 represents a full-length physical clone.
189TABLE DAProbe Name Ag6863StartSEQ IDPrimersSequencesLengthPositionNoForward5′-acgtgcaggtttgttacata-3′20609292ProbeTET-5′-tgtgctacacccattaactcgtcatttaac-3′-TAMRA30650293Reverse5′-accttggcagggctaat-3′17680294


[0704]

190





TABLE DB










General_screening_panel_v1.6











Rel. Exp. (%)




Ag6863, Run



Tissue Name
278700326














Adipose
0.0



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.0



Testis Pool
0.0



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
0.0



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
0.0



Trachea
0.0



Lung
0.0



Fetal Lung
0.0



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
0.0



Fetal Liver
0.0



Liver ca. HepG2
0.0



Kidney Pool
0.0



Fetal Kidney
0.0



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
0.0



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon cancer tissue
0.0



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.0



Small Intestine Pool
0.0



Stomach Pool
0.0



Bone Marrow Pool
0.0



Fetal Heart
5.8



Heart Pool
17.3



Lymph Node Pool
0.0



Fetal Skeletal Muscle
100.0



Skeletal Muscle Pool
0.0



Spleen Pool
0.0



Thymus Pool
0.0



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
0.0



Brain (fetal)
0.0



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.0



Brain (whole)
0.0



Spinal Cord Pool
0.0



Adrenal Gland
0.0



Pituitary gland Pool
0.0



Salivary Gland
0.0



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
0.0











[0705] General_screening_panel_v1.6 Summary:


[0706] Ag6863 Expression is limited to a sample derived from fetal skeletal muscle (CT=34.7). Interestingly, this gene is expressed at much higher levels in fetal (CT=34.7) when compared to adult skeletal muscle (CT=40). This observation suggests that expression of this gene can be used to distinguish fetal from adult skeletal muscle and other samples in this panel. In addition, the relative overexpression of this gene in fetal skeletal muscle suggests that the protein product may enhance muscular growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of muscle related diseases. More specifically, treatment of weak or dystrophic muscle with the protein encoded by this gene could restore muscle mass or function.


[0707] E. CG153403-02: Dickkopf Related Protein-4 Precursor.


[0708] Expression of gene CG153403-02 was assessed using the primer-probe set Ag7176, described in Table EA. Please note that CG153403-01 represents a full-length physical clone.
191TABLE EAProbe Name Ag7176StartSEQ IDPrimersSequencesLengthPositionNoForward5′-ctctgtgtgaacggacaagag-3′21316295ProbeTET-5′-ccctggactttgctgtgctcgtc-3′-TAMRA23369296Reverse5′-ggactggcttacaaattttcgt-3′22400297


[0709] CNS_neurodegeneration_v1.0 Summary:


[0710] Ag7176 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0711] Panel 4.1D Summary:


[0712] Ag7176 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0713] F. CG157760-02: PLAC1.


[0714] Expression of gene CG157760-02 was assessed using the primer-probe set Ag7153, described in Table FA. Please note that CG157760-02 represents a full-length physical clone.
192TABLE FAProbe Name Ag7153StartSEQ IDPrimersSequencesLengthPositionNoForward5′-catcagggccagcaaga-3′17342298ProbeTET-5′-acacctcgtagcatttctcatccttctgg-3′-TAMRA29372299Reverse5′-aggtggacaatcgcagttg-3′19429300


[0715] CNS_neurodegeneration_v1.0 Summary:


[0716] Ag7153 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0717] Panel 4.1D Summary:


[0718] Ag7153 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0719] G. CG158114-01: splice variant of melanoma associated antigen gp100.


[0720] Expression of gene CG158114-01 was assessed using the primer-probe set Ag5335, described in Table GA. Results of the RTQ-PCR runs are shown in Tables GB and GC.
193TABLE GAProbe Name Ag5335StartSEQ IDPrimersSequencesLengthPositionNoForward5′-gctacaaagggagccaggt-3′2067301ProbeTET-5′-acayccagtgtatccccaggaaactga-3′-TAMRA2796302Reverse5′-cagggaagatgcaggcat-3′18125303


[0721]

194





TABLE GB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5335, Run



Tissue Name
237370030














Adipose
0.0



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
49.7



Melanoma* LOXIMVI
1.7



Melanoma* SK-MEL-5
100.0



Squamous cell carcinoma SCC-4
0.0



Testis Pool
0.1



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.2



Ovarian ca. OVCAR-5
0.2



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.1



Ovary
0.0



Breast ca. MCF-7
0.1



Breast ca. MDA-MB-231
0.1



Breast ca. BT 549
0.0



Breast ca. T47D
0.1



Breast ca. MDA-N
0.4



Breast Pool
0.0



Trachea
0.0



Lung
0.0



Fetal Lung
0.0



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.1



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.1



Lung ca. A549
0.1



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.1



Lung ca. NCI-H460
0.1



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.1



Liver
0.0



Fetal Liver
0.0



Liver ca. HepG2
0.0



Kidney Pool
0.1



Fetal Kidney
0.0



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.1



Renal ca. UO-31
0.1



Renal ca. TK-10
0.1



Bladder
0.0



Gastric ca. (liver met.) NCI-N87
0.2



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.2



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.1



Colon ca. CaCo-2
0.2



Colon cancer tissue
0.1



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.1



Colon Pool
0.0



Small Intestine Pool
0.0



Stomach Pool
0.0



Bone Marrow Pool
0.0



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.1



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
0.0



Spleen Pool
0.0



Thymus Pool
0.1



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.1



CNS cancer (neuro; met) SK-N-AS
0.1



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.1



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.1



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
0.0



Brain (fetal)
0.0



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.0



Brain (whole)
0.0



Spinal Cord Pool
0.1



Adrenal Gland
0.0



Pituitary gland Pool
0.0



Salivary Gland
0.0



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.1



Pancreas Pool
0.1











[0722]

195





TABLE GC










Panel 4.1D









Rel. Exp. (%)



Ag5335, Run


Tissue Name
237371375











Secondary Th1 act
23.3


Secondary Th2 act
17.7


Secondary Tr1 act
5.0


Secondary Th1 rest
0.0


Secondary Th2 rest
4.4


Secondary Tr1 rest
0.0


Primary Th1 act
0.0


Primary Th2 act
42.3


Primary Tr1 act
97.3


Primary Th1 rest
9.2


Primary Th2 rest
16.7


Primary Tr1 rest
6.3


CD45RA CD4 lymphocyte act
31.9


CD45RO CD4 lymphocyte act
71.7


CD8 lymphocyte act
7.9


Secondary CD8 lymphocyte rest
74.7


Secondary CD8 lymphocyte act
0.0


CD4 lymphocyte none
4.6


2ry Th1/Th2/Tr1_anti-CD95 CH11
7.5


LAK cells rest
21.2


LAK cells IL-2
21.0


LAK cells IL-2 + IL-12
3.7


LAK cells IL-2 + IFN gamma
9.9


LAK cells IL-2 + IL-18
8.5


LAK cells PMA/ionomycin
49.0


NK Cells IL-2 rest
39.0


Two Way MLR 3 day
5.5


Two Way MLR 5 day
5.7


Two Way MLR 7 day
10.8


PBMC rest
3.9


PBMC PWM
0.0


PBMC PHA-L
8.8


Ramos (B cell) none
0.0


Ramos (B cell) ionomycin
26.4


B lymphocytes PWM
5.1


B lymphocytes CD40L and IL-4
29.7


EOL-1 dbcAMP
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0


Dendritic cells none
14.7


Dendritic cells LPS
0.0


Dendritic cells anti-CD40
0.0


Monocytes rest
0.0


Monocytes LPS
5.8


Macrophages rest
0.0


Macrophages LPS
15.3


HUVEC none
13.2


HUVEC starved
10.1


HUVEC IL-1beta
0.0


HUVEC IFN gamma
7.9


HUVEC TNF alpha + IFN gamma
0.0


HUVEC TNF alpha + IL4
0.0


HUVEC IL-11
0.0


Lung Microvascular EC none
25.0


Lung Microvascular EC TNFalpha + IL-1beta
0.0


Microvascular Dermal EC none
0.0


Microsvasular Dermal EC TNFalpha + IL-1beta
5.6


Bronchial epithelium TNFalpha + IL1beta
7.4


Small airway epithelium none
0.0


Small airway epithelium TNFalpha + IL-1beta
30.8


Coronery artery SMC rest
8.9


Coronery artery SMC TNFalpha + IL-1beta
14.7


Astrocytes rest
7.6


Astrocytes TNFalpha + IL-1beta
2.0


KU-812 (Basophil) rest
0.0


KU-812 (Basophil) PMA/ionomycin
4.0


CCD1106 (Keratinocytes) none
26.4


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
16.7


Liver cirrhosis
2.2


NCI-H292 none
52.1


NCI-H292 IL-4
58.6


NCI-H292 IL-9
100.0


NCI-H292 IL-13
63.3


NCI-H292 IFN gamma
8.9


HPAEC none
3.6


HPAEC TNF alpha + IL-1 beta
5.8


Lung fibroblast none
0.0


Lung fibroblast TNF alpha + IL-1 beta
4.7


Lung fibroblast IL-4
1.9


Lung fibroblast IL-9
0.0


Lung fibroblast IL-13
0.0


Lung fibroblast IFN gamma
4.4


Dermal fibroblast CCD1070 rest
5.3


Dermal fibroblast CCD1070 TNF alpha
18.0


Dermal fibroblast CCD1070 IL-1 beta
0.0


Dermal fibroblast IFN gamma
12.2


Dermal fibroblast IL-4
17.4


Dermal Fibroblasts rest
0.0


Neutrophils TNFa + LPS
0.0


Neutrophils rest
5.5


Colon
0.0


Lung
0.0


Thymus
7.3


Kidney
16.2










[0723] CNS_neurodegeneration_v1.0 Summary:


[0724] Ag5335 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0725] General_screening_panel_v1.5 Summary:


[0726] Ag5335 This gene is very highly expressed in two melanoma cancer cell line samples (CTs=22). This novel gene encodes a protein that is homologous to Melanocyte protein Pmel 17 which plays an important role in melanogenesis and is actively investigated as targets for melanoma immunotherapy (Martinez-Esparza M, Pigment Cell Res 2000 April; 13(2): 120-6). Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of melanoma. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of melanoma.


[0727] Among tissues with metabolic function, this gene is expressed at low but significant levels in pancreas, and adult and fetal and liver. This expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0728] Panel 4.1D Summary:


[0729] Ag5335 Highest expression is seen in a sample derived from IL-9 treated NCI-H292 goblet cells (CT=33.5). Low but significant expression is also seen in NCI-H292 cells treated with IL-4, IL-13, or untreated cells, as well as in PMA/ionomycin treated LAK cells, untreated NK cells, primary activated Th1 and Tr2 cells, CD45RO CD4 lymphocytes and resting secondary CD8 lymphocytes. This expression suggests that this gene product may be involved in inflammatory conditions of the lung, including asthma, emphysema, and allergy.


[0730] H. CG158553-01: Erythropoietin Receptor Precursor.


[0731] Expression of gene CG158553-01 was assessed using the primer-probe set Ag5446, described in Table HA.
196TABLE HAProbe Name Ag5446StartSEQ IDPrimersSequencesLengthPositionNoForward5′-tcccagggccatgg-3′141298304ProbeTET-5′-ccaccccacctaaagtacctgtacctt-3′-TAMRA281339305Reverse5′-agttgagatgccagagtcagat-3′221371306


[0732] AI_comprehensive panel_v1.0 Summary:


[0733] Ag5446 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0734] General_screening_panel_v1.5 Summary:


[0735] Ag5446 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0736] Panel 4.1D Summary:


[0737] Ag5446 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0738] I. CG158983-01, CG158983-02 and CG158983-03: Chloride Channel.


[0739] Expression of gene CG158983-01, CG158983-02, and CG158983-03 was assessed using the primer-probe sets Ag5892 and Ag6186, described in Tables IA and IB. Results of the RTQ-PCR runs are shown in Tables IC, ID, IE, IF, IG and IH. Please note that CG158983-03 represents a full-length physical clone of the CG158983-02 gene, validating the prediction of the gene sequence.
197TABLE IAProbe Name Ag5892StartSEQ IDPrimersSequencesLengthPositionNoForward5′-agaccaagctccagctgttt-3′2024307ProbeTET-5′-ctctcccgtcctcactcgcctt-3′-TAMRA2347308Reverse5′-aggagcaggaccatgaagag-3′2098309


[0740]

198






TABLE IB










Probe Name Ag6186












Primers
Sequences
Length
Start Position
SEQ ID No















Forward
5′-ctgcagatcgaggactttctg-3′
21
242
310






Probe
TET-5′-ccgcccgaggagtccaaca-3′-TAMRA
19
278
311





Reverse
5′-gatgaacgcggagaacttgt-3′
20
318
312










[0741]

199





TABLE IC










AI.05 chondrosarcoma











Rel. Exp. (%)




Ag5892, Run



Tissue Name
308433431














138353_PMA (18 hrs)
0.0



138352_IL-1beta + Oncostatin M (18 hrs)
0.0



138351_IL-1beta + TNFa (18 hrs)
9.5



138350_IL-1beta (18 hrs)
7.8



138354_Untreated-complete medium (18 hrs)
12.0



138347_PMA (6 hrs)
23.5



138346_IL-1beta + Oncostatin M (6 hrs)
31.6



138345_IL-1beta + TNFa (6 hrs)
7.6



138344_IL-1beta (6 hrs)
26.8



138348_Untreated-complete medium (6 hrs)
56.3



138349_Untreated-serum starved (6 hrs)
100.0











[0742]

200





TABLE ID










AI_comprehensive panel_v1.0











Rel. Exp. (%)




Ag5892, Run



Tissue Name
249079679














110967 COPD-F
1.1



110980 COPD-F
0.8



110968 COPD-M
1.5



110977 COPD-M
0.7



110989 Emphysema-F
1.3



110992 Emphysema-F
0.7



110993 Emphysema-F
0.3



110994 Emphysema-F
0.5



110995 Emphysema-F
2.3



110996 Emphysema-F
0.5



110997 Asthma-M
9.5



111001 Asthma-F
0.9



111002 Asthma-F
1.4



111003 Atopic Asthma-F
2.1



111004 Atopic Asthma-F
2.9



111005 Atopic Asthma-F
1.4



111006 Atopic Asthma-F
0.5



111417 Allergy-M
1.1



112347 Allergy-M
0.0



112349 Normal Lung-F
0.1



112357 Normal Lung-F
0.3



112354 Normal Lung-M
0.2



112374 Crohns-F
0.7



112389 Match Control Crohns-F
71.2



112375 Crohns-F
1.0



112732 Match Control Crohns-F
40.9



112725 Crohns-M
0.3



112387 Match Control Crohns-M
0.6



112378 Crohns-M
0.1



112390 Match Control Crohns-M
0.7



112726 Crohns-M
3.5



112731 Match Control Crohns-M
0.4



112380 Ulcer Col-F
0.6



112734 Match Control Ulcer Col-F
100.0



112384 Ulcer Col-F
1.4



112737 Match Control Ulcer Col-F
1.1



112386 Ulcer Col-F
1.1



112738 Match Control Ulcer Col-F
2.1



112381 Ulcer Col-M
0.2



112735 Match Control Ulcer Col-M
0.3



112382 Ulcer Col-M
35.6



112394 Match Control Ulcer Col-M
0.4



112383 Ulcer Col-M
1.2



112736 Match Control Ulcer Col-M
42.6



112423 Psoriasis-F
0.5



112427 Match Control Psoriasis-F
0.3



112418 Psoriasis-M
0.5



112723 Match Control Psoriasis-M
1.1



112419 Psoriasis-M
1.2



112424 Match Control Psoriasis-M
0.0



112420 Psoriasis-M
1.1



112425 Match Control Psoriasis-M
0.7



104689 (MF) OA Bone-Backus
3.1



104690 (MF) Adj “Normal” Bone-Backus
1.4



104691 (MF) OA Synovium-Backus
0.7



104692 (BA) OA Cartilage-Backus
21.9



104694 (BA) OA Bone-Backus
5.2



104695 (BA) Adj “Normal” Bone-Backus
1.4



104696 (BA) OA Synovium-Backus
0.7



104700 (SS) OA Bone-Backus
1.6



104701 (SS) Adj “Normal” Bone-Backus
4.2



104702 (SS) OA Synovium-Backus
2.1



117093 OA Cartilage Rep7
0.9



112672 OA Bone5
1.0



112673 OA Synovium5
0.4



112674 OA Synovial Fluid cells5
0.3



117100 OA Cartilage Rep14
0.3



112756 OA Bone9
2.0



112757 OA Synovium9
0.2



112758 OA Synovial Fluid Cells9
1.3



117125 RA Cartilage Rep2
1.1



113492 Bone2 RA
27.5



113493 Synovium2 RA
8.0



113494 Syn Fluid Cells RA
18.8



113499 Cartilage4 RA
31.6



113500 Bone4 RA
37.9



113501 Synovium4 RA
25.5



113502 Syn Fluid Cells4 RA
17.9



113495 Cartilage3 RA
25.9



113496 Bone3 RA
27.5



113497 Synovium3 RA
16.0



113498 Syn Fluid Cells3 RA
30.6



117106 Normal Cartilage Rep20
0.8



113663 Bone3 Normal
0.0



113664 Synovium3 Normal
0.0



113665 Syn Fluid Cells3 Normal
0.0



117107 Normal Cartilage Rep22
0.2



113667 Bone4 Normal
0.0



113668 Synovium4 Normal
0.2



113669 Syn Fluid Cells4 Normal
0.4











[0743]

201





TABLE IE










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5892, Run



Tissue Name
247291076














Adipose
0.8



Melanoma* Hs688(A).T
24.8



Melanoma* Hs688(B).T
20.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.2



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
1.1



Testis Pool
1.1



Prostate ca.* (bone met) PC-3
3.0



Prostate Pool
0.6



Placenta
95.3



Uterus Pool
1.6



Ovarian ca OVCAR-3
0.8



Ovarian ca. SK-OV-3
15.4



Ovarian ca. OVCAR-4
11.0



Ovarian ca. OVCAR-5
30.4



Ovarian ca. IGROV-1
0.8



Ovarian ca. OVCAR-8
11.7



Ovary
0.8



Breast ca. MCF-7
2.9



Breast ca. MDA-MB-231
48.6



Breast ca. BT 549
0.1



Breast ca. T47D
44.4



Breast ca. MDA-N
0.0



Breast Pool
0.1



Trachea
1.1



Lung
0.0



Fetal Lung
20.7



Lung ca. NCI-N417
0.0



Lung ca LX-1
1.9



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.1



Lung ca. A549
0.3



Lung ca. NCI-H526
0.0



Lung ca NCI-H23
0.3



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
1.3



Lung ca. NCI-H522
0.5



Liver
0.0



Fetal Liver
0.1



Liver ca. HepG2
1.0



Kidney Pool
0.3



Fetal Kidney
0.1



Renal ca. 786-0
3.3



Renal ca. A498
0.0



Renal ca. ACHN
0.3



Renal ca. UO-31
0.6



Renal ca. TK-10
1.3



Bladder
0.4



Gastric ca. (liver met.) NCI-N87
100.0



Gastric ca. KATO III
1.1



Colon ca. SW-948
1.9



Colon ca. SW480
3.8



Colon ca.* (SW480 met) SW620
0.8



Colon ca. HT29
8.7



Colon ca. HCT-116
1.6



Colon ca. CaCo-2
4.4



Colon cancer tissue
1.5



Colon ca. SW1116
1.2



Colon ca. Colo-205
0.1



Colon ca. SW-48
0.0



Colon Pool
0.3



Small Intestine Pool
0.1



Stomach Pool
0.1



Bone Marrow Pool
1.3



Fetal Heart
0.1



Heart Pool
0.2



Lymph Node Pool
0.2



Fetal Skeletal Muscle
0.1



Skeletal Muscle Pool
0.3



Spleen Pool
0.6



Thymus Pool
1.0



CNS cancer (glio/astro) U87-MG
0.1



CNS cancer (glio/astro) U-118-MG
0.1



CNS cancer (neuro; met) SK-N-AS
0.1



CNS cancer (astro) SF-539
0.3



CNS cancer (astro) SNB-75
5.1



CNS cancer (glio) SNB-19
1.2



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
0.1



Brain (fetal)
0.1



Brain (Hippocampus) Pool
0.1



Cerebral Cortex Pool
0.1



Brain (Substantia nigra) Pool
0.1



Brain (Thalamus) Pool
0.0



Brain (whole)
0.1



Spinal Cord Pool
0.3



Adrenal Gland
0.1



Pituitary gland Pool
0.1



Salivary Gland
0.5



Thyroid (female)
67.4



Pancreatic ca. CAPAN2
6.0



Pancreas Pool
0.1











[0744]

202





TABLE IF










Panel 4.1D









Rel. Exp. (%)



Ag5892, Run


Tissue Name
247290537











Secondary Th1 act
0.3


Secondary Th2 act
0.0


Secondary Tr1 act
0.0


Secondary Th1 rest
0.2


Secondary Th2 rest
0.2


Secondary Tr1 rest
0.0


Primary Th1 act
0.0


Primary Th2 act
0.0


Primary Tr1 act
0.0


Primary Th1 rest
0.3


Primary Th2 rest
2.4


Primary Tr1 rest
0.0


CD45RA CD4 lymphocyte act
0.2


CD45RO CD4 lymphocyte act
2.2


CD8 lymphocyte act
0.2


Secondary CD8 lymphocyte rest
0.6


Secondary CD8 lymphocyte act
0.0


CD4 lymphocyte none
0.2


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.8


LAK cells rest
2.3


LAK cells IL-2
11.2


LAK cells IL-2 + IL-12
3.6


LAK cells IL-2 + IFN gamma
3.2


LAK cells IL-2 + IL-18
1.5


LAK cells PMA/ionomycin
2.3


NK Cells IL-2 rest
31.0


Two Way MLR 3 day
2.5


Two Way MLR 5 day
0.2


Two Way MLR 7 day
1.2


PBMC rest
2.3


PBMC PWM
1.1


PBMC PHA-L
0.5


Ramos (B cell) none
0.0


Ramos (B cell) ionomycin
0.0


B lymphocytes PWM
0.2


B lymphocytes CD40L and IL-4
0.5


EOL-1 dbcAMP
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0


Dendritic cells none
0.5


Dendritic cells LPS
0.5


Dendritic cells anti-CD40
0.0


Monocytes rest
0.0


Monocytes LPS
2.2


Macrophages rest
0.2


Macrophages LPS
0.5


HUVEC none
0.0


HUVEC starved
1.2


HUVEC IL-1beta
0.9


HUVEC. IFN gamma
0.0


HUVEC TNF alpha + IFN gamma
0.0


HUVEC TNF alpha + IL4
0.0


HUVEC IL-11
0.0


Lung Microvascular EC none
7.0


Lung Microvascular EC TNFalpha + IL-1beta
0.5


Microvascular Dermal EC none
0.0


Microsvasular Dermal EC TNFalpha + IL-1beta
1.0


Bronchial epithelium TNFalpha + IL1beta
8.2


Small airway epithelium none
100.0


Small airway epithelium TNFalpha + IL-1beta
77.9


Coronery artery SMC rest
2.1


Coronery artery SMC TNFalpha + IL-1beta
0.8


Astrocytes rest
0.6


Astrocytes TNFalpha + IL-1beta
2.2


KU-812 (Basophil) rest
0.5


KU-812 (Basophil) PMA/ionomycin
0.0


CCD1106 (Keratinocytes) none
8.8


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
7.1


Liver cirrhosis
0.0


NCI-H292 none
10.7


NCI-H292 IL-4
6.3


NCI-H292 IL-9
10.4


NCI-H292 IL-13
4.2


NCI-H292 IFN gamma
4.6


HPAEC none
0.0


HPAEC TNF alpha + IL-1 beta
0.2


Lung fibroblast none
1.9


Lung fibroblast TNF alpha + IL-1 beta
0.9


Lung fibroblast IL-4
2.4


Lung fibroblast IL-9
7.8


Lung fibroblast IL-13
0.0


Lung fibroblast IFN gamma
4.8


Dermal fibroblast CCD1070 rest
6.4


Dermal fibroblast CCD1070 TNF alpha
4.3


Dermal fibroblast CCD1070 IL-1 beta
2.3


Dermal fibroblast IFN gamma
2.9


Dermal fibroblast IL-4
1.1


Dermal Fibroblasts rest
1.2


Neutrophils TNFa + LPS
0.0


Neutrophils rest
0.0


Colon
0.0


Lung
4.5


Thymus
0.1


Kidney
0.2










[0745]

203





TABLE IG










Panel 5 Islet









Rel. Exp. (%)



Ag5892, Run


Tissue Name
253578281











97457_Patient-02go_adipose
3.2


97476_Patient-07sk_skeletal muscle
0.3


97477_Patient-07ut_uterus
0.1


97478_Patient-07pl_placenta
40.1


99167_Bayer Patient 1
0.6


97482_Patient-08ut_uterus
0.2


97483_Patient-08pl_placenta
47.3


97486_Patient-09sk_skeletal muscle
0.0


97487_Patient-09ut_uterus
0.1


97488_Patient-09pl_placenta
33.2


97492_Patient-10ut_uterus
0.0


97493_Patient-10pl_placenta
62.4


97495_Patient-11go_adipose
4.1


97496_Patient-11sk_skeletal muscle
0.2


97497_Patient-11ut_uterus
0.4


97498_Patient-11pl_placenta
47.6


97500_Patient-12go_adipose
3.3


97501_Patient-12sk_skeletal muscle
0.0


97502_Patient-12ut_uterus
0.6


97503_Patient-12pl_placenta
100.0


94721_Donor 2 U - A_Mesenchymal Stem Cells
0.9


94722_Donor 2 U - B_Mesenchymal Stem Cells
2.0


94723_Donor 2 U - C_Mesenchymal Stem Cells
1.9


94709_Donor 2 AM - A_adipose
0.3


94710_Donor 2 AM - B_adipose
0.9


94711_Donor 2 AM - C_adipose
0.5


94712_Donor 2 AD - A_adipose
0.6


94713_Donor 2 AD - B_adipose
0.7


94714_Donor 2 AD - C_adipose
0.6


94742_Donor 3 U - A_Mesenchymal Stem Cells
2.3


94743_Donor 3 U - B_Mesenchymal Stem Cells
9.5


94730_Donor 3 AM - A_adipose
2.7


94731_Donor 3 AM - B_adipose
1.8


94732_Donor 3 AM - C_adipose
1.2


94733_Donor 3 AD - A_adipose
6.3


94734_Donor 3 AD - B_adipose
1.6


94735_Donor 3 AD - C_adipose
11.9


77138_Liver_HepG2untreated
2.3


73556_Heart_Cardiac stromal cells (primary)
0.1


81735_Small Intestine
0.4


72409_Kidney_Proximal Convoluted Tubule
0.0


82685_Small intestine_Duodenum
0.0


90650_Adrenal_Adrenocortical adenoma
0.0


72410_Kidney_HRCE
3.7


72411_Kidney_HRE
0.8


73139_Uterus_Uterine smooth muscle cells
0.7










[0746]

204





TABLE IH










general oncology screening panel_v_2.4











Rel. Exp. (%)




Ag5892, Run



Tissue Name
260316169














Colon cancer 1
3.7



Colon NAT 1
2.5



Colon cancer 2
25.7



Colon NAT 2
4.6



Colon cancer 3
19.2



Colon NAT 3
13.9



Colon malignant cancer 4
12.5



Colon NAT 4
2.1



Lung cancer 1
29.7



Lung NAT 1
18.9



Lung cancer 2
36.6



Lung NAT 2
17.0



Squamous cell carcinoma 3
62.0



Lung NAT 3
10.1



Metastatic melanoma 1
2.7



Melanoma 2
13.9



Melanoma 3
42.9



Metastatic melanoma 4
14.2



Metastatic melanoma 5
8.8



Bladder cancer 1
0.0



Bladder NAT 1
0.0



Bladder cancer 2
3.5



Bladder NAT 2
0.0



Bladder NAT 3
1.1



Bladder NAT 4
2.3



Prostate adenocarcinoma 1
4.8



Prostate adenocarcinoma 2
0.8



Prostate adenocarcinoma 3
5.1



Prostate adenocarcinoma 4
100.0



Prostate NAT 5
2.8



Prostate adenocarcinoma 6
4.4



Prostate adenocarcinoma 7
4.1



Prostate adenocarcinoma 8
2.6



Prostate adenocarcinoma 9
5.8



Prostate NAT 10
2.2



Kidney cancer 1
3.9



Kidney NAT 1
1.8



Kidney cancer 2
20.4



Kidney NAT 2
2.4



Kidney cancer 3
2.6



Kidney NAT 3
0.2



Kidney cancer 4
1.5



Kidney NAT 4
6.6











[0747] AI.05 Chondrosarcoma Summary:


[0748] Ag5892 Highest expression of this gene is detected in untreated serum starved chondrosarcoma cell line (SW1353) (CT=32.2). Interestingly, expression of this gene appears to be slightly down regulated upon treatment with IL-1 (CTs=334-35), a potent activator of pro-inflammatory cytokines and matrix metalloproteinases that participate in the destruction of cartilage observed in osteoarthritis (OA). Modulation of the expression of this transcript in chondrocytes may therefore be important for preventing the degeneration of cartilage observed in OA.


[0749] AI_Comprehensive Panel_v1.0 Summary:


[0750] Ag5892 Highest expression is seen in a sample derived from normal tissue adjacent to ulcerative colitis (CT=27.7). In addition, prominent levels of expression are seen in a cluster of samples derived from rheumatoid arthritis, as well as in an OA sample. Thus, expression of this gene could be used to differentiate these samples from other samples and as a marker of these diseases. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of these diseases. Ag5892 Results from a second experiment with this probe and primer, run 247842321, are not included. The amp plot indicates that there were experimental difficulties with this run. Ag6186 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0751] General_screening_panel_v1.5 Summary:


[0752] Ag5892 Highest expression is seen in a gastric cancer cell line (CT=28). Moderate levels of expression are also seen in a cluster of cell lines derived from breast, ovarian, and melanoma cancers, as well as in normal thyroid, fetal lung and placenta. In addition, this gene is expressed at much higher levels in fetal lung tissue (CT=30) when compared to expression in the adult counterpart (CT=40). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.


[0753] Panel 4.1D Summary:


[0754] Ag5892 Prominent expression of this gene is seen in untreated small airway epithelium, as well as in small airway epithelium treated with TNF-a and IL-1 b (CTs=28-29). In addition, low but significant levels of expression are seen in clusters of samples derived from lung and dermal fibroblasts, as well as in NCI-H292 goblet cells. Thus, expression of this gene could be used as as a marker of small airway epithelium. Furthermore, modulation of the expression or function of this gene may be useful in the treatment of inflammatory conditions of the lung, including allergy, emphysema, and asthma. Ag6186 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0755] Panel 5 Islet Summary:


[0756] Ag5892 Expression of this gene is prominent in placenta, consistent with expression in Panel 1.5 (CTs=28-30). Thus, expression of this gene could be used as a marker of this tissue.


[0757] General Oncology Screening Panel_V2.4 Summary:


[0758] Ag5892 Highest expression of this gene is seen in a prostate cancer (CT=30). Moderate levels of expression of this gene are seen in colon, lung, kidney, melanoma, and skin cell carcinoma cancers. Thus, expression of this gene may be useful of a marker of these or other cancers, particularly hormone dependent cancers like breast cancers. In addition, modulation of the expression or function of this gene may be useful in the treatment of cancers.


[0759] J. CG159015-01, CG159015-02, and CG159015-03: Novel Secreted Protein.


[0760] Expression of gene CG159015-01, CG159015-02, and CG159015-03 was assessed using the primer-probe set Ag5962, described in Table JA. Results of the RTQ-PCR runs are shown in Tables JB and JC. Please note that CG159015-03 represents a full-length physical clone.
205TABLE JAProbe Name Ag5962PrimersSequencesLengthStart PositionSEQ ID NoForward5′-aaagatgaaactgcggt-3′17338313ProbeTET-5-tccacgaggaggcaagcaa-3′-TAMRA19357314Reverse5′-agctgttgctctgact-3′16390315


[0761]

206





TABLE JB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5962, Run



Tissue Name
248162755














Adipose
1.6



Melanoma* Hs688(A).T
21.5



Melanoma* Hs688(B).T
20.2



Melanoma* M14
14.5



Melanoma* LOXIMVI
10.7



Melanoma* SK-MEL-5
14.1



Squamous cell carcinoma SCC-4
2.6



Testis Pool
4.2



Prostate ca.* (bone met) PC-3
7.3



Prostate Pool
4.4



Placenta
2.3



Uterus Pool
1.3



Ovarian ca. OVCAR-3
10.0



Ovarian ca. SK-OV-3
30.1



Ovarian ca. OVCAR-4
9.0



Ovarian ca. OVCAR-5
17.8



Ovarian ca. IGROV-1
26.8



Ovarian ca. OVCAR-8
16.8



Ovary
5.2



Breast ca. MCF-7
10.7



Breast ca. MDA-MB-231
29.3



Breast ca. BT 549
34.9



Breast ca. T47D
2.9



Breast ca. MDA-N
3.6



Breast Pool
11.7



Trachea
4.9



Lung
3.3



Fetal Lung
5.6



Lung ca. NCI-N417
1.6



Lung ca. LX-1
9.7



Lung ca. NCI-H146
3.7



Lung ca. SHP-77
3.1



Lung ca. A549
9.9



Lung ca. NCI-H526
3.8



Lung ca. NCI-H23
12.8



Lung ca. NCI-H460
6.5



Lung ca. HOP-62
6.7



Lung ca. NCI-H522
8.8



Liver
1.0



Fetal Liver
2.6



Liver ca. HepG2
8.2



Kidney Pool
22.7



Fetal Kidney
2.8



Renal ca. 786-0
7.7



Renal ca. A498
10.5



Renal ca. ACHN
6.0



Renal ca. UO-31
5.8



Renal ca. TK-10
6.5



Bladder
5.5



Gastric ca. (liver met.) NCI-N87
6.6



Gastric ca. KATO III
6.7



Colon ca. SW-948
6.6



Colon ca. SW480
12.7



Colon ca.* (SW480 met) SW620
8.4



Colon ca. HT29
9.3



Colon ca. HCT-116
12.8



Colon ca. CaCo-2
6.5



Colon cancer tissue
10.8



Colon ca. SW1116
3.4



Colon ca. Colo-205
2.0



Colon ca. SW-48
1.6



Colon Pool
13.4



Small Intestine Pool
6.3



Stomach Pool
6.9



Bone Marrow Pool
1.7



Fetal Heart
3.1



Heart Pool
12.7



Lymph Node Pool
15.9



Fetal Skeletal Muscle
2.8



Skeletal Muscle Pool
25.5



Spleen Pool
6.5



Thymus Pool
9.0



CNS cancer (glio/astro) U87-MG
49.7



CNS cancer (glio/astro) U-118-MG
27.0



CNS cancer (neuro; met) SK-N-AS
7.5



CNS cancer (astro) SF-539
7.9



CNS cancer (astro) SNB-75
100.0



CNS cancer (glio) SNB-19
25.9



CNS cancer (glio) SF-295
26.8



Brain (Amygdala) Pool
5.8



Brain (cerebellum)
26.6



Brain (fetal)
6.5



Brain (Hippocampus) Pool
5.3



Cerebral Cortex Pool
6.1



Brain (Substantia nigra) Pool
6.7



Brain (Thalamus) Pool
6.7



Brain (whole)
3.3



Spinal Cord Pool
5.8



Adrenal Gland
5.8



Pituitary gland Pool
3.2



Salivary Gland
2.9



Thyroid (female)
4.7



Pancreatic ca. CAPAN2
3.1



Pancreas Pool
13.6











[0762]

207





TABLE JC










Panel 5 Islet









Rel. Exp. (%)



Ag5962, Run


Tissue Name
248195280











97457_Patient-02go adipose
20.2


97476_Patient-07sk_skeletal muscle
15.9


97477_Patient-07ut_uterus
20.2


97478_Patient-07pl_placenta
8.9


99167_Bayer Patient 1
100.0


97482_Patient-08ut_uterus
17.4


97483_Patient-08pl_placenta
4.7


97486_Patient-09sk_skeletal muscle
10.0


97487_Patient-09ut_uterus
49.0


97488_Patient-09pl_placenta
4.4


97492_Patient-10ut_uterus
32.3


97493_Patient-10pl_placenta
7.5


97495_Patient-11go_adipose
5.2


97496_Patient-11sk_skeletal muscle
12.0


97497_Patient-11ut_uterus
34.9


97498_Patient-11pl_placenta
3.5


97500_Patient-12go_adipose
11.1


97501_Patient-12sk_skeletal muscle
25.7


97502_Patient-12ut_uterus
46.3


97503_Patient-12pl_placenta
3.4


94721_Donor 2 U - A_Mesenchymal Stem Cells
15.0


94722_Donor 2 U - B_Mesenchymal Stem Cells
8.2


94723_Donor 2 U - C_Mesenchymal Stem Cells
12.4


94709_Donor 2 AM - A_adipose
21.3


94710_Donor 2 AM - B_adipose
14.0


94711_Donor 2 AM - C_adipose
9.7


94712_Donor 2 AD - A_adipose
20.4


94713_Donor 2 AD - B_adipose
18.4


94714_Donor 2 AD - C_adipose
21.5


94742_Donor 3 U - A_Mesenchymal Stem Cells
5.4


94743_Donor 3 U - B_Mesenchymal Stem Cells
10.6


94730_Donor 3 AM - A_adipose
31.2


94731_Donor 3 AM - B_adipose
11.7


94732_Donor 3 AM - C_adipose
8.7


94733_Donor 3 AD - A_adipose
22.1


94734_Donor 3 AD - B_adipose
4.3


94735_Donor 3 AD - C_adipose
13.4


77138_Liver HepG2untreated
16.7


73556_Heart_Cardiac stromal cells (primary)
5.0


81735_Small Intestine
18.7


72409_Kidney_Proximal Convoluted Tubule
3.3


82685_Small intestine_Duodenum
0.6


90650_Adrenal_Adrenocortical adenoma
23.7


72410_Kidney_HRCE
23.5


72411_Kidney_HRE
14.2


73139_Uterus_Uterine smooth muscle cells
10.1










[0763] General_screening_panel_v1.5 Summary:


[0764] Ag5962 Highest expression of this gene is detected in brain cancer SNB-75 cell line (CT=25.2). Moderate to high levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0765] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0766] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0767] Panel 5 Islet Summary:


[0768] Ag5962 Highest expression of this gene is detected in islet cells (CT=27.7). This gene shows wide spread expression in this panel, with moderate expressions in adipose, skeletal muscle, uterus, placenta, small intestine, cardiac stromal cells and kidney. Therefore, therapeutic modulation of this gene may be useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes, including type II diabetes.


[0769] K. CG50387-03: Connexin 46.


[0770] Expression of gene CG50387-03 was assessed using the primer-probe sets Ag2597, Ag5234 and Ag5235, described in Tables KA, KB and KC. Results of the RTQ-PCR runs are shown in Tables KD and KE.
208TABLE KAProbe Name Ag2597StartSEQ IDPrimersSequencesLengthPositionNoForward5′-ggagctttctgggaaqactct-3′2111316ProbeTET-5′-tagaaaatgcacaggagcactccacg-3′-TAMRA2632317Reverse5′-caaaatgcggaagatgaaca-3′2086318


[0771]

209






TABLE KB










Probe Name Ag5234
















Start
SEQ ID



Primers
Sequences
Length
Position
No





Forward
5′-cttcatcatcttcatgctggcg-3′
22
606
319






Probe
TET-5′-cactgctgctcaacatgctggagatata-3′-TAMRA
28
641
320





Reverse
5′-ggctggtcacgccctgctt-3′
19
691
321










[0772]

210






TABLE KC










Probe Name Ag5235
















Start
SEQ ID



Primers
Sequences
Length
Position
No





Forward
5′-gcggacttcaaaatgctagccctgacc-3′
27
883
322






Probe
TET-5′-ccagtccgccaagctctacaacgg-3′-TAMRA
24
927
323





Reverse
5′-gcccagttctgctcagtcatcagc-3′
24
963
324










[0773]

211





TABLE KD










General_screening_panel_v1.5










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag5234, Run
Ag5235, Run


Tissue Name
229514466
229514467












Adipose
0.0
0.3


Melanoma* Hs688(A).T
1.4
0.3


Melanoma* Hs688(B).T
0.8
0.0


Melanoma* M14
40.1
41.2


Melanoma* LOXIMVI
2.0
7.6


Melanoma* SK-MEL-5
32.1
22.5


Squamous cell carcinoma SCC-4
3.4
2.3


Testis Pool
1.6
2.7


Prostate ca.* (bone met) PC-3
3.5
0.0


Prostate Pool
0.0
0.0


Placenta
1.2
0.8


Uterus Pool
0.3
0.0


Ovarian ca. OVCAR-3
0.8
0.0


Ovarian ca. SK-OV-3
52.5
57.4


Ovarian ca. OVCAR-4
6.5
6.4


Ovarian ca. OVCAR-5
15.2
14.3


Ovarian ca. IGROV-1
4.9
4.7


Ovarian ca. OVCAR-8
12.9
10.8


Ovary
0.0
1.2


Breast ca. MCF-7
0.0
1.5


Breast ca. MDA-MB-231
42.9
31.6


Breast ca. BT 549
0.9
0.0


Breast ca. T47D
1.0
0.0


Breast ca. MDA-N
0.0
0.0


Breast Pool
3.8
4.7


Trachea
0.7
0.0


Lung
0.0
0.0


Fetal Lung
0.0
0.9


Lung ca. NCI-N417
0.5
0.0


Lung ca. LX-1
0.6
0.0


Lung ca. NCI-H146
0.0
0.0


Lung ca. SHP-77
0.0
0.0


Lung ca. A549
0.7
0.0


Lung ca. NCI-H526
0.0
0.0


Lung ca. NCI-H23
12.7
11.8


Lung ca. NCI-H460
1.6
2.7


Lung ca. HOP-62
3.6
0.6


Lung ca. NCI-H522
16.3
10.7


Liver
0.0
0.0


Fetal Liver
0.7
0.0


Liver ca. HepG2
0.6
0.0


Kidney Pool
1.5
3.5


Fetal Kidney
6.8
6.2


Renal ca. 786-0
0.6
0.0


Renal ca. A498
0.0
0.0


Renal ca. ACHN
0.0
0.0


Renal ca. UO-31
0.0
0.0


Renal ca. TK-10
0.0
0.0


Bladder
1.8
1.6


Gastric ca. (liver met.) NCI-N87
6.3
7.5


Gastric ca. KATO III
0.7
0.0


Colon ca. SW-948
0.0
0.0


Colon ca. SW480
100.0
100.0


Colon ca.* (SW480 met) SW620
0.0
0.6


Colon ca. HT29
0.0
0.0


Colon ca. HCT-116
67.8
55.1


Colon ca. CaCo-2
0.0
0.7


Colon cancer tissue
0.0
0.0


Colon ca. SW1116
10.9
14.9


Colon ca. Colo-205
0.0
0.0


Colon ca. SW-48
0.0
0.0


Colon Pool
3.6
3.6


Small Intestine Pool
2.1
5.3


Stomach Pool
0.8
0.7


Bone Marrow Pool
0.0
0.3


Fetal Heart
61.1
45.4


Heart Pool
5.8
7.2


Lymph Node Pool
0.1
0.0


Fetal Skeletal Muscle
0.4
0.9


Skeletal Muscle Pool
0.0
0.0


Spleen Pool
0.0
0.6


Thymus Pool
0.5
0.2


CNS cancer (glio/astro) U87-MG
0.0
0.0


CNS cancer (glio/astro) U-118-MG
1.3
0.0


CNS cancer (neuro; met) SK-N-AS
0.0
0.0


CNS cancer (astro) SF-539
0.4
0.0


CNS cancer (astro) SNB-75
0.5
1.1


CNS cancer (glio) SNB-19
3.4
5.6


CNS cancer (glio) SF-295
4.3
5.9


Brain (Amygdala) Pool
0.3
0.0


Brain (cerebellum)
0.0
0.7


Brain (fetal)
0.0
0.0


Brain (Hippocampus) Pool
0.2
0.0


Cerebral Cortex Pool
0.0
0.0


Brain (Substantia nigra) Pool
0.0
1.1


Brain (Thalamus) Pool
0.0
0.0


Brain (whole)
0.0
0.0


Spinal Cord Pool
0.0
1.0


Adrenal Gland
0.0
0.0


Pituitary gland Pool
0.0
0.2


Salivary Gland
0.0
0.0


Thyroid (female)
0.0
0.0


Pancreatic ca. CAPAN2
26.2
22.5


Pancreas Pool
3.5
0.5










[0774]

212





TABLE KE










Panel 4.1D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag5234,
Ag5235,



Run
Run


Tissue Name
229788208
229788230












Secondary Th1 act
2.6
0.0


Secondary Th2 act
0.0
0.0


Secondary Tr1 act
0.0
0.0


Secondary Th1 rest
0.0
0.0


Secondary Th2 rest
0.0
0.0


Secondary Tr1 rest
0.0
0.0


Primary Th1 act
0.0
0.0


Primary Th2 act
0.0
0.0


Primary Tr1 act
0.0
0.0


Primary Th1 rest
0.0
0.0


Primary Th2 rest
0.0
0.0


Primary Tr1 rest
0.0
0.0


CD45RA CD4 lymphocyte act
0.0
0.0


CD45RO CD4 lymphocyte act
0.0
2.7


CD8 lymphocyte act
0.0
0.0


Secondary CD8 lymphocyte rest
1.6
0.0


Secondary CD8 lymphocyte act
0.0
0.0


CD4 lymphocyte none
1.6
0.0


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0
0.0


LAK cells rest
0.0
0.0


LAK cells IL-2
0.0
2.4


LAK cells IL-2 + IL-12
1.1
0.0


LAK cells IL-2 + IFN gamma
0.0
0.0


LAK cells IL-2 + IL-18
0.0
0.0


LAK cells PMA/ionomycin
2.5
2.4


NK Cells IL-2 rest
0.0
0.0


Two Way MLR 3 day
1.5
0.0


Two Way MLR 5 day
0.0
0.0


Two Way MLR 7 day
0.0
0.0


PBMC rest
0.0
0.0


PBMC PWM
1.2
4.5


PBMC PHA-L
8.4
3.0


Ramos (B cell) none
0.0
0.0


Ramos (B cell) ionomycin
0.0
0.0


B lymphocytes PWM
0.0
0.0


B lymphocytes CD40L and IL-4
0.0
0.0


EOL-1 dbcAMP
0.0
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0
0.0


Dendritic cells none
0.0
0.0


Dendritic cells LPS
0.0
0.0


Dendritic cells anti-CD40
0.0
0.0


Monocytes rest
0.0
0.0


Monocytes LPS
100.0
100.0


Macrophages rest
0.0
0.0


Macrophages LPS
0.0
0.0


HUVEC none
0.0
0.0


HUVEC starved
0.0
0.0


HUVEC IL-1beta
0.0
0.0


HUVEC IFN gamma
0.0
0.0


HUVEC TNF alpha + IFN gamma
0.0
0.0


HUVEC TNF alpha + IL4
0.0
0.0


HUVEC IL-11
0.0
0.0


Lung Microvascular EC none
0.0
0.0


Lung Microvascular EC
0.0
0.0


TNFalpha + IL-1beta


Microvascular Dermal EC none
0.0
0.0


Microsvasular Dermal EC
0.0
0.0


TNFalpha + IL-1beta


Bronchial epithelium
0.0
1.7


TNFalpha + IL1beta


Small airway epithelium none
0.0
0.0


Small airway epithelium
8.4
7.7


TNFalpha + IL-1beta


Coronery artery SMC rest
0.0
0.0


Coronery artery SMC
0.0
0.0


TNFalpha + IL-1beta


Astrocytes rest
4.8
3.9


Astrocytes
6.5
0.0


TNFalpha + IL-1beta


KU-812 (Basophil) rest
0.0
0.0


KU-812 (Basophil) PMA/ionomycin
0.0
0.0


CCD1106 (Keratinocytes) none
9.2
6.8


CCD1106 (Keratinocytes)
0.0
3.3


TNFalpha + IL-1beta


Liver cirrhosis
0.0
0.0


NCI-H292 none
0.0
0.0


NCI-H292 IL-4
0.0
0.0


NCI-H292 IL-9
0.0
2.3


NCI-H292 IL-13
2.7
4.1


NCI-H292 IFN gamma
0.0
0.0


HPAEC none
0.0
0.0


HPAEC TNF alpha + IL-1 beta
0.0
0.0


Lung fibroblast none
8.7
1.6


Lung fibroblast
17.0
20.3


TNF alpha + IL-1 beta


Lung fibroblast IL-4
2.1
0.0


Lung fibroblast IL-9
6.1
4.0


Lung fibroblast IL-13
0.0
0.0


Lung fibroblast IFN gamma
6.3
3.2


Dermal fibroblast CCD1070 rest
0.0
0.0


Dermal fibroblast CCD1070 TNF
3.4
0.0


alpha


Dermal fibroblast
3.9
0.0


CCD1070 IL-1beta


Dermal fibroblast IFN gamma
8.6
0.0


Dermal fibroblast IL-4
3.2
7.5


Dermal Fibroblasts rest
1.8
3.3


Neutrophils TNFa + LPS
0.0
0.0


Neutrophils rest
0.0
0.0


Colon
0.0
0.0


Lung
0.0
0.0


Thymus
0.0
0.0


Kidney
2.4
3.6










[0775] CNS_neurodegeneration_v1.0 Summary:


[0776] Ag2597/Ag5234/Ag5235 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0777] General_screening_panel_v1.5 Summary:


[0778] Ag5234/Ag5235 Two experiments with two different probe-primer sets are in excellent agreement. Highest expression of this gene is detected in a sample derived from a colon cancer cell line (SW480) (CTs=30). In addition, there is substantial expression associated with two other colon cancer cell lines, a pancreatic cancer cell line, two lung cancer cell lines, a breast cancer cell line, two melanoma cell lines and a cluster of several ovarian cancer cell lines. Thus, the expression of this gene could be used to distinguish the above samples from the other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, antibodies or protein therapeutics might be of benefit in the treatment of ovarian, colon, pancreatic, lung, breast cancers or melanoma.


[0779] This gene is also expressed at moderate levels in fetal heart (CT=31.1) and at lower levels in the adult heart (CT=34.5). Thus, expression of this gene may be used to differentiate between fetal and adult heart tissue. Furthermore, the higher levels of expression in fetal heart suggest that the protein encoded by this gene may be important for the pathogenesis, diagnosis, and/or treatment of diseases of the heart.


[0780] Panel 4.1D Summary:


[0781] Ag5234/Ag5235 Two experiments with two different prob-primer sets are in excellent agreement. Highest expression of this gene is detected mainly in monocytes stimulated with LPS (CTs=32). Upon activation with pathogens, including bacterial LPS, monocytes contribute to the innate and specific immunity by migrating to the site of tissue injury and releasing inflammatory cytokines. This release contributes to the inflammation process. This transcript encodes for a connexin like protein, a family of proteins that is involved in gap junction and intercellular communication. Thus, the protein encoded by this transcript may play a role in the interaction of activated monocytes with the endothelium. This is the first step necessary for the migration of these cells to injured tissue. Therefore, modulation of the expression or the function of the protein encoded by this gene, by antibodies or small molecules can prevent the recruitment of monocytes and the inflammatory process, and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, or rheumatoid arthritis.


[0782] L. CG52113-01, CG52113-03, CG52113-04, CG52113-05, and CG52113-06: Notch 4 Like Protein.


[0783] Expression of gene CG52113-01 was assessed using the primer-probe sets Ag2665 and Ag2778, described in Tables LA and LB. Results of the RTQ-PCR runs are shown in Tables LC, LD, LE and LF. Please note that CG52113-05 represents a full-length physical clone of the CG52113-01 gene, validating the prediction of the gene sequence.
213TABLE LAProbe Name Ag2665StartSEQ IDPrimersSequencesLengthPositionNoForward5′-gtctgcagacggtacactctgt-3′22602325ProbeTET-5′-cccaacccgacaggagtggacag-3′-TAMRA23654326Reverse5′-gcacttgttccttcattgca-3′20677327


[0784]

214






TABLE LB










Probe Name Ag2778
















Start
SEQ ID



Primers
Sequences
Length
Position
No





Forward
5′-gtctgcagacggtacactctgt-3′
22
602
328






Probe
TET-5′-cccaacccgacaggagtggacag-3′-TAMRA
23
654
329





Reverse
5′-gcacttcttccttcattgca-3′
20
677
330










[0785]

215





TABLE LC










CNS_neurodegeneration_v1.0












Rel. Exp. (%)
Rel. Exp. (%)
Rel. Exp. (%)
Rel. Exp. (%)



Ag2665, Run
Ag2665, Run
Ag2778, Run
Ag2778, Run


Tissue Name
206955568
230512508
208699215
269216134














AD 1 Hippo
20.9
19.8
30.1
10.8


AD 2 Hippo
42.6
27.5
46.7
22.5


AD 3 Hippo
10.4
15.0
19.2
5.0


AD 4 Hippo
11.8
16.0
22.7
5.1


AD 5 Hippo
84.7
70.7
98.6
29.9


AD 6 Hippo
37.9
45.7
54.0
19.8


Control 2 Hippo
28.7
25.5
28.3
12.9


Control 4 Hippo
9.3
8.9
24.5
8.1


Control (Path) 3 Hippo
16.0
9.9
17.2
6.0


AD 1 Temporal Ctx
19.3
15.8
10.7
7.2


AD 2 Temporal Ctx
45.4
44.8
68.8
14.4


AD 3 Temporal Ctx
14.4
13.0
10.3
5.6


AD 4 Temporal Ctx
30.8
39.5
33.0
21.2


AD 5 Inf Temporal Ctx
100.0
87.1
100.0
28.1


AD 5 Sup Temporal Ctx
42.3
40.9
70.2
21.0


AD 6 Inf Temporal Ctx
55.5
49.7
39.5
22.4


AD 6 Sup Temporal Ctx
46.0
50.0
82.4
28.5


Control 1 Temporal Ctx
23.0
17.7
25.7
9.3


Control 2 Temporal Ctx
57.0
61.6
42.3
23.8


Control 3 Temporal Ctx
42.6
40.3
42.6
22.1


Control 3 Temporal Ctx
39.2
27.0
26.1
8.3


Control (Path) 1 Temporal Ctx
68.3
73.7
85.9
34.9


Control (Path) 2 Temporal Ctx
78.5
59.9
54.7
34.9


Control (Path) 3 Temporal Ctx
23.0
21.8
19.8
9.5


Control (Path) 4 Temporal Ctx
82.4
64.2
62.9
28.3


AD 1 Occipital Ctx
10.9
20.3
19.6
9.0


AD 2 Occipital Ctx (Missing)
0.0
0.0
2.0
0.0


AD 3 Occipital Ctx
19.6
10.5
25.7
8.1


AD 4 Occipital Ctx
39.2
37.1
33.2
12.2


AD 5 Occipital Ctx
43.2
39.0
48.3
8.5


AD 6 Occipital Ctx
25.5
22.8
32.8
18.8


Control 1 Occipital Ctx
18.3
8.7
23.7
10.7


Control 2 Occipital Ctx
81.8
81.2
78.5
29.5


Control 3 Occipital Ctx
42.9
38.4
59.0
19.8


Control 4 Occipital Ctx
16.4
16.8
13.3
7.2


Control (Path) 1 Occipital Ctx
52.1
71.7
75.8
25.2


Control (Path) 2 Occipital Ctx
37.4
39.8
27.2
16.2


Control (Path) 3 Occipital Ctx
25.5
17.4
18.8
100.0


Control (Path) 4 Occipital Ctx
60. 7
33.7
57.8
24.5


Control 1 Parietal Ctx
33.4
25.5
37.9
12.3


Control 2 Parietal Ctx
42.0
59.9
47.3
27.2


Control 3 Parietal Ctx
39.8
27.7
28.3
17.0


Control (Path) 1 Parietal Ctx
88.3
100.0
87.1
37.9


Control (Path) 2 Parietal Ctx
57.4
54.0
59.9
23.5


Control (Path) 3 Parietal Ctx
15.2
18.4
31.2
8.6


Control (Path) 4 Parietal Ctx
82.9
56.6
52.9
28.9










[0786]

216





TABLE LD










Panel 1.3D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag2665,
Ag2778,



Run
Run


Tissue Name
160075204
164023413












Liver adenocarcinoma
5.0
17.3


Pancreas
3.0
2.3


Pancreatic ca. CAPAN 2
1.2
1.2


Adrenal gland
4.7
2.5


Thyroid
10.4
15.0


Salivary gland
3.3
2.5


Pituitary gland
3.1
4.3


Brain (fetal)
1.4
1.1


Brain (whole)
10.3
12.4


Brain (amygdala)
12.7
14.4


Brain (cerebellum)
0.2
0.9


Brain (hippocampus)
100.0
33.2


Brain (substantia nigra)
3.7
4.8


Brain (thalamus)
17.9
18.2


Cerebral Cortex
13.9
22.8


Spinal cord
2.8
10.3


glio/astro U87-MG
0.0
0.0


glio/astro U-118-MG
0.0
0.0


astrocytoma SW1783
1.7
3.7


neuro*; met SK-N-AS
0.0
0.0


astrocytoma SF-539
0.2
1.0


astrocytoma SNB-75
3.8
1.5


glioma SNB-19
3.1
7.2


glioma U251
1.3
0.5


glioma SF-295
3.9
4.4


Heart (fetal)
36.9
96.6


Heart
6.3
21.6


Skeletal muscle (fetal)
41.5
100.0


Skeletal muscle
2.1
12.9


Bone marrow
4.4
3.3


Thymus
2.5
19.5


Spleen
28.5
43.8


Lymph node
6.0
8.2


Colorectal
0.8
1.0


Stomach
3.8
3.6


Small intestine
11.4
12.8


Colon ca. SW480
6.0
4.2


Colon ca.* SW620 (SW480 met)
0.0
0.3


Colon ca. HT29
0.0
0.8


Colon ca. HCT-116
3.5
6.6


Colon ca. CaCo-2
2.0
6.7


Colon ca. tissue (ODO3866)
1.7
6.0


Colon ca. HCC-2998
7.9
2.2


Gastric ca.* (liver met)
2.7
2.2


NCI-N87


Bladder
2.0
4.5


Trachea
16.6
19.1


Kidney
3.7
16.7


Kidney (fetal)
14.4
26.2


Renal ca. 786-0
2.6
2.9


Renal ca. A498
16.6
10.0


Renal ca. RXF 393
1.0
3.0


Renal ca. ACHN
2.6
4.2


Renal ca. UO-31
1.7
2.3


Renal ca. TK-10
0.0
0.0


Liver
3.3
4.2


Liver (fetal)
21.8
20.6


Liver ca. (hepatoblast) HepG2
0.3
1.4


Lung
57.4
47.0


Lung (fetal)
25.7
57.4


Lung ca. (small cell) LX-1
0.5
1.1


Lung ca. (small cell) NCI-H69
2.0
0.5


Lung ca. (s. cell var.) SHP-77
0.9
0.3


Lung ca. (large cell) NCI-H460
6.8
8.4


Lung ca. (non-sm. cell) A549
4.1
2.1


Lung ca. (non-s. cell) NCI-H23
8.5
6.1


Lung ca. (non-s. cell) HOP-62
3.1
4.2


Lung ca. (non-s. cl) NCI-H522
2.2
2.0


Lung ca. (squam.) SW 900
0.5
0.8


Lung ca. (squam.) NCI-H596
0.0
0.0


Mammary gland
17.9
19.3


Breast ca.* (pl. ef) MCF-7
3.0
4.2


Breast ca.* (pl. ef) MDA-MB-231
10.7
5.1


Breast ca.* (pl. ef) T47D
1.8
1.2


Breast ca. BT-549
1.5
0.9


Breast ca. MDA-N
0.0
0.0


Ovary
5.9
8.1


Ovarian ca. OVCAR-3
3.8
6.8


Ovarian ca. OVCAR-4
1.0
1.4


Ovarian ca. OVCAR-5
5.0
6.3


Ovarian ca. OVCAR-8
2.3
4.9


Ovarian ca. IGROV-1
1.8
1.7


Ovarian ca.* (ascites) SK-OV-3
2.4
1.7


Uterus
11.7
14.9


Placenta
30.1
27.4


Prostate
7.4
9.2


Prostate ca.* (bone met) PC-3
1.0
0.4


Testis
19.3
34.2


Melanoma Hs688(A).T
1.2
0.0


Melanoma* (met) Hs688(B).T
0.3
1.0


Melanoma UACC-62
2.2
4.8


Melanoma M14
1.3
0.9


Melanoma LOX IMVI
5.6
3.4


Melanoma* (met) SK-MEL-5
2.8
1.8


Adipose
3.0
6.6










[0787]

217





TABLE LE










Panel 2D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag2665, Run
Ag2778, Run


Tissue Name
160093572
162440337












Normal Colon
7.9
9.2


CC Well to Mod Diff (ODO3866)
14.5
15.1


CC Margin (ODO3866)
5.9
6.5


CC Gr.2 rectosigmoid (ODO3868)
3.2
3.9


CC Margin (ODO3868)
4.0
4.0


CC Mod Diff (ODO3920)
4.3
4.5


CC Margin (ODO3920)
5.1
6.4


CC Gr.2 ascend colon (ODO3921)
8.5
10.2


CC Margin (ODO3921)
7.7
5.7


CC from Partial Hepatectomy
31.9
32.8


(ODO4309) Mets


Liver Margin (ODO4309)
14.1
15.9


Colon mets to lung (OD04451-01)
14.6
19.1


Lung Margin (OD04451-02)
19.9
26.6


Normal Prostate 6546-1
10.4
50.0


Prostate Cancer (OD04410)
16.5
18.8


Prostate Margin (OD04410)
14.9
16.3


Prostate Cancer (OD04720-01)
7.5
10.3


Prostate Margin (OD04720-02)
18.3
23.5


Normal Lung 061010
58.6
46.7


Lung Met to Muscle (ODO4286)
8.1
9.9


Muscle Margin (ODO4286)
22.1
25.9


Lung Malignant Cancer (OD03126)
19.3
28.9


Lung Margin (OD03126)
100.0
87.7


Lung Cancer (OD04404)
15.1
14.0


Lung Margin (OD04404)
53.6
47.0


Lung Cancer (OD04565)
2.5
5.8


Lung Margin (OD04565)
41.8
66.9


Lung Cancer (OD04237-01)
4.4
7.3


Lung Margin (OD04237-02)
51.8
68.3


Ocular Mel Met to Liver
10.7
16.8


(ODO4310)


Liver Margin (ODO4310)
11.4
16.3


Melanoma Mets to Lung (OD04321)
13.0
17.2


Lung Margin (OD04321)
89.5
95.3


Normal Kidney
14.9
24.5


Kidney Ca, Nuclear grade 2
7.2
7.8


(OD04338)


Kidney Margin (OD04338)
29.5
20.2


Kidney Ca Nuclear grade 1/2
2.8
3.9


(OD04339)


Kidney Margin (OD04339)
18.6
25.0


Kidney Ca, Clear cell
52.9
70.2


type (OD04340)


Kidney Margin (OD04340)
21.6
26.4


Kidney Ca, Nuclear grade 3
20.6
30.1


(OD04348)


Kidney Margin (OD04348)
13.9
29.9


Kidney Cancer (OD04622-01)
18.4
18.7


Kidney Margin (OD04622-03)
12.1
9.7


Kidney Cancer (OD04450-01)
0.4
2.7


Kidney Margin (OD04450-03)
9.7
22.7


Kidney Cancer 8120607
7.3
9.9


Kidney Margin 8120608
19.2
22.1


Kidney Cancer 8120613
7.8
11.5


Kidney Margin 8120614
17.8
23.8


Kidney Cancer 9010320
18.6
20.2


Kidney Margin 9010321
32.5
29.9


Normal Uterus
24.8
25.9


Uterus Cancer 064011
27.5
31.6


Normal Thyroid
14.8
13.8


Thyroid Cancer 064010
7.2
9.4


Thyroid Cancer A302152
5.7
8.2


Thyroid Margin A302153
18.4
27.9


Normal Breast
25.7
47.6


Breast Cancer (OD04566)
8.4
6.3


Breast Cancer (OD04590-01)
27.4
27.9


Breast Cancer Mets (OD04590-03)
47.3
100.0


Breast Cancer Metastasis
11.6
12.0


(OD04655-05)


Breast Cancer 064006
4.3
7.8


Breast Cancer 1024
13.9
13.9


Breast Cancer 9100266
9.9
15.5


Breast Margin 9100265
3.0
7.7


Breast Cancer A209073
8.0
10.4


Breast Margin A209073
7.9
7.3


Normal Liver
3.2
6.2


Liver Cancer 064003
2.2
1.1


Liver Cancer 1025
7.4
5.4


Liver Cancer 1026
16.8
17.8


Liver Cancer 6004-T
8.4
6.9


Liver Tissue 6004-N
2.3
1.6


Liver Cancer 6005-T
23.7
25.3


Liver Tissue 6005-N
7.9
10.4


Normal Bladder
15.4
19.5


Bladder Cancer 1023
2.5
2.5


Bladder Cancer A302173
0.9
0.3


Bladder Cancer (OD04718-01)
2.6
2.8


Bladder Normal Adjacent
19.1
29.5


(OD04718-03)


Normal Ovary
15.1
23.5


Ovarian Cancer 064008
8.3
11.4


Ovarian Cancer (OD04768-07)
3.9
2.7


Ovary Margin (OD04768-08)
25.5
20.6


Normal Stomach
5.5
6.7


Gastric Cancer 9060358
1.3
0.9


Stomach Margin 9060359
3.0
3.2


Gastric Cancer 9060395
9.8
13.1


Stomach Margin 9060394
7.4
7.7


Gastric Cancer 9060397
28.9
26.2


Stomach Margin 9060396
3.3
3.1


Gastric Cancer 064005
5.0
5.6










[0788]

218





TABLE LF










Panel 4D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag2665,
Ag2778,



Run
Run


Tissue Name
158912341
161930458












Secondary Th1 act
0.1
0.0


Secondary Th2 act
0.2
0.2


Secondary Tr1 act
0.0
1.2


Secondary Th1 rest
0.0
0.0


Secondary Th2 rest
0.2
0.0


Secondary Tr1 rest
0.0
0.0


Primary Th1 act
0.0
0.7


Primary Th2 act
0.5
0.3


Primary Tr1 act
0.2
0.0


Primary Th1 rest
0.2
0.0


Primary Th2 rest
0.0
0.0


Primary Tr1 rest
0.0
0.0


CD45RA CD4 lymphocyte act
1.5
0.9


CD45RO CD4 lymphocyte act
0.1
0.2


CD8 lymphocyte act
0.2
0.0


Secondary CD8 lymphocyte rest
0.6
0.3


Secondary CD8 lymphocyte act
0.0
0.0


CD4 lymphocyte none
0.0
0.0


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0
0.0


LAK cells rest
0.0
0.0


LAK cells IL-2
0.1
0.1


LAK cells IL-2 + IL-12
0.0
0.0


LAK cells IL-2 + IFN gamma
0.2
0.0


LAK cells IL-2 + IL-18
0.0
0.0


LAK cells PMA/ionomycin
0.0
0.4


NK Cells IL-2 rest
0.0
0.4


Two Way MLR 3 day
0.1
0.2


Two Way MLR 5 day
0.0
0.1


Two Way MLR 7 day
0.0
0.2


PBMC rest
0.0
0.5


PBMC PWM
0.1
0.0


PBMC PHA-L
0.1
0.0


Ramos (B cell) none
0.0
0.0


Ramos (B cell) ionomycin
0.0
0.0


B lymphocytes PWM
0.1
0.3


B lymphocytes CD40L and IL-4
0.0
0.0


EOL-1 dbcAMP
4.5
4.8


EOL-1 dbcAMP PMA/ionomycin
2.0
0.8


Dendritic cells none
2.1
1.0


Dendritic cells LPS
1.4
2.4


Dendritic cells anti-CD40
2.0
2.0


Monocytes rest
0.1
0.5


Monocytes LPS
0.0
0.2


Macrophages rest
0.9
0.9


Macrophages LPS
0.0
0.4


HUVEC none
84.1
71.2


HUVEC starved
48.3
56.6


HUVEC IL-1beta
21.6
15.7


HUVEC IFN gamma
64.6
49.7


HUVEC TNF alpha + IFN gamma
15.3
18.7


HUVEC TNF alpha + IL4
19.9
16.2


HUVEC IL-11
53.2
48.6


Lung Microvascular EC none
100.0
100.0


Lung Microvascular EC
27.2
25.3


TNFalpha + IL-1beta


Microvascular Dermal EC none
68.3
67.8


Microsvasular Dermal EC
25.2
25.9


TNFalpha + IL-1beta


Bronchial epithelium
0.2
5.9


TNFalpha + IL1beta


Small airway epithelium none
1.4
1.5


Small airway epithelium
2.0
4.8


TNFalpha + IL-1beta


Coronery artery SMC rest
18.2
14.6


Coronery artery SMC
17.4
10.1


TNFalpha + IL-1beta


Astrocytes rest
1.7
1.0


Astrocytes
0.8
2.5


TNFalpha + IL-1beta


KU-812 (Basophil) rest
62.0
50.0


KU-812 (Basophil)
25.5
21.6


PMA/ionomycin


CCD1106 (Keratinocytes) none
3.2
2.8


CCD1106 (Keratinocytes)
0.3
2.8


TNFalpha + IL-1beta


Liver cirrhosis
1.7
1.9


Lupus kidney
1.1
1.2


NCI-H292 none
3.2
3.2


NCI-H292 IL-4
3.0
2.2


NCI-H292 IL-9
5.3
1.9


NCI-H292 IL-13
2.3
3.0


NCI-H292 IFN gamma
1.8
3.2


HPAEC none
0.0
50.3


HPAEC TNF alpha + IL-1 beta
21.9
34.4


Lung fibroblast none
1.1
1.3


Lung fibroblast
1.8
1.7


TNF alpha + IL-1 beta


Lung fibroblast IL-4
0.4
1.3


Lung fibroblast IL-9
1.3
1.8


Lung fibroblast IL-13
2.2
0.5


Lung fibroblast IFN gamma
0.9
0.8


Dermal fibroblast CCD1070 rest
2.0
0.9


Dermal fibroblast
2.4
1.0


CCD1070 TNF alpha


Dermal fibroblast
1.5
0.4


CCD1070 IL-1 beta


Dermal fibroblast IFN gamma
0.9
0.6


Dermal fibroblast IL-4
1.0
0.6


IBD Colitis 2
0.0
0.0


IBD Crohn's
0.3
0.3


Colon
5.0
3.0


Lung
8.2
6.7


Thymus
3.7
3.1


Kidney
3.0
1.6










[0789] CNS_neurodegeneration_v1.0 Summary:


[0790] Ag2665/Ag2778 Four experiments with two different probe-primer sets are in good agreement. This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene is found to be slightly down-regulated in the temporal cortex of Alzheimer's disease patients. Therefore, up-regulation of this gene or its protein product, or treatment with specific agonists for this receptor may be of use in reversing the dementia, memory loss, and neuronal death associated with this disease.


[0791] Panel 1.3D Summary:


[0792] Ag2665/Ag2778 Two experiments with two different probe-primer sets are in good agreement. Highest expression of this gene is detected in hippocampus and fetal skeletal muscle (CTs=26-28.7). This gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0793] Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0794] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0795] Panel 2D Summary:


[0796] Ag2665/Ag2778 Two experiments with two different probe-primer sets are in good agreement. Highest expression of this gene is detected in normal lung and a metastatic breast cancer sample (CTs=27-28). This gene show significant expression in both cancer and normal tissue samples derived from colon, ovary, bladder, prostate, liver, breast, thyroid, uterus, kidney and lung. Moderate levels of expression of this gene is also seen in metastatic melanoma. Interestingly, higher expression of this gene is consistently associated with normal lung as compared to corresponding cancer sample. Therefore, expression of this gene may be used to distinguish between cancer and normal lung. Furthermore, therapeutic modulation of this gene or its protein product may be useful in the treatment of metastatic melanoma, colon, ovary, bladder, prostate, liver, breast, thyroid, uterus, kidney and lung cancers


[0797] Panel 4D Summary:


[0798] Ag2665/Ag2778 Two experiments with two different probe-primer sets are in good agreement. Highest expression of this gene in lung microvascular endothelial cells (CTs=27-28). Moderate to high levels of expression of this gene is mainly seen in endothelial cells. IL-1 beta and TNFalpha treatment reduce the expression of this gene consistently in endothelium samples including HPAEC, HUVEC and lung microvascular EC. Therefore, therapies designed with the protein encoded by this gene may be important in regulating endothelium function including leukocyte extravasation, a major component of inflammation during asthma, IBD, and psoriasis.


[0799] In addition, moderate to low levels of expression of this gene is also seen in eosinophils, dendritic cells, resting macrophage, activated CD45RA CD4 lymphocyte, lung and dermal fibroblasts and normal tissues represent by colon, lung, thymus and kidney. Therefore, therapeutic modulation of this gene product may ameliorate symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis


[0800] M. CG57542-01: Cadherin.


[0801] Expression of gene CG57542-01 was assessed using the primer-probe sets Ag3234, Ag3279 and Ag616, described in Tables MA, MB and MC. Results of the RTQ-PCR runs are shown in Tables MD, ME, MF, MG, MH, MI, MJ, MK and ML.
219TABLE MAProbe Name g3234StartSEQ IDPrimersSequencesLengthPositionNoForward5′-gcaaaatcgtcgtctctgttac-3′22668331ProbeTET-5′-ccctctgaaagccaccagcagtg-3′-TAMRA23705332Reverse5′-ccaagaggttcacaaacactgt-3′22730333


[0802]

220






TABLE MB










Probe Name Ag3279
















Start
SEQ ID



Primers
Sequences
Length
Position
No





Forward
5′-gcaaaatcgtcgtctctgttac-3′
22
668
334






Probe
TET-5′-ccctctgaaagccaccagcagtg-3′-TAMRA
23
705
335





Reverse
5′-ccaagaggttcacaaacactgt-3′
22
730
336










[0803]

221






TABLE MC










Probe Name Ag616
















Start
SEQ ID



Primers
Sequences
Length
Position
No





Forward
5′-tcgttgtccgtgcagttcag-3′
20
1156
337






Probe
TET-5′-cagaccacccggaactcgcgtg-3′-TAMRA
22
1133
338





Reverse
5′-cggccgtgtacaatgtgtct-3′
20
1097
339










[0804]

222





TABLE MD










CNS_neurodegeneration_v1.0










Rel. Exp. (%)
Rel. Exp. (%)



Ag3234, Run
Ag3279, Run


Tissue Name
209862304
210060481












AD 1 Hippo
16.3
21.8


AD 2 Hippo
23.8
32.3


AD 3 Hippo
13.2
14.1


AD 4 Hippo
19.8
22.5


AD 5 hippo
58.2
49.7


AD 6 Hippo
58.6
100.0


Control 2 Hippo
19.8
24.5


Control 4 Hippo
29.1
23.5


Control (Path) 3 Hippo
11.7
7.1


AD 1 Temporal Ctx
28.1
28.7


AD 2 Temporal Ctx
18.7
28.9


AD 3 Temporal Ctx
15.5
15.7


AD 4 Temporal Ctx
27.7
25.5


AD 5 Inf Temporal Ctx
38.2
52.1


AD 5 SupTemporal Ctx
45.7
49.7


AD 6 Inf Temporal Ctx
81.8
67.8


AD 6 Sup Temporal Ctx
100.0
94.6


Control 1 Temporal Ctx
10.1
14.2


Control 2 Temporal Ctx
15.0
11.9


Control 3 Temporal Ctx
8.6
14.7


Control 4 Temporal Ctx
8.9
12.1


Control (Path) 1 Temporal Ctx
23.7
31.0


Control (Path) 2 Temporal Ctx
14.3
16.6


Control (Path) 3 Temporal Ctx
14.6
16.2


Control (Path) 4 Temporal Ctx
26.4
31.2


AD 1 Occipital Ctx
17.1
19.2


AD 2 Occipital Ctx (Missing)
0.0
0.0


AD 3 Occipital Ctx
23.5
22.4


AD 4 Occipital Ctx
18.3
21.2


AD 5 Occipital Ctx
31.9
38.4


AD 6 Occipital Ctx
24.1
37.9


Control 1 Occipital Ctx
19.8
26.1


Control 2 Occipital Ctx
31.0
33.7


Control 3 Occipital Ctx
21.8
22.7


Control 4 Occipital Ctx
13.3
20.7


Control (Path) 1 Occipital Ctx
37.1
32.5


Control (Path) 2 Occipital Ctx
14.7
12.6


Control (Path) 3 Occipital Ctx
20.3
19.2


Control (Path) 4 Occipital Ctx
20.4
26.1


Control 1 Parietal Ctx
14.2
22.4


Control 2 Parietal Ctx
35.8
44.4


Control 3 Parietal Ctx
5.5
12.8


Control (Path) 1 Parietal Ctx
17.7
21.9


Control (Path) 2 Parietal Ctx
19.2
25.3


Control (Path) 3 Parietal Ctx
13.0
17.9


Control (Path) 4 Parietal Ctx
32.3
33.0










[0805]

223





TABLE ME










General_screening_panel_v1.4











Rel. Exp. (%)




Ag3279, Run



Tissue Name
216512994














Adipose
35.8



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.1



Squamous cell carcinoma SCC-4
0.0



Testis Pool
11.0



Prostate ca.* (bone met) PC-3
0.1



Prostate Pool
3.8



Placenta
0.6



Uterus Pool
3.1



Ovarian ca. OVCAR-3
10.4



Ovarian ca. SK-OV-3
1.4



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
4.0



Ovarian ca. IGROV-1
2.4



Ovarian ca. OVCAR-8
1.4



Ovary
37.4



Breast ca. MCF-7
0.1



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
5.8



Breast ca. MDA-N
0.0



Breast Pool
7.0



Trachea
4.3



Lung
16.0



Fetal Lung
24.5



Lung ca. NCI-N417
2.2



Lung ca. LX-1
0.3



Lung ca. NCI-H146
0.3



Lung ca. SHP-77
0.0



Lung ca. A549
4.2



Lung ca. NCI-H526
10.2



Lung ca. NCI-H23
12.0



Lung ca. NCI-H460
0.1



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
6.0



Liver
9.1



Fetal Liver
3.5



Liver ca. HepG2
0.0



Kidney Pool
34.2



Fetal Kidney
5.0



Renal ca. 786-0
0.0



Renal ca. A498
1.1



Renal ca. ACHN
0.0



Renal ca. UO-31
0.1



Renal ca. TK-10
0.0



Bladder
9.4



Gastric ca. (liver met.) NCI-N87
0.4



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
2.1



Colon ca.* (SW480 met) SW620
0.7



Colon ca. HT29
0.0



Colon ca. HCT-116
0.2



Colon ca. CaCo-2
1.0



Colon cancer tissue
0.8



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
8.0



Small Intestine Pool
12.1



Stomach Pool
6.1



Bone Marrow Pool
8.4



Fetal Heart
15.6



Heart Pool
9.4



Lymph Node Pool
13.7



Fetal Skeletal Muscle
4.7



Skeletal Muscle Pool
4.9



Spleen Pool
5.8



Thymus Pool
13.0



CNS cancer (glio/astro) U87-MG
0.2



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.1



CNS cancer (glio) SNB-19
1.8



CNS cancer (glio) SF-295
0.8



Brain (Amygdala) Pool
9.7



Brain (cerebellum)
100.0



Brain (fetal)
8.2



Brain (Hippocampus) Pool
10.2



Cerebral Cortex Pool
7.9



Brain (Substantia nigra) Pool
6.0



Brain (Thalamus) Pool
10.9



Brain (whole)
16.0



Spinal Cord Pool
8.9



Adrenal Gland
3.9



Pituitary gland Pool
0.6



Salivary Gland
2.5



Thyroid (female)
1.4



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
9.5











[0806]

224





TABLE MF










Panel 1.1











Rel. Exp. (%)




Ag616, Run



Tissue Name
111162134














Adrenal gland
3.7



Bladder
11.7



Brain (amygdala)
0.2



Brain (cerebellum)
76.8



Brain (hippocampus)
7.4



Brain (substantia nigra)
76.3



Brain (thalamus)
16.2



Cerebral Cortex
6.0



Brain (fetal)
2.2



Brain (whole)
31.0



glio/astro U-118-MG
0.0



astrocytoma SF-539
0.0



astrocytoma SNB-75
0.0



astrocytoma SW1783
0.0



glioma U251
0.0



glioma SF-295
0.0



glioma SNB-19
0.0



glio/astro U87-MG
0.0



neuro*; met SK-N-AS
0.0



Mammary gland
25.0



Breast ca. BT-549
0.0



Breast ca. MDA-N
0.0



Breast ca. * (pl. ef) T47D
0.0



Breast ca.* (pl. ef) MCF-7
0.0



Breast ca.* (pl. ef) MDA-MB-231
0.0



Small intestine
2.4



Colorectal
0.0



Colon ca. HT29
0.0



Colon ca. CaCo-2
0.0



Colon ca. HCT-15
0.0



Colon ca. HCT-116
0.0



Colon ca. HCC-2998
0.0



Colon ca. SW480
0.0



Colon ca.* SW620 (SW480 met)
0.0



Stomach
3.4



Gastric ca. (liver met) NCI-N87
0.0



Heart
46.3



Skeletal muscle (Fetal)
19.2



Skeletal muscle
19.2



Endothelial cells
0.0



Heart (Fetal)
4.1



Kidney
0.6



Kidney (fetal)
0.2



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. TK-10
0.0



Renal ca. UO-31
0.0



Renal ca. RXF 393
0.0



Liver
26.2



Liver (fetal)
0.1



Liver ca. (hepatoblast) HepG2
0.0



Lung
4.2



Lung (fetal)
3.8



Lung ca. (non-s. cell) HOP-62
0.0



Lung ca. (large cell)NCI-H460
0.0



Lung ca. (non-s. cell) NCI-H23
6.0



Lung ca. (non-s. cl) NCI-H522
18.6



Lung ca. (non-sm. cell) A549
6.2



Lung ca. (s. cell var.) SHP-77
0.0



Lung ca. (small cell) LX-1
0.0



Lung ca. (small cell) NCI-H69
1.5



Lung ca. (squam.) SW 900
0.0



Lung ca. (squam.) NCI-H596
18.4



Lymph node
3.4



Spleen
2.9



Thymus
5.6



Ovary
47.3



Ovarian ca. IGROV-1
8.6



Ovarian ca. OVCAR-3
13.5



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
6.8



Ovarian ca. OVCAR-8
0.2



Ovarian ca.* (ascites) SK-OV-3
0.1



Pancreas
100.0



Pancreatic ca. CAPAN 2
0.0



Pituitary gland
0.0



Placenta
0.5



Prostate
0.7



Prostate ca.* (bone met) PC-3
0.0



Salivary gland
1.8



Trachea
1.0



Spinal cord
10.4



Testis
10.2



Thyroid
0.7



Uterus
7.6



Melanoma M14
0.0



Melanoma LOX IMVI
0.0



Melanoma UACC-62
0.0



Melanoma SK-MEL-28
0.0



Melanoma* (met) SK-MEL-5
0.0



Melanoma Hs688(A).T
0.0



Melanoma* (met) Hs688(B).T
0.0











[0807]

225





TABLE MG










Panel 1.2











Rel. Exp. (%)




Ag616, Run



Tissue Name
118515000














Endothelial cells
0.0



Heart (Fetal)
8.5



Pancreas
100.0



Pancreatic ca. CAPAN 2
0.0



Adrenal Gland
25.5



Thyroid
8.5



Salivary gland
8.1



Pituitary gland
6.2



Brain (fetal)
17.8



Brain (whole)
52.9



Brain (amygdala)
23.5



Brain (cerebellum)
66.4



Brain (hippocampus)
21.2



Brain (thalamus)
23.3



Cerebral Cortex
0.0



Spinal cord
19.3



glio/astro U87-MG
0.0



glio/astro U-118-MG
0.0



astrocytoma SW1783
0.0



neuro*; met SK-N-AS
0.0



astrocytoma SF-539
0.0



astrocytoma SNB-75
0.0



glioma SNB-19
0.1



glioma U251
0.0



glioma SF-295
0.0



Heart
69.7



Skeletal Muscle
32.1



Bone marrow
6.6



Thymus
17.4



Spleen
15.6



Lymph node
15.9



Colorectal Tissue
0.0



Stomach
11.8



Small intestine
15.9



Colon ca. SW480
0.4



Colon ca.* SW620 (SW480 met)
0.2



Colon ca. HT29
1.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.7



Colon ca. Tissue (ODO3866)
0.3



Colon ca. HCC-2998
0.6



Gastric ca.* (liver met) NCI-N87
0.2



Bladder
28.3



Trachea
7.0



Kidney
2.8



Kidney (fetal)
5.3



Renal ca. 786-0
0.0



Renal ca. A498
0.1



Renal ca. RXF 393
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Liver
69.7



Liver (fetal)
6.6



Liver ca. (hepatoblast) HepG2
0.0



Lung
21.5



Lung (fetal)
12.0



Lung ca. (small cell) LX-1
0.8



Lung ca. (small cell) NCI-H69
8.4



Lung ca. (s. cell var.) SHP-77
0.0



Lung ca. (large cell)NCI-H460
0.0



Lung ca. (non-sm. cell) A549
12.8



Lung ca. (non-s. cell) NCI-H23
11.2



Lung ca. (non-s. cell) HOP-62
0.1



Lung ca. (non-s. cl) NCI-H522
36.3



Lung ca. (squam.) SW 900
1.6



Lung ca. (squam.) NCI-H596
29.5



Mammary gland
44.1



Breast ca.* (pl. ef) MCF-7
0.0



Breast ca.* (pl. ef) MDA-MB-231
0.0



Breast ca.* (pl. ef) T47D
0.1



Breast ca. BT-549
0.0



Breast ca. MDA-N
0.0



Ovary
53.2



Ovarian ca. OVCAR-3
18.9



Ovarian ca. OVCAR-4
0.4



Ovarian ca. OVCAR-5
10.5



Ovarian ca. OVCAR-8
3.6



Ovarian ca. IGROV-1
18.8



Ovarian ca. (ascites) SK-OV-3
1.9



Uterus
22.7



Placenta
6.7



Prostate
6.5



Prostate ca.* (bone met) PC-3
0.0



Testis
50.3



Melanoma Hs688(A).T
0.0



Melanoma* (met) Hs688(B).T
0.0



Melanoma UACC-62
0.0



Melanoma M14
0.0



Melanoma LOX IMVI
0.0



Melanoma* (met) SK-MEL-5
0.0











[0808]

226





TABLE MH










Panel 1.3D











Rel. Exp. (%)




Ag3234, Run



Tissue Name
165524160














Liver adenocarcinoma
5.8



Pancreas
43.2



Pancreatic ca. CAPAN 2
0.0



Adrenal gland
4.5



Thyroid
0.0



Salivary gland
6.3



Pituitary gland
1.4



Brain (fetal)
5.8



Brain (whole)
45.4



Brain (amygdala)
27.2



Brain (cerebellum)
100.0



Brain (hippocampus)
21.3



Brain (substantia nigra)
21.0



Brain (thalamus)
27.2



Cerebral Cortex
14.3



Spinal cord
35.4



glio/astro U87-MG
0.0



glio/astro U-118-MG
0.0



astrocytoma SW1783
0.0



neuro*; met SK-N-AS
1.6



astrocytoma SF-539
0.0



astrocytoma SNB-75
0.0



glioma SNB-19
0.0



glioma U251
0.0



glioma SF-295
0.0



Heart (fetal)
15.2



Heart
13.3



Skeletal muscle (fetal)
9.9



Skeletal muscle
11.2



Bone marrow
6.2



Thymus
18.6



Spleen
8.0



Lymph node
14.4



Colorectal
7.4



Stomach
4.5



Small intestine
16.6



Colon ca. SW480
0.0



Colon ca.* SW620 (SW480 met)
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon ca. tissue (ODO3866)
1.4



Colon ca. HCC-2998
0.0



Gastric ca.* (liver met) NCI-N87
0.0



Bladder
5.2



Trachea
4.1



Kidney
0.0



Kidney (fetal)
2.4



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. RXF 393
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Liver
6.3



Liver (fetal)
2.9



Liver ca. (hepatoblast) HepG2
0.0



Lung
12.2



Lung (fetal)
6.5



Lung ca. (small cell) LX-1
1.4



Lung ca. (small cell) NCI-H69
1.2



Lung ca. (s. cell var.) SHP-77
0.0



Lung ca. (large cell)NCI-H460
2.0



Lung ca. (non-sm. cell) A549
4.9



Lung ca. (non-s. cell) NCI-H23
6.2



Lung ca. (non-s. cell) HOP-62
0.0



Lung ca. (non-s. cl) NCI-H522
0.6



Lung ca. (squam.) SW 900
0.7



Lung ca. (squam.) NCI-H596
7.4



Mammary gland
28.9



Breast ca.* (pl. ef) MCF-7
0.0



Breast ca.* (pl. ef) MDA-MB-231
0.0



Breast ca.* (pl. ef) T47D
0.0



Breast ca. BT-549
0.0



Breast ca. MDA-N
0.0



Ovary
50.7



Ovarian ca. OVCAR-3
7.1



Ovarian ca. OVCAR-4
1.3



Ovarian ca. OVCAR-5
6.0



Ovarian ca. OVCAR-8
3.0



Ovarian ca. IGROV-1
1.6



Ovarian ca.* (ascites) SK-OV-3
1.2



Uterus
42.6



Placenta
1.7



Prostate
3.4



Prostate ca.* (bone met) PC-3
0.0



Testis
15.6



Melanoma Hs688(A).T
0.0



Melanoma* (met) Hs688(B).T
0.0



Melanoma UACC-62
0.0



Melanoma M14
0.0



Melanoma LOX IMVI
0.0



Melanoma* (met) SK-MEL-5
0.0



Adipose
28.1











[0809]

227





TABLE MI










Panel 2.2











Rel. Exp. (%)




Ag3234, Run



Tissue Name
174442923














Normal Colon
7.1



Colon cancer (OD06064)
6.7



Colon Margin (OD06064)
5.6



Colon cancer (OD06159)
0.0



Colon Margin (OD06159)
5.9



Colon cancer (OD06297-04)
0.0



Colon Margin (OD06297-05)
2.9



CC Gr 2 ascend colon (ODO3921)
1.8



CC Margin (ODO3921)
0.0



Colon cancer metastasis (OD06104)
1.2



Lung Margin (OD06104)
0.7



Colon mets to lung (OD04451-01)
0.0



Lung Margin (OD04451-02)
57.4



Normal Prostate
2.6



Prostate Cancer (OD04410)
0.0



Prostate Margin (OD04410)
7.7



Normal Ovary
100.0



Ovarian cancer (OD06283-03)
5.4



Ovarian Margin (OD06283-07)
27.9



Ovarian Cancer 064008
12.9



Ovarian cancer (OD06145)
12.7



Ovarian Margin (OD06145)
19.3



Ovarian cancer (OD06455-03)
8.1



Ovarian Margin (OD06455-07)
25.9



Normal Lung
14.8



Invasive poor diff. lung adeno (ODO4945-01
0.5



Lung Margin (ODO4945-03)
28.7



Lung Malignant Cancer (OD03126)
7.0



Lung Margin (OD03126)
3.2



Lung Cancer (OD05014A)
3.8



Lung Margin (OD05014B)
28.5



Lung cancer (OD06081)
3.1



Lung Margin (OD06081)
18.2



Lung Cancer (OD04237-01)
2.7



Lung Margin (OD04237-02)
12.2



Ocular Melanoma Metastasis
0.0



Ocular Melanoma Margin (Liver)
22.2



Melanoma Metastasis
0.0



Melanoma Margin (Lung)
18.4



Normal Kidney
1.2



Kidney Ca, Nuclear grade 2 (OD04338)
6.7



Kidney Margin (OD04338)
1.7



Kidney Ca Nuclear grade 1/2 (OD04339)
22.1



Kidney Margin (OD04339)
5.0



Kidney Ca, Clear cell type (OD04340)
3.5



Kidney Margin (OD04340)
3.7



Kidney Ca, Nuclear grade 3 (OD04348)
0.8



Kidney Margin (OD04348)
4.8



Kidney malignant cancer (OD06204B)
22.2



Kidney normal adjacent tissue (OD06204E)
3.4



Kidney Cancer (OD04450-01)
0.0



Kidney Margin (OD04450-03)
1.8



Kidney Cancer 8120613
0.0



Kidney Margin 8120614
1.4



Kidney Cancer 9010320
0.0



Kidney Margin 9010321
1.3



Kidney Cancer 8120607
1.9



Kidney Margin 8120608
1.5



Normal Uterus
33.9



Uterine Cancer 064011
6.7



Normal Thyroid
1.3



Thyroid Cancer 064010
0.0



Thyroid Cancer A302152
1.8



Thyroid Margin A302153
0.8



Normal Breast
22.5



Breast Cancer (OD04566)
3.9



Breast Cancer 1024
11.4



Breast Cancer (OD04590-01)
20.0



Breast Cancer Mets (OD04590-03)
17.2



Breast Cancer Metastasis (OD04655-05)
31.0



Breast Cancer 064006
3.9



Breast Cancer 9100266
10.0



Breast Margin 9100265
16.8



Breast Cancer A209073
10.4



Breast Margin A2090734
28.1



Breast cancer (OD06083)
12.6



Breast cancer node metastasis (OD06083)
13.7



Normal Liver
41.5



Liver Cancer 1026
10.5



Liver Cancer 1025
40.1



Liver Cancer 6004-T
21.0



Liver Tissue 6004-N
3.4



Liver Cancer 6005-T
59.9



Liver Tissue 6005-N
59.5



Liver Cancer 064003
10.4



Normal Bladder
7.6



Bladder Cancer 1023
2.5



Bladder Cancer A302173
1.4



Normal Stomach
12.3



Gastric Cancer 9060397
1.0



Stomach Margin 9060396
1.6



Gastric Cancer 9060395
1.3



Stomach Margin 9060394
3.1



Gastric Cancer 064005
0.0











[0810]

228





TABLE MJ










Panel 4D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag3234,
Ag3279,



Run
Run


Tissue Name
164328482
164634320












Secondary Th1 act
0.0
0.0


Secondary Th2 act
0.2
0.0


Secondary Tr1 act
0.0
0.0


Secondary Th1 rest
0.6
0.2


Secondary Th2 rest
0.0
0.0


Secondary Tr1 rest
0.3
0.1


Primary Th1 act
0.2
0.1


Primary Th2 act
0.0
0.0


Primary Tr1 act
0.0
0.9


Primary Th1 rest
0.7
0.9


Primary Th2 rest
0.2
0.2


Primary Tr1 rest
0.8
0.2


CD45RA CD4 lymphocyte act
0.0
0.0


CD45RO CD4 lymphocyte act
0.0
0.0


CD8 lymphocyte act
0.0
0.0


Secondary CD8 lymphocyte rest
0.0
0.0


Secondary CD8 lymphocyte act
0.0
0.0


CD4 lymphocyte none
0.2
0.7


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.2
0.0


LAK cells rest
6.2
7.6


LAK cells IL-2
0.0
0.0


LAK cells IL-2 + IL-12
0.0
0.0


LAK cells IL-2 + IFN gamma
0.1
0.4


LAK cells IL-2 + IL-18
0.4
0.0


LAK cells PMA/ionomycin
1.3
2.7


NK Cells IL-2 rest
0.0
0.0


Two Way MLR 3 day
1.1
1.3


Two Way MLR 5 day
1.3
0.6


Two Way MLR 7 day
0.8
0.4


PBMC rest
3.3
3.1


PBMC PWM
0.0
0.1


PBMC PHA-L
0.1
0.0


Ramos (B cell) none
0.0
0.0


Ramos (B cell) ionomycin
0.0
0.0


B lymphocytes PWM
0.0
0.0


B lymphocytes CD40L and IL-4
0.0
0.3


EOL-1 dbcAMP
0.0
0.2


EOL-1 dbcAMP PMA/ionomycin
0.1
0.0


Dendritic cells none
25.9
49.0


Dendritic cells LPS
61.1
92.0


Dendritic cells anti-CD40
100.0
94.6


Monocytes rest
12.2
23.0


Monocytes LPS
2.6
2.5


Macrophages rest
92.0
100.0


Macrophages LPS
10.4
18.0


HUVEC none
0.0
0.0


HUVEC starved
0.0
0.0


HUVEC IL-1beta
0.0
0.0


HUVEC IFN gamma
0.0
0.0


HUVEC TNF alpha + IFN gamma
0.0
0.0


HUVEC TNF alpha + IL4
0.0
0.0


HUVEC IL-11
0.0
0.0


Lung Microvascular EC none
0.0
0.0


Lung Microvascular EC
0.0
0.0


TNFalpha + IL-1beta


Microvascular Dermal EC none
0.0
0.0


Microsvasular Dermal EC
0.0
0.0


TNFalpha + IL-1beta


Bronchial epithelium
0.0
0.0


TNFalpha + IL1beta


Small airway epithelium none
0.0
0.0


Small airway epithelium
0.0
0.0


TNFalpha + IL-1beta


Coronery artery SMC rest
0.0
0.0


Coronery artery SMC
0.0
0.0


TNFalpha + IL-1beta


Astrocytes rest
0.0
0.0


Astrocytes
0.0
0.0


TNFalpha + IL-1beta


KU-812 (Basophil) rest
0.5
0.0


KU-812 (Basophil) PMA/ionomycin
0.2
0.3


CCD1106 (Keratinocytes) none
0.0
0.0


CCD1106 (Keratinocytes)
0.0
0.0


TNFalpha + IL-1beta


Liver cirrhosis
1.4
1.2


Lupus kidney
0.4
0.2


NCI-H292 none
0.0
0.2


NCI-H292 IL-4
0.0
0.0


NCI-H292 IL-9
0.0
0.0


NCI-H292 IL-13
0.0
0.0


NCI-H292 IFN gamma
0.0
0.2


HPAEC none
0.0
0.0


HPAEC TNF alpha + IL-1 beta
0.0
0.0


Lung fibroblast none
0.0
0.0


Lung fibroblast
0.0
0.0


TNF alpha + IL-1 beta


Lung fibroblast IL-4
0.0
0.0


Lung fibroblast IL-9
0.0
0.0


Lung fibroblast IL-13
0.0
0.0


Lung fibroblast IFN gamma
0.0
0.0


Dermal fibroblast CCD1070 rest
0.0
0.0


Dermal fibroblast CCD1070 TNF
0.2
0.6


alpha


Dermal fibroblast
0.0
0.0


CCD1070 IL-1beta


Dermal fibroblast IFN gamma
0.0
0.2


Dermal fibroblast IL-4
0.2
0.0


IBD Colitis 2
0.0
0.7


IBD Crohn's
0.3
0.7


Colon
3.0
2.8


Lung
7.4
9.7


Thymus
1.2
3.7


Kidney
35.4
33.4










[0811]

229





TABLE MK










Panel CNS_1











Rel. Exp. (%)




Ag3279, Run



Tissue Name
171694591














BA4 Control
3.2



BA4 Control2
10.0



BA4 Alzheimer's2
3.8



BA4 Parkinson's
6.5



BA4 Parkinson's2
11.7



BA4 Huntington's
7.6



BA4 Huntington's2
4.5



BA4 PSP
5.1



BA4 PSP2
8.8



BA4 Depression
6.7



BA4 Depression2
7.4



BA7 Control
4.5



BA7 Control2
1.9



BA7 Alzheimer's2
1.0



BA7 Parkinson's
24.1



BA7 Parkinson's2
17.4



BA7 Huntington's
6.3



BA7 Huntington's2
28.5



BA7 PSP
18.9



BA7 PSP2
3.8



BA7 Depression
1.7



BA9 Control
5.3



BA9 Control2
4.1



BA9 Alzheimer's
3.6



BA9 Alzheimer's2
8.8



BA9 Parkinson's
18.6



BA9 Parkinson's2
20.4



BA9 Huntington's
15.0



BA9 Huntington's2
7.4



BA9 PSP
5.3



BA9 PSP2
1.6



BA9 Depression
4.7



BA9 Depression2
4.5



BA17 Control
20.2



BA17 Control2
7.9



BA17 Alzheimer's2
3.2



BA17 Parkinson's
14.1



BA17 Parkinson's2
8.7



BA17 Huntington's
22.2



BA17 Huntington's2
18.2



BA17 Depression
4.9



BA17 Depression2
19.9



BA17 PSP
13.4



BA17 PSP2
5.3



Sub Nigra Control
58.6



Sub Nigra Control2
21.3



Sub Nigra Alzheimer's2
12.2



Sub Nigra Parkinson's2
63.3



Sub Nigra Huntington's
100.0



Sub Nigra Huntington's2
87.1



Sub Nigra PSP2
16.8



Sub Nigra Depression
7.9



Sub Nigra Depression2
24.3



Glob Palladus Control
24.3



Glob Palladus Control2
8.1



Glob Palladus Alzheimer's
14.9



Glob Palladus Alzheimer's2
1.2



Glob Palladus Parkinson's
33.0



Glob Palladus Parkinson's2
2.0



Glob Palladus PSP
3.0



Glob Palladus PSP2
6.0



Glob Palladus Depression
8.8



Temp Pole Control
5.9



Temp Pole Control2
11.7



Temp Pole Alzheimer's
7.4



Temp Pole Alzheimer's2
3.0



Temp Pole Parkinson's
11.9



Temp Pole Parkinson's2
7.9



Temp Pole Huntington's
8.8



Temp Pole PSP
4.7



Temp Pole PSP2
0.0



Temp Pole Depression2
12.6



Cing Gyr Control
18.0



Cing Gyr Control2
20.2



Cing Gyr Alzheimer's
8.6



Cing Gyr Alzheimer's2
4.2



Cing Gyr Parkinson's
12.2



Cing Gyr Parkinson's2
15.3



Cing Gyr Huntington's
28.1



Cing Gyr Huntington's2
4.7



Cing Gyr PSP
7.8



Cing Gyr PSP2
11.2



Cing Gyr Depression
2.9



Cing Gyr Depression2
8.7











[0812]

230





TABLE ML










general oncology screening panel_v_2.4










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag3279, Run
Ag3279, Run


Tissue Name
264978500
267936331












Colon cancer 1
0.7
0.6


Colon cancer NAT 1
1.3
1.5


Colon cancer 2
3.3
4.1


Colon cancer NAT 2
0.7
0.6


Colon cancer 3
1.6
1.4


Colon cancer NAT 3
2.2
2.1


Colon malignant cancer 4
1.7
1.9


Colon normal adjacent tissue 4
1.3
0.9


Lung cancer 1
3.8
3.6


Lung NAT 1
1.5
1.7


Lung cancer 2
4.5
7.2


Lung NAT 2
4.1
6.3


Squamous cell carcinoma 3
4.7
7.0


Lung NAT 3
0.2
0.4


metastatic melanoma 1
46.0
40.3


Melanoma 2
1.4
0.8


Melanoma 3
2.3
1.7


metastatic melanoma 4
67.4
80.1


metastatic melanoma 5
100.0
100.0


Bladder cancer 1
0.6
1.0


Bladder cancer NAT 1
0.0
0.0


Bladder cancer 2
1.9
0.9


Bladder cancer NAT 2
0.4
0.2


Bladder cancer NAT 3
0.3
0.7


Bladder cancer NAT 4
2.5
0.8


Prostate adenocarcinoma 1
54.0
70.7


Prostate adenocarcinoma 2
2.2
2.4


Prostate adenocarcinoma 3
4.5
6.2


Prostate adenocarcinoma 4
2.1
0.8


Prostate cancer NAT 5
1.9
4.8


Prostate adenocarcinoma 6
1.0
1.5


Prostate adenocarcinoma 7
4.0
3.3


Prostate adenocarcinoma 8
0.9
1.6


Prostate adenocarcinoma 9
60.7
54.3


Prostate cancer NAT 10
0.5
0.8


Kidney cancer 1
4.1
6.0


KidneyNAT 1
5.1
5.4


Kidney cancer 2
8.1
7.5


Kidney NAT 2
2.2
3.7


Kidney cancer 3
2.3
1.4


Kidney NAT 3
1.9
1.4


Kidney cancer 4
1.8
1.8


Kidney NAT 4
0.6
1.9










[0813] CNS_neurodegeneration_v1.0 Summary:


[0814] Ag3234/Ag3279 Two experiments with the same probe and primer set produce results that are in excellent agreement. Both experiments show a difference in expression of this gene between Alzheimer's diseased postmortem brains and controls for this gene. Expression is increased in the temporal cortex of patients with AD (p=0.016 for ag3234 and p=0.024 for ag3279) and in the hippocampus. Both the temporal cortex and hippocampus are regions that show severe neurodegeneration in AD. In contrast, expression in the occipital cortex, a region that does not degenerate in Alzheimer's disease, is not disregulated. Together, these data suggest that the Cadherin protein encoded by this gene may be involved in the pathology or response to Alzheimer's disease. Therefore, this may be a useful drug target for the treatment of this disease.


[0815] General_Screening_Panel_v1.4 Summary:


[0816] Ag3279 Highest expression of this gene is in the cerebellum (CT=25.9). Significant levels of expression are also seen in other regions of the brain including the amygdala, hippocampus, cerebral cortex, substantia nigra, and thalamus. Cadherins can act as axon guidance and cell adhesion proteins, specifically during development and in the response to injury (ref 1). Manipulation of levels of this protein may be of use in inducing a compensatory synaptogenic response to neuronal death in Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, progressive supranuclear palsy, ALS, head trauma, stroke, or any other disease/condition associated with neuronal loss.


[0817] In addition, this gene is highly expressed in pituitary gland, adrenal gland, thyroid, pancreas, adult and fetal skeletal muscle, heart and liver, reflecting the widespread role of cadherins in cell-cell adhesion. This observation may suggest that this gene plays a role in normal metabolic and neuroendocrine function and that disregulated expression of this gene may contribute to metabolic diseases (such as obesity and diabetes) or neuroendocrine disorders.


[0818] Overall, gene expression is associated with normal tissues rather than cancer cell lines. Loss of function of the related E-cadherin protein has been described in many tumors, along with an increased invasiveness and a decreased prognosis of many carcinomas, including tumors of endocrine glands and their target systems (ref 2). Thus, this gene product might similarly be useful as a protein therapeutic to treat a variety of tumors, since it is found in normal cells but missing from cancer cells.


[0819] References:


[0820] 1. Ranscht B. (2000) Cadherins: molecular codes for axon guidance and synapse formation. Int. J. Dev. Neurosci. 18: 643-651. PMID: 10978842


[0821] 2. Potter E., Bergwitz C., Brabant G. (1999) The cadherin-catenin system: implications for growth and differentiation of endocrine tissues. Endocr. Rev. 20: 207-239. PMID: 10204118


[0822] Panel 1.1 Summary:


[0823] Ag616 Highest expression of this gene, a cadherin homolog, is seen in pancreas (CT=23.2). Significant expression is also seen in adrenal gland, fetal and adult skeletal muscle, liver and heart. This widespread expression among tissues with metabolic function is consistent with expression seen in General_screening_panel_v1.4. Please see that panel for further discussion of utility of this gene in metabolic disorders.


[0824] In addition, there is higher expression in adult liver (CT=27) when compared to expression in fetal liver (CT=34.8). Thus, expression of this gene could be used to differentiate between fetal and adult liver.


[0825] Overall, expression in this panel is in agreement with expression in the previous panel. Please see that panel for further discussion of utility of this gene.


[0826] Panel 1.2 Summary:


[0827] Ag616 The expression of this gene in this panel is in agreement with expression in the panels 1.1 and 1.4. Please see these panels for further discussion of utility of this gene.


[0828] Panel 1.3D Summary:


[0829] Ag3234 The expression of this gene in this panel is in agreement with expression in the panels 1.4. See panel 1.4 for further discussion.


[0830] Panel 2.2 Summary:


[0831] Ag3234 The expression of this gene appears to be highest in a sample derived from a normal ovarian tissue (CT=32.3). In addition, there appears to be substantial expression in other samples derived from liver cancers. Furthermore, there appears to be expression specific to normal lung tissue when compared to malignant lung tissue. Thus, the expression of this gene could be used to distinguish normal ovarian tissue from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of liver cancer, ovarian cancer or lung cancer.


[0832] Panel 4D Summary:


[0833] Ag3234/Ag3279 The this gene, a cadherin 23-like molecule, is expressed selectively at moderate levels (CTs=28.1-30.1) in resting and activated dendritic cells, and in resting and activated macrophages. Thus, small molecule antagonists or therapeutic antibodies that block the function of the cadherin 23-like molecule encoded by this gene may be useful in the reduction or elimination of the symptoms in patients with autoimmune and inflammatory diseases in which dendritic cells and macrophages play an important role in antigen presentation and other functions, such as, but not limited to, including Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, lupus erythematosus, or psoriasis.


[0834] Panel CNS1 Summary:


[0835] Ag3279 This panel confirms expression of this gene in the brain. See Panel 1.4 for discussion of utility of this gene in the central nervous system.


[0836] General Oncology Screening Panel_V2.4 Summary:


[0837] Ag3234/Ag3279 Two experiments with same probe-primer sets are in excellent agreement. Highest expression of this gene is detected in metastatic melanoma sample (CTs=27-29). High expression of this gene is detected in metastic melanoma and prostate adenocarcinoma. Therefore, expression of this gene may be used as diagnostic marker to detect the presence of prostate cancer and metastatic melanoma. In addition, moderate to low levels of expression of this gene is also detected in normal and cancer samples derived from colon, lung and kidney. Therefore, therapeutic modulation of this gene or its protein product through the use of protein therapeutics, antibodies or small molecules may be useful in the treatment of metastatic melanoma, prostate, colon, lung and kidney cancers.


[0838] N. CG89285-03: Alpha-1-Antichymotrypsin.


[0839] Expression of gene CG89285-03 was assessed using the primer-probe set Ag5223, described in Table NA. Results of the RTQ-PCR runs are shown in Table NB.
231TABLE NAProbe Name Ag5223StartSEQ IDPrimersSequencesLengthPositionNoForward5′-atggtcctggtgaattacat-3′20661340ProbeTET-5′-cttctttaaagagagataggtgagctctac-3′-TAMRA30681341Reverse5′-ctcaaatacatcaagcacag-3′20856342


[0840]

232





TABLE NB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5223, Run



Tissue Name
229514473














Adipose
0.0



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
13.9



Squamous cell carcinoma SCC-4
0.0



Testis Pool
0.0



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
15.6



Ovary
0.0



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
0.0



Trachea
9.1



Lung
0.0



Fetal Lung
4.8



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
11.0



Fetal Liver
32.8



Liver ca. HepG2
100.0



Kidney Pool
0.0



Fetal Kidney
0.0



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
47.6



Bladder
80.7



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon cancer tissue
0.0



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.0



Small Intestine Pool
0.0



Stomach Pool
4.0



Bone Marrow Pool
0.0



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.0



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
9.2



Spleen Pool
0.0



Thymus Pool
0.0



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
4.9



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
21.2



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
0.0



Brain (fetal)
0.0



Brain (Hippocampus) Pool
2.3



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.0



Brain (whole)
3.2



Spinal Cord Pool
18.9



Adrenal Gland
0.0



Pituitary gland Pool
0.0



Salivary Gland
0.0



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
9.1











[0841] CNS_Neurodegeneration_v1.0 Summary:


[0842] Ag5223 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0843] General_Screening_Panel_v1.5 Summary:


[0844] Ag5223 Expression of this gene is restricted to a sample derived from a liver cancer cell line (CT=34.5) and normal bladder. Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of liver cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of liver cancer.


[0845] Panel 4.1D Summary:


[0846] Ag5223 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0847] O. CG89285-04: Alpha-1-Antichymotrypsin.


[0848] Expression of gene CG89285-04 was assessed using the primer-probe set Ag523 1, described in Table OA. Results of the RTQ-PCR runs are shown in Table OB.
233TABLE QAProbe Name Ag5231StartSEQ IDPrimersSequencesLengthPositionNoForward5′-ctgacctgtcaaggaccattg-3′211085343ProbeTET-5′-tcaacaggcccttcctgatgatcatt-3′-TAMRA261112344Reverse5′-ccagtttgaattccaagttcct-3′221232345


[0849]

234





TABLE OB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5231, Run



Tissue Name
229385251














Adipose
0.0



Melanoma* Hs688(A).T
0.0



Melanoma* HS688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
2.9



Squamous cell carcinoma SCC-4
0.0



Testis Pool
0.0



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
42.6



Ovary
0.0



Breast ca. MCF-7
10.9



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
0.0



Trachea
14.3



Lung
0.0



Fetal Lung
0.0



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
5.6



Fetal Liver
8.4



Liver ca. HepG2
73.7



Kidney Pool
0.0



Fetal Kidney
0.0



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
25.9



Bladder
100.0



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon cancer tissue
1.9



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.0



Small Intestine Pool
0.0



Stomach Pool
0.0



Bone Marrow Pool
0.0



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.0



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
3.0



Spleen Pool
0.0



Thymus Pool
0.0



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
3.2



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
0.0



Brain (fetal)
0.0



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.0



Brain (whole)
3.7



Spinal Cord Pool
7.6



Adrenal Gland
0.0



Pituitary gland Pool
0.0



Salivary Gland
0.0



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
33.9











[0850] CNS_Neurodegeneration_v1.0 Summary:


[0851] Ag5231 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0852] General_screening_panel_v1.5 Summary:


[0853] Ag5231 Expression of this gene is restricted to a sample derived from a liver cancer cell line and normal bladder (CT=34.2-34.6). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of liver cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of liver cancer.


[0854] Panel 4.1D Summary:


[0855] Ag5231 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0856] P. CG57094-01: PPAR-Gamma.


[0857] Expression of gene CG57094-01 was assessed using the primer-probe sets Ag2012 and Ag383, described in Tables PA and PB. Results of the RTQ-PCR runs are shown in Tables PC, PD, PE, PF, PG, PH, PI, PJ and PK.
235TABLE PAProbe Name Ag2012StartSEQ IDPrimersSequenceLengthPositionNoForward5′-aaggctcagaacagcaggat-3′20478346ProbeTET-5′-caactcttccacaaggtggcccag-3′-TAMRA24502347Reverse5′-gctttgcagatgctgaattc-3′20557348


[0858]

236






TABLE PB










Probe Name Ag383
















Start
SEQ ID



Primers
Sequence
Length
Position
No





Forward
5′-ggcctctccgtacccttctc-3′
20
1111
349






Probe
TET-5′-accaggatcacgacctccgcagg-3′-TAMRA
23
1139
350





Reverse
5′-agaggctcttggcgcagtt-3′
19
1168
351










[0859]

237





TABLE PC










AI comprehensive panel v1.0











Rel. Exp. (%)




Ag2012, Run



Tissue Name
228059650














110967 COPD-F
3.3



110980 COPD-F
1.7



110968 COPD-M
3.6



110977 COPD-M
3.9



110989 Emphysema-F
2.7



110992 Emphysema-F
1.2



110993 Emphysema-F
2.1



110994 Emphysema-F
1.7



110995 Emphysema-F
1.9



110996 Emphysema-F
0.3



110997 Asthma-M
0.8



111001 Asthma-F
0.7



111002 Asthma-F
1.3



111003 Atopic Asthma-F
2.5



111004 Atopic Asthma-F
2.5



111005 Atopic Asthma-F
1.4



111006 Atopic Asthma-F
0.5



111417 Allergy-M
0.9



112347 Allergy-M
0.1



112349 Normal Lung-F
0.0



112357 Normal Lung-F
5.5



112354 Normal Lung-M
1.1



112374 Crohns-F
0.9



112389 Match Control Crohns-F
1.9



112375 Crohns-F
1.0



112732 Match Control Crohns-F
2.4



112725 Crohns-M
0.1



112387 Match Control Crohns-M
0.7



112378 Crohns-M
0.1



112390 Match Control Crohns-M
1.9



112726 Crohns-M
3.2



112731 Match Control Crohns-M
1.1



112380 Ulcer Col-F
3.4



112734 Match Control Ulcer Col-F
4.6



112384 Ulcer Col-F
4.3



112737 Match Control Ulcer Col-F
1.4



112386 Ulcer Col-F
1.2



112738 Match Control Ulcer Col-F
2.2



112381 Ulcer Col-M
0.2



112735 Match Control Ulcer Col-M
0.4



112382 Ulcer Col-M
2.2



112394 Match Control Ulcer Col-M
0.3



112383 Ulcer Col-M
1.5



112736 Match Control Ulcer Col-M
1.7



112423 Psoriasis-F
1.8



112427 Match Control Psoriasis-F
3.9



112418 Psoriasis-M
3.2



112723 Match Control Psoriasis-M
5.1



112419 Psoriasis-M
3.1



112424 Match Control Psoriasis-M
0.9



112420 Psoriasis-M
7.2



112425 Match Control Psoriasis-M
2.2



104689 (MF) OA Bone-Backus
58.2



104690 (MF) Adj “Normal” Bone-Backus
72.2



104691 (MF) OA Synovium-Backus
29.3



104692 (BA) OA Cartilage-Backus
81.8



104694 (BA) OA Bone-Backus
13.6



104695 (BA) Adj “Normal” Bone-Backus
48.6



104696 (BA) OA Synovium-Backus
37.4



104700 (SS) OA Bone-Backus
36.9



104701 (SS) Adj “Normal” Bone-Backus
42.0



104702 (SS) OA Synovium-Backus
100.0



117093 OA Cartilage Rep7
4.2



112672 OA Bone5
4.5



112673 OA Synovium5
1.6



112674 OA Synovial Fluid cells5
2.0



117100 OA Cartilage Rep14
1.9



112756 OA Bone9
1.8



112757 OA Synovium9
4.5



112758 OA Synovial Fluid Cells9
1.7



117125 RA Cartilage Rep2
13.6



113492 Bone2 RA
3.0



113493 Synovium2 RA
1.0



113494 Syn Fluid Cells RA
2.8



113499 Cartilage4 RA
2.4



113500 Bone4 RA
2.6



113501 Synovium4 RA
1.8



113502 Syn Fluid Cells4 RA
1.5



113495 Cartilage3 RA
1.8



113496 Bone3 RA
1.7



113497 Synovium3 RA
0.8



113498 Syn Fluid Cells3 RA
3.0



117106 Normal Cartilage Rep20
7.3



113663 Bone3 Normal
0.2



113664 Synovium3 Normal
0.0



113665 Syn Fluid Cells3 Normal
0.0



117107 Normal Cartilage Rep22
1.5



113667 Bone4 Normal
0.8



113668 Synovium4 Normal
0.8



113669 Syn Fluid Cells4 Normal
1.7











[0860]

238





TABLE PD










Ardais Panel 1.1











Rel. Exp. (%)




Ag2012, Run



Tissue Name
315974369














Lung adenocarcinoma SI A
88.9



Lung adenocarcinoma SI B
54.3



Lung adenocarcinoma SI B NAT
18.9



Lung adenocarcinoma SI C
4.2



Lung adenocarcinoma SI C NAT
18.2



Lung adenocarcinoma SII A
22.7



Lung adenocarcinoma SII A NAT
28.5



Lung adenocarcinoma SII C NAT
44.8



Lung adenocarcinoma SIII A
100.0



Lung adenocarcinoma SIII B
15.1



Lung adenocarcinoma SIII C
33.9



Lung SCC SI A
11.4



Lung SCC SI B NAT
14.3



Lung SCC SI C
22.2



Lung SCC SI C NAT
65.5



Lung SCC SI D
73.2



Lung SCC SI D NAT
2.2



Lung SCC SII A
40.3



Lung SCC SII B
6.1



Lung SCC SIII A
7.6



Lung SCC SIII A NAT
4.4











[0861]

239





TABLE PE










CNS neurodegeneration v1.0











Rel. Exp. (%)




Ag2012, Run



Tissue Name
207794919














AD 1 Hippo
28.3



AD 2 Hippo
39.0



AD 3 Hippo
9.9



AD 4 Hippo
16.3



AD 5 Hippo
55.1



AD 6 Hippo
100.0



Control 2 Hippo
45.7



Control 4 Hippo
15.8



Control (Path) 3 Hippo
18.4



AD 1 Temporal Ctx
32.1



AD 2 Temporal Ctx
37.6



AD 3 Temporal Ctx
12.4



AD 4 Temporal Ctx
18.7



AD 5 Inf Temporal Ctx
72.7



AD 5 Sup Temporal Ctx
62.9



AD 6 Inf Temporal Ctx
51.4



AD 6 Sup Temporal Ctx
52.5



Control 1 Temporal Ctx
8.2



Control 2 Temporal Ctx
26.2



Control 3 Temporal Ctx
47.3



Control 3 Temporal Ctx
10.3



Control (Path) 1 Temporal Ctx
10.6



Control (Path) 2 Temporal Ctx
13.1



Control (Path) 3 Temporal Ctx
29.9



Control (Path) 4 Temporal Ctx
15.7



AD 1 Occipital Ctx
17.9



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
7.9



AD 4 Occipital Ctx
14.7



AD 5 Occipital Ctx
28.7



AD 6 Occipital Ctx
36.9



Control 1 Occipital Ctx
7.2



Control 2 Occipital Ctx
32.3



Control 3 Occipital Ctx
46.0



Control 4 Occipital Ctx
11.6



Control (Path) 1 Occipital Ctx
15.8



Control (Path) 2 Occipital Ctx
5.0



Control (Path) 3 Occipital Ctx
12.3



Control (Path) 4 Occipital Ctx
6.5



Control 1 Parietal Ctx
8.5



Control 2 Parietal Ctx
57.0



Control 3 Parietal Ctx
29.7



Control (Path) 1 Parietal Ctx
8.2



Control (Path) 2 Parietal Ctx
10.6



Control (Path) 3 Parietal Ctx
25.9



Control (Path) 4 Parietal Ctx
18.6











[0862]

240





TABLE PF










Panel 1











Rel. Exp. (%)




Ag383, Run



Tissue Name
109660410














Endothelial cells
3.5



Endothelial cells (treated)
2.9



Pancreas
9.4



Pancreatic ca. CAPAN 2
3.7



Adrenal gland
18.0



Thyroid
13.8



Salivary gland
0.0



Pituitary gland
2.2



Brain (fetal)
3.1



Brain (whole)
4.4



Brain (amygdala)
17.2



Brain (cerebellum)
1.6



Brain (hippocampus)
9.3



Brain (substantia nigra)
33.2



Brain (thalamus)
22.7



Brain (hypothalamus)
5.7



Spinal cord
21.8



glio/astro U87-MG
2.2



glio/astro U-118-MG
4.5



astrocytoma SW1783
0.0



neuro*; met SK-N-AS
2.7



astrocytoma SF-539
0.2



astrocytoma SNB-75
1.3



glioma SNB-19
0.6



glioma U251
0.2



glioma SF-295
6.2



Heart
10.7



Skeletal muscle
18.4



Bone marrow
11.1



Thymus
7.3



Spleen
2.9



Lymph node
4.3



Colon (ascending)
1.3



Stomach
5.4



Small intestine
7.0



Colon ca. SW480
0.4



Colon ca.* SW620 (SW480 met)
0.1



Colon ca. HT29
0.4



Colon ca. HCT-116
4.4



Colon ca. CaCo-2
1.1



Colon ca. HCT-15
11.0



Colon ca. HCC-2998
0.0



Gastric ca.* (liver met) NCI-N87
4.9



Bladder
18.8



Trachea
4.8



Kidney
7.3



Kidney (fetal)
11.0



Renal ca. 786-0
0.4



Renal ca. A498
56.3



Renal ca. RXF 393
2.7



Renal ca. ACHN
1.0



Renal ca. UO-31
1.8



Renal ca. TK-10
13.4



Liver
74.7



Liver (fetal)
27.7



Liver ca. (hepatoblast) HepG2
7.4



Lung
9.9



Lung (fetal)
1.5



Lung ca. (small cell) LX-1
0.4



Lung ca. (small cell) NCI-H69
0.5



Lung ca. (s. cell var.) SHP-77
0.6



Lung ca. (large cell)NCI-H460
20.6



Lung ca. (non-sm. cell) A549
3.3



Lung ca. (non-s. cell) NCI-H23
7.4



Lung ca. (non-s. cell) HOP-62
32.1



Lung ca. (non-s. cl) NCI-H522
11.0



Lung ca. (squam.) SW 900
3.3



Lung ca. (squam.) NCI-H596
0.5



Mammary gland
30.4



Breast ca.* (pl. ef) MCF-7
4.8



Breast ca.* (pl. ef) MDA-MB-231
2.2



Breast ca.* (pl. ef) T47D
9.8



Breast ca. BT-549
9.2



Breast ca. MDA-N
1.3



Ovary
6.0



Ovarian ca. OVCAR-3
1.6



Ovarian ca. OVCAR-4
1.9



Ovarian ca. OVCAR-5
7.1



Ovarian ca. OVCAR-8
1.3



Ovarian ca. IGROV-1
0.7



Ovarian ca. (ascites) SK-OV-3
2.5



Uterus
6.3



Placenta
100.0



Prostate
13.3



Prostate ca.* (bone met) PC-3
7.9



Testis
14.3



Melanoma Hs688(A).T
1.4



Melanoma* (met) Hs688(B).T
5.3



Melanoma UACC-62
0.6



Melanoma M14
0.9



Melanoma LOX IMVI
1.0



Melanoma* (met) SK-MEL-5
0.0



Melanoma SK-MEL-28
1.7











[0863]

241





TABLE PG










Panel 1.3D










Rel. Exp. (%)
Rel. Exp. (%)



g2012,
Ag2012,



Run
Run


Tissue Name
147816240
165526994












Liver adenocarcinoma
26.2
37.6


Pancreas
4.1
3.6


Pancreatic ca. CAPAN2
3.4
4.9


Adrenal gland
11.2
15.7


Thyroid
13.9
11.7


Salivary gland
2.9
5.4


Pituitary gland
2.7
3.5


Brain (fetal)
4.4
12.9


Brain (whole)
11.1
21.0


Brain (amygdala)
7.3
18.7


Brain (cerebellum)
0.9
8.2


Brain (hippocampus)
21.0
31.6


Brain (substantia nigra)
4.0
17.4


Brain (thalamus)
8.0
22.7


Cerebral Cortex
22.8
16.8


Spinal cord
17.1
37.6


glio/astro U87-MG
2.7
2.3


glio/astro U-118-MG
38.2
34.4


astrocytoma SW1783
20.2
27.9


neuro*; met SK-N-AS
10.7
5.1


astrocytoma SF-539
0.3
0.6


astrocytoma SNB-75
15.7
5.2


glioma SNB-19
0.0
1.0


glioma U251
0.1
0.8


glioma SF-295
4.3
2.5


Heart (fetal)
10.0
1.7


Heart
2.9
8.4


Skeletal muscle (fetal)
44.8
5.3


Skeletal muscle
2.2
14.6


Bone marrow
6.7
10.2


Thymus
3.7
3.8


Spleen
4.9
9.6


Lymph node
6.4
17.2


Colorectal
3.9
2.3


Stomach
5.7
7.6


Small intestine
5.3
13.6


Colon ca. SW480
1.3
0.2


Colon ca.* SW620(SW480 met)
0.2
0.0


Colon ca. HT29
0.6
0.1


Colon ca. HCT-116
2.6
4.6


Colon ca. CaCo-2
0.8
0.5


Colon ca. tissue(ODO3866)
23.7
15.3


Colon ca. HCC-2998
3.9
1.8


Gastric ca.* (liver met) NCI-N87
6.6
8.7


Bladder
6.0
11.9


Trachea
6.1
13.1


Kidney
0.4
1.0


Kidney (fetal)
22.1
29.5


Renal ca. 786-0
0.1
0.0


Renal ca. A498
100.0
73.7


Renal ca. RXF 393
4.8
10.9


Renal ca. ACHN
3.5
1.9


Renal ca. UO-31
2.0
1.8


Renal ca. TK-10
3.3
4.1


Liver
8.7
31.4


Liver (fetal)
12.0
16.4


Liver ca. (hepatoblast) HepG2
5.7
4.0


Lung
18.7
28.5


Lung (fetal)
4.4
0.9


Lung ca. (small cell) LX-1
0.6
0.9


Lung ca. (small cell) NCI-H69
0.6
0.0


Lung ca. (s. cell var.) SHP-77
1.0
0.3


Lung ca. (large cell)NCI-H460
1.8
10.4


Lung ca. (non-sm. cell) A549
3.1
2.5


Lung ca. (non-s. cell) NCI-H23
6.3
4.0


Lung ca. (non-s. cell) HOP-62
23.7
29.1


Lung ca. (non-s. cl) NCI-H522
10.8
8.2


Lung ca. (squam.) SW900
1.2
1.2


Lung ca. (squam.) NCI-H596
0.0
0.3


Mammary gland
35.1
16.8


Breast ca.* (pl. ef) MCF-7
2.6
4.5


Breast ca.* (pl. ef) MDA-MB-231
6.3
8.5


Breast ca.* (pl. ef) T47D
8.0
6.8


Breast ca. BT-549
40.6
43.5


Breast ca. MDA-N
0.8
0.2


Ovary
14.1
4.9


Ovarian ca. OVCAR-3
0.4
0.9


Ovarian ca. OVCAR-4
1.3
3.1


Ovarian ca. OVCAR-5
6.2
5.6


Ovarian ca. OVCAR-8
0.3
0.0


Ovarian ca. IGROV-1
0.0
0.2


Ovarian ca.* (ascites) SK-OV-3
3.5
3.3


Uterus
4.5
6.5


Placenta
95.9
94.6


Prostate
9.3
26.6


Prostate ca.* (bone met)PC-3
2.7
3.1


Testis
2.9
4.0


Melanoma Hs688(A).T
4.4
2.4


Melanoma* (met) Hs688(B).T
27.7
4.5


Melanoma UACC-62
0.2
1.2


Melanoma M14
0.0
3.1


Melanoma LOXIMVI
1.2
0.1


Melanoma* (met) SK-MEL-5
0.0
0.0


Adipose
59.9
100.0










[0864]

242





TABLE PH










Panel 2D












Rel. Exp. (%)
Rel. Exp. (%)




Ag2012, Run
Ag2012, Run



Tissue Name
155560760
164981025















Normal Colon
1.0
1.0



CC Well to Mod Diff
0.9
0.9



(ODO3866)



CC Margin
0.6
0.3



(ODO3866)



CC Gr.2
0.5
0.5



rectosigmoid



(ODO3868)



CC Margin
0.4
0.2



(ODO3868)



CC Mod Diff
0.1
0.1



(ODO3920)



CC Margin
0.3
0.4



(ODO3920)



CC Gr.2 ascend colon
0.2
0.3



(ODO3921)



CC Margin
0.2
0.2



(ODO3921)



CC from Partial
1.6
1.8



Hepatectomy



(ODO4309) Mets



Liver Margin
1.8
2.0



(ODO4309)



Colon mets to lung
0.5
0.7



(OD04451-01)



Lung Margin
0.2
0.2



(OD04451-02)



Normal Prostate
1.1
3.5



6546-1



Prostate Cancer
0.2
0.2



(OD04410)



Prostate Margin
0.5
0.4



(OD04410)



Prostate Cancer
0.3
0.3



(OD04720-01)



Prostate Margin
0.4
0.5



(OD04720-02)



Normal Lung 061010
0.3
0.4



Lung Met to Muscle
1.6
1.9



(ODO4286)



Muscle Margin
4.2
6.0



(ODO4286)



Lung Malignant
0.4
0.4



Cancer (OD03126)



Lung Margin
0.3
0.2



(OD03126)



Lung Cancer
2.5
3.3



(OD04404)



Lung Margin
1.7
1.7



(OD04404)



Lung Cancer
0.3
0.2



(OD04565)



Lung Margin
0.2
0.2



(OD04565)



Lung Cancer
0.6
0.5



(OD04237-01)



Lung Margin
4.6
5.2



(OD04237-02)



Ocular Mel Met to
0.0
0.0



Liver (ODO4310)



Liver Margin
2.5
3.2



(ODO4310)



Melanoma Mets to
0.6
0.9



Lung (OD04321)



Lung Margin
1.6
1.4



(OD04321)



Normal Kidney
0.1
0.1



Kidney Ca, Nuclear
0.5
0.3



grade 2 (OD04338)



Kidney Margin
0.9
1.2



(OD04338)



Kidney Ca Nuclear
1.2
1.2



grade 1/2 (OD04339)



Kidney Margin
1.3
1.0



(OD04339)



Kidney Ca, Clear cell
100.0
100.0



type (OD04340)



Kidney Margin
0.9
1.1



(OD04340)



Kidney Ca, Nuclear
8.1
9.3



grade 3 (OD04348)



Kidney Margin
0.6
0.8



(OD04348)



Kidney Cancer
32.3
53.6



(OD04622-01)



Kidney Margin
0.2
0.3



(OD04622-03)



Kidney Cancer
0.2
0.2



(OD04450-01)



Kidney Margin
0.2
0.3



(OD04450-03)



Kidney Cancer
0.2
0.2



8120607



Kidney Margin
0.1
0.1



8120608



Kidney Cancer
0.1
0.3



8120613



Kidney Margin
0.9
1.0



8120614



Kidney Cancer
24.7
26.8



9010320



Kidney Margin
1.1
1.1



9010321



Normal Uterus
0.1
0.1



Uterus Cancer
0.5
0.4



064011



Normal Thyroid
1.1
0.6



Thyroid Cancer
1.4
2.0



064010



Thyroid Cancer
0.2
0.2



A302152



Thyroid Margin
0.5
0.3



A302153



Normal Breast
0.9
0.9



Breast Cancer
0.2
0.2



(OD04566)



Breast Cancer
0.4
0.6



(OD04590-01)



Breast Cancer
2.0
1.7



Mets



(OD04590-03)



Breast Cancer
0.5
0.2



Metastasis



(OD04655-05)



Breast Cancer
0.2
0.2



064006



Breast Cancer
0.7
0.6



1024



Breast Cancer
0.5
0.4



9100266



Breast Margin
0.5
0.6



9100265



Breast Cancer
0.4
0.4



A209073



Breast Margin
0.3
0.3



A209073



Normal Liver
1.8
2.8



Liver Cancer
4.2
3.4



064003



Liver Cancer 1025
3.6
3.8



Liver Cancer 1026
2.0
2.8



Liver Cancer
7.1
4.8



6004-T



Liver Tissue
0.9
1.1



6004-N



Liver Cancer
2.8
2.3



6005-T



Liver Tissue
1.4
1.7



6005-N



Normal Bladder
2.3
1.8



Bladder Cancer
0.7
0.6



1023



Bladder Cancer
0.4
0.4



A302173



Bladder Cancer
2.9
2.6



(OD04718-01)



Bladder Normal
2.7
2.9



Adjacent



(OD04718-03)



Normal Ovary
0.4
0.3



Ovarian Cancer
0.3
0.3



064008



Ovarian Cancer
4.1
6.0



(OD04768-07)



Ovary Margin
3.1
2.6



(OD04768-08)



Normal Stomach
0.3
0.3



Gastric Cancer
0.1
0.1



9060358



Stomach Margin
0.1
0.2



9060359



Gastric Cancer
0.2
0.3



9060395



Stomach Margin
0.3
0.3



9060394



Gastric Cancer
0.1
0.2



9060397



Stomach Margin
0.2
0.2



9060396



Gastric Cancer
0.4
0.6



064005











[0865]

243





TABLE PI










Panel 3D












Rel. Exp. (%)
Rel. Exp. (%)




Ag2012, Run
Ag2012, Run



Tissue Name
155560795
164165421















Daoy-
0.1
0.3



Medulloblastoma



TE671-
3.2
2.8



Medulloblastoma



D283 Med-
0.4
0.5



Medulloblastoma



PFSK-1- Primitive
3.1
2.7



Neuroectodermal



XF-498- CNS
3.1
2.5



SNB-78- Glioma
7.6
4.0



SF-268- Glioblastoma
2.9
1.9



T98G- Glioblastoma
0.2
0.6



SK-N-SH-
11.7
11.3



Neuroblastoma



(metastasis)



SF-295- Glioblastoma
1.4
0.9



Cerebellum
5.5
5.3



Cerebellum
3.3
3.0



NCI-H292-
8.2
7.9



Mucoepidermoid lung



carcinoma



DMS-114- Small cell
1.1
2.3



lung cancer



DMS-79- Small cell
8.5
9.7



lung cancer



NCI-H146- Small cell
0.6
1.0



lung cancer



NCI-H526- Small cell
0.8
1.3



lung cancer



NCI-N417- Small cell
0.0
0.4



lung cancer



NCI-H82- Small cell
0.3
0.0



lung cancer



NCI-H157- Squamous
0.2
0.9



cell lung cancer



(metastasis)



NCI-H1155- Large
0.5
0.5



cell lung cancer



NCI-H1299- Large
37.9
36.1



cell lung cancer



NCI-H727- Lung
0.7
1.0



carcinoid



NCI-UMC-11- Lung
0.7
0.4



carcinoid



LX-1- Small cell lung
0.0
0.3



cancer



Colo-205- Colon
0.8
0.4



cancer



KM12- Colon cancer
1.0
1.2



KM20L2- Colon
0.0
0.0



cancer



NCI-H716- Colon
6.1
8.4



cancer



SW-48- Colon
0.3
1.2



adenocarcinoma



SW1116- Colon
0.4
0.5



adenocarcinoma



LS 174T- Colon
0.2
0.4



adenocarcinoma



SW-948- Colon
0.0
0.2



adenocarcinoma



SW-480- Colon
0.5
0.2



adenocarcinoma



NCI-SNU-5- Gastric
1.5
1.3



carcinoma



KATO III- Gastric
1.2
5.9



carcinoma



NCI-SNU-16- Gastric
97.3
95.9



carcinoma



NCI-SNU-1- Gastric
1.4
1.0



carcinoma



RF-1- Gastric
0.0
0.3



adenocarcinoma



RF-48- Gastric
0.0
0.4



adenocarcinoma



MKN-45- Gastric
3.4
4.4



carcinoma



NCI-N87- Gastric
0.3
0.9



carcinoma



OVCAR-5- Ovarian
2.0
1.5



carcinoma



RL95-2- Uterine
1.7
2.7



carcinoma



HelaS3- Cervical
1.2
0.5



adenocarcinoma



Ca Ski- Cervical
5.5
6.2



epidermoid carcinoma



(metastasis)



ES-2- Ovarian clear
1.5
1.0



cell carcinoma



Ramos- Stimulated
0.0
0.0



with PMA/ionomycin



6 h



Ramos- Stimulated
0.0
0.2



with PMA/ionomycin



14 h



MEG-01- Chronic
0.8
1.2



myelogenous leukemia



(megokaryoblast)



Raji- Burkitt's
0.2
0.4



lymphoma



Daudi- Burkitt's
0.3
0.4



lymphoma



U266- B-cell
1.1
0.6



plasmacytoma



CA46- Burkitt's
0.0
0.4



lymphoma



RL- non-Hodgkin's
0.0
0.2



B-cell lymphoma



JM1- pre-B-cell
0.2
0.6



lymphoma



Jurkat- T cell leukemia
1.2
0.4



TF-1- Erythroleukemia
0.3
0.5



HUT 78- T-cell
0.6
1.6



lymphoma



U937- Histiocytic
0.4
0.4



lymphoma



KU-812- Myelogenous
0.5
0.4



leukemia



769-P- Clear cell renal
3.1
2.2



carcinoma



Caki-2- Clear cell renal
35.8
33.7



carcinoma



SW 839- Clear cell
24.5
40.6



renal carcinoma



G401- Wilms' tumor
0.9
0.9



Hs766T- Pancreatic
18.3
25.9



carcinoma (LN



metastasis)



CAPAN-1- Pancreatic
2.6
2.5



adenocarcinoma (liver



metastasis)



SU86.86- Pancreatic
0.2
0.2



carcinoma (liver



metastasis)



BxPC-3- Pancreatic
5.8
5.4



adenocarcinoma



HPAC- Pancreatic
1.4
3.0



adenocarcinoma



MIA PaCa-2-
2.5
4.9



Pancreatic carcinoma



CFPAC-1- Pancreatic
3.0
2.3



ductal adenocarcinoma



PANC-1- Pancreatic
100.0
100.0



epithelioid ductal



carcinoma



T24- Bladder carcinma
49.0
67.4



(transitional cell)



5637- Bladder
0.4
0.2



carcinoma



HT-1197- Bladder
5.2
7.6



carcinoma



UM-UC-3- Bladder
62.0
81.2



carcinma (transitional cell)



A204-
0.6
2.0



Rhabdomyosarcoma



HT-1080-
0.1
0.4



Fibrosarcoma



MG-63- Osteosarcoma
18.7
13.1



SK-LMS-1-
9.3
9.1



Leiomyosarcoma



(vulva)



SJRH30-
0.4
0.6



Rhabdomyosarcoma



(met to bone marrow)



A431- Epidermoid
0.4
0.9



carcinoma



WM266-4- Melanoma
18.2
25.2



DU 145- Prostate
0.3
0.1



carcinoma (brain



metastasis)



MDA-MB-468- Breast
0.0
0.2



adenocarcinoma



SCC-4- Squamous cell
0.0
0.2



carcinoma of tongue



SCC-9- Squamous cell
0.7
0.7



carcinoma of tongue



SCC-15- Squamous
0.0
0.0



cell carcinoma of



tongue



CAL 27- Squamous
0.0
0.5



cell carcinoma of



tongue











[0866]

244





TABLE PJ










Panel 4D












Rel. Exp. (%)
Rel. Exp. (%)




Ag2012, Run
Ag2012, Run



Tissue Name
155560840
163582094















Secondary Th1 act
0.2
0.1



Secondary Th2 act
0.3
0.2



Secondary Tr1 act
0.6
0.1



Secondary Th1 rest
0.1
0.1



Secondary Th2 rest
0.0
0.0



Secondary Tr1 rest
0.1
0.1



Primary Th1 act
0.0
0.1



Primary Th2 act
0.0
0.1



Primary Tr1 act
0.1
0.1



Primary Th1 rest
0.1
0.1



Primary Th2 rest
0.1
0.1



Primary Tr1 rest
0.1
0.1



CD45RA CD4
0.1
0.1



lymphocyte act



CD45RO CD4
0.1
0.1



lymphocyte act



CD8 lymphocyte act
0.1
0.1



Secondary CD8
0.3
0.1



lymphocyte rest



Secondary CD8
0.2
0.2



lymphocyte act



CD4 lymphocyte none
0.0
0.0



2ry
0.1
0.0



Th1/Th2/Tr1_anti-CD95



CH11



LAK cells rest
0.1
0.1



LAK cells IL-2
0.5
0.1



LAK cells IL-2 + IL-12
0.1
0.1



LAK cells IL-2 + IFN
0.1
0.1



gamma



LAK cells IL-2 + IL-18
0.2
0.1



LAK cells
35.8
18.3



PMA/ionomycin



NK Cells IL-2 rest
0.1
0.1



Two Way MLR 3 day
0.2
0.1



Two Way MLR 5 day
0.0
0.0



Two Way MLR 7 day
0.1
0.1



PBMC rest
0.1
0.1



PBMC PWM
0.3
0.1



PBMC PHA-L
1.8
1.2



Ramos (B cell) none
0.0
0.0



Ramos (B cell)
0.1
0.2



ionomycin



B lymphocytes PWM
0.6
0.5



B lymphocytes CD40L
0.3
0.1



and IL-4



EOL-1 dbcAMP
0.3
0.0



EOL-1 dbcAMP
0.3
0.2



PMA/ionomycin



Dendritic cells none
0.4
0.3



Dendritic cells LPS
0.8
0.9



Dendritic cells
0.3
0.3



anti-CD40



Monocytes rest
0.2
0.1



Monocytes LPS
0.1
0.1



Macrophages rest
0.2
0.2



Macrophages LPS
0.5
0.3



HUVEC none
1.6
0.5



HUVEC starved
1.0
0.6



HUVEC IL-1beta
0.4
0.2



HUVEC IFN gamma
0.8
0.5



HUVEC TNF alpha +
0.5
0.6



IFN gamma



HUVEC TNF alpha +
3.0
1.9



IL4



HUVEC IL-11
1.2
0.7



Lung Microvascular
9.6
4.3



EC none



Lung Microvascular
11.0
5.8



EC TNFalpha +



IL-1beta



Microvascular
16.5
9.7



Dermal EC none



Microsvasular
9.9
6.7



Dermal EC



TNFalpha + IL-1beta



Bronchial epithelium
3.7
4.2



TNFalpha + IL1beta



Small airway
18.6
13.5



epithelium none



Small airway
100.0
100.0



epithelium TNFalpha +



IL-1beta



Coronery artery SMC
6.7
7.9



rest



Coronery artery SMC
2.1
2.0



TNFalpha + IL-1beta



Astrocytes rest
5.3
5.1



Astrocytes TNFalpha +
8.1
5.6



IL-1beta



KU-812 (Basophil)
0.0
0.1



rest



KU-812 (Basophil)
0.8
0.7



PMA/ionomycin



CCD1106
1.8
1.3



(Keratinocytes) none



CCD1106
2.1
2.0



(Keratinocytes)



TNFalpha + IL-1beta



Liver cirrhosis
7.3
6.9



Lupus kidney
0.1
0.1



NCI-H292 none
0.2
0.3



NCI-H292 IL-4
1.0
0.8



NCI-H292 IL-9
0.5
0.5



NCI-H292 IL-13
0.5
0.4



NCI-H292 IFN
0.4
0.6



gamma



HPAEC none
4.8
3.9



HPAEC TNF alpha +
6.6
2.8



IL-1 beta



Lung fibroblast none
2.0
2.0



Lung fibroblast TNF
0.7
0.3



alpha + IL-1 beta



Lung fibroblast IL-4
14.8
10.2



Lung fibroblast IL-9
4.1
4.5



Lung fibroblast IL-13
7.0
6.5



Lung fibroblast IFN
13.0
10.5



gamma



Dermal fibroblast
2.2
1.4



CCD1070 rest



Dermal fibroblast
1.0
1.3



CCD1070 TNF alpha



Dermal fibroblast
0.8
1.0



CCD1070 IL-1 beta



Dermal fibroblast
1.1
1.2



IFN gamma



Dermal fibroblast
7.9
7.5



IL-4



IBD Colitis 2
0.8
0.7



IBD Crohn's
2.4
2.4



Colon
3.8
2.1



Lung
4.6
6.9



Thymus
0.8
0.5



Kidney
3.6
2.0











[0867]

245





TABLE PK










Panel 5 Islet









Rel. Exp. (%)



Ag2012 Run


Tissue Name
254275032











97457_Patient-02go_adipose
8.5


97476_Patient-07sk_skeletal muscle
5.7


97477_Patient-07ut_uterus
1.7


97478_Patient-07pl_placenta
50.7


99167_Bayer Patient 1
47.6


97482_Patient-08ut_uterus
1.8


97483_Patient-08pl_placenta
32.8


97486_Patient-09sk_skeletal muscle
3.5


97487_Patient-09ut_uterus
0.5


97488_Patient-09pl_placenta
29.7


97492_Patient-10ut_uterus
2.8


97493_Patient-1Opl_placenta
74.2


97495_Patient-11go_adipose
7.9


97496_Patient-11sk_skeletal muscle
4.8


97497_Patient-11ut_uterus
2.0


97498_Patient-11pl_placenta
20.2


97500_Patient-12go_adipose
16.4


9750l_Patient-12sk_skeletal muscle
34.6


97502_Patient-12ut_uterus
2.3


97503_Patient-12pl_placenta
27.9


94721_Donor 2 U - A_Mesenchymal Stem Cells
2.0


94722_Donor 2 U - B_Mesenchymal Stem Cells
2.1


94723_Donor 2 U - C_Mesenchymal Stem Cells
1.7


94709_Donor 2 AM - A_adipose
21.6


94710_Donor 2 AM - B_adipose
18.0


94711_Donor 2 AM - C_adipose
13.9


94712_Donor 2 AD - A_adipose
6.0


94713_Donor 2 AD - B_adipose
9.2


94714_Donor 2 AD - C_adipose
22.5


94742_Donor 3 U - A_Mesenchymal Stem Cells
2.0


94743_Donor 3 U - B_Mesenchymal Stem Cells
5.1


94730_Donor 3 AM - A_adipose
100.0


94731_Donor 3 AM - B_adipose
64.2


94732_Donor 3 AM - C_adipose
49.3


94733_Donor 3 AD - A_adipose
14.7


94734_Donor 3 AD - B_adipose
9.4


94735_Donor 3 AD - C_adipose
19.5


77138_Liver_HepG2untreated
6.9


73556_Heart_Cardiac stromal cells (primary)
4.4


81735_Small Intestine
4.2


72409_Kidney_Proximal Convoluted Tubule
5.1


82685_Small intestine_Duodenum
5.9


90650_Adrenal_Adrenocortical adenoma
2.6


72410_Kidney_HRCE
49.0


72411_Kidney_HRE
11.3


73139_Uterus_Uterine smooth muscle cells
1.6










[0868] AI_Comprehensive Panel_v1.0 Summary:


[0869] Ag2012 This gene shows a wide spread expression in this panel, with moderate to low expression in samples derived from normal and orthoarthitis/rheumatoid arthritis bone and adjacent bone, cartilage, synovium and synovial fluid samples, from normal lung, COPD lung, emphysema, atopic asthma, asthma, allergy, Crohn's disease (normal matched control and diseased), ulcerative colitis(normal matched control and diseased), and psoriasis (normal matched control and diseased). This gene appears to be upregulated in samples of bone, cartilage and synovium from patients with osteorarthritis when compared to expression in corresponding normal samples. Thus, therapeutic modulation of the expression or function of this gene may be effective in the treatment of oseoarthritis.


[0870] Ardais Panel 1.1 Summary:


[0871] Ag2012 Highest expression of this gene is detected in lung cancer (358) sample (CT=26.6). This gene is expressed both in normal and cancer lung tissues. Higher expression of this gene is associated with the cancer as compared to normal lung. Therefore, expression of this gene may be used as a diagnostic marker for lung cancer and also, therapeutic modulation of this gene through the use of antibodies may be useful in the treatment of lung cancer.


[0872] CNS_Neurodegeneration_v1.0 Summary:


[0873] Ag2012 This gene is present in the brain as evidenced by expression in this panel and panel 1.3D. No apparent association with Alzheimer's disease is seen. However, Thus, therapeutic modulation of the expression or function of this gene may be effective in the treatment of neurologic diseases.


[0874] Panel 1 Summary:


[0875] Ag383 Highest expression of this gene is detected in placenta (CT=21.7). This gene shows a widespread expression in this panel, which corelates with the expression seen in panel 1.3D. Please see panel 1.3D for further discussion.


[0876] Panel 1.3D Summary:


[0877] Ag2012 Two experiments with same probe and primer sets are in good agreement. Highest expression of this gene is seen in a renal cancer cell line and adipose tissue (CTs=28.7-29). Significant expression is also seen in breast, brain, colon, liver, renal and melanoma cancer cell lines. Thus, expression of this gene could be used to differentiate between the lung cancer cell line and other samples on this panel and as a marker for these cancers. This gene is identical to angiopoeitin related protein 4 (ARP4), which is know to be angiogenic [1]. Since angiogenesis is essential for the growth and metastasis of solid tumors, therapeutic modulation of the expression or function of this ARP protein encoded by this gene, through the use of protein therapeutics or antibodies, may be effective in the treatment of melanoma, brain, colon, renal and liver cancers.


[0878] Among tissues with metabolic function, this gene is expressed most highly in adipose with moderate levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes. ARP4 has been widely studied in the context of adipose biology [2]. The mouse gene, known as fasting-induced adipose factor, is predominantly expressed in adipose tissue and is strongly upregulated by fasting in white adipose tissue and liver[3]. The N-terminal and C-terminal portions contain the characteristic coiled-coil domains and fibrinogen-like domains that are conserved in angiopoietins. In human and mouse tissues, it is specifically expressed in the liver and they are mainly present in the hepatocytes [4]. Recombinant protein expressed in COS-7 cells is secreted and glycosylated. Furthermore, Angiopoietin-2 has been implicated in adipose tissue regression [5]. Since this molecule is an angiopoietin homolog that is highly expressed in adipose, this molecule may also play a role in initiation of apoptosis in adipose. Thus, therapeutic modulation of the expression or function of this gene may be effective in the treatment of obesity.


[0879] In addition, expression of this gene is higher in fetal kidney (CTs=30-31) when compared to expression in adult kidney (CTs35-37). Thus, expression of this gene could be used to differentiate between adult and fetal kidney.


[0880] Furthermore, expression of this gene in fetal kidney and renal cell carcinoma-derived cell lines but not in adult kidney, suggests that it may be involved in kidney development and organogenesis and also, in kidney tumorgenesis.


[0881] References:


[0882] 1. Kim I, Kim H G, Kim H, Kim H H, Park S K, Uhm C S, Lee Z H, Koh G Y. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J Mar. 15, 2000;346 Pt 3:603-10. PMID: 10698685.


[0883] 2. Yoon J C, Chickering T W, Rosen E D, Dussault B, Qin Y, Soukas A, Friedman J M, Holmes WE, Spiegelman B M. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol Jul. 20, 2000 (14):5343-9. PMID: 10866690


[0884] 3. Kersten S, Mandard S, Tan N S, Escher P, Metzger D, Chambon P, Gonzalez F J, Desvergne B, Wahli W. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem Sep. 15, 2000;275(37):28488-93. PMID: 10862772.


[0885] 4. Reinmuth N, Stoeltzing O, Liu W, Ahmad S A, Jung Y D, Fan F, Parikh A, Ellis L M.Endothelial survival factors as targets for antineoplastic therapy. Cancer J 2001 Nov-Dec;7 Suppl 3:S109-19. PMID: 11779081


[0886] 5. Cohen B, Barkan D, Levy Y, Goldberg I, Fridman E, Kopolovic J, Rubinstein M. Leptin induces angiopoietin-2 expression in adipose tissues. PMID: 11152449


[0887] Panel 2D Summary:


[0888] Ag2012 Two experiments with two different probe and primer sets produce results that are in excellent agreement, with highest expression in kidney cancer (CTs=22-24). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of kidney cancer. Furthermore, therapeutic modulation of the expression or function of ARP encoded by this gene through the use of protein therapeutics or antibodies, may be effective in the treatment of kidney cancer.


[0889] Panel 3D Summary:


[0890] Ag2012 Two experiments with two different probe and primer sets produce results that are in excellent agreement, with highest expression in gastric, bladder, renal, pancreatic, and lung cancer cell lines. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel.


[0891] Panel 4D Summary:


[0892] Ag2012 Two experiments with two different probe and primer sets produce results that are in excellent agreement, with highest expression in small airway epithelium treated with TNF-alpha and IL-1beta (CTs=24.4). Thus, expression of this gene could be used as a marker of activated epithelium. Interestingly, expression of this gene is upregulated upon immune-stimulation of the airway epithelial cells and lung fibroblasts by cytokines as compared to corresponding resting cells. Furthermore, expression of this gene in LAK cells treated with PMA/ionomycin is also upregulated relative to the expression in resting cells. These data indicate that ARP plays a role in inflammation related to the above cells of the pulmonary system and is thereby implicated as a target for therapeutic intervention by protein and antibody therapeutics, as well as, small molecule pharmaceuticals. A wholly human antibody directed at ARP, for example, may diminish the symptoms of patients with allergy, asthma or emphysema.


[0893] In addtion, the gene is expressed at significant levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0894] Panel 5 Islet Summary:


[0895] Ag2012 Highest expression of this gene is detected in midway differentiated adipose tissue. This gene shows a wide spread expression in this panel, withmoderate expressions in adipose, placenta, skeletal muscle, uterus, kidney and small intestine. Interestingly, higher levels of expression of this gene is seen in midway differentiated adipose as compared to undifferentiated and differentiated adipose. Angiopoietin-related protein is shown to be associated with adipose differentiation. Therefore, therapeutic modulation of this gene or ARP encoded by this gene may be useful in the treatment of obesity and diabetes.



Example D


Identification of Single Nucleotide Polymorphisms in NOVX Nucleic Acid Sequences

[0896] Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a “cSNP” to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP may be due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele. SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.


[0897] SeqCalling assemblies produced by the exon linking process were selected and extended using the following criteria. Genomic clones having regions with 98% identity to all or part of the initial or extended sequence were identified by BLASTN searches using the relevant sequence to query human genomic databases. The genomic clones that resulted were selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences were analyzed for putative coding regions as well as for similarity to the known DNA and protein sequences. Programs used for these analyses include Grail, Genscan, BLAST, HMMER, FASTA, Hybrid and other relevant programs.


[0898] Some additional genomic regions may have also been identified because selected SeqCalling assemblies map to those regions. Such SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified was manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database. SeqCalling fragments suitable for inclusion were identified by the CuraTools™ program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.


[0899] The regions defined by the procedures described above were then manually integrated and corrected for apparent inconsistencies that may have arisen, for example, from miscalled bases in the original fragments or from discrepancies between predicted exon junctions, EST locations and regions of sequence similarity, to derive the final sequence disclosed herein. When necessary, the process to identify and analyze SeqCalling assemblies and genomic clones was reiterated to derive the full length sequence (Alderbom et al., Determination of Single Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing. Genome Research. 10 (8) 1249-1265, 2000).


[0900] Variants are reported individually but any combination of all or a select subset of variants are also included as contemplated NOVX embodiments of the invention.
246TABLE D1Variants of nucleotide sequence CG52113-01NucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13378348245GC50GlnHis13381469279TC62CysArg13373863552GA153ValIle13375571657AG188AsnAsp13381468737GA214LeuLeu13375570796CT234ProLeu13377895808GA238SerAsn133814651176GAN/AN/AN/A


[0901]

247





TABLE D2










Variants of nucleotide sequence CG103322-02










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13381406
355
G
A
116
Glu
Glu


13381407
361
T
C
118
Gly
Gly


13381410
691
C
G
228
Val
Val










[0902]

248





TABLE D3










Variants of nucleotide sequence CG151575-02










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13381416
593
G
A
131
Gly
Ser


13381415
736
C
A
178
Asp
Glu










[0903]

249





TABLE D4










Variants of nucleotide sequence CG152323-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13381423
162
T
C
28
Cys
Arg


13381425
1085
T
C
335
Asn
Asn


13381422
3011
T
C
977
Asp
Asp


13381421
3156
G
A
1026
Ala
Thr










[0904]

250





TABLE D5










Variant of nucleotide sequence CG153011-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13381522
1268
G
A
326
Gly
Arg










[0905]

251





TABLE D6










Variant of nucleotide sequence CG153042-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13381434
928
C
T
304
Leu
Phe










[0906]

252





TABLE D7










Variant of nucleotide sequence CG153179-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13381427
241
C
T
65
Ser
Ser










[0907]

253





TABLE D8










Variants of nucleotide sequence CG157760-02










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13381431
353
G
A
85
Ser
Asn


13381432
500
C
T
134
Ala
Val










[0908]

254





TABLE D9










Variants of nucleotide sequence CG158114-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13381446
483
C
T
161
Pro
Pro


13381447
563
T
C
188
Leu
Pro


13381450
1698
T
C
566
Asn
Asn










[0909]

255





TABLE D10










Variant of nucleotide sequence CG158553-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13381435
465
T
C
107
Cys
Cys










[0910]

256





TABLE D11










Variants of nucleotide sequence CG158983-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13377605
130
T
C
38
Pro
Pro


13381442
154
G
C
46
Thr
Thr


13381443
514
C
T
166
Ser
Ser










[0911]

257





TABLE D12










Variants of nucleotide sequence CG159015-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13381457
522
T
C
149
Leu
Pro


13381458
645
C
T
190
Ser
Phe


13381456
734
G
A
220
Val
Ile


13381460
801
C
G
242
Ser
Cys










[0912]

258





TABLE D13










Variants of nucleotide sequence CG173007-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13381454
45
T
A
N/A
N/A
N/A


13381453
322
A
G
75
Ile
Val


13381452
1003
T
C
302
Ser
Pro


13381451
1697
T
C
533
Leu
Pro










[0913]

259





TABLE D14










Variants of nucleotide sequence CG173357-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13381463
227
T
C
68
Phe
Ser


13381439
1877
G
T
N/A
N/A
N/A










[0914]

260





TABLE D15










Variant of nucleotide sequence CG50387-03










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13377608
1017
G
A
339
Ala
Ala










[0915]

261





TABLE D16










Variants of nucleotide sequence CG103134-02










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13381413
231
C
T
61
His
Tyr


13381402
478
T
C
143
Val
Ala


13381414
663
G
C
205
Val
Leu










[0916]

262





TABLE D17










Variants of nucleotide sequence CG57542-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13377100
495
C
T
155
Asp
Asp


13377101
820
G
A
264
Ala
Thr










[0917]

263





TABLE D18










Variants of nucleotide sequence CG57774-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13381484
640
C
T
180
Pro
Pro


13381486
698
C
A
200
Pro
Thr


13375028
1422
T
C
441
Leu
Ser










[0918]

264





TABLE D19










Variant of nucleotide sequence CG89285-03










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13374612
73
A
G
9
Thr
Ala










[0919]

265





TABLE D20










Variants of nucleotide sequence CG57094-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13377892
862
A
G
237
Asn
Asp


13375565
947
C
T
265
Thr
Met


13377666
1379
G
A
N/A
N/A
N/A











Example E


Molecular Cloning of NOV26 Variants

[0920] For NOV26b, the cDNA coding for the DOMAIN of NOV26a (CG5123-05) from residue 21 to 493 was targeted for “in-frame” cloning by PCR template was based on the previously identified plasmid, when available, or on human cDNA(s). For NOVs 26c-26f, the cDNA coding for the DOMAIN of CG5123-05 from residue 43 to 494 was targeted for “in-frame” cloning by PCR. The PCR template was based on human cDNA(s). NOVs 26g-r, the cDNA coding for the full-length of CG5123-05 from residue 1 to 532 was targeted for the “in-frame” cloning by PCR. The PCR template was based on human cDNA(s).
266TABLE E1Oligonucleotide primers used to clone the target cDNA sequence:NOV26variantPrimersSequencesNOV26bF25′-AAGCTTGACAGACCTTGGGACCGGGGCCAACACTGG-3′(SEQ ID NO:352)R15′-CTCGAGAGGAGACATCTCGAAGGGCCACCAAGATGG-3′(SEQ ID NO:353)NOV26c-fF35′-AAGCTTACTAGGTTTGAGGCGGCCGTGAAGG-3′(SEQ ID NO:354)R15′-CTCGAGAGGAGACATCTCGAAGGGCCACCAAGATGG-3′(SEQ ID NO:355)NOV26g-rF15′-AAGCTTCCACCATGTTCCAGTTTCATGCAGGCTCTTGG-3′(SEQ ID NO:356)R25′-CTCGAGGTTCAGTTTTCTTCTCCTTCTTTGATAG-3′(SEQ ID NO:357)


[0921] For downstream cloning purposes, the forward primer includes an in-frame Hind III restriction site and the reverse primer contains an in-frame Xho I restriction site.


[0922] Two parallel PCR reactions were set up using a total of 0.5-1.0 ng human pooled cDNAs as template for each reaction. The pool is composed of 5 micrograms of each of the following human tissue cDNAs: adrenal gland, whole brain, amygdala, cerebellum, thalamus, bone marrow, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, liver, lymphoma, Burkitt's Raji cell line, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small Intestine, spleen, stomach, thyroid, trachea, uterus.


[0923] When the tissue of expression is known and available, the second PCR was performed using the above primers and 0.5 ng-1.0 ng of one of the following human tissue cDNAs: skeleton muscle, testis, mammary gland, adrenal gland, ovary, colon, normal cerebellum, normal adipose, normal skin, bone marrow, brain amygdala, brain hippocampus, brain substantia nigra, brain thalamus, thyroid, fetal lung, fetal liver, fetal brain, kidney, heart, spleen, uterus, pituitary gland, lymph node, salivary gland, small intestine, prostate, placenta, spinal cord, peripheral blood, trachea, stomach, pancreas, hypothalamus.


[0924] The reaction mixtures contained 2 microliters of each of the primers (original concentration: 5 pmol/ul), 1 microliter of 10 mM dNTP (Clontech Laboratories, Palo Alto Calif.) and 1 microliter of 50×Advantage-HF 2 polymerase (Clontech Laboratories) in 50 microliter-reaction volume. The following reaction conditions were used:
267PCR condition 1:a) 96° C. 3 minutesb) 96° C. 30 seconds denaturationc) 60° C. 30 seconds, primer annealingd) 72° C. 6 minutes extensionRepeat steps b-d 15 timese) 96° C. 15 seconds denaturationf) 60° C. 30 seconds, primer annealingg) 72° C. 6 minutes extensionRepeat steps e-g 29 timese) 72° C. 10 minutes final extensionPCR condition 2:a) 96° C. 3 minutesb) 96° C. 15 seconds denaturationc) 76° C. 30 seconds, primer annealing, reducing the temperatureby 1° C. per cycled) 72° C. 4 minutes extensionRepeat steps b-d 34 timese) 72° C. 10 minutes final extension


[0925] An amplified product was detected by agarose gel electrophoresis. The fragment was gel-purified and ligated into the pCR2.1 vector (Invitrogen, Carlsbad, Calif.) following the manufacturer's recommendation. Twelve clones per PCR reaction were picked and sequenced. The inserts were sequenced using vector-specific M13 Forward and M13 Reverse primers and the gene-specific primers in Table .
268TABLE E2Gene-specific PrimersNOV26variantPrimersSequencesNOV26bSF1GCAGTCTCTGAAGGACATTCTGCAT(SEQ ID NO:358)SF2TGTTATTCCTGCCATCTTCTCCTCC(SEQ ID NO:359)SF3ACTTCACTGTCTGAATCGCTTGTCA(SEQ ID NO:360)SF4TTCTTATGGTCTGCTGACTTCTTCATC(SEQ ID NO:361)SF5TGACACGCAGCAATTCTTCAACTTT(SEQ ID NO:362)SR1ACTGCAGAAACTGGAAACGCTGACT(SEQ ID NO:363)SR2GAGAAGATGGCAGGAATAACAGCG(SEQ ID NO:364)SR3GTTTACTGTGATTCTATGGAACAATTTGG(SEQ ID NO:365)SR4CCATAAGAATTTGGAAGTCATTGTCACTAA(SEQ ID NO:366)SR5TCATAGGTCCATTTTATGAAATTGTCGAG(SEQ ID NO:367)NOV25e-fSF1CATGTCCTCCTGCAGTCTCATCA(SEQ ID NO:368)SF2CTTCAACTGCAACCACCTGCATATTCC(SEQ ID NO:369)SF3GCTGAATTCCTGTAACATCTTCAACA(SEQ ID NO:370)SF4TTTTCTTATCATTATCACTTTGTTCTGCTCC(SEQ ID NO:371)SF5ATTCTTCAACTTTCTCAGTCATTGGC(SEQ ID NO:372)SR1GCTGATGAGACTGCAGGAGGACAT(SEQ ID NO:373)SR2GAAAAGGTGAAGTCAAGCATGGAGG(SEQ ID NO:374)SR3TCAGCATTTGACAAGCGATTCAG(SEQ ID NO:375)SR4AAGAAGTCAGCAGACCATAAGAATTTG(SEQ ID NO:376)SR5GCTGCGTGTCATAGGTCCATTTT(SEQ ID NO:377)NOV26g-rSF1CAAAGCAGTCAGCGTTTCCAGTTTCT(SEQ ID NO:378)SF2CGCTGTTATTCCTGCCATCTTCTC(SEQ ID NO:379)SF3TCGCTTGTCAAATGCTGAATTCCT(SEQ ID NO:380)SF4TATCACTTTGTTCTGCTCCTTTCACTT(SEQ ID NO:381)SF5TCAACATATGCAATCATGGCTTCC(SEQ ID NO:382)SR1GCAAAATCATCAACATCAACATTGCAG(SEQ ID NO:383)SR2AGGCGGAGAAACTGACGAATTCTCTAA(SEQ ID NO:384)SR3ACAAGCGATTCAGACAGTGAAGTTTA(SEQ ID NO:385)SR4TGATAAGAAAATGATGAAGAAGTCAGC(SEQ ID NO:386)SR5TGAAAAAGATTATTGAAACTATGCCAA(SEQ ID NO:387)



Example F1


Angiopoietin-Related Protein (ARP) and Methods of Using ARP

[0926] The present invention relates to ARP, a gene surprisingly found to be differentially expressed in clear cell Renal cell carcinoma tissues vs the normal adjacent kidney tissues. Furthermore, this invention demonstrates that ARP is surprisingly differentially expressed in small airway epithelium activated by TNF alpha and IL-1 beta, as well as by lung fibroblasts stimulated by IL-4, IL-9, IL-13 and Interferon gamma relative to untreated lung fibroblasts. Finally, a striking, unexpected upregulation of expression of ARP was observed in Lymphokine-activated killer (LAK) cells treated with the phorbol ester: phorbol- 12, 13-myristate acetate (PMA) in combination with ionomycin, relative to the resting cells.


[0927] The present invention discloses a method of using ARP as a clinical marker for staging clear cell Renal cell carcinomas. Furthermore, increased expression of ARP by stimulated LAK cells may play a role in reduced susceptibility of tumor cells to depletion by LAK cells. For the first time, we are disclosing that ARP may be involved with asthma, allergy and emphysema and that regulating ARP by protein therapeutics, antibodies directed against ARP or by small molecule antagonists may alleviate the symptoms of these pulmonary disorders. The invention also discloses a method of treating a pathology treatable by modulating ARP expression, specifically clear cell Renal cell carcinomas.



Example F2


Differential Gene Expression in Clear Cell Renal Cell Carcinomas vs Normal Adjacent Tissues

[0928] In order to obtain a comprehensive profile of those genes whose expression is modulated in clear cell Renal cell carcinomas, GeneCalling™ technology, described in detail in Shimkets et al. (1999) and in U.S. Pat. No. 5871697, was used to distinguish the gene expression profile of clear cell Renal cell carcinoma tissues with the normal adjacent tissues, obtained from the same patient, during surgical nephrectomy. The tissues were provided to CuraGen from the NDRI under an IRB approved protocol. GeneCalling™ technology relies on Quantitative Expression Analysis to generate the gene expression profile of a given sample and then generates differential expression analysis of pair-wise comparison of these profiles to controls. The comparison in this example is a pool of all tumor tissues vs. a pool of all normal tissues. Polynucleotides exhibiting differential expression were confirmed by conducting a PCR reaction according to the GeneCalling™ protocol, with the addition of a competing unlabelled primer that prevents the amplification from being detected.


[0929] Angiopoetin Related Protein (ARP) is overexpressed in 3/5 clear cell renal cell carcinomas, 0/2 papillary renal cell carcinomas and 0/2 uncharacterized renal cell carcinomas (panel 2D). Furthermore ARP is expressed in fetal kidney and renal cell carcinoma-derived cell lines but not in adult kidney (panel 1.3D), an indication of an oncofetal expression pattern often associated with genes involved in kidney development and organogenesis and kidney tumorgenesis.


[0930] Data from Panel 4D, indicates that upon immune-stimulation of the airway epithelial cells and lung fibroblasts, ARP is expressed at increased levels. Specifically, we show that expression of ARP in small airway epithelial cells treated with TNF alpha and IL-1 beta is up-regulated ca. 5.4 fold relative to untreated cells. In addition, expression in normal human lung fibroblast cells treated with IL-4, IL-9, IL-9, IL-13 and Interferon gamma is upregulated 7.4, 2, 3.5 and 6.5 fold, respectively, compared to that in resting cells. Finally, expression of ARP in LAK cells treated with PMA/ionomycin is upregulated over 350 fold relative to the expression in resting cells. These data indicate that ARP plays a role in inflammation related to the above cells of the pulmonary system and is thereby implicated as a target for therapeutic intervention by protein and antibody therapeutics as well as small molecule pharmaceuticals. A wholly human antibody directed at ARP, for example, may diminish the symptoms of patients with allergy, asthma or emphysema. A reference (and references therein) for relating airway epithelial cells to asthma and inflammation is: J. Exp. Med. Volume 193, pp339-351 by Michael J. Walter et al. (2001). Another reference for lung fibroblasts and a discussion of asthma and allergy may be found in the review: (abstract included) 1: J Allergy Clin Immunol December 1999;104(6):1139-46 Genetic and environmental interaction in allergy and asthma. Colgate S T Respiratory Cell and Molecular Biology Research Division, Southampton General Hospital, Southampton, United Kingdom.


[0931] The upregulation of stimulated LAK cells as seen in Panel 4D-FIG. 4 (greater than 350 fold) was remarkable and surprising. The following references about PMA activation of LAK cells are relevant to the present invention:


[0932] 1.) Correale P, Procopio A, Celio L, Caraglia M, Genua G, Coppola V, Pepe S, Normanno N, Vecchio I, Palmieri G, et al.


[0933] Phorbol 12-myristate 13-acetate induces resistance of human melanoma cells to natural-killer- and lymphokine-activated-killer-mediated cytotoxicity. Cancer Immunol Immunother. 1992;34(4):272-8. PMID: 1371427


[0934] 2.) Maleci A, Alterman R L, Sundstrom D, Kornblith P L, Moskal J R.


[0935] Effect of phorbol esters on the susceptibility of a glioma cell line to lymphokine-activated killer cell activity. J Neurosurg. July 1990;73(l):91-7. PMID: 2352027


[0936] 3.) Nishimura T, Burakoff S J, Herrmann S H.


[0937] Inhibition of lymphokine-activated killer cell-mediated cytotoxicity by phorbol ester. J Immunol. Mar. 15, 1989;142(6):2155-61. PMID: 2646377


[0938] Work discussed in 3) indicates that PMA induces down-regulation of LAK cell-mediated cytotoxicity (by inactivation of protein kinase C activity in LAK cells). The exact role of ARP is not known as yet in LAK cells, however, based on the TaqMan data presented in this invention, ARP plays a role in inflammation and may be implicated in the ability of LAK cells to effectively destroy tumor cells as well. Therefore a therapeutic antibody directed against ARP (and thereby preventing ARP from being upregulated), may be therapeutic in treating cancer because of the resulting increased activity of LAK cells.



Example F3


Comparing Expression of ARP with Vascular Endothelial Growth Factor (VEGF) Expression

[0939] Paradis and coworkers assessed VEGF expression in a large series of renal tumors with a long follow-up, correlated with the usual histo-prognostic factors and survival. Their study revealed that in the group of clear cell RCCs, VEGF expression was positively correlated with both nuclear grade (P=0.05) and size of the tumor (P=0.05). Furthermore, a significant correlation was observed between VEGF expression and microvascular count (P=0.04). Finally, cumulative survival rate was significantly lower in the group of patients with clear cell RCCs expressing VEGF (log rank test, P=0.01). In the Cox model, VEGF expression was a significant independent predictor of outcome, as well as stage and nuclear grade. (Paradis V, Lagha N B, Zeimoura L, Blanchet P, Eschwege P, Ba N, Benoit G, Jardin A, Bedossa P. Expression of vascular endothelial growth factor in renal cell carcinomas. Virchows Arch April 2000;436(4):351-6). The expression profile of VEGF was compared with the expression profile of ARP. As shown in FIG. 3, ARP overexpression is higher and more specific than VEGF, indicating that it could be used as a better clinical marker and that more efficacious and specific therapeutics can be directed at regulating ARP expression. These results also indicate that a treatment that modulates the expression of VEGF and ARP at the same time may achieve synergistic effects. An example of a treatment that can mitigate the effects of the expression of both VEGF and ARP is a bispecific antibody directed both these targets. The bi-specific antibody contemplated to be within the scope of claims for this invention may be an antibody generated by quadroma technology, or by chemical cross-linking of mono-specific antibodies (one directed against VEGF, the other against ARP) or a bi-specific single chain antibody dimer. Formulations of single chain antibodies may include, but not limited to: VL(a)-Linker-VH(a)-Linker-VL(b)-Linker-VH(b). For examples of bispecific antibodies see: U.S. Pat. No. 6,030,792 by Otterness et al., the references therein included here, Multivalent single chain antibodies, U.S. Pat. Nos. 5,892,020, 5,877,291 by Mezes et al., U.S. Pat. No. 6,071,515: Dimer and multimer forms of single chain polypeptides by Mezes et al., and U.S. Pat. No. 6,121,424: Multivalent antigen-binding proteins by Whitlow et al.



Example F4


Human PPAR Gamma Angiopoietin Related Protein

[0940] Human PPAR gamma angiopoietin related protein is also known as angiopoietin related protein (GenBank ID AF153606), human hepatic angiopoietin-related protein (GeneBank ID AF169312) or angiopoietin-like protein PPl 158 (GeneBank ID AF202636). Recombinant HFARP acts as an apoptosis survival factor for vascular endothelial cells, but does not bind to Tie1 or Tie2 (endothelial-cell tyrosine kinase receptors). These results suggest that HFARP may exert a protective function on endothelial cells through an endocrine action.


[0941] (Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Kim I, Kim H G, Kim H, Kim H H, Park S K, Uhm C S, Lee Z H, Koh G Y Biochem J Mar. 15, 2000; 346 Pt 3:603-10.).


[0942] The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis. (Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Yoon J C, Chickering T W, Rosen E D, Dussault B, Qin Y, Soukas A, Friedman J M, Holmes W E, Spiegelman B M Mol Cell Biol Jul. 20, 2000 (14):5343-9). The mouse ortholog gene is known as fasting-induced adipose factor FIAF is strongly up-regulated by fasting in white adipose tissue and liver. Moreover, FIAF mRNA is decreased in white adipose tissue of PPARgamma +/− mice. FIAF protein can be detected in various tissues and in blood plasma, suggesting that FIAF has an endocrine function. Its plasma abundance is increased by fasting and decreased by chronic high fat feeding.
269AF153606.1 Homo sapiens angiopoietin-related protein mRNAGCGGATCCTCACACGACTGTGATCCGATTCTTTCCAGCGGCTTCTGCAACCAAGCGGGTCTTACCCCCGG(SEQ ID NO:388)TCCTCCGCGTCTCCAGTCCTCGCACCTGGAACCCCAACGTCCCCGAGAGTCCCCGAATCCCCGCTCCCAGGCTACCTAAGAGGATGAGCGGTGCTCCGACGGCCGGGGCAGCCCTGATGCTCTGCGCCGCCACCGCCGTGCTACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCACGGACTCCTGCAGCTCGGCCAGGGGTGCGCGAACACCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACACCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGACATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCCCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTCCAGCTGCGGGACTGGCATGOCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCTAGCGTCCTGGCTGGGCCTGGTCCCAGGCCCACGAAAGACGGTGACTCTTGGCTCTGCCCGAGGATGTGGCCAAGACCACGACTGGAGAAGCCCCCTTTCTGAGTGCAGGGGGGCTGCATGCGTTGCCTCCTGAGATCGAGGCTGCAGGATATGCTCAGACTCTAGAGGCGTGGACCAAGGGGCATGGAGCTTCACTCCTTGCTGGCCAGGGAGTTGGGGACTCAGAGGGACCACTTGGGGCCAGCCAGACTGGCCTCAATGGCGGACTCAGTCACATTGACTGACGGGGACCAGGGCTTGTGTGGGTCGAGACCGCCCTCATGGTGCTGGTGCTGTTGTGTGTAGGTCCCCTGGGGACACAAGCAGGCGCCAATGGTATCTGGGCGGAGCTCACAGAGTTCTTGGAATAAAGCAACCTCAGAACAAAAAAAAAAAAAAAAAAGCGGAGCTCACAGAGTTCTTGGAATAAAAGCAACCTCAGAACAAAAAAAF169312 hepatic angiopoietin-related protein (ANGPTL2)TCGCACCTGGAACCCCAACGTCCCCGAGAGTCCCCGAATCCCCGCTCCCAGGCTACCTAAGAGGATGACC(SEQ ID NO:389)GGTGCTCCGACGGCCGGGGCAGCCCTGATGCTCTGCGCCGCCACCGCCGTGCTACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCACCGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGCCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGCCAGAGTGGACTATTTGAAATCCACCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGCAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTCGAGAAGGTGCATAGCATCATGGGGGACCGCAACACCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGTTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCACTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACTCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCTAGCGTCCTGGCTGGGCCTGGTCCCAGCCCCACGAAAGACGGTGACTCTTGGCTCTGCCCGAGGATGTGGCCGTTCCCTGCCTGGGCAGCGGCTCCAAGGAGGGGCCATCTGGAAACTTGTGGACAGAGAAAF2 02636 angiopoietin-Iike protein PP1158GGAGAAGAAGCCGAGCTGAGCGGATCCTCACACGACTGTGATCCGATTCTTTCCAGCGGCTTCTGCAACC(SEQ ID NO:390)AACCGGGTCTTACCCCCGGTCCTCCGCGTCTCCAGTCCTCGCACCTGGAACCCCAACGTCCCCGAGAGTCCCCGAATCCCCGCTCCCAGGCTACCTAAGAGGATGAGCGGTGCTCCGACGGCCGGGGCAGCCCTGATGCTCTGCGCCGCCACCGCCGTGCTACTGAGCGCTCAGGGCGGACCCGTGCAGTCCAAGTCGCCGCGCTTTGCGTCCTCGGACGAGATGAATGTCCTCGCGCACGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCGCCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCCTGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCTGCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCTCACAATGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGCCAGAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTACAAGGCGGGGTTTGGGGATCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGCCAGCTGGGCGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCATGGCAGCAGAGGCAGCCTCCTAGCGTCCTGGCTGGGCCTGGTCCCAGGCCCACGAAAGACGGTGACTCTTGGCTCTGCCCGAGGATGTGGCCGTTCCCTGCCTGGGCAGGGGCTCCAAGGAGGGGCCATCTGGAAACTTGTGGACAGAGAAGAAGACCACCACTGGAGAAGCCCCCTTTCTGAGTGCAGGGGGGCTGCATGCGTTGCCTCCTGAGATCGAGGCTGCAGGATATGCTCAGACTCTAGAGGCGTGGACCAAGGGGCATCGAGCTTCACTCCTTGCTGGCCAGGGAGTTGGGGACTCAGAGGGACCACTTGGGGCCAGCCAGACTGGCCTCAATCGCGGACTCAGTCACATTGACTGACGGGGACCAGGGCTTGTGTGGGTCGAGAGCGCCCTCATGGTGCTGGTGCTGTTGTGTGTAGGTCCCCTGGGGACACAAGCAGGCGCCAATGGTATCTGGGCGGCGTCACAGAGTTCTTGGAATAAAAGCAACCTCAGAACACTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANP_057193 angiopoietin related proteinMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGQGCANTGAHPQSAERAGA(SEQ ID NO:391)RLSACGSACQGTEGSTDLPLAPESRVDPEVM1SLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASAAG22490 angiopoietin-like protein PP1158MSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALE(SEQ ID NO:392)RRLSACGSACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAAS



Example F5


GeneCalling Results from Job 36320—all Kidney Cancer vs all Kidney NAT

[0943]

270




















ARP—Human angiopoletin-related








protein. (growth factor)

1
1 of 2
3 of 9
















gbh_af153606

Band
Fold

67.1
Set
Visual

Trap Info

















Band ID
Offset
Confirm
Diff.
Sig
Set A
B
Inspection



Score
J1 J2 R1 R2



















d0p0-69.5
493
unconf.
2.3
91
108.4 (33.6)
47.3 (6.1)









q0c0-131.2 (131.2)
896
Pass- Complete
67.3
96
853.2 (444)
12.7 (2.6)








1 comment


p0c0-131.1
896
unconf.
5.2
1
398.9 (143.6)
76.2 (9.7)
















[0944] Results of the GeneCalling job 36320 comparing renal cancers to normal adjacent kidney tissues. Polynucleotides—for e.g. Band ID g0c0-131.2 was identified as being differentially expressed and was confirmed by conducting a PCR reaction according to the GeneCalling™ protocol, with the addition of a competing unlabelled primer that prevents the amplification from being detected and is represented as “Pass complete” in the chart above.


[0945] Example F6


[0946] TaqMan Panels



Example F8


Comparing VEGF and ARP

[0947] QEA electrophoresis profile for VEGF (A) and ARP (B) and RTQ-PCR expression profile for VEGF (C) and ARP (D). The differential expression profile of the CG57094 is better than VEGF as demonstrated by GeneCalling and RTQ-PCR.



Example F9


Gene Expression in Tumor Cells Exposed to Serum Starvation, Acidosis and Anoxia and in Brain Tumor Xenograft, RTQ-PCR on HASS Panel v 1.0

[0948] The microenvironment within tumors is significantly different from that in normal tissues. Many regions within tumors are transiently or chronically hypoxic due to unbalanced blood supply and significant perfusion heterogeneities. This exacerbates tumor cells' natural tendency to overproduce acids, resulting in very acidic ph values. The hypoxia, trophic limitation and acidity of tumors have important consequences for antitumor therapy and can contribute to the progression of tumors to a more aggressive metastatic phenotype. By subject a set of tumor cell lines to serum starvation, acidosis and anoxia for different time periods, we are modeling the tumor microenviroment.


[0949] The HASS panel v 1.0 plates are comprised of 93 cDNA samples and two controls. Specifically, 81 of these samples are derived from cultured human cancer cell lines that had been subjected to serum starvation, acidosis and anoxia for different time periods as well as controls for these treatments, 3 samples of human primary cells, 9 samples of malignant brain cancer (4 medulloblastomas and 5 glioblastomas) and 2 controls. The human cancer cell lines are obtained from ATCC (American Type Culture Collection) and fall into the following tissue groups: breast cancer, prostate cancer, bladder carcinomas, pancreatic cancers and CNS cancer cell lines. These cancer cells are all cultured under standard recommended conditions. The treatments used (serum starvation, acidosis and anoxia) have been previously published in the scientific literature. The primary human cells were obtained from Clonetics (Walkersville, Md.) and were grown in the media and conditions recommended by Clonetics. The malignant brain cancer samples are obtained as part of a collaboration (Henry Ford Cancer Center) and are evaluated by a pathologist prior to CuraGen receiving the samples. RNA was prepared from these samples using the standard procedures. The genomic and chemistry control wells have been described previously.


[0950] Results:


[0951] CG57094 is expressed at the highest level in U87 cells exposed to hypoxia and acidosis (CT=22.7). The expression of this gene is induced in MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), CaPaN (pancreatic cancer cell line), U87 (CNS cancer), and LnCAP (prostate cancer) cells exposed to low oxygen concentrations. This indicates that expression of this gene may be induced in areas of low oxygen tension in tumors. The gene is also expressed at a higher level in gliomas compared to medulloblastoms and may be used as a marker to distinguish the different kinds of brain cancer. Hence, the therapeutic inhibition of this gene activity, through the use of small molecule drugs or antibodies, might be of utility in the treatment of the above listed cancer types.
271TABLE F9Rel. Expr., %Tissue Nametm11202t_ag2012_a1MCF-7 C10.2MCF-7 C20.2MCF-7 C30.3MCF-7 C40.2MCF-7 C50.3MCF-7 C60.6MCF-7 C76.6MCF-7 C910MCF-7 C100.4MCF-7 C110.1MCF-7 C120.5MCF-7 C134.5MCF-7 C154.2MCF-7 C160.6MCF-7 C171T24 D12.9T24 D20.5T24 D31.7T24 D41.3T24 D52.7T24 D60.1T24 D720.6T24 D94.4T24 D100.9T24 D110.7T24 D120.3T24 D1314.7T24 D153.9T24 D161.2T24 D172.9CAPaN B13.8CAPaN B21.9CAPaN B30.6CAPaN B41.3CAPaN B51.7CAPaN B65.6CAPaN B723CAPaN B820.3CAPaN B959.9CAPaN B101.9CAPaN B111.9CAPaN B124.6CAPaN B1340.9CAPaN B148.1CAPaN B155CAPaN B168.5CAPaN B1718.1U87-MG F1 (B)1.8U87-MG F21.2U87-MG F30U87-MG F42.4U87-MG F53.9U87-MG F60U87-MG F759.9U87-MG F816.8U87-MG F939U87-MG F109.3U87-MG F110.1U87-MG F124.9U87-MG F1371.1U87-MG F1430U87-MG F15100U87-MG F167U87-MG F1714.6LnCAP A10.1LnCAP A20.1LnCAP A30.1LnCAP A40.1LnCAP A50LnCAP A60LnCAP A70.9LnCAP A80.4LnCAP A90.2LnCAP A100LnCAP A110.1LnCAP A120LnCAP A130.1LnCAP A140.1LnCAP A150.1LnCAP A160.1LnCAP A170.1Primary Astrocytes5.8Primary Renal Proximal14.5Tubule Epithelial cell A2Primary melanocytes A50.3126443 - 341 medullo0.2126444 - 487 medullo2.1126445 - 425 medullo0126446 - 690 medullo1.9126447 - 54 adult glioma2.5126448 - 245 adult glioma11.7126449 - 317 adult glioma12.1126450 - 212 glioma0.8126451 - 456 glioma2.3



Example F10


Expression and Therapeutic Relevance in Inflammatory Related Human Diseased and Normal Tissues

[0952] CG57094 acts as an apoptosis survival factor for vascular endothelial cells [Kim I, Kim H G, Kim H, Kim H H, Park S K, Uhm C S, Lee Z H, Koh G Y. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J. Mar. 15, 2000;346 Pt 3:603-10]. Interestingly that epithelium cells and fibroblasts activated with proinflammatory cytokines as well as LAK cells expressed high levels of CG57094 mRNA. The above results suggest that CG57094 is an important regulator of inflammation. We used RTQ PCR to test expression of CG57094 mRNA in inflammatory tissues represented on AI comprehensive panel.


[0953] Description of AI_Comprehensive Panel_v1.0


[0954] The plates for AI_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, Md.). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.


[0955] Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.


[0956] Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.


[0957] Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.


[0958] Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-1 anti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.


[0959] In the labels employed to identify tissues in the AI_comprehensive panel_v1.0 panel, the following abbreviations are used:


[0960] AI=Autoimmunity


[0961] Syn=Synovial


[0962] Normal=No apparent disease


[0963] Rep22/Rep20=individual patients


[0964] RA=Rheumatoid arthritis


[0965] Backus=From Backus Hospital


[0966] OA=Osteoarthritis


[0967] (SS) (BA) (MF)=Individual patients


[0968] Adj=Adjacent tissue


[0969] Match control=adjacent tissues


[0970] —M=Male


[0971] —F=Female


[0972] COPD=Chronic obstructive pulmonary disease


[0973] Results.


[0974] CG57094, Angiopoeitin Related Protein, mRNA is clearly over expressed in tissues form osteoarthritis patients (CT=26-29). In addition ARP is expressed in moderate levels in rheumatoid arthritis, psoriasis, ulcer colitis, asthma, emphysema and Crohn's disease tissues. This indicate that the gene is involved in regulation of inflammation by possible promoting survival potentially harmfully cellular components such as T killer cells. Therefore therapeutic inhibition of this gene product, through the use of small molecule drugs or antibodies, might be of utility in the treatment of the above listed inflammatory diseases.



Example F11


Gene Expression Analysis using CuraChip in Human Tissues from Tumors and from Equivalent Normal Tissues

[0975] CuraGen has developed a gene microarray (CuraChip 1.2) for target identification. It provides a high-throughput means of global mRNA expression analyses of CuraGen's collection of cDNA sequences representing the Pharmaceutically Tractable Genome (PTG). This sequence set includes genes which can be developed into protein therapeutics, or used to develop antibody or small molecule therapeutics. CuraChip 1.2 contains ˜11,000 oligos representing approximately 8,500 gene loci, including (but not restricted to) kinases, ion channels, G-protein coupled receptors (GPCRs), nuclear hormone receptors, proteases, transporters, metabolic enzymes, hormones, growth factors, chemokines, cytokines, complement and coagulation factors, and cell surface receptors.


[0976] The CuraChip cDNAs were represented as 30-mer oligodeoxyribonucleotides (oligos) on a glass microchip. Hybridization methods using the longer CuraChip oligos are more specific compared to methods using 25-mer oligos. CuraChip oligos were synthesized with a linker, purified to remove truncated oligos (which can influence hybridization strength and specificity), and spotted on a glass slide. Oligo-dT primers were used to generate cRNA probes for hybridization from samples of interest. A biotin-avidin conjugation system was used to detect hybridized probes with a fluorophore-labeled secondary antibody. Gene expression was analyzed using clustering and correlation bioinformatics tools such as Spotfire® (Spotfire, Inc., 212 Elm Street, Somerville, Mass. 02144) and statistical tools such as multivariate analysis (MVA).


[0977] Normalization Method used in CuraChip Software


[0978] The median fluorescence intensity of each spot and a background for each spot is read on a scale from 0 to 65,000. CuraGen's CuraChip software, developed in-house, has the capability to present the user with either the raw data (median intensities) or normalized data. If normalized data is chosen, the CuraChip software uses the following method to do mean normalization. The normalization is based on each slide/experiment. Suppose we have:


[0979] fg_median is the signal/foreground median for each slide/experiment;


[0980] bg_median is the background median for each slide/experiment;


[0981] original_value is the difference between fg_median and bg_median;


[0982] flag is an indicator of a spot's success or failure, where 0 means success and 1 means failure;


[0983] raw_fg_mean is the raw foreground mean for each slide/experiment;


[0984] raw_bg_mean is the raw background mean for each slide/experiment;


[0985] trim_percentage is the trim percentage for each slide/experiment; this could be defined by the user; currently we are using 2% as the trim percentage for each slide/experiment;


[0986] nSpots is the number of spots on each slide;


[0987] nslides is the number of slides in each experiment;


[0988] fg_mean is the trimmed foreground mean for each slide/experiment;


[0989] bg_mean is the trimmed background mean for each slide/experiment;


[0990] max_fg_mean is a constant among all slides/experiments, currently 2200.0;


[0991] normalized_value is the final normalized value;


[0992] coeff is the normalization co-efficient;


[0993] MAX_VALUE is a constant representing the highest possible fluorescence reading, currently 65,000.


[0994] Step 1. Calculate Trimmed Foreground and Background Means


[0995] For each slide/experiment, we first calculate the trimmed foreground mean and the trimmed background mean of all spots, suppose nSpots, on each slide. For each spot, if the data is acceptable (flag=0), we calculate the raw foreground mean and background mean by subtracting the background median from the foreground median for each spot. This is designated as a spot's “original value”. (Note: If flag=1, all values are set to 0.)
272original_value = fg_median - bg_median;if (flag = = 0)// experiment is successful{raw_fg_mean = original_value;raw_bg_mean = bg_median;}else// experiment is failed{raw_fg_mean = 0.0;raw_bg_mean= 0.0;}


[0996] After that, we remove (trim) the top and bottom 2% of data points from the data set. After the above calculation, we have nSpot number of foreground means and background means for each slide/experiment, and both lists are sorted. Suppose we have the following sorted lists:
273raw_fg_mean[1], raw_fg_mean[2], ...,N = 1, nSpots;raw_fg_mean[N];raw_bg_mean[1], raw_bg_mean [2], ...,N = 1, nSpots;raw_bg_mean[N];


[0997] then we calculate the trimmed data points for each slide/experiment. Suppose a is the trimmed start data point and b is the trimmed end data point, we have:
274a = ceil(nSpots * trim_percentage);b = floor(nSpots * (1 - trim_percentage);


[0998] The “background mean” is calculated from the background medians for the trimmed data set. For the background mean, we simply calculate the average background mean in interval [a, b] then assign to bg_mean:
275bg_mean = (raw_bg_mean[a] + raw_bgmean[a+1] +...+ raw_bg_mean[b])/(b-a+1);


[0999] The “foreground mean” is calculated from the “original values” (i.e. background-subtracted spot signal medians); only “original values” greater than 500 are used for this calculation (excluding the trimmed top and bottom 2% of the data). Suppose the sum of those foreground means is sum_raw_fg_mean and the amount of those foreground means is k.
276fg_mean = sum_raw_fg_mean / k;


[1000] For clarity, a snippet code in Java looks like the following,
277intk = 0;doublesum_raw_fg_mean = 0.0;for (int j = a; j < b; j++) {if ( raw_fg_mean[j] > 500 ) {sum_raw_fg_mean = sum_raw_fg_mean +raw_fg_mean[j];k++;}}fg_mean = sum_raw_fg_mean / k;


[1001] After the calculation of trimmed foreground means and background means for all slides is complete, we start our normalization procedure.


[1002] Step 2. Normalize Data


[1003] For each slide a normalization coefficient is calculated which compares the foreground mean of the slide to a fixed maximum foreground mean (2200). This coefficient is:
278coeff = max_fg_mean / fg_mean;


[1004] The normalized value of each spot is then calculated by multiplying the spot's “original value” by the normalization coefficient. Note that if this value is greater than the maximum reading of 65,000, then the value of 65,000 is used as the normalized value. Also note that if a spot's “original value” is less than the background value, the background value is used.
279Recall that original_value = fg_median - bg_medianif ( original_value > bg_mean ) {normalized_value = min(coeff * original_value, MAX_VALUE);} else {normalized_value = coeff*bg_mean;}


[1005] The normalized_value for each spot is the final (normalized) value used in the analysis



Example F12


Threshhold for CuraChip Data Analysis

[1006] A number of control spots are present on CuraChip 1.2 for efficiency calculations and to provide alternative normalization methods. For example, CuraChip 1.2 contains a number of empty or negative control spots, as well as positive control spots containing a dilution series of oligos that detect the highly-expressed genes Ubiquitin and glyceraldehyde-3-phosphate dehydrogenase (GAPD). An analysis of spot signal level was performed using raw data from 67 hybridizations using all oligos. The maximum signal intensity for each oligo across all 67 hybridizations was determined, and the fold-over-background for this maximum signal was calculated (i.e. if the background reading is 20 and the raw spot intensity is 100, then the fold-over-background for that spot is 5×). The negative control or empty spots do occasionally “fire” or give a signal over the background level; however, they do not fire very strongly, with 77.1% of empty spots firing <3× over background and 91.7% <5× (see burgundy bars in figure below). The positive control spots (Ubiquitin and GAPD, the light blue and dark blue bars, respectively) always fired at >100× background. The experimental oligos (Curaoligos, in yellow below) fired over the entire range of intensities, with some at low fold-over-background intensities. Since the negative control spots do fire occasionally at low levels, we have set a suggested threshhold for data analysis at >5× background.


[1007] Results of PTG Chip 1.2:


[1008] One hundred seventy-eight samples of RNA from tissues obtained from surgically dissected tumors, non-diseased tissues from the corresponding organs and tumor xenografts grown in nude nu/nu mices were used to generate probes and run on PTG Chip 1.2. An oligo (optg20010188) that corresponds to CG57094 on the PTG Chip 1.2 was scrutinized for its expression profile. The statistical analysis identify significant over-expression in a subset of lung tumors compared with corresponding normal lung tissue and strong expression in melanomas and breast cancers, which do not have matched normal tissue


[1009] Thus, based upon its profile, the expression of this gene could be of use as a marker for subsets of lung, melanomas and breast cancers, in addition to the subset of Kidney cancers as previously disclosed. In addition, therapeutic inhibition of the activity of the product of this gene, through the use of antibodies or small molecule drugs, may be useful in the therapy of kidney, lung, melanomas and breast cancers that express CG57094 and are dependent on them
280ptg2 0010188 Oligo Sequence:>ATCTGGAAACTTGTGGACAGAGAAGAAGAC (SEQ ID NO:393)


[1010]


281









TABLE F12c








Tissue
Tissue
absolute
Foreground
background


Definition
ID
value
Mean
mean



















G1C4D21B11-
1
133.57
2536.51
22.17


01_Lung


cancer(35C)


G1C4D21B11-
2
24.15
2733.37
20.31


02_Lung


NAT(36A)


G1C4D21B11-
3
75
2933.33
21.31


03_Lung


cancer(35E)


G1C4D21B11-
4
30.62
3808.15
19.58


04_Lung


cancer(365)


G1C4D21B11-
5
67.59
3824.5
21.07


05_Lung


cancer(368)


G1C4D21B11-
6
23.36
2825.08
18.76


06_Lung


cancer(369)


G1C4D21B11-
7
96.15
4152.87
26.78


07_Lung


cancer(36E)


G1C4D21B11-
8
44.14
3538.73
23.55


08_Lung


NAT(36F)


G1C4D21B11-
9
38.76
4143.89
21.18


09_Lung


cancer(370)


G1C4D21B11-
10
18.71
2446.38
20.81


10_Lung


cancer(376)


G1C4D21B11-
11
89.32
3989.95
27.35


11_Lung


cancer(378)


G1C4D21B11-
12
50.79
4136.72
36.64


12_Lung


cancer(37A)


G1C4D21B11-
13
15.33
4083.27
28.46


13_Normal


Lung 4


G1C4D21B11-
14
30.65
4235.38
25.22


14_Normal


Lung 5


G1C4D21B11-
15
70.81
3728.44
28.62


15_CuraChip


reference 1


G1C4D21B11-
16
157.33
2915.57
20.5


16_5.Melanoma


G1C4D21B11-
17
217.38
2646.56
20.29


17_6.Melanoma


G1C4D21B11-
18
79.79
2509.13
23.23


18_Melanoma


(19585)


G1C4D21B11-
19
51.02
2759.91
24.22


19_Normal


Lung 1


G1C4D21B11-
20
128.42
3803.04
27.08


20_Lung


cancer(372)


G1C4D21B11-
21
16.91
3771.95
25.68


21_Lung


NAT(35D)


G1C4D21B11-
22
55.63
2214.53
20.77


22_Lung


NAT(361)


G1C4D21B11-
23
22.08
2134.94
21.43


23


1.Melanoma


G1C4D21B11-
24
15.95
3656.2
20.99


24_Normal


Lung 2


G1C4D21B11-
25
234.35
3295.08
24.19


25_Lung


cancer(374)


G1C4D21B11-
26
30.3
3776.14
21.32


26_Lung


cancer(36B)


G1C4D21B11-
27
37.68
1543.94
26.44


27_Lung


cancer(362)


G1C4D21B11-
28
145.95
1929.4
30.01


28_Lung


cancer(358)


G1C4D21B11-
29
84.73
2375.7
20.83


29


2.Melanoma


G1C4D21B11-
30
21.6
3157.31
22.69


30_Normal


Lung 3


G1C4D21B11-
31
153.99
4614.72
32.86


31_Lung


NAT(375)


G1C4D21B11-
32
242.45
2785.76
24.74


32_Lung


cancer(36D)


G1C4D21B11-
33
17.31
4348.91
34.21


33_Lung


NAT(363)


G1C4D21B11-
34
21.52
3986.34
29.19


34_Lung


cancer(35A)


G1C4D21B11-
35
200.47
2189.36
20.44


35


4.Melanoma


G1C4E09B12-
36
18.97
2957.66
9.6


54_Prostate


cancer(B8B)


G1C4E09B12-
37
17.73
4126.76
33.25


55_Prostate


cancer(B88)


G1C4E09B12-
38
24.69
3378.81
37.92


56_Prostate


NAT(B93)


G1C4E09B12-
39
26.54
3527
42.55


57_Prostate


cancer(B8C)


G1C4E09B12-
40
24.3
4105.44
45.35


58_Prostate


cancer(AD5)


G1C4E09B12-
41
21.87
4196.5
41.71


59_Prostate


NAT(AD6)


G1C4E09B12-
42
33.21
2830.59
42.73


60_Prostate


cancer(AD7)


G1C4E09B12-
43
19.21
3404.14
29.72


61_Prostate


NAT(AD8)


G1C4E09B12-
44
20.54
3700.09
34.54


62_Prostate


cancer(ADA)


G1C4E09B12-
45
22.51
3022.26
30.92


63_Prostate


NAT(AD9)


G1C4E09B12-
46
21.74
3084.26
30.48


64_Prostate


cancer(9E7)


G1C4E09B12-
47
13.57
3983.11
24.56


66_Prostate


cancer(A0A)


G1C4E09B12-
48
18.23
2889.43
23.94


67_Prostate


cancer(9E2)


G1C4E09B12-
49
13.28
4473.72
23.53


68_Pancreatic


cancer(9E4)


G1C4E09B12-
50
12.94
3443.44
20.25


69_Pancreatic


cancer(9D8)


G1C4E09B12-
51
20.74
3819.27
17.3


70_Pancreatic


cancer(9D4)


G1C4E09B12-
52
23.76
3287.48
24.17


71_Pancreatic


cancer(9BE)


G1C4E09B12-
53
41.05
2358
28.92


73_Pancreatic


NAT(ADB)


G1C4E09B12-
54
28.39
2863.88
36.96


74_Pancreatic


NAT(ADC)


G1C4E09B12-
55
21.32
3118.81
30.22


76_Pancreatic


NAT(ADD)


G1C4E09B12-
56
18.02
3211.96
26.31


77_Pancreatic


NAT(AED)


G1C4E19B13-
57
53.27
1984.83
48.06


1_Colon


cancer(8A3)


G1C4E19B13-
58
51.6
1682.5
39.46


10_Colon


NAT(8B6)


G1C4E19B13-
59
45.13
2378.93
48.8


12_Colon


NAT(9F1)


G1C4E19B13-
60
52.51
1931.28
46.1


13_Colon


cancer(9F2)


G1C4E19B13-
61
49.92
2029.41
46.05


14_Colon


NAT(A1D)


G1C4E19B13-
62
42.55
2278.96
44.08


15_Colon


cancer(9DB)


G1C4E19B13-
63
59.68
1674.01
45.41


16_Colon


NAT(A15)


G1C4E19B13-
64
56.64
1360.97
35.04


17_Colon


cancer(A14)


G1C4E19B13-
65
58.01
1707.6
45.03


18_Colon


NAT(ACB)


G1C4E19B13-
66
53.49
1894.33
46.06


19_Colon


cancer(AC0)


G1C4E19B13-
67
53.4
1785.56
43.34


2_Colon


cancer(8A4)


G1C4E19B13-
68
53.97
1797.75
44.1


20_Colon


NAT(ACD)


G1C4E19B13-
69
49.29
2198.75
49.26


21_Colon


cancer(AC4)


G1C4E19B13-
70
52.18
1847.84
43.83


22_Colon


NAT(AC2)


G1C4E19B13-
71
48.1
1806.35
39.49


23_Colon


cancer(AC1)


G1C4E19B13-
72
42.7
2013.34
39.08


24_Colon


NAT(ACC)


G1C4E19B13-
73
68.18
1539.46
47.71


25_Colon


cancer(AC3)


G1C4E19B13-
74
55.27
1857.03
46.65


26_Breast


cancer(9B7)


G1C4E19B13-
75
71.21
1462.79
47.35


27_Breast


NAT(9CF)


G1C4E19B13-
76
49.21
2133.12
47.71


28_Breast


cancer(9B6)


G1C4E19B13-
77
47.76
2302.99
47.48


29_Breast


cancer(9C7)


G1C4E19B13-
78
47.69
2093.72
45.39


3_Colon


cancer(8A6)


G1C4E19B13-
79
66.26
1508.35
45.43


30_Breast


NAT(A11)


G1C4E19B13-
80
45.59
2246.51
46.55


31_Breast


cancer(A1A)


G1C4E19B13-
81
54.43
1881.09
46.54


32_Breast


cancer(9F3)


G1C4E19B13-
82
49.23
2174.46
48.66


33_Breast


cancer(9B8)


G1C4E19B13-
83
64.44
1670.58
48.93


34_Breast


NAT(9C4)


G1C4E19B13-
84
44.47
1168.07
23.61


35_Breast


cancer(9EF)


G1C4E19B13-
85
41.67
1506.95
28.54


36_Breast


cancer(9F0)


G1C4E19B13-
86
70.07
1016.05
32.36


37_Breast


cancer(9B4)


G1C4E19B13-
87
47.02
2526.83
47.27


38_Breast


cancer(9EC)


G1C4E19B13-
88
66.52
1594.35
48.21


4_Colon


cancer(8A7)


G1C4E19B13-
89
42.75
2091.33
40.64


44_Colon


cancer(8B7)


G1C4E19B13-
90
35.31
2533.34
40.66


5_Colon


cancer(8A9)


G1C4E19B13-
91
41.11
1638.43
30.62


6_Colon


cancer(8AB)


G1C4E19B13-
92
46.1
1975.26
41.39


7_Colon


cancer(8AC)


G1C4E19B13-
93
58.49
1851.09
49.21


8_Colon


NAT(8AD)


G1C4E19B13-
94
53.98
1920.15
47.11


9_Colon


cancer(8B5)


G1C4E21B14-
95
3.19
1393.31
2.02


1_Cervical


cancer(B08)


G1C4E21B14-
96
13.92
1400.44
8.86


10_Brain


cancer(9F8)


G1C4E21B14-
97
15.88
655.35
4.73


11_Brain


cancer(9C0)


G1C4E21B14-
98
0.66
1403.07
0.42


12_Brain


cancer(9F7)


G1C4E21B14-
99
4.74
1509.09
3.25


13_Brain


cancer(A00)


G1C4E21B14-
100
0.82
1159.94
0.43


14_Brain


NAT(A01)


G1C4E21B14-
101
1.55
1019.67
0.72


15_Brain


cancer(9DA)


G1C4E21B14-
102
4.5
1352.85
2.77


16_Brain


cancer(9FE)


G1C4E21B14-
103
6.17
1237.61
3.47


17_Brain


cancer(9C6)


G1C4E21B14-
104
5.2
917.48
2.17


18_Brain


cancer(9F6)


G1C4E21B14-
105
4.36
826.9
1.64


2_Cervical


NAT(AEB)


G1C4E21B14-
106
1.86
521.75
0.44


21_Bladder


NAT(23954)


G1C4E21B14-
107
3.06
1007.77
1.4


22_Urinary


cancer(AF6)


G1C4E21B14-
108
2.29
1256.43
1.31


23_Urinary


cancer(B0C)


G1C4E21B14-
109
2.22
1219.17
1.23


24_Urinary


cancer(AE4)


G1C4E21B14-
110
2.21
1222.48
1.23


25_Urinary


NAT(B20)


G1C4E21B14-
111
2.03
1114.91
1.03


26_Urinary


cancer(AE6)


G1C4E21B14-
112
0.23
655.35
0.07


27_Urinary


NAT(B04)


G1C4E21B14-
113
6.64
543.73
1.64


28_Urinary


cancer(B07)


G1C4E21B14-
114
0.93
1247.4
0.53


29_Urinary


NAT(AF8)


G1C4E21B14-
115
6.72
1411.18
4.31


3_Cervical


cancer(AFF)


G1C4E21B14-
116
1.13
1221.47
0.63


30_Ovarian


cancer(9D7)


G1C4E21B14-
117
2.51
1138.73
1.3


31_Urinary


cancer(AF7)


G1C4E21B14-
118
0
1298.98
0


32_Ovarian


cancer(9F5)


G1C4E21B14-
119
4.19
1134.77
2.16


33_Ovarian


cancer(A05)


G1C4E21B14-
120
0.65
505
0.15


34_0varian


cancer(9BC)


G1C4E21B14-
121
2
1025.23
0.93


35_Ovarian


cancer(9C2)


G1C4E21B14-
122
2.8
1203.34
1.53


36_Ovarian


cancer(9D9)


G1C4E21B14-
123
1.73
685.35
0.54


37_Ovarian


NAT(AC7)


G1C4E21B14-
124
2.61
716.79
0.85


38_Ovarian


NAT(AC9)


G1C4E21B14-
125
8.33
628.62
2.38


39_Ovarian


NAT(ACA)


G1C4E21B14-
126
11.93
1293.21
7.01


4_Cervical


NAT(B1E)


G1C4E21B14-
127
4.02
542.12
0.99


40_Ovarian


NAT(AC5)


G1C4E21B14-
128
14.43
1512.53
9.92


5_Cervical


cancer(B00)


G1C4E21B14-
129
16.96
1136.08
8.76


6_Cervical


NAT(AFA)


G1C4E21B14-
130
23.4
1782.82
18.96


7_Cervical


cancer(B1F)


G1C4E21B14-
131
7.92
655.35
2.36


8_Cervical


NAT(B1C)


G1C4E21B14-
132
7.41
1508.5
5.08


9_Brain


cancer(9F9)


G1C4E23B15-
133
103.28
2470.88
0


32_Breast


cancer(D34)


G1C4E23B15-
134
0
2602.08
0


33_Breast


cancer(D35)


G1C4E23B15-
135
152.74
2909.53
0


34_Breast


cancer(D36)


G1C4E23B15-
136
52.81
2811.77
0.05


35_Breast


cancer(D37)


G1C4E23B15-
137
8.84
2986.78
0.38


36_Breast


cancer(D38)


G1C4E23B15-
138
0.03
3026.22
0.04


37_Breast


cancer(D39)


G1C4E23B15-
139
27.92
3072.62
0.08


38_Breast


cancer(D3A)


G1C4E23B15-
140
0.86
2571.28
0.02


39_Breast


cancer(D3B)


G1C4E23B15-
141
0.41
3213.98
0.6


40_Breast


cancer(D3C)


G1C4E23B15-
142
40.41
3484.57
2.5


41_Breast


cancer(D3D)


G1C4E23B15-
143
28.26
2958.51
0.17


42_Breast


cancer(D3E)


G1C4E23B15-
144
1.41
2937.01
1.88


43_Breast


cancer(D3F)


G1C4E23B15-
145
0.96
2751.61
1.2


44_Breast


cancer(D40)


G1C4E23B15-
146
0.81
2171.59
0.8


45_Breast


cancer(D42)


G1C4E23B15-
147
43.82
2962.09
4.5


46_Breast


cancer(D43)


G1C4E23B15-
148
56.05
2551.3
3.02


47_Breast


cancer(D44)


G1C4E23B15-
149
28.87
2667.3
3.59


48_Breast


cancer(D45)


G1C4E30B16-
150
21.18
2804.32
0.56


1_2.SK-MES


G1C4E30B16-
151
0
3402.37
0


10_40.HLaC-79


G1C4E30B16-
152
28.33
2562.59
0


11_43.H226


G1C4E30B16-
153
300.16
4221.68
0.09


12_45.HCT-116


G1C4E30B16-
154
38.67
3243.07
0


13_53.IGROV-1


G1C4E30B16-
155
54.09
3253.75
0


14_59.MX-1


G1C4E30B16-
156
0
3249.59
0


15_63.C33A


G1C4E30B16-
157
0.01
2333.08
0.01


16_65.Daudi


G1C4E30B16-
158
0.76
2727.71
0.94


17_71.MV522


G1C4E30B16-
159
0
2906.49
0


18_76.RWP-2


G1C4E30B16-
160
7.91
2502.53
0.01


19_77.BON


G1C4E30B16-
161
123.89
3604.78
0


2_6.MiaPaCa


G1C4E30B16-
162
2.04
2357.18
2.19


20_82.H82


G1C4E30B16-
163
0.1
2759.55
0.12


21_86.H69


G1C4E30B16-
164
0
2687.93
0


22_95.Caki-2


G1C4E30B16-
165
47.91
3352.46
0.41


23_100.LNCaP


G1C4E30B16-
166
95.02
2593.12
0


24_101.A549


G1C4E30B16-
167
37.12
3970.51
0.07


25_1. DU145


G1C4E30B16-
168
41.54
3230.65
0.14


26_6. OVCAR-3


G1C4E30B16-
169
0.05
3381.64
0.07


27_11. HT-29


G1C4E30B16-
170
0.15
3610.05
0.24


28_13. DLD-2


G1C4E30B16-
171
9.59
3326.73
1.78


29_18. MCF-7


G1C4E30B16-
172
6.25
2464.22
0


3_9.H460


G1C4E30B16-
173
0
2732.11
0


4_15.SW620


G1C4E30B16-
174
628.79
3519.75
0


5_20.SK-OV-3


G1C4E30B16-
175
24.13
3464.04
0.04


6_23.MDA-231


G1C4E30B16-
176
360.24
3801.64
0


7_27.Caki-1


G1C4E30B16-
177
0
2214.23
0


8_31.PC-3


G1C4E30B16-
178
24.46
3237.95
0


9_35.LoVo











Example F13


Subcloning and Protein Expression

[1011] CG57094 encodes a protein consisting of a signal peptide followed by a coil-coil-like domain (required for oligomerization) followed by a fibrinogen-like domain (required for binding to the receptor). Only the mature region of this protein was expressed (removing the signal peptide and substituting it with a IgKappa signal peptide) because the full length sequence with its own signal peptide did not express and secrete sufficient amount. Two recombinant sequences were made, CG57094-02 and CG57094-04 as described in methods, for expression in mammalian system



Example F14


Expression of CG57094-04 in Human Embryonic Kidney 293 Cells

[1012] A 1143 bp long BglII-XhoI fragment containing the CG57094-04 sequence was subcloned into BamHI-XhoI digested pCEP4/Sec to generate plasmid 789. The resulting plasmid 789 was transfected into 293 cells using the LipofectaminePlus reagent following the manufacturer's instructions (Invitrogen/Gibco). The cell pellet and supernatant were harvested 72h post transfection and examined for CG57094-04 expression by Western blot (reducing conditions) using an anti-V5 antibody. The gel below shows that CG57094-04 is expressed, and a 35 kDa protein is secreted by 293 cells.


[1013] The transient 293 transfection was scaled up yielding 6 L conditioned media, from each scale up, providing material for batches 3 and 4.



Example F15


Expression of CG57094-02 in Stable CHO—K1 Cells

[1014] A 1143 bp long BglII-XhoI fragment containing the CG57094-02 sequence was subcloned into BamHI-XhoI digested pEE14.4 Sec to generate plasmid 1614. The resulting plasmid 1614 was transfected into CHO—K1 cells using the LipofectaminePlus reagent following the manufacturer's instructions (Invitrogen/Gibco). The cell pellet and supernatant were harvested 72 h post transfection and examined for CG57094-02 expression by Western blot (reducing conditions) using an anti-V5 antibody. The gel below shows that CG57094-02 is expressed, and a 33 kDa protein is secreted by the CHO—K1 cells at transient level.


[1015] The culture media was DMEM, 10% FBS, 1× nonessential amino acids.


[1016] MSX resistant clones were selected using the GS system (Lonza Biologicals) The culture media in the selection process was: Glutamin-free DMEM (JRH), 10% dialyzed FBS, 1× GS supplement (JRH), 25 uM MSX (JRH).


[1017] A high expressor clone, was selected for scale up in 10 LWave bioreactors. Two reactors were inoculated. 30 L conditioned media was collected from each reactors yielding batches 2 and 3.


[1018] The culture media was harvested 120 h after inoculating the Wave bioreactor and examined for CG57094-04 expression by Western blot (reducing conditions) using an anti-V5 antibody. The gel below represents the Western analysis of the sample.


[1019] The protein secreted as the predicted, 45 kDa molecule.


[1020] The culture media in the Wave bioreactor is: EX-Cell302 media, 10% dialyzed FBS, 1× GS supplement, 1× HT supplement, 25 uM MSX.


[1021] The difference between the observed molecular weight of the secreted molecule in the transient and in the stable cell line scale up conditions is most likely a consequence of the different culture media used in the two production schemes.



Example F16


Protein Expression and Purification

[1022] CG57094 variant 02 was expressed and purified in the CHO stable cell system. This method yields both full length protein (around 54 Kd) and a proteolityc fragment of 35 Kd, with a ration of about 1:2 full length/fragment. In non reducing conditions (As seen in the western blot), the full length undergoes oligomerization CG57094 variant 04, that has the same protein sequence as 02, was expressed and purified in the 293 transient cell system. More than 90% of the protein is purified as a proteolitic fragment and thefore does not undergo oligomerization.


[1023] Procedure


[1024] 1. Transfected into attached CHO stable cells with Lipofectamine 2000 in Opti-MEM 1. Overlay with DMEM media with 5% FBS after 4 hours.


[1025] 2. Harvested after 3, 5 and 7 days incubation at 37° C.


[1026] Cell Lysis/Protein Recovery


[1027] Procedure


[1028] 1. Centrifuged at 3000 rpm for 10 min and filter with 0.2 um pore size.


[1029] Procedure


[1030] 1. Metal Affinity Chromatography—Pharmacia 50ml and 5 ml Metal Chelate—Running buffer 20 mM phosphate, pH 7.4, 0.5 M NaCl. Wash with 20 mM, 50 mM, and 100 mM Imidazole. Elute with 500 mM Imidazole.


[1031] 2. HS Cation Exchange Chromatography—Poros HS 1.6 ml column—30 mM Tris-Cl, pH 8.0, 0.05% CHAPS. Elute with 0-2 M NaCl gradient.


[1032] 3. Dialysis—@ 4° C. using 3,500 MWCO against 20 mM Tris-HCl, pH7.4+150 mM NaCl.


[1033] Protein Quality Control


[1034] Western Blot Procedure


[1035] Antibody name, catalog # and supplier: Anti-V5-HRP Antibody, 46-0708, Invitrogen (Carlsbad, Calif.), S-protein HRP conjugate, 69047, Novagen (Madison, Wis.)


[1036] Antibody dilution buffer: PBS/5% milk/0.1% Tween-20


[1037] Wash buffer: PBS/0.1% Tween-20


[1038] Detection reagents: ECL (Amersham Biosciences Corp., Piscataway, N.J.)


[1039] 1. The blot was covered with antibody dilution buffer and incubated on a rocker for one hour at room temperature.


[1040] 2. The blocking solution was replaced with antibody dilution buffer containing the appropriate amount of conjugate, and the blot was incubated on a rocking platform for one hour at room temperature.


[1041] 3. The antibody solution was decanted, and the blot was washed quickly with two quick rinses of wash buffer. The blot was then covered with wash buffer and incubated on the rocking platform for five minutes, and the wash buffer was decanted. This process was repeated twice for a total of three five-minute washes.


[1042] 4. The blot was developed using ECL reagents (Amersham Biosciences Corp., Piscataway, N.J.) as per manufacturer instructons and luminescence was then digitized on a Kodak Image Sciences Imaging Station.



Example F17


CG57094-02 Batch2, Plasmid #1614 CHO Stable Cell Line

[1043]

282











PROTEIN QUALITY CONTROL DATA







Protein Concentration












by Bradford
by A280 Absorbance
Total Protein Batch




Method (mg/mL)
(mg/mL)
Quantity (mg)
Protein Storage Buffer Composition







0.181
ND
2.1
20 mM Tris-HCl, pH 7.4 + 150 mM NaCl











Protein Characterization











Amino Acid Sequence

_N-Terminus _Internal Peptide










Tags Predicted on Purified Protein
N-terminal: _None _His _V5  x IgK _Melittin













C-terminal: _None  x His  x V5












Mass Spectroscopy (kd)
ND
Western Blot Analysis (Ab & Ab dilution)
Anti-V5-HRP Antibody (1:5000)






S protein HRP conjugate (1:5000)











Protein Purity

















Predicted Size of Protein
Actual Size of Protein
Estimated
Endotoxin




Gel
Gel
Engineered into Plasmid
Expressed from Plasmid
Purity
Level
Sterile



Composition
Staining
(including tags) (kd)
(including tags) (kd)
(≧ %)
(≦ EU/mg)
Filtered







4-20% Tris
Coomassie
43
54
95
202


 x 
Yes




Glycine
Blue




_No











[1044]




Example F18


CG57094-02 B3, Plasmid #1614 CHO Stable Cell Line

[1045]

283











PROTEIN QUALITY CONTROL DATA







Protein Concentration












by Bradford
by A280 Absorbance
Total Protein Batch




Method (mg/mL)
(mg/mL)
Quantity (mg)
Protein Storage Buffer Composition
















0.26
ND
0.54
20 mM Tris-HCl, pH 7.4 + 150 mM NaCl











Protein Characterization











Amino Acid Sequence

_N-Terminus _Internal Peptide










Tags Predicted on Purified Protein
N-terminal: _None _His _V5  x IgK _Melittin













C-terminal: _None  x His  x V5












Mass Spectroscopy (kd)
ND
Western Blot Analysis (Ab & Ab dilution)
Anti-V5-HRP Antibody (1:5000)






S protein HRP conjugate (1:5000)











Protein Purity

















Predicted Size of Protein
Actual Size of Protein
Estimated
Endotoxin




Gel
Gel
Engineered into Plasmid
Expressed from Plasmid
Purity
Level
Sterile



Composition
Staining
(including tags) (kd)
(including tags) (kd)
(≧ %)
(≦ EU/mg)
Filtered







4-20% Tris
Coomassie
43
54
60
7.7


 x 
Yes




Glycine
Blue




_No











[1046]




Example F19


CG57094-04 Batch3, 293 Cell Transient Transfection

[1047] Method of Purification


[1048] 1.Metal Affinity Chromatography—PHARMACIA 50 ml Metal Chelate—20 mM sodium phosphate, pH 7.4,0.5 M NaCl. Wash with 20 mM, 50 mM, and 100 mM Imidazole. Elute with 500 mM Imidazole.


[1049] 2. Metal Affinity Chromatography—PHARMACIA 5 ml Metal Chelate—20 mM sodium phosphate, pH 7.4, 0.5 M NaCl. Elute against a gradient from 0-500 mM Imidazole.


[1050] 3. Ion-exchange Chromatography—Poros 50 HS column—Elute against a gradient from 0-1M NaCl in 30 mM Tris-Cl, pH 8.0, 0.05% CHAPS.


[1051] 4. Dialysis—@ 4° C. using 3,500 MW Cutoff against 20 mM Tris-HCl, pH 7.4+150 mM NaCl


[1052] Example F20


[1053] CG57094-04 Batch4 293 Cell Transient Transfection


[1054] As indicated in the Certificate of Analysis for the CG57094-04 protein preparation, during expression and purification , the expressed protein undergoes a non obvious proteolityc cleavage that generate a fragment peptide


[1055] The protein sequence of this peptide was determined by N-terminal sequencing of the protein preparation generating a N-terminal sequence of LPEMA QPVDP AHXVS. The sequence was determined by transferring the protein to polyvinylidenedifluoride (PVDF) membranes as described in P. Matsudaira, J. Biol. Chem., 261, 10035-10038 (1987). and then performing automated gas-phase sequencing as described in R. M. Hewick, M. W. Hunkapiller, L. E. Hood, and W. J. Dreyer, J. Biol. Chem., 256, 7990-7997 (1981). The COOH terminus is defined by the tag included in the expression construct (V5 and His peptide) both because the tag is used for purification and because the purified protein is still reactive to the V5 antibodies as shown in the western blot. Therefore the normal COOH terminus of the CG57094 protein is present in the purified protein.


[1056] The molecular features ot this proteolitic fragments are specifically different from those of the parental sequence, of CG57094-02 and of NL2, specifically this protein does not undergo oligomerization due to the loss of the Coil-Coil domain while retaining the receptor binding region, the fiubrinogen domain. This results in a peptide that it is easier to express and purify while retaining activity as shown in the Cell Survival Assay with 786-O Cells example. It represent a non-obvious result of the expression construct and cell line used for expression.
284>CG57094-O4_proteolityc_fragmentLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGS(SEQ ID NO:394)VDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGORNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLE>NL2_MET_ORF_MSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALE(SEQ ID NO:395)RRLSACGSACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAAS>0057094-02GPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGSACQGTEGSTDLPLAPESRVDPE(SEQ ID NO:396)VLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAAS>CG57094-04RSGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGSACQGTEGSTDLPLAPESRVD(SEQ ID NO:397)PEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATTMLIQPMAAEAASLE



Example F21


PE 52a: Cellular Proliferation

[1057] CG57094 belongs to the angiopoietin-like family of pro-anti angiogenic factors that either induce or inhibit endothelial cell proliferation. We wanted therefore to test whether our preparation CG57094-02 is able to induce or inhibit endothelial cell proliferation. CG57094 did not inhibit endothelial cell proliferation but at a concentration of 10 μg/ml increased the proliferation of HUVEC and HMVEC but the extent of proliferation was not significant.



Example F22


Inhibition of HUVEC Proliferation

[1058] BrdU Incorporation in HUVEC cells.


[1059] Proliferative activity is measured by treatment of serum-starved cultured cells with CG57094-02 at 1 mcg/ml and 0.1 mcg/ml and measurement of BrDU incorporation during DNA synthesis. HUVEC cells were cultured in DMEM supplemented with 10% fetal bovine serum or 10% calf serum respectively. Cells were grown to confluence at 37° C. in 10% CO2/air. Cells were then starved in DMEM for 24- 72 h. pCEP4sec or pCEP4sec/CG57094-02 enriched conditioned medium was added (10 μL/100 μL of culture) for 18 h. BrdU (10 μM final concentration) was then added and incubated with the cells for 5 h. BrdU incorporation was assayed according to the manufacturer's specifications (Boehringer Mannheim, Indianapolis, Ind.).


[1060] 1%FBS plus growth factor stimulated the proliferation of HUVEC cells. In the presence of TNF alpha, which was used as positive control, the proliferation of HUVEC cells was markedly inhibited and was comparable to the level of serum free control. CG57094-02 did not significantly affect the proliferation of these endothelial cells at concentrations of 1 μg and 0.1 μg/ml.



Example F23


Inhibition of HMVEC Proliferation

[1061] BrdU Incorporation in HMVEC cells.


[1062] Proliferative activity is measured by treatment of serum-starved cultured cells with CG57094-02 at 1 mcg/ml and 0.1 mcg/ml and measurement of BrDU incorporation during DNA synthesis. HMVEC cells were cultured in DMEM supplemented with 10% fetal bovine serum or 10% calf serum respectively. Cells were grown to confluence at 37° C. in 10% CO2/air. Cells were then starved in DMEM for 24- 72 h. pCEP4sec or pCEP4sec/CG57094-02 enriched conditioned medium was added (10 μL/100 μL of culture) for 18 h. BrdU (10 μM final concentration) was then added and incubated with the cells for 5 h. BrdU incorporation was assayed according to the manufacturer's specifications (Boehringer Mannheim, Indianapolis, Ind.).


[1063] 1%FBS plus growth factor stimulated the proliferation of HMVEC cells. In the presence of TNF alpha, which was used as positive control, the proliferation of HMVEC cells was markedly inhibited and was comparable to the level of serum free control. CG57094-02 did not significantly affect the proliferation of these endothelial cells at concentrations of 1 μg and 0.1 μg/ml.



Example F24


Inhibition of CPAE Proliferation

[1064] BrdU Incorporation in Calf pulmonary arterial endothelial cells (CPAE).


[1065] Proliferative activity is measured by treatment of serum-starved cultured cells with CG57094-02 at 1 mcg/ml and 0.1 mcg/ml and measurement of BrDU incorporation during DNA synthesis. CPAE cells were cultured in DMEM supplemented with 10% fetal bovine serum or 10% calf serum respectively. Cells were grown to confluence at 37° C. in 10% CO2/air. Cells were then starved in DMEM for 24- 72 h. pCEP4sec or pCEP4sec/CG57094-02 enriched conditioned medium was added (10 μL/100 μL of culture) for 18 h. BrdU (10 μM final concentration) was then added and incubated with the cells for 5 h. BrdU incorporation was assayed according to the manufacturer's specifications (Boehringer Mannheim, Indianapolis, Ind.).


[1066] 1% FBS plus growth factor stimulated the proliferation of CPAE cells. In the presence of TNF alpha, which was used as positive control, the proliferation of CPAE cells was markedly inhibited and was comparable to the level of serum free control. CG57094-02 did not significantly affect the proliferation of these endothelial cells at concentrations of 1 μg and 0.1 μg/ml.



Example F25


BrdU Incorporation in HUVEC Cells

[1067] Proliferative activity is measured by treatment of serum-starved cultured cells with CG57094-02 at 10 mcg/ml, 1 mcg/ml, 0.5 mcg/ml, and 0.1 mcg/ml and measurement of BrDU incorporation during DNA synthesis. HUVEC cells were cultured in DMEM supplemented with 10% fetal bovine serum or 10% calf serum respectively. Cells were grown to confluence at 37° C. in 10% CO2/air. Cells were then starved in DMEM for 24-72 h. pCEP4sec or pCEP4sec/CG57094-02 enriched conditioned medium was added (10 μL/100 μL of culture) for 18 h. BrdU (10 μM final concentration) was then added and incubated with the cells for 5 h. BrdU incorporation was assayed according to the manufacturer's specifications (Boehringer Mannheim, Indianapolis, Ind.). VEGF/bFGF combination at 10 ng/ml was used as positive control.


[1068] CG57094 at a concentration of 10 μg/ml increased the proliferation of HUVEC but the extent of proliferation was not significant.



Example F26


BrdU Incorporation in HMVEC Cells

[1069] Proliferative activity is measured by treatment of serum-starved cultured cells with CG57094-02 at 10 mcg/ml, 5mcg/ml, 1 mcg/ml and 0.1 mcg/ml and measurement of BrDU incorporation during DNA synthesis. HMVEC cells were cultured in DMEM supplemented with 10% fetal bovine serum or 10% calf serum respectively. Cells were grown to confluence at 37° C. in 10% CO2/air. Cells were then starved in DMEM for 24-72 h. pCEP4sec or pCEP4sec/CG57094-02 enriched conditioned medium was added (10 μL/100 μL of culture) for 18 h. BrdU (10 μM final concentration) was then added and incubated with the cells for 5 h. BrdU incorporation was assayed according to the manufacturer's specifications (Boehringer Mannheim, Indianapolis, IN).


[1070] CG57094 at a concentration of 1 0g/ml increased the proliferation of HMVEC but the extent of proliferation was not significant.



Example F27


PE52: Cellular Survival

[1071] CG57094 belongs to the angiopoietin-like family of pro-anti angiogenic factors that either induce or inhibit endothelial cell survial upon cellular stress like starvation. We wanted therefore to test whether our preparation CG57094-02 is able to induce or inhibit endothelial cell survial. CG57094 at a concentration up to 0.01 μg/ml increased the survival of HUVEC and HMVEC but not CPAE in a significant fashion.


[1072] Cell Viability assay (WST1 survival Assay). Since CG57094-02 did not induce the potent proliferation of endothelial cells, we tested whether the target gene (CG57094-02) would increase the survival of endothelial cell during starvation. Viability of the cells were measured using Wst-1 assay. The cell lines were chosen on the basis of potential cell types implicated in angiogenesis or cancer neovascularization: HUVEC (human umbilical vein endothelial cells), HMVEC-D (endothelial, dermal capillary) and Calf pulmonary arterial endothelial cells (CPAE). 96 well plates (flat bottom) were coated with 100 μl of attachment factor and incubated at 37° C. for one hour. Attachment factor was aspirated and endothelial cells were plated in a DMEM medium containing 0.1% FBS (no growth factors). After 24 h cells were washed and pCEP4sec or pCEP4sec/CG57094-02 enriched conditioned medium was added (10 μL/100 μL of culture) for 48 h. Purified CG57094-02 protein or conditional media was added again, without changing the medium and further incubated for another 24 h. Wst-1 reagent (10 μl/well) was added and incubated for 45min-1 hour at 37° C. Plates were read at 450 nm absorbance.



Example F28

[1073] In the presence of VEGF/bFGF HUVECs survival of HUVEC cells increased markedly as observed by increase in A450 reading compared to starved cells. Interestingly, CG57094-02 at a concentration of 2.5 μg/ml also increased the viability of HUVEC compared to starved cells. This trend remained the same even at concentrations as low as 0.01 μg/ml of CG57094-02. All of these data suggest that CG57094-02 may be a potent survival factor for endothelial cells. Therefore, inhibition of CG57094-02 activity with a neutralizing monoclonal antibody may inhibit neovascularization of tumors as well as diabetic retinopathies.



Example F29

[1074] CG57094-02 at 1 μg/ml showed a marked increase in HUVEC cell survival as compared to starved cells, which is consistent with the results shown in FIG. 6. Interestingly, at higher protein concentrations, cells exhibited a decreased viability with the greatest effect seen at the 5 μg/mL concentration.



Example F30

[1075] Consistent with the result seen on HUVEC cells, the survival of HMVEC-d cells were also enhanced by CG57094-02 at lower concentrations. Interestingly, at higher protein concentrations, cells exhibited a decreased viability with the greatest effect seen at the 0.5 μg/mL concentration.



Example F31

[1076] VEGF/bFGF increased the survival of CPAE cells as observed by an increase in A450 readings compared to starved cells. Although, CG57094-02 also enhanced the survival of HUVEC and HMVEC-d cells, it had no effect on CPAE cells as measured by Wst-1 reagent.



Example F32


Cell Survival Assay 786-0 Cells

[1077] 786-0 is a human cell line derived from renal carcinoma and lacks one allele and express a truncated protein (AA 1- 104) from the second allele of the von Hippel-Lindau tumor suppressor gene (VHL). The inactivation of the VHL gene predisposes affected individuals to the human VHL cancer syndrome and is associated with sporadic renal cell carcinomas (RCC) and brain hemangioblastomas. We and other people skilled in the art (Pause A, Lee S, Lonergan K M, Klausner R D. The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci USA Feb. 3, 1998;95(3):993-8) believe that this cell lines represent a suitable in-vitro model to study tumorogenic mechanisms in renal carcinoma.


[1078] Specifically in this example, we wanted to test how treating 786-0 cells with CG57094 purified protein influence their survival in serum withdrawal conditions that would otherwise lead to cell death.


[1079] Method: Standard testing method (STM) CV-SUV-001
285TABLE F32aDEFINITIONSAbbreviation/TermDescription786-OHuman Renal CellAdenocarcinoma (ATCC)FBSFetal bovine serumP/SPenicillin/StreptomycinPBSPhosphate Buffered SalineSFMSerum Free MediaBSABovine Serum Albumin


[1080]

286





TABLE F32b










REAGENTS, MATERIALS AND EQUIPMENT













Quantity

Stock


Reagent/Material
Location
Required
Vendor
Number





96-well flat
TC room
1 per 2
Falcon/Becton-
353072


bottom plates

proteins
Dickenson
08-772-2C





Fisher Scientific












FBS
CV Freezer
50
ml
Gemini
100-106



20:110


BSA
CV Refrigerator
50
ml
Sigma
A-9205



4:114


P/S
CV Freezer
5
ml
Gibco-BRL
15140-122



20:110


Trypsin-EDTA
CV Freezer
50
ml
Gibco-BRL
25200-056


(0.25%)
4:110


MTS
Main lab, −20° C.
20
μl per
Promega
G3581



#20:110

well


DMEM
CV Refrigerator
500
ml
Mediatech
10-013-CM



4:110


Phosphate Buffered
CV Lab
10
ml
Mediatech
20-031-CV


Saline, 7.4
Chemical Shelf










[1081] Reagent Preparation


[1082] Complete DMEM:


[1083] DMEM+10%FBS+1% P/S


[1084] Starvation medium:


[1085] DMEM+0.5% FBS+1% P/S


[1086] Serum Free Media


[1087] DMEM+0.1%BSA+1% P/S


[1088] Procedures


[1089] Procedure Summary:


[1090] Cells are plated in the inner sixty wells of a 96-well plate in Complete DMEM. The following day, the cells are washed in SFM and treated with CuraProteins in 0.5% FBS/DMEM. Untreated cells serve as baseline controls. Cells cultured in 10% FBS serve as positive controls. On the third day following treatment, MTS is added to the medium and the cells are incubated for 0.5-4 hrs. The absorbance of the wells is then determined using a microplate absorbance reader.


[1091] Day 1:


[1092] A. Prepare Cells.


[1093] 1. Wash a flask of 70-80% confluent cells 1× with PBS.


[1094] 2. Treat cells for 1 min with 5 ml Trypsin/EDTA per T175 flask until cells can be knocked free from the bottom of the culture flask.


[1095] 3. After cells have been knocked free, add 5 ml of Complete DMEM to flask.


[1096] 4. Transfer cell suspension to a 15 ml conical bottom centrifuge tube.


[1097] 5. Centrifuge cell suspension at 1200 RPM for 5 min at 4° C.


[1098] 6. Resuspend cells with 10 mls of Complete DMEM.


[1099] C. Count viable cells using trypan blue in a hemacytometer.


[1100] D. Dilute cells with Complete DMEM to yield 5,000 cells/well, 10 mL per plate needed.


[1101] E. For blank wells add 100 μl of Complete DMEM no cells.


[1102] F. Incubate at 37° C. in 10% CO2 humidified incubator over-night.


[1103] Day2:


[1104] A. View plate for appropriate confluency, viability, and consistency of plating from well to well.


[1105] 1. Wash plate 2 times with SFM.


[1106] B. Add CuraProteins and controls to appropriate wells.


[1107] 1 For positive controls, add 100 μl Complete DMEM in wells.


[1108] 2. For negative controls, add 100 μl 0.5% FBS/DMEM in wells.


[1109] 3. For Buffer controls, add similar amount of buffer solution used in highest concentration protein treatments.


[1110] 4. For blank wells, add 100 μl Complete DMEM in wells.


[1111] C. Incubate at 37° C. in 10% CO2 humidified incubator for next three days.


[1112] Day 5:


[1113] A. Visually inspect wells for effects and then add 20 μl MTS to each well.


[1114] B. Incubate at 37° C. in 10% CO2 humidified incubator for 0.5-4 hrs.


[1115] C. Read plates on PowerWave spectrophotometer at 490 nm, single wavelength (KC4 program/Protocol/MTS490/ save file in MS EXCEL format).


[1116] Results of CV-SUV-001:


[1117] The results were assessed by measuring the MTS activity of the cells after 5 days of treatment as described above comparing cell treated with various amount of CG57094, (1) relative to cells without serum stimulation stimulation or stimulated with 0.5% serum (negative controls) and (2) in the last experiment, relative to complete media (positive control). The results are considered positive, if the increase of MTS activity is greater than in the negative controls in a statistically significant fashion. The results below are indicative of the utility of the CG57064, and possibly related polypeptides, in pro-angiogenic therapy and specifically in cardiovascular diseases. The IC50 for the 04 preparations of CG57094 is around 5 μg/ml, for the 02 preparation is below 500 ng/ml and above 100 ng/ml. Considering its overexpression in tumor cells and tumor tissues obtained from kidney, lung, melanomas and breast cancers and the cellular data that revealed how tumor cell survival, especially kidney cancer cell survival, is stimulated by CG57094, inhibiting its activity will have utility in cancer therapy and specifically in inhibiting kidney, lung, melanomas and breast cancers.


[1118] The results of this set of experiment are non-obvious in light of the previous art both as disclosed by U.S. Pat. No. 6,455,496 and U.S. Pat. No. 6,074,873.


[1119] In these applications the inventors disclosed activity only on endothelial cell that is opposite to what we discovered. In example 10 of U.S. Pat. No. 6,074,873 they disclosed that their NL2 preparation induced endothelial cell apoptosis, the opposite of cell survival. Kim et al. (Kim, I; Kim, H G; Kim, H; Kim, H H; Park, S K; Uhm, C S; Lee, Z H; Koh, G Y. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 2000 346 Pt 3: 603-610.) disclosed a anti-apoptotic activity only on endothelial cells and with a limited effect (30 and 45% reduction). The activity that we discovered on 786-0 has a range of specific activity less that I microgram/ml and the effect is substantial (500-1000%) that permit to set up a screening assay for, neutralizing antibodies (antibodies that bind to CG57094 and related polypeptides and block their activity).


[1120] FIG. 22 shows both preparations of CG57094 protein were able to stimulate the survival of 786-0 cells, compared with controls. The 02 preparation appears to have an higher specific activity.
287av.st. dev(−)0.0200333330.00608824TTEST against0.5% FBS0.02170.004979960.5% serumCG57094-02 B21ug/ml0.3830333330.6025249650.4063082043ug/ml1.0300333330.4314131820.0563121976ug/ml1.35870.0336452080.00025083810ug/ml1.33970.1234058350.0030394930ug/ml1.2890333330.0152752525.11734E−05buffer0.06570.0895153620.472407116CG57094-04 B41ug/ml0.0240333330.0130128140.7234367123ug/ml0.0353666670.0097125350.128239076ug/ml0.7090333330.2619777340.04459187310ug/ml1.26970.1607264760.00200562130ug/ml1.4890333330.0240069438.64534E−05buffer0.0170333330.0135030860.650072894


[1121] The survival activity was repeated by both preparations of CG57094 protein. The 02 preparation appears to have a higher specific activity than before.
288av.st. dev(−)0.0434666670.004633213TTEST against0.5% FBS0.14130.0133977610.5% serumCG57094-02 B21ug/ml1.0394666670.0352751090.000367263ug/ml1.14180.040951190.0004466ug/ml1.16280.0055677641.5068E−0510ug/ml1.0834666670.1422052510.006012430ug/ml1.16180.020074868.6897E−05buffer0.1611333330.057709040.07027706CG57094-04 B31ug/ml0.2041333330.0470567030.201737043ug/ml0.3691333330.0996510580.026786746ug/ml0.6484666670.1202386520.0129904810ug/ml1.08080.0238956060.0001183530ug/ml1.0864666670.0465761030.00074619buffer0.11380.0363730670.05843518


[1122] The survival activity was repeated using 2 batches of the same preparations of CG57094 protein. Batch 03 of preparation 02 had higher specific activity
289av.st. dev(−)0.0124333330.0020816660.5% FBS0.0284333330.005773503complete1.04510.180357977CG57094-02 B21ng/ml0.0367666670.00929157310ng/ml0.0337666670.004618802100ng/ml0.0357666670.016165808500ng/ml0.0434333330.0035118851ug/ml0.06610.0078102510ug/ml1.0644333330.0306159buffer high0.0174333330.005686241buffer mid0.0274333330.013576941CG57094-02 B31ng/ml0.0277666670.01050396810ng/ml0.0347666670.005859465100ng/ml0.0474333330.002081666500ng/ml0.90610.0649692231ug/ml1.1037666670.02914332410ug/ml1.12810.053113087buffer high0.0294333330.01106044buffer mid0.02210



Example F33


Pe 52a1—Cell Survival Assay of Activated T-Lymphocytes and Macrophages

[1123] ARP protein is tested for the ability to prevent apoptosis in activated T-lymphocytes and macrophages since it was shown that these cell types are present in knee synovial samples from patients with knee osteoarthritis [Saito I, Koshino T, Nakashima K, Uesugi M, Saito T. Increased cellular infiltrate in inflammatory synovia of osteoarthritic knees. Osteoarthritis Cartilage. February 2002;10(2):156-62.]. The following methods are used for validation of APR effects on T cells and macrophages: measurement of cell proliferation, relevant cytokine production (IL-2, IL-4, IL-6, TNF-a etc.). In addition early apoptosis markers (Anexin V binding) are tested. The increased cell proliferation and cytokine production indicates positive effects of ARP on cell survival. Decreased Anexin V binding also indicates prevention of apoptosis.


[1124] For screening of the therapeutic neutralizing antibody similar tests are used. Criteria for antibody selection are as follows:


[1125] 1. Binding to ARP (ELISA)


[1126] Inhibition of survival T lymphocytes and macrophages induced by ARP in vitro.



Example F34


Preparation of Antibodies that Bind CG57094

[1127] As described above, inhibiting CG57094 activity has utility in cancer therapy and specifically in inhibiting kidney, lung, melanomas and breast cancers. It is know in the art that antibodies that bind secreted factors like CG57094 can inhibit their activity in a process called neutralization. Specifically, neutralizing monoclonal antibodies that bind VEGF have been shown to inhibit tumor growth acting against tumor-induced angiogenesis () Therefore production of polyclonal and monoclonal antibodies directed against CG57094 has utility in cancer therapy and specifically in inhibiting kidney, lung, melanomas and breast cancers. As opposed to VEGF, that is needed only for tumor induced endothelial cell growth and survival, CG57094 is required for cell growth and survival both by endothelial and tumor cells, therefore inhibition of CG57094 activity could have a more pronounced therapeutic effect.


[1128] Because of the non-obvious result from the protein expression that indicates how CG57094-04 generate a proteolitic fragment that encode only the fibrinogen domain, we decided to use that fragment as an antigen for immunization. As discussed the fibrinogen domain is the region that binds the receptor, so antibodies that bind to this region are preferable because they have high possibility to be neutralizing.


[1129] Method: Techniques for producing the antibodies are known in the art and are described, for example, in “Antibodies, a Laboratory Manual” Eds Harlow and Lane, Cold Spring Harbor publisher. Both rabbits and mice are suitable for the production of polyclonal antibodies, while mice are also suitable for the production of monoclonal antibodies. Mice where the human immunoglubolin genes have replaced the mouse immunoglubolin genes can be used to produce fully human monoclonal antibodies. These antibodies have better pharmaceutical characteristic, no or minimal antibody directed immune reactions that results in loss of therapeutic efficacy and have been shown to eradicate tumor in animal model (Yang X D, Jia X C, Corvalan J R, Wang P, Davis C G, Jakobovits A Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res Mar. 15, 1999;59(6):1236-43). Of particular use in this application are bispecific antibody comprised of an antibody unit specific for VEGF and an antibody unit specific for CG57094. We have disclosed that in tumors, specifically in renal cell carcinomas, there is a high correlation between the expression of VEGF and CG57094. Both protein support tumorogenesis by increasing tumor-induced angiogenesis, so an antibody that block the activity of both proteins at once would have a preferable therapeutic activity. An example is VL(a)-Linker-VH(a)-Linker-VL(b)-Linker-VH(b), where a is an antibody variable region segment directed to VEGF and b is an antibody variable region segment directed to CG57094, or vice versa. Other examples of bispecific antibodies are reviewed by Carter Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer November 2001; 1(2): 118-29



Example F35


Generation of Rabbit Polyclonal Antibodies

[1130] Rabbit are immunized with the immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally or intramuscolar in an amount from 50-1000 micrograms. The immunized rabbits are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the rabbits might also be boosted with additional immunization injections. Serum samples may be periodically obtained from the rabbit by bleeding of the ear for testing ELISA assays to detect the antibodies.



Example F36


ELISA Protocol to Determine Binding of the Antibodies

[1131] Solution Preparation


[1132] Coating Buffer (0.1M Carbonate, pH9.5)


[1133] 8.4 g. NaHCO3, 3.56 g. Na2CO3, pH to 9.5, and dilute to 1 L. with ddH20


[1134] Assay Diluent


[1135] Pharmingen #26411E


[1136] Protocol


[1137] Coat a 96-well high protein binding ELISA plate (Corning Costar #3590) with 50 ul. of protein at a concentration of 5 ug/mL. in coating buffer overnight at 4 degrees.


[1138] Following day wash the cells 5× 200-300 ul. of 0.5% Tween-20 in PBS.


[1139] Block plates with 200 ul. of assay diluent for at least 1 hour at room temperature.


[1140] Dilute antibodies in assay diluent.


[1141] Wash plate as in step 2.


[1142] Add 50 ul. of each antibody dilution to the proper wells for at least 2 hours at room temp.


[1143] Wash plate as in step 2.


[1144] Add 50 ul. of secondary antibody and incubate for 1 hour at room temp.


[1145] Wash plate as in step 2.


[1146] Develop assay with 100 ul. of TMB substrate solution/well. (1:1 ratio of solution A+B) (Pharmingen #2642KK)


[1147] Stop reaction with 50 ul. sulfuric acid


[1148] Read plate at 450 nm with a correction of 550 nm.


[1149] Results:


[1150] The CG57094-02 purified protein preparation was able to induce a strong immune reaction as shown by the elisa data in FIGS. 25-26-27. Only the immune serum and not the preimmune serum shows strong reactivity against CG57094-02 coated plates (FIGS. 25-26) while no reactivity was seen against non-coated plates (FIG. 27)


[1151] This data indicates that the CG57094-02 purified protein preparation is a good immunogen and can be used to generate antibodies.
290TABLE F36aCr064PreimmuneserumOD-serumOD-dilutionsblankdilutionsblank1000.9991000.02110000.87610000.00420000.93120000.00340000.96340000.00280000.73280000.002100000.669100000.002200000.511200000.0011000000.1471000000.0012000000.0842000000.00110000000.01810000000.001


[1152]


291










TABLE F36b











Cr064

Preimmune




serum
OD-
serum
OD-



dilutions
blank
dilutions
blank





















100
1.066
100
0.024



1000
1.127
1000
0.003



2000
1.054
2000
0.002



4000
0.993
4000
0.001



8000
0.720
8000
0.001



10000
0.714
10000
0.001



20000
0.536
20000
0.000



100000
0.153
100000
0.000



200000
0.088
200000
0.000



1000000
0.017
1000000
0.001











[1153]


292










TABLE F36c











Cr064

Preimmune




serum
OD-
serum
OD-



dilutions
blank
dilutions
blank





















100
0.290
100
0.030



1000
0.066
1000
0.005



2000
0.036
2,000
0.002



4000
0.021
4,000
0.002



8000
0.010
8,000
0.001



10000
0.008
10,000
0.002



20000
0.004
20000
0.002



100000
0.001
100,000
0.001



200000
0.002
200,000
0.001



1000000
0.001
1,000,000
0.001











[1154]



Example F37


Identification of CG57094 Neutralizing Antibodies

[1155] As shown in the Cell Survival Assay for 786-O Cells, purified CG57094 has a survival activity for 786-0 with an IC50 for the 04 preparation around 5 μg/ml and for the 02 preparation below 500 ng/ml and above 100 ng/ml.


[1156] As previously discussed, the identification of antibodies, preferably fully human monoclonal antibodies that bind to CG57094 and neutralize its activity, limiting or abolishing its ability to rescue cell from serum withdrawal conditions, would be very beneficial because these antibodies will have therapeutic effect against tumors, specifically against kidney, lung, melanomas and breast cancers. To determine whether an antibody can neutralize CG57094 activity, various amounts of such antibody are added to the Cell Survival Assay for 786-0 Cells as described in the method below. The results are assessed by measuring the MTS activity of the cells after 5 days of treatment as described below comparing cell treated with various amount of the antibody, (1) relative treated with non-binding antibody (negative controls) and (2) relative to serum-starved cells (positive control). The results are considered positive, if the decrease in MTS activity is greater than in the negative controls in a statistically significant fashion.


[1157] Antibody that can neutralize the CG57094 activity at least with a molar ratio of 10:1 antibody:CG57094 can be useful as therapeutic, lower molar ratio are preferable.


[1158] Method: Standard testing method (STM) CV-ANTSUV-001
293TABLE F37aDEFINITIONSAbbreviation/TermDescription786-OHuman Renal Cell Adenocarcinoma (ATCC)FBSFetal bovine serumP/SPenicillin/StreptomycinPBSPhosphate Buffered SalineSFMSerum Free MediaBSABovine Serum AlbuminNegative antibodyHuman isotype matched negative control antibody


[1159]

294





TABLE F37b










REAGENTS, MATERIALS AND EQUIPMENT











Reagent/

Quantity

Stock


Material
Location
Required
Vendor
Number















96-well
TC room
1
per 2
Falcon/Becton-
353072


flat


proteins
Dickenson
08-772-2C


bottom



Fisher


plates



Scientific


FBS
CV Freezer
50
ml
Gemini
100-106



20:110


BSA
CV Refrig-
50
ml
Sigma
A-9205



erator



4:114


P/S
CV Freezer
5
ml
Gibco-BRL
15140-122



20:110


Trypsin-
CV Freezer
50
ml
Gibco-BRL
25200-056


EDTA
4:110


(0.25%)


MTS
Main lab,
20
μl per
Promega
G3581



−20° C.

well



# 20:110


DMEM
CV Refrig-
500
ml
Mediatech
10-013-CM



erator



4:110


Phosphate
CV Lab
10
ml
Mediatech
20-031-CV


Buffered
Chemical


Saline,
Shelf


7.4










[1160] Procedures


[1161] Procedure Summary:


[1162] Cells are plated in the inner sixty wells of a 96-well plate in Complete DMEM. The following day, the cells are washed in SFM and treated with CuraProteins in 0.5% FBS/DMEM. Untreated cells serve as baseline controls. Cells cultured in 10% FBS serve as positive controls. On the third day following treatment, MTS is added to the medium and the cells are incubated for 0.5-4 hrs. The absorbance of the wells is then determined using a microplate absorbance reader.


[1163] Day 1:


[1164] A. Prepare Cells.


[1165] 1. Wash a flask of 70-80% confluent cells 1× with PBS.


[1166] 2. Treat cells for˜1 min with 5 ml Trypsin/EDTA per T175 flask until cells can be knocked free from the bottom of the culture flask.


[1167] 3. After cells have been knocked free, add 5 ml of Complete DMEM to flask.


[1168] 4. Transfer cell suspension to a 15 ml conical bottom centrifuge tube.


[1169] 5. Centrifuge cell suspension at 1200 RPM for 5 min at 4° C.


[1170] 6. Resuspend cells with 10 mls of Complete DMEM.


[1171] C. Count viable cells using trypan blue in a hemacytometer.


[1172] D. Dilute cells with Complete DMEM to yield 5,000 cells/well, 10 mL per plate needed.


[1173] E. For blank wells add 100 μl of Complete DMEM no cells.


[1174] F. Incubate at 37° C. in 10% CO2 humidified incubator over-night.


[1175] Day2:


[1176] A. View plate for appropriate confluency, viability, and consistency of plating from well to well.


[1177] 1. Wash plate 2 times with SFM.


[1178] B. Add CuraProteins and controls to appropriate wells.


[1179] 1. For positive controls, add 100 μl Complete DMEM in wells.


[1180] 2. For negative controls, add 100 μl 0.5% FBS/DMEM in wells.


[1181] 3. For Buffer controls, add similar amount of buffer solution used in highest concentration protein treatments.


[1182] 4. For negative antibody control use 100 μl of negative antibody in 0.5% FBS/DMEM. Also use 100 μl of negative antibody and add appropriate (predetermined) concentration of survival factor. Mix and let stand at room temperature for 10 to 20 minutes for binding, then add 100 μl to each of three wells/treatment.


[1183] 4. For blank wells, add 100 μl Complete DMEM in wells.


[1184] 5. In an eppendorf tube add appropriate (pre-determined) concentration of survival factor with 10 μg/ml of experimental antibody, and in a second tube, again with survival factor and 1 μg/ml of experimental antibody. Mix tube and let stand for 10 to 20 minutes for binding, then add 100 μl to each of three wells/treatment.


[1185] C. Incubate at 37° C. in 10% CO2 humidified incubator for next three days.


[1186] Day 5:


[1187] A. Visually inspect wells for effects and then add 20 μl MTS to each well.


[1188] B. Incubate at 37° C. in 10% CO2 humidified incubator for 0.5-4 hrs.


[1189] C. Read plates on PowerWave spectrophotometer at 490 nm, single wavelength (KC4 program / Protocol/MTS490/ save file in MS EXCEL format).


[1190] Reagent Preparation


[1191] Complete DMEM:


[1192] DMEM+10%FBS+1% P/S


[1193] Starvation medium:


[1194] DMEM+0.5% FBS+1% P/S


[1195] Serum Free Media


[1196] DMEM+0.1%BSA+1% P/S



Example F38


Effects of Neutralizing Antibodies Binding to CG57094-04 (defined as CR064) in Matrigel Plug 786-0 Renal Carcinoma Induced Angiogenesis in Athymic Nude Mice

[1197] Purified CG50794-02 and 04 have demonstrated ability to increase survival of endothelial and 786-0 tumor cells in cell culture studies. We hypothesize that neutralizing antibodies against CR064 should inhibit survival of endothelial cell and 786-0 tumor cell in cell culture studies. We hypothesize that these antibodies could offer an antiangiogenic and antitumor effect in a 786-0 driven in vivo model of vessel growth. This activity is not limited to this particular cellular model but should be relevant to the angiogenic reponse by other tumor cell lines, preferably those cell lines that naturally express CG50794 polypepetides.


[1198] To evaluate the effects of Cr064 in tumor induced angiogenesis Matrigel plug model using 786-0 human clear cell renal carcinoma. This Matrigel plug assay is designed to provide a quantifiable measure of tumor induced angiogenic response under in vivo conditions as a screen for evaluating the antiangiogenic and antitumor efficacy of CR064. Such a strategy has already been used by Liao et al. to show that a neutralizing antibody against Vascular E-Cadherin inhibited tumor-induce angiogenesis (Liao F, Doody J F, Overholser J, Finnerty B, Bassi R, Wu Y, Dejana E, Kussie P, Bohlen P, Hicklin D J. Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res 2002 May 1 ;62(9):2567-75). Our antibody will have a preferable activity because it will affect the survival not only of endothelial cells but also of tumor cells.


[1199] Histological evaluation will assess the total vascularity of the subcutaneously implanted Matrigel plugs, as well as any antiangiogenic effect by CR064. Efficacy for this antibody in this model will be defined as the inhibition of 786-0 cell induced angiogenesis as measured by the establish histological methods described below.
295MATERIALS AND METHODSTest SystemSpecies/Mice Balb/C Athymic homozygous nudestrain:(nu/nu)PhysiologicalNormal.state:Age/weight˜6-8 weeks, 18-20 g.range at startof study:Number/sexTotal of 25 female mice will be required.of animals:Identification:Animals are identified by dots at the baseof tail delineating animal numbers. All thecages will be labeled with protocol number,group and animal numbers with appropriatecolor codesRandomization:According to body weight.Justification:This study is designed to use a minimumof laboratory animals sufficient to detectmeaningful efficacy results within thetreatment period.Replacement:Animals will not be replaced during thisstudy.Animal Housing and EnvironmentHousing:Animals will be housed 5 mice per cage inpolycarbonate microisolation cages, woodchip bedding and suspended food and sterilewater bottles. The cages conform to theguidelines cited in the Guide for the Careand Use of Laboratory Animals and theapplicable Standard Operating Procedures.Acclimation:Mice will be acclimated for 8 days and givenfood and sterile water ad libitum. Animalswill be examined prior to initiation of thestudy to assure adequate health and suitability.Animals that are found to be diseased orunsuitable will not be assigned to the study.EnvironmentalDuring the course of the study, 12-hourconditions:light/12-hour dark cycle will be maintained.A nominal temperature range of 20 to 23° C.with a relative humidity between 30% and 70%will also be maintained.Food/water andHarlan Teklad rodent diet and sterile watercontaminants:will be provided ad libitumAdministration of Cr064 antibodiesRoute andCr064 will be dosed IP at least twice amethod ofweek.administration:JustificationThis route will be used to evaluatefor route ofpharmacologic efficacy in this model.administration:Administered1, 5 and 10 mg/kgdose:AdministeredAdjust by body weight, 20 gram mouse/volume:0.2 mlsIdentity and786-0 human renal clear celllot number:adenocarcinoma; batch number P1 5ICPhysicalHuman Renal Clear Cell Adenocarcinomadescription:Source:ATCCCharacterization/ATCCcertification:Storageconditions:Stability/Long-term storage in liquid nitrogen. Thawedexpirationand cultured for 48 hours before use.date:Harvested cells are stored at 4° C. duringtransfer between the laboratory to theSpecific Pathogen Free Facility


[1200] Experimental Design


[1201] Mice will be randomized and groups of 5 will be implanted with Matrigel reconstituted with the required tumor cell lines. A total of 0.5 ml of the suspension will be subcutaneously injected into the right flank of athymic, female, nude mice. Additional will be implanted with Matrigel containing 786-0 renal cell carcinoma (1.0×106 cells). Animals implanted with Matrigel containing 786-0 cells will be dosed with 1, 5 and 10 mg/kg, IP, twice daily. Animals will be monitored for 7 days, sacrificed and the Matrigel plugs will be imaged and harvested for further histological evaluation.
296TABLE F38aGroupNumber ofMatrigelNumberTreatmentaAnimalsVolume/Mouse1Matrigel Alone50.5 mL/Mouse2Matrigel plus 786-050.5 mL/Mousecells + vehicle3Matrigel plus 786-050.5 mL/Mousecells, CR064 1.0mg/kg,4Matrigel plus 786-050.5 mL/Mousecells, CR064 5.0mg/kg,5Matrigel plus 786-050.5 mL/Mousecells, CR064 10mg/kgaMatrigel volume of 0.5 ml will be injected into right flank


[1202] Clinical Observations/Signs


[1203] Mice will be observed daily for moribundity and mortality approximately 60 minutes ing.


[1204] Body Weight


[1205] Individual body weights of all mice will be recorded daily, for randomization and


[1206] Animals Found Dead or Moribund


[1207] If animal dies prior to necropsy (found dead) necropsy and histology data will not be included and tissues will not be collected.


[1208] Necropsy


[1209] At necropsy, animals will be euthanized by CO2 asphyxiation. The Matrigel plugs will be exposed through surgical removal of the covering skin flap. Digital images will then be recorded of the matrigel.—The matrigel plug will then be surgically removed, and processed as described below. Cervical dislocation of mice under deep anesthesia will be performed before the final disposal of animals.


[1210] Matrigel plugs will be then resected carefully and cut into three parts.


[1211] One part will be snap frozen in TissueTek and used for cryocut sections.


[1212] One part will be fixed in buffered formalin and then embedded in paraffin for sectioning.


[1213] One part will be reserved as a backup. Snap frozen and stored at −80° C.


[1214] Macroscopic and Histopathology


[1215] Formalin Fixed Matrigel Sections:


[1216] Three sections/mouse of 5 to 7 μm in thickness will be cut and stained with hematoxylin and Eosin. Sections will be examined under phase contrast microscope. Representative photomicrographs will be recorded [two frames (10× and 40×)]. Infiltration of endothelial cells and vessels will be recorded.


[1217] Vessel Staining by Immunohistochemistry:


[1218] Frozen Matrigel plugs will be sectioned (5 μm sections) in a Cryocut microtome. Three independent sections per mouse will be made at different levels and used for staining. Sections will be blocked with BSA (0.1%) and then treated with monoclonal antibody reactive to mouse CD31 conjugated to Phycoerythin (dilutions as recommended by the manufacturer). After thorough washings, sections will be mounted under anti-fading reagent (Vecta Shield) and observed under UV microscope using Red filter. Representative Digital images will be captured (two images at 100×and 200×magnification).


[1219] Morphometric Analysis of Vessel Density:


[1220] Immunofluorescence images of CD31 staining will be analyzed by Skeletinization program as described by Wild et al (1). Data will be processed to provide mean vessel density, node and length for each group.


[1221] Data Analysis and Reporting


[1222] Statistical Analysis


[1223] Final Report


[1224] At the conclusion of the study, the results will be reported in full. This final report will include the experimental design, description of local and systemic effects, body weight, mortality and results of macroscopic and histopathologic findings. The format of all textual reports, including figures, tables, and scanned images will conform to CuraGen standards (CuraStandards). Data presentation will include:


[1225] Representative Color Photomicrographs


[1226] Digital files (JPEG or TIFF or PDB) for permanent record


[1227] 1. Wild, R., S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen 2000. Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density Microvasc Res. 59:368-76.



Example F39


Efficacy Evaluation of CUR64 Against the 786-0 Human Renal Cell Carcinoma Line Grown as a Xenograft in Nude Mice

[1228] Purified CG50794-02 and 04 have demonstrated ability to increase survival of endothelial and 786-0 tumor cells in cell culture studies. We hypothesize that neutralizing antibodies against CR064 should inhibit survival of endothelial cell and 786-0 tumor cell in cell culture studies. We hypothesize that these antibodies could offer an antiangiogenic and antitumor effect in a 786-0 driven in vivo model of tumor xenograft.


[1229] The ability of this tumor cell line to produce ectopic tumor xenograft in nude mice is known in the art and it has been used to test the anti-tumor activity of several agents (Plonowski A, Schally A V, Nagy A, Kiaris H, Hebert F, Halmos G Inhibition of metastatic renal cell carcinomas expressing somatostatin receptors by a targeted cytotoxic analogue of somatostatin AN-238. Cancer Res 2000 June 1;60(11):2996-3001)


[1230] This activity is not limited to this particular cellular model but should be relevant to other tumor cell lines, preferably those cell lines that naturally express CG50794 polypeptides.


[1231] Combination therapy of biological compounds like subcutaneous interferon-alpha (IFN-alpha) and interleukin-2 (IL-2) with intravenous 5-fluorouracil (5-FU) is nowdays standard therapy and achieves some long-term survival benefits in patients with metastatic renal cell carcinoma but it is not curative and affects only a subset of patients. It is therefore necessary to discover new agents that either as single therapy or in combination with 5-FU increase both the overall response rate, long term survival and quality of life.


[1232] Therefore we test the efficacy of CR064 antibodies in the 786-0 tumor xenograft alone and in combination with 5-FU. Efficacy for this antibody in this model will be defined as tumor growth delay or growth inhibition as single therapy or combination as measured by the established methods described below.
297Test SystemSpecies/strain:Mouse/ nu/nuPhysiologicalNormalstate:Age/weight rangeAnimals aged 5 to 6 weeks with bodyat start of study:weight of approximately 20 gAnimal supplier:Charles RiverNumber/sex60/Femaleof animals:Identification:Individually tattooed tails.Randomization:Animals will be randomized prior toassignment to treatment groupsJustification:Xenograft tumor models present a wellcharacterized system for testing ofanti-cancer agents.Replacement:Animals will not be replaced duringthe course of the study.Animal Housing and EnvironmentHousing:Static microisolators.Acclimation:1 week.Environmental12-hour light cycle at 21-22° C.conditions:(70-72° F.) and 40%-60% humidity.Food/water andIrradiated standard rodent diet (NIH31contaminants:Modified and Irradiated) consisting of:18% protein; 5% fat; and 5% fiber; water(reverse osmosis, 1 ppm Cl), ad libitumAdministration of Cr064 antibodiesRoute and methodCr064 will be dosed IP at least twiceof administration:a week for at least 3 weeksJustification for routeThis route will be used to evaluateof administration:pharmacologic efficacy in this model.Administered1, 5 and 10 mg/kgdose:AdministeredAdjust by body weight, 20 gram mouse/volume:0.2 mlsIdentity and786-0 human renal clear celllot number:adenocarcinoma; batch number P1 5ICPhysicalHuman Renal Clear Cell Adenocarcinomadescription:Source:ATCCCharacterization/ATCCcertificationStability/Long-term storage in liquid nitrogen.expiration date:Thawed and cultured for 48 hours beforeuse. Harvested cells are stored at 4° C.during transfer between the laboratory tothe Specific Pathogen Free Facility


[1233] Experimental Design


[1234] After an acclimation period mice will be subcutaneously implanted with 1×1 mm3 fragments of 786-0 tumors. Animals will be randomized and individually identified. Upon tumors reaching a volume of 60-100 mm3 treatment with will begin. Cr064 antibodies will be administered intraperitoneally at the following doses and schedule (Table 1). Mice will be observed daily, tumors and weight will be recorded twice weekly throughout the study period.
298TABLE F39aStudy DesignGroupNumberTreatmentVolumeNumberof AnimalsTreatmentSchedule*(mL)110Untreated ControlN/AN/Afemales210 1 mg/kg, IPEOD × 3 wkBased onfemalesweight310 5 mg/kg, IPEOD × 3 wkBased onfemalesweight41010 mg/kg, IPEOD × 3 wkBased onfemalesweight5105-FU,SID, ×5Based onfemales25 mg/kg, IPweight6103 + 5Based onfemalesweight


[1235]

299





TABLE F39b










Study Timeline















60-100







Day
mm3
Day
Day
Day


Event
−14
Tumors
7
14
15
Endpoint





Receipt of
X







animals a


Tumor

X


Implantation


Treatment

EOD ×




3 wk


Body weights

Daily ×


2× wk




14


Harvest




X


Tumors


Scheduled





2000 mg


termination





tumors










[1236] Experimental Procedures


[1237] Tumor bearing animals will be randomized prior to the start of treatment with. Mice will be monitored daily for body condition and health status. Starting at the point where there is a palpable size mass (60-100 mm3) treatment with CR064 will start. The treatment schedule will be 1, 5 or 10 mg/kg, IP, twice daily for 14 days. Throughout the study the animals will be monitored for tumor twice weekly using calipers. Weights will be recorded daily for the treatment period and twice weekly thereafter.


[1238] Tumor volumes will be calculated for all remaining animals as well as body weights. Tumor volumes will be analyzed using the methodology described in the data analysis and reporting section.


[1239] Tumor Implantation


[1240] Tumors will be harvested from healthy tumor-bearing donor animals. The tissues will be homogenized using standard procedures. Cells will be counted and evaluated for viability using trypan blue. Cells will be suspended in serum free media, and a total of 5×106 cells will be subcutaneously implanted in the flank of mice.


[1241] Tumor Measurement and Volume Determination


[1242] Tumor growth will be measured and recorded 3 times a week using a caliper. Length and width will be measured for each tumor. Tumor volume will be determined using the following formula:
1TumorWeight(mg)=w2×l2


[1243] Clinical Observations/Signs


[1244] Animals will be observed daily for significant clinical signs, moribundity and mortality.


[1245] Animals Found Dead or Moribund


[1246] Percentage of animal mortality and time to death will be recorded for every animal on the study. Mice may be defined moribund and sacrificed if one or more of the following criteria are met:


[1247] 1) Body weight loss of 20% or greater in a 2-week period.


[1248] 2) Tumors that inhibit normal physiological function such as eating, drinking, mobility and ability to urinate and or defecate.


[1249] 3) Tumors that exceed a maximum dimension of 2000 mg as measured by calipers.


[1250] 4) Ulcerated tumors, tumor producing a exudates or bleeding.


[1251] 5) Prolonged diarrhea leading to weight loss.


[1252] 6) Persistent wheezing and respiratory distress


[1253] Animals can also be considered moribund if there is prolonged or excessive pain or distress as defined by clinical observations such as: Prostrate, hunched posture, paralysis/paresis, distended abdomen, ulcerations, abscesses, seizures and/or hemorrhages


[1254] Animals Found Dead or Moribund


[1255] Any adverse effects or unanticipated deaths will be reported to the veterinarian and to CuraGen Corporation immediately.


[1256] Table F40:PE201: Transgenic Mouse Production


[1257] Transgenic expression of a human gene in a mouse is a useful tool to help determine the function of the product of the gene in instances where the resulting protein product(s) bind to and activate equivalent receptors leading to conserved biological function. Transgenic mice expressing a human protein can also be used as tools to study the inhibitory or activating properties of antibodies to the human protein in vivo. The production and molecular characterization of the transgenic mice was performed by Xenogen Transgenics (Cranberry, N.J.).


[1258] Transgenic mice were produced which express CG57094-02 gene driven by the SAP (serum amyeloid P component (SAP) promoter, a gift of Dr. Yamamura, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto, Japan. The promoter drives expression of the gene to produce protein in the liver with slight expression in the postnatal mouse. Mouse embryonic stem cells were microinjected with linearized DNA consisting of the SAP promoter and the downstream gene which encodes CG57094-02. The CG57094-02 sequence is flanked 5′ by an IgK secretory signal sequence and 3′ by DNA encoding V5/His epitopes. Mouse embryos were implanted, and progeny were analyzed for gene integration


[1259] Sharma A, Khoury-Christianson A M, White S P, Dhanial N K, Huang Related Articles, Links W Paulhiac C, Friedman E J, Maniula B N, Kumar R.


[1260] High-efficiency synthesis of human alpha-endorphin and magainin in the erythrocytes of transgenic mice: a production system for therapeutic peptides.


[1261] Proc Natl Acad Sci USA. Sep. 27, 1994;91(20):9337-41.


[1262] Founders (mice which have integrated the gene) were identified by PCR of tail genomic DNA. Sera was drawn from the mouse tail vein at age 4 weeks for serum ELISA to examine protein expression in the circulation for genes for which a secreted product is expected. Serum ELISA was performed using [Curamab/polymab/anti-V5 tag—assay in development] in a two-site format. Serum protein positive mice were bred to obtain lines with relatively homogeneous expression of the protein. These mice can be used for phenotypic analysis or disease modeling to determine the role of the CG57094-02 and functional or PK properties of CR064 mAb.



Other Embodiments

[1263] Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims. The claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. Applicants reserve the right to pursue such inventions in later claims.


Claims
  • 1. An isolated polypeptide comprising the mature form of an amino acid sequenced selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141.
  • 2. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141.
  • 3. An isolated polypeptide comprising an amino acid sequence which is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141.
  • 4. An isolated polypeptide, wherein the polypeptide comprises an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141.
  • 5. The polypeptide of claim 1 wherein said polypeptide is naturally occurring.
  • 6. A composition comprising the polypeptide of claim 1 and a carrier.
  • 7. A kit comprising, in one or more containers, the composition of claim 6.
  • 8. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease selected from a pathology associated with the polypeptide of claim 1, wherein the therapeutic comprises the polypeptide of claim 1.
  • 9. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to an antibody that binds immunospecifically to the polypeptide; and (c) determining the presence or amount of antibody bound to said polypeptide, thereby determining the presence or amount of polypeptide in said sample.
  • 10. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the polypeptide of claim 1 in a first mammalian subject, the method comprising: a) measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and b) comparing the expression of said polypeptide in the sample of step (a) to the expression of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, said disease, wherein an alteration in the level of expression of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to said disease.
  • 11. A method of identifying an agent that binds to the polypeptide of claim 1, the method comprising: (a) introducing said polypeptide to said agent; and (b) determining whether said agent binds to said polypeptide.
  • 12. The method of claim 11 wherein the agent is a cellular receptor or a downstream effector.
  • 13. A method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of the polypeptide of claim 1, the method comprising: (a) providing a cell expressing the polypeptide of claim 1 and having a property or function ascribable to the polypeptide; (b) contacting the cell with a composition comprising a candidate substance; and (c) determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition in the absence of the substance, the substance is identified as a potential therapeutic agent.
  • 14. A method for screening for a modulator of activity of or of latency or predisposition to a pathology associated with the polypeptide of claim 1, said method comprising: (a) administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of claim 1, wherein said test animal recombinantly expresses the polypeptide of claim 1;(b) measuring the activity of said polypeptide in said test animal after administering the compound of step (a); and (c) comparing the activity of said polypeptide in said test animal with the activity of said polypeptide in a control animal not administered said polypeptide, wherein a change in the activity of said polypeptide in said test animal relative to said control animal indicates the test compound is a modulator activity of or latency or predisposition to, a pathology associated with the polypeptide of claim 1.
  • 15. The method of claim 14, wherein said test animal is a recombinant test animal that expresses a test protein transgene or expresses said transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein said promoter is not the native gene promoter of said transgene.
  • 16. A method for modulating the activity of the polypeptide of claim 1, the method comprising contacting a cell sample expressing the polypeptide of claim 1 with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.
  • 17. A method of treating or preventing a pathology associated with the polypeptide of claim 1, the method comprising administering the polypeptide of claim 1 to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject.
  • 18. The method of claim 17, wherein the subject is a human.
  • 19. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141 or a biologically active fragment thereof.
  • 20. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141.
  • 21. The nucleic acid molecule of claim 20, wherein the nucleic acid molecule is naturally occurring.
  • 22. A nucleic acid molecule, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 141.
  • 23. An isolated nucleic acid molecule encoding the mature form of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 141.
  • 24. An isolated nucleic acid molecule comprising a nucleic acid selected from the group consisting of 2n−1, wherein n is an integer between 1 and 141.
  • 25. The nucleic acid molecule of claim 20, wherein said nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 141, or a complement of said nucleotide sequence.
  • 26. A vector comprising the nucleic acid molecule of claim 20.
  • 27. The vector of claim 26, further comprising a promoter operably linked to said nucleic acid molecule.
  • 28. A cell comprising the vector of claim 26.
  • 29. An antibody that immunospecifically binds to the polypeptide of claim 1.
  • 30. The antibody of claim 29, wherein the antibody is a monoclonal antibody.
  • 31. The antibody of claim 29, wherein the antibody is a humanized antibody.
  • 32. A method for determining the presence or amount of the nucleic acid molecule of claim 20 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to a probe that binds to said nucleic acid molecule; and (c) determining the presence or amount of said probe bound to said nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in said sample.
  • 33. The method of claim 32 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
  • 34. The method of claim 33 wherein the cell or tissue type is cancerous.
  • 35. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the nucleic acid molecule of claim 20 in a first mammalian subject, the method comprising: a) measuring the level of expression of the nucleic acid in a sample from the first mammalian subject; and b) comparing the level of expression of said nucleic acid in the sample of step (a) to the level of expression of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of expression of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
  • 36. A method of producing the polypeptide of claim 1, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141.
  • 37. The method of claim 36 wherein the cell is a bacterial cell.
  • 38. The method of claim 36 wherein the cell is an insect cell.
  • 39. The method of claim 36 wherein the cell is a yeast cell.
  • 40. The method of claim 36 wherein the cell is a mammalian cell.
  • 41. A method of producing the polypeptide of claim 2, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 141.
  • 42. The method of claim 41 wherein the cell is a bacterial cell.
  • 43. The method of claim 41 wherein the cell is an insect cell.
  • 44. The method of claim 41 wherein the cell is a yeast cell.
  • 45. The method of claim 41 wherein the cell is a mammalian cell.
RELATED APPLICATIONS

[0001] This application is a continuation-in-part of U.S. Ser. No. 09/997,425, filed Nov. 29, 2001 and U.S. Ser. No. 10/035,568, filed Oct. 22, 2001; this application also claims priority to provisional patent applications U.S. Ser. No. 60/338,626, filed Nov. 5, 2001, U.S. Ser. No. 60/401,479, filed Aug. 6, 2002, U.S. Ser. No. 60/333,072, filed Nov. 6, 2001, U.S. Ser. No. 60/348,283, filed Nov. 9, 2001, U.S. Ser. No. 60/393,262, filed Jul. 2, 2002, U.S. Ser. No. 60/406,181, filed Aug. 26, 2002, U.S. Ser. No. 60/345,398, filed Nov. 9, 2001, U.S. Ser. No. 60/335,610, filed Nov. 15, 2001, U.S. Ser. No. 60/380,968, filed May 15, 2002, U.S. Ser. No. 60/332,152, filed Nov. 21, 2001, U.S. Ser. No. 60/336,576, filed Dec. 4, 2001, U.S. Ser. No. 60/354,807, filed Feb. 5, 2002, U.S. Ser. No. 60/393,148, filed Jul. 2, 2002, U.S. Ser. No. 60/401,626, filed Aug. 6, 2002, U.S. Ser. No. 60/401,695, filed Aug. 7, 2002, U.S. Ser. No. 60/333,912, filed Nov. 28, 2001, U.S. Ser. No. 60/381,043, filed May 16, 2002, U.S. Ser. No. 60/401,593, filed Aug. 7, 2002, U.S. Ser. No. 60/334,300, filed Nov. 29, 2001, each of which is incorporated herein by reference in its entirety.

Provisional Applications (19)
Number Date Country
60338626 Nov 2001 US
60401479 Aug 2002 US
60333072 Nov 2001 US
60348283 Nov 2001 US
60393262 Jul 2002 US
60406181 Aug 2002 US
60345398 Nov 2001 US
60335610 Nov 2001 US
60380968 May 2002 US
60332152 Nov 2001 US
60336576 Dec 2001 US
60354807 Feb 2002 US
60393148 Jul 2002 US
60401626 Aug 2002 US
60401695 Aug 2002 US
60333912 Nov 2001 US
60381043 May 2002 US
60401593 Aug 2002 US
60334300 Nov 2001 US
Continuation in Parts (2)
Number Date Country
Parent 09997425 Nov 2001 US
Child 10287971 Nov 2002 US
Parent 10035568 Oct 2001 US
Child 10287971 Nov 2002 US