Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Abstract
Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies that immunospecifically bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the novel polypeptide, polynucleotide, or antibody specific to the polypeptide. Vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods for using same are also included. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
Description


FIELD OF THE INVENTION

[0002] The present invention relates to novel polypeptides, and the nucleic acids encoding them, having properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions.



BACKGROUND OF THE INVENTION

[0003] Eukaryotic cells are characterized by biochemical and physiological processes which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates, or more particularly organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways involve extracellular signaling proteins, cellular receptors that bind the signaling proteins, and signal transducing components located within the cells.


[0004] Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, for example two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.


[0005] Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.


[0006] Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors. In other classes of pathologies the dysregulation is manifested as increased or up-regulated level of synthesis and secretion of protein effectors. In a clinical setting a subject may be suspected of suffering from a condition brought on by altered or mis-regulated levels of a protein effector of interest. Therefore there is a need to assay for the level of the protein effector of interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest. In addition, there is a need for a method of treatment of a pathological condition brought on by a increased or up-regulated levels of the protein effector of interest.


[0007] Antibodies are multichain proteins that bind specifically to a given antigen, and bind poorly, or not at all, to substances deemed not to be cognate antigens. Antibodies are comprised of two short chains termed light chains and two long chains termed heavy chains. These chains are constituted of immunoglobulin domains, of which generally there are two classes: one variable domain per chain, one constant domain in light chains, and three or more constant domains in heavy chains. The antigen-specific portion of the immunoglobulin molecules resides in the variable domains; the variable domains of one light chain and one heavy chain associate with each other to generate the antigen-binding moiety. Antibodies that bind immunospecifically to a cognate or target antigen bind with high affinities. Accordingly, they are useful in assaying specifically for the presence of the antigen in a sample. In addition, they have the potential of inactivating the activity of the antigen.


[0008] Therefore there is a need to assay for the level of a protein effector of interest in a biological sample from such a subject, and to compare this level with that characteristic of a nonpathological condition. In particular, there is a need for such an assay based on the use of an antibody that binds immunospecifically to the antigen. There further is a need to inhibit the activity of the protein effector in cases where a pathological condition arises from elevated or excessive levels of the effector based on the use of an antibody that binds immunospecifically to the effector. Thus, there is a need for the antibody as a product of manufacture. There further is a need for a method of treatment of a pathological condition brought on by an elevated or excessive level of the protein effector of interest based on administering the antibody to the subject.



SUMMARY OF THE INVENTION

[0009] The invention is based in part upon the discovery of isolated polypeptides including amino acid sequences selected from mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107. The novel nucleic acids and polypeptides are referred to herein as NOVX, or NOV1, NOV2, NOV3, etc., nucleic acids and polypeptides. These nucleic acids and polypeptides, as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as “NOVX” nucleic acid or polypeptide sequences.


[0010] The invention also is based in part upon variants of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the invention includes the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107. In another embodiment, the invention also comprises variants of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed. The invention also involves fragments of any of the mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107, or any other amino acid sequence selected from this group. The invention also comprises fragments from these groups in which up to 15% of the residues are changed.


[0011] In another embodiment, the invention encompasses polypeptides that are naturally occurring allelic variants of the sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107. These allelic variants include amino acid sequences that are the translations of nucleic acid sequences differing by a single nucleotide from nucleic acid sequences selected from the group consisting of SEQ ID NOS: 2n−1, wherein n is an integer between 1 and 107. The variant polypeptide where any amino acid changed in the chosen sequence is changed to provide a conservative substitution.


[0012] In another embodiment, the invention comprises a pharmaceutical composition involving a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 and a pharmaceutically acceptable carrier. In another embodiment, the invention involves a kit, including, in one or more containers, this pharmaceutical composition.


[0013] In another embodiment, the invention includes the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease being selected from a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 wherein said therapeutic is the polypeptide selected from this group.


[0014] In another embodiment, the invention comprises a method for determining the presence or amount of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 in a sample, the method involving providing the sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the polypeptide, thereby determining the presence or amount of polypeptide in the sample.


[0015] In another embodiment, the invention includes a method for determining the presence of or predisposition to a disease associated with altered levels of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 in a first mammalian subject, the method involving measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in this sample to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0016] In another embodiment, the invention involves a method of identifying an agent that binds to a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107, the method including introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. The agent could be a cellular receptor or a downstream effector.


[0017] In another embodiment, the invention involves a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107, the method including providing a cell expressing the polypeptide of the invention and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent.


[0018] In another embodiment, the invention involves a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107, the method including administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of the invention, wherein the test animal recombinantly expresses the polypeptide of the invention; measuring the activity of the polypeptide in the test animal after administering the test compound; and comparing the activity of the protein in the test animal with the activity of the polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the polypeptide of the invention. The recombinant test animal could express a test protein transgene or express the transgene under the control of a promoter at an increased level relative to a wild-type test animal The promoter may or may not b the native gene promoter of the transgene.


[0019] In another embodiment, the invention involves a method for modulating the activity of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107, the method including introducing a cell sample expressing the polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.


[0020] In another embodiment, the invention involves a method of treating or preventing a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107, the method including administering the polypeptide to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject. The subject could be human.


[0021] In another embodiment, the invention involves a method of treating a pathological state in a mammal, the method including administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 or a biologically active fragment thereof.


[0022] In another embodiment, the invention involves an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107; a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107; a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 or any variant of the polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and the complement of any of the nucleic acid molecules.


[0023] In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107, wherein the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant.


[0024] In another embodiment, the invention involves an isolated nucleic acid molecule including a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107 that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant.


[0025] In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n-1, wherein n is an integer between 1 and 107.


[0026] In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107; a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107; and a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.


[0027] In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107, wherein the nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, or a complement of the nucleotide sequence.


[0028] In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107, wherein the nucleic acid molecule has a nucleotide sequence in which any nucleotide specified in the coding sequence of the chosen nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides in the chosen coding sequence are so changed, an isolated second polynucleotide that is a complement of the first polynucleotide, or a fragment of any of them.


[0029] In another embodiment, the invention includes a vector involving the nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107. This vector can have a promoter operably linked to the nucleic acid molecule. This vector can be located within a cell.


[0030] In another embodiment, the invention involves a method for determining the presence or amount of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107 in a sample, the method including providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in the sample. The presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type. The cell type can be cancerous.


[0031] In another embodiment, the invention involves a method for determining the presence of or predisposition for a disease associated with altered levels of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 107 in a first mammalian subject, the method including measuring the amount of the nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0032] The invention further provides an antibody that binds immunospecifically to a NOVX polypeptide. The NOVX antibody may be monoclonal, humanized, or a fully human antibody. Preferably, the antibody has a dissociation constant for the binding of the NOVX polypeptide to the antibody less than 1×10−9 M. More preferably, the NOVX antibody neutralizes the activity of the NOVX polypeptide.


[0033] In a further aspect, the invention provides for the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, associated with a NOVX polypeptide. Preferably the therapeutic is a NOVX antibody.


[0034] In yet a further aspect, the invention provides a method of treating or preventing a NOVX-associated disorder, a method of treating a pathological state in a mammal, and a method of treating or preventing a pathology associated with a polypeptide by administering a NOVX antibody to a subject in an amount sufficient to treat or prevent the disorder.


[0035] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.


[0036] Other features and advantages of the invention will be apparent from the following detailed description and claims.



DETAILED DESCRIPTION OF THE INVENTION

[0037] The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as “NOVX nucleic acids” or “NOVX polynucleotides” and the corresponding encoded polypeptides are referred to as “NOVX polypeptides” or “NOVX proteins.” Unless indicated otherwise, “NOVX” is meant to refer to any of the novel sequences disclosed herein. Table A provides a summary of the NOVX nucleic acids and their encoded polypeptides.
1TABLE ASequences and Corresponding SEQ ID NumbersSEQSEQID NOID NONOVXInternal(nucleic(aminoAssignmentIdentificationacid)acidHomology 1aCG105472-01 1 2Novel KIAA0575/Greb1-like Proteinsand Nucleic AcidsEncoding Same 2aCG106287-01 3 4Integrin Alpha-11 2bCG106287-02 5 6Integrin Alpha-11 3aCG106417-01 7 8Fibrillin 3bCG106417-03 9 10Novel von Willebrandfactor 3cCG106417-04 11 12Novel von Willebrandfactor 3d209749357 13 14Fibrillin 3eCG106417-02 15 16Fibrillin 4aCG108901-01 17 18Cytokine Receptor 4bCG108901-04 19 20Cytokine Receptor 4cCG108901-03 21 22Cytokine Receptor 4dCG108901-02 23 24Cytokine Receptor 5aCG112505-01 25 26Laminin 5-Beta 3 5bCG112505-02 27 28Laminin 5-Beta 3 6aCG121965-01 29 30Fibulin 3 6bCG121965-02 31 32Fibulin 3 7aCG126129-01 33 34Epitheliumdifferentiation factor(PEDF) 7bCG126129-02 35 36Epitheliumdifferentiation factor(PEDF) 8aCG142202-01 37 38Cytokine ReceptorCRL2 Precursor 8bCG142202-03 39 40Cytokine ReceptorCRL2 Precursor 8cCG142202-02 41 42Cytokine ReceptorCRL2 Precursor 9aCG142621-01 43 44Human GTP bindingprotein10aCG142761-01 45 46Histocombatibility 1311aCG143926-01 47 48HLA-B7 alpha chainprecursor12aCG144193-01 49 50Secretedphosphoprotein 2412bCG144193-02 51 52Secretedphosphoprotein 2413aCG144545-01 53 54Neuronal threadprotein14aCG144884-01 55 56B-LymphocyteActivation MarkerBlast-1 Precursor14bCG144884-02 57 58B-LymphocyteActivation MarkerBlast-1 Precursor15aCG145122-01 59 60MtN3/saliva Homolog16aCG145198-01 61 62Secreted Protein16b278498076 63 64Secreted Protein16c278498091 65 66Secreted Protein16dCG145198-02 67 68Secreted Protein16eCG145198-03 69 70Secreted Protein17aCG145286-01 71 72Tm6 protein17bCG145286-02 73 74Tm6 protein18aCG145650-01 75 76Lectin C-Type DomainProtein18bCG145650-02 77 78Lectin C-Type DomainProtein18cCG145650-03 79 80Lectin C-Type DomainProtein19aCG145836-01 81 82STAR protein19bCG145836-02 83 84STAR protein20aCG145978-01 85 86DUF221 domaincontaining membraneprotein20bCG145978-02 87 88DUF221 domaincontaining membraneprotein21aCG145997-01 89 90Similar to DrosophilaFRY gene protein22aCG146119-01 91 92Papilin23aCG146202-01 93 94Membrane-AssociatedLectin Type-C24aCG146250-01 95 96Membrane proteincontaining vwddomain24bCG146250-02 97 98Membrane proteincontaining vwddomain24cCG146250-03 99100Membrane proteincontaining vwddomain25aCG146625-01101102Type IIIa MembraneProtein25bCG146625-02103104Type IIIa MembraneProtein25cCG146625-03105106Type IIIa MembraneProtein26aCG147284-01107108Cadherin 627aCG147937-01109110NK Cell ReceptorCS-127bCG147937-02111112NK Cell ReceptorCS-128aCG148221-01113114Claudin domaincontainingtransmembrane protein28bCG148221-02115116Claudin domaincontainingtransmembrane protein29aCG148476-01117118Membrane-boundprotein PRO138330aCG148818-01119120Membrane proteinKIAA014631aCG149332-01121122Interferon InducedTransmembraneProtein 3 (1-8U)32aCG149649-01123124Type IIIA membraneprotein32bCG149649-02125126Type IIIA membraneprotein33aCG149680-01127128Pb39 (Prostate CancerOverexpressedGene 1)33bCG149680-02129130Pb39 (Prostate CancerOverexpressedGene 1)34aCG149777-01131132KIAA0575/Greb134bCG149777-02133134KIAA0575/Greb134c257474374135136Integrin Alpha-1134d257474386137138Fibrillin35aCG150005-01139140von Willebrand factor36aCG150189-01141142von Willebrand factor37aCG150267-01143144Fibrillin38aCG150362-01145146Otoferlin39aCG150637-01147148Cytokine Receptor39bCG150637-02149150Cytokine Receptor40aCG150694-01151152Cytokine Receptor41aCG151069-01153154Bone marrow secretedprotein42aCG151189-01155156Human apoptosisprotein (APOP-2)43aCG151801-01157158Laminin 5-Beta 344aCG165961-01159160Fibulin 344bCG165961-02161162Fibulin 344cCG165961-03163164Fibulin 344dCG165961-04165166Epitheliumdifferentiationfactor (PEDF)45aCG171681-01167168Cytokine ReceptorCRL2 Precursor45bCG171681-02169170Cytokine ReceptorCRL2 Precursor45cCG171681-03171172Cytokine ReceptorCRL2 Precursor46aCG173318-01173174Human metabolismprotein 1647aCG51595-01175176HLA-B7 alpha chainprecursor47bCG51595-03177178HLA-B7 alpha chainprecursor47cCG51595-04179180Secretedphosphoprotein 2447dCG51595-06181182Secretedphosphoprotein 2447eCG51595-071831841700029J11RIKprotein47f306395637185186B-LymphocyteActivation MarkerBlast-1 Precursor47gCG51595-01187188B-LymphocyteActivation MarkerBlast-1 Precursor47h283842727189190MtN3/saliva Homolog47i283842704191192MtN3/saliva Homolog47jCG51595-01193194MtN3/saliva Homolog47k310658551195196MtN3/saliva Homolog47lCG51595-02197198MtN3/saliva Homolog47mCG51595-05199200MtN3/saliva Homolog48aCG57209-01201202Tm6 protein48bCG57209-03203204Lectin C-Type DomainProtein48cCG57209-02205206Lectin C-Type DomainProtein48dCG57209-04207208Lectin C-Type DomainProtein49aCG57292-01209210STAR protein49bCG57292-02211212STAR protein50aCG97715-01213214Transmembraneprotein PT27


[0038] Table A indicates the homology of NOVX polypeptides to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table A will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table A.


[0039] Pathologies, diseases, disorders and condition and the like that are associated with NOVX sequences include, but are not limited to: e.g., cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, metabolic disturbances associated with obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, diabetes, metabolic disorders, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers, as well as conditions such as transplantation, neuroprotection, fertility, or regeneration (in vitro and in vivo).


[0040] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0041] Consistent with other known members of the family of proteins, identified in column 5 of Table A, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.


[0042] The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table A.


[0043] The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g. detection of a variety of cancers.


[0044] Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.


[0045] NOVX Clones


[0046] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0047] The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.


[0048] The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration in vitro and in vivo (vi) a biological defense weapon.


[0049] In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 107; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 107, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 107; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d).


[0050] In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 107; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 107 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 107; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 107, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; (e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 107 or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules.


[0051] In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid. molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 107; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 107 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 107; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 107 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.


[0052] NOVX Nucleic Acids and Polypeptides


[0053] One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.


[0054] A NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a “mature” form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product “mature” form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (e.g., host cell) in which the gene product arises. Examples of such processing steps leading to a “mature” form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a “mature” form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.


[0055] The term “probe”, as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), about 100 nt, or as manly as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single-stranded or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.


[0056] The term “isolated” nucleic acid molecule, as used herein, is a nucleic acid that is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′- and 3′-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (e.g., brain, heart, liver, spleen, etc.). Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, or of chemical precursors or other chemicals.


[0057] A nucleic acid molecule of the invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993.)


[0058] A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.


[0059] As used herein, the term “oligonucleotide” refers to a series of linked nucleotide residues. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NO:2n−1, wherein ii is an integer between 1 and 107, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.


[0060] In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of a NOVX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, is one that is sufficiently complementary to the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, thereby forming a stable duplex.


[0061] As used herein, the term “complementary” refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term “binding” means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.


[0062] A “fragment” provided herein is defined as a sequence of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and is at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.


[0063] A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5′ direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 3′ direction of the disclosed sequence.


[0064] A “derivative” is a nucleic acid sequence or amino acid sequence formed from the native compounds either directly, by modification or partial substitution. An “analog” is a nucleic acid sequence or amino acid sequence that has a structure similar to, but not identical to, the native compound, e.g. they differs from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. A “homolog” is a nucleic acid sequence or amino acid sequence of a particular gene that is derived from different species.


[0065] Derivatives and analogs may be full length or other than full length. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993, and below.


[0066] A “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences include those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for a NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.


[0067] A NOVX polypeptide is encoded by the open reading frame (“ORF”) of a NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG “start” codon and terminates with one of the three “stop” codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a bonafide cellular protein, a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more.


[0068] The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107; or an anti-sense strand nucleotide sequence of SEQ ID NO:2n−1, wherein it is an integer between 1 and 107; or of a naturally occurring mutant of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107.


[0069] Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe has a detectable label attached, e.g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express a NOVX protein, such as by measuring a level of a NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.


[0070] “A polypeptide having a biologically-active portion of a NOVX polypeptide” refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a “biologically-active portion of NOVX” can be prepared by isolating a portion of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, that encodes a polypeptide having a NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.


[0071] NOVX Nucleic Acid and Polypeptide Variants


[0072] The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 107.


[0073] In addition to the human NOVX nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame (ORF) encoding a NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.


[0074] Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from a human SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.


[0075] Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term “hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other.


[0076] Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e.g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.


[0077] As used herein, the phrase “stringent hybridization conditions” refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60° C. for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.


[0078] Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6×SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65° C., followed by one or more washes in 0.2×SSC, 0.01% BSA at 50° C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a “naturally-occurring” nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).


[0079] In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6×SSC, 5×Reinhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55° C., followed by one or more washes in 1×SSC, 0.1% SDS at 37° C. Other conditions of moderate stringency that may be used are well-known within the art. See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Krieger, 1990; GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY.


[0080] In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35% formamide, 5×SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40° C., followed by one or more washes in 2×SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50° C. Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations). See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.


[0081] Conservative Mutations


[0082] In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, thereby leading to changes in the amino acid sequences of the encoded NOVX protein, without altering the functional ability of that NOVX protein. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 107. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an “essential” amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.


[0083] Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 40% homologous to the amino acid sequences of SEQ ID NO:2n, wherein n is an integer between 1 and 107. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 107; more preferably at least about 70% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 107; still more preferably at least about 80% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 107; even more preferably at least about 90% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 107; and most preferably at least about 95% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 107.


[0084] An isolated nucleic acid molecule encoding a NOVX protein homologous to the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 107, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.


[0085] Mutations can be introduced any one of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis of a nucleic acid of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.


[0086] The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved “strong” residues or fully conserved “weak” residues. The “strong” group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the “weak” group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.


[0087] In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and a NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).


[0088] In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).


[0089] Interfering RNA


[0090] In one aspect of the invention, NOVX gene expression can be attenuated by RNA interference. One approach well-known in the art is short interfering RNA (siRNA) mediated gene silencing where expression products of a NOVX gene are targeted by specific double stranded NOVX derived siRNA nucleotide sequences that are complementary to at least a 19-25 nt long segment of the NOVX gene transcript, including the 5′ untranslated (UT) region, the ORF, or the 3′ UT region. See, e.g., PCT applications WO00/44895, WO99/32619, WO01/75164, WO01/92513, WO 01/29058, WO01/89304, WO02/16620, and WO02/29858, each incorporated by reference herein in their entirety. Targeted genes can be a NOVX gene, or an upstream or downstream modulator of the NOVX gene. Nonlimiting examples of upstream or downstream modulators of a NOVX gene include, e.g., a transcription factor that binds the NOVX gene promoter, a kinase or phosphatase that interacts with a NOVX polypeptide, and polypeptides involved in a NOVX regulatory pathway.


[0091] According to the methods of the present invention, NOVX gene expression is silenced using short interfering RNA. A NOVX polynucleotide according to the invention includes a siRNA polynucleotide. Such a NOVX siRNA can be obtained using a NOVX polynucleotide sequence, for example, by processing the NOVX ribopolynucleotide sequence in a cell-free system, such as but not limited to a Drosophila extract, or by transcription of recombinant double stranded NOVX RNA or by chemical synthesis of nucleotide sequences homologous to a NOVX sequence. See, e.g., Tuschl, Zamore, Lehmann, Bartel and Sharp (1999), Genes & Dev. 13: 3191-3197, incorporated herein by reference in its entirety. When synthesized, a typical 0.2 micromolar-scale RNA synthesis provides about 1 milligram of siRNA, which is sufficient for 1000 transfection experiments using a 24-well tissue culture plate format.


[0092] The most efficient silencing is generally observed with siRNA duplexes composed of a 21-nt sense strand and a 21-nt antisense strand, paired in a manner to have a 2-nt 3′ overhang. The sequence of the 2-nt 3′ overhang makes an additional small contribution to the specificity of siRNA target recognition. The contribution to specificity is localized to the unpaired nucleotide adjacent to the first paired bases. In one embodiment, the nucleotides in the 3′ overhang are ribonucleotides. In an alternative embodiment, the nucleotides in the 3′ overhang are deoxyribonucleotides. Using 2′-deoxyribonucleotides in the 3′ overhangs is as efficient as using ribonucleotides, but deoxyribonucleotides are often cheaper to synthesize and are most likely more nuclease resistant.


[0093] A contemplated recombinant expression vector of the invention comprises a NOVX DNA molecule cloned into an expression vector comprising operatively-linked regulatory sequences flanking the NOVX sequence in a manner that allows for expression (by transcription of the DNA molecule) of both strands. An RNA molecule that is antisense to NOVX mRNA is transcribed by a first promoter (e.g., a promoter sequence 3′ of the cloned DNA) and an RNA molecule that is the sense strand for the NOVX mRNA is transcribed by a second promoter (e.g., a promoter sequence 5′ of the cloned DNA). The sense and antisense strands may hybridize in vivo to generate siRNA constructs for silencing of the NOVX gene. Alternatively, two constructs can be utilized to create the sense and anti-sense strands of a siRNA construct. Finally, cloned DNA can encode a construct having secondary structure, wherein a single transcript has both the sense and complementary antisense sequences from the target gene or genes. In an example of this embodiment, a hairpin RNAi product is homologous to all or a portion of the target gene. In another example, a hairpin RNAi product is a siRNA. The regulatory sequences flanking the NOVX sequence may be identical or may be different, such that their expression may be modulated independently, or in a temporal or spatial manner.


[0094] In a specific embodiment, siRNAs are transcribed intracellularly by cloning the NOVX gene templates into a vector containing, e.g., a RNA pol III transcription unit from the smaller nuclear RNA (snRNA) U6 or the human RNase P RNA HI. One example of a vector system is the GeneSuppressorm RNA Interference kit (commercially available from Imgenex). The U6 and H1 promoters are members of the type III class of Pol HII promoters. The +1 nucleotide of the U6-like promoters is always guanosine, whereas the +1 for H1 promoters is adenosine. The termination signal for these promoters is defined by five consecutive thymidines. The transcript is typically cleaved after the second uridine. Cleavage at this position generates a 3′ UU overhang in the expressed siRNA, which is similar to the 3′ overhangs of synthetic siRNAs. Any sequence less than 400 nucleotides in length can be transcribed by these promoter, therefore they are ideally suited for the expression of around 21-nucleotide siRNAs in, e.g., an approximately 50-nucleotide RNA stem-loop transcript.


[0095] A siRNA vector appears to have an advantage over synthetic siRNAs where long term knock-down of expression is desired. Cells transfected with a siRNA expression vector would experience steady, long-term mRNA inhibition. In contrast, cells transfected with exogenous synthetic siRNAs typically recover from mRNA suppression within seven days or ten rounds of cell division. The long-term gene silencing ability of siRNA expression vectors may provide for applications in gene therapy.


[0096] In general, siRNAs are chopped from longer dsRNA by an ATP-dependent ribonuclease called DICER. DICER is a member of the RNase III family of double-stranded RNA-specific endonucleases. The siRNAs assemble with cellular proteins into an endonuclease complex. In vitro studies in Drosophila suggest that the siRNAs/protein complex (siRNP) is then transferred to a second enzyme complex, called an RNA-induced silencing complex (RISC), which contains an endoribonuclease that is distinct from DICER. RISC uses the sequence encoded by the antisense siRNA strand to find and destroy mRNAs of complementary sequence. The siRNA thus acts as a guide, restricting the ribonuclease to cleave only mRNAs complementary to one of the two siRNA strands.


[0097] A NOVX mRNA region to be targeted by siRNA is generally selected from a desired NOVX sequence beginning 50 to 100 nt downstream of the start codon. Alternatively, 5′ or 3′ UTRs and regions nearby the start codon can be used but are generally avoided, as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex. An initial BLAST homology search for the selected siRNA sequence is done against an available nucleotide sequence library to ensure that only one gene is targeted. Specificity of target recognition by siRNA duplexes indicate that a single point mutation located in the paired region of an siRNA duplex is sufficient to abolish target mRNA degradation. See, Elbashir et al. 2001 EMBO J. 20(23):6877-88. Hence, consideration should be taken to accommodate SNPs, polymorphisms, allelic variants or species-specific variations when targeting a desired gene.


[0098] In one embodiment, a complete NOVX siRNA experiment includes the proper negative control. A negative control siRNA generally has the same nucleotide composition as the NOVX siRNA but lack significant sequence homology to the genome. Typically, one would scramble the nucleotide sequence of the NOVX siRNA and do a homology search to make sure it lacks homology to any other gene.


[0099] Two independent NOVX siRNA duplexes can be used to knock-down a target NOVX gene. This helps to control for specificity of the silencing effect. In addition, expression of two independent genes can be simultaneously knocked down by using equal concentrations of different NOVX siRNA duplexes, e.g., a NOVX siRNA and an siRNA for a regulator of a NOVX gene or polypeptide. Availability of siRNA-associating proteins is believed to be more limiting than target mRNA accessibility.


[0100] A targeted NOVX region is typically a sequence of two adenines (AA) and two thymidines (TT) divided by a spacer region of nineteen (N19) residues (e.g., AA(N19)TT). A desirable spacer region has a G/C-content of approximately 30% to 70%, and more preferably of about 50%. If the sequence AA(N19)TT is not present in the target sequence, an alternative target region would be AA(N21). The sequence of the NOVX sense siRNA corresponds to (N19)TT or N21, respectively. In the latter case, conversion of the 3′ end of the sense siRNA to TT can be performed if such a sequence does not naturally occur in the NOVX polynucleotide. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3′ overhangs. Symmetric 3′ overhangs may help to ensure that the siRNPs are formed with approximately equal ratios of sense and antisense target RNA-cleaving siRNPs. See, e.g., Elbashir, Lendeckel and Tuschl (2001). Genes & Dev. 15: 188-200, incorporated by reference herein in its entirely. The modification of the overhang of the sense sequence of the siRNA duplex is not expected to affect targeted mRNA recognition, as the antisense siRNA strand guides target recognition.


[0101] Alternatively, if the NOVX target mRNA does not contain a suitable AA(N21) sequence, one may search for the sequence NA(N21). Further, the sequence of the sense strand and antisense strand may still be synthesized as 5′ (N19)TT, as it is believed that the sequence of the 3′-most nucleotide of the antisense siRNA does not contribute to specificity. Unlike antisense or ribozyme technology, the secondary structure of the target mRNA does not appear to have a strong effect on silencing. See, Harborth, et al. (2001) J. Cell Science 114: 4557-4565, incorporated by reference in its entirety.


[0102] Transfection of NOVX siRNA duplexes can be achieved using standard nucleic acid transfection methods, for example, OLIGOFECTAMINE Reagent (commercially available from Invitrogen). An assay for NOVX gene silencing is generally performed approximately 2 days after transfection. No NOVX gene silencing has been observed in the absence of transfection reagent, allowing for a comparative analysis of the wild-type and silenced NOVX phenotypes. In a specific embodiment, for one well of a 24-well plate, approximately 0.84 μg of the siRNA duplex is generally sufficient. Cells are typically seeded the previous day, and are transfected at about 50% confluence. The choice of cell culture media and conditions are routine to those of skill in the art, and will vary with the choice of cell type. The efficiency of transfection may depend on the cell type, but also on the passage number and the confluency of the cells. The time and the manner of formation of siRNA-liposome complexes (e.g. inversion versus vortexing) are also critical. Low transfection efficiencies are the most frequent cause of unsuccessful NOVX silencing. The efficiency of transfection needs to be carefully examined for each new cell line to be used. Preferred cell are derived from a mammal, more preferably from a rodent such as a rat or mouse, and most preferably from a human. Where used for therapeutic treatment, the cells are preferentially autologous, although non-autologous cell sources are also contemplated as within the scope of the present invention.


[0103] For a control experiment, transfection of 0.84 μg single-stranded sense NOVX siRNA will have no effect on NOVX silencing, and 0.84 μg antisense siRNA has a weak silencing effect when compared to 0.84 μg of duplex siRNAs. Control experiments again allow for a comparative analysis of the wild-type and silenced NOVX phenotypes. To control for transfection efficiency, targeting of common proteins is typically performed, for example targeting of lamin A/C or transfection of a CMV-driven EGFP-expression plasmid (e.g. commercially available from Clontech). In the above example, a determination of the fraction of lamin A/C knockdown in cells is determined the next day by such techniques as immunofluorescence, Western blot, Northern blot or other similar assays for protein expression or gene expression. Lamin A/C monoclonal antibodies may be obtained from Santa Cruz Biotechnology.


[0104] Depending on the abundance and the half life (or turnover) of the targeted NOVX polynucleotide in a cell, a knock-down phenotype may become apparent after 1 to 3 days, or even later. In cases where no NOVX knock-down phenotype is observed, depletion of the NOVX polynucleotide may be observed by immunofluorescence or Western blotting. If the NOVX polynucleotide is still abundant after 3 days, cells need to be split and transferred to a fresh 24-well plate for re-transfection. If no knock-down of the targeted protein is observed, it may be desirable to analyze whether the target mRNA (NOVX or a NOVX upstream or downstream gene) was effectively destroyed by the transfected siRNA duplex. Two days after transfection, total RNA is prepared, reverse transcribed using a target-specific primer, and PCR-amplified with a primer pair covering at least one exon-exon junction in order to control for amplification of pre-mRNAs. RT/PCR of a non-targeted mRNA is also needed as control. Effective depletion of the mRNA yet undetectable reduction of target protein may indicate that a large reservoir of stable NOVX protein may exist in the cell. Multiple transfection in sufficiently long intervals may be necessary until the target protein is finally depleted to a point where a phenotype may become apparent. If multiple transfection steps are required, cells are split 2 to 3 days after transfection. The cells may be transfected immediately after splitting.


[0105] An inventive therapeutic method of the invention contemplates administering a NOVX siRNA construct as therapy to compensate for increased or aberrant NOVX expression or activity. The NOVX ribopolynucleotide is obtained and processed into siRNA fragments, or a NOVX siRNA is synthesized, as described above. The NOVX siRNA is administered to cells or tissues using known nucleic acid transfection techniques, as described above. A NOVX siRNA specific for a NOVX gene will decrease or knockdown NOVX transcription products, which will lead to reduced NOVX polypeptide production, resulting in reduced NOVX polypeptide activity in the cells or tissues.


[0106] The present invention also encompasses a method of treating a disease or condition associated with the presence of a NOVX protein in an individual comprising administering to the individual an RNAi construct that targets the mRNA of the protein (the mRNA that encodes the protein) for degradation. A specific RNAi construct includes a siRNA or a double stranded gene transcript that is processed into siRNAs. Upon treatment, the target protein is not produced or is not produced to the extent it would be in the absence of the treatment.


[0107] Where the NOVX gene function is not correlated with a known phenotype, a control sample of cells or tissues from healthy individuals provides a reference standard for determining NOVX expression levels. Expression levels are detected using the assays described, e.g., RT-PCR, Northern blotting, Western blotting, ELISA, and the like. A subject sample of cells or tissues is taken from a mammal, preferably a human subject, suffering from a disease state. The NOVX ribopolynucleotide is used to produce siRNA constructs, that are specific for the NOVX gene product. These cells or tissues are treated by administering NOVX siRNA's to the cells or tissues by methods described for the transfection of nucleic acids into a cell or tissue, and a change in NOVX polypeptide or polynucleotide expression is observed in the subject sample relative to the control sample, using the assays described. This NOVX gene knockdown approach provides a rapid method for determination of a NOVX minus (NOVX) phenotype in the treated subject sample. The NOVX phenotype observed in the treated subject sample thus serves as a marker for monitoring the course of a disease state during treatment.


[0108] In specific embodiments, a NOVX siRNA is used in therapy. Methods for the generation and use of a NOVX siRNA are known to those skilled in the art. Example techniques are provided below.


[0109] Production of RNAs


[0110] Sense RNA (ssRNA) and antisense RNA (asRNA) of NOVX are produced using known methods such as transcription in RNA expression vectors. In the initial experiments, the sense and antisense RNA are about 500 bases in length each. The produced ssRNA and asRNA (0.5 μM) in 10 mM Tris-HCl (pH 7.5) with 20 mM NaCl were heated to 950 C for 1 min then cooled and annealed at room temperature for 12 to 16 h. The RNAs are precipitated and resuspended in lysis buffer (below). To monitor annealing, RNAs are electrophoresed in a 2% agarose gel in TBE buffer and stained with ethidium bromide. See, e.g., Sambrook et al., Molecular Cloning. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (1989).


[0111] Lysate Preparation


[0112] Untreated rabbit reticulocyte lysate (Ambion) are assembled according to the manufacturer's directions. dsRNA is incubated in the lysate at 30° C. for 10 min prior to the addition of mRNAs. Then NOVX mRNAs are added and the incubation continued for an additional 60 min. The molar ratio of double stranded RNA and mRNA is about 200:1. The NOVX mRNA is radiolabeled (using known techniques) and its stability is monitored by gel electrophoresis.


[0113] In a parallel experiment made with the same conditions, the double stranded RNA is internally radiolabeled with a 32P-ATP. Reactions are stopped by the addition of 2×proteinase K buffer and deproteinized as described previously (Tuschl et al., Genes Dev., 13:3191-3197 (1999)). Products are analyzed by electrophoresis in 15% or 18% polyacrylamide sequencing gels using appropriate RNA standards. By monitoring the gels for radioactivity, the natural production of 10 to 25 nt RNAs from the double stranded RNA can be determined.


[0114] The band of double stranded RNA, about 21-23 bps, is eluded. The efficacy of these 21-23 mers for suppressing NOVX transcription is assayed in vitro using the same rabbit reticulocyte assay described above using 50 nanomolar of double stranded 21-23 mer for each assay. The sequence of these 21-23 mers is then determined using standard nucleic acid sequencing techniques.


[0115] RNA Preparation


[0116] 21 nt RNAs, based on the sequence determined above, are chemically synthesized using Expedite RNA phosphoramidites and thymidine phosphoramidite (Proligo, Germany). Synthetic oligonucleotides are deprotected and gel-purified (Elbashir, Lendeckel, & Tuschl, Genes & Dev. 15, 188-200 (2001)), followed by Sep-Pak C18 cartridge (Waters, Milford, Mass., USA) purification (Tuschl, et al., Biochemistry, 32:11658-11668 (1993)).


[0117] These RNAs (20 μM) single strands are incubated in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate) for 1 min at 90° C. followed by 1 h at 370 C.


[0118] Cell Culture


[0119] A cell culture known in the art to regularly express NOVX is propagated using standard conditions. 24 hours before transfection, at approx. 80% confluency, the cells are trypsinized and diluted 1:5 with fresh medium without antibiotics (1-3×105 cells/ml) and transferred to 24-well plates (500 ml/well). Transfection is performed using a commercially available lipofection kit and NOVX expression is monitored using standard techniques with positive and negative control. A positive control is cells that naturally express NOVX while a negative control is cells that do not express NOVX. Base-paired 21 and 22 nt siRNAs with overhanging 3′ ends mediate efficient sequence-specific mRNA degradation in lysates and in cell culture. Different concentrations of siRNAs are used. An efficient concentration for suppression in vitro in mammalian culture is between 25 nM to 100 nM final concentration. This indicates that siRNAs are effective at concentrations that are several orders of magnitude below the concentrations applied in conventional antisense or ribozyme gene targeting experiments.


[0120] The above method provides a way both for the deduction of NOVX siRNA sequence and the use of such siRNA for in vitro suppression. In vivo suppression may be performed using the same siRNA using well known in vivo transfection or gene therapy transfection techniques.


[0121] Antisense Nucleic Acids


[0122] Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, or fragments, analogs or derivatives thereof. An “antisense” nucleic acid comprises a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a NOVX protein of SEQ ID NO:2n, wherein n is an integer between 1 and 107, or antisense nucleic acids complementary to a NOVX nucleic acid sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, are additionally provided.


[0123] In one embodiment, an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence encoding a NOVX protein. The term “coding region” refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues., In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding the NOVX protein. The term “noncoding region” refers to 5′ and 3′ sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions).


[0124] Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).


[0125] Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-carboxymethylaminomethyl-2-thiouridine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethyl aminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 5-methoxyuracil, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, 2-thiouracil, 4-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 2-methylthio-N-6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


[0126] The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol 11 or pol III promoter are preferred.


[0127] In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An u.-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual P-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al., 1987. FEBS Lett. 215: 327-330.


[0128] Ribozymes and PNA Moieties


[0129] Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.


[0130] In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of a NOVX cDNA disclosed herein (i.e., SEQ ID NO:2n−1, wherein n is an integer between 1 and 107). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., U.S. Pat. No. 4,987,071 to Cech, et al. and U.S. Pat. No. 5,116,742 to Cech, et al. NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.


[0131] Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.


[0132] In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al., 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms “peptide nucleic acids” or “PNAs” refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleotide bases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomer can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996. supra; Perry-O'Keefe, et al., 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.


[0133] PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).


[0134] In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleotide bases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996. supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5′ end of DNA. See, e.g., Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment. See, e.g., Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.


[0135] In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.


[0136] NOVX Polypeptides


[0137] A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in any one of SEQ ID NO:2n, wherein n is an integer between 1 and 107. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in any one of SEQ ID NO:2n, wherein n is an integer between 1 and 107, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.


[0138] In general, a NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.


[0139] One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.


[0140] An “isolated” or “purified” polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language “substantially free of cellular material” includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.


[0141] The language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.


[0142] Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 107) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of a NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of a NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.


[0143] Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.


[0144] In an embodiment, the NOVX protein has an amino acid sequence of SEQ If) NO:2n, wherein n is an integer between 1 and 107. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 107, and retains the functional activity of the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 107, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 107, and retains the functional activity of the NOVX proteins of SEQ ID NO:2n, wherein n is an integer between 1 and 107.


[0145] Determining Homology Between Two or More Sequences


[0146] To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid “homology” is equivalent to amino acid or nucleic acid “identity”).


[0147] The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107.


[0148] The term “sequence identity” refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term “percentage of sequence identity” is calculated by comparing two, optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term “substantial identity” as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.


[0149] Chimeric and Fusion Proteins


[0150] The invention also provides NOVX chimeric or fusion proteins. As used herein, a NOVX “chimeric protein” or “fusion protein” comprises a NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An “NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a NOVX protein of SEQ ID NO:2n, wherein n is an integer between 1 and 107, whereas a “non-NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within a NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of a NOVX protein. In one embodiment, a NOVX fusion protein comprises at least one biologically-active portion of a NOVX protein. In another embodiment, a NOVX fusion protein comprises at least two biologically-active portions of a NOVX protein. In yet another embodiment, a NOVX fusion protein comprises at least three biologically-active portions of a NOVX protein. Within the fusion protein, the term “operatively-linked” is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.


[0151] In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.


[0152] In another embodiment, the fusion protein is a NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.


[0153] In yet another embodiment, the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a NOVX ligand and a NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of a NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g. promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with a NOVX ligand.


[0154] A NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.


[0155] NOVX Agonists and Antagonists


[0156] The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or truncation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.


[0157] Variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein. There are a variety of methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.


[0158] Polypeptide Libraries


[0159] In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of a NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.


[0160] Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.


[0161] Anti-NOVX Antibodies


[0162] Included in the invention are antibodies to NOVX proteins, or fragments of NOVX proteins. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of Immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab, Fab, and F(ab′)2 fragments, and an Fab expression library. In general, antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG1, IgG2, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.


[0163] An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 107, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.


[0164] In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0165] The term “epitope” includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. A NOVX polypeptide or a fragment thereof comprises at least one antigenic epitope. An anti-NOVX antibody of the present invention is said to specifically bind to antigen NOVX when the equilibrium binding constant (KD) is ≦1 μM, preferably ≦100 nM, more preferably ≦10 nM, and most preferably ≦100 μM to about 1 μM, as measured by assays such as radioligand binding assays or similar assays known to those skilled in the art.


[0166] A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.


[0167] Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., incorporated herein by reference). Some of these antibodies are discussed below.


[0168] Polyclonal Antibodies


[0169] For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).


[0170] The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia Pa., Vol. 14, No. 8 (Apr. 17, 2000), pp. 25-28).


[0171] Monoclonal Antibodies


[0172] The term “monoclonal antibody” (MAb) or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.


[0173] Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.


[0174] The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.


[0175] Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, Calif. and the American Type Culture Collection, Manassas, Va. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).


[0176] The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.


[0177] After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding, 1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.


[0178] The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.


[0179] The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.


[0180] Humanized Antibodies


[0181] The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Pat. No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fe), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).


[0182] Human Antibodies


[0183] Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed “human antibodies”, or “fully human antibodies” herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).


[0184] In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al,(Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).


[0185] Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse™ as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.


[0186] An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Pat. No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the, selectable marker.


[0187] A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Pat. No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.


[0188] In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.


[0189] Fab Fragments and Single Chain Antibodies


[0190] According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Pat. No. 4,946,778). In addition, methods can be adapted for the construction of Fab expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F(ab′)2 fragment produced by pepsin digestion of an antibody molecule; (ii) an Fab fragment generated by reducing the disulfide bridges of an F(ab′)2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) Fv fragments.


[0191] Bispecific Antibodies


[0192] Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.


[0193] Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published May 13, 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).


[0194] Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CHI) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).


[0195] According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.


[0196] Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.


[0197] Additionally, Fab′ fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.


[0198] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).


[0199] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).


[0200] Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a, triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).


[0201] Heteroconjugate Antibodies


[0202] Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980.


[0203] Effector Function Engineering


[0204] It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).


[0205] Immunoconjugates


[0206] The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).


[0207] Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131In, 90Y, and 186Re.


[0208] Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), dilsocyanates (such as tolyene 2,6-diusocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.


[0209] In another embodiment, the antibody can be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is in turn conjugated to a cytotoxic agent.


[0210] Immunoliposomes


[0211] The antibodies disclosed herein can also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.


[0212] Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989).


[0213] Diagnostic Applications of Antibodies Directed Against the Proteins of the Invention


[0214] In one embodiment, methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA) and other immunologically mediated techniques known within the art. In a specific embodiment, selection of antibodies that are specific to a particular domain of an NOVX protein is facilitated by generation of hybridomas that bind to the fragment of an NOVX protein possessing such a domain. Thus, antibodies that are specific for a desired domain within an NOVX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0215] Antibodies directed against a NOVX protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of a NOVX protein (e.g., for use in measuring levels of the NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies specific to a NOVX protein, or derivative, fragment, analog or homolog thereof, that contain the antibody derived antigen binding domain, are utilized as pharmacologically active compounds (referred to hereinafter as “Therapeutics”).


[0216] An antibody specific for a NOVX protein of the invention (e.g., a monoclonal antibody or a polyclonal antibody) can be used to isolate a NOVX polypeptide by standard techniques, such as immunoaffinity, chromatography or immunoprecipitation. An antibody to a NOVX polypeptide can facilitate the purification of a natural NOVX antigen from cells, or of a recombinantly produced NOVX antigen expressed in host cells. Moreover, such an anti-NOVX antibody can be used to detect the antigenic NOVX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic NOVX protein. Antibodies directed against a NOVX protein can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, O-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.


[0217] Antibody Therapeutics


[0218] Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question. In the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.


[0219] Alternatively, the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule. (In this case the target, a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.


[0220] A therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.


[0221] Pharmaceutical Compositions of Antibodies


[0222] Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington: The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.


[0223] If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.


[0224] The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.


[0225] The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.


[0226] Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.


[0227] ELISA Assay


[0228] An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term “biological sample”, therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in “ELISA: Theory and Practice: Methods in Molecular Biology”, Vol. 42, J. R. Crowther (Ed.) Human Press, Totowa, N.J., 1995; “Immunoassay”, E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, Calif., 1996; and “Practice and Thory of Enzyme Immunoassays”, P. Tijssen, Elsevier Science Publishers, Amsterdam, 1985. Furthermore, in vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0229] NOVX Recombinant Expression Vectors and Host Cells


[0230] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


[0231] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably-linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).


[0232] The term “regulatory sequence” is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).


[0233] The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


[0234] Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.


[0235] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).


[0236] One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, e.g., Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.


[0237] In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSec1 (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kurjan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).


[0238] Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).


[0239] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.


[0240] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Banerji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).


[0241] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub, et al., “Antisense RNA as a molecular tool for genetic analysis,” Reviews-Trends in Genetics, Vol. 1(1) 1986.


[0242] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


[0243] A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


[0244] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.


[0245] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).


[0246] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.


[0247] Transgenic NOVX Animals


[0248] The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.


[0249] A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human NOVX cDNA sequences, i.e., any one of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.


[0250] To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g., the cDNA of any one of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a “knock out” vector).


[0251] Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5′- and 3′-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5′- and 3′-termini) are included in the vector. See, e.g., Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al., 1992. Cell 69: 915.


[0252] The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and; homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.


[0253] In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, See, e.g., Lakso, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.


[0254] Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G0 phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.


[0255] Pharmaceutical Compositions


[0256] The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as “active compounds”) of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


[0257] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


[0258] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carner can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


[0259] Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


[0260] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


[0261] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


[0262] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.


[0263] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


[0264] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


[0265] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.


[0266] The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Pat. No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.


[0267] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.


[0268] Screening and Detection Methods


[0269] The isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in a NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.


[0270] The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, supra.


[0271] Screening Assays


[0272] The invention provides a method (also referred to herein as a “screening assay”) for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e.g., NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein.


[0273] In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.


[0274] A “small molecule” as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.


[0275] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al., 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chern. Int. Ed. Engl. 33: 2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, et al., 1994. J. Med. Chem. 37: 1233.


[0276] Libraries of compounds may be presented in solution (e.g., Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Pat. No. 5,223,409), spores (Ladner, U.S. Pat. No. 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Pat. No. 5,233,409.).


[0277] In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.


[0278] In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule. As used herein, a “target molecule” is a molecule with which a NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A NOVX target molecule can be a non-NOVX molecule or a NOVX protein or polypeptide of the invention. In one embodiment, a NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.


[0279] Determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e. intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.


[0280] In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting a NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.


[0281] In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to a NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate a NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.


[0282] In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of a NOVX target molecule.


[0283] The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)n, N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-1-propane sulfonate (CHAPSO).


[0284] In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.


[0285] Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.


[0286] In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.


[0287] In yet another aspect of the invention, the NOVX proteins can be used as “bait proteins” in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX (“NOVX-binding proteins” or “NOVX-bp”) and modulate NOVX activity. Such NOVX-binding proteins are also involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.


[0288] The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor. If the “bait” and the “prey” proteins are able to interact, in vivo, forming a NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.


[0289] The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.


[0290] Detection Assays


[0291] Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.


[0292] Chromosome Mapping


[0293] Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.


[0294] Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.


[0295] Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.


[0296] PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.


[0297] Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES (Pergamon Press, New York 1988).


[0298] Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.


[0299] Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, MENDELIAN INHERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland, et al., 1987. Nature, 325: 783-787.


[0300] Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.


[0301] Tissue Typing


[0302] The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP (“restriction fragment length polymorphisms,” described in U.S. Pat. No. 5,272,057).


[0303] Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5′- and 3′-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.


[0304] Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).


[0305] Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If coding sequences, such as those of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.


[0306] Predictive Medicine


[0307] The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in a NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.


[0308] Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as “pharmacogenomics”). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)


[0309] Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.


[0310] These and other agents are described in further detail in the following sections.


[0311] Diagnostic Assays


[0312] An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.


[0313] An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0314] In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.


[0315] In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.


[0316] The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.


[0317] Prognostic Assays


[0318] The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a “test sample” refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.


[0319] Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).


[0320] The methods of the invention can also be used to detect genetic lesions in a NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from a NOVX gene; (ii) an addition of one or more nucleotides to a NOVX gene; (iii) a substitution of one or more nucleotides of a NOVX gene, (iv) a chromosomal rearrangement of a NOVX gene; (v) an alteration in the level of a messenger RNA transcript of a NOVX gene, (vi) aberrant modification of a NOVX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type splicing pattern of a messenger RNA transcript of a NOVX gene, (viii) a non-wild-type level of a NOVX protein, (ix) allelic loss of a NOVX gene, and (x) inappropriate post-translational modification of a NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0321] In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al., 1995. Nucl. Acids Res. 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.


[0322] Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qβ Replicase (see, Lizardi, et al, 1988. BioTechinology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.


[0323] In an alternative embodiment, mutations in a NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Pat. No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.


[0324] In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.


[0325] In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e.g., Naeve, et al., 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv. Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol. 38: 147-159).


[0326] Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, e.g., Myers, et al., 1985. Science 230: 1242. In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al., 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba, et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.


[0327] In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, e.g., Hsu, et al., 1994. Carcinogenesis 15: 1657-1662. According to an exemplary embodiment, a probe based on a NOVX sequence, e.g., a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Pat. No. 5,459,039.


[0328] In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al., 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285:125-144; Hayashi, 1992. Genet. Anal. Tech. Appi. 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen, et al., 1991. Trends Genet. 7: 5.


[0329] In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE). See, e.g., Myers, et al., 1985. Nature 313: 495. When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 1987. Biophys. Chem. 265:12753.


[0330] Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al., 1986. Nature 324:163; Saiki, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.


[0331] Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, e.g., Gibbs, et al., 1989. Nucl. Acids Res. 17: 2437-2448) or at the extreme 3′-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, e.g., Prossner, 1993. Tibtech. 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e.g., Gasparini, et al., 1992. Mol. Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, e.g., Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3′-terminus of the 5′ sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


[0332] The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a NOVX gene.


[0333] Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0334] Pharmacogenomics


[0335] Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0336] In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.


[0337] Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin. Chem., 43: 254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.


[0338] As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome pregnancy zone protein precursor enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.


[0339] Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.


[0340] Monitoring of Effects During Clinical Trials


[0341] Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a “read out” or markers of the immune responsiveness of a particular cell.


[0342] By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.


[0343] In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.


[0344] Methods of Treatment


[0345] The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0346] These methods of treatment will be discussed more fully, below.


[0347] Diseases and Disorders


[0348] Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (i.e., reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (i) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are “dysfunctional” (i.e., due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to “knockout” endogenous function of an aforementioned peptide by homologous recombination (see, e.g., Capecchi, 1989. Science 244: 1288-1292); or (v) modulators (i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.


[0349] Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (i.e., are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.


[0350] Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).


[0351] Prophylactic Methods


[0352] In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, a NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.


[0353] Therapeutic Methods


[0354] Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of a NOVX protein, a peptide, a NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering a NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.


[0355] Stimulation of NOVX activity is desirable in situations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation (e.g., cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (e.g., preclampsia).


[0356] Determination of the Biological Effect of the Therapeutic


[0357] In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.


[0358] In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects.


[0359] Prophylactic and Therapeutic Uses of the Compositions of the Invention


[0360] The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0361] As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from diseases, disorders, conditions and the like, including but not limited to those listed herein.


[0362] Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.


[0363] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.







EXAMPLES


Example A


Polynucleotide and Polypeptide Sequences, and Homology Data


Example 1

[0364] The NOV1 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1A.
2TABLE 1ANOV1 Sequence AnalysisSEQ ID NO: 1              8482 bpNOV 1a,AAATAAAGTTTTTTCAATGGAAGGCTTGCAGCTCTTGAGGACCTGCCAAATGGAAGAAGGACAGAGACCG105472-01DNA SequenceCTGGAGCCCTATGGAAAGTTCTGACACCATGTGTGGAAGGACATGGCTTTTAACACGTGTGGTGACTGGAGTAGCTGCAGCTGAGGACAGCCACCCTTTCTTCGTCTCTGCTGAGCGAAGGCTACACGGCCCTTCCTCCTTGCAGCTGTTTCACCTTCTACCTTGCGTGGAGCCAGGCTTTTGCACCGAATCTGAGATGCCATTTTAAACAGAAGACTCCATCCTCTTGAAGATGGGAAATTCTTACGCTGGACAGCTGAAGACGACACGCTTTGAAGAGGTCTTGCACAATTCCATCGAGGCATCCCTGCGGTCCAACAACCTGGTGCCCAGGCCCATCTTTTCCCAGCTGTACCTGGAAGCTGAGCAGCAGCTTGCCGCTCTAGAAGGTGGTAGCCGAGTGGACAATGAGGAAGAGGAAGAAGAGGGAGAAGGAGGGCTGGAAACAAATGGCCCCCCAAACCCTTTCCAGCTGCACCCTCTGCCTGAAGGATGCTGTACCACAGACGGTTTTTGCCAGGCCGGGAAGGACCTGCGCCTTGTCTCCATTTCCAACGAGCCCATGGATGTCCCTGCGGGCTTTCTCCTCGTGGGGGTCAAGTCCCCCAGCCTGCCGGACCATCTCCTGGTGTGCGCCGTTGACAAGAGGTTCTTGCCAGATGACAATGGCCACAATGCTCTTCTTGGTTTCTCTGGGAATTGTGTTGGCTGTGGAAAGAAAGGCTTCTGTTACTTCACGGAATTCTCCAATCATATAAATCTGAAACTGACCACTCAACCCAAGAAGCAGAAACACTTGAAGTATTACCTGGTCCGTAATGCACAAGGGACTCTAACCAAAGGACCTTTAATCTGTTGGAAAGGCTCAGAGTTTAGAAGCCGGCAGATCCCCGCCAGTACTTGTTCCAGTTCCCTCTTCCCAGCCCTGGAGAGCACGGCTGCCTTCCCCAGCGAGCCCGTTCCTGGGACGAACCCCAGCATCCTGATGGGAGCTCAGCAGGCAGGTCCAGCTTCTGATCACCCCTCACTAAACGCAGCAATGGGTCCGGCTGTTTTCAACGGCAAAGATTCCCCGAAGTGCCAACAACTGGCAAAGAATAACCTGTTGGCCCTGCCGCGACCATCGGCTTTAGGTATCTTGTCAAACTCCGGGCCCCCCAAAAAACGCCACAAAGGGTGGTCTCCAGAATCTCCATCAGCTCCAGATGGTGGCTGCCCCCAAGGTGGTGGGAACAGAGCTAAGTATGAGAGCGCAGGCATGTCCTGCGTGCCGCAGGTTGGCTTGGTGGGACCAGCTTCAGTCACCTTTCCAGTGGTGGCCTCTGGAGAACCAGTGTCTGTTCCTGACAACTTGCTGAAAATATGCAAGGCCAAGCCAGTGATATTTAAAGGCGATGGGAACTTCCCTTACCTCTGTGGGAACCTGAATGACGTCGTGGTCAGCCCCCTCTTGTACACGTGCTACCAGAATTCCCAGTCTGTCTCACGGGCATACGAGCAGTACGGCGCCTCTGCCATCCAGCCCATCTCCGAGGAGATGCAGCTCCTGCTTACCGTCTACTACCTGGTCCAGCTGGCCGCGGACCAGGTGCCCTTGATGGAGGACCTGGAGCAGATCTTCCTGCGCTCTTGGCGCGAGTCGCACCTGACCGAGATCCGGCAGTACCAGCAGGCGCCGCCGCAGCCCTTCCCGCCCGCGCCCAGCGCCGCGGCACCCGTGACCTCCGCGCAGCTGCCCTGGCTGGCCAGCCTGGCCGCCAGCTCCTGCAACGACAGCGTGCACGTCATCGAGTGTGCTTACTCCCTGGCCGAGGGCCTCTCCGAGATGTTCCGGCTGTTGGTCGAGGGCAAGCTTGCCAAGACCAACTACGTGGTCATCATCTGCGCCTGCCGCAGCGCGGCCATCGACTCCTGCATCGCCGTCACCGGTAAATACCAAGCCCGGATTCTTTCCGAGAGCCTTCTCACTCCTGCGGAGTACCAGAAGGAAGTCAATTACGAGCTGGTTACGGGGAAGGTAGACTCGCTGGGGGCCTTCTTTAGCACCCTCTGTCCAGAGGGTGACATTGACATTTTGCTGGACAAATTTCACCAGGAAAATCAAGGCCATATTTCTTCCTCACTCGCTGCCTCTTCTGTCACTAAAGCAGCATCCCTGGATGTCAGTGGGACACCGGTGTGCACAAGTTACAATCTGGAGCCACACAGCATCCGGCCCTTCCAGCTGGCAGTAGCGCAGAAGCTCCTCTCCCATGTGTGTTCCATTGCGGATTCCAGCACCCAAAATCTGGACCTGGGATCCTTTGAGAAGGTGGACTTTCTCATTTGCATTCCCCCCTCAGAAGTGACCTACCAGCAGACTCTGCTCCATGTGTGGCATTCAGGTGTTTTGCTGGAGCTTGGTCTGAAGAAAGAGCACATGACGAAGCAGAGGGTGGAACAGTATGTTCTGAAGCTAGACACGGAGGCACAGACAAAATTTAAGGCTTTTCTGCAAAACTCCTTCCAGAACCCGCATACACTTTTTGTCCTAATCCATGACCATGCGCACTGGGATCTTGTGAGTAGCACTGTTCATAACCTCTATTCTCAAAGTGACCCGTCGGTGGGATTGGTGGACCGATTGCTCAACTGCAGGGAGGTGAAGGAGGCCCCCAACATTGTGACACTTCACGTGACCTCCTTCCCGTATGCACTGCAGACACAGCACACCCTCATCAGCCCCTACAACGAGATCCACTGGCCTGCCTCCTGCAGTAATGGAGTGGACTTATATCATGAAAATAAGAAGTACTTCGGGCTGTCGGAGTTTATTGAATCCACCCTTTCAGGACACAGCCTCCCCTTGCTCAGATACGATAGCTCCTTTGAGGCCATGGTCACTGCATTAGGAAAAAGGTTCCCCCGCCTGCACAGCGCGGTGATCAGGACCTTTGTTCTCGTGCAGCACTACGCGGCCGCCCTGATGGCCGTAAGCGGCCTCCCGCAGATGAAGAACTACACGTCGGTGGAGACGCTGGAGATCACGCAGAACCTCCTCAACTCCCCGAAGCAGTGCCCCTGCGGCCACGGGCTCATGGTCCTGCTGCGGGTGCCCTGTTCGCCCCTGGCGGTGGTGGCCTATGAGCGGCTGGCCCACGTGCGGGCCCGGCTGGCGCTGGAGGAGCACTTTGAGATCATCCTGGGCAGTCCCAGCTCAGGCGTCACCGTGGGGAAGCACTTCGTAAAGCAGCTCAGGGTATGGCAGAAAATTGAGGATGTGGAGTGGAGACCCCAGACTTACTTGGAGCTGGAGGGTCTGCCTTGCATCCTGATCTTCAGTGGGATGGACCCGCATGGGGAGTCCTTGCCGAGGTCTTTGAGGTACTGTGACCTGCGATTGATAAACTCCTCCTGCTTGGTGAGAACAGCCTTGGAGCAGGAGCTGGGCCTGGCTGCCTACTTTGTGAGCAACGAGGTTCCCTTGGAGAAGGGGGCTAGGAACGAGGCCTTGGAGAGTGATGCTGAGAAGCTGAGCAGCACAGACAACGAGGATGAGGAGCTGGGGACAGAAGGCTCTACCTCGGAGAAGAGAAGCCCCATGAAAAGGGAGAGGTCCCGCTCCCACGACTCAGCATCCTCATCCCTCTCCTCCAAGGCTTCCGGTTCCGCGCTCGGTGGCGAGTCCTCGGCTCAGCCCACAGCACTCCCCCAGGGAGAGCATGCCAGGTCGCCCCAGCCCCGTGGCCCCGCAGAGGAGGGCAGAGCCCCTGGTGAGAAACAGAGGCCCCGGGCAAGTCAGGGGCCACCCTCGGCCATCAGCAGGCACAGTCCCGGGCCGACGCCCCAGCCCGACTGTAGCCTCAGGACCGGCCAGAGGAGCGTCCAGGTGTCGGTCACCTCGTCGTGCTCCCAGCTGTCCTCCTCCTCGGGCTCATCCTCCTCATCCGTGGCGCCCGCTGCCGGCACGTGGGTCCTGCAGGCCTCCCAGTGCTCCTTGACCAAGGCCTGCCGCCAGCCACCCATTGTCTTCTTGCCCAAGCTCGTGTACGACATGGTTGTGTCCACTGACAGCAGTGGCCTGCCCAAGGCCGCCTCCCTCCTGCCCTCCCCCTCGGTCATGTGGGCCAGCTCTTTCCGCCCCCTGCTCAGCAAGACCATGACATCCACCGAGCAGTCCCTCTACTACCGGCAGTGGACGGTGCCCCGGCCCAGCCACATGGACTACGGCAACCGGGCCGAGGGCCGCGTGGACGGCTTCCACCCCCGCAGGCTGCTGCTCAGCGGCCCCCCTCAGATCGGGAAGACAGGTGCCTACCTGCAGTTCCTCAGTGTCCTGTCCAGGATGCTTGTTCGGCTCACAGAAGTGGATGTCTATGACGAGGAGGAGATCAATATCAACCTGAGAGAAGAATCTGACTGGCATTATCTCCAGCTTAGCGACCCCTGGCCAGACCTGGAGCTGTTCAAGAAGTTGCCCTTTGACTACATCATTCACGACCCGAAGTATGAAGATGCCAGCCTGATTTGTTCGCACTATCAGGGTATAAAGAGTGAAGACAGAGGGATGTCCCGGAAGCCGGAGGACCTTTATGTGCGGCGTCAGACGGCACGGATGAGACTGTCCAAGTACGCAGCGTACAACACTTACCACCACTGTGAGCAGTGCCACCAGTACATGGGCTTCCACCCCCGCTACCAGCTGTATGAGTCCACCCTGCACGCCTTTGCCTTCTCTTACTCCATGCTAGGAGAGGAGATCCAGCTGCACTTCATCATCCCCAAGTCCAAGGAGCACCACTTTGTCTTCAGCCAACCTGGAGGCCAGCTGGAGAGCATGCGACTACCCCTCGTGACAGACAAGAGCCATGAATATATAAAAAGTCCGACATTCACTCCAACCACCGGCCGTCACGAACATGGGCTCTTTAATCTGTACCACGCAATGGACGGTGCCAGCCATTTGCACGTGCTGGTTGTCAAGGAATACGAGATGGCAATTTATAAGAAATATTGGCCCAACCACATCATGCTGGTGCTCCCCAGTATCTTCAACAGTGCTGGAGTTGGTGCTGCTCATTTCCTCATCAAGGAGCTGTCCTACCATAACCTGGAGCTCGAGCGGAACCGGCAGGAGGAGCTGGGAATCAAGCCGCAGGACATCTGGCCTTTCATTGTGATCTCTGATGACTCCTGCGTGATGTGGAACGTGGTGGATGTCAACTCTGCTGGGGAGAGAAGCAGGGAGTTCTCCTGGTCGGAAAGGAACGTGTCTTTGAAGCACATCATGCAGCACATCGAGGCGGCCCCCGACATCATGCACTACGCCCTGCTGGGCCTGCGGAAGTGGTCCAGCAAGACCCGGGCCAGCGAGGTGCAAGAGCCCTTCTCCCGCTGCCACGTGCACAACTTCATCATCCTGAACGTGGACCTGACCCAGAACGTGCAGTACAACCAGAACCGGTTCCTGTGTGACGATGTAGACTTCAACCTGCGGGTGCACAGCGCCGGCCTCCTGCTCTGCCGGTTCAACCGCTTCAGCGTGATGAAGAAGCAGATCGTGGTGGGCGGCCACAGGTCCTTCCACATCACATCCAAGGTGTCTGATAACTCTGCCGCGGTCGTGCCGGCCCAGTACATCTGTGCCCCGGACAGCAAGCACACGTTCCTCGCAGCGCCCGCCCAGCTCCTGCTGGAGAAGTTCCTGCAGCACCACAGCCACCTCTTCTTCCCGCTGTCCCTGAAGAACCATGACCACCCAGTGCTGTCTGTCGACTGTTACCTGAACCTGGGATCTCAGATTTCTGTTTGCTATGTGAGCTCCAGGCCCCACTCTTTAAACATCAGCTGCTCGGACTTGCTGTTCAGTGGGCTGCTGCTGTACCTCTGTGACTCTTTTGTGGGAGCTAGCTTTTTGAAAAAGTTTCATTTTCTGAAAGGTGCGACGTTGTGTGTCATCTGTCAGGACCGGAGCTCACTGCGCCAGACGGTCGTCCGCCTGGAGCTCGAGGACGAGTGGCAGTTCCGGCTGCGCGATGAGTTCCAGACCGCCAATGCCAGGGAAGACCGGCCGCTCTTTTTTCTGACGGGACGACACATCTGAGGAAGACAGCGGCGAGTTTTCTGAAGAGATGAGTGCTCAGAGCCCTCATGCTGTTGAGGCTAAAGGGAGGCCTGGAACGGTGGGGCGTTTGACTGGAATGGACCCCAGGGACTGTCCAGGTGCAGCCCCTCCTAGTACACATGGGCCCCCGAGGCCGTGGTCCTGGGAGCCAGGAAGACTCCGCAGTGGGTGAGAATGAAAACTTGAGACTCCCAAGTTCTGGGCCAGCCCATTGCTCTGGGCTGTTTTAAAGCCCATTTCACGAGGAACAAAGATTTACTTCCTGTCCTGCCATTCGTGTGCTTCCATGGACAAACCTGATTTTTTTCTCTTAGTTCTAAAGAATCTTGGGTTATTTTGTAGCGGTGCCAGTATTTCAGTAGATGGGATTTCAGCCAAGTAGGTTCCCCTGTAACCTCCTACAAAGCAATATTCCAAAGGAACATTTTAACTGTAAAGGCTGGAGACAAGAAAAAATAAGTAGATCGTTTTAATAACAATTATTTAATTGCCTATAAGTTTGCTGTTTCAGAGGCTAGCCCAAAGGCATCAAATTTAATAAAGTTAAACAAATTGATTTACTTCAGAGCAAATATGATCCTATTAAAATAATATAGGGTAAATACCCTACCTCTTAGAAAGGGCAAAAATGCAAAGAAGCTTTCTTTAAAACTAAAAGGGTTTTTTGGGGGGGGAGTTGGCGGGGAGGAAATAAGGCTAACAGAGGTTGACCTAAAATTAGCCTTACAAAGGAGAAAGGACCACATTGCTTACTTGAAACAGACAATGAAAACAACCAAAGTGATATATAAAATAGTTGATGAGAACTAGACTTATGACTGTAGTTTACTAGAGTTTAGTTTTCAGTTGCTGAAGTAGCTCATTTTCTCTTACTAATGTTTGGTTCCTCAGGGAAGAATCTCACTTGACTAGAGAGGAGGTGGGAACAGAAGAGAGAAGGAGGCAGGGAGATGTATTTCTTAGGGCTCACCCCTTCACAGACTGACAGAATGGTTTTGTTTTGTTTTGTTTTGTTTTGTTTTGTTTTTGAGATGGACTCTAGCTCTGTCACCCAGGCTGGAGTGCAGTGGTGCGATCTCGGCTCACTGCAAGCTCCGCCTCCCGGGTTCTCACCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCCACCACCACGCCCGGCTAATTTTTTGTATTTTTTAGTAGAGACGGGGTTTCACCATGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCCTGCCCCAGAATGGTTTTTAAAGCCACAGTTGAGAGGCCACCCATTGCCCGGCGCCTGGACAGTGATCATCTTGTTCATCTTGTTCAGTCCTTTCTTGTGTGATTGGAATTATTCATCCCCTTTGAAAGATGAGAAGGTTGAGATGCAAAGAGTCTACCTTTCCAAGTTCTCACTGCTGGAAAGAGCTAGAAGCACAGTTCAAAGTTCTGGCTTCTGGACTCTGCAGTCCAGGTCTCCCTTCTCCCACTTGCCTACCCTCAATGCCACACTGTTTTTGAAGTGGCCCATAACTTGAAGGAAAAGTTTAAAGACAGTTCAATTTAATCATCAGAATGCATTCTTTTTTTTTTCGGAGACGGAGTTTCACTCTTGCTGCCCAGGCTGGAGTGCAATGGTGCAATGATCTCGGCTCACTGCAACCTCTGCCTCCTGGGTTCAAGTGATTCTCCAGCCTCAGCCTCCCGAGTAGCTGGGATTATGGGCGCCCACCACCATGCCCAGCTAATTTTTGTATTTTTTTTTTTTAGTAGAGATGGGGTTTCGCCAGGTTGGCCAGGCTGGTCTTGTGAACTCCTGGCCTCAGGTGATCTGCCCACCTCATCCTCCAAAAGTGCTGGGATTACAGGCATGAGCCACTGCGCCTGGCCTCAGAATGCATTCTTACACATCTATCCTAGACATTTATAAGCACTCTAATGGATAACAATCCAAGAATAAATGATTGTAAAAGATGATGCCGAAGAGTTGATGTCAATCTTTTTTTCCTAAGAAAAAAAGTCCGCGAGTATTAAATATTTAGATCAATGTTTATAAAATGATTACTTTGTATATCTCATTATTCCTATTTTGGAATAAAAACTGACCTTCTTTAATCATATACTTGTCTTTTGTAAATAGCAGCTTTTGTGTCATTCTCCCCACTTTATTAGTTAATTTAAATTGGAAAAAACCCTCAAACTAATATTCTTGTCTGTTCCAGTCTTATAAATAAAACTTATAATGCATGORF Start: ATG at 301     ORF Stop: TGA at 6148SEQ ID NO: 2              1949 aa   MW at 216410.6kDNOV 1a,MGNSYAGQLKTTRFEEVLHNSIEASLRSNNLVPRPIFSQLYLEAEQQLAALEGGSRVDNEEEEEEGEGCG105472-01ProteinGLETNGPPNPFQLHPLPEGCCTTDGFCQAGKDLRLVSISNEPMDVPAGFLLVGVKSPSLPDHLLVCAVSequenceDKRFLPDDNGHNALLGFSGNCVGCGKKGFCYFTEFSNHINLKLTTQPKKQKHLKYYLVRNAQGTLTKGPLICWKGSEFRSRQIPASTCSSSLFPALESTAAFPSEPVPGTNPSILMGAQQAGPASDHPSLNAAMGPAVFNGKDSPKCQQLAKNNLLALPRPSALGILSNSGPPKKRHKGWSPESPSAPDGGCPQGGGNRAKYESAGMSCVPQVGLVGPASVTFPVVASGEPVSVPDNLLKICKAKPVIFKGDGNFPYLCGNLNDVVVSPLLYTCYQNSQSVSRAYEQYGASAIQPISEEMQLLLTVYYLVQLAADQVPLMEDLEQIFLRSWRESHLTEIRQYQQAPPQPFPPAPSAAAPVTSAQLPWLASLAASSCNDSVHVIECAYSLAEGLSEMFRLLVEGKLAKTNYVVIICACRSAAIDSCIAVTGKYQARILSESLLTPAEYQKEVNYELVTGKVDSLGAFFSTLCPEGDIDILLDKFHQENQGHISSSLAASSVTKAASLDVSGTPVCTSYNLEPHSIRPFQLAVAQKLLSHVCSIADSSTQNLDLGSFEKVDFLICIPPSEVTYQQTLLHVWHSGVLLELGLKKEHMTKQRVEQYVLKLDTEAQTKFKAFLQNSFQNPHTLFVLIHDHAHWDLVSSTVHNLYSQSDPSVGLVDRLLNCREVKEAPNIVTLHVTSFPYALQTQHTLISPYNEIHWPASCSNGVDLYHENKKYFGLSEFIESTLSGHSLPLLRYDSSFEAMVTALGKRFPRLHSAVIRTFVLVQHYAAALMAVSGLPQMKNYTSVETLEITQNLLNSPKQCPCGHGLMVLLRVPCSPLAVVAYERLAHVRARLALEEHFEIILGSPSSGVTVGKHFVKQLRVWQKIEDVEWRPQTYLELEGLPCILIFSGMDPHGESLPRSLRYCDLRLINSSCLVRTALEQELGLAAYFVSNEVPLEKGARNEALESDAEKLSSTDNEDEELGTEGSTSEKRSPMKRERSRSHDSASSSLSSKASGSALGGESSAQPTALPQGEHARSPQPRGPAEEGRAPGEKQRPRASQGPPSAISRHSPGPTPQPDCSLRTGQRSVQVSVTSSCSQLSSSSGSSSSSVAPAAGTWVLQASQCSLTKACRQPPIVFLPKLVYDMVVSTDSSGLPKAASLLPSPSVMWASSFRPLLSKTMTSTEQSLYYRQWTVPRPSHMDYGNRAEGRVDGFHPRRLLLSGPPQIGKTGAYLQFLSVLSRMLVRLTEVDVYDEEEININLREESDWHYLQLSDPWPDLELFKKLPFDYIIHDPKYEDASLICSHYQGIKSEDRGMSRKPEDLYVRRQTARMRLSKYAAYNTYHHCEQCHQYMGFHPRYQLYESTLHAFAFSYSMLGEEIQLHFIIPKSKEHHFVFSQPGGQLESMRLPLVTDKSHEYIKSPTFTPTTGRHEHGLFNLYHAMDGASHLHVLVVKEYEMAIYKKYWPNHIMLVLPSIFNSAGVGAAHFLIKELSYHNLELERNRQEELGIKPQDIWPFIVISDDSCVMWNVVDVNSAGERSREFSWSERNVSLKHIMQHIEAAPDIMHYALLGLRKWSSKTRASEVQEPFSRCHVHNFIILNVDLTQNVQYNQNRFLCDDVDFNLRVHSAGLLLCRFNRFSVMKKQIVVGGHRSFHITSKVSDNSAAVVPAQYICAPDSKHTFLAAPAQLLLEKFLQHHSHLFFPLSLKNHDHPVLSVDCYLNLGSQISVCYVSSRPHSLNISCSDLLFSGLLLYLCDSFVGASFLKKFHFLKGATLCVICQDRSSLRQTVVRLELEDEWQFRLRDEFQTANAREDRPLFFLTGRHI


[0365] Further analysis of the NOV1a protein yielded the following properties shown in Table 1B.
3TABLE 1BProtein Sequence Properties NOV1aPSort0.6400 probability located in plasma membrane; 0.4000analysis:probability located in Golgi body; 0.3000 probabilitylocated in endoplasmic reticulum (membrane); 0.3000probability located in microbody (peroxisome)SignalPNo Known Signal Sequence Predictedanalysis:


[0366] A search of the NOV1a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1C.
4TABLE 1CGeneseq Results for NOV1aIdentities/NOV1aSimilaritiesProtein/Residues/for theGeneseqOrganism/LengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABG61876Prostate cancer-1003 . . . 1949946/9470.0associated protein(99%)#77—Mammalia, 1 . . . 947947/947947 aa.(99%)[WO200230268-A2, 18 APR.2002]AAB95517Human protein 775 . . . 1606399/8350.0sequence SEQ ID(47%)NO: 18089— 59 . . . 854534/835Homo sapiens,(63%)875 aa.[EP1074617-A2,7 FEB. 2001]AAO04442Human poly-1190 . . . 1301110/1125e−56peptide SEQ ID(98%)NO 18334— 1 . . . 112110/112Homo sapiens,(98%)112 aa.[WO200164835-A2, 7 SEP. 2001]ABG00933Novel human109 . . . 258101/1509e−51diagnostic protein(67%)#924—Homo 2 . . . 145115/150sapiens, 172 aa.(76%)[WO200175067-A2, 11 OCT.2001]ABG07439Novel human1223 . . . 1348 61/1285e−24diagnostic protein(47%)#7430—Homo 4 . . . 131 75/128sapiens, 175 aa.(57%)[WO200175067-A2, 11 OCT.2001]


[0367] In a BLAST search of public sequence datbases, the NOV1a protein was found to have homology to the proteins shown in the BLASTP data in Table 1D.
5TABLE 1DPublic BLASTP Results for NOV1aIdentities/NOV1aSimilaritiesProteinResidues/for theAccessionProtein/MatchMatchedExpectNumberOrganism/LengthResiduesPortionValueQ9JLG7Kiaa0575—Mus  1 . . . 19491729/19570.0musculus (Mouse),(88%)1954 aa.  1 . . . 19541818/1957(92%)Q9H2Q8GREB1a—Homo  1 . . . 1001 999/10010.0sapiens (Human),(99%)1001 aa (fragment).  1 . . . 1001 999/1001(99%)O60321KIAA05751003 . . . 1949946/9470.0protein—Homo(99%)sapiens (Human), 1 . . . 947947/947947 aa.(99%)Q9CYA38 days embryo1439 . . . 1949471/5110.0cDNA, RIKEN full-(92%)length enriched 1 . . .511492/511library, clone:(96%)5730583K22, fullinsert sequence—Mus musculus(Mouse), 511 aa.Q9H2Q7GREB1b—Homo 1 . . . 449448/4490.0sapiens (Human),(99%)457 aa. 1 . . . 449448/449(99%)


[0368] PFam analysis predicts that the NOV1a protein contains the domains shown in the Table 1E.
6TABLE 1EDomain Analysis of NOV1aPfamNOV1aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValuezf-C41898 . . . 1908 5/11 (45%)0.610/11 (91%)



Example 2

[0369] The NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.
7TABLE 2ANOV2 Sequence AnalysisSEQ ID NO: 3              4995 bpNOV2a,GCCGCGCCGAGGAGGCTGCCGCTCTGGCTTGCCGCCCCCCGCCGCCGCTGCACACCGGACCCAGCCGCCG106287-01DNA SequenceCGTGCCGCGGGCCATGGACCTGCCCAGGGGCCTGGTGGTGGCCTGGGCGCTCAGCCTGTGGCCAGGGTTCACGGACACCTTCAACATGGACACCAGGAAGCCCCGGGTCATCCCTGGCTCCAGGACCGCCTTCTTTGGCTACACAGTGCAGCAGCACGACATCAGTGGCAATAAGTGGCTGGTCGTGGGCGCCCCACTGGAAACCAATGGCTACCAGAAGACGGGAGACGTGTACAAGTGTCCAGTGATCCACGGGAACTGCACCAAACTCAACCTGGGAAGGGTCACCCTGTCCAACGTGTCCGAGCGGAAAGACAACATGCGCCTCGGCCTTAGTCTCGCCACCAACCCCAAGGACAACAGCTTCCTGGCCTGCAGCCCCCTCTGGTCTCATGAGTGTGGGAGCTCCTACTACACCACAGGGATGTGTTCAAGAGTCAACTCCAACTTCAGGTTCTCCAAGACCGTGGCCCCAGCTCTCCAAAGGTGCCAGACCTACATGGACATCGTCATTGTCCTGGATGGCTCCAACAGCATCTACCCCTGGGTGGAGGTTCAGCACTTCCTCATCAACATCCTGAAAAAGTTTTACATTGGCCCAGGGCAGATCCAGGTTGGAGTTGTGCAGTATGGCGAAGATGTGGTGCATGAGTTTCACCTCAATGACTACAGGTCTGTAAAAGATGTGGTGGAAGCTGCCAGCCACATTGAGCAGAGAGGAGGAACAGAGACCCGGACGGCATTTGGCATTGAATTTGCACGCTCAGAGGCTTTCCAGAAGGGTGGAAGGAAAGGAGCCAAGAAGGTGATGATTGTCATCACAGATGGGGAGTCCCACGACAGCCCAGACCTGGAGAAGGTGATCCAGCAAAGCGAAAGAGACAACGTAACAAGATATGCGGTGGCCGTCCTGGGCTACTACAACCGCAGGGGGATCAATCCAGAAACTTTTCTAAATGAAATCAAATACATCGCCAGTGACCCTGATGACAAGCACTTCTTCAATGTCACTGATGAGGCTGCCTTGAAGGACATTGTCGATGCCCTGGGGGACAGAATCTTCAGCCTGGAAGGCACCAACAAGAACGAGACCTCCTTTGGGCTGGAGATGTCACAGACGGGCTTTTCCTCGCACGTGGTGGAGGATGGGGTTCTGCTGGGAGCCGTCGGTGCCTATGACTGGAATGGAGCTGTGCTAAAGGAGACGAGTGCCGGGAAGGTCATTCCTCTCCGCGAGTCCTACCTGAAAGAGTTCCCCGAGGAGCTCAAGAACCATGGTGCATACCTGGGGTACACAGTCACATCGGTCGTGTCCTCCAGGCAGGGGCGAGTGTACGTGGCCGGAGCCCCCCGGTTCAACCACACGGGCAAGGTCATCCTGTTCACCATGCACAACAACCGGAGCCTCACCATCCACCAGGCTATGCGGGGCCAGCAGATAGGCTCTTACTTTGGGAGTGAAATCACCTCGGTGGACATCGACGGCGACGGCGTGACTGATGTCCTGCTGGTGGGCGCACCCATGTACTTCAACGAGGGCCGTGAGCGAGGCAAGGTGTACGTCTATGAGCTGAGACAGAACCGGTTTGTTTATAACGGAACGCTAAAGGATTCACACAGTTACCAGAATGCCCGATTTGGGTCCTCCATTGCCTCAGTTCGAGACCTCAACCAGGATTCCTACAATGACGTGGTGGTGGGAGCCCCCCTGGAGGACAACCACGCAGGAGCCATCTACATCTTCCACGGCTTCCGAGGCAGCATCCTGAAGACACCTAAGCAGAGAATCACAGCCTCAGAGCTGGCTACCGGCCTCCAGTATTTTGGCTGCAGCATCCACGGGCAATTGGACCTCAATGAGGATGGGCTCATCGACCTGGCAGTGGGAGCCCTTGGCAACGCTGTGATTCTGTGGTCCCGCCCAGTGGTTCAGATCAATGCCAGCCTCCACTTTGAGCCATCCAAGATCAACATCTTCCACAGAGACTGCAAGCGCAGTGGCAGGGATGCCACCTGCCTGGCCGCCTTCCTCTGCTTCACGCCCATCTTCCTGGCACCCCATTTCCAAACAACAACTGTTGGCATCAGATACAACGCCACCATGGATGAGAGGCGGTATACACCGAGGGCCCACCTGGACGAGGGCGGGGACCGATTCACCAACAGAGCCGTACTGCTCTCCTCCGGCCAGGAGCTCTGTGAGCGGATCAACTTCCATGTCCTGGACACTGCTGACTACGTGAAGCCAGTGACCTTCTCAGTCGAGTATTCCCTGGAGGACCCTGACCATGGCCCCATGCTGGACGACGGCTGGCCCACCACTCTCAGAGTCTCGGTGCCCTTCTGGAACGGCTGCAATGAGGATGAGCACTGTGTCCCTGACCTTGTGTTGGATGCCCGGAGTGACCTGCCCACGGCCATGGAGTACTGCCAGAGGGTGCTGAGGAAGCCTGCGCAGGACTGCTCCGCATACACGCTGTCCTTCGACACCACAGTCTTCATCATAGAGAGCACACGCCAGCGAGTGGCGGTGGAGGCCACACTGGAGAACAGGGGCGAGAACGCCTACAGCACGGTCCTAAATATCTCGCAGTCAGCAAACCTGCAGTTTGCCAGCTTGATCCAGAAGGAGGACTCAGACGGTAGCATTGAGTGTGTGAACGAGGAGAGGAGGCTCCAGAAGCAAGTCTGCAACGTCAGCTATCCCTTCTTCCGGGCCAAGGCCAAGGTGGCTTTCCGTCTTGATTTTGAGTTCAGCAAATCCATCTTCCTACACCACCTGGAGATCGAGCTCGCTGCAGGCAGTGACAGTAATGAGCGGGACAGCACCAAGGAAGACAACGTGGCCCCCTTACGCTTCCACCTCAAATACGAGGCTGACGTCCTCTTCACCAGGAGCAGCAGCCTGAGCCACTACGAGGTCAAGCTCAACAGCTCGCTGGAGAGATACGATGGTATCGGGCCTCCCTTCAGCTGCATCTTCAGGATCCAGAACTTGGGCTTGTTCCCCATCCACGGGATTATGATGAAGATCACCATTCCCATCGCCACCAGGAGCGGCAACCGCCTACTGAAGCTGAGGGACTTCCTCACGGACGAGGTAGCGAACACGTCCTGTAACATCTGGGGCAATAGCACTGAGTACCGGCCCACCCCAGTGGAGGAAGACTTGCGTCGTGCTCCACAGCTGAATCACAGCAACTCTGATGTCGTCTCCATCAACTGCAATATACGGCTGGTCCCCAACCAGGAAATCAATTTCCATCTACTGGGGAACCTGTGGTTGAGGTCCCTAAAAGCACTCAAGTACAAATCCATGAAAATCATGGTCAACGCAGCCTTGCAGAGGCAGTTCCACAGCCCCTTCATCTTCCGTGAGGAGGATCCCAGCCGCCAGATCGTGTTTGAGATCTCCAAGCAAGAGGACTGGCAGGTCCCCATCTGGATCATTGTAGGCAGCACCCTGGGGGGCCTCCTACTGCTGGCCCTGCTGGTCCTGGCACTGTGGAAGCTCGGCTTCTTTAGAAGTGCCAGGCGCAGGAGGGAGCCTGGTCTGGACCCCACCCCCAAAGTGCTGGAGTGAGGCTCCAGAGGAGACTTTGAGTTGATGGGGGCCAGGACACCAGTCCAGGTAGTGTTGAGACCCAGGCCTGTGGCCCCACCGAGCTGGAGCGGAGAGGAAGCCAGCTGGCTTTGCACTTGACCTCATCTCCCGAGCAATGGCGCCTGCTCCCTCCAGAATGGAACTCAAGCTGGTTTTAAGTGGAACTGCCCTACTGGGAGACTGGGACACCTTTAACACAGACCCCTAGGGATTTAAAGGGACACCCCTACACACACCCAGGCCCACGCCAAGGCCTCCCTCAGGCTCTGTGGAGGGCATTTGCTGCCCCAGCTACTAAGGTGCTAGGAATTCGTAATCATCCCCATCCTCCAGAGAAACCCAGGGAGGAAGACTGTAAATACGAACCCAATCTGCACACTCCAGGCCTCTAGTTCCAGAAGGATCCAAGACAAAACAGATCTGAATTCTGCCCTTTTCTCTCACCCATCCCACCCCTCCATTGGCTCCCAAGTCACACCCACTCCCTTCCCCATAGATAGGCCCCTGGGGCTCCCGAAGAATGAACCCAAGAGCAAGGGCTTGATGGTGACAGCTGCAAGCCAGGGATGAAGAAAGACTCTGAGATGTGGAGACTGATGGCCAGGCAAGTGGGACCAGGATACTGGACGCTGTCCTGAGATGAGAGGTAGCCGGGCTCTGCACCCACGTGCATTCACATTGACCGCAACTCACACATTCCCCCACCAGCTGCAGCCCCTTGCTCTCAGCTGCCAACCCTCCCGGGTCACTTTTGTTCCCAGGTACCTCATGGGAAGCATGTGGATGACACAATCCCTGGGGCTGTGCATTCCCACGTCTTCTTGCTGCAGCCTGCCCCTAGACATGGACGCACCGGCCTGGCTGCAGCTGGGCAGCAGGGGTAGGGGTAGGGAGCCTCCCCTCCCTGTATCACCCCCTCCCTACACACACACACACACACACACACACACACTGCCTCCCATCCTTCCCTCATGCCCGCCAGTGCACAGGGAAGGGCTTGGCCAGCGCTGTTGAGGGGTCCCCTCTGGAATGCACTGAATAAAGCACGTGCAAGGACTCCCGGAGCCTGTGCAGCCTTGGTGGCAAATATCTCATCTGCCGGCCCCCAGGACAAGTGGTATGACCAGTGATAATGCCCCAAGGACAAGGGGCGTGCCTGGCGCCCAGTGGAGTAATTTATGCCTTAGTCTTGTTTTGAGGTAGAAATGCAAGGGGGACACATGAAAGGCATCAGTCCCCCTGTGCATAGTACGACCTTTACTGTCGTATTTTTGAAAAATTAAAAATACAGTGTTTAAAAACAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 82      ORF Stop: TGA at 3649SEQ ID NO: 4              1189 aa   MW at 133608.9kDNOV2a,MDLPRGLVVAWALSLWPGFTDTFNMDTRKPRVIPGSRTAFFGYTVQQHDISGNKWLVVGAPLETNGYQCG106287-01ProteinKTGDVYKCPVIHGNCTKLNLGRVTLSNVSERKDNMRLGLSLATNPKDNSFLACSPLWSHECGSSYYTTSequenceGMCSRVNSNFRFSKTVAPALQRCQTYMDIVIVLDGSNSIYPWVEVQHFLINILKKFYIGPGQIQVGVVQYGEDVVHEFHLNDYRSVKDVVEAASHIEQRGGTETRTAFGIEFARSEAFQKGGRKGAKKVMIVITDGESHDSPDLEKVIQQSERDNVTRYAVAVLGYYNRRGINPETFLNEIKYIASDPDDKHFFNVTDEAALKDIVDALGDRIFSLEGTNKNETSFGLENSQTGFSSHVVEDGVLLGAVGAYDWNGAVLKETSAGKVIPLRESYLKEFPEELKNHGAYLGYTVTSVVSSRQGRVYVAGAPRFNHTGKVILFTMHNNRSLTIHQAMRGQQIGSYFGSEITSVDIDGDGVTDVLLVGAPMYFNEGRERGKVYVYELRQNRFVYNGTLKDSHSYQNARFGSSIASVRDLNQDSYNDVVVGAPLEDNHAGAIYIFHGFRGSILKTPKQRITASELATGLQYFGCSIHGQLDLNEDGLIDLAVGALGNAVILWSRPVVQINASLHFEPSKINIFHRDCKRSGRDATCLAAFLCFTPIFLAPHFQTTTVGIRYNATMDERRYTPRAHLDEGGDRFTNRAVLLSSGQELCERINFHVLDTADYVKPVTFSVEYSLEDPDHGPMLDDGWPTTLRVSVPFWNGCNEDEHCVPDLVLDARSDLPTAMEYCQRVLRKPAQDCSAYTLSFDTTVFIIESTRQRVAVEATLENRGENAYSTVLNISOSANLQFASLIQKEDSDGSIECVNEERRLQKQVCNVSYPFFRAKAKVAFRLDFEFSKSIFLHHLEIELAAGSDSNERDSTKEDNVAPLRFHLKYEADVLFTRSSSLSHYEVKLNSSLERYDGIGPPFSCIFRIQNLGLFPIHGIMMKITIPIATRSGNRLLKLRDFLTDEVANTSCNIWGNSTEYRPTPVEEDLRRAPQLNHSNSDVVSINCNIRLVPNQEINFHLLGNLWLRSLKALKYKSMKIMVNAALQRQFHSPFIFREEDPSRQIVFEISKQEDWQVPIWIIVGSTLGGLLLLALLVLALWKLGFFRSARRRREPGLDPTPKVLESEQ ID NO: 5              4779 bpNOV2b,AGGAGGCTGCCGCTCTGGCTTGCCGCCCCCCGCCGCCGCTGCACACCGGACCCAGCCGCCGTGCCGCCG106287-02DNA SequenceGGGCCATGGACCTGCCCAGGGGCCTGGTGGTGGCCTGGGCGCTCAGCCTGTGCCCAGGTTTCACGGACACCTTCAACATGGACACCAGGAAGCCCCGGGTCATCCCTGGCTCCAGGACCGCCTTCTTTGGCTACACAGTGCAGCAGCACGACATCAGTGGCAATAAGTGGCTGGTCGTGGGCGCCCCACTGGAAACCAATGGCTACCAGAAGACGGGAGACGTGTACAAGTGTCCAGTGATCCACGGGAACTGCACCAAACTCAACCTGGGGTGCCAGACCTACATGGACATCGTCATTGTCCTGGATGGCTCCAACAGCATCTACCCCTGGGTGGAGGTTCAGCACTTCCTCATCAACATCCTGAAAAAGTTTTACATTGGCCCAGGGCAGATCCAGGTTCGAGTTGTGCAGTATGGCGAAGATGTGGTGCATGAGTTTCACCTCAATGACTACAGGTCTGTAAAAGATGTGGTGGAAGCTGCCAGCCACATTGAGCAGAGAGGAGGAACAGAGACCCGGACGGCATTTGGCATTGAATTTGCACGCTCAGAGGCTTTCCAGAAGGGTGGAAGGAAAGGAGCCAAGAAGGTGATGATTGTCATCACAGATGGGGAGTCCCACGACAGCCCAGACCTGGAGAAGGTGATCCAGCAAAGCGAAAGAGACAACGTAACAAGATATGCGGTGGCCGTCCTGGGCTACTACAACCGCAGGGGGATCAATCCAGAAACTTTTCTAAATGAAATCAAATACATCGCCAGTGACCCTGATGACAAGCACTTCTTCAATGTCACTGATGAGGCTGCCTTGAAGGACATTGTCGATGCCCTGGGGGACAGAATCTTCAGCCTGGAAGGCACCAACAAGAACGAGACCTCCTTTGGGCTGGAGATGTCACAGACGGGCTTTTCCTCGCACGTGGTGGAGGATGGGGTTCTGCTGGGAGCCGTCGGTGCCTATGACTGGAATGGAGCTGTGCTAAAGGAGACGAGTGCCGGGAAGGTCATTCCTCTCCGCGAGTCCTACCTGAAAGAGTTCCCCGAGGAGCTCAAGAACCATGGTGCATACCTGGGGTACACAGTCACATCGGTCGTGTCCTCCAGGCAGGGGCGAGTGTACGTGGCCGGAGCCCCCCGGTTCAACCACACGGGCAAGGTCATCCTGTTCACCATGCACAACAACCGGAGCCTCACCATCCACCAGGCTATGCGGGGCCAGCAGATAGGCTCTTACTTTGGGAGTGAAATCACCTCGGTGGACATCGACGGCGACGGCGTGACTGATGTCCTGCTGGTGGGCGCACCCATGTACTTCAACGAGGGCCGTGAGCGAGGCAAGGTGTACGTCTATGAGCTGAGACAGAACCGGTTTGTTTATAACGGAACGCTAAAGGATTCACACAGTTACCAGAATGCCCGATTTGGGTCCTCCATTGCCTCAGTTCGAGACCTCAACCAGGATTCCTACAATGACGTGGTGGTGGGAGCCCCCCTGGAGGACAACCACGCAGGAGCCATCTACATCTTCCACGGCTTCCGAGGCAGCATCCTGAAGACACCTAAGCAGAGAATCACAGCCTCAGAGCTGGCTACCGGCCTCCAGTATTTTGGCTGCAGCATCCACGGGCAATTGGACCTCAATGAGGATGGGCTCATCGACCTGGCAGTGGGAGCCCTTGGCAACGCTGTGATTCTGTGGTCCCGCCCAGTGGTTCAGATCAATGCCAGCCTCCACTTTGAGCCATCCAAGATCAACATCTTCCACAGAGACTGCAAGCGCAGTGGCAGGGATGCCACCTGCCTGGCCGCCTTCCTCTGCTTCACGCCCATCTTCCTGGCACCCCATTTCCAAACAACAACTGTTGGCATCAGATACAACGCCACCATGGATGAGAGGCGGTATACACCGAGGGCCCACCTGGACGAGGGCGGGGACCGATTCACCAACAGAGCCGTACTGCTCTCCTCCGGCCAGGAGCTCTGTGAGCGGATCAACTTCCATGTCCTGGACACTGCTGACTACGTGAAGCCAGTGACCTTCTCAGTCGAGTATTCCCTGGAGGACCCTGACCATGGCCCCATGCTGGACGACGGCTGGCCCACCACTCTCAGAGTCTCGGTGCCCTTCTGGAACGGCTGCAATGAGGATGAGCACTGTGTCCCTGACCTTGTGTTGGATGCCCGGAGTGACCTGCCCACGGCCATGGAGTACTGCCAGAGGGTGCTGAGGAAGCCTGCGCAGGACTGCTCCGCATACACGCTGTCCTTCGACACCACAGTCTTCATCATAGAGAGCACACGCCAGCGAGTGGCGGTGGAGGCCACACTGGAGAACAGGGGCGAGAACGCCTACAGCACGGTCCTAAATATCTCGCAGTCAGCAAACCTGCAGTTTGCCAGCTTGATCCAGAAGGAGGACTCAGACGGTAGCATTGAGTGTGTGAACGAGGAGAGGAGGCTCCAGAAGCAAGTCTGCAACGTCAGCTATCCCTTCTTCCGGGCCAAGGCCAAGGTGGCTTTCCGTCTTGATTTTGAGTTCAGCAAATCCATCTTCCTACACCACCTGGAGATCGAGCTCGCTGCAGGCAGTGACAGTAATGAGCGGGACAGCACCAAGGAAGACAACGTGGCCCCCTTACGCTTCCACCTCAAATACGAGGCTGACGTCCTCTTCACCAGGAGCAGCAGCCTGAGCCACTACGAGGTCAAGCTCAACAGCTCGCTGGAGAGATACGATGGTATCGGGCCTCCCTTCAGCTGCATCTTCAGGATCCAGAACTTGGGCTTGTTCCCCATCCACGGGATTATGATGAAGATCACCATTCCCATCGCCACCAGGAGCGGCAACCGCCTACTGAAGCTGAGGGACTTCCTCACGGACGAGGTAGCGAACACGTCCTGTAACATCTGGGGCAATAGCACTGAGTACCGGCCCACCCCAGTGGAGGAAGACTTGCGTCGTGCTCCACAGCTGAATCACAGCAACTCTGATGTCGTCTCCATCAACTGCAATATACGGCTGGTCCCCAACCAGGAAATCAATTTCCATCTACTGGGGAACCTGTGGTTGAGGTCCCTAAAAGCACTCAAGTACAAATCCATGAAAATCATGGTCAACGCAGCCTTGCAGAGGCAGTTCCACAGCCCCTTCATCTTCCGTGAGGAGGATCCCAGCCGCCAGATCGTGTTTGAGATCTCCAAGCAAGAGGACTGGCAGGTCCCCATCTGGATCATTGTAGGCAGCACCCTGGGGGGCCTCCTACTGCTGGCCCTGCTGGTCCTGGCACTGTGGAAGCTCGGCTTCTTTAGAAGTGCCAGGCGCAGGAGGGAGCCTGGTCTGGACCCCACCCCCAAAGTGCTGGAGTGAGGCTCCAGAGGAGACTTTGAGTTGATGGGGGCCAGGACACCAGTCCAGGTAGTGTTGAGACCCAGGCCTGTGGCCCCACCGAGCTGGAGCGGAGAGGAAGCCAGCTGGCTTTGCACTTGACCTCATCTCCCGAGCAATGGCGCCTGCTCCCTCCAGAATGGAACTCAAGCTGGTTTTAAGTGGAACTGCCCTACTGGGAGACTGGGACACCTTTAACACAGACCCCTAGGGATTTAAAGGGACACCCCTACACACACCCAGGCCCACGCCAAGGCCTCCCTCAGGCTCTGTGGAGGGCATTTGCTGCCCCAGCTACTAAGGTGCTAGGAATTCGTAATCATCCCCATCCTCCAGAGAAACCCAGGGAGGAAGACTGTAAATACGAACCCAATCTGCACACTCCAGGCCTCTAGTTCCAGAAGGATCCAAGACAAAACAGATCTGAATTCTGCCCTTTTCTCTCACCCATCCCACCCCTCCATTGGCTCCCAAGTCACACCCACTCCCTTCCCCATAGATAGGCCCCTGGGGCTCCCGAAGAATGAACCCAAGAGCAAGGGCTTGATGGTGACAGCTGCAAGCCAGGGATGAAGAAAGACTCTGAGATGTGGAGACTGATGGCCAGGCAAGTGGGACCAGGATACTGGACGCTGTCCTGAGATGAGAGGTAGCCGGGCTCTGCACCCACGTGCATTCACATTGACCGCAACTCACACATTCCCCCACCAGCTGCAGCCCCTTGCTCTCAGCTGCCAACCCTCCCGGGTCACTTTTGTTCCCAGGTACCTCATGGGAAGCATGTGGATGACACAATCCCTGGGGCTGTGCATTCCCACGTCTTCTTGCTGCAGCCTGCCCCTAGACATGGACGCACCGGCCTGGCTGCAGCTGGGCAGCAGGGGTAGGGGTAGGGAGCCTCCCCTCCCTGTATCACCCCCTCCCTACACACACACACACACACACACACACACACTGCCTCCCATCCTTCCCTCATGCCCGCCAGTGCACAGGGAAGGGCTTGGCCAGCGCTGTTGAGGGGTCCCCTCTGGAATGCACTGAATAAAGCACGTGCAAGGACTCCCGGAGCCTGTGCAGCCTTGGTGGCAAATATCTCATCTGCCGGCCCCCAGGACAAGTGGTATGACCAGTGATAATGCCCCAAGGACAAGGGGCGTGCCTGGCGCCCAGTGGAGTAATTTATGCCTTAGTCTTGTTTTGAGGTAGAAATGCAAGGGGGACACATGAAAGGCATCAGTCCCCCTGTGCATAGTACGACCTTTACTGTCGTATTTTTGAAAAATTAAAAATACAGTGTTTAAAAACAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 73      ORF Stop: TGA at 3433SEQ ID NO: 6              1120 aa   MW at 125924.3kDNOV2b,MDLPRGLVVAWALSLWPGFTDTFNMDTRKPRVIPGSRTAFFGYTVQQHDISGNKWLVVGAPLETNGYCG106287-02ProteinQKTGDVYKCPVIHGNCTKLNLGCQTYMDIVIVLDGSNSIYPWVEVQHFLINILKKFYIGPGQIQVGVSequenceVQYGEDVVHEFHLNDYRSVKDVVEAASHIEQRGGTETRTAFGIEFARSEAFQKGGRKGAKKVMIVITDGESHDSPDLEKVIQQSERDNVTRYAVAVLGYYNRRGINPETFLNEIKYIASDPDDKHFFNVTDEAALKDIVDALGDRIFSLEGTNKNETSFGLEMSQTGFSSHVVEDGVLLGAVGAYDWNGAVLKETSAGKVIPLRESYLKEFPEELKNHGAYLGYTVTSVVSSRQGRVYVAGAPRFNHTGKVILFTMHNNRSLTIHQAMRGQQIGSYFGSEITSVDIDGDGVTDVLLVGAPMYFNEGRERGKVYVYELRQNRFVYNGTLKDSHSYQNARFGSSIASVRDLNQDSYNDVVVGAPLEDNHAGAIYIFHGFRGSILKTPKQRITASELATGLQYFGCSIHGQLDLNEDGLIDLAVGALGNAVILWSRPVVQINASLHFEPSKINIFHRDCKRSGRDATCLAAFLCFTPIFLAPHFQTTTVGIRYNATMDERRYTPRAHLDEGGDRFTNRAVLLSSGQELCERINFHVLDTADYVKPVTFSVEYSLEDPDHGPMLDDGWPTTLRVSVPFWNGCNEDEHCVPDLVLDARSDLPTAMEYCQRVLRKPAQDCSAYTLSFDTTVFIIESTRQRVAVEATLENRGENAYSTVLNISQSANLQFASLIQKEDSDGSIECVNEERRLQKQVCNVSYPFFRAKAKVAFRLDFEFSKSIFLHHLEIELAAGSDSNERDSTKEDNVAPLRFHLKYEADVLFTRSSSLSHYEVKLNSSLERYDGIGPPFSCIFRIQNLGLFPIHGIMMKITIPIATRSGNRLLKLRDFLTDEVANTSCNIWGNSTEYRPTPVEEDLRRAPOLNHSNSDVVSINCNIRLVPNQEINFHLLGNLWLRSLKALKYKSMKIMVNAALQRQFHSPFIFREEDPSRQIVFEISKQEDWQVPIWIIVGSTLGGLLLLALLVLALWKLGFFRSARRRREPGLDPTPKVLE


[0370] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 2B.
8TABLE 2BComparison of NOV2a against NOV2b.ProteinNOV2a Residues/Identities/SimilaritiesSequenceMatch Residuesfor the Matched RegionNOV2b159 . . . 11891017/1031 (98%) 90 . . . 11201017/1031 (98%)


[0371] Further analysis of the NOV2a protein yielded the following properties shown in Table 2C.
9TABLE 2CProtein Sequence Properties NOV2aPSort0.6400 probability located in plasma membrane; 0.4600analysis:probability located in Golgi body; 0.3700 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 23 and 24analysis:


[0372] A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2D.
10TABLE 2DGeneseq Results for NOV2aIdentities/NOV2aSimilaritiesProtein/Residues/for theGeneseqOrganism/LengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB25582ITGA11 protein1 . . . 11891189/11890.0encoded by human(100%) secreted protein1 . . . 11891189/1189gene #7—Homo(100%) sapiens, 1189 aa.[WO200029435-A1,25 MAY 2000]ABG12949Novel human1 . . . 11891188/11890.0diagnostic protein(99%)#12940—Homo1 . . . 11891189/1189sapiens, 1189 aa.(99%)[WO200175067-A2,11 OCT. 2001]AAU10551Human A259 poly-1 . . . 11891186/11890.0peptide—Homo(99%)sapiens, 1188 aa.1 . . . 11881187/1189[WO200181414-A2,(99%)1 NOV. 2001]AAB50085Human A259—1 . . . 11891186/11890.0Homo sapiens,(99%)1188 aa.1 . . . 11881187/1189[WO200073339-A1,(99%)7 DEC. 2000]AAU14231Human novel1 . . . 11891186/11890.0protein #102—(99%)Homo sapiens,1 . . . 11881187/11891188 aa.(99%)[WO200155437-A2,2 AUG. 2001]


[0373] In a BLAST search of public sequence datbases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2E.
11TABLE 2EPublic BLASTP Results for NOV2aIdentities/NOV2aSimilaritiesProteinResidues/for theAccessionProtein/MatchMatchedExpectNumberOrganism/LengthResiduesPortionValueQ9UKX5Integrin alpha-11 1 . . . 11891189/11890.0precursor—Homo(100%) sapiens (Human), 1 . . . 11891189/11891189 aa.(100%) CAD28200Sequence 1 1 . . . 11891186/11890.0from Patent(99%)WO0181414— 1 . . . 11881187/1189Homo sapiens(99%)(Human),1188 aa.CAD28203Sequence 19 1 . . . 11891073/11890.0from Patent(90%)WO0181414— 1 . . . 11881130/1189Mus musculus(94%)(Mouse), 1188 aa.Q8WY18MSTP018—366 . . . 1189822/8240.0Homo sapiens(99%)(Human), 823 aa. 1 . . . 823823/824(99%)O75578Integrin alpha-10 1 . . . 1170 513/11810.0precursor—Homo(43%)sapiens (Human), 1 . . . 1150 723/11811167 aa.(60%)


[0374] PFam analysis predicts that the NOV2a protein contains the domains shown in the Table 2F.
12TABLE 2FDomain Analysis of NOV2aPfamNOV2aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueFG-GAP38 . . . 94 19/65 (29%)  2e−08 39/65 (60%)vwa164 . . . 34565/208 (31%)8.1e−54155/208 (75%) FG-GAP422 . . . 475 13/65 (20%)4.2e−06 42/65 (65%)FG-GAP477 . . . 537 23/65 (35%)2.6e−12 48/65 (74%)FG-GAP539 . . . 598 24/67 (36%)1.6e−15 53/67 (79%)FG-GAP601 . . . 653 20/66 (30%)3.2e−09 42/66 (64%)



Example 3

[0375] The NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.
13TABLE 3ANOV3 Sequence AnalysisSEQ ID NO: 7              1915 bpNOV3a,CCCGGGGGACCCGCCGCCGCCGGTCATGTGGGCCGGACTGCTCCTTCGGGCCGCCTGTGTCGCGCTCCCG106417-01DNA SequenceTGCTGCCGGGGGCACCAGCCCGAGGCTACACCGGGAGGAAGCCGCCCGGGCACTTCGCGGCCGAGAGGAGACGCCGACTGGGCCCCCACGTCTGCCTCTCTGGGTTTGGGAGTGGCTGCTGCCCTGGCTGGGCGCCCTCTATGGGTGGTGGGCACTGCACCCTGCGTAAGCTCTGCTCCTTCGGCTGTGGGAGTGGCATCTGCATCGCTCCCAATGTCTGCTCCTGCCAGGATGGAGAGCAAGGGGCCACCTGCCCAGAAACCCATGGACCATGTGGGGAGTACGGCTGTGACCTTACCTGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGGAGACAGCTGTTGGCATCAGGTGTACAGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGTGTGAACACAGAAGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAGCTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCTACAAGTGTTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGACGCAAACGAGTGTCGGACGCCATCGGAGACGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCGTATGCACATGCGGACCTGGTTTCAGGTTCGGAGCTGACCGCGTGTCTGTTTCAGCTTTCCCGAAAGCCGTGCTGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCCGGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAGGACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGGGGAACCTCAGACCCCCCTCACTCCTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGGCAGCAGGGCCCTCTCCCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTTCCCAGTGCTGGTGCGAGGTGGGTGGGCCTTGTGGTGGCGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGTTCCTATTTGTCCTTCAAAGGCTGTTTTCACAGTGGTGTCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACGTGTCGTGCATGTTTCGTGAGTGTCCTTTTGGCCCGTGTGAGACCCCCCATAAAGACAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGCTGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACACCCTCGACAGGTGGCTGCTCTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGGTGACCCCTGTCCAGGCAGATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGGACTCCTGCCCTCACCCGATCCGGATCCCTGGACAGTGCTGCCCAGACTGTTCAGCAGGTAATCCCCTGCCORF Start: ATG at 26      ORF Stop: TAA at 1904SEQ ID NO: 8              626 aa    MW at 66006.2kDNOV3a, MWAGLLLRAACVALLLPGAPARGYTGRKPPGHFAAERRRRLGPHVCLSGFGSGCCPGWAPSMGGGHCTCG106417-01ProteinLRKLCSFGCGSGICIAPNVCSCQDGEQGATCPETHGPCGEYGCDLTCNHGGCQEVARVCPVGFSMTETSequenceAVGIRCTDIDECVTSSCEGHCVNTEGGFVCECGPGMQLSADRHSCQDTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVDANECRTPSETRVCHHSCHNTVGSFVCTCGPGFRFGADRVSVSAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGHSPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSALLATPVPTASLLGNLRPPSLLQGEVMGTPSSPRGPESPRLAAGPSPCWHLGAMHESRSRWTEPGCSQCWCEVGGPCGGDGKVTCEKVRCEAACSHPIPSRDGGCCPSCTGSYLSFKGCFHSGVVRAEGDVFSPPNENCTVCVCLAGNVSCMFRECPFGPCETPHKDRCYFHGRWYADGAVFSGGGDECTTCVCQQNGEVECSFMPCPELACPREEWRLGPGQCCFTCQEPTPSTGGCSLDDNGVEFPIGQIWSPGDPCPGRWLGELQEDRLCGLLPSPDPDPWTVLPRLFSRSEQ ID NO: 9              12040 bpNOV3b,ATGTGGGCCGGACTGCTCCTTCGGGCCGCCTGTGTCGCGCTCCTGCTGCCGGGGGCACCAGCCCGAGCG1064417-03DNA SequenceGCTACACCGGGAGGAAGCCGCCCGGGCACTTCGCGGCCGAGAGGAGACGCCGACTGGGCCCCCACGTCTGCCTCTCTGGGTTTGGGAGTGGCTGCTGCCCTGGCTGGGCGCCCTCTATGGGTGGTGGGCACTGCACCCTGCTCTGCTCCTTCGGCTGTGGGAGTGGCATCTGCATCGCTCCCAATGTCTGCTCCTGCCAGGATGGAGAGCAAGGGGCCGAAACCCATGGACCATGTGGGGAGTACGGCTGTGACCTTACCTGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGGAGACAGCTGTTGGCATCAGGTGTGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGTGTGAACACAGAAGGTGGGTTTGTGTGCGAGTGTGGGCCGGGCATGCAGCTGTCTGCCGACCGCCACAGCTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCTACAAGTGTTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGACGCAAACGAGTGTCGGACGCCATCGGAGACGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCGTATGCACATGCGGACCTGGTTTCAGGTTCGGAGCTGACCGCGTGCCATGTGAAGGTGAGCGCCAGGCCAGAGACCTCCGTGCTTCTGTTTCAGCTTTCCCGAAAGCCGTGCTGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGCTTCTGTTGCTTCCTGAGGCCGGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAGGACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGCTGTCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGGGGAACCTCAGACCCCCCTCACTCCTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGGCACCAGGGCCCTCTCCCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTTCCCAGTGCTGGTGCGAGGGCTCTAACTCCTGCTTGTGCTTCGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGTGGCTGTTTTCACAGTGGTGTCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACGTGTCGTGCATGTTTCGTGAGTGTCCTTTTGGCCCGTGTGAGACCCCCCATAAAGACTGCAGGTGCCCACCTGGAAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGCTGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACACCCTCGACAGGTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGGTGACCCCTGTGAGAGATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGGACTCCTGCCCTCACCCGATCCGGATCCCTGGACAGTGCTGCCCAGACTGTTCAGCAGGTAATCCCCTGCCTCTGCCCCAAGCCCCCAGGGCAGGGCATCTCAGGCATCGGGCTCCTTAAGCCCTATACAGCCTTCATCTCATGTCGTCCTAACAACCCCAAGGGACAACCCCATTGCACAGATAAGGAAAORF Start: ATG at 1       ORF Stop: TAA at 1909SEQ ID NO: 10             636 aa    MW at 67370.7kDNOV3b,MWAGLLLRAACVALLLPGAPARGYTGRKPPGHFAAERRRRLGPHVCLSGFGSGCCPGWAPSMGGGHCCG106417-03ProteinTLLCSFGCGSGICIAPNVCSCQDGEQGAETHGPCGEYGCDLTCNHGGCQEVARVCPVGFSMTETAVGSequenceIRCDIDECVTSSCEGHCVNTEGGFVCECGPGMQLSADRHSCQDTDECLGTPCQQRCKNSIGSYKCSCRTGFHLHGNRHSCVDANECRTPSETRVCHHSCHNTVGSFVCTCGPGFRFGADRVPCEGERQARDLRASVSAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGHSPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLLQGEVMGTPSSPRGPESPRLAAGPSPCWHLGAMHESRSRWTEPGCSQCWCEGSNSCLCFDGKVTCEKVRCEAACSHPIPSRDGGCCPSCTGGCFHSGVVRAEGDVFSPPNENCTVCVCLAGNVSCMFRECPFGPCETPHKDCRCPPGRCYFHGRWYADGAVFSGGGDECTTCVCQNGEVECSFMPCPELACPREEWRLGPGQCCFTCQEPTPSTGLDDNGVEFPIGQIWSPGDPCERWLGELQEDRLCGLLPSPDPDPWTVLPRLFSRSEQ ID NO: 11             1821 bpNOV3c,ATGTGGGCCGGACTGCTCCTTCGGGCCGCCTGTGTCGTCTGCTCCTTCGGCTGTGGGAGTGGCATCTGCG106417-04DNA SequenceCATCGCTCCCAATGTCTGCTCCTGCCAGGATGGAGAGCAAGGGGCCGAAACCCATGGACCATGTGGGGAGTACGGCTGTGACCTTACCTGCAACCATGGAGGCTGTCAGGAGGTGGCCCGAGTGTGCCCCGTGGGCTTCTCGATGACGGAGACAGCTGTTGGCATCAGGTGTGACATTGACGAATGTGTAACCTCCTCCTGCGAGGGCCACTGTGTGAACACAGAAGGTGGGTTTGTGTGCGACTGTGGCCCGCCCATGCAGCTGTCTGCCGACCGCCACAGCTGCCAAGACACTGACGAATGCCTAGGGACTCCCTGTCAGCAGAGATGTAAAAACAGCATTGGCAGCTACAAGTGTTCCTGTCGAACTGGCTTCCACCTTCATGGCAACCGGCACTCCTGTGTAGATGTAAACGAGTGTCGGAGGCCATTGGAGAGGCGAGTCTGTCACCATTCCTGCCACAACACCGTGGGCAGCTTCCTATGCACATGCCGACCTGGCTTCAGGCTCCGAGCTGACCGCGTGTCCTGTGAAGGTGAGCGCCAGGCTTTCCCGAAAGCCGTGCTGGCCCCATCTGCCATCCTGCAACCCCGGCAACACCCGTCCAAGATGGTTCTGTTGCTTCCTGAGGCCGGCCGGCCTGCCCTGTCCCCAGGACATAGCCCTCCTTCTGGGGCTCCAGGGCCCCCAGCCGGAGTCAGGACCACCCGCCTGCCATCTCCCACCCCACGACTACCCACATCCTCCCCTTCTGCCCCTGTGTGGCTGCTGTCCACCCTGCTGGCCACCCCAGTGCCTACTGCCTCCCTGCTGGGGAACCTCAGACCCCCCTCACTCCTTCAGGGGGAGGTGATGGGGACCCCTTCCTCACCCAGGGGCCCTGAGTCCCCCCGACTGGCAGCAGGGCCCTCTCCCTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTTCCCAGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGTTGTTTTCACAGTGGTGTCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTGTGTGTCTGTCTGGCTGGAAACGTGTCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTGCTGTACTTGTGTTCCAGGTAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGCTGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCAGGAGCCCACACCCTCGACAGGTCTTGACGACAACGGGGTTGAGTTTCCGATTGGACAGATCTGGTCGCCTGGTGACCCCTGTGAGAGATGGCTCGGTGAGCTGCAAGAGGACAGACTGTGTGGACTCCTGCCCTCACCCGATCCGGATCCCTGGACAGTGCTGCCCAGACTGTTCAGCAGGTAATCCCCTGCCTCTGCCCCAAGCCCCCAGGGCAGGGCATCTCAGGCATCGGGCTCCTTAAGCCCTATACAGCCTTCATCTCATGTCGTCCTAACAACCCCAAGGGACAACCCCATTGCACAGATAAGGAAAORF Start: ATG at 1       ORF Stop: TAA at 1690SEQ ID NO: 12             563 aa    MW at 59951.3kDNOV3c,MWAGLLLRAACVVCSFGCGSGICIAPNVCSCQDGEQGAETHGPCGEYGCDLTCNHGGCQEVARVCPVGCG106417-04ProteinFSMTETAVGIRCDIDECVTSSCEGHCVNTEGGFVCECGPGMQLSADRHSCQDTDECLGTPCQQRCKNSSequenceIGSYKCSCRTGFHLHGNRHSCVDVNECRRPLERRVCHHSCHNTVGSFLCTCRPGFRLRADRVSCEGERQAFPKAVLAPSAILQPRQHPSKMLLLLPEAGRPALSPGHSPPSGAPGPPAGVRTTRLPSPTPRLPTSSPSAPVWLLSTLLATPVPTASLLGNLRPPSLLQGEVMGTPSSPRGPESPRLAAGPSPCWHLGAMHESRSRWTEPGCSQCWCEDGKVTCEKVRCEAACSHPIPSRDGGCCPSCTGCFHSGVVRAEGDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQTPPQTDCCTCVPGRCYFHGRWYADGAVFSGGGDECTTCVCQNGEVECSFMPCPELACPREEWRLGPGQCCFTCQEPTPSTGLDDNGVEFPIGQIWSPGDPCERWLGELQEDRLCGLLPSPDPDPWTVLPRLFSRSEQ ID NO: 13             534 bpNOV3d,AAGCTTTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTTCCC209749357DNA SequenceAGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGCTGTTTTCACAGTGGTGTCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACGTGTCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTGCTGTACTTGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGCTGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCTCGACORF Start: at 1           ORF Stop: end of sequenceSEQ ID NO: 14             178 aa    MW at 19201.6kDNOV3d,KLCWHLGAMHESRSRWTEPGCSQCWCEDGKVTCEKVRCEAACSHPIPSRDGGCCPSCTGCFHSGVVR209749357ProteinAEGDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQTPPQTDCCTCVPVRCYFHGRWYADGAVFSGGSequenceGDECTTCVCQNGEVECSFMPCPELACPREEWRLGPGQCCFTCLESEQ ID NO: 15             534 bpNOV3e,AAGCTTTGCTGGCACCTGGGAGCCATGCATGAATCAAGGAGTCGCTGGACAGAGCCTGGGTGTTCCCACG106417-02DNA SequenceGTGCTGGTGCGAGGACGGGAAGGTGACCTGTGAAAAGGTGAGGTGTGAAGCTGCTTGTTCCCACCCAATTCCCTCCAGAGATGGTGGGTGCTGCCCATCGTGCACAGGCTGTTTTCACAGTGGTGTCGTCCGAGCTGAAGGGGATGTGTTTTCACCTCCCAATGAGAACTGCACCGTCTGTGTCTGTCTGGCTGGAAACGTGTCCTGCATCTCTCCTGAGTGTCCTTCTGGCCCCTGTCAGACCCCCCCACAGACGGATTGCTGTACTTGTGTTCCAGTGAGATGCTATTTCCACGGCCGGTGGTACGCAGACGGGGCTGTGTTCAGTGGGGGTGGTGACGAGTGTACCACCTGTGTTTGCCAGAATGGGGAGGTGGAGTGCTCCTTCATGCCCTGCCCTGAGCTGGCCTGCCCCCGAGAAGAGTGGCGGCTGGGCCCTGGGCAGTGTTGCTTCACCTGCCTCGAGORF Start: at 7           ORF Stop: at 529SEQ ID NO: 16             174 aa    MW at 18718.0kDNOV3e,CWHLGAMHESRSRWTEPGCSQCWCEDGKVTCEKVRCEAACSHPIPSRDGGCCPSCTGCFHSGVVRAEGCG106417-02ProteinDVFSPPNENCTVCVCLAGNVSCISPECPSGPCQTPPQTDCCTCVPVRCYFHGRWYADGAVFSGGGDECSequenceTTCVCQNGEVECSFMPCPELACPREEWRLGPGQCCFTC


[0376] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 3B.
14TABLE 3BComparison of NOV3a against NOV3b through NOV3e.NOV3a Residues/Identities/SimilaritesProtein SequenceMatch Residuesfor the Matched RegionNOV3b 1 . . . 626552/653 (84%) 1 . . . 636552/653 (84%)NOV3c 72 . . . 626472/574 (82%) 13 . . . 563475/574 (82%)NOV3d381 . . . 563155/191 (81%) 3 . . . 178156/191 (81%)NOV3e381 . . . 561154/189 (81%) 1 . . . 174155/189 (81%)


[0377] Further analysis of the NOV3a protein yielded the following properties shown in Table 3C.
15TABLE 3CProtein Sequence Properties NOV3aPSort analysis:0.5947 probability located in outside; 0.1900 probability located in lysosome(lumen); 0.1000 probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 22 and 23


[0378] A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3D.
16TABLE 3DGeneseq Results for NOV3aNOV3aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB85364Novel Von286 . . . 500194/222 (87%) e−113Willebrand/thrombosporin- 1 . . . 208196/222 (87%)like polypeptide - Homosapiens, 235 aa.[WO200153485-A1,Jul. 26, 2001]AAM99920Human polypeptide SEQ ID384 . . . 592185/217 (85%) e−112NO 36 - Homo sapiens, 272 5 . . . 205188/217 (86%)aa. [WO200155173-A2,Aug. 2, 2001]AAM99933Human polypeptide SEQ ID384 . . . 592181/217 (83%) e−110NO 49 - Homo sapiens, 212 5 . . . 205185/217 (84%)aa. [WO200155173-A2,Aug. 2, 2001]AAB85365Novel Von304 . . . 500176/204 (86%) e−102Willebrand/thrombosporin- 1 . . . 190178/204 (86%)like mature protein sequence -Homo sapiens, 217 aa.[WO200153485-A1,Jul. 26, 2001]ABG15393Novel human diagnostic 72 . . . 140 69/69 (100%)8e−39protein #15384 - Homo959 . . . 1027 69/69 (100%)sapiens, 1028 aa.[WO200175067-A2,Oct. 11, 2001]


[0379] In a BLAST search of public sequence datbases, the NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3E.
17TABLE 3EPublic BLASTP Results for NOV3aNOV3aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96DN2CDNA FLJ32009 fis, clone 1 . . . 592554/607 (91%)0.0NT2RP7009498, weakly 1 . . . 589558/607 (91%)similar to fibulin-1, isoform Aprecursor - Homo sapiens(Human), 955 aa.Q9DBE21300015B04Rik protein - Mus 1 . . . 620498/628 (79%)0.0musculus (Mouse), 608 aa. 1 . . . 607530/628 (84%)Q9NPY3Complement component C1q 82 . . . 371103/295 (34%)2e−32receptor precursor300 . . . 566132/295 (43%)(Complement component 1, qsubcomponent, receptor 1)(C1qRp) (C1qR(p))(C1q/MBL/SPA receptor)(CD93 antigen) (CDw93) -Homo sapiens (Human), 652aa.Q9CXD86130401L20Rik protein - Mus 54 . . . 260 78/219 (35%)2e−29musculus (Mouse), 528 aa. 96 . . . 305 99/219 (44%)Q91V88POEM (NEPHRONECTIN 45 . . . 368100/363 (27%)3e−29short isoform) - Mus musculus 35 . . . 383146/363 (39%)(Mouse), 561 aa.


[0380] PFam analysis predicts that the NOV3a protein contains the domains shown in the Table 3F.
18TABLE 3FDomain Analysis of NOV3aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV3a Match RegionRegionValueEGF148 . . . 18116/47 (34%)0.004523/47 (49%)EGF187 . . . 22012/47 (26%)0.01125/47 (53%)TIL168 . . . 22613/70 (19%)0.5339/70 (56%)vwc381 . . . 44220/84 (24%)0.0006941/84 (49%)vwc452 . . . 50218/84 (21%)0.0001739/84 (46%)vwc503 . . . 56121/84 (25%)1.6e−0539/84 (46%)



Example 4

[0381] The NOV4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 4A.
19TABLE 4ANOV4 Sequence AnalysisSEQ ID NO: 17             1161 bpNOV4a,GAATTCCGCAGCCATGACCCCGCAGCTTCTCCTGGCCCTTGTCCTCTGGGCCAGCTGCCCGCCCTGCACG108901-01DNA SequenceGTGGAAGGAAAGGGCCCCCAGCAGCTCTGACACTGCCCCGGGTGCAATGCCCAGCCTCTCGGTACCCGATCGCCCTGGATTGCTCCTGGACCCTGCCGCCTGCTCCAAACTCCACCAGCCCCGTGTCCTTCATTGCCACGTACAGGCTCGGCATGGCTGCCCGGGGCCACAGCTGGCCCTGCCTGCAGCAGACGCCAACGTCCACCAGCTGCACCATCACGGATGTCCAGCTGTTCTCCATGGCTCCCTACGTGCTCAATGTCACCGCCGTCCACCCCTGGGGCTCCAGCAGCAGCTTCGTGCCTTTCATAACAGAGCACATCATCAAGCCCGACCCTCCAGAAGGCGTGCGCCTAAGCCCCCTCGCTGAGCGCCAGCTACAGGTGCAGTGGGAGCCTCCCGGGTCCTGGCCCTTCCCAGAGATCTTCTCACTGAAGTACTGGATCCGTTACAAGCGTCAGGGAGCTGCGCGCTTCCACCGGGTGGGGCCCATTGAAGCCACGTCCTTCATCCTCAGGGCTGTGCGGCCCCGAGCCAGGTACTACGTCCAAGTGGCGGCTCAGGACCTCACAGACTACGGGGAACTGAGTGACTGGAGTCTCCCCGCCACTGCCACAATGAGCCTGGGCAAGTAGCAAGGGCTTCCCGCTGCCTCCAGACAGCACCTGGGTCCTCGCCACCCTAAGCCCCGGGACACCTGTTGGAGGGCGGATGGGATCTGCCTAGCCTGGGCTGGAGTCCTTGCTTTGCTGCTGCTGAGCTGCCGGGCAACCTCAGATGACCGACTTTTCCCTTTGAGCCTCAGTTTCTCTAGCTGAGAAATGGAGATGTACTACTCTCTCCTTTACCTTTACCTTTACCACAGTGCAGGGCTGACTGAACTGTCACTGTGAGATATTTTTTATTGTTTAATTAGAAAAGAATTGTTGTTGGGCTGGGCGCAGTGGATCGCACCTGTAATCCCAGTCACTGGGAAGCCGACGTGGGTGGGTAGCTTGAGGCCAGGAGCTCGAAACCAGTCCGGGCCACACAGCAAGACCCCATCTCTAAAAAATTAATATAAATATAAAATAAAAAAAAAAAAAAGGAATTCORF Start: ATG at 14      ORF Stop: TAG at 701SEQ ID NO: 18             229 aa    MW at 25396.0kDNOV4a,MTPQLLLALVLWASCPPCSGRKGPPAALTLPRVQCRASRYPIAVDCSWTLPPAPNSTSPVSFIATYRLCG108901-01ProteinGMAARGHSWPCLQQTPTSTSCTITDVQLFSMAPYVLNVTAVHPWGSSSSFVPFITEHIIKPDPPEGVRSequenceLSPLAERQLQVQWEPPGSWPFPEIFSLKYWIRYKRQGAARFHRVGPIEATSFILRAVRPRARYYVQVAAQDLTDYGELSDWSLPATATMSLGKSEQ ID NO: 19             528 bpNOV4b,CCATGACCCCGCAGCTTCTCCTGGCCCTTGTCCTCTGGGCCAGCTGCCCGCCCTGCAGTGGAAGGAACG108901-04DNA SequenceAGGGCCCCCAGCAGCTCTGACACTGCCCCGGGTGCAATGCCGAGCCTCTCGGTACCCGATCGCCGTGGATTGCTCCTGGACCCTGCCGCCTGCTCCAAACTCCACCAGCCCCGTGCCTTTCATAACAGACCACATCATCAAGCCCGACCCTCCAGAAGGCGTGCGCCTAAGCCCCCTCGCTGAGCGCCAGCTACAGGTGCAGTGGGAGCCTCCCGGGTCCTGGCCCTTCCCAGAGATCTTCTCACTGAAGTACTGGATCCGTTACAAGCGTCAGGGAGCTGCGCGCTTCCACCGGGTGGGGCCCATTGAAGCCACGTCCTTCATCCTCAGGGCTGTGCGGCCCCGAGCCAGGTACTACGTCCAAGTGGCGGCTCAGGACCTCACAGACTACGGGGAACTGAGTGACTGGAGTCTCCCCGCCACTGCCACAATGAGCCTGGGCAAGTAGCAAGGGCTTCCCGORF Start: ATG at 3       ORF Stop: TAG at 513SEQ ID NO: 20             170 aa    MW at 18991.8kDNOV4b,MTPQLLLALVLWASCPPCSGRKGPPAALTLPRVQCRASRYPIAVDCSWTLPPAPNSTSPVPFITDHICG108901-04ProteinIKPDPPEGVRLSPLAERQLQVQWEPPGSWPFPEIFSLKYWIRYKRQGAARFHRVGPIEATSFILRAVSequenceRPRARYYVQVAAQDLTDYGELSDWSLPATATMSLGKSEQ ID NO: 21             542 bpNOV4c,CATGACCCCGCAGCTTCTCCTGGCCCTTGTCCTCTGGGCCAGCTGCCCGCCCTGCAGTGGAAGGAAAGCG108901-03DNA SequenceGGCCCTGCCTGCAGCAGACGCCAACGTCCACCAGCTGCACCATCACGGATGTCCAGCTGTTCTCCATGGTTCCCTACGTGCTCAATGTCACCGCCGTCCACCCCTGGGGCTCCAGCAGCAGCTTCGTGCCTTTCATAACAGAGCACATCATCAAGCCCGACCCTCCAGAAGGCGTGCGCCTAAGCCCCCTCGCTGAGCGCCAGCTACAGGTGCAGTGGGAGCCTCCTGGGTCCTGGCCCTTCCCAGAGATCTTCTCACTGAAGTACTGGATCCGTTACAAGCGTCAGGGAGCTGCGCGCTTCCACCGGGTGGGGCCCATTGAAGCCACGTCCTTCATCCTCAGGGCTGTGCGGCCCCGAGCCAGGTACTACATCCAAGTGGCGGCTCAGGACCTCACAGACTACGGGGAACTGAGTGACTGGAGTCTCCCCGCCACTGCCACAATGAGCCTGGGCAAGTAGCAAGGGCTTCCCGORF Start: ATG at 2       ORF Stop: TAG at 527SEQ NO: 22                175 aa    MW at 19616.5kDNOV4c,MTPQLLLALVLWASCPPCSGRKGPCLQQTPTSTSCTITDVQLFSMVPYVLNVTAVHPWGSSSSFVPFICG108901-03ProteinTEHIIKPDPPEGVRLSPLAERQLQVQWEPPGSWPFPEIFSLKYWIRYKRQGAARFHRVGPIEATSFILSequenceRAVRPRARYYIQVAAQDLTDYGELSDWSLPATATMSLGKSEQ ID NO: 23               943 bpNOV4d,CGGGAAGCCCTTGCTACTTGCCCAGGCTCATCGTGGCAGTGGCGGGGAGACTCCAGTCACTCAGTTCCG108901-02DNA SequenceCCCGTAGTCTGTGAGGTCCTGAGCCGCCACTTGGATGTAGTACCTGGCTCGGGGCCGCACAGCCCTGAGGATGAAGGACGTGGCTTCAATGGGCCCCACCCGGTGGAAGCGCGCAGCTCCCTGACGCTTGTAACGGATCCAGTACTTCAGTGAGAAGATCTCTGGGAAGGGCCATGACCCCGCAGCTTCTCCTGGCCCTTGTCCTCTGGGCCAGCTGCCCGCCCTGCAGTGGAAGGAAAGGGCCCCCAGCAGCTCTGACACTGCCCCGGGTGCAATGCCGAGCCTCTCGGTACCCGATCGCCGTGGATTGCTCCTGGACCCTGCCGCCTGCTCCAAACTCCACCAGCCCCGTGTCCTTCATTGCCACGTACAGGCTCGGCATGGCTGCCCGGGGCCACAGCTGGCCCTGCCTGCAGCAGACGCCAACGTCCACCAGCTGCACCATCACGGATGTCCAGCTGTTCTCCATGGCTCCCTACGTGCTCAATGTCACCGCCGTCCACCCCTGGGGCTCCAGCAGCAGCTTCGTGCCTTTCATAACAGAGCACATCATCAAGCCCGACCCTCCAGAAGGCGTGCGCCTAAGCCCCCTCGCTGAGCGCCAGCTACAGGTGCAGTGGGAGCCTCCCGGGTCCTGGCCCTTCCCAGAGATCTTCTCACTGAAGTACTGGATCCGTTACAAGCGTCAGGGAGCTGCGCGCTTCCACCGGGTGGGGCCCATTGAAGCCACGTCCTTCATCCTCAGGGCTGTGCGGCCCCGAGCCAGGTACTACATCCAAGTGGCGGCTCAGGACCTCACAGACTACGGGGAACTGAGTGACTGGAGTCTCCCCGCCACTGCCACGATGAGCCTGGGCAAGTAGCAAGGGCTTCCCGORF Start: ATG at 241     ORF Stop: TAG at 928SEQ ID NO: 24             229 aa    MW at 25410.0kDNOV4d,MTPQLLLALVLWASCPPCSGRKGPPAALTLPRVQCRASRYPIAVDCSWTLPPAPNSTSPVSFIATYRCG108901-02ProteinLGMAARGHSWPCLQQTPTSTSCTITDVQLFSMAPYVLNVTAVHPWGSSSSFVPFITEHIIKPDPPEGSequenceVRLSPLAERQLQVQWEPPGSWPFPEIFSLKYWIRYKRQGAARFHRVGPIEATSFILRAVRPRARYYIQVAAQDLTDYGELSDWSLPATATMSLGK


[0382] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 4B.
20TABLE 4BComparison of NOV4a against NOV4b through NOV4d.NOV4a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV4b1 . . . 229156/229 (68%)1 . . . 170162/229 (70%)NOV4c1 . . . 229170/229 (74%)1 . . . 175171/229 (74%)NOV4d1 . . . 229228/229 (99%)1 . . . 229229/229 (99%)


[0383] Further analysis of the NOV4a protein yielded the following properties shown in Table 4C.
21TABLE 4CProtein Sequence Properties NOV4aPSort analysis:0.8650 probability located in lysosome (lumen); 0.3700 probability located inoutside; 0.1825 probability located in microbody (peroxisome); 0.1000probability located in endoplasmic reticulum (membrane)SignalP analysis:Cleavage site between residues 21 and 22


[0384] A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4D.
22TABLE 4DGeneseq Results for NOV4aNOV4aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAW09779Epstein Barr virus-induced1 . . . 229229/229 (100%)e−137protein 3 (EBI3) - Homo1 . . . 229229/229 (100%)sapiens, 229 aa.[WO9713859-A1,Apr. 17, 1997]ABB81683Human clone LO81-19a1 . . . 229228/229 (99%)e−136protein #1 - Homo sapiens,1 . . . 229229/229 (99%)229 aa. [WO200231114-A2,Apr. 18, 2002]AAO14527Human EBI-3 protein -1 . . . 229227/229 (99%)e−136Homo sapiens, 229 aa.1 . . . 229228/229 (99%)[WO200212282-A2,Feb. 14, 2001]AAB36652Human cytokine receptor1 . . . 229227/229 (99%)e−136subunit Eib3 protein SEQ ID1 . . . 229228/229 (99%)NO:9 - Homo sapiens, 229aa. [WO200073451-A1,Dec. 7, 2000]AAW53624Epstein Barr virus induced1 . . . 229227/229 (99%)e−136gene 3 (EBI-3) - Homo1 . . . 229228/229 (99%)sapiens, 229 aa.U.S. Pat. No. 5,744,301-A]Apr. 28,1998]


[0385] In a BLAST search of public sequence datbases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4E.
23TABLE 4EPublic BLASTP Results for NOV4aNOV4aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ75269Human cytokine receptor 1 . . . 229229/229 (100%) e−136(Epstein-Barr virus induced 1 . . . 229229/229 (100%)gene 3) - Homo sapiens(Human), 229 aa.Q14213Cytokine receptor precursor- 1 . . . 229227/229 (99%) e−135Homo sapiens (Human), 229 1 . . . 229228/229 (99%)aa.O35228Cytokine receptor-like 1 . . . 220138/220 (62%)5e−75molecule (Epstein-Barr virus 1 . . . 218166/220 (74%)induced gene 3) - Musmusculus (Mouse), 228 aa.CAD29041Sequence 29 from Patent 1 . . . 67 67/67 (100%)3e−34WO0214358 - Homo sapiens 1 . . . 67 67/67 (100%)(Human), 102 aa.CAD44518SI:bZ76A6.1 (novel protein31 . . . 224 65/196 (33%)5e−24similar to vertebrate ciliary 5 . . . 193 99/196 (50%)neurotrophic factor receptoralpha (CNTFR alpha)) -Brachydanio rerio (Zebrafish)(Danio rerio), 212 aa(fragment).


[0386] PFam analysis predicts that the NOV4a protein contains the domains shown in the Table 4F.
24TABLE 4FDomain Analysis of NOV4aIdentities/SimilaritiesPfam DomainNOV4a Match Regionfor the Matched RegionExpect Valuefn3129 . . . 21519/89 (21%)0.000156/89 (63%)



Example 5

[0387] The NOV5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 5A.
25TABLE 5ANOV5 Sequence AnalysisSEQ ID NO: 25             3971 bpNOV5a,GCTTTCAGGCGATCTGGAGAAAGAACGGCAGAACACACAGCAAGGAAAGGTCCTTTCTGGGGATCACCCG112505-01DNA SequenceCCATTGGCTGAAGATGAGACCATTCTTCCTCTTGTGTTTTGCCCTGCCTGGCCTCCTGCATGCCCAACAAGCCTGCTCCCGTGGGGCCTGCTATCCACCTGTTGGGGACCTGCTTGTTGGGAGGACCCGGTTTCTCCGAGCTTCATCTACCTGTGGACTGACCAAGCCTGAGACCTACTGCACCCAGTATGGCGAGTGGCAGATGAAATGCTGCAAGTGTGACTCCAGGCAGCCTCACAACTACTACAGTCACCGAGTAGAGAATGTGGCTTCATCCTCCGGCCCCATGCGCTGGTGGCAGTCCCAGAATGATGTGAACCCTGTCTCTCTGCAGCTGGACCTGGACAGGAGATTCCAGCTTCAAGAAGTCATGATGGAGTTCCAGGGGCCCATGCCCGCCGGCATGCTGATTGAGCGCTCCTCAGACTTCGGTAAGACCTGGCGAGTGTACCAGTACCTGGCTGCCGACTGCACCTCCACCTTCCCTCGGGTCCGCCAGGGTCGGCCTCAGAGCTGGCAGGATGTTCGGTGCCAGTCCCTGCCTCAGAGGCCTAATGCACGCCTAAATGGGGGGAAGGTCCAACTTAACCTTATGGATTTAGTGTCTGGGATTCCAGCAACTCAAAGTCAAAAAATTCAAGAGGTGGGGGAGATCACAAACTTGAGAGTCAATTTCACCAGGCTGGCCCCTGTGCCCCAAAGGGGCTACCACCCTCCCAGCGCCTACTATGCTGTGTCCCAGCTCCGTCTGCAGGGGAGCTGCTTCTGTCACGGCCATGCTGATCGCTGCGCACCCAAGCCTGGGGCCTCTGCAGGCCCCTCCACCGCTGTGCAGGTCCACGATGTCTGTGTCTGCCAGCACAACACTGCCGGCCCAAATTGTGAGCGCTGTGCACCCTTCTACAACAACCGGCCCTGGAGACCGGCGGAGGGCCAGGACGCCCATGAATGCCAAAGGTGCGACTGCAATGGGCACTCAGAGACATGTCACTTTGACCCCGCTGTGTTTGCCGCCAGCCAGGGGGCATATGGAGGTGTGTGTGACAATTGCCGGGACCACACCGAAGGCAAGAACTGTGAGCGGTGTCAGCTGCACTATTTCCGGAACCGGCGCCCGGGAGCTTCCATTCAGGAGACCTGCATCTCCTGCGAGTGTGATCCGGATGGGGCAGTGCCAGGGGCTCCCTGTGACCCAGTGACCGGGCAGTGTGTGTGCAAGGAGCATGTGCAGGGAGAGCGCTGTGACCTATGCAAGCCGGGCTTCACTGGACTCACCTACGCCAACCCGCAGGGCTGCCACCGCTGTGACTGCAACATCCTGGGGTCCCGGAGGGACATGCCGTGTGACGAGGAGAGTGGGCGCTGCCTTTGTCTGCCCAACGTGGTGGGTCCCAAATGTGACCAGTGTGCTCCCTACCACTGGAAGCTGGCCAGTGGCCAGGGCTGTGAACCGTGTGCCTGCGACCCGCACAACTCCCCTCAGCCCACAGTGCAACCAGTTCACAGGGCAGTGCCCTGTCGGGAAGGCTTTGGTGGCCTGATGTGCAGCGCTGCAGCCATCCGCCAGTGTCCAGACCGGACCTATGGAGACGTGGCCACAGGATGCCGAGCCTGTGACTGTGATTTCCGGGGAACAGAGGGCCCGGGCTGCGACAAGGCATCAGGCCGCTGCCTCTGCCGCCCTGGCTTGACCGGGCCCCGCTGTGACCAGTGCCAGCGAGGCTACTGCAATCGCTACCCGGTGTGCGTGGCCTGCCACCCTTGCTTCCAGACCTATGATGCGGACCTCCGGGAGCAGGCCCTGCGCTTTGGTAGACTCCGCAATGCCACCGCCAGCCTGTGGTCAGGGCCTGGGCTGGAGGACCGTGGCCTGGCCTCCCGGATCCTAGATGCAAAGAGTAAGATTGAGCAGATCCGAGCAGTTCTCAGCAGCCCCGCAGTCACAGAGCAGGAGGTGGCTCAGGTGGCCAGTGCCATCCTCTCCCTCAGGCGAACTCTCCAGGGCCTGCAGCTGGATCTGCCCCTGGAGGAGGAGACGTTGTCCCTTCCGAGAGACCTGGAGAGTCTTGACAGAAGCTTCAATGGTCTCCTTACTATGTATCAGAGGAAGAGGGAGCAGTTTGAAAAAATAAGCAGTGCTGATCCTTCAGGAGCCTTCCGGATGCTGAGCACAGCCTACGAGCAGTCAGCCCAGGCTGCTCAGCAGGTCTCCGACAGCTCGCGCCTTTTGGACCAGCTCAGGGACAGCCGGAGAGAGGCAGAGAGGCTGGTGCGGCAGGCGGGAGGAGGAGGAGGCACCGGCAGCCCCAAGCTTGTGGCCCTGAGGCTGGAGATGTCTTCGTTGCCTGACCTGACACCCACCTTCAACAAGCTCTGTGGCAACTCCAGGCAGATGGCTTGCACCCCAATATCATGCCCTGGTGAGCTATGTCCCCAAGACAATGGCACAGCCTGTGGCTCCCGCTGCAGGGGTGTCCTTCCCAGGGCCGGTGGGGCCTTCTTGATGGCGGGGCAGGTGGCTGAGCAGCTGCGGGGCTTCAATGCCCAGCTCCAGCGGACCAGGCAGATGATTAGGGCAGCCGAGGAATCTGCCTCACAGATTCAATCCAGTGCCCAGCGCTTGGAGACCCAGGTGAGCGCCAGCCGCTCCCAGATGGAGGAAGATGTCAGACGCACACGGCTCCTAATCCAGCAGGTCCGGGACTTCCTAACAGACCCCGACACTGATGCAGCCACTATCCAGGAGGTCAGCGAGGCCGTGCTGGCCCTGTGGCTGCCCACAGACTCAGCTACTGTTCTGCAGAAGATGAATGAGATCCAGGCCATTGCAGCCAGGCTCCCCAACGTGGACTTGGTGCTGTCCCAGACCAAGCAGGACATTGCGCGTGCCCGCCGGTTGCAGGCTGAGGCTGAGGAAGCCAGGAGCCGAGCCCATGCAGTGGAGGGCCAGGTGGAAGATGTGGTTGGGAACCTGCGGCAGGGGACAGTGGCACTGCAGGAAGCTCAGGACACCATGCAAGGCACCAGCCGCTCCCTTCGGCTTATCCAGGACAGGGTTGCTGAGGTTCAGCAGGTACTGCGGCCAGCAGAAAAGCTGGTGACAAGCATGACCAAGCAGCTGGGTGACTTCTGGACACGGATGGAGGAGCTCCGCCACCAAGCCCGGCAGCAGGGGGCAGAGGCAGTCCAGGCCCAGCAGCTTGCGGAAGGTGCCAGCGAGCAGGCATTGAGTGCCCAAGAGGGATTTGAGAGAATAAAACAAAAGTATGCTGAGTTGAAGGACCGGTTGGGTCAGAGTTCCATGCTGGGTGAGCAGGGTGCCCGGATCCAGAGTGTGAAGACAGAGGCAGAGGAGCTGTTTGGGGAGACCATGGAGATGATGGACAGGATGAAAGACATGGAGTTGGAGCTGCTGCGGGGCAGCCAGGCCATCATGCTGCGCTCGGCGGACCTGACAGGACTGGAGAAGCGTGTGGAGCAGATCCGTGACCACATCAATGGGCGCGTGCTCTACTATGCCACCTGCAAGTGATGCTACAGCTTCCAGCCCGTTGCCCCACTCATCTGCCGCCTTTGCTTTTGGTTGGGGGCAGATTGGGTTGGAATGCTTTCCATCTCCAGGAGACTTTCATGCAGCCTAAAGTACAGCCTGGACCACCCCTGGTGTGTAGCTAGTAAGATTACCCTGAGCTGCAGCTGAGCCTGAGCCAATGGGACAGTTACACTTGACAGACAAAGATGGTGGAGATTGGCATGCCATTGAAACTAAGAGCTCTCAAGTCAAGGAAGCTGGGCTGGGCAGTATCCCCCGCCTTTAGTTCTCCACTGGGGAGGAATCCTGGACCAAGCACAAAAACTTAACAAAAGTGATGTAAAAATGAAAAGCCAAATAAAAATCTTTGGORF Start: ATG at 82      ORF Stop: TGA at 3598SEQ ID NO: 26             1172 aa   MW at 129574.1kDNOV5a,MRPFFLLCFALPGLLHAQQACSRGACYPPVGDLLVGRTRFLRASSTCGLTKPETYCTQYGEWQMKCCKCG112505-01ProteinCDSRQPHNYYSHRVENVASSSGPMRWWQSQNDVNPVSLQLDLDRRFQLQEVMMEFQGPMPAGMLIERSSequenceSDFGKTWRVYQYLAADCTSTFPRVRQGRPQSWQDVRCQSLPQRPNARLNGGKVQLNLMDLVSGIPATQSQKIQEVGEITNLRVNFTRLAPVPQRCYHPPSAYYAVSQLRLQGSCFCHGHADRCAPKPGASAGPSTAVQVHDVCVCQHNTAGPNCERCAPFYNNRPWRPAECQDAHECQRCDCNGHSETCHFDPAVFAASQGAYGGVCDNCRDHTEGKNCERCQLHYFRNRRPGASIQETCISCECDPDGAVPGAPCDPVTGQCVCKEHVQGERCDLCKPGFTGLTYANPQGCHRCDCNILGSRRDMPCDEESGRCLCLPNVVGPKCDQCAPYHWKLASGQGCEPCACDPHNSPQPTVQPVHRAVPCREGFGGLMCSAAAIRQCPDRTYGDVATGCRACDCDFRGTEGPGCDKASGRCLCRPGLTGPRCDQCQRGYCNRYPVCVACHPCFQTYDADLREQALRFGRLRNATASLWSGPGLEDRGLASRILDAKSKIEQIRAVLSSPAVTEQSVAQVASAILSLRRTLQGLQLDLPLEEETLSLPRDLESLDRSFNGLLTMYQRKREQFEKISSADPSGAFRMLSTAYEQSAQAAQQVSDSSRLLDQLRDSRREAERLVRQAGGGGGTGSPKLVALRLEMSSLPDLTPTFNKLCGNSRQMACTPISCPGELCPQDNGTACGSRCRGVLPRAGGAFLMAGQVAEQLRGFNAQLQRTRQMIRAAEESASQIQSSAQRLETQVSASRSQMEEDVRRTRLLIQQVRDFLTDPDTDAATIQEVSEAVLALWLPTDSATVLQKMNEIQAIAARLPNVDLVLSQTKQDIARARRLQAEAEEARSRAHAVECQVEDVVGNLRQGTVALQEAQDTMQGTSRSLRLIQDRVAEVQQVLRPAEKLVTSMTKQLGDFWTRMEELRHQARQQGAEAVQAQQLAEGASEQALSAQEGFERIKQKYAELKDRLGQSSMLGEQGARIQSVKTEAEELFGETMEMMDRMKDMELELLRGSQAIMLRSADLTGLEKRVEQIRDHINGRVLYYATCKSEQ ID NO: 27             3810 bpNOV5b,GCTTTCAGGCGATCTGGAGAAAGAACGGCAGAACACACAGCAAGGAAAGGTCCTTTCTGGGGATCACCG112505-02DNA SequenceCCCATTGGCTGAAGATGAGACCATTCTTCCTCTTGTGTTTTGCCCTGCCTGGCCTCCTGCATGCCCAACAAGCCTGCTCCCGTGGGGCCTGCTATCCACCTGTTGGGGACCTGCTTGTTGGGAGGACCCGGTTTCTCCGAGCTTCATCTACCTGTGGACTGACCAAGCCTGAGACCTACTGCACCCAGTATGGCGAGTGGCAGATGAAATGCTGCAAGTGTGACTCCAGGCAGCCTCACAACTACTACAGTCACCGAGTAGAGAATGTGGCTTCATCCTCCGGCCCCATGCGCTGGTGGCAGTCCCAGAATGATGTGAACCCTGTCTCTCTGCAGCTGGACCTGGACAGGAGATTCCAGCTTCAAGAAGTCATGATGGAGTTCCAGGGGCCCATGCCCGCCGGCATGCTGATTGACCGCTCCTCAGACTTCGGTAAGACCTGGCGAGTGTACCACTACCTCGCTGCCGACTGCACCTCCACCTTCCCTCGGGTCCGCCAGGGTCGGCCTCAGAGCTGGCAGGATGTTCGGTGCCAGTCCCTGCCTCACAGGCCTAATGCACGCCTAAATGGGGGGAAGGTCCAACTTAACCTTATGGATTTAGTGTCTGGGATTCCAGCAACTCAAAGTCAAAAAATTCAAGAGGTGGGGGAGATCACAAACTTGAGAGTCAATTTCACCAGGCTGGCCCCTGTGCCCCAAAGGGGCTACCACCCTCCCAGCGCCTACTATGCTGTGTCCCAGCTCCGTCTGCAGGGGAGCTGCTTCTGTCACGGCCATGCTGATCGCTGCGCACCCAAGCCTGGGGCCTCTGCAGGCCCCTCCACCGCTGTGCAGGTCCACGATGTCTGTGTCTGCCAGCACAACACTGCCGGCCCAAATTGTGAGCGCTGTGCACCCTTCTACAACAACCGGCCCTGGAGACCGGCGGAGGGCCAGGACGCCCATGAATGCCAAAGGTGCGACTGCAATGGGCACTCAGAGACATGTCACTTTGACCCCGCTGTGTTTGCCGCCAGCCAGGGGGCATATGGAGGTGTGTGTGACAATTGCCGGGACCACACCGAAGGCAAGAACTGTGAGCGGTGTCAGCTGCACTATTTCCGGAACCGGCGCCCGGGAGCTTCCATTCAGGAGACCTGCATCTCCTGCGAGTGTGATCCGGATGGGGCAGTGCCAGGGGCTCCCTGTGACCCAGTGACCGGGCAGTGTGTGTGCAAGGAGCATGTGCAGGGAGAGCGCTGTGACCTATGCAAGCCGGGCTTCACTGGACTCACCTACGCCAACCCGCAGGGCTGCCACCGCTGTGACTGCAACATCCTGGGGTCCCGGAGGGACATGCCGTGTGACGAGGAGAGTGGGCGCTGCCTTTGTCTGCCCAACGTGGTGGGTCCCAAATGTGACCAGTGTGCTCCCTACCACTGGAAGCTGGCCAGTGGCCAGGGCTGTGAACCGTGTGCCTGCGACCCGCACAACTCCCCTCAGCCCACAGTGCAACCAGTTCACAGGGCAGTGCCCTGTCGGGAAGGCTTTGGTGGCCTGATGTGCAGCGCTGCAGCCATCCGCCAGTGTCCAGACCGGACCTATGGAGACGTGGCCACAGGATGCCGAGCCTGTGACTGTGATTTCCGGGGAACAGAGGGCCCGGGCTGCGACAAGGCATCAGGCCGCTGCCTCTGCCGCCCTGGCTTGACCGGGCCCCGCTGTGACCAGTGCCAGCGAGGCTACTGCAATCGCTACCCGGTGTGCGTGGCCTGCCACCCTTGCTTCCAGACCTATGATGCGGACCTCCGGGAGCAGGCCCTGCGCTTTGGTAGACTCCGCAATGCCACCGCCAGCCTGTGGTCAGGGCCTGGGCTGGAGGACCGTGGCCTGGCCTCCCGGATCCTAGATGCAAAGAGTAAGATTGAGCAGATCCGAGCAGTTCTCAGCAGCCCCGCAGTCACAGAGCAGGAGGTGGCTCAGGTGGCCAGTGCCATCCTCTCCCTCAGGAGCCTTCCGGATGCTGAGCACAGCCTACGAGCAGTCAGCCCAGGCTGCTCAGCAGGTCTCCGACAGCTCGCGCCTTTTGGACCAGCTCAGGGACAGCCGGAGAGAGGCAGAGAGGCTGGTGCGGCAGGCGGGAGGAGGAGGAGGCACCGGCAGCCCCAAGCTTGTGGCCCTGAGGCTGGAGATGTCTTCGTTGCCTGACCTGACACCCACCTTCAACAAGCTCTGTGGCAACTCCAGGCAGATGGCTTGCACCCCAATATCATGCCCTGGTGAGCTATGTCCCCAAGACAATGGCACAGCCTGTGGCTCCCGCTGCAGGGGTGTCCTTCCCAGGGCCGGTGGGGCCTTCTTGATGGCGGGGCAGGTGGCTGAGCAGCTGCGGGGCTTCAATGCCCAGCTCCAGCGGACCAGGCAGATGATTAGGGCAGCCGAGGAATCTGCCTCACAGATTCAATCCAGTGCCCAGCGCTTGGAGACCCAGGTGAGCGCCAGCCGCTCCCAGATGGAGGAAGATGTCAGACGCACACGGCTCCTAATCCAGCAGGTCCGGGACTTCCTAACAGACCCCGACACTGATGCAGCCACTATCCAGGAGGTCAGCGAGGCCGTGCTGGCCCTGTGGCTGCCCACAGACTCAGCTACTGTTCTGCAGAAGATGAATGAGATCCAGGCCATTGCAGCCAGGCTCCCCAACGTGGACTTGGTGCTGTCCCAGACCAAGCAGGACATTGCGCGTGCCCGCCGGTTGCAGGCTGAGGCTGAGGAAGCCAGGAGCCGAGCCCATGCAGTGGAGGGCCAGGTGGAAGATGTGGTTGGGAACCTGCGGCAGGGGACAGTGGCACTGCAGGAAGCTCAGGACACCATGCAAGGCACCAGCCGCTCCCTTCGGCTTATCCAGGACAGGGTTGCTGAGGTTCAGCAGGTACTGCGGCCAGCAGAAAAGCTGGTGACAAGCATGACCAAGCAGCTGGGTGACTTCTGGACACGGATGGAGGAGCTCCGCCACCAAGCCCGGCAGCAGGGGGCAGAGGCAGTCCAGGCCCAGCAGCTTGCGGAAGGTGCCAGCGAGCAGGCATTGAGTGCCCAAGAGGGATTTGAGAGAATAAAACAAAAGTATGCTGAGTTGAAGGACCGGTTGGGTCAGAGTTCCATGCTGGGTGAGCAGGGTGCCCGGATCCAGAGTGTGAAGACAGAGGCAGAGGAGCTGTTTGGGGAGACCATGGAGATGATGGACAGGATGAAAGACATGGAGTTGGAGCTGCTGCGGGGCAGCCAGGCCATCATGCTGCGCTCGGCGGACCTGACAGGACTGGAGAAGCGTGTGGAGCAGATCCGTGACCACATCAATGGGCGCGTGCTCTACTATGCCACCTGCAAGTGATGCTACAGCTTCCAGCCCGTTGCCCCACTCATCTGCCGCCTTTGCTTTTGGTTGGGGGCAGATTGGGTTGGAATGCTTTCCATCTCCAGGAGACTTTCATGCAGCCTAAAGTACAGCCTGGACCACCCCTGGTGTGTAGCTAGTAAGATTACCCTGAGCTGCAGCTGAGCCTGAGCCAATGGGACAGTTACACTTGACAGACAAAGATGGTGGAGATTGGCATGCCATTGAAACTAAGAGCTCTCAAGTCAAGGAAGCTGGGCTGGGCAGTATCCCCCGCCTTTAGTTCTCCACTGGGGAGGAATCCTGGACCAAGCACAAAAACTTAACAAAAGTGATGTAAAAATGAAAAGCCAAATAAAAATCTTTGGORF Start: ATG at 82      ORF Stop: TGA at 2254SEQ ID NO: 28             724 aa    MW at 79264.7kDNOV5b,MRPFFLLCFALPGLLHAQQACSRGACYPPVGDLLVGRTRFLRASSTCGLTKPETYCTQYGEWQMKCCCG112505-02ProteinKCDSRQPHNYYSHRVENVASSSGPMRWWQSQNDVNPVSLQLDLDRRFQLQEVMMEFQGPMPAGMLIESequenceRSSDFGKTWRVYQYLAADCTSTFPRVRQGRPQSWQDVRCQSLPQRPNARLNGGKVQLNLMDLVSGIPATQSQKIQEVGEITNLRVNFTRLAPVPQRGYHPPSAYYAVSQLRLQGSCFCHGHADRCAPKPGASAGPSTAVQVHDVCVCQHNTAGPNCERCAPFYNNRPWRPAEGQDAHECQRCDCNGHSETCHFDPAVFAASQGAYGGVCDNCRDHTEGKNCERCQLHYFRNRRPGASIQETCISCECDPDGAVPGAPCDPVTGQCVCKEHVQGERCDLCKPGFTGLTYANPQGCHRCDCNILGSRRDMPCDEESGRCLCLPNVVGPKCDQCAPYHWKLASGQGCEPCACDPHNSPQPTVQPVHRAVPCREGFGGLMCSAAAIRQCPDRTYGDVATGCRACDCDFRGTEGPGCDKASGRCLCRPGLTGPRCDQCQRGYCNRYPVCVACHPCFQTYDADLREQALRFGRLRNATASLWSGPGLEDRGLASRILDAKSKIEQIRAVLSSPAVTEQEVAQVASAILSLRSLPDAEHSLRAVSPGCSAGLRQLAPFGPAQGQPERGREAGAAGGRRRRHRQPQACGPEAGDVFVA


[0388] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 5B.
26TABLE 5BComparison of NOV5a against NOV5b.NOV5a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV5b1 . . . 659647/659 (98%)1 . . . 659647/659 (98%)


[0389] Further analysis of the NOV5a protein yielded the following properties shown in Table 5C.
27TABLE 5CProtein Sequence Properties NOV5aPSort analysis:0.3700 probability located in outside; 0.1900 probability located in lysosome(lumen); 0.1000 probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 18 and 19


[0390] A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5D.
28TABLE 5DGeneseq Results for NOV5aNOV5aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAW37870Human protein comprising 1 . . . 11721161/1172 (99%)0.0secretory signal amino acid 1 . . . 11721161/1172 (99%)sequence 7 - Homo sapiens,1172 aa. [WO9811217-A2,Mar. 19, 1998]AAB48466Human laminin 5 4 . . . 11721151/1169 (98%)0.0polypeptide, SEQ ID NO: 22 - 6 . . . 11741151/1169 (98%)Homo sapiens, 1174 aa.[WO200066731-A2,Nov. 9, 2000]AAB48462Human laminin 5 1 . . . 11721152/1172 (98%)0.0polypeptide, SEQ ID NO: 14 - 1 . . . 11701155/1172 (98%)Homo sapiens, 1170 aa.[WO200066731-A2,Nov. 9, 2000]AAB48464Human laminin 5 4 . . . 11721152/1181 (97%)0.0polypeptide, SEQ ID NO: 18 - 6 . . . 11861152/1181 (97%)Homo sapiens, 1186 aa.[WO200066731-A2,Nov. 9, 2000]AAB48465Human laminin 517 . . . 11721145/1156 (99%)0.0polypeptide, SEQ ID NO: 20 -12 . . . 11671145/1156 (99%)Homo sapiens, 1167 aa.[WO200066731-A2,Nov. 9, 2000]


[0391] In a BLAST search of public sequence datbases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5E.
29TABLE 5EPublic BLASTP Results for NOV5aNOV5aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ13751Laminin beta-3 chain 1 . . . 11721161/1172 (99%)0.0precursor (Laminin 5 beta 3) 1 . . . 11721161/1172 (99%)(Laminin B1k chain)(Kalinin B1 chain) - Homosapiens (Human), 1172 aa.CAC17363Sequence 21 from Patent 4 . . . 11721151/1169 (98%)0.0WO0066731 precursor - 6 . . . 11741151/1169 (98%)Homo sapiens (Human),1174 aa.CAC17359Sequence 13 from Patent 1 . . . 11721152/1172 (98%)0.0WO0066731 precursor - 1 . . . 11701155/1172 (98%)Homo sapiens (Human),1170 aa.CAC17361Sequence 17 from Patent 4 . . . 11721152/1181 (97%)0.0WO0066731 precursor - 6 . . . 11861152/1181 (97%)Homo sapiens (Human),1186 aa.CAC17362Sequence 19 from Patent17 . . . 11721145/1156 (99%)0.0WO0066731 - Homo sapiens12 . . . 11671145/1156 (99%)(Human), 1167 aa(fragment).


[0392] PFam analysis predicts that the NOV5a protein contains the domains shown in the Table 5F.
30TABLE 5FDomain Analysis of NOV5aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV5a Match RegionRegionValuelaminin_Nterm 26 . . . 248 88/273 (32%)1.6e−38150/273 (55%)laminin_EGF250 . . . 313 17/70 (24%)  4e−08 50/70 (71%)laminin_EGF316 . . . 376 19/65 (29%)1.7e−13 50/65 (77%)laminin_EGF379 . . . 428 26/59 (44%)9.4e−18 43/59 (73%)laminin_EGF431 . . . 478 27/59 (46%)3.9e−17 39/59 (66%)laminin_EGF481 . . . 531 14/64 (22%)0.79 34/64 (53%)laminin_EGF534 . . . 578 20/59 (34%)3.1e−10 34/59 (58%)



Example 6

[0393] The NOV6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 6A.
31TABLE 6ANOV6 Sequence AnalysisSEQ ID NO: 29             2659 bpNOV6a,ACCCACGGGGCTGCCCTCCCCTGCGCACTCCCCTCGCTGCCCGGGCCCGGAGCGCAGTGGGGCCGCACCG121965-01DNA SequenceAGATTCACAATGTTGAAAGCCCTTTTCCTAACTATGCTGACTCTGGCGCTGGTCAAGTCACAGGACACCGAAGAAACCATCACGTACACGCAATGCACTGACGGATATGAGTGGGATCCTGTGAGACAGCAATGCAAAGATATTGATGAATGTGACATTGTCCCAGACGCTTGTAAAGGTGGAATGAAGTGTGTCAACCACTATGGAGGATACCTCTGCCTTCCGAAAACAGCCCAGATTATTGTCAATAATGAACAGCCTCAGCAGGAAACACAACCAGCAGAAGGAACCTCAGGGGCAACCACCGGGGTTGTAGCTGCCAGCAGCATGGCAACCAGTGGAGTGTTGCCCGGGGGTGGTTTTGTGGCCAGTGCTGCTGCAGTCGCAGGCCCTGAAATGCAGACTGGCCGAAATAACTTTGTCATCCGGCGGAACCCAGCTGACCCTCAGCGCATTCCCTCCAACCCTTCCCACCGTATCCAGTGTGCAGCAGGCTACGAGCAAAGTGAACACAACGTGTGCCAAGACATAGACGAGTGCACTGCAGGGACGCACAACTGTAGAGCAGACCAAGTGTGCATCAATTTACGGGGATCCTTTGCATGTCAGTGCCCTCCTGGATATCAGAAGCGAGGGGAGCAGTGCGTAGACATAGATGAATGTACCATCCCTCCATATTGCCAGCAAAGATGCGTGAATACACCAGGCTCATTTTATTGCCAGTGCAGTCCTGGGTTTCAATTGGCAGCAAACAACTATACCTGCGTAGATATAAATGAATGTGATGCCAGCAATCAATGTGCTCAGCAGTGCTACAACATTCTTGGTTCATTCATCTGTCAGTGCAATCAAGGATATGAGCTAAGCAGTGACAGGCTCAACTGTGAAGACATTGATGAATGCAGAACCTCAAGCTACCTGTGTCAATATCAATGTGTCAATGAACCTGGGAAATTCTGATGTATGTGCCCCCAGGGATACCAAGTGGTGAGAAGTAGAACATGTCAAGATATAAATGAGTGTGAGACCACAAATGAATGCCGGGAGGATGAAATGTGTTGGAATTATCATGGCGGCTTCCGTTGTTATCCACGAAATCCTTGTCAAGATCCCTACATTCTAACACCAGAGAACCGATGTGTTTGCCCAGTCTCAAATGCCATGTGCCGAGAACTGCCCCAGTCAATAGTCTACAAATACATGAGCATCCGATCTGATAGGTCTGTGCCATCAGACATCTTCCAGATACAGGCCACAACTATTTATGCCAACACCATCAATACTTTTCGGATTAAATCTGGAAATGAAAATGGAGAGTTCTACCTACGACAAACAAGTCCTGTAAGTGCAATGCTTGTGCTCGTGAAGTCATTATCAGGACCAAGAGAACATATCGTGGACCTGGAGATGCTGACAGTCAGCAGTATAGGGACCTTCCGCACAAGCTCTGTGTTAAGATTGACAATAATAGTGGGGCCATTTTCATTTTAGTCTTTTCTAAGAGTCAACCACAGGCATTTAAGTCAGCCAAAGAATATTGTTACCTTAAAGCACTATTTTATTTATAGATATATCTAGTGCATCTACATCTCTATACTGTACACTCACCCATAATTCAAACAATTACACCATGGTATAAAGTGGGCATTTAATATGTAAAGATTCAAAGTTTGTCTTTATTACTATATGTAAATTAGACATTAATCCACTAAACTGGTCTTCTTCAAGAGAGCTAAGTATACACTATCTGGTGAAACTTGGATTCTTTCCTATAAAAGTGGGACCAAGCAATGATGATCTTCTGTGGTGCTTAAGGAAACTTACTAGAGCTCCACTAACAGTCTCATAAGGAGGCAGCCATCATAACCATTGAATAGCATGCAAGGGTAAGAATGAGTTTTTAACTGCTTTGTAAGAAAATGGAAAAGGTCAATAAAGATATATTTCTTTAGAAAATGGGGATCTGCCATATTTGTGTTGGTTTTTATTTTCATATCCAGCCTAAAGGTGGTTGTTTATTATATAGTAATAAATCATTGCTGTACAATATGCTGGTTTCTGTAGGGTATTTTTAATTTTGTCAGAAATTTTAGATTGTGAATATTTTGTAAAAAACAGTAAGCAAAATTTTCCAGAATTCCCAAAATGAACCAGATATCCCCTAGAAAATTATACTATTGAGAAATCTATGGGGAGGATATGAGAAAATAAATTCCTTCTAAACCACATTGGAACTGACCTGAAGAAGCAAACTCGGAAAATATAATAACATCCCTGAATTCAGGACTTCCACAAGATGCAGAACAAAATGGATAAAAGGTATTTCACTGGAGAAGTTTTAATTTCTAAGTAAAATTTAAATCCTAACACTTCACTAATTTATAACTAAAATTTCTCATCTTCGTACTTGATGCTCACAGAGGAAGAAAATGATGATGGTTTTTATTCCTGGCATCCAGAGTGACAGTGAACTTAAGCAAATTACCCTCCTACCCAATTCTATGGAATATTTTATACGTCTCCTTGTTTAAAATGTCACTGCTTTACTTTGATGTATCATATTTTTAAATAAAAATAAATATTCCTTTAGAORF Start: ATG at 78      ORF Stop: TAG at 1557SEQ ID NO: 30             493 aa    MW at 54640.0kDNOV6a,MLKALFLTMLTLALVKSQDTEETITYTQCTDGYEWDPVRQQCKDIDECDIVPDACKGGMKCVNHYGGYCG121965-01ProteinLCLPKTAQIIVNNEQPQQETQPAEGTSGATTGVVAASSMATSGVLPGGGFVASAAAVAGPEMQTGRNNSequenceFVIRRNPADPQRIPSNPSHRTQCAAGYEQSEHNVCQDIDECTAGTHNCRADQVCINLRGSFACQCPPGYQKRGEQCVDIDECTIPPYCHQRCVNTPGSFYCQCSPGFQLAANNYTCVDINECDASNQCAQQCYNILGSFICQCNQGYELSSDRLNCEDIDECRTSSYLCQYQCVNEPGKFSCMCPQGYQVVRSRTCQDINECETTNECREDEMCWNYHGGFRCYPRNPCQDPYILTPENRCVCPVSNAMCRELPQSIVYKYMSIRSDRSVPSDIFQIQATTIYANTINTFRIKSGNENGEFYLRQTSPVSAMLVLVKSLSGPREHIVDLEMLTVSSIGTFRTSSVLRLTIIVGPFSFSEQ ID NO: 31             2625 bpNOV6b,CTAGTATTCTACTAGAACTGGAAGATTGCTCTCCGAGTTTTGTTTTGTTATTTTGTTTAAAAAATAACG121965-02DNA SequenceAAAGCTTGAGGCCAAGGCAATTCATATTGGCTCACAGGTATTTTTGCTGTGCTGTGCAAGGAACTCTGCTAGCTCAAGATTCACAATGTTGAAAGCCCTTTTCCTAACTATGCTGACTCTGGCGCTGGTCAAGTCACAGGACACCGAAGAAACCATCACGTACACGCAATGCACTGACGGATATGAGTGGGATCCTGTGAGACAGCAATGCAAAGATATTGATGAATGTGACATTGTCCCAGACGCTTGTAAAGGTGGAATGAAGTGTGTCAACCACTATGGAGGATACCTCTGCCTTCCGAAAACAGCCCAGATTATTGTCAATAATGAACAGCCTCAGCAGGAAACACAACCAGCAGAAGGAACCTCAGGAGCAACCACCGGGGTTGTAGCTGCCAGCAGCATGGCAACCAGTGGAGTGTTGCCCGGGGGTGGTTTTGTGGCCAGTGCTGCTGCAGTCGCAGGCCCTGAAATGCAGACTGGCCGAAATAACTTTGTCATCCGGCGGAACCCAGCTGACCCTCAGCGCATTCCCTCCAACCCTTCCCACCGTATCCAGTGTGCAGCAGGCTACGAGCAAAGTGAACACAACGTGTGCCAAGACATAGACGAGTGCACTGCAGGGACGCACAACTGTAGAGCAGACCAAGTGTGCATCAATTTACGGGGATCCTTTGCATGTCAGTGCCCTCCTGGATATCAGAAGCGAGGGGAGCAGTGCGTAGATATAAATGAATGTGATGCCAGCAATCAATGTGCTCAGCAGTGCTACAACATTCTTGGTTCATTCATCTGTCAGTGCAATCAAGGATATGAGCTAAGCAGTGACAGGCTCAACTGTGAAGACATTGATGAATGCAGAACCTCAAGCTACCTGTGTCAATATCAATGTGTCAATGAACCTGGGAAATTCTCATGTATGTGCCCCCAGGGATACCAAGTGGTGAGAAGTAGAACATGTCAAGATATAAATGAGTGTGAGACCACAAATGAATGCCGGGAGGATGAAATGTGTTGGAATTATCATGGCGGCTTCCGTTGTTATCCACGAAATCCTTGTCAAGATCCCTACATTCTAACACCAGAGAACCGATGTGTTTGCCCAGTCTCAAATGCCATGTGCCGAGAACTGCCCCAGTCAATAGTCTACAAATACATGAGCATCCGATCTGATAGGTCTGTGCCATCAGACATCTTCCAGATACAGGCCACAACTATTTATGCCAACACCATCAATACTTTTCGGATTAAATCTGGAAATGAAAATGGAGAGTTCTACCTACGACAAACAAGTCCTGTAAGTGCAATGCTTGTGCTCGTGAAGTCATTATCAGGACCAAGAGAACATATCGTGGACCTGGAGATGCTGACAGTCAGCAGTATAGGGACCTTCCGCACAAGCTCTGTGTTAAGATTGACAATAATAGTGGGGCCATTTTCATTTTAGTCTTTTCTAAGAGTCAACCACAGGCATTTAAGTCAGCCAAAGAATATTGTTACCTTAAAGCACTATTTTATTTATAGATATATCTAGTGCATCTACATCTCTATACTGTACACTCACCCATAACAAACAATTACACCATGGTATAAAGTGGGCATTTAATATGTAAAGATTCAAAGTTTGTCTTTATTACTATATGTAAATTAGACATTAATCCACTAAACTGGTCTTCTTCAAGAGAGCTAAGTATACACTATCTGGTGAAACTTGGATTCTTTCCTATAAAAGTGGGACCAAGCAATGATGATCTTCTGTGGTGCTTAAGGAAACTTACTAGAGCTCCACTAACAGTCTCATAAGGAGGCAGCCATCATAACCATTGAATAGCATGCAAGGGTAAGAATGAGTTTTTAACTGCTTTGTAAGAAAATGGAAAAGGTCAATAAAGATATATTTCTTTAGAAAATGGGGATCTGCCATATTTGTGTTGGTTTTTATTTTCATATCCAGCCTAAAGGTGGTTGTTTATTATATAGTAATAAATCATTGCTGTACAACATGCTGGTTTCTGTAGGGTATTTTTAATTTTGTCAGAAATTTTAGATTGTGAATATTTTGTAAAAAACAGTAAGCAAAATTTTCCAGAATTCCCAAAATGAACCAGATACCCCCTAGAAAATTATACTATTGAGAAATCTATGGGGAGGATATGAGAAAATAAATTCCTTCTAAACCACATTGGAACTGACCTGAAGAAGCAAACTCGGAAAATATAATAACATCCCTGAATTCAGGCATTCACAAGATGCAGAACAAAATGGATAAAAGGTATTTCACTGGAGAAGTTTTAATTTCTAAGTAAAATTTAAATCCTAACACTTCACTAATTTATAACTAAAATTTCTCATCTTCGTACTTGATGCTCACAGAGGAAGAAAATGATGATGGTTTTTATTCCTGCCATCCAGAGTGACAGTGAACTTAAGCAAATTACCCTCCTACCCAATTCTATGGAATATTTTATACGTCTCCTTGTTTAAAATCTGACTGCTTTACTTTGATGTATCATATTTTTAAATAAAAATAAATATTCCTTTAGAAGATCACTCTAAAAORF Start: ATG at 153     ORF Stop: TAG at 1512SEQ ID NO: 32             453 aa    MW at 50198.0kDNOV6b,MLKALFLTMLTLALVKSQDTEETITYTQCTDGYEWDPVRQQCKDIDECDIVPDACKGGMKCVNHYGGCG121965-02ProteinYLCLPKTAQIIVNNEQPQQETQPAEGTSGATTGVVAASSMATSGVLPGGGFVASAAAVAGPEMQTGRSequenceNNFVIRRNPADPQRIPSNPSHRIQCAAGYEQSEHNVCQDIDECTAGTHNCRADQVCINLRGSFACQCPPGYQKRGEQCVDINECDASNQCAQQCYNILGSFICQCNQGYELSSDRLNCEDIDECRTSSYLCQYQCVNEPGKFSCMCPQGYQVVRSRTCQDINECETTNECREDEMCWNYHGGFRCYPRNPCQDPYILTPENRCVCPVSNAMCRELPQSIVYKYMSIRSDRSVPSDIFQIQATTIYANTINTFRIKSGNENGEFYLRQTSPVSAMLVLVKSLSGPREHIVDLEMLTVSSIGTFRTSSVLRLTIIVGPFSF


[0394] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 6B.
32TABLE 6BComparison of NOV6a against NOV6b.NOV6a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV6b1 . . . 493440/493 (89%)1 . . . 453440/493 (89%)


[0395] Further analysis of the NOV6a protein yielded the following properties shown in Table 6C.
33TABLE 6CProtein Sequence Properties NOV6aPSort analysis:0.3700 probability located in outside; 0.1900 probability located in lysosome(lumen); 0.1000 probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 18 and 19


[0396] A search of the NOV6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6D.
34TABLE 6DGeneseq Results for NOV6aNOV6aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB48077Human extracellular 1 . . . 493493/493 (100%)0.0signaling molecule (EXCS) 1 . . . 493493/493 (100%)(ID 1359783CD1) - Homosapiens, 493 aa.[WO200070049-A2,Nov. 23, 2000]AAB72892Human EFEMP1 - Homo 1 . . . 493493/493 (100%)0.0sapiens, 493 aa. 1 . . . 493493/493 (100%)[WO200112823-A2,Feb. 22, 2001]AAG68188Extracellular protein SEQ ID107 . . . 493387/387 (100%)0.0NO: 104 - Homo sapiens, 387 1 . . . 387387/387 (100%)aa. [WO200177327-A1,Oct. 18, 2001]AAY08066Human EGF-like protein144 . . . 493350/350 (100%)0.0S1-5 fragment #1 encoded by 1 . . . 350350/350 (100%)GEN12205 cDNA - Homosapiens, 350 aa.[WO9914241-A2,Mar. 25, 1999]AAY08490Human EGF-like protein 3 . . . 346344/348 (98%)0.0S1-5 fragment #2 encoded by 1 . . . 348344/348 (98%)GEN12205 cDNA - Homosapiens, 348 aa.[WO9914241-A2,Mar. 25, 1999]


[0397] In a BLAST search of public sequence datbases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6E.
35TABLE 6EPublic BLASTP Results for NOV6aNOV6aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ12805EGF-containing fibulin-like 1 . . . 493493/493 (100%)0.0extracellular matrix protein 1 1 . . . 493493/493 (100%)precursor (Fibulin-3)(FIBL-3) (Fibrillin-likeprotein) (Extracellularprotein S1-5) - Homo sapiens(Human), 493 aa.O35568EGF-containing fibulin-like 1 . . . 493459/493 (93%)0.0extracellular matrix protein 1 1 . . . 493476/493 (96%)precursor (Fibulin-3)(FIBL-3) (T16 protein) -Rattus norvegicus (Rat), 493aa.I38449extracellular protein - human,107 . . . 493387/387 (100%)0.0387 aa. 1 . . . 387387/387 (100%)AAH31184Hypothetical protein - Mus107 . . . 493371/387 (95%)0.0musculus (Mouse), 387 aa. 1 . . . 387379/387 (97%)Q9JM06EGF-containing fibulin-like 9 . . . 493245/486 (50%)e−148extracellular matrix protein 2 - 19 . . . 443311/486 (63%)Mus musculus (Mouse),443 aa.


[0398] PFam analysis predicts that the NOV6a protein contains the domains shown in the Table 6F.
36TABLE 6FDomain Analysis of NOV6aIdentities/SimilaritiesPfam DomainNOV6a Match Regionfor the Matched RegionExpect ValueEGF177 . . . 21212/47 (26%)0.000229/47 (62%)EGF218 . . . 25214/47 (30%)0.001430/47 (64%)TIL201 . . . 25816/74 (22%)0.7834/74 (46%)EGF258 . . . 29213/47 (28%)0.01523/47 (49%)



Example 7

[0399] The NOV7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 7A.
37TABLE 7ANOV7 Sequence AnalysisSEQ ID NO: 33             1503 bpNOV7a,GGACGCTGGATTAGAAGGCAGCAAAAAAAGATCTGTGCTGGCTGGAGCCCCCTCAGTGTGCAGGCTTACG126129-01DNA SequenceGAGGGACTAGGCTGGGTGTGGAGCTGCAGCGTATCCACAGGCCCCAGGATGCAGGCCCTGGTGCTACTCCTCTGCATTGGAGCCCTCCTCGGGCACAGCAGCTGGCAGAACCCTGCCAGCCCCCCGGAGGAGGGCTCCCCAGACCCCGACAGCACAGGGGCGCTGGTGGAGGAGGAGGATCCTTTCTTCAAAGTCGCCGTGAACAAGCTGGCAGCGGCTGTCTCCAACTTCGGCTATGACCTGTACCGGGTGCGATCCAGCATGAGCCCCACGACCAACGTGCTCCTGTCTCCTCTCAGTGTGGCCACGGCCCTCTCGGCCCTCTCGCTGGGAGCGGACGAGCGAACAGAATCCATCATTCACCGGGCTCTCTACTATGACTTGATCAGCAGCCCAGACATCCATGGTACCTATAAGGAGCTCCTTGACACGGTCACTGCCCCCCAGAAGAACCTCAAGAGTGCCTCCCGGATCGTCTTTGAGAAGAAGCTGCGCATAAAATCCAGCTTTGTGGCACCTCTGGAAAAGTCATATGGGACCAGGCCCAGAGTCCTGACGGGCAACCCTCGCTTGGACCTGCAAGAGATCAACAACTGGGTGCAGGCGCAGATGAAAGGGAAGCTCGCCAGGTCCACAAAGGAAATTCCCGATGAGATCAGCATTCTCCTTCTCGGTGTGGCGCACTTCAAGGGGCAGTGGGTAACAAAGTTTGACTCCAGAAAGACTTCCCTCGAGGATTTCTACTTGGATGAAGAGAGGACCGTGAGGGTCCCCATGATGTCGGACCCTAAGGCTGTTTTACGCTATGGCTTGGATTCAGATCTCAGCTGCAAGATTGCCCAGCTGCCCTTGACCGGAAGCATGAGTATCATCTTCTTCCTGCCCCTGAAAGTGACCCAGAATTTGACCTTGATAGAGGAGAGCCTCACCTCCGAGTTCATTCATGACATAGACCGAGAACTGAAGACCGTGCAGGCGGTCCTCACTGTCCCCAAGCTGAAGCTGAGTTACGAAGGCGAAGTCACCAAGTCCCTGCAGGAGATGAAGCTGCAATCCTTGTTTGATTCACCAGACTTTAGCAAGATCACAGGCAAACCCATCAAGCTGACTCAGGTGGAACACCGGGCTGGCTTTGAGTGGAACGAGGATGGGGCGGGAACCACCCCCAGCCCAGGGCTGCAGCCTGCCCACCTCACCTTCCCGCTGGACTATCACCTTAACCAGCCTTTCATCTTCGTACTGAGGGACACAGACACAGGGGCCCTTCTCTTCATTGGCAAGATTCTGGACCCCAGGGGCCCCTAATATCCCAGTTTAATATTCCAATACCCTAGAAGAAAACCCGAGGGACAGCAGATTCCACAGGACACGAAGGCTGCCCCTGTAAGGTTTCAATGCATACAATAAAAGAGCTTTATCCCTAAAAAAAAAAAAAORF Start: ATG at 117     ORF Stop: TAA at 1371SEQ ID NO: 34             418 aa    MW at 46385.6kDNOV7a,MQALVLLLCIGALLGHSSWQNPASPPEEGSPDPDSTGALVEEEDPFFKVAVNKLAAAVSNFGYDLYRVCG125129-01ProteinRSSMSPTTNVLLSPLSVATALSALSLGADERTESIIHRALYYDLISSPDIHGTYKELLDTVTAPQKNLSequenceKSASRIVFEKKLRIKSSFVAPLEKSYGTRPRVLTGNPRLDDQEINNWVQAQMKGKLARSTKEIPDEISILLLGVAHFKGQWVTKFDSRKTSLEDFYLDEERTVRVPMMSDPKAVLRYGLDSDLSCKIAQLPLTGSMSIIFFLPLKVTQNLTLIEESLTSEFIHDIDRELKTVQAVLTVPKLKLSYEGEVTKSLQEMKLQSLFDSPDFSKITGKPIKLTQVEHRAGFEWNEDGAGTTPSPGLQPAHLTFPLDYHLNQPFIFVLRDTDTGALLFIGKILDPRGPSEQ ID NO: 35             368 bpNOV7b,CTTAGAGGGACTAGGCTGGGTGTGGAGCTGCAGCGTATCCACAGGCCCCAGGATGCAGGCCCTGGTGCG126129-02DNA SequenceCTACTCCTCTGCATTGGAGCCCTCCTCGGGCACAGCAGCTGCCAGAACCCTGCCAGCCCCCCGGAGGAGGGCTCCCCAGACCCCGACAGCACAGGGGCGCTGGTGGAGGAGGAGGATCCTTTCTTCAAAGTCCCCGTGAACAAGCTGGCAGCGGCTGTCTCCAACTTCGGCTATGACCTGTACCGGGTGCGATCCAGCGAACAGAATCCATCATTCACCGGGCTCTCTACTATGACTTGATCAGCAGCCCAGACATCCATGGTACCTATAAGGAGCTCCTTGACACGGTCACTGCCCCCCAORF Start: ATG at 53      ORF Stop: TGA at 305SEQ ID NO: 36             84 aa     MW at 8914.9kDNOV7b,MQALVLLLCIGALLGHSSCQNPASPPEEGSPDPDSTGALVEEEDPFFKVPVNKLAAAVSNFGYDLYRCG126129-02ProteinVRSSEQNPSFTGLSTMTSequence


[0400] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 7B.
38TABLE 7BComparison of NOV7a against NOV7b.NOV7a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV7b16 . . . 7140/56 (71%)16 . . . 7140/56 (71%)


[0401] Further analysis of the NOV7a protein yielded the following properties shown in Table 7C.
39TABLE 7CProtein Sequence Properties NOV7aPSort analysis:0.4600 probability located in plasma membrane; 0.1443 probability located inmicrobody (peroxisome); 0.1000 probability located in endoplasmic reticulum(membrane); 0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 16 and 17


[0402] A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7D.
40TABLE 7DGeneseq Results for NOV7aNOV7aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAR44800Sequence of retinal 1 . . . 418418/418 (100%)0.0pigmented 1 . . . 418418/418 (100%)epithelium-derivedneurotrophic factor (PEDNF) -Homo sapiens, 418 aa.[WO9324529-A,Dec. 9, 1993]AAE10306Human pigment epithelium 1 . . . 418416/418 (99%)0.0derived growth factor (PEDF) - 1 . . . 418416/418 (99%)Homo sapiens, 418 aa.[WO200162725-A2,Aug. 30, 2001]AAR90287Pigment epithelium-derived 1 . . . 418416/418 (99%)0.0factor - Homo sapiens, 418 1 . . . 418416/418 (99%)aa. [WO9533480-A1,Dec. 14, 1995]AAR90288Modified pigment44 . . . 418371/375 (98%)0.0epithelium-derived factor 5 . . . 379374/375 (98%)(rPEDF) - Homo sapiens, 379aa. [WO9533480-A1,Dec. 14, 1995]ABB57391Rat mucocardial cell 1 . . . 415343/416 (82%)0.0proliferation associated 1 . . . 415382/416 (91%)polypeptide SEQ ID NO 36 -Rattus norvegius, 418 aa.[WO200183705-A1,Nov. 8, 2001]


[0403] In a BLAST search of public sequence datbases, the NOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7E.
41TABLE 7EPublic BLASTP Results for NOV7aNOV7aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueA47281pigment1 . . . 418416/418 (99%)0.0epithelial-differentiating factor1 . . . 418416/418 (99%)precursor - human, 418 aa.P36955Pigment epithelium-derived1 . . . 418414/418 (99%)0.0factor precursor (PEDF)1 . . . 418416/418 (99%)(EPC-1) - Homo sapiens(Human), 418 aa.Q96CT1Hypothetical 46.4 kDa protein -1 . . . 418413/418 (98%)0.0Homo sapiens (Human), 4181 . . . 418415/418 (98%)aa.O70629Pigment epithelium-derived1 . . . 415357/415 (86%)0.0factor (Serine (Or cysteine)1 . . . 414391/415 (94%)proteinase inhibitor, clade F(Alpha-2 antiplasmin, pigmentepithelium derived factor).member 1) - Mus musculus(Mouse), 417 aa.P97298Pigment epithelium-derived1 . . . 415357/415 (86%)0.0factor precursor (PEDF)1 . . . 414391/415 (94%)(Stromal cell- derived factor 3)(SDF-3) - Mus musculus(Mouse), 417 aa.


[0404] PFam analysis predicts that the NOV7a protein contains the domains shown in the Table 7F.
42TABLE 7FDomain Analysis of NOV7aIdentities/SimilaritiesPfam DomainNOV7a Match Regionfor the Matched RegionExpect Valueserpin51 . . . 415112/391 (29%)4.8e−83262/391 (67%)



Example 8

[0405] The NOV8 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 8A.
43TABLE 8ANOV8 Sequence AnalysisSEQ ID NO: 37             1154 bpNOV8a,ATGGGGCGGCTGGTTCTGCTGTGGGGAGCTGCGGTCTTTCTGCTGGGAGGCTGGATGGCTTTGGGGCACG142202-01DNA SequenceAGGAGGAGCAGCAGAAGGAGTACAGATTCAGATCATCTACTTCAATTTAGAAACCGTGCAGGTGACATGGAATGCCAGCAAATACTCCAGGACCAACCTGACTTTCCACTACAGATTCAACGGTGATGAGGCCTATGACCAGTGCACCAACTACCTTCTCCAGGAAGGTCACACTTCGGGGTGCCTCCTAGACGCAGAGCAGCGAGACGACATTCTCTATTTCTCCATCAGGAATGGGACGCACCCCGTTTTCACCGCAAGTCGCTGGATGGTTTATTACCTGAAACCCAGTTCCCCGAAGCACGTGAGATTTTCGTGGCATCAGGATGCAGTGACGGTGACGTGTTCTGACCTGTCCTACGGGGATCTCCTCTATGAGGTTCAGTACCGGAGCCCCTTCGACACCGAGTGGCAGTCCAAACAGGAAAATACCTGCAACGTCACCATAGAAGGCTTGGATGCCGAGAAGTGTTACTCTTTCTGGGTCAGGGTGAAGGCTATGGAGGATGTATATGGGCCAGACACATACCCAAGCGACTGGTCAGAGGTGACATGCTGGCAGAGAGGCGAGATTCGGGATGCCTGTGCAGAGACACCAACGCCTCCCAAACCAAAGCTGTCCAAATTTATTTTAATTTCCAGCCTGGCCATCCTTCTGATGGTGTCTCTCCTCCTTCTGTCTTTATGGAAATTATGGAGAGTGAGGAAGTTTCTCATTCCCAGCGTGCCAGACCCGAAATCCATCTTCCCCGGGCTCTTTGAGATACACCAAGGGAACTTCCAGGAGTGGATCACAGACACCCAGAACGTGGCCCACCTCCACAAGATGGCAGGTGCAGAGCAAGAAAGTGGCCCCGAGGAGCCCCTGGTAGTCCAGTTGGCCAAGACTGAAGCCGAGTCTCCCAGGATGCTGGACCCACAGACCGAGGAGAAAGAGGCCTCTGGGGGATCCCTCCAGCTTCCCCACCAGCCCCTCCAAGGTGGTGATGTGGTCACAATCGGGGGCTTCACCTTTGTGATGAATGACCGCTCCTACGTGGCGTTGTGATGGACACACCACTGTCAAAGTCAACGTCAGAAGGGCGAORF Start: ATG at 1       ORE Stop: TGA at 1114SEQ ID NO: 38             371 aa    MW at 42040.3kDNOV8a,MGRLVLLWGAAVFLLGGWMALGQGGAAEGVQIQIIYFNLETVQVTWNASKYSRTNLTFHYRFNGDEAYCG142202-01ProteinDQCTNYLLQEGHTSGCLLDAEQRDDILYFSIRNGTHPVFTASRWMVYYLKPSSPKHVRFSWHQDAVTVSequenceTCSDLSYGDLLYEVQYRSPFDTEWQSKQENTCNVTIEGLDAEKCYSFWVRVKAMEDVYGPDTYPSDWSEVTGWQRGEIRDACAETPTPPKPKLSKFILISSLAILLMVSLLLLSLWKLWRVRKFLIPSVPDPKSIFPGLFEIHQGNFQEWITDTQNVAHLHKMAGAEQESGPEEPLVVQLAKTEAESPRMLDPQTEEKEASGGSLQLPHQPLQGGDVVTIGGFTFVMNDRSYVALSEQ ID NO: 39             1143 bpNOV8b,ATGGGGCGGCTGGTTCTGCTGTGGGGAGCTGCGGTCTTTCTGCTGGGAGGCTGGATGGCTTTGGGGCCG142202-03DNA SequenceAAGGAGGAGCAGAAGGAGTACAGATTCAGATCATCTACTTCAATTTAGAAACCGTGCAGGTGACATGGAATGCCAGCAAATACTCCAGGACCAACCTGACTTTCCACTACAGATTCAACGGTGATGAGGCCTATGACCAGTGCACCAACTACCTTCTCCAGGAAGGTCACACTTCGGGGTGCCTCCTAGACGCAGAGCAGCGAGACGACATTCTCTATTTCTCCATCAGGAATGGGACGCACCCCGTTTTCACCGCAAGTCGCTGGATGGTTTATTACCTGAAACCCAGTTCCCCGAAGCACGTGAGATTTTCGTGGCATCAGGATGCAGTGACGGTGACGTGTTCTGACCTGTCCTACGGGGATCTCCTCTATGAGGTTCAGTACCGGAGCCCCTTCGACACCGAGTGGCAGTCCAAACAGGAAAATACCTGCAACGTCACCATAGAAGGCTTGGATGCCGAGAAGTGTTACTCTTTCTGGGTCAGGGTGAAGGCCATGGAGGATGTATATGGGCCAGACACATACCCAAGCGACTGGTCAGAGGTGACATGCTGGCAGAGAGGCGAGATTCGGGATGCCTGTGCAGAGACACCAACGCCTCCCAAACCAAAGCTGTCCAAATTTATTTTAATTTCCAGCCTGGCCATCCTTCTGATGGTGTCTCTCCTCCTTCTGTCTTTATGGAAATTATGGAGAGTGAGGAAGTTTCTCATTCCCAGCGTGCCAGACCCGAAATCCATCTTCCCCGGGCTCTTTGAGATACACCAAGGGAACTTCCAGGAGTGGATCACAGACACCCAGAACGTGGCCCACCTCCACAAGATGGCAGGTGCAGAGCAAGAAAGTGGCCCCGAGGAGCCCCTGGTAGTCCAGTTGGCCAAGACTGAAGCCGAGTCTCCCAGGATGCTGGACCCACAGACCGAGGAGAAAGAGGCCTCTGGGGGATCCCTCCAGCTTCCCCACCAGCCCCTCCAAGGTGGTGATGTGGTCACAATCGGGGGCTTCACCTTTGTGATGAATGACCGCTCCTACGTGGCGTTGTGATGGACACACCACTGTCAAAGTCAACGTCAGORF Start: ATG at 1       ORF Stop: TGA at 1111SEQ ID NO: 40             370 aa    MW at 41969.2kDNOV8b,MGRLVLLWGAAVFLLGGWMALGQGGAEGVQIQIIYFNLETVQVTWNASKYSRTNLTFHYRFNGDEAYCG142202-03ProteinDQCTNYLLQEGHTSGCLLDAEQRDDILYFSIRNGTHPVFTASRWMVYYLKPSSPKHVRFSWHQDAVTSequenceVTCSDLSYGDLLYEVQYRSPFDTEWQSKQENTCNVTIEGLDAEKCYSFWVRVKAMEDVYGPDTYPSDWSEVTCWQRGEIRDACAETPTPPKPKLSKFILISSLAILLMVSLLLLSLWKLWRVRKFLIPSVPDPKSIFPGLFEIHQGNFQEWITDTQNVAHLHKMAGAEQESGPEEPLVVQLAKTEAESPRMLDPQTEEKEASGGSLQLPHQPLQGGDVVTIGGFTFVMNDRSYVALSEQ ID NO: 41             1154 bpNOV8c,ATGGGGCGGCTGGTTCTGCTGTGGGGAGCTGCGGTCTTTCTGCTGGGAGGCTGGATGGCTTTGGGGCACG142202-02DNA SequenceAGGAGGAGCAGCAGAAGGAGTACAGATTCAGATCATCTACTTCAATTTAGAAACCGTGCAGGTGACATGGAATGCCAGCAAATACTCCAGGACCAACCTGACTTTCCACTACAGATTCAACGGTGATGAGGCCTATGACCAGTGCACCAACTACCTTCTCCAGGAAGGTCACACTTCGGGGTGCCTCCTAGACGCAGAGCAGCGAGACGACATTCTCTATTTCTCCATCAGGAATGGGACGCACCCCGTTTTCACCGCAAGTCGCTGGATGGTTTATTACCTGAAACCCAGTTCCCCGAAGCACGTGAGATTTTCGTGGCATCAGGATGCAGTGACGGTGACGTGTTCTGACCTGTCCTACGGGGATCTCCTCTATGAGGTTCAGTACCGGAGCCCCTTCGACACCGAGTGGCAGTCCAAACAGGAAAATACCTGCAACGTCACCATAGAAGGCTTGGATGCCGAGAAGTGTTACTCTTTCTGGGTCAGGGTGAAGGCTATGGAGGATGTATATGGGCCAGACACATACCCAAGCGACTGGTCAGAGGTGACATGCTGGCAGAGAGGCGAGATTCGGGATGCCTGTGCAGAGACACCAACGCCTCCCAAACCAAAGCTGTCCAAATTTATTTTAATTTCCAGCCTGGCCATCCTTCTGATGGTGTCTCTCCTCCTTCTGTCTTTATGGAAATTATGGAGAGTGAGGAAGTTTCTCATTCCCAGCGTGCCAGACCCGAAATCCATCTTCCCCGGGCTCTTTGAGATACACCAAGGGAACTTCCAGGAGTGGATCACAGACACCCAGAACGTGGCCCACCTCCACAAGATGGCAGGTGCAGAGCAAGAAAGTGGCCCCGAGGAGCCCCTGGTAGTCCAGTTGGCCAAGACTGAAGCCGAGTCTCCCAGGATGCTGGACCCACAGACCGAGGAGAAAGAGGCCTCTGGGGGATCCCTCCAGCTTCCCCACCAGCCCCTCCAAGGTGGTGATGTGGTCACAATCGGGGGCTTCACCTTTGTGATGAATGACCGCTCCTACGTGGCGTTGTGATGGACACACCACTGTCAAAGTCAACGTCAGAAGGGCGAORF Start: ATG at 1       ORF Stop: TGA at 1114SEQ ID NO: 42             371 aa    MW at 42040.3kDNOV8c,MGRLVLLWGAAVFLLGGWMALGQGGAAEGVQIQIIYFNLETVQVTWNASKYSRTNLTFHYRFNGDEAYCG142202-02ProteinDQCTNYLLQEGHTSGCLLDAEQRDDILYFSIRNGTHPVFTASRWMVYYLKPSSPKHVRFSWHQDAVTVSequenceTCSDLSYGDLLYEVQYRSPFDTEWQSKQENTCNVTIEGLDAEKCYSFWVRVKAMEDVYGPDTYPSDWSEVTCWQRGEIRDACAETPTPPKPKLSKFILISSLAILLMVSLLLLSLWKLWRVRKFLIPSVPDPKSIFPGLFEIHQGNFQEWITDTQNVAHLHKMAGAEQESGPEEPLVVQLAKTEAESPRMLDPQTEEKEASGGSLQLPHQPLQGGDVVTIGGFTFVMNDRSYVAL


[0406] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 8B.
44TABLE 8BComparison of NOV8a against NOV8b and NOV8c.NOV8a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV8b1 . . . 371343/371 (92%)1 . . . 370343/371 (92%)NOV8c1 . . . 371344/371 (92%)1 . . . 371344/371 (92%)


[0407] Further analysis of the NOV8a protein yielded the following properties shown in Table 8C.
45TABLE 8CProtein Sequence Properties NOV8aPSort analysis:0.4600 probability located in plasma membrane; 0.2473 probability located inmicrobody (peroxisome); 0.1000 probability located in endoplasmic reticulum(membrane); 0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 23 and 24


[0408] A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5D.
46TABLE 8DGeneseq Results for NOV8aNOV8aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU77482Human thymic stromal1 . . . 371370/371 (99%)0.0lymphopoietin receptor1 . . . 371371/371 (99%)(TSLPR)-FLAG polypeptide -Homo sapiens, 379 aa.[WO200200724-A2,Jan. 3, 2002]AAU77481Human TSLPR (thymic1 . . . 371370/371 (99%)0.0stromal lymphopoietin1 . . . 371371/371 (99%)receptor) polypeptide - Homosapiens, 371 aa.[WO200200724-A2,Jan. 3, 2002]AAU77220Human thymic stromal1 . . . 371370/371 (99%)0.0lymphopoietin1 . . . 371371/371 (99%)receptor(TSLPR)-FLAGprotein sequence - Homosapiens, 379 aa.[WO200200723-A2,Jan. 3, 2002]AAU77219Human thymic stromal1 . . . 371370/371 (99%)0.0lymphopoietin receptor1 . . . 371371/371 (99%)(TSLPR) protein sequence -Homo sapiens, 371 aa.[WO200200723-A2,Jan. 3, 2002]AAB71681CRCGCL protein - Homo1 . . . 371370/371 (99%)0.0sapiens, 371 aa.1 . . . 371371/371 (99%)[WO200112672-A2,Feb. 22, 2001]


[0409] In a BLAST search of public sequence datbases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8E.
47TABLE 8EPublic BLASTP Results for NOV8aNOV8aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueCAD26815Sequence 7 from Patent 1 . . . 371370/371 (99%)0.0WO0200723 - synthetic 1 . . . 371371/371 (99%)construct, 379 aa.Q9HC73Cytokine receptor CRL2 1 . . . 371370/371 (99%)0.0PRECUSOR (IL-XR) 1 . . . 371371/371 (99%)(Thymic stromalLYMPHOPOIETIN proteinreceptor TSLPR) - Homosapiens (Human), 371 aa.Q9H5R3CDNA: FLJ23147 fis, clone 1 . . . 176161/176 (91%)2e−93LNG09295 - Homo sapiens 1 . . . 175166/176 (93%)(Human), 232 aa.Q8R4S8Thymic stromal24 . . . 371123/359 (34%)5e−48lymphopoietin receptor -28 . . . 360183/359 (50%)Rattus norvegicus (Rat), 360aa.Q9JMD5Cytokine receptor delta1 - 6 . . . 371135/380 (35%)4e−43Mus musculus (Mouse), 359 1 . . . 359186/380 (48%)aa.


[0410] PFam analysis predicts that the NOV8a protein contains the domains shown in the Table 8F.
48TABLE 8FDomain Analysis of NOV8aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV8a Match RegionRegionValueT-box167 . . . 192 7/26 (27%)0.9422/26 (85%)



Example 9


The NOV9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 9A.

[0411]

49





TABLE 9A








NOV9 Sequence Analysis

















SEQ ID NO: 43             828 bp


NOV9a,


CTTATTAAAAACATACTCTTATTTTTCAGG


ATG
TCAAACTTGGCACAATTTGACTCTGATTTTTACCA



CG142621-01


DNA Sequence
ATCTAATTTTACTATTGATAACCAGGAGCAGAGTGGTAATGACTCTAATGCCTATGGAAATCTTTATG






GATCTAGAAAGCAACAAGCTGGTGAGCAGCCTCAGCCTGCCTCCTTTGTTCCATCAGAGATGCTCATG






TCATCGGGTTACGCAGGACAATTTTTTCAGCCAGCATCCAACTCAGATTATTATTCACAATCTCCTTA






CATTGACAGTTTTGATGAAGAGCCTCCTTTGCTAGAAGAACTTGGAATCCATTTTGATCACATATGGC






AAAAAACTTTGACAGTGTTAAACCCAATGAAGCCAGTAGATGGCAGCATTATGAATGAAACGGACCTC






ACTGGACCCATTCTTTTTTGCGTAGCCCTGGGAGCCACCTTGCTTCTGGCAGGAAAAGTTCAGTTTGG






TTATGTGTATGGCATGAGTGCCATTGGCTGCCTTGTGATTCATGCCTTGCTGAACCTGATGAGCTCTT






CAGGGGTGTCGTACGGCTGTGTGGCCAGCGTGCTGGGTTACTGCCTGCTCCCCATGGTCATCCTGTCT






GGTTGCGCCATGTTCTTTTCACTGCAGGGCATCTTTGGAATCATGTCATCCCTGGTCATCATTGGCTG






GTGTAGTCTCTCAGCTTCCAAGATCTTCATTGCAGCCTTGCACATGGAAGGACAGCAGCTTCTTGTTG






CCTACCCTTGTGCCATACTTTATGGACTTTTTGCCCTCCTAACAATTTTCTAAAGAATGTTTGAGATG








GCATTTCAAGAC








ORF Start: ATG at 31      ORF Stop: TAA at 799






SEQ ID NO: 44             256 aa    MW at 27775.6kD


NOV9a,
MSNLAQFDSDFYQSNFTIDNQEQSGNDSNAYGNLYGSRKQQAGEQPQPASFVPSEMLMSSGYAGQFFQ


CG142621-01


Protein
PASNSDYYSQSPYIDSFDEEPPLLEELGIHFDHIWQKTLTVLNPMKPVDGSIMNETDLTGPILFCVAL


Sequence



GATLLLAGKVQFGYVYGMSAIGCLVIHALLNLMSSSGVSYGCVASVLGYCLLPMVILSGCAMFFSLQG






IFGIMSSLVIIGWCSLSASKIFIAALHMEGQQLLVAYPCAILYGLFALLTIF










[0412] Further analysis of the NOV9a protein yielded the following properties shown in Table 9B.
50TABLE 9BProtein Sequence Properties NOV9aPSort analysis:0.6000 probability located in plasma membrane; 0.4000 probability located inGolgi body; 0.3000 probability located in endoplasmic reticulum (membrane);0.0300 probability located in mitochondrial inner membraneSignalP analysis:No Known Signal Sequence Predicted


[0413] A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 9C.
51TABLE 9CGeneseq Results for NOV9aNOV9aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB07505Human GTP-binding protein1 . . . 256160/259 (61%)2e−86(GTPB) (ID: 4879308CD1) -1 . . . 257198/259 (75%)Homo sapiens, 257 aa.[WO200204510-A2,Jan. 17, 2002]ABG34065Human Pro peptide #36 -1 . . . 256160/259 (61%)2e−86Homo sapiens, 257 aa.1 . . . 257198/259 (75%)[WO200224888-A2,Mar. 28, 2002]AAM41786Human polypeptide SEQ ID1 . . . 256160/259 (61%)2e−86NO 6717 - Homo sapiens,4 . . . 260198/259 (75%)260 aa. [WO200153312-A1,Jul. 26, 2001]AAM40000Human polypeptide SEQ ID1 . . . 256160/259 (61%)2e−86NO 3145 - Homo sapiens,1 . . . 257198/259 (75%)257 aa. [WO200153312-A1,Jul. 26, 2001]AAG67008Human Yip1p28 polypeptide -1 . . . 2562e−86Homo sapiens, 257 aa.1 . . . 257198/259 (75%)[WO200166769-A1,Sep. 13, 2001]


[0414] In a BLAST search of public sequence datbases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9D.
52TABLE 9DPublic BLASTP Results for NOV9aNOV9aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9JIM5YIP1B (2310016N21RIK1 . . . 256207/256 (80%) e−117protein) - Mus musculus1 . . . 254225/256 (87%)(Mouse), 254 aa.Q9EQQ2Hypothetical 27.9 kDa protein1 . . . 256160/259 (61%)3e−86(2610311I19Rik protein)1 . . . 257196/259 (74%)(Similar to RIKEN cDNA2310016N21 gene) - Musmusculus (Mouse), 257 aa.Q969M3CDNA FLJ30014 fis, clone1 . . . 256160/259 (61%)5e−863NB692000330, weakly1 . . . 257198/259 (75%)similar to YIP1 protein(Similar to hypotheticalprotein AF140225)(Hypothetical 28.0 kDaprotein) - Homo sapiens(Human), 257 aa.AAK67644Golgi membrane protein1 . . . 256159/259 (61%)1e−84SB140 - Homo sapiens1 . . . 257197/259 (75%)(Human), 257 aa.Q9H338Hypothetical 28.0 kDa protein -1 . . . 256159/259 (61%)2e−84Homo sapiens (Human), 2571 . . . 257195/259 (74%)aa.


[0415] PFam analysis predicts that the NOV9a protein contains the domains shown in the Table 9E.
53TABLE 9EDomain Analysis of NOV9aPfam DomainNOV9a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 10

[0416] The NOV10 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 10A.
54TABLE 10ANOV10 Sequence AnalysisSEQ ID NO: 45             1837 bpNOV 10a,GGCACGAGGAACCCTTCCTGTTGCCTTAGGGGAACGTGGCTTTCCCTGCAGAGCCGGTGTCTCCGCCCG142761-01DNA SequenceTGCGTCCCTGCTGCAGCAACCGGAGCTGGAGTCGGATCCCGAACGCACCCTCGCCATGGACTCGGCCCTCAGCGATCCGCATAACGGCAGTGCCGAGGCAGGCGGCCCCACCAACAGCACTACGCGGCCGCCTTCCACGCCCGAGGGCATCGCGCTGGCCTACGGCAGCCTCCTGCTCATGGCGCTGCTGCCCATCTTCTTCGGCGCCCTGCGCTCCGTACGCTGCGCCCGCGGCAAGAATGCTTCAGACATGCCTGAAACAATCACCAGCCGGGATGCCGCCCGCTTCCCCATCATCGCCAGCTGCACACTCTTGGGGCTCTACCTCTTTTTCAAAATATTCTCCCAGGAGTACATCAACCTCCTGCTGTCCATGTATTTCTTCGTGCTGGGAATCCTGGCCCTGTCCCACACCATCAGCCCCTTCATGAATAAGTTTTTTCCAGCCAGCTTTCCAAATCGACAGTACCAGCTGCTCTTCACACAGGGTTCTGGGGAAAACAAGGAAGAGATCATCAATTATGAATTTGACACCAAGGACCTGGTGTGCCTGGGCCTGAGCAGCATCGTTGGCGTCTGGTACCTGCTGAGGAAGCACTGGATTGCCAACAACCTTTTTGGCCTGGCCTTCTCCCTTAATGGAGTAGAGCTCCTGCACCTCAACAATGTCAGCACTGGCTGCATCCTGCTGGGCGGACTCTTCATCTACGATGTCTTCTGGGTATTTGGCACCAATGTGATGGTGACAGTGGCCAAGTTCTTCGAGGCACCAATAAAATTGGTGTTTCCCCAGGATCTGCTGGAGAAAGGCCTCGAAGCAAACAACTTTGCCATGCTGGGACTTGGAGATGTCGTCATTCCAGGGATCTTCATTGCCTTGCTGCTGCGCTTTGACATCAGCTTGAAGAAGAATACCCACACCTACTTCTACACCAGCTTTGCAGCCTACATCTTCGGCCTGGGCCTTACCATCTTCATCATGCACATCTTCAAGCATGCTCAGCCTGCCCTCCTATACCTGGTCCCCGCCTGCATCGGTTTTCCTGTCCTGGTGGCGCTGGCCAAGGGAGAAGTGACAGAGATGTTCAGCTACGAGTCCTCGGCGGAAATCCTGCCTCATACCCCGAGGCTCACCCACTTCCCCACAGTCTCGGGCTCCCCAGCCAGCCTGGCCGACTCCATGCAGCAGAAGCTAGCTGGCCCTCGCCGCCGGCGCCCGCAGAATCCCAGCGCCATGTAATGCCCAGCGGGTGCCCACCTGCCCGCTTCCCCCTACTGCCCCGGGGCCCAAGTTATGAGGAGTCAAATCCTAAGGATCCAGCGGCAGTGACAGAATCCAAAGAGGGAACAGAGGCATCAGCATCGAAGGGGCTGGAGAAGAAAGAGAAATGATGCAGCTGGTGCCCGAGCCTCTCAGGGCCAGACCAGACAGATGGGGGCTGGGCCCACACAGGCGTGCACCGGTAGAGGGCACAGGAGGCCAAGGGCAGCTCCAGGACAGGGCAGGGGGCAGCAGGATACCTCCAGCCAGGCCTCTGTGGCCTCTGTTTCCTTCTCCCTTTCTTGGCCCTCCTCTGCTCCTCCCCACACCCTGCAGGCAAAAGAAACCCCCAGCTTCCCCCCTCCCCGGGAGCCAGGTGGGAAAAGTGGGTGTGATTTTTAGATTTTGTATTGTGGACTGATTTTGCCTCACATTAAAAACTCATCCCATGGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 123     ORF Stop: TAA at 1305SEQ ID NO: 46             394 aa    MW at 43482.2kDNOV 10a,MDSALSDPHNGSAEAGGPTNSTTRPPSTPEGIALAYGSLLLMALLPIFFGALRSVRCARGKNASDMPCG142761-01ProteinETITSRDAARFPIIASCTLLGLYLFFKIFSQEYINLLLSMYFFVLGILALSHTISPFMNKFFPASFPSequenceNRQYQLLFTQGSGENKEEIINYEFDTKDLVCLGLSSIVGVWYLLRKHWIANNLFGLAFSLNGVELLHLNNVSTGCILLGGLFIYDVFWVFGTNVMVTVAKFFEAPIKLVFPQDLLEKGLEANNFAMLGLGDVVIPGIFIALLLRFDISLKKNTHTYFYTSFAAYIFGLGLTIFIMHIFKHAQPALLYLVPACIGFPVLVALAKGEVTEMFSYESSAEILPHTPRLTHFPTVSGSPASLADSMQQKLAGPRRRRPQNPSAM


[0417] Further analysis of the NOV10a protein yielded the following properties shown in Table 10B.
55TABLE 10BProtein Sequence Properties NOV10aPSort analysis:0.6000 probability located in plasma membrane; 0.4000 probability located inGolgi body; 0.3000 probability located in endoplasmic reticulum (membrane);0.0300 probability located in mitochondrial inner membraneSignalP analysis:Cleavage site between residues 61 and 62


[0418] A search of the NOV10a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 10C.
56TABLE 10CGeneseq Results for NOV10aNOV10aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB88567Human hydrophobic domain1 . . . 379353/379 (93%)0.0containing protein clone1 . . . 375359/379 (94%)HP03010 #31 - Homosapiens, 377 aa.[WO200112660-A2,Feb. 22, 2001]AAB10549Human aspartate protease ps11 . . . 379353/379 (93%)0.03 protein - Homo sapiens,1 . . . 375359/379 (94%)377 aa. [WO200043505-A2,Jul. 27, 2000]AAY27132Human glioblastoma-derived1 . . . 379353/379 (93%)0.0polypeptide (clone1 . . . 375359/379 (94%)OA004FG) - Homo sapiens,377 aa. [WO9933873-A1,Jul. 8, 1999]AAM93670Human polypeptide, SEQ ID1 . . . 379352/379 (92%)0.0NO: 3554 - Homo sapiens,1 . . . 375359/379 (93%)377 aa. [EP1130094-A2,Sep. 5, 2001]AAY27133Human glioblastoma-derived1 . . . 379351/379 (92%)0.0polypeptide (clone1 . . . 375357/379 (93%)OA004LD) - Homo sapiens,377 aa. [WO9933873-A1,Jul. 8, 1999]


[0419] In a BLAST search of public sequence datbases, the NOV10a protein was found to have homology to the proteins shown in the BLASTP data in Table 10D.
57TABLE 10DPublic BLASTP Results for NOV10aNOV10aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ95H87Similar to histocompatibility1 . . . 379354/379 (93%)0.013 - Homo sapiens (Human),1 . . . 375360/379 (94%)377 aa.Q8TCT9Signal peptide peptidase -1 . . . 379353/379 (93%)0.0Homo sapiens (Human), 3771 . . . 375359/379 (94%)aa.BAC11519CDNA FLJ90802 fis, clone1 . . . 379352/379 (92%)0.0Y79AA1000226 - Homo1 . . . 375359/379 (93%)sapiens (Human), 377 aa.Q9D8V01200006009Rik protein -1 . . . 349335/349 (95%)0.0Mus musculus (Mouse), 3781 . . . 349343/349 (97%)aa.AAM22075Minor histocompatibility1 . . . 379339/379 (89%)0.0antigen H13 isoform 1 - Mus1 . . . 376352/379 (92%)musculus (Mouse), 378 aa.


[0420] PFam analysis predicts that the NOV10a protein contains the domains shown in the Table 10E.
58TABLE 10EDomain Analysis of NOV10aPfam DomainNOV10a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 11

[0421] The NOV11 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 11A.
59TABLE 11ANOV11 Sequence AnalysisSEQ ID NO:47615bpNOV11a,CTCAGAGTCTCCTCAGACGCCGAGATGCGGGTCACGGCACCCCGAACCGTCCTCCTGCTGCTCTCGGCG143926-01DNA sequenceCGGCCCTGGCCCTGACCGAGTGCGTGGAGTGGCTCCGCAGATACCTGGAGAACGGGAAGGACAAGCTGGAGCGCGCTGACCCCCCAAAGACACACGTGACCCACCACCCCATCTCTGACCATGAGGCCACCCTGAGGTGCTGGGCCCTGGGTTTCTACCCTGCGGAGATCACACTGACCTGGCAGCGGGATGGCGAGGACCAAACTCAGGACACTGAGCTTGTGGAGACCAGACCAGCAGGAGATAGAACCTTCCAGAAGTGGGCAGCTGTGGTGGTGCCTTCTGGAGAAGAGCAGAGATACACATGCCATGTACAGCATGAGGGGCTGCCGAAGCCCCTCACCCTGAGATGGGAGCCGTCTTCCCAGTCCACCGTCCCCATCGTGGGCATTGTTGCTGGCCTGGCTGTCCTAGCAGTTGTGGTCATCGGAGCTGTGGTCGCTGCTGTGATGTGTAGGAGGAAGAGTTCAGGTGGAAAAGGAGGGAGCTACTCTCAGGCTGCGTGCAGCGACAGTGCCCAGGGCTCTGATGTGTCTTCTACAGCTTGAORF Start: ATG at 25ORF Stop: TGA at 613SEQ ID NO:48196 aaMW at 21301.0 kDNOV11a,MRVTAPRTVLLLLSAALALTECVEWLRRYLENGKDKLERADPPKTHVTHHPISDHEATLRCWALGFYCG143926-01Protein SequencePAEITLTWQRDGEDQTQDTELVETRPAGDRTFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP


[0422] Further analysis of the NOV11a protein yielded the following properties shown in Table 11B.
60TABLE 11BProtein Sequence Properties NOV11aPSort analysis:0.4600 probability located in plasma membrane; 0.1000 probability located inendoplasmic reticulum (membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000 probability located in outsideSignalP analysis:Cleavage site between residues 23 and 24


[0423] A search of the NOV11a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 11C.
61TABLE 11CGeneseq Results for NOV11aNOV11aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAP70155Sequence encoded by 21 . . . 196173/176 (98%) e−100genomic DNA encoding187 . . . 362175/176 (99%)human histocompatibilityantigen HLA-B 27 - Homosapiens, 362 aa.[EP226069-A, Jun. 24, 1987]AAP70590Sequence of the human 21 . . . 196172/176 (97%) e−99histocompatibility antigen162 . . . 337174/176 (98%)HLA B27 - Homo sapiens,337 aa. [DE3542024-A,Jun. 4, 1987]AAR03144Sequence of HLA-B51 22 . . . 196167/175 (95%)4e−97antigen - Homo sapiens, 362188 . . . 362172/175 (97%)aa. [EP354580-A,Feb. 14, 1990]AAR03142Sequence of HLA-Bw52 22 . . . 196167/175 (95%)4e−97antigen - Homo sapiens, 362188 . . . 362172/175 (97%)aa. [EP354580-A,Feb. 14, 1990]AAU32882Novel human secreted 22 . . . 196169/176 (96%)1e−95protein #3373 - Homo191 . . . 366170/176 (96%)sapiens, 369 aa.[WO200179449-A2,Oct. 25, 2001]


[0424] In a BLAST search of public sequence datbases, the NOV11a protein was found to have homology to the proteins shown in the BLASTP data in Table 11D.
62TABLE 11DPublic BLASTP Results for NOV11aNOV11aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueQ31603Lymphocyte 21 . . . 196176/176 (100%)e−101antigen—Homo187 . . . 362176/176 (100%)sapiens (Human),362 aa.Q29854HLA-B alpha 21 . . . 196176/176 (100%)e−101chain antigen187 . . . 362176/176 (100%)precursor—Homosapiens (Human),362 aa.Q29861HLA-BPOT 21 . . . 196176/176 (100%)e−101(classI)—Homo187 . . . 362176/176 (100%)sapiens (Human),362 aa.Q29681MHC class I 21 . . . 196176/176 (100%)e−101antigen heavy187 . . . 362176/176 (100%)chain precursor—Homo sapiens(Human), 362 aa.Q29638MHC class I 21 . . . 196176/176 (100%)e−101antigen—Homo187 . . . 362176/176 (100%)sapiens (Human),362 aa.


[0425] PFam analysis predicts that the NOV11a protein contains the domains shown in the Table 11E.
63TABLE 11EDomain Analysis of NOV11aPfamNOV11aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueMHC_I20 . . . 3715/18 (83%)1.5e−0717/18 (94%)ig 54 . . . 11915/67 (22%)2.8e−0948/67 (72%)



Example 12

[0426] The NOV12 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 12A.
64TABLE 12ANOV12 Sequence AnalysisSEQ ID NO:49555 bpNOV12a,ATGATTTCCAGAATGGAGAAGATGACGATGATGATGAAGATATTGATTATGTTTGCTCTTGGAATGACG144193-01DNA SequenceACTACTGGTCTTGCTCAGGTTTCCCAGTGTACGACTACGATCCATCCTCCTTAAGGGATGCCCTCAGTGCCTCTGTGGTAAAAGTGAATTCCCAGTCACTGAGTCCGTATCTGTTTCGGGCATTCAGAAGCTCATTAAAAAGAGTTGAGGTCCTAGATGAGAACAACTTGGTCATGAATTTAGAGTTCAGCATCCGGGAGACAACATGCAGGAAGGATTCTGGAGAAGATCCCGCTACATGTGCCTTCCAGAGGGACTACTATGTGTCCACGTCTGAGTCTTACAGCAGCGAAGAGATGATTTTTGGGGACATGTTGGGATCTCATAAATGGAGAAGCAATTATCTATTTGGTCTCATTTCAGACGAGTCCATAAGTGAACAATTTTATGATCGGTCACTTGGGATCATGAGAAGGGTATTGCCTCCTGGAAACAGAAGGTACCCAAACCACCGGCACAGAGCAAGAATAAATACTGACTTTGAGTAAORF Start: ATG at 1ORF Stop: TAA AT 553SEQ ID NO:50184 aaMW at 21465.1 kDNOV12a,MISRMEKMTMMMKILIMFALGMNYWSCSGFPVYDYDPSSLRDALSASVVKVNSQSLSPYLFRAFRSSCG144193-01Protein SequenceLKRVEVLDENNLVMNLEFSIRETTCRKDSGEDPATCAFQRDYYVSTSESYSSEEMIFGDMLGSHKWRSNYLFGLISDESISEQFYDRSLGIMRRVLPPGNRRYPNHRHRARINTDFESEQ ID NO:51636 bpNOV12b,ATGATTTCCAGAATGGAGAAGATGACGATGATGATGAAGATATTGATTATGTTTGCTCTTGGAATGACG144193-02DNA SequenceACTACTGGTCTTGCTCAGGTTTCCCAGTGTACGACTACGATCCATCCTCCTTAAGGGATGCCCTCAGTGCCTCTGTGGTAAAAGTGAATTCCCAGTCACTGAGTCCGTATCTGTTTCGGGCATTCAGAAGCTCATTAAAAAGAGTTGAGGTCCTAGATGAGAACAACTTGGTCATGAATTTAGAGTTCAGCATCCGGGAGACAACATGCAGGAAGGATTCTGGAGAAGATCCCGCTACATGTGCCTTCCAGAGGGACTACTATGTGTCCACAGCTGTTTGCAGAAGCACCGTGAAGGTATCTGCCCAGCAGGTGCAGGGCGTGCATGCTCGCTGCAGCTGGTCCTCCTCCACGTCTGAGTCTTACAGCAGCGAAGAGATGATTTTTGGGGACATGTTGGGATCTCATAAATGGAGAAACAATTATCTATTTGGTCTCATTTCAGACGAGTCCATAAGTGAACAATTTTATGATCGGTCACTTGGGATCATGAGAAGGGTATTGCCTCCTGGAAACAGAAGGTACCCAAACCACCGGCACAGAGCAAGAATAAATACTGACTTTGAGTAAORF Start: ATG at 1ORF Stop: TAA at 634SEQ ID NO:52211 aaMW at 24337.4 kDNOV12b,MISRMEKMTMMMKILIMFALGMNYWSCSGFPVYDYDPSSLRDALSASVVKVNSQSLSPYLFRAFRSSCG144193-02Protein SequenceLKRVEVLDENNLVMNLEFSIRETTCRKDSGEDPATCAFQRDYYVSTAVCRSTVKVSAQQVQGVHARCSWSSSTSESYSSEEMIFGDMLGSHKWRNNYLFGLISDESISEQFYDRSLGIMRRVLPPGNRRYPNHRHRARINTDFE


[0427] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 12B.
65TABLE 12BComparison of NOV12a against NOV12b.ProteinNOV12a Residues/Identities/SimilaritiesSequenceMatch Residuesfor the Matched RegionNOV12b1 . . . 184176/211 (83%)1 . . . 211180/211 (84%)


[0428] Further analysis of the NOV12a protein yielded the following properties shown in Table 12C.
66TABLE 12CProtein Sequence Properties NOV12aPSort0.5500 probability located in endoplasmic reticulumanalysis:(membrane); 0.1900 probability located in lysosome (lumen);0.1000 probability located in endoplasmic reticulum (lumen);0.1000 probability located in outsideSignalPCleavage site between residues 30 and 31analysis:


[0429] A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12D.
67TABLE 12DGeneseq Results for NOV12aNOV12aIdentities/Protein/Residues/Similarities forGeneseqOrganism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAR10321Human BMP— 1 . . . 184183/211 (86%) e−100Homo sapiens, 1 . . . 211184/211 (86%)211 aa.[EP409472-A,23 JAN. 1991]AAR10320Human BMP— 1 . . . 184183/211 (86%) e−100Homo sapiens, 1 . . . 211184/211 (86%)211 aa.[EP409472-A,23 JAN. 1991]AAR10319Bovine BMP— 5 . . . 184117/206 (56%)2e−55 Bos taurus, 1 . . . 203140/206 (67%)203 aa.[EP409472-A,23 JAN. 1991]AAW02632Bovine phospho-10 . . . 184113/201 (56%)1e−54 protein Spp24— 1 . . . 200137/201 (67%)Bos taurus,200 aa.[WO9621006-A1,11 JUL. 1996]AAR10317Bovine BMP—71 . . . 111 26/41 (63%)2e−08 exon 3—Bos1 . . . 41 33/41 (80%)taurus, 41 aa.[EP409472-A,23 JAN. 1991]


[0430] In a BLAST search of public sequence datbases, the NOV12a protein was found to have homology to the proteins shown in the BLASTP data in Table 12E.
68TABLE 12EPublic BLASTP Results for NOV12aNOV12aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueQ13103Secreted 1 . . . 184183/211 (86%)3e−99phosphoprotein 1 . . . 211184/211 (86%)24 precursor(SPP-24)—Homosapiens (Human),211 aa.AAH27494RIKEN cDNA11 . . . 184121/200 (60%)4e−590610038O04 5 . . . 203143/200 (71%)gene—Musmusculus(Mouse), 203 aa.Q9DCG10610038O04Rik11 . . . 184121/200 (60%)4e−59protein—Mus 5 . . . 203143/200 (71%)musculus(Mouse), 203 aa.Q27967Secreted10 . . . 184114/201 (56%)2e−54phosphoprotein 1 . . . 200137/201 (67%)24 precursor(SPP-24)—Bostaurus (Bovine),200 aa.Q62740Secreted30 . . . 184109/181 (60%)7e−51phosphoprotein 1 . . . 180128/181 (70%)24 (SPP-24)—Rattus norvegicus(Rat), 180 aa.


[0431] PFam analysis predicts that the NOV12a protein contains the domains shown in the Table 12F.
69TABLE 12FDomain Analysis of NOV12aPfamNOV12aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueCathelicidins37 . . . 10418/69 (26%)0.1533/69 (48%)cystatin30 . . . 10617/83 (20%)0.1451/83 (61%)



Example 13

[0432] The NOV13 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 13A.
70TABLE 13ANOV13 Sequence AnalysisSEQ ID NO:53835 bpNOV13a,CCTCTCTCTCTGACTGCCTGCTGGAAATGCCCCCATCTCCCTTTGAGTCCTCCTCCCGGGCGACTCCCG144545-01DNA SequenceTGTGACCTGTAACCTCTGTCCTGAAATCATCACAATGGCCAGGGTGGCCTCAGCTCAGGGCCTCTGTGACATCACCAAGGGCCTGGCACCAGGTGCCCAGTCTCCCAGTTGCGAGGGCAAGCAAACCCGTCATGAGCAACTCCCTTCCCCATCTCTGCTCACCATGTGGACGCTGAAATCGTCCCTGGTCCTGCTTCTGTGCCTCACCTGCAGCTATGCCTTTATGTTCTCTTCTCTGAGACAGAAAACTAGCGAACCCCAGGGGAAGGTGCAATACGGAGAGCACTTTCGGATTCGGCAGAATCTACCAGAGCACACCCAAGGCTGGCTTGGGAGCAAATGGCTCTGGCTTCTTTTTGTTGTTGTGCCGTTTGTGATACTGCAGTGTCAAAGAGACAGTGAGAAGAATAAGGAGCAGAGTCCTCCTGGCCTTCGAGGCGGCCAACTTCACTCTCCATTAAAGAAAAAAAGAAATGCTTCCCCCAACAAAGACTGTGCATTCAATACCTTAATGGAACTCGAGGTGGAGCTTATGAAATTTGTGTCCGAAGTGCGGAATCTTAAAGGTGCCATGGCAACAGGTAGTGGCAGTAACCTCAGGCTTCGAAGGTCAGAGATGCCTGCAGATCCATACCATGTCACGATCTGTGAAATATGGGGAGAAGAAAGCTCTAGCTGAATGGATTTGTGTGTCAGGAGAGAAAAAAGTTGAGTGTTGACAAACTGTATGCAAACTAATAAAACTATTCTGAAGAAAAGAAAAAAAAAORF Start: ATG at 27ORF Stop: TGA at 744SEQ ID NO:54239 aaMW at 26610.4 kDNOV13a,MPPSPFESSSRATPVTCNLCPEIITMARVASAQGLCDITKGLAPGAQSPSCEGKQTRHEQLPSPSLLCG144545-01Protein SequenceTMWTLKSSLVLLLCLTCSYAFMFSSLRQKTSEPQGKVQYGEHFRIRQNLPEHTQGWLGSKWLWLLFVVVPFVILQCQRDSEKNKEQSPPGLRGGQLHSPLKKKRNASPNKDCAFNTLMELEVELMKFVSEVRNLKGAMATGSGSNLRLRRSEMPADPYHVTICEIWGEESSS


[0433] Further analysis of the NOV13a protein yielded the following properties shown in Table 13B.
71TABLE 13BProtein Sequence Properties NOV13aPSort0.6000 probability located in plasma membrane; 0.4000analysis:probability located in Golgi body; 0.3000 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in mitochondrial inner membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0434] A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13C.
72TABLE 13CGeneseq Results for NOV13aNOV13aIdentities/Protein/Residues/Similarities forGeneseqOrganism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU68550Human novel 1 . . . 239235/239 (98%) e−137cytokine encoded 1 . . . 239237/239 (98%)by cDNA790CIP2D_11#1—Homosapiens, 239 aa.[WO200175093-A1, 11 OCT.2001]AAY53032Human secreted 69 . . . 239168/171 (98%)1e−96 protein clone 1 . . . 171170/171 (99%)di393_2 proteinsequence SEQ IDNO: 70—Homosapiens, 171 aa.[WO9957132-A1,11 NOV. 1999]AAG00463Human secreted 69 . . . 169100/101 (99%)5e−55 protein, SEQ ID 1 . . . 101100/101 (99%)NO: 4544—Homo sapiens,101 aa.[EP1033401-A2,6 SEP. 2000]AAY12683Human 5′ EST 69 . . . 169100/101 (99%)5e−55 secreted protein 1 . . . 101100/101 (99%)SEQ ID NO:273—Homosapiens, 101 aa.[WO9906549-A2,11 FEB. 1999]AAM87953Human immune/151 . . . 23985/89 (95%)4e−44 haematopoietic 1 . . . 8988/89 (98%)antigen SEQ IDNO: 15546—Homo sapiens,89 aa.[WO200157182-A2, 9 AUG.2001]


[0435] In a BLAST search of public sequence datbases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13D.
73TABLE 13DPublic BLASTP Results for NOV13aNOV13aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueQ9HCV6DJ1153D9.4 (Novel102 . . . 239120/138 (86%)3e−66protein)—Homo 1 . . . 138126/138 (90%)sapiens (Human),138 aa (fragment).Q9D9T21700029J11Rik72 . . . 238101/168 (60%)2e−46protein—Mus 5 . . . 169122/168 (72%)musculus (Mouse),170 aa.Q9HCV7DJ1153D9.3 (novel 69 . . . 154 84/86 (97%)4e−44protein)—Homo 1 . . . 86 84/86 (97%)sapiens (Human),94 aa.Q96C09Similar to neuronal 69 . . . 156 80/88 (90%)8e−42thread protein— 1 . . . 88 82/88 (92%)Homo sapiens(Human), 106 aa.Q8YR98Hypothetical protein 9 . . . 61 18/53 (33%)2.6A113550—21 . . . 71 31/53 (57%)Anabaena sp.(strain PCC7120), 208 aa.


[0436] PFam analysis predicts that the NOV13a protein contains the domains shown in the Table 13E.
74TABLE 13EDomain Analysis of NOV13aPfam DomainNOV13a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 14

[0437] The NOV14 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 14A.
75TABLE 14ANOV14 Sequence AnalysisSEQ ID NO:55855 bpNOV14a,CTGCGTTGCTGGGAAGTTCTGGAAGGAAGCATGTGCTCCAGAGGTTGGGATTCGTGTCTGGCTCTGGCG144884-01DNA SequenceAATTGCTACTGCTGCCTCTGTCACTCCTGGTGACCAGCATTCAAGGTCACTTGGTACATATGACCGTGGTCTCCGGCAGCAACGTGACTCTGAACATCTCTGAGAGCCTGCCTGAGAACTACAAACAACTAACCTGGTTTTATACTTTCGACCAGAAGATTGTAGAATGGGATTCCAGAAAATCTAAGTACTTTGAATCCAAATTTAAAGGCAGGGTCAGACTTGATCCTCAGAGTGGCGCACTGTACATCTCTAAGGTCCAGAAAGAGGACAACAGCACCTACATCATGAGGGTGTTGAAAAAGACTGGGAATGAGCAAGAATGGAAGATCAAGCTGCAAGTGCTTGACCCTGTACCCAAGCCTGTCATCAAAATTGAGAAGATAGAAGACATGGATGACAACTGTTATCTGAAACTGTCATGTGTGATACCTGGCGAGTCTGTAAACTACACCTGGTATGGGGACAAAAGGCCCTTCCCAAAGGAGCTCCAGAACAGTGTGCTTGAAACCACCCTTATGCCACATAATTACTCCAGGTGTTATACTTGCCAAGTCAGCAATTCTGTGAGCAGCAAGAATGGCACGGTCTGCCTCAGTCCACCCTGTACCCTGGCCCGGTCCTTTGGAGTAGAATGGATTGCAAGTTGGCTAGTGGTCACGGTGCCCACCATTCTTGGCCTGTTACTTACCTGAGATGAGCTCTTTTAACTCAAGCGAAACTTCAAGGCCAGAAGATCTTGCCTGTTGGTGATCATGCTCCTCACCAGGACAGAGACTGTATAAAGGORF Start: ATG at 31ORF Stop: TGA at 760SEQ ID NO:56243 aaMW at 27682.8 kDNOV 14a,MCSRGWDSCLALELLLLPLSLLVTSIQGHLVHMTVVSGSNVTLNISESLPENYKQLTWFYTFDQKIVCG144884-01Protein SequenceEWDSRKSKYFESKFKGRVRLDPQSGALYISKVQKEDNSTYIMRVLKKTGNEQEWKIKLQVLDPVPKPVIKIEKIEDMDDNCYLKLSCVIPGESVNYTWYGDKRPFPKELQNSVLETTLMPHNYSRCYTCQVSNSVSSKNGTVCLSPPCTLARSFGVEWIASWLVVTVPTILGLLLTSEQ ID NO:57573 bpNOV14b,GGAAGTTCTGGAAGCAAGCATGTGCTCCAGAGGTTGGGATTCGTGTCTGGCTCTGGAATTGCTACTGCG144884-02DNA SequenceCTGCCTCTGTCACTCCTGGTGACCAGCATTCAAGGTCACTTGGTACATATGACCGTGGTCTCCGGCAGCAACGTGACTCTGAACATCTCTGAGAGCCTGCCTGAGAACTACAAACAACTAACCTGGTTTTATACTTTCGACCAGAAGATTGTAGAATGGGATTCCAGAAAATCTAAGTACTTTGAATCCAAATTTAAAGGCAGGGTCAGACTTGATCCTCAGAGTGGCGCACTGTACATCTCTAAGGTCCAGAAAGAGGACAACAGCACCTACATCATGACGGTGTTGAAAAAGACTGGGAATGAGCAAGAATGGAAGATCAAGCTGCAAGTGCTTGCCCGGTCCTTTGGAGTAGAATGGATTGCAAGTTGGCTAGTGGTCACGGTGCCCACCATTCTTGGCCTGTTACTTACCTGAGATGAGCTCTTTTAACTCAAGCGAAACTTGAAGGCCAGAAGATCTTGCCTGTTGGTGATCATGCTCCTCACCAGGACAGACACTGTATAORF Start: ATG at 20ORF Stop: TGA at 482SEQ ID NO:58154 aaMW at 17670.4 kDNOV14b,MCSRGWDSCLALELLLLPLSLLVTSIQGHLVHMTVVSGSNVTLNISESLPENYKQLTWFYTFDQKIVCG144884-02Protein SequenceEWDSRKSKYFESKFKGRVRLDPQSGALYISKVQKEDNSTYIMRVLKKTGNEQEWKIKLQVLARSFGVEWIASWLVVTVPTILGLLLT


[0438] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 14B.
76TABLE 14BComparison of NOV14a against NOV14b.NOV14a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV14b1 . . . 128115/128 (89%)1 . . . 128115/128 (89%)


[0439] Further analysis of the NOV14a protein yielded the following properties shown in Table 14C.
77TABLE 14CProtein Sequence Properties NOV14aPSort analysis:0.9190 probability located in plasma membrane; 0.2000 probability located inlysosome (membrane); 0.1000 probability located in endoplasmic reticulum(membrane); 0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 29 and 30


[0440] A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 14D.
78TABLE 14DGeneseq Results for NOV14aNOV14aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAU74426Human protein sequence #4, 1 . . . 243242/243 (99%) e−141related to isolation of genes 1 . . . 243242/243 (99%)within SLE-1B - Homosapiens, 243 aa.[WO200188200-A2,Nov. 22, 2001]AAW35857Human CD48 for use in T27 . . . 220194/194 (100%)1e−113lymphocyte veto molecule - 1 . . . 194194/194 (100%)Homo sapiens, 194 aa.[WO9737687-A1,Oct. 16, 1997]AAU74427Mouse protein sequence #4, 1 . . . 243129/247 (52%)2e−60related to isolation of genes 1 . . . 240163/247 (65%)within SLE-1B - Musmusculus, 240 aa.[WO200188200-A2,Nov. 22, 2001]AAG00342Human secreted protein, 1 . . . 111109/111 (98%)4e−58SEQ ID NO: 4423 - Homo 1 . . . 111109/111 (98%)sapiens, 111 aa.[EP1033401-A2,Sep. 6, 2000]ABG47129Human peptide encoded by33 . . . 128 96/96 (100%)4e−50genome-derived single exon 1 . . . 96 96/96 (100%)probe SEQ ID 36794 - Homosapiens, 96 aa.[WO200186003-A2,Nov. 15, 2001]


[0441] In a BLAST search of public sequence datbases, the NOV14a protein was found to have homology to the proteins shown in the BLASTP data in Table 14E.
79TABLE 14EPublic BLASTP Results for NOV14aNOV14aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP09326B-lymphocyte activation 1 . . . 243243/243 (100%) e−142marker BLAST-1 precursor 1 . . . 243243/243 (100%)(BCM1 surface antigen)(Leucocyte antigenMEM-102) (TCT.1)(Antigen CD48) - Homosapiens (Human), 243 aa.AAH30224Similar to B-lymphocyte 1 . . . 148132/148 (89%)1e−69activation marker BLAST-1 1 . . . 148134/148 (90%)(BCM1 surface antigen)(Leucocyte antigenMEM-102) (TCT.1)(Antigen CD48) - Homosapiens (Human), 169 aa.P18181MRC OX-45 surface antigen 1 . . . 243129/247 (52%)5e−60precursor (BCM1 surface 1 . . . 240163/247 (65%)antigen) (BLAST-1) (CD48)(HM48-1) - Mus musculus(Mouse), 240 aa.P10252MRC OX-45 surface antigen10 . . . 242120/235 (51%)2e−56precursor (BCM1 surface10 . . . 239155/235 (65%)antigen) (BLAST-1) (CD48) -Rattus norvegicus (Rat),240 aa.Q8VE93Similar to RIKEN cDNA42 . . . 213 51/187 (27%)1e−092310026I04 gene - Mus35 . . . 221 85/187 (45%)musculus (Mouse), 285 aa.


[0442] PFam analysis predicts that the NOV14a protein contains the domains shown in the Table 14F.
80TABLE 14FDomain Analysis of NOV14aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV14a Match RegionRegionValueig147 . . . 19810/56 (18%)0.01136/56 (64%)



Example 15

[0443] The NOV15 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 15A.
81TABLE 15ANOV15 Sequence AnalysisSEQ ID NO:59700 bpNOV15a,GGGATCCGACTCTAGTCGTAATGGAGGCGGGCGGCTTTCTGGACTCGCTCATTTACGGAGCATGCGTCG145122-01DNA SequenceGGTCTTCACCCTTGGCATGTTCTCCGCCGGCCTCTCGGACCTCAGGCACATGCGAATGACCCGGAGTGTGGACAACGTCCAGTTCCTGCCCTTTCTCACCACGGAAGTCAACAACCTGGGCTGGCTGAGTTATGGGGCTTTGAAGGGAGACGGGATCCTCATCGTCGTCAACACAGTGGGTGTTGTGCTCCTACAGACTGCAACCCTGCTAGGGGTCCTTCTCCTGGGTTATGGCTACTTTTGGCTCCTGGTACCCAACCCTGAGGCCCGGCTTCAGCAGTTGGGCCTCTTCTGCAGTGTCTTCACCATCAGCATGTACCTCTCACCACTGGCTGACTTGGCTAAGGTGATTCAAACTAAATCAACCCAATGTCTCTCCTACCCACTCACCATTGCTACCCTTCTCACCTCTGCCTCCTGGTGCCTCTATGGGTTTCGACTCAGAGATCCCTATATCATGGTGTCCAACTTTCCAGGAATCGTCACCAGCTTTATCCGCTTCTGGCTTTTCTGGAAGTACCCCCAGGAGCAAGACAGGAACTACTGGCTCCTGCAAACCTGAGGCTGCTCATCTGACCACTGGGCACCTTAGTGCCAACCTGAACCAAAGAGACCTCCTTGTTTTATGCTGGGORF Start: ATG at 21ORF Stop: TGA at 627SEQ ID NO:60202 aaMW at 22754.5 kDNOV15a,MEAGGFLDSLIYGACVVFTLGMFSAGLSDLRHMRMTRSVDNVQFLPFLTTEVNNLGWLSYGALKGDGCG145122-01Protein SequenceILIVVNTVGVVLLQTATLLGVLLLGYGYFWLLVPNPEARLQQLGLFCSVFTISMYLSPLADLAKVIQTKSTQCLSYPLTIATLLTSASWCLYGFRLRDPYIMVSNFPGIVTSFIRFWLFWKYPQEQDRNYWLLQT


[0444] Further analysis of the NOV15a protein yielded the following properties shown in Table 15B.
82TABLE 15BProtein Sequence Properties NOV15aPSort analysis:0.7300 probability located in plasma membrane; 0.6400 probability located inendoplasmic reticulum (membrane); 0.3880 probability located in microbody(peroxisome); 0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 22 and 23


[0445] A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 15C.
83TABLE 15CGeneseq Results for NOV15aNOV15aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB90191Human polypeptide SEQ ID 1 . . . 202202/221 (91%)e−112NO 2967 - Homo sapiens66 . . . 286202/221 (91%)286 aa. [WO200190304-A2,Nov. 29, 2001]AAB75379Human secreted protein #38 - 1 . . . 202202/221 (91%)e−112Homo sapiens, 221 aa. 1 . . . 221202/221 (91%)[WO200100806-A2,Jan. 4, 2001]AAE03982Human gene 43 encoded 1 . . . 202202/221 (91%)e−112secreted protein fragment, 1 . . . 221202/221 (91%)SEQ ID NO:180 - Homosapiens, 221 aa.[WO200077022-A1,Dec. 21, 2000]AAB25793Human secreted protein SEQ 1 . . . 202202/221 (91%)e−112ID #105 - Homo sapiens, 221 1 . . . 221202/221 (91%)aa. [W0200037491-A2,Jun. 29, 2000]AAB53433Human colon cancer antigen 1 . . . 102202/221 (91%)e−112protein sequence SEQ ID28 . . . 248202/221 (91%)NO:973 - Homo sapiens, 248aa. [WO200055351-A1,Sep. 21, 2000]


[0446] In a BLAST search of public sequence datbases, the NOV15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15D.
84TABLE 15DPublic BLASTP Results for NOV15aNOV15aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9BRV3Stromal cell protein - Homo1 . . . 202202/221 (91%) e−112sapiens (Human), 221 aa.1 . . . 221202/221 (91%)Q9UHQ3Stromal cell protein - Homo1 . . . 202201/221 (90%) e−112sapiens (Human), 221 aa.1 . . . 221202/221 (90%)Q95KW8Uterine stromal cell protein -1 . . . 202197/221 (89%) e−108Papio anubis (Olive baboon),1 . . . 221198/221 (89%)221 aa.Q9UHQ2Stromal cell protein isoform -1 . . . 202171/202 (84%)1e−90Homo sapiens (Human), 1791 . . . 179175/202 (85%)aa.Q9CXK4Recombination activating1 . . . 202161/221 (72%)4e−85gene 1 gene activation - Mus1 . . . 221174/221 (77%)musculus (Mouse), 221 aa.


[0447] PFam analysis predicts that the NOV15a protein contains the domains shown in the Table 15E.
85TABLE 15EDomain Analysis of NOV15aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV15a Match RegionRegionValueMtN3_s1v 9 . . . 7927/73 (37%)5.6e−2561/73 (84%)MtN3_s1v108 . . . 19435/89 (39%)1.9e−3577/89 (87%)



Example 16

[0448] The NOV16 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 16A.
86TABLE 16ANOV16 Sequence AnalysisSEQ ID NO:61568 bpNOV16a,CCGGCCGGGCCATGGATTCAATGCCTGAGCCCGCGTCCCGCTGTCTTCTGCTTCTTCCCTTGCTGCTCG145198-01DNA SequenceGCTGCTGCTGCTGCTGCTGCCGGCCCCGGAGCTGGGCCCGAGCCAGGCCGGAGCTGAGGAGAACGACTGGGTTCGCCTGCCCAGCAAATGCGAAGTGTGTAAATATGTTGCTGTGGAGCTGAAGTCAGCCTTTGAGGAAACCGGCAAGACCAAGGAGGTGATTGGCACGGGCTATGGCATCCTGGACCAGAAGGCCTCTGGAGTCAAATACACCAAGTCCATTTCAGATCCCCCAGACCAGATCACCTATCTTCCTTCCAGCTCTGAGTCACTTCCCATTGGGACTTGCGGTTAATCGAAGTCACTGAGACCATTTGCAAGAGGCTCCTGGATTATAGCCTGCACAAGGAGAGGACCGGCAGCAATCGATTTGCCAAGGTTGGATTCGGGATTGTCCTTCATCCGCTCTGGGGTCAGGCCTGCATGTATCTTAGTGTGTCTGCTGGTGTGAGTGTGATTTGAAGATGACCACCTGGGATCTTCCCTCATTGCCTCTTCCCTORF Start: ATG at 12ORF Stop: TAA at 360SEQ ID NO:62116 aaMW at 12441.2 kDNOV16a,MDSMPEPASRCLLLLPLLLLLLLLLPAPELGPSQAGAEENDWVRLPSKCEVCKYVAVELKSAFEETGCG145198-01KTKEVIGTGYGILDQKASGVKYTKSISDPPDOMTYLPSSSESLPIGTCGProtein SequenceSEQ ID NO:63370 bpNOV16b,CACCGGATCCACCATGGATTCAATGCCTGAGCCCGCGTCCCGCTGTCTTCTGCTTCTTCCCTTGCTG178498076 DNASequenceCTGCTGCTGCTGCTGCTGCTGCCGGCCCCGGAGCTGGGCCCGAGCCAGGCCGGAGCTGAGGAGAACGACTGGGTTCGCCTGCCCAGCAAATGCGAAGTGTGTAAATATGTTGCTGTGGAGCTGAAGTCAGCCTTTGAGGAAACCGGCAAGACCAAGGAGGTGATTGGCACGGGCTATGGCATCCTGGACCAGAAGGCCTCTGGAGTCAAATACACCAAGTCCATTTCAGATCCCCCAGACCAGATGACCTATCTTCCTTCCAGCTCTGAGTCACTTCCCATTGGGACTTGCGGTCTCGAGGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO:64123 aaMW at 13086.9 kDNOV16b,TGSTMDSMPEPASRCLLLLPLLLLLLLLLPAPELGPSQAGAEENDWVRLPSKCEVCKYVAVELKSAF278498076Protein SequenceEETGKTKEVIGTGYGILDQKASGVKYTKSISDPPDQMTYLPSSSESLPIGTCGLEGSEQ ID NO:65274 bpNOV16c,CACCGGATCCCCGAGCCAGGCCGGAGCTGAGGAGAACGACTGGGTTCGCCTGCCCAGCAAATGCGAA278498091 DNASequenceGTGTGTAAATATGTTGCTGTGGAGCTGAAGTCAGCCTTTGAGGAAACCGGCAAGACCAAGGAGGTGATTGGCACGGGCTATGGCATCCTGGACCAGAAGGCCTCTGGAGTCAAATACACCAAGTCCATTTCAGATCCCCCAGACCAGATGACCTATCTTCCTTCCAGCTCTGAGTCACTTCCCATTGGGACTTGCGGTCTCGAGGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO:6691 aaMW at 9647.7 kDNOV16c,TGSPSQAGAEENDWVRLPSKCEVCKYVAVELKSAFEETGKTKEVIGTGYGILDQKASGVKYTKSISD278498091Protein SequencePPDQMTYLPSSSESLPIGTCGLEGSEQ ID NO:671596 bpNOV16d,CCCAGGCCCAGACGCAGGCTTCTTCTCCTCGGGTCTTGGTCCTGCATCCTCTCTCTCCCAGAGCCTCCG145198-02DNA SequenceCGTTAGGGGGTGGGAAAGGACTTTGCCATAGGTCGCTGAGGCCACCATCTGCTCTCTTACTGGCCAAGGGCGTAAAAAGATAGTCCTCCCATTAGCTAGAGAGCAAACCCCAGAAAGCCTATTGGCTGCGCCGTCCGCGGGCCTTGGTCCGCTTTGAAGGCGGGCTGCGGCTGCGAGAGGAGGGCGGGCGGGAGGCTAGCTGTTGTCGTGGTTGCTCGGAGGCACGTGTGCAGTCCCGGAAGCGGCGAGGGGAAACTGCTCCGCGCGCGCCGCGGGAGGAGGAACCGCCCGGTCCTTTAGGGTCCGGGCCCGGCCGGGCCATGGATTCAATGCCTGAGCCCGCGTCCCGCTGTCTTCTGCTTCTTCCCTTGCTGCTGCTGCTGCTGCTGCTGCTGCCGGCCCCGGAGCTGGGCCCGAGCCAGGCCGGAGCTGAGGAGAACGACTGGGTTCGCCTGCCCAGCAAATGCGAAGGGACTTGCGGTTAATCGAAGTCACTCAGACCATTGCAATAGGCTCCTGGATTATAGCCTGCACAAGGAGAGGACCGGCAGCAATCGATTTGCCAAGGGCATGTCAGAGACCTTTGAGACATTACACAACCTGGTACACAAAGGGGTCAAGGTGGTGATGGACATCCCCTATGAGCTGTGGAACGAGACTTCTGCAGAGGTGGCTGACCTCAAGAAGCAGTGTGATGTGCTGGTGGAAGAGTTTGAGGAGGTGATCGAGGACTGGTACAGGAACCACCAGGAGGAAGACCTGACTGAATTCCTCTGCGCCAACCACGTGCTGAAGGGAAAAGACACCAGTTGCCTGGCAGAGCAGTGGTCCGGCAAGAAGGGAGACACAGCTGCCCTGGGAGGGAAGAAGTCCAAGAAGAAGAGCAGCAGGGCCAAGGCAGCAGGCGGCAGGAGTAGCAGCAGCAAACAAAGGAAGGAGCTGGGTGGCCTTGAGGGAGACCCCAGCCCCGAGGAGGATGAGGGCATCCAGAAGGCATCCCCTCTCACACACAGCCCCCCTGATGAGCTCTGAGCCCACCCAGCATCCTCTGTCCTGAGACCCCTGATTTTGAAGCTGAGGAGTCAGGGGCATGGCTCTGGCAGGCCGGGATGGCCCCGCAGCCTTCAGCCCCTCCTTGCCTTGGCTGTGCCCTCTTCTGCCAAGGAAAGACACAAGCCCCAGGAAGAACTCAGAGCCGTCATGGGTAGCCCACGCCGTCCTTTCCCCTCCCCAAGTGTTTCTCTCCTGACCCAGGGTTCAGGCAGGCCTTGTGGTTTCAGGACTGCAAGGACTCCAGTGTGAACTCAGGAGGGGCAGGTGTCAGAACTGGGCACCAGGACTGGAGCCCCCTCCGGAGACCAAACTCACCATCCCTCAGTCCTCCCCAACAGGGTACTAGGACTGCAGCCCCCTGTAGCTCCTCTCTGCTTACCCCTCCTGTGGACACCTTGCACTCTGCCTGGCCCTTCCCAGAGCCCAAAGAGTAAAAATGTTCTGGTTCTGAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 388ORF Stop: TAA at 550SEQ ID NO:6854 aaMW at 5772.7kDNOV16d,MDSMPEPASRCLLLLPLLLLLLLLLPAPELGPSQAGAEENDWVRLPSKCEGTCGCG145198-02Protein SequenceSEQ ID NO:69901 bpNOV16e,GGAGGAGGAACCGCCCGGTCCTTTAGGGTCCGGGCCCGGCGGGCCATGGATTCAATGCCTGAGCCCCG145198-03DNA SequenceGCGTCCCGCTGTCTTCTGCTTCTTCCCTTGCTGCTGCTGCTGCTGCTGCTGCTGCCGGCCCCGGAGCTGGGCCCGAGCCAGGCCGGAGCTGAGGAGAACGACTGGGTTCGCCTGCCCAGCAAATGCGAAGTGTGTAAATATGTTGCTGTGGAGCTGAAGTCAGCCTTTGAGGAAACCGGCAAGACCAAGGAGGTGATTGGCACGGGCTATGGCATCCTGGACCAGAAGGCCTCTGGAGTCAAATACACCAAGTCGGACTTGCGGTTAATCGAAGTCACTGAGACCATTTGCAAGAGGCTCCTGGATTATAGCCTGCACAAGGAGAGGACCGGCAGCAATCGATTTGCCAAGGGCATGTCAGAGACCTTTGAGACATTACACAACCTGGTACACAAAGGGGTCAAGGTGGTGATGGACATCCCCTATGAGCTGTGGAACGAGACTTCTGCAGAGGTGGCTGACCTCAAGAAGCAGTGTGATGTGCTGGTGGAAGAGTTTGAGGAGGTGATCGAGGACTGGTACAGGAACCACCAGGAGGAAGACCTGACTGAATTCCTCTGCGCCAACCACGTGCTGAAGGGAAAAGACACCAGTTGCCTGGCAGAGCAGTGGTCCGGCAAGAAGGGAGACACAGCTGCCCTGGGAGGGAAGAAGCCCAAGAAGAAGAGCAGCAGGGCCAAGGCAGCAGGCGGCAGGAGTAGCAGCAGCAAACAAAGGAAGGAGCTGGGTGGCCTTGAGGGAGACCCCAGCCCCGAGGAGGATGAGGGCATCCAGGCATCCCCCTCTCACACACACAGCCCCCCTGATGAGCTCTGAGCCCACCCAGCATCCTCTORF Start: ATG at 47ORF Stop: TGA at 881SEQ ID NO:70278 aaMW at 30757.7 kDNOV16e,MDSMPEPASRCLLLLPLLLLLLLLLPAPELGPSQAGAEENDWVRLPSKCEVCKYVAVELKSAFEETGCG145198-03Protein SequenceKTKEVIGTGYGILDQKASGVKYTKSDLRLIEVTETICKRLLDYSLHKERTGSNRFAKGMSETFETLHNLVHKGVKVVMDIPYELWNETSAEVADLKKQCDVLVEEFEEVIEDWYRNHQEEDLTEFLCANHVLKGKDTSCLAEQWSGKKGDTAALGGKKPKKKSSRAKAAGGRSSSSKQRKELGGLEGDPSPEEDEGIQKASPLTHSPPDEL


[0449] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 16B.
87TABLE 16BComparison of NOV16a against NOV16b through NOV16e.NOV16a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV16b 1 . . . 116101/116 (87%) 5 . . . 120101/116 (87%)NOV16c32 . . . 116 85/85 (100%) 4 . . . 88 85/85 (100%)NOV16d 1 . . . 50 35/50 (70%) 1 . . . 50 35/50 (70%)NOV16e 1 . . . 92 77/92 (83%) 1 . . . 92 77/92 (83%)


[0450] Further analysis of the NOV16a protein yielded the following properties shown in Table 16C.
88TABLE 16CProtein Sequence Properties NOV16aPSort analysis:0.8200 probability located in outside; 0.1000 probability located inendoplasmic reticulum (membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000 probability located in lysosome(lumen)SignalP analysis:Cleavage site between residues 32 and 33


[0451] A search of the NOV16a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 16D.
89TABLE 16DGeneseq Results for NOV16aNOV16aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABP41913Human ovarian antigen 1 . . . 9292/92 (100%)2e−47HVVBT41, SEQ ID76 . . . 16792/92 (100%)NO:3045 - Homo sapiens,353 aa. [W0200200677-A1,Jan. 3, 2002]AAU02499Human trinucleotide repeat 1 . . . 9292/92 (100%)2e−47protein (TRP) - Homo 1 . . . 9292/92 (100%)sapiens, 278 aa.[W0200130798-A1,May 3, 2001]AAU12239Human PRO4409 1 . . . 9292/92 (100%)2e−47polypeptide sequence - Homo 1 . . . 9292/92 (100%)sapiens, 278 aa.[WO200140466-A2,Jun. 7, 2001]AAW78312Fragment of human secreted 1 . . . 9282/92 (89%)3e−39protein encoded by gene 67 - 1 . . . 9183/92 (90%)Homo sapiens, 277 aa.[WO9856804-A1,Dec. 17, 1998]AAU02498Murine trinucleotide repeat 1 . . . 9278/92 (84%)4e−37protein (TRP) - Mus sp, 276 1 . . . 9280/92 (86%)aa. [WO200130798-A1,May 3, 2001]


[0452] In a BLAST search of public sequence datbases, the NOV16a protein was found to have homology to the proteins shown in the BLASTP data in Table 16E.
90TABLE 16EPublic BLASTP Results for NOV16aNOV16aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9BT09Hypothetical 30.7 kDa protein 1 . . . 9292/92 (100%)4e−47(Unknown) (Protein for 1 . . . 9292/92 (100%)MGC:4122) (Protein forMGC: 1220) (DJ475N16.1)(CTG4A) - Homo sapiens(Human), 278 aa.O15412CTG4a - Homo sapiens 1 . . . 9292/92 (100%)4e−47(Human), 143 aa. 1 . . . 9292/92 (100%)Q9DAU11600025D17Rik protein 1 . . . 9278/92 (84%)1e−36(Putative retinoic 1 . . . 9280/92 (86%)acid-regulated protein)(RIKEN cDNA 1600025D17gene) - Mus musculus(Mouse), 276 aa.CAC39850Sequence 345 from Patent19 . . . 7624/58 (41%)6e−06EP1067182 - Homo sapiens 8 . . . 6535/58 (59%)(Human), 248 aa.Q8WUN9Hypothetical 29.4 kDa protein -19 . . . 7624/58 (41%)6e−06Homo sapiens (Human), 25719 . . . 7635/58 (59%)aa (fragment).


[0453] PFam analysis predicts that the NOV16a protein contains the domains shown in the Table 16F.
91TABLE 16FDomain Analysis of NOV16aPfam DomainNOV16a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 17

[0454] The NOV17 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 17A.
92TABLE 17ANOV17 Sequence AnalysisSEQ ID NO:71862 bpNOV17a,CCCCTCCCATTTGCCTGTCCTGGTCAGGCCCCCACCCCCCTTCCCACCTGACCAGCCATGGGGGCTGCG145286-01DNA SequenceCGGTGTTTTTCGGCTGCACTTTCGTCGCGTTCGGCCCGGCCTTCGCGCTTTTCTTGATCACTGTGGCTGGGGACCCGCTTCGCGTTATCATCCTGGTCGCAGGGGCATTTTTCTGGCTGGTCTCCCTGCTCCTGGCCTCTGTGGTCTGGTTCATCTTGGTCCATGTGACCGACCGGTCAGATGCCCGGCTCCAGTACGGCCTCCTGATTTTTGGTGCTGCTGTCTCTGTCCTTCTACAGGAGGTGTTCCGCTTTGCCTACTACAAGCTGCTTAAGAAGGCAGATGAGGGGTTAGCATCGCTGAGTGAGGACGGAAGATCACCCATCTCCATCCGCCAGATGGCCTATGGTGTGGTTGGGATCCATGGAGACTCACCCTATTACTTCCTGACTTCAGCCTTTCTGACAGCAGCCATTATCCTGCTCCATACCTTTTGGGGAGTTGTGTTCTTTGATGCCTGTGAGAGGAGACGGTACTGGGCTTTGGGCCTGGTGGTTGGGAGTCACCTACTGACATCGGGACTGACATTCCTGAACCCCTGGTATGAGGCCAGCCTGCTGCCCATCTATGCAGTCACTGTTTCCATGGGGCTCTGGGCCTTCATCACAGCTGGAGGGTCCCTCCGAAGTATTCAGCGCAGCCTCTTGTGCCGACGGCAGGAGGACAGTCGGGTGATGGTGTATTCTGCCCTGCGCATCCCACCCGAGGACTGAGGGAACCTAGGGGGGACCCCTGGGCCTGGGGTGCCCTCCTGATGTCCTCGCCCTGTATTTCTCCATCTCCAGTTCTGGACAGORF Start: ATG at 58ORF Stop: TGA at 778SEQ ID NO:72240 aaMW at 26566.8 kDNOV17a,MGAAVFFGCTFVAFGPAFALFLITVAGDPLRVIILVAGAFFWLVSLLLASVVWFILVHVTDRSDARLCG145286-01Protein SequenceQYGLLIFGAAVSVLLQEVFRFAYYKLLKKADEGLASLSEDGRSPISIRQMAYGVVGIHGDSPYYFLTSAFLTAAIILLHTFWGVVFFDACERRRYWALGLVVGSHLLTSGLTFLNPWYEASLLPIYAVTVSMGLWAFITAGGSLRSIQRSLLCRRQEDSRVMVYSALRIPPEDSEQ ID NO:73942 bpNOV17b,CCTTCCCCTCCCATTTGCCTGTCCTGGTCAGGCCCCCCACCCCCCTTCCCACCTGACCAGCCATGGGCG145286-02DNA SequenceGGCTGCGGTGTTTTTCGGCTGCACTTTCGTCCCGTTCGGCCCGGGCCTTCCGCTTTTCTTGATCACTGTGGCTGGGGACCCGCTTCGCGTTATCATCCTGGTCGCAGGGGCATTTTCCTGGCTGGTCTCCCTGCTCCTGGCCTCTGTGGTCTGGTTCATCTTGGTCCATGTGACCGACCGGTCAGATGCCCGGCTCCAGTACGGCCTCCTGATTTTTGGTGCTGCTGTCTCTGTCCTTCTACAGGAGGTGTTCCGCTTTGCCTACTACAAGCTGCTTAAGAAGGCAGATGAGGGGTTAGCATCGCTGAGTGAGGACGGAAGATCACCCATCTCCATCCGCCAGATGGCCTATGTTTCTGGTCTCTCCTTCGGTATCATCAGTGGTGTCTTCTCTGTTATCAATATTTTGGCTGATGCACTTGGGCCAGGTGTGGTTGGGATCCATGGAGACTCACCCTATTACTTCCTGACTTCAGCCTTTCTGACAGCAGCCATTATCCTGCTCCATACCTTTTGGGGAGTTGTGTTCTTTGATGCCTGTGAGAGGAGACGGTACTGGGCTTTGGGCCTGGTGGTTGGGAGTCACCTACTGACATCGGGACTGACATTCCTGAACCCCTGGTATGAGGCCAGCCTGCTGCCCATCTATGCAGTCACTGTTTCCATGGGGCTCTGGGCCTTCATCACAGCTGGAGGGTCCCTCCGAAGTATTCAGCGCAGCCTCTTGTGCCGACGGCAGGAGGACAGTCGGGTGATGGTGTATTCTGCCCTGCGCATCCCACCCGAGGACTGAGGGAACCTAGGGGGGACCCCTGGGCCTGGGGTGCCCTCCTGATGTCCTCGTCCTGTATTTCTCCATCTCCAGTTCTGGACAGORF Start: ATG at 63ORF Stop: TGA at 858SEQ ID NO:74265 aaMW at 28935.5 kDNOV17b,MGAAVFFGCTFVAFGPAFALFLITVAGDPLRVIILVAGAFSWLVSLLLASVVWFILVHVTDRSDARLCG145286-02Protein SequenceQYGLLIFGAAVSVLLQEVFRFAYYKLLKKADEGLASLSEDGRSPISIRQMAYVSGLSFGIISGVFSVINILADALGPGVVGIHGDSPYYFLTSAFLTAAIILLHTFWGVVFFDACERRRYWALGLVVGSHLLTSGLTFLNPWYEASLLPIYAVTVSMGLWAFITAGGSLRSIQRSLLCRRQEDSRVMVYSALRJPPED


[0455] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 17B.
93TABLE 17BComparison of NOV17a against NOV17b.NOV17a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV17b1 . . . 240224/265 (84%)1 . . . 265224/265 (84%)


[0456] Further analysis of the NOV17a protein yielded the following properties shown in Table 17C.
94TABLE 17CProtein Sequence Properties NOV17aPSort analysis:0.6400 probability located in plasma membrane; 0.4600 probability located inGolgi body; 0.3700 probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 63 and 64


[0457] A search of the NOV17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 17D.
95TABLE 17DGeneseq Results for NOV17aNOV17aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB65248Human PRO1141 (UNQ579)1 . . . 221220/246 (89%)e−120protein sequence SEQ ID1 . . . 246221/246 (89%)NO:303 - Homo sapiens, 247aa. [WO200073454-A1,Dec. 7, 2000]AAB94784Human protein sequence1 . . . 221220/246 (89%)e−120SEQ ID NO: 15888 - Homo1 . . . 246221/246 (89%)sapiens, 247 aa.[EP1074617-A2,Feb. 7, 2001]AAM93680Human polypeptide, SEQ ID1 . . . 221220/246 (89%)e−120NO: 3574 - Homo sapiens,1 . . . 246221/246 (89%)247 aa. [EP1130094-A2,Sep. 5, 2001]AAU29137Human PRO polypeptide1 . . . 221220/246 (89%)e−120sequence #114 - Homo1 . . . 246221/246 (89%)sapiens, 247 aa.[WO200168848-A2,Sep. 20, 2001]AAY57881Human transmembrane1 . . . 221220/246 (89%)e−120protein HTMPN-5 - Homo1 . . . 246221/246 (89%)sapiens, 247 aa.[W09961471-A2,Dec. 2, 1999]


[0458] In a BLAST search of public sequence datbases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17E.
96TABLE 17EPublic BLASTP Results for NOV17aNOV17aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96B13Hypothetical 29.0 kDa1 . . . 240240/265 (90%)e−131protein (CGI-78 protein) -1 . . . 265240/265 (90%)Homo sapiens (Human), 265aa.Q9BVG0Similar to CGI-78 protein -1 . . . 240239/265 (90%)e−131Homo sapiens (Human), 2651 . . . 265240/265 (90%)aa.Q8R1T3CGI-78 protein - Mus1 . . . 240238/265 (89%)e−130musculus (Mouse), 265 aa.1 . . . 265239/265 (89%)Q969R6CGI-78 protein - Homo1 . . . 221220/246 (89%)e−119sapiens (Human), 247 aa.1 . . . 246221/246 (89%)CAC39761Sequence 159 from Patent1 . . . 221219/246 (89%)e−118EP1067182 - Homo sapiens1 . . . 246220/246 (89%)(Human), 247 aa.


[0459] PFam analysis predicts that the NOV17a protein contains the domains shown in the Table 17F.
97TABLE 17FDomain Analysis of NOV17aPfam DomainNOV17a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 18

[0460] The NOV18 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 18A.
98TABLE 18ANOV18 Sequence AnalysisSEQ ID NO:75644 bpNOV18a,GTAATTTACCACCATCTTTGGTTCCTGTTTATAAGATGTTTTAAGAAAGATTTGAAACAGATTTTCTCG145650-01DNA SequenceGAAGAAAGCAGAAGCTCTCTTCCCATTATGACTTCGGAAATCACTTATGCTGAAGTGAGGTTCAAAAATGAATTCAAGTCCTCAGGCATCAACACAGCCTCTTCTGCAGAGACAGCCTGGAGCTGTTGCCCAAAGAATTGGAAGTCATTTAGTTCCAACTGCTACTTTATTTCTACTGAATCAGCATCTTGGCAAGACAGTGAGAAGGACTGTGCTAGAATGGAGGCTCACCTGCTGGTGATAAACACTCAAGAAGAGCAGGATTTCATCTTCCAGAATCTGCAAGAAGAATCTGCTTATTTTTTGGGGCTCTCAGATCCAGAAGGTCAGCGACATTGGCAATGGGTTGATCAGACGCCATACAATGAAAGTTCCACATTCTGGCATCCACGTGAGCCCAGTGATCCCAATGAGCGCTGCGTTGTGCTAAATTTTCGTAAATCACCCAAAAGATGGGGCTGGAATGATGTTAATTGTCTTGGTCCTCAAAGGTCAGTTTGTGAGATGATGAAGATCCACTTATGAACTGAACATTCTCCATGAACAGGTGGTTGGATTGGTATCTGTCATTGTAGGGORF Start: ATG at 95ORF Stop: TGA at 590SEQ ID NO:76165 aaMW at 19294.2 kDNOV18a,MTSEITYAEVRFKNEFKSSGINTASSAETAWSCCPKNWKSFSSNCYFISTESASWQDSEKDCARMEACG145650-01Protein SequenceHLLVINTQEEQDFIFQNLQEESAYFLGLSDPEGQRHWQWVDQTPYNESSTFWHPREPSDPNERCVVLNFRKSPKRWGWNDVNCLGPQRSVCEMMKIHLSEQ ID NO:77763 bpNOV18b,GTAATTTACCACCATGTTTGGTTCCTGTTTATAAGATGTTTTAAGAAAGATTTGAAACAGATTTTCTCG145650-02DNA SequenceGAAGAAAGCAGAAGCTCTCTTCCCATTATGACTTCGGAAATCACTTATGCTGAAGTGAGGTTCAAAAATGAATTCAAGTCCTCAGGCATCAACACAGCCTCTTCTGCAGCTTCCAAGGAGAGGACTGCCCCTCTCAAAAGTAATACCGGATTCCCCAAGCTGCTTTGTGCCTCACTGTTGATATTTTTCCTGCTATTGCCAATCTCATTCTTTATTCCTTTTGTCATTTTCTTTCAAATATTTTTCTCCCCCCAGCTTCTTGAGACTACAAAAGAGCTGGTTCATACAACATTGGAGTGTGTGAAAAAAAATATGCCCGTGGAAGAGACAGCCTGGAGCTGTTGCCCAAAGAATTGGAAGTCATTTAGTTCCAACTGCTACTTTATTTCTACTGAATCAGCATCTTGGCAAGACAGTGAGAAGGACTGTGCTAGAATGGAGGCTCACCTGCTGGTGATAAACACTCAAGAAGAGCAGGATTTCATCTTCCAGAATCTGCAAGAAGAATCTGCTTATTTTGTGGGGCTCTCAGATCCAGAAGGTCAGCGACATTGGCAATGGGTTGATCAGACACCATACAATGATGTTAATTGTCTTGGTCCTCAAAGGTCAGTTTGTGAGATGATGAAGATCCACTTATGAACACATTCTCCCATGAAACAGGTGGTTGGATTGGTATCTGTCATTGTAGGGORF Start: ATG at 95ORF Stop: TGA at 707SEQ ID NO:78204 aaMW at 23462.5 kDNOV18b,MTSEITYAEVRFKNEFKSSGINTASSAASKERTAPLKSNTGFPKLLCASLLIFFLLLAISFFIAFVICG145650-02Protein SequenceFFQKYSQLLEKKTTKELVHTTLECVKKNMPVEETAWSCCPKNWKSFSSNCYFISTESASWQDSEKDCARMEAHLLVINTQEEQDFIFQNLQEESAYFVGLSDPEGQRHWQWVDQTPYNDVNCLGPQRSVCEMMKIHLSEQ ID NO:791308 bpNOV18c,CTCACTATACTGGTCCTGAGGAAAGGGCTTCTGTGAACTGCGGTTTTTAGTTTTTATTGTGGTTCTTCG145650-03DNA SequenceAGTTCTCATGAGACCCCTCTTGAGGATATGTGCCTATCTGGTGCCTCTGCTCTCCACTAGTTGAGTGAAAGGAAGGAGGTAATTTACCACCATGTTTGGTTCCTGTTTATAAGATGTTTTAAGAAAGATTTGAAACAGATTTTCTGAAGAAAGCAGAAGCTCTCTTCCCATTATGACTTCGGAAATCACTTATGCTGAAGTGAGGTTCAAAAATGAATTCAAGTCCTCAGGCATCAACACAGCCTCTTCTGCAGCTTCCAAGGAGAGGACTGCCCCTCTCAAAAGTAATACCGGATTCCCCAAGCTGCTTTGTGCCTCACTGTTGATATTTTTCCTGCTATTGGCAATCTCATTCTTTATTGCTTTTGTCATTTTCTTTCAAAAATATTCTCAGCTTCTTGAAAAAAAGACTACAAAAGAGCTGGTTCATACAACATTGGAGTGTGTGAAAAAAAATATGCCCGTGGAAGAGACAGCCTGGAGCTGTTGCCCAAAGAATTGGAAGTCATTTAGTTCCAACTGCTACTTTATTTCTACTGAATCAGCATCTTGGCAAGACAGTGAGAAGGACTGTGCTAGAATGGAGGCTCACCTGCTGGTGATAAACACTCAAGAAGAGCAGGATTTCATCTTCCAGAATCTGCAAGAAGAATCTGCTTATTTTGTGGGGCTCTCAGATCCAGAAGGTCAGCGACATTGGCAATGGGTTGATCAGACACCATACAATGAAAGTTCCACATTCTGGCATCCACGTGAGCCCAGTGATCCCAATGAGCGCTGCGTTGTGCTAAATTTTCGTAAATCACCCAAAAGATGGGGCTGGAATGATGTTAATTGTCTTGGTCCTCAAAGGTCCAGTTTGTGAGATGATGAAGATCCACTTATGAACTGAACATTCTCCATGAACAGGTGGTTGGATTGGTATCTGTCATTGTAGGGATAGATAATAAGCTCTTCTTATTCATGTGTAAGGGAGGTCCATAGAATTTAGGTGGTCTGTCAACTATTCTACTTATGAGAGAATTGGTCTGTACATTGACTGATTCACTTTTTCATAAAGTGAGCATTTATTGAGCATTTTTTCATGTGCCAGAGCCTGTACTGGAGGCCCCCATTGTGCACACATGGAGAGAACATGAGTCTCTCTTAATTTTTATCTGGTTGCTAAAGAATTATTTACCAATAAAATTATATGATGTGGTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 240ORF Stop: TGA at 930SEQ ID NO:80230 aaMW at 26602.8 kDNOV18c,MTSEITYAEVRFKNEFKSSGINTASSAASKERTAPLKSNTGFPKLLCASLLIFFLLLAISFFIAFVICG145650-03Protein SequenceFFQKYSQLLEKKTTKELVHTTLECVKKNMPVEETAWSCCPKNWKSFSSNCYFISTESASWQDSEKDCARMEAHLLVINTQEEQDFIFQNLQEESAYFVGLSDPEGQRHWQWVDQTPYNESSTFWHPREPSDPNERCVVLNFRKSPKRWGWNDVNCLGPQRSSL


[0461] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 18B.
99TABLE 18BComparison of NOV18a against NOV18b and NOV18c.NOV18a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV18b28 . . . 165104/138 (75%)100 . . . 204105/138 (75%)NOV18c28 . . . 156128/129 (99%)100 . . . 228129/129 (99%)


[0462] Further analysis of the NOV18a protein yielded the following properties shown in Table 18C
100TABLE 18CProtein Sequence Properties NOV18aPSort analysis:0.6868 probability located in microbody (peroxisome); 0.1000 probabilitylocated in mitochondrial matrix space; 0.1000 probability located in lysosome(lumen); 0.0000 probability located in endoplasmic reticulum (membrane)SignalP analysis:No Known Signal Sequence Predicted


[0463] A search of the NOV18a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 18D.
101TABLE 18DGeneseq Results for NOV18aNOV18aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABP48034Human polypeptide SEQ ID28 . . . 165137/138 (99%)3e-84NO 464 - Homo sapiens, 243106 . . . 243138/138 (99%)aa. [US2002042386-A1,11-APR-2002]ABP47873Human polypeptide SEQ ID28 . . . 165137/138 (99%)3e-84NO 303 - Homo sapiens, 246109 . . . 246138/138 (99%)aa. [US2002042386-A1,11-APR-2002]AAU98014Human dendritic cell28 . . . 165137/138 (99%)3e-84immunoreceptor AJ133532 -100 . . . 237138/138 (99%)Homo sapiens, 237 aa.[WO200232958-A2,25-APR-2002]ABB90277Human polypeptide SEQ ID28 . . . 165137/138 (99%)3e-84NO 2653 - Homo sapiens,100 . . . 237138/138 (99%)237 aa. [WO200190304-A2,29-NOV-2001]AAU19814Human novel extracellular28 . . . 165137/138 (99%)3e-84matrix protein, Seq ID No106 . . . 243138/138 (99%)464 - Homo sapiens, 243 aa.[WO200155368-A1,02-AUG-2001]


[0464] In a BLAST search of public sequence datbases, the NOV18a protein was found to have homology to the proteins shown in the BLASTP data in Table 18E.
102TABLE 18EPublic BLASTP Results for NOV18aNOV18aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9H2Z9C-type lectin DDB27 short1 . . . 165163/204 (79%)8e-93form - Homo sapiens1 . . . 204165/204 (79%)(Human), 204 aa.Q9UMR7Dendritic cell28 . . . 165137/138 (99%)9e-84immunoreceptor - Homo100 . . . 237138/138 (99%)sapiens (Human), 237 aa.Q9UI34C-type lectin superfamily 6 -28 . . . 165137/138 (99%)9e-84Homo sapiens (Human), 237100 . . . 237138/138 (99%)aa.Q9NS33HDCGC13P - Homo sapiens28 . . . 165136/138 (98%)3e-83(Human), 237 aa.100 . . . 237137/138 (98%)Q8WXW9Fc-epsilon receptor III -28 . . . 156128/129 (99%)5e-78Homo sapiens (Human), 230100 . . . 228129/129 (99%)aa.


[0465] PFam analysis predicts that the NOV18a protein contains the domains shown in the Table 18F.
103TABLE 18FDomain Analysis of NOV18aIdentities/SimilaritiesPfam DomainNOV18a Match Regionfor the Matched RegionExpect Valuelectin_c51 . . . 16034/127 (27%)5.8e-2885/127 (67%)



Example 19

[0466] The NOV19 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 19A.
104TABLE 19ANOV19 Sequence AnalysisSEQ ID NO:81661 bpNOV19a,CTCCTGTAACCCTCCTCCAGGATGAACCACCTGCCAGAAGACATGGAGAACGCTCTCACCGGGAGCCCG145836-01DNA SequenceAGAGCTCCCATGCTTCTCTGCGCAATATCCATTCCATCAACCCCACACAACTCATGGCCAGGATTGAGTCCTATGAAGGAAGGGAAAAGAAAGGCATATCTGATGTCAGGAGGACTTTCTGTTTGTTTGTCACCTTTGACCTCTTATTCGTAACATTACTGTGGATAATAGAGTTAAATGTGAATGGAGGCATTGAGAACACATTAGAGAAGGAGGTGATGCAGTATGACTACTATTCTTCATATTTTGATATATTTCTTCTGGCAGTTTTTCGATTTAAAGTGTTAATACTTGCATATGCTGTGTGCAGACTGCCCATCATTTCATTCATCCTTGCCTGGATTGAGACGTGGTTCCTGGATTTCAAAGTGTTACCTCAAGAAGCAGAAGAAGAAAACAGACTCCTGATAGTTCAGGATGCTTCAGAGAGGGCAGCACTTATACCTGGTGGTCTTTCTGATGGTCAGTTTTATTCCCCTCCTGAATCCGAAGCAGGATCTGAAGAAGCTGAAGAAAAACAGGACAGTGAGAAACCACTTTTAGAACTATGAGTACTACTTTTGTTAAATGTGAAAAACCCTCACAGAAAGTCATORF Start: ATG at 22ORF Stop: TGA at 616SEQ ID NO:82198 aaMW at 22691.5 kDNOV19a,MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVTFDLLFVTCG145836-01Protein SequenceLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLPIISFILAWIETWFLDFKVLPQEAEEENRLLIVQDASERAALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLELSEQ ID NO:83768 bpNOV19b,CTCCTGTAACCCTCCTCCAGGATGAACCACCTGCCAGAAGACATGGAGAACGCTCTCACCGGGAGCCCG145836-02DNA SequenceAGAGCTCCCATGCTTCTCTGCGCAATATCCATTCCATCAACCCCACACAACTCATGGCCAGGATTGAGTCCTATGAAGGAAGGGAAAAGAAAGGCATATCTGATGTCGGGAGGACTTTCTGTTTGTTTGTCACCTTTGACCTCTTATTCGTAACATTACTGTGGATAATAGAGTTAAATGTGAATGGAGGCATTGAGAACACATTAGAGAAGGAGGTGATGCAGTATGACTACTATTCTTCATATTTTGATATATTTCTTCTGGCAGTTTTTCGATTTAAAGTGTTAATACTTGCATATGCTGTGTGCAGACTGCGCCATTGGTGGGCAATAGCGTTGACAACGGCAGTGACCAGTGCCTTTTTACTAGCAAAAGTGATCCTTTCGAAGCTTTTCTCTCAAGGGGCTTTTGGCTATGTGCTGCCCATCATTTCATTCATCCTTGCCTGGATTGAGACGTGGTTCCTGGATTTCAAAGTGTTACCTCAAGAAGCAGAAGAAGAAAACAGACTCCTGATAGTTCAGGATGCTTCAGAGAGGGCAGCACTTATACCTGGTGGTCTTTCTGATGGTCAGTTTTATTCCCCTCCTGAATCCGAAGCAGGATCTGAAGAAGCTGAAGAAAAACAGGACAGTGAGAAACCACTTTTAGAACTATGAGTACTACTTTTGTTAAATGTGAAAAACCCTCACAGAAAGTCATORF Start: ATG at 22ORF Stop: TGA at 724SEQ ID NO:84234 aaMW at 26555.1 kDNOV19b,MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVGRTFCLFVTFDLLFVTCG145836-02Protein SequenceLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLRHWWAIALTTAVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPQEAEEENRLLIVQDASERAALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL


[0467] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 19B.
105TABLE 19BComparison of NOV19a against NOV19b.NOV19a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV19b1 . . . 198167/234 (71%)1 . . . 234167/234 (71%)


[0468] Further analysis of the NOV19a protein yielded the following properties shown in Table 19C.
106TABLE 19CProtein Sequence Properties NOV19aPSort analysis:0.6000 probability located in plasma membrane; 0.4000 probability located inGolgi body; 0.3000 probability located in endoplasmic reticulum (membrane);0.1000 probability located in mitochondrial inner membraneSignalP analysis:Cleavage site between residues 3 and 4


[0469] A search of the NOV19a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19D.
107TABLE 19DGeneseq Results for NOV19aNOV19aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM39930Human polypeptide SEQ ID1 . . . 198198/216 (91%)e-107NO 3075 - Homo sapiens,1 . . . 216198/216 (91%)216 aa. [WO200153312-A1,26-JUL-2001]ABB84847Human PRO1864 protein1 . . . 198198/234 (84%)e-105sequence SEQ ID NO:62 -1 . . . 234198/234 (84%)Homo sapiens, 234 aa.[WO200200690-A2,03-JAN-2002]ABB95453Human angiogenesis related1 . . . 198198/234 (84%)e-105protein PRO1864 SEQ ID1 . . . 234198/234 (84%)NO: 62 - Homo sapiens, 234aa. [WO200208284-A2,31-JAN-2002]AAB87532Human PRO 1864 - Homo1 . . . 198198/234 (84%)e-105sapiens, 234 aa.1 . . . 234198/234 (84%)[WO200116318-A2,08-MAR-2001]AAM41716Human polypeptide SEQ ID1 . . . 198198/234 (84%)e-105NO 6647 - Homo sapiens,5 . . . 238198/234 (84%)238 aa. [WO200153312-A1,26-JUL-2001]


[0470] In a BLAST search of public sequence datbases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19E.
108TABLE 19EPublic BLASTP Results for NOV19aNOV19aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueO95772H_NH1021A09.1 protein1 . . . 198198/234 (84%)e-105(Unknown) (Protein for1 . . . 234198/234 (84%)MGC: 14607) (Similar tosteroidogenic acute regulatoryprotein related) - Homosapiens (Human), 234 aa.Q99J63Similar to RIKEN cDNA1 . . . 198186/235 (79%)1e-960610035N01 gene - Mus1 . . . 235191/235 (81%)musculus (Mouse), 235 aa.Q9DCI30610035N01Rik protein - Mus1 . . . 198185/235 (78%)3e-96musculus (Mouse), 235 aa.1 . . . 235190/235 (80%)Q9D3566530409L22Rik protein - Mus30 . . . 193145/200 (72%)2e-73musculus (Mouse), 272 aa.39 . . . 238151/200 (75%)Q61542MLN 64 protein (ES 647 . . . 193105/224 (46%)1e-45protein) (StarD3) - Mus11 . . . 229133/224 (58%)musculus (Mouse), 446 aa.


[0471] PFam analysis predicts that the NOV19a protein contains the domains shown in the Table 19F.
109TABLE 18FDomain Analysis of NOV19aIdentities/Similaritiesfor the MatchedPfam DomainNOV19a Match RegionRegionExpect Value



Example 20

[0472] The NOV20 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 20A.
110TABLE 20ANOV20 Sequence AnalysisSEQ ID NO:853157 bpNOV20a,GCGGCAGTAGCAGCCATGCTGCCCTTTCTGCTGGCCACACTGGGCACCACAGCCCTCAACAACAGCACG145978-01DNA SequenceACCCCAAGGACTACTGCTACAGCGCCCGCATCCGCAGCACTGTCCTGCAGGGCCTGCCCTTTGGGGGCGTCCCCACCGTGCTGGCTCTCGACTTCATGTGCTTCCTTTTCCCTCAGGCACTGCTGTTCTTATTCTCTATCCTCCGGAAGGTGGCCTGGGACTATGGGCGGCTGGCCTTGGTGACAGATGCAGACAGCCATGACCGGTATGAGCGTCTCACCTCTGTCTCCAGCTCCGTTGACTTTGACCAAAGGGACAATGTGGGTTTCTGTTCCTGGCTGACAGCCATCTTCAGGATAGATGATGAGATCCGGGACAAATGTGGGGGCGATGCCGTGCACTACCTGTCCTTTCAGCGGCACATCATCGGGCTGCTGGTGGTTGTGGGCGTCCTCTCCGTAGGCATCGTGCTGCCTGTCAACTTCTCAGGGGACCTGCTGGAGAACAATGCCTACAGCTTTGGGAGAACCACCATTGCCAACTTGAAATCAGGGAACAACCTGCTATGGCTGCACACCTCCTTCGCCTTCCTGTATCTGCTGCTCACCGTCTACAGCATGCGTAGACACACCTCCAAGATGCGCTACAAGGAGGATGATCTGGTGCGTCGGACCCTCTTCATCAATGGAATCTCCAAATATGCAGAGTCAGAAAAGATCAAGAAGCATTTTAGGGAAGCCTACCCCAACTGCACAGTTCTCGAAGCCCGCCCGTGTTACAACGTGGCTCGCCTAATGTTCCTCGATGCAGAGAGGAAGAAGGCCGAGCGGGGAAAGCTGTACTTCACAAACCTCCAGAGCAAGGAGAACGTGCCTACCATGATCAACCCCAAGCCCTGTGGCCACCTCTGCTGCTGTGTGGTGCGAGGCTGTGAGGAGGCCATTGAGTACTACACAAAGCTGGAGCAGAAGCTGAAGGAAGACTACAAGCGGGAGAAGGAGAAGGTGAATGAGAAGCCTCTTGGCATGGCCTTTGTCACCTTCCACAATGAGACTATCATCCTGAAGGACTTCAACGTGTGTAAATGCCAGGGCTCCACCTGCCGTGGGGACCCACGCCCCTCATCCTGCAGCGACTCCCTCCACATCTCCAACTGGACCGTGTCCTATGCCCCTGACCCTCAGAACATCTACTGGGAGCACCTCTCCATCCGACGCTTCATCTCGTGGCTGCGCTGCCTGGTCATCAATGTCGTCCTCTTCATCCTCCTCTTCTTCCTCACCACTCCAGCCATCATCATCACCACCATGGACAAGTTCAACGTCACCAAGCCTGTGGAGTACCTCAACAACCCCATCATCACCCAGTTCTTCCCCACCCTGCTCCTGTGGTGCTTCTCGGCCCTCCTTCCCACCATCGTCTACTACTCAGCCTTCTTTGAAGCCCACTGGACACGGTCCAGCTCTGGGGAGAACAGGACAACCATGCACAAGTGCTACACTTTCCTCATCTTCATGGTGCTGCTCCTACCCTCGCTGGGACTGAGCAGCCTGGACCTCTTCTTCCGCTGGCTCTTTGATAAGAAATTCTTGGCTGAGGCAGCTATTCGGTTTGAGTGTGTGTTCCTGCCCGACAACGGCGCCTTCTTCGTGAACTACGTCATTGCCTCAGCCTTTATCGGCAACGCCATGGACCTGCTGCGCATCCCAGGCCTGCTCATGTACATGATCCGGCTCTGCCTGGCGCGCTCGGCCGCCGACAGGCGCAACGTGAAGCAGCATCAGGCCTACGAGTTCCAGTTTGGCGCAGCCTACGCCTGGATGATGTGCGTCTTCACGGTGGTCATGACCTACAGTATCACCTGCCCCATCATCGTGCCCTTCGGGCTCATGTACATGCTGCTGAAGCACCTGGTAGACAGCTACAATCTCTACTACGCCTACCTGCCGGCCAAGCTGGACAACAAGATCCACTCGGGGGCTGTGAACCAGGTGGTGGCCCCGCCCATCCTCTGCCTCTTCTGGCTGCTCTTCTTTTCCACCATGCGCACGGGGTTCCTAGCTCCCACGTCTATGTTCACATTTGTCGTCCTGGTCATCACCATCGTCATCTGTCTCTGCCACGTCTGCTTTCGACACTTCAAATACCTCAGTGCCCACAACTACAAGATTGACCACACGGAGACAGATACTGTGGACCCCAGAAGCAATGGACGGCCCCCCACTGCTGCTGCTGTCCCCAAATCTGCGAAATACATCGCTCAGGTGCTGCAGGACTCAGAGGTGGACGGGGATGGGGATGGGGCTCCTGGGAGCTCAGGGGATGAGCCCCCATCATCCTCATCCCAAGATGAGGAGTTGCTGATGCCACCCGACGCCCTCACGGACACAGACTTCCAGTCTTGCGAGGACAGCCTCATAGAGAATGAGATTCACCAGTAAGGGGAGGGAGGGGCCCTGGAGGCCACATCCTGCCCCACCCCACCCCCACTCCCACGGACACTAAAACGCTAATAATTTATTAGATCTAAAGCCCCTTCCTCCCCAGCCCCTGCTTTCATTAAGGTATTTAAACTTGGGGGTTTCACTGCTCTCCCCCCATGATGGAGGGAGGGAGCCCCCCAACCTCAGTGAGGAGAGCCCAGAGCCGGCCCCGGGGCAAAGAGGCGTGCAGAGGGAGTTCCCCCAGATCAGTACCCCCAACACCTCACCACATAGTAGCAAGCACCAAAACAGGGTTAATGAGAGCCAAGAGGAGTACCTGGTGCACCTGGTGCCGGTGGCTGGAGACCTGGGGGGCAGGTGGATCTGGGGCTGTTCCCCCCCCTCCGTTTTTTCCACCCCACAGTTCCTCCTGGCATCTGGCCCTCCAGGGAAGTGGAGCCTCCAGCCCCTAGGGGATGCATGAGGGGGGAGGGGGTGCTGAGTGGCAGGAAGAGTCAGGCTCACAGCTGGGGTGGCCTGGGGGTGGGGGTGGGCAAGGCTGACACTGGAAAATGGGTTTTTGCACTGTTTTTTTTTTGGTTTTTTTGTTCTTTTTTGTTTTTTTCCTTTAAAATAAAAACAAAGAAAAGCTCTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGORF Start: ATG at 16ORF Stop: TAA at 2446SEQ ID NO:86810 aaMW at 92305.1 kDNOV20a,MLPFLLATLGTTALNNSNPKDYCYSARIRSTVLQGLPFGGVPTVLALDFMCFLFPQALLFLFSILRKCG145978-01Protein SequenceVAWDYGRLALVTDADSHDRYERLTSVSSSVDFDQRDNVGFCSWLTAIFRIDDEIRDKCGGDAVHYLSFQRHIIGLLVVVGVLSVGIVLPVNFSGDLLENNAYSFGRTTIANLKSGNNLLWLHTSFAFLYLLLTVYSMRRHTSKMRYKEDDLVRRTLFINGISKYAESEKIKKHFREAYPNCTVLEARPCYNVARLMFLDAERKKAERGKLYFTNLQSKENVPTMINPKPCGHLCCCVVRGCEEAIEYYTKLEQKLKEDYKREKEKVNEKPLGMAFVTFHNETIILKDFNVCKCOGCTCRGEPRPSSCSESLHISNWTVSYAPDPONIYWEHLSIRGFIWWLRCLVINVVLFILLFFLTTPAIIITTMDKFNVTKPVEYLNNPIITQFFPTLLLWCFSALLPTIVYYSAFFEAHWTRSSSGENRTTMHKCYTFLIFMVLLLPSLGLSSLDLFFRWLFDKKFLAEAAIRFECVFLPDNGAFFVNYVIASAFIGNAMDLLRIPGLLMYMIRLCLARSAAERRNVKQHQAYEFQFGAAYAWMMCVFTVVMTYSITCPIIVPFGLMYMLLKHLVDRYNLYYAYLPAKLDKKIHSGAVNQVVAAPILCLFWLLFFSTMRTGFLAPTSMFTFVVLVITIVICLCHVCFGHFKYLSAHNYKIEHTETDTVDPRSNGRPPTAAAVPKSAKYIAQVLQDSEVDGDGDGAPGSSGDEPPSSSSQDEELLMPPDALTDTDFQSCEDSLIENEIHQSEQ ID NO:871864 bpNOV20bGCCGCCCAGCGACTCCCCCTCCCCCTCCCCCAGCCCCGCCCCGCCCCAACCCGGGGCTCCGAGCCGGCG145978-02AGCCGAGTCTGCGCCTGGGGGAGGACCATGCGGCAGTAGCAGCCATGCTGCCCTTTCTGCTGGCCACDNA SequenceACTGGGCACCACAGCCCTCAACAACAGCAACCCCAAGGACTACTGCTACAGCGCCCGCATCCGCAGCACTGTCCTGCAGGGCCTGCCCTTTGGGGGCGTCCCCACCGTGCTGGCTCTCGACTTCATGTGCTTCCTTCCTCAGGCACTGCTGTTCTTATTCTCTATCCTCCGGAAGGTGGCCTGGGACTATGGGCGGCTGGCCTTGGTGACAGATGCAGACAGGCTTCGGCGGCAGGAGAGGGACCGAGTGGAACAGGAATATGTGGCTTCAGCTATGCACGGGGACAGCCATGACCGGTATGAGCGTCTCACCTCTGTCTCCAGCTCCGTTGACTTTGACCAAAGGGACAATGTGGGTTTCTGTTCCTGGCTGACAGCCATCTTCAGGATAAAGGATGATGAGATCCGGGACAAATGTGGGGGCGACGCCGTGCACTACCTGTCCTTTCAGCGGCACATCATCGGGCTGCTGGTGGTTGTGGGCGTCCTCTCCGTAGGCATCGTGCTGCCTGTCAACTTCTCAGGGGACCTGCTGGAGAACAATGCCTACAGCTTTGGGAGAACCACCATTGCCAACTTGAAATCAGGGAACAACCTGCTATGGCTGCACACCTCCTTCGCCTTCCTGTATCTGCTGCTCACCGTCTACAGCATGCGTAGACACACCTCCAAGATGCGCTACAAGGAGGATGATCTGGTGCGTCGGACCCTCTTCATCAATGGAATCTCCAAATATGCAGAGTCAGAAAAGATCAAGAAGCATTTTAGGGAAGCCTACCCCAACTGCACAGTTCTCGAAGCCCGCCCGTGTTACAACGTGGCTCGCCTAATGTTCCTCGATGCAGAGAGGAAGAAGGCCGAGCGGGGAAAGCTGTACTTCACAAACCTCCAGAGCAAGGAGAACGTGCCTACCATGATCAACCCCAAGCCCTGTGGCCACCTCTGCTGCTGTGTGGTGCGAGGCTGTCAGCAGGTGGACCCCATTGAGTACTACACAAAGCTGGAGCAGAAGCTGAAGGAAGACTACAAGCGGGAGAATTGGAGGGTGAATGAGAAGCCTCTTGGCATGGCCTTTGTCACCTTCCACAATGAGACTATCACCGCCATGATCCCCTGGGACTTCAACGTGTGTAAATGCCAGGGCTGCACCTGCCGTGGGGAGCCACGCCCCTCATCCTGCAGCGAGTCCCTGCACATCTCCAACTGGACCGTGTCCTATGCCCCTGACCCTCAGAACATCTACTGGGAGCACCTCTCCATCCGAGGCTTCATCTGGTGGCTGCGCTGCCTGGTCATCAATGTCGTCCTCTTCATCCTCCTCTTCTTCCTCACCACTCCAGCCATCATCATCACCACCATGGACAAGTTCAACGTCACCAAGCCTGTGGAGTACCTCAACGTGAGGCCTCATGCCCCTGTCACTTTCCACGCTGGGTCACAACACACAGATACCAGGCCCTGATCCCTCTTCCACTTGCCCAGCCCAGCCCGTTCTGCTTGTTCCAACCCCGTGCCACCAACCAGCTCCCAAAAACCCCTGTGTGCACTTCCCTTGGGCTCCCTGCCACCTTCCCCCTGAGAGAGGCCACCCTCAGGTGTGCAACACCTGGAGAAACACCCAGGTAAGAGAGAGAGCCTGCATTTAGTCCTGATCTCAGAGAAGTCCCCTTCCCTCACCCCTCAGTCTAACTGAAAAAATGGAAAGGTTTGACTAGAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 112ORF Stop: TGA at 1594SEQ ID NO:88494 aaMW at 56686.9 kDNOV20b,MLPFLLATLGTTALNNSNPKDYCYSARIRSTVLQGLPFGGVPTVLALDFMCFLPQALLFLFSILRKVCG145978-02Protein SequenceAWDYGRLALVTDADRLRRQERDRVEQEYVASAMHGDSHDRYERLTSVSSSVDFDQRDNVGFCSWLTAIFRIKDDEIRDKCGGDAVHYLSFQRHIIGLLVVVGVLSVGIVLPVNFSGDLLENNAYSFGRTTIANLKSGNNLLWLHTSFAFLYLLLTVYSMRRHTSKMRYKEDDLVRRTLFINGISKYAESEKIKKHFREAYPNCTVLEARPCYNVARLMFLDAERKKAERGKLYFTNLQSKENVPTMINPKPCGHLCCCVVRGCEQVEAIEYYTKLEQKLKEDYKREKEKVNEKPLGMAFVTFHNETITAIILKDFNVCKCQGCTCRGEPRPSSCSESLHISNWTVSYAPDPQNIYWEHLSIRGFIWWLRCLVINVVLFILLFFLTTPAIIITTMDKFNVTKPVEYLNVRPHAPVTFHAGSQHTDTRP


[0473] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 20B.
111TABLE 20BComparison of NOV20a against NOV20b.NOV20a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV20b1 . . . 447394/475 (82%)1 . . . 474394/475 (82%)


[0474] Further analysis of the NOV20a protein yielded the following properties shown in Table 20C.
112TABLE 20CProtein Sequence Properties NOV20aPSort analysis:0.6400 probability located in plasma membrane; 0.4600 probability located inGolgi body; 0.3700 probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 14 and 15


[0475] A search of the NOV20a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 20D.
113TABLE 20DGeneseq Results for NOV20aNOV20aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB97369Novel human protein SEQ ID291 . . . 792499/507 (98%)0.0NO: 637 - Homo sapiens, 541 1 . . . 505500/507 (98%)aa. [WO200222660-A2,Mar. 21, 2002]AAB94004Human protein sequence 19 . . . 745445/735 (60%)0.0SEQ ID NO: 14117 - Homo 27 . . . 755565/735 (76%)sapiens, 807 aa.[EP1074617-A2,Feb. 7, 2001]AAB42245Human ORFX ORF2009 19 . . . 472440/482 (91%)0.0polypeptide sequence SEQ 3 . . . 480442/482 (91%)ID NO:4018 - Homo sapiens,480 aa. [WO200058473-A2,Oct. 5, 2000]ABG63456Human albumin fusion493 . . . 810316/318 (99%)0.0protein #131 - Homo sapiens, 1 . . . 318318/318 (99%)318 aa. [WO200177137-A1,Oct. 18, 2001]AAG71250Human gene 8-encoded493 . . . 810316/318 (99%)0.0secreted protein HCEIE80, 1 . . . 318318/318 (99%)SEQ ID NO:98 - Homosapiens, 318 aa.[WO200132674-A1,May 10, 2001]


[0476] In a BLAST search of public sequence datbases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20E.
114TABLE 20EPublic BLASTP Results for NOV20aNOV20aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueCAD38916Hypothetical protein - Homo167 . . . 681510/520 (98%)0.0sapiens (Human), 519 aa 1 . . . 518512/520 (98%)(fragment).AAH30245KIAA0792 gene product - 19 . . . 745449/735 (61%)0.0Homo sapiens (Human), 807 27 . . . 755570/735 (77%)aa.O94886KIAA0792 protein - Homo 19 . . . 745448/735 (60%)0.0sapiens (Human), 807 aa. 27 . . . 755569/735 (76%)Q91YT8Hypothetical 91.9 kDa 19 . . . 745446/735 (60%)0.0protein - Mus musculus 27 . . . 754570/735 (76%)(Mouse), 804 aa.BAC04207CDNA FLJ36310 fis, clone 1 . . . 447440/475 (92%)0.0THYMU2005001 - Homo 1 . . . 471441/475 (92%)sapiens (Human), 491 aa.


[0477] PFam analysis predicts that the NOV20a protein contains the domains shown in the Table 20F.
115TABLE 20FDomain Analysis of NOV20aIdentities/SimilaritiesPfam DomainNOV20a Match Regionfor the Matched RegionExpect ValueDUF221327 . . . 787109/493 (22%)1.1e−84365/493 (74%)



Example 21

[0478] The NOV21 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 21A.
116TABLE 21ANOV21 Sequence AnalysisSEQ ID NO: 898700 bpNOV21a,GCTGATTGAGACACTATGTTGAGTCTACAGGATTCTGTGTTTTTTGAAATTAGCATAAAGTCCTTGTCG145997-01DNA SequenceTAAAGTCCTGGAGCAGCAGCATGTCAAACATTACGATTGACCCAGATGTCAAACCTGGTGAATATGTCATCAAGAGCCTCTTTGCAGAATTTGCTGTTCAAGCTGAAAAGAAAATTGAAGTTGTAATGGCCGAACCCTTGGAGAAGCTATTGTCCAGATCTCTTCAGAGGGGTGAAGATCTTCAGTTTGATCAGGTAATAAGCTCTATGAGCTCAGTAGCAGAGCACTGTCTCCCTTCCTTACTTCGCACCTTGTTTGACTGGTACAGACGCCAAAATGGAACGGAAGATGAATCTTATGAATATAGGCCTCGGTCTAGCACAAAGTCTAAGGATGAACAGCAACGTGAAAGAGATTATCTTCTTGAAAGGAGGGACTTAGCAGTAGACTTCATTTTTTGTTTAGTTTTAGTTGAAGTTCTAAAGCAGATTCCTGTTCATCCTGTACCCGATCCCTTAGTTCATGAAGTTCTAAACTTAGCTTTTAAGCACTTTAAACATAAGGAAGGGGGAACCAACACTGGGAATGTGCATATTATTGCTGATTTATATGCAGAGGTGATAGGGGTTCTTGCCCAATCAAAGTTTCAGGCTGTAAGGAAGAAGTTTGTGACAGAATTAAAAGAACTGCGACAAAAGGAACAAAGCCCACATGTGGTACAAAGTGTCATCAGCTTAATAATGGGAAATGAATTTTTTCGAGTAAAAATGTATCCTGTAGAAGATTTTGAAGCATCATTTCAATTTATGCAGGAATGTGCTCAGTATTTCTTAGAAGTGAAAGATAAAGATATAAAACATGCACTTGCTGGTTTATTTGTGGAGATTCTTATCCCTGTAGTTAAAAATGAAGTGAATGTTCCCTGTTTGAAAAATTTTGTGGAGATGCTTTATCAGACTACTTTTGAACTGAGCTCGAGAAAGAAGCATTCATTGGTATTAAATAAAGATCCGAAAATGTCTCGAGTTGCACTGGAATCTTTGTATAGATTATTGTGGGTTTATGTAATTAGAATAAAATGTGAAAGCAACACTGTAACTCAAAGTCGTCTTATGAGCATAGTGTCAGCACTTTTTCCAAAAGGCTCACGAAGTGTGGTTCCTCGTGACACACCTCTCAATATATTTGTGAAGATTATTCAGTTCATTGCTCAGGAACGCTTGGATTTTGCAATGAAAGAAATAATATTTGATCTTCTCAGTGTTGGAAAATCTACTAAAACTTTCACCATTAATCCAGAGTGTCTAGCATATGTAATATGTTTCTTATTAAATCCTGTTGTATTTTTCACGGGGGAAAGAAAACCCAAGATTGATTTGTTTAGAACTTGTATTGCTGCGATTCCAAGGTTGATTCCTGACGGTATGAGCAGAACTGACCTGATTGAATTGTTAGCAAGGCTCACAATTCATATGGATGAAGAACTGCGTGCTCTGGCTTTCAATACTCTGCAGGCACTAATGCTTGATTTTCCAGATTGGCGGGAGGATGTTCTTTCAGGATTTGTTTATTTTATTGTTCGTGAAGTGACTGATGTCCATCCCACACTTCTTGATAATGCCGTAAAGATGTTGGTACAATTAATAAATCAGTGGAAACAAGCAGCCCAAATGCATAATAAAAACCAGGACACTCAGGTACCAGATTCTTTTCTAGTAGCTAATGGAGCTTCTCATCCCCCTCCTCTGGAAAGGAGCCCATATTCCAATGTATTCCATGTGGTTGAAGGCTTTGCGCTTCTCATTCTCTGTAGCAGTCGACCTGCCACTAGGAGACTAGCCGTCAGTGTCCTTAGAGAAATACGGGCTTTATTTGCACTTCTGGAAATACCTAAGGGTGATGATGAATTAGCCATAGATGTGATGGACAGGCTAAGCCCATCCATTCTTGAGAGTTTCATACATCTCACTGGGGCTGATCAGGTAACTATATCGATAGATTTACAAACTTTAGCAGAATGGAACTCTTCTCCTATTAGCCACCAGTTTGATGTGATTAGTCCATCACATATATGGATATTTGCACATGTGACCCAAGGCCAAGACCCATGGATTATAAGTCTCTCCAGTTTTTTAAAGCAAGAAAATCTTCCTAAACACTGCTCTACAGCTGTGAGCTATGCTTGGATGTTTGCATACACAAGACTTCAGTTGTTGTCCCCTCAGGTCGATAGTAGCCCCATCAATGCTAAGAAAGTAAATACCACCACAAGCAGTGACTCATACATTGGCCTGTGGAGAAACTATCTGATCCTTTGCTGCAGTGCAGCAACATCGTCATCTTCCACATCTGCAGGTTCTGTGAGATGTTCTCCTCCTGAGACGCTGGCGTCTACCCCAGATAGCGGCTATAGCATTGATTCTAAAATTGGCATCCCATCCCCTTCATCCTTGTTTAAGCACATAGTTCCAATGATGCGTTCTGAGAGCATGGAAATCACAGAATCCCTTGTTCTAGGTCTTGGCAGGACCAACCCAGGAGCTTTTAGGAATATGAAACGGCGCAGGCGTCGAGACATTTTACGAGTACAACTGGTACGAATATTTGAACTGCTGGCAGATGCTGGTGTCATTAGTAGTGCAAGTGGTGGCCTTGATAATGAAACACATTTTCTCAACAACACTTTATTGGAATATGTAGATTTAACTAGACAACTCCTGGAAGCAGAAAATGAAAAAGACTCTGACACACTGAAGGATATACGATGCCATTTTAGTGCCTTAGTGGCGAATATTATTCAGAATGTTCCAGTGCACCAGAGAAGAAGTATTTTTCCTCAACAGAGCCTTCGTCACAGTCTATTTATGCTGTTCAGTCACTGGGCAGGTCCTTTTAGCATCATGTTTACGCCCTTGGACAGATACAGTGATAGAAATATGCAAATTAATAGACATCAATACTGTGCGTTAAAGGCTATGTCTGCTGTACTGTGTTGTGGCCCTGTTGCAGATAATGTAGGACTTTCATCAGATGGCTATTTGTACAAATGGTTGGATAACATTTTGGATTCTCTGGACAAAAAGGTTCACCAGCTGGGCTGTGAAGCAGTTACGTTGTTACTGGAGCTGAACCCTGATCAGAACAACCTGATGTACTGGGCCAGGGATTATCAATGTGACACAGTGATGCTTCTAAATCTGATACTGTTTAAAGCAGCTGATTCTTCTAGAAGTATCTATGAAGTTGCTATGCAACTTTTACAGATTCTGGAACCGAAGATGTTTCGCTATGCTCACAAATTGGAGGTTCAGAGAACAGATGGAGTACTCAGCCAGCTGTCTCCTCTACCACATCTCTATTCTGTTTCATATTATCAGTTGTCCGAGGAACTAGCAAGGGCGTATCCTGAGCTAACTCTCGCCATATTCTCAGGTAAGCCAGAGAATCCAGACAGCTCACCCTGCTGGGCGGCAGGTGATGCTGCACTACCTGCTACCATGGATGAACAACATCGAGCTGGTGGACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTCTCCGATGATTCCTTAAAAGACCGAGAACTTATGGTGACTAGTAGGCGCTGGTTACGGGGAGAAGGATGGGGATCTCCACAAGCCACTGCAATGGTTTTGAACAATCTGATGTATATGACAGCAAAGTATGGCGATGAACTGGCCTGGTCGGAGGTGGAGAATGTGTGGACCACACTTGCAGATGGCTGGCCCAAAAACCTGAAAATAATTTTGCACTTTTTGATCAGCATTTGTGGGGTGAATAGCGAACCAAGCCTCTTGCCTTACGTAAAGAAGGTCATTGTATATTTAGGTAGAGATAAAACAATGCAGTTGCTAGAAGAGCTGGTGAGTGAGCTTCAGCTGACCGATCCTGTCAGTTCAGGGGTCACTCACATGGATAATCCCCCGTATTATCGCATCACTTCCAGCGCTTTGTCTTTGATTACAGGAACTACTTCCAGTAGCAATACAATGGTAGCTCCCACAGATGGCAATCCTGATAATAAGCCCATTAAAGAGAATATTGAAGAGAGGACCAGTCATTTGAATCGGCAACATCCCAGCCTAGAATCCCGATACAGTAGCAGCTCTGGAGGATCTTATGAAGAAGAAAAAAGTGATTCAATGCCACTTTATTCTAATTGGCGACTGAAAGTGATGGAGCATAACCAAGGAGAGCCACTGCCCTTCCCACCAGCTGGAGGCTGCTGGTCACCACTGGTGGATTACGTGCCTGAAACGTCATCACCTGGATTACCTCTTCACAGGTGTAACATAGCAGTGATCCTTTTGACTGATCTCATCATTGATCATAGTGTGAAGGTGGAATGGGGAAGCTACCTCCATCTTCTTCTTCATGCAATTTTTTTAGGGTTTGACCACTGCCACCCTGAGGTGTATGAACATTGTAAACGCCTGCTTCTGCACTTATTAATAGTAATGGGACCCAATAGTAACATCCGAACTGTTGCTTCTGTCCTTCTCAGGAACAAGGAGTTTAATGAGCCCAGGGTGCTTACAGTCAAACAAGTTGCACACTTAGATTATAATTTCACAGGTATTAACGATTTTATACCTGATTACCAGCCCTCCCCTATGACTGACTCAGGGCTTAGCTCAAGTTCTACCTCTTCTAGTATCAGCTTAGGAAATAACAGTGCTGCCATTTCACATCTGCACACCACTATCCTCAATGAGGTTGACATCTCAGTGGAGCAGGATGGAAAAGTCAAAACCCTCATGGAATTCATTACCTCAAGGAAAAGAGGGCCCCTTTGGAACCATGAGGATGTTTCTGCCAAGAATCCTAGCATAAAGAGTGCTGAACAGTTAACTACATTTTTGAAACATGTGGTTTCTGTTTTTAAGCAGTCAAGCTCAGAAGGAATTCATCTGGAACATCATCTTAGTGAAGTTGCTCTGCAAACAGCACTTTCCTGTTCTTCTCGACACTATGCTGGGAGATCCTTTCAGATTTTCAGGGCCCTAAAGCAGCCTCTCACTGCAACTACACTTTCTGATGTTCTCTCCAGACTTGTAGAAACTGTAGGGGATCCAGGAGAAGATGCACAGGGATTTGTGATTGAGCTTCTTCTCACATTGGAATCTGCAATTGATACTTTGGCTGAAACCATGAAGCATTATGATCTTCTTTCTGCCCTTTCTCAAACCTCATATCATGATCCTATAATGGGAAACAAGTATGCAGCTAACAGGAAAAGCACTGGACAACTCAATCTAAGCACAAGTCCCATTAATAGTAGCAGTTATTTGGGATATAACAGTAATGCAAGAAGTAACTCTTTGAGATTAAGTTTGATTGGTGACCGACGAGGTGACCGGCGGCGGAGTAACACACTGGATATAATGGATGGACGGATAAACCATAGCAGTAGTTTAGCAAGGACTAGAAGCCTTTCCTCTCTAAGAGAGAAAGGAATGTATGACGTGCAGTCCACTACTGAGCCTACCAACTTGATGGCCACCATTTTTTGGATAGCAGCATCTTTATTAGAATCAGATTATGAATATGAATACCTCCTGGCTCTCAGGCTTCTCAACAAACTGCTTATCCATTTGCCTTTGGATAAATCAGAGAGTCGAGAGAAGATTGAAAATGTACAAAGCAAATTGAAATGGACTAATTTTCCAGGACTTCAGCAGCTCTTCCTTAAGGGTTTTACCTCAGCATCTACACAAGAAATGACCGTGCACCTCCTCAGTAAACTCATTTCTGTCTCCAAACATACATTGGTGGATCCTTCCCAATTGTCAGGCTTTCCTCTTAACATCCTTTGCTTATTGCCTCACTTAATCCAGCATTTTGACAGCCCAACTCAGTTTTGCAAAGAAACAGCTAGTCGAATAGCAAAGGTTTGTGCAGAAGAAAAATGCCCAACACTTGTCAATCTGGCACACATGATGAGTTTGTACAGTACACACACGTATTCCAGAGACTGTTCTAACTGGATCAATGTCGTGTGCAGATACCTGCATGACTCCTTCTCAGATACAACATTTAATCTTGTGACTTATCTTGCAGAGCTGTTAGAGAAAGGATTGTCCAGTATGCAGCAATCATTACTACAGATTATTTATAGTCTATTGAGTCATATTGACCTGTCTGCAGCCCCAGCCAAGCAGTTTAATCTGGAGATCATAAAGATTATTGGCAAATATGTACAGAGTCCTTACTGGAAGGAAGCCCTTAACATATTAAAGCTGGTGGTGTCACGCTCTGCGAGTCTTGTCGTACCCAGTGATATCCCCAAGACCTATGGAGGAGATACAGGTTCTCCTGAAATATCCTTCACTAAAATTTTTAATAATGTTTCTAAGGAGTTGCCTGGGAAGACCTTAGATTTTCATTTTGATATATCTGAGACACCAATTATTGGAAACAAATATGGTGATCAGCACAGTGCGGCTGGAAGAAATGGGAAACCAAAAGTTATTGCTGTCACTAGAAGTACTTCCTCAACTTCTTCTGGTTCTAATTCTAATGCCTTGGTTCCTGTTAGTTGGAAAAGGCCACAGTTATCACAGCGAAGAACAAGAGAAAAGCTAATGAATGTGCTTTCTCTCTGTGGTCCAGAATCTGGCCTCCCAAAGAACCCATCAGTTGTATTTTCTTCTAATGAGGATTTGGAAGTCGGTGACCAACAGACTAGCCTAATTTCTACAACAGAAGACATAAATCAAGAGGAAGAAGTAGCTGTGGAAGATAATAGCAGTGAACAACAGTTTGGTGTTTTTAAGGATTTTGACTTTTTAGATGTTGAATTGGAAGATGCAGAGGGTGAAAGTATGGACAATTTCAACTGGGGAGTTCGCAGGCGCTCACTGGACAGTATTGACAAAGGGGACACTCCATCCCTCCAGGAGTACCAGTGCTCTAGTAGCACCCCCAGCCTGAACCTCACCAATCAGGAGGATACAGATGAGTCCTCGGAAGAAGAAGCGGCACTTACAGCAAGCCAGATACTCTCACGCACACAGATGTTAAACAGTGATTCTGCCACTGATGAAACAATACCAGACCATCCTGACTTACTTCTCCAGTCTGAAGATTCCACTGGCAGCATCACAACAGAGGAAGTGCTTCAAATCAGGGATGAGACCCCAACTTTGGAGGCTTCTCTAGATAATGCTAACAGCCGGCTGCCTGAGGATACAACTTCAGTATTAAAGGAGGAACATGTTACAACCTTTGAAGATGAAGGATCCTATATAATTCAAGAACAGCAGGAATCTCTTGTGTGTCAAGGAATTCTTGATTTAGAAGAAACTGAAATGCCAGAGCCTCTAGCTCCTGAAAGTTACCCCGAGTCAGTCTGTGAAGAGGATGTTACCTTAGCTCTGAAAGAGCTAGATGAAAGATGTGAAGAAGAAGAAGCGGATTTCTCCGGACTGTCTAGTCAAGATGAAGAAGAGCAAGATGGTTTTCCAGAAGTACAGACGTCGCCTCTGCCGTCACCATTTCTTTCTGCCATCATAGCCGCCTTTCAGCCCGTGGCATATGATGATGAAGAGGAAGCCTGGCGCTGCCACGTCAATCAGATGCTGTCTGACACCGACGGGTCCTCTGCAGTGTTTACTTTTCATGTGTTTTCTAGGCTGTTTCAGACAATTCAAAGAAAGTTTGGAGAAATAACTAATGAGGCAGTCAGCTTTCTTGGTGATAGTCTGCAACGCATTGGTACCAAATTTAAAAGTTCCTTGGAAGTGATGATGCTGTGTTCAGAATGCCCAACAGTCTTTGTGGATGCTGAAACACTGATGTCATGTGGTTTGCTGGAAACACTCAAGTTTGGTGTTTTGGAGTTGCAAGAACACCTGGATACATACAATGTGAAAAGAGAAGCCGCTGAGCAGGAATTGGAGCTCTGCCGAAGATTATACAAATTGCATTTTCAATTGCTGCTTCTGTTCCAGGCCTACTGTAAACTTATCAACCAAGTAAATACGATAAAAAATGAAGCAGAGGTCATCAACATGTCAGAGGAACTTGCCCAACTGGAAAGTATCCTCAAAGAAGCTGAGTCCGCTTCCGAAAACGAAGAAATTGACATTTCCAAAGCTGCACAAACTACTATAGAAACTGCCATTCATTCTTTAATTGAAACTTTGAAAAATAAAGAATTTATATCAGCTGTAGCACAAGTCAAAGCTTTCAGATCTCTCTGGCCCAGTGATATCTTTGGCAGTTGTGAAGATGACCCTGTACAGACACTGTTACATATATATTTCCATCATCAGACGCTGGGCCAGACAGGAAGCTTTGCAGTTATAGGCTCTAACCTGGACATGTCAGAAGCCAACTACAAACTGATGGAACTTAATCTGGAAATAAGAGAGTCTCTACGCATGGTGCAATCATACCAACTTCTAGCACAGGCCAAACCAATGGGAAATATGGTGAGCACTGGATTCTGAGACACTTCAGGCCTTTAGGAAAGAAACTAAACTGAAGATGATGAAGAATATTAACCAAGCACCTTTTATGGACCCTTGCATTCACTGATAACTTTCTGCCAGCATCTACTTTTTAGTGTAACTAATGTCAAACTGTATCATCAAAAACAAAGATCTGAAAGAAAAAAACATCTGATATTTTAACAGCTGCCAATATCTCCCACAATAACTGCGTGAAGAORF Start: ATG at 16ORF Stop: TGA at 8479SEQ ID NO:902821 aaMW at 316987.5 kDNOV21a,MLSLQDSVFFEISIKSLLKSWSSSMSNITIDPDVKPGEYVIKSLFAEFAVQAEKKIEVVMAEPLEKLCG145997-10Protein SequenceLSRSLQRGEDLQFDQVISSMSSVAEHCLPSLLRTLFDWYRRQNGTEDESYEYRPRSSTKSKDEQQRERDYLLERRDLAVDFIFCLVLVEVLKQIPVHPVPDPLVHEVLNLAFKHFKHKEGGTNTGNVHIIADLYAEVIGVLAQSKFQAVRKKFVTELKELRQKEQSPHVVQSVISLIMGMKFFRVKMYPVEDFEASFQFMQECAQYFLEVKDKDIKHALAGLFVEILIPVVKNEVNVPCLKNFVEMLYQTTFELSSRKKHSLVLNKDPKMSRVALESLYRLLWVYVIRIKCESNTVTQSRLMSIVSALFPKGSRSVVPRDTPLNIFVKIIQFIAQERLDFAMKEIIFDLLSVGKSTKTFTINPECLAYVICFLLNPVVFFTGERKPKIDLFRTCIAAIPRLIPDGMSRTDLIELLARLTIHMDEELRALAFNTLQALMLDFPDWREDVLSGFVYFIVREVTDVHPTLLDNAVKMLVQLINQWKQAAQMHNKNQDTQVPDSFLVANGASHPPPLERSPYSNVFHVVEGFALVILCSSRPATRRLAVSVLREIRALFALLEIPKGDDELAIDVMDRLSPSILESFIHLTGADQVTISISLQTLAEWNSSPISHQFDVISPSHIWIFAHVTQGQDPWIISLSSFLKQENLPKHCSTAVSYAWMFAYTRLQLLSPQVDSSPINAKKVNTTTSSDSYIGLWRNYLILCCSAATSSSSTSAGSVRCSPPETLASTPDSGYSIDSKIGIPSPSSLFKHIVPMMRSESMEITESLVLGLGRTNPGAFRNMKRRRRRDILRVQLVRIFELLADAGVISSASGGLDNETHFLNNTLLEYVDLTRQLLEAENEKDSDTLKDIRCHFSALVANIIQNVPVHQRRSIFPQQSLRHSLFMLFSHWAGPFSIMFTPLDRYSDRNMQINRHQYCALKAMSAVLCCGPVADNVGLSSDGYLYKWLDNILDSLDKKVHQLGCEAVTLLLELNPDQNNLMYWARDYQCDTVMLLNLILFKAADSSRSIYEVAMOLLOILEPKMFRYAHKLEVORTDGVLSOLSPLPHLYSVSYYOLSEELARAYPELTLAIFSGKPENPDSSPCWAAGDAALPATMDEQHRAGGLQAPPPGFTPFSDDSLKDRELMVTSRRWLRGEGWGSPQATAMVLNNLMYMTAKYGDELAWSEVENVMTTLADGWPKNLKIILHFLISICGVNSEPSLLPYVKKVIVYLGRDKTMQLLEELVSELQLTDPVSSGVTHMDNPPYYRITSSALSLITGTTSSSNTMVAPTDGNPDNKPIKENIEERTSHLNRQHPSLESRYSSSSGGSYEEEKSDSMPLYSNWRLKVMEHNQGEPLPFPPAGGCWSPLVDYVPETSSPGLPLHRCNIAVILLTDLIIDHSVKVEWGSYLHLLLHAIFLGFDHCHPEVYEHCKRLLLHLLIVMGPNSNIRTVASVLLRNKEFNEPRVLTVKQVAHLDYNFTGINDFIPDYQPSPMTDSGLSSSSTSSSISLGNNSAAISHLHTTILNEVDISVEQDGKVKTLMEFITSRKRGPLWNHEDVSAKNPSIKSAEQLTTFLKHVVSVFKQSSSEGIHLEHHLSEVALQTALSCSSRHYAGRSFQIFRALKQPLTATTLSDVLSRLVETVGDPGEDAQGFVIELLLTLESAIDTLAETMKHYDLLSALSQTSYHDPIMGNKYAANRKSTGQLNLSTSPINSSSYLGYNSNARSNSLRLSLIGDRRGDRRRSNTLDIMDGRINHSSSLARTRSLSSLREKGMYDVQSTTEPTNLMATIFWIAASLLESDYEYEYLLALRLLNKLLIHLPLDKSESREKIENVQSKLKWTNFPGLQQLFLKGFTSASTQEMTVHLLSKLISVSKHTLVDPSQLSGFPLNILCLLPHLIQHFDSPTQFCKETASRIAKVCAEEKCPTLVNLAHMMSLYSTHTYSRDCSNWINVVCRYLHDSFSDTTFNLVTYLAELLEKGLSSMQQSLLQIIYSLLSHIDLSAAPAKQFNLEIIKIIGKYVQSPYWKEALNILKLVVSRSASLVVPSDIPKTYGGDTGSPEISFTKIFNNVSKELPGKTLDFHFDISETPIIGNKYGDQHSAAGRNGKPKVIAVTRSTSSTSSGSNSNALVPVSWKRPQLSQRRTREKLMNVLSLCGPESGLPKNPSVVFSSNEDLEVGDQQTSLISTTEDINQEEEVAVEDNSSEQQFGVFKDFDFLDVELEDAEGESMDNFNWGVRRRSLDSIDKGDTPSLQEYQCSSSTPSLNLTNQEDTDESSEEEAALTASQILSRTQMLNSDSATDETIPDHPDLLLQSEDSTGSITTEEVLQIRDETPTLEASLDNANSRLPEDTTSVLKEEHVTTFEDEGSYIIQEQQESLVCQGILDLEETEMPEPLAPESYPESVCEEDVTLALKELDERCEEEEADFSGLSSQDEEEQDGFPEVQTSPLPSPFLSAIIAAFQPVAYDDEEEAWRCHVNQMLSDTDGSSAVFTFHVFSRLFQTIQRKFGEITNEAVSFLGDSLQRIGTKFKSSLEVMMLCSECPTVFVDAETLMSCGLLETLKFGVLELQEHLDTYNVKREAAEQELELCRRLYKLHFQLLLLFQAYCKLINQVNTIKNEAEVINMSEELAQLESILKEAESASENEEIDISKAAQTTIETAIHSLIETLKNKEFISAVAQVKAFRSLWPSDIFGSCEDDPVQTLLHIYFHHQTLGQTGSFAVIGSNLDMSEANYKLMELNLEIRESLRMVQSYQLLAQAKPMGNMVSTGF


[0479] Further analysis of the NOV21a protein yielded the following properties shown in Table 21B.
117TABLE 21BProtein Sequence Properties NOV21aPSort analysis:0.6000 probability located in plasma membrane; 0.4000 probability located inGolgi body; 0.3538 probability located in mitochondrial inner membrane;0.3000 probability located in endoplasmic reticulum (membrane)SignalP analysis:No Known Signal Sequence Predicted


[0480] A search of the NOV21a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 21C.
118TABLE 21CGeneseq Results for NOV21aNOV21aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueABG04763Novel human diagnostic 432 . . . 28191382/2497 (55%)0.0protein #4754 - Homo 609 . . . 30461762/2497 (70%)sapiens, 3048 aa.[WO200175067-A2,Oct. 11, 2001]ABB97274Novel human protein SEQ1591 . . . 28211231/1254 (98%)0.0ID NO: 549 - Homo sapiens  1 . . . 12541231/1254 (98%)1254 aa.[WO200222660-A2,Mar. 21, 2002]ABG04764Novel human diagnostic 567 . . . 2276 893/1794 (49%)0.0protein #4755 - Homo 293 . . . 19621155/1794 (63%)sapiens, 2035 aa.[WO200175067-A2,Oct. 11, 2001]AAB65130Gene #26 associated peptide2144 . . . 2821 675/701 (96%)0.0#21 - Homo sapiens, 703 aa.  3 . . . 703 677/701 (96%)[WO200075375-A1,Dec. 14, 2000]AAB65110Gene #26 associated peptide2144 . . . 2820 675/700 (96%)0.0#1 - Homo sapiens, 702 aa.  3 . . . 702 677/700 (96%)[WO200075375-A1,Dec. 14, 2000]


[0481] In a BLAST search of public sequence datbases, the NOV21a protein was found to have homology to the proteins shown in the BLASTP data in Table 21D.
119TABLE 21DPublic BLASTP Results for NOV21aNOV21aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9Y3N6Hypothetical 338.2 kDa 432 . . . 28191385/2493 (55%)0.0protein - Homo sapiens 577 . . . 30101764/2493 (70%)(Human), 3012 aa.O94915KIAA0826 protein - Homo1615 . . . 28211207/1236 (97%)0.0sapiens (Human), 1236 aa  1 . . . 12361207/1236 (97%)(fragment).O14572WUGSC:H_248015.1 449 . . . 22761090/1892 (57%)0.0protein - Homo sapiens  1 . . . 18491375/1892 (72%)(Human), 1849 aa(fragment).Q91ZH1DM505L19.1 (Novel1226 . . . 2819 877/1652 (53%)0.0protein) - Mus musculus  1 . . . 15931152/1652 (69%)(Mouse), 1595 aa (fragment).O95640Hypothetical 88.4 kDa1591 . . . 2385 795/795 (100%)0.0protein - Homo sapiens  1 . . . 795 795/795 (100%)(Human), 795 aa (fragment).


[0482] PFam analysis predicts that the NOV21a protein contains the domains shown in the Table 21E.
120TABLE 21EDomain Analysis of NOV21aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV21a Match RegionRegionValuePFK1028 . . . 1039 7/12 (58%)0.5210/12 (83%)



Example 22

[0483] The NOV22 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 22A.
121TABLE 22ANOV22 Sequence AnalysisSEQ ID NO: 914170 bpNOV22a,ACGCGTTCCCCGGGAACAACACGTTGAGGGCGCCCACCCTGCGTGCCCGGGGCCACCCGGTCCCTGCCG146119-01DNA SequenceCCTCGGGCGGCAGGAGAGGTCGAGCTTCCACGGCCCTCGGAGTAGCCCCGTGACCAGACCCGGACTGGCCTTGGAGTTGAAGGGGTTGTTTGCCACCAAATGAACCGAAAAAACTGAACTTTTCAGACTTCGGAATGGCAGATATGGGCTTGGAGTTCAGTGAAATTGCAGCGGAGGCGGTGGTGTTCTGAGCTGAGATGCGGCTGCTCCTGCTCGTGCCGCTGCTGCTGGCTCCAGCGCCCGGGTCCTCGGCTCCCAAGGTGAGGCGGCAGAGTGACACCTGGGGACCCTGGAGCCAGTGGAGCCCCTGCAGCCGGACCTGTGGAGGGGGTGTCAGCTTCCGGGAGCGCCCCTGCTACTCCCAGAGGAGAGATGGAGGCTCCAGCTGCGTGGGCCCCGCCCGCAGAGTGACACCTGGGGACCCTGGAGCCAGTGGAGCCCCTGCAGCCGGACCTGTGGAGGGGGTGTCGGAGCCACCGCTCTTGTCGCACGGAGAGCTGCCCCGACGGCGCCCGGGACTTCCGGGCCGAGCAGTGCGCGGAGTTCGACGGAGCGGAGTTCCAGGGGCGGCGGTATCGGTGGCTGCCCTACTACAGCGCCCCAAACAAGTGTGAACTGAACTGCATTCCCAAGGGGGAGAACTTCTACTACAAGCACAGGGAGGCTGTGGTTGATGGGACGCCCTGCGAGCCTGGCAAGAGGGATGTCTGTGTGGATGGCAGCTGCCGGGTTGTCGGCTGTGATCACGAGCTGGACTCGTCCAAGCAGGAGGACAAGTGTCTGCGGTGTGGGGGTGACGGCACGACCTGCTACCCCGTCGCAGGCACCTTTGACGCTAATGACCTCAGCCGAGGCTACAACCAGATCCTCATAGTTCCCATGGGTGCCACCAGCATCCTCATCGACGAGGCTGCTGCCAGCAGGAACTTCCTGGCTGTGAAGAATGTTCGTGGGGAATACTACCTCAATGGGCACTGGACCATCGAGGCGGCCCGGGCCCTGCCAGCAGCCAGCACCATCCTGCATTACGAGCGGGGTGCTGAGGGGGACCTGGCCCCTGAGCGACTCCATGCCCGGGGCCCCACCTCGGAGCCCCTGGTCATCGAGCTCATCAGCCAGGAGCCCAACCCCGGTGTGCACTATGAGTACCACCTGCCCCTGCGCCGCCCCAGCCCCGGCTTCAGCTGGAGCCACGGCTCATGGAGTGACTGCAGCGCGGAGTGTGGCGGAGGTCACCAGTCCCGCCTGGTGTTCTGCACCATCGACCATGAGGCCTACCCCGACCACATGTGCCAGCGCCAGCCACGGCCAGCTGACCGGCGTTCCTGCAATCTTCACCCTTGCCCGGAGACCAAGCGCTGGAAGGCAGGGCCATGGGCACCCTGCTCAGCCTCCTGTGGAGGAGGCTCCCAGTCCCGCTCCGTGTACTGCATCTCGTCTGACGGGGCCGGCATCCAGGAGGCCGTGGAGGAGGCTGAGTGTGCCGGGCTGCCTGGGAAGCCCCCTGCCATTCAGGCCTGTAACCTGCAGCGCTGTGCAGCCTGGAGCCCGGAGCCCTGGGGAGAGTGTTCTGTCAGTTGTGGCGTTGGCGTCCGGAAGCGGAGCGTTACTTGCCGGGGTGAAAGGGGTTCTTTGCTCCATACCGCAGCGTGCTCCTTGGAAGACCGGCCACCTCTGACTGAGCCCTGTGTGCATGAGGACTGCCCCCTCCTCAGTGACCAGGCCTGGCATGTTGGCACCTGGGGTCTATGCTCCAAGAGCTGCAGCTCGGGCACTCGGAGGCGACAGGTCATCTGTGCCATTGGGCCGCCCAGCCACTGCGGGAGCCTGCAGCACTCCAAGCCTGTGGATGTGGAGCCTTGTAACACGCAGCCCTGTCATCTCCCCCAGGAGGTCCCCAGCATGCAGGATGTGCACACCCCTGCCAGCAACCCCTGGATGCCGTTGGGCCCTCAGGAGTCCCCTGCCTCAGACTCCAGAGGCCAGTGGTGGGCAGCCCAGGAACACCCCTCAGCCAGGGGTGACCACAGGGGAGAACGAGGTGACCCCAGGGGCGACCAAGGCACCCACCTGTCAGCCCTGGGCCCCGCTCCCTCTCTGCAGCAGCCCCCATACCAGCAACCCCTGCGGTCGGGCTCAGGGCCCCACGACTGCAGACACAGTCCTCACGGGTGCTGCCCCGATGGCCACACGGCATCTCTCGGGCCTCAGTGGCAAGGCTGCCCTGGGGCCCCCTGTCAGCAGAGCAGGTACGGGTGCTGCCCTGACAGGGTATCTGTCGCTGAGGGGCCCCATCACGCTGGCTGCACAAAGTCGTATGGTGGTGACAGCACCGGGGGCATGCCCAGGTCAAGGGCAGTGGCTTCTACAGTAAGTGTCTGGAACACCCACCAGCCCCAGGCCCAGCAGAATGAGCCCAGTGAGTGCCGGGGCTCCCAGTTTGGCTGTTGCTATGACAACGTGGCCACTGCAGCCGGTCCTCTTGGGGAAGGCTGTGTGGGCCAGCCCAGCCATGCCTACCCCGTGCGGTGCCTGCTGCCCAGTGCCCATGGCTCTTGCGCAGACTGGGCTGCCCGCTGGTACTTCGTTGCCTCTGTGGGCCAATGTAACCGCTTCTGGTATGGCGGCTGCCATGGCAATGCCAATAACTTTGCCTCGGAGCAAGAGTGCATGAGCAGCTGCCAGGGATCTCTCCATGGGCCCCGTCGTCCCCAGCCTGGGGCTTCTGGAAGGAGCACCCACACGGATGGTGGCGGCAGCAGTCCTGCAGGCGAGCAGGAACCCAGCCAGCACAGGACAGGGGCCGCGGTGCAGAGAAAGCCCTGGCCTTCTGGTGGTCTCTGGCGGCAAGACCAACAGCCTGGGCCAGGGGAGGCCCCCCACACCCAGGCCTTTGGAGAATGGCCATGGGGGCAGGAGCTTGGGTCCAGGGCCCCTGGACTGGGTGGAGATGCCGGATCACCAGCGCCACCCTTCCACAGCTCCTCCTACAGGATTAGCTTGGCAGGTGTGGAGCCCTCGTTGGTGCAGGCAGCCCTGGGGCAGTTGGTGCGGCTCTCCTGCTCAGACGACACTGCCCCGGAATCCCAGGCTGCCTGGCAGAAAGATGGCCAGCCCATCTCCTCTGACAGGCACAGGCTGCAGTTCGACGGATCCCTGATCATCCACCCCCTGCAGGCAGAGGACGCGGGCACCTACAGCTGTGGCAGCACCCGGCCAGGCCGCGACTCCCAGAAGATCCAACTTCGCATCATAGGGGGTGACATGGCCGTGCTGTCTGAGGCTGAGCTGAGCCGCTTCCCTCAGCCCAGGGACCCAGCTCAGGACTTTGGCCAAGCGGGGGCTGCTGGGCCCCTGGGGGCCATCCCCTCTTCACACCCACAGCCTGCAAACAGGCTGCGTTTGGACCAGAACCAGCCCCGGGTGGTGGATGCCAGTCCAGGCCAGCGGATCCGGATGACCTGCCGTGCCGAAGGCTTCCCGCCCCCAGCCATCGAGTGGCAGAGAGATGGGCAGCCTGTCTCTTCTCCCAGACACCAGCTGCAGCCTGATGGCTCCCTGGTCATTAGCCGAGTGGCTGTAGAAGATGGCGGCTTCTACACCTGTGTCGCTTTCAATGGGCAGGACCGAGACCAGCGATGGGTCCAGCTCAGAGTTCTGGGGGAGCTGACAATCTCAGGACTGCCCCCTACTGTGACAGTGCCAGAGGGTGATACGGCCAGGCTATTGTGTGTGGTAGCAGGAGAAAGTGTGAACATCAGGTGGTCCAGGAACGGGCTACCTGTGCAGGCTGATGGCCACCGTGTCCACCAGTCCCCAGATGGCACGCTGCTCATTTACAACTTGCGGGCCAGGGATGAGGGCTCCTACACGTGCAGTGCCTACCAGGGGAGCCAGGCAGTCAGCCGCAGCACCGAGGTGAAGGTGGTCTCACCAGCACCCACCGCCCAGCCCAGGGACCCTGGCAGGGACTGCGTCGACCAGCCAGAGCTGGCCAACTGTGATTTGATCCTGCAGGCCCAGCTTTGTGGCAATGAGTATTACTCCAGCTTCTGCTGTGCCAGCTGTTCACGTTTCCAGCCTCACGCTCAGCCCATCTGGCAGTAGGGATGAAGGCTAGTTCCAGCCCCAGTCCAAAATAGTTCATAGGGCTAGGGAGAAAGGAAGATGORF Start: ATG at 265ORF Stop: TAG at 4105SEQ ID NO: 921280 aaMW at 137933.8 kDNOV22a,MRLLLLVPLLLAPAPGSSAPKVRRQSDTWGPWSQWSPCSRTCGGGVSFRERPCYSQRRDGGSSCVGPCG146119-01Protein SequenceARSHRSCRTESCPDGARDFRAEQCAEFDGAEFQGRRYRWLPYYSAPNKCELNCIPKGENFYYKHREAVVDGTPCEPGKRDVCVDGSCRVVGCDHELDSSKQEDKCLRCGGDGTTCYPVAGTFDANDLSRGYNQILIVPMGATSILIDEAAASRNFLAVKNVRGEYYLNGHWTIEAARALPAASTILHYERGAEGDLAPERLHARGPTSEPLVIELISQEPNPGVHYEYHLPLRRPSPGFSWSHGSWSDCSAECGGGHQSRLVFCTIDHEAYPDHMCQRQPRPADRRSCNLHPCPETKRWKAGPWAPCSASCGGGSQSRSVYCISSDGAGIQEAVEEAECAGLPGKPPAIQACNLQRCAAWSPEPWGECSVSCGVGVRKRSVTCRGERGSLLHTAACSLEDRPPLTEPCVHEDCPLLSDQAWHVGTWGLCSKSCSSGTRRRQVICAIGPPSHCGSLQHSKPVDVEPCNTQPCHLPQEVPSMQDVHTPASNPWMPLGPQESPASDSRGQWWAAQEHPSARGDHRGERGDPRGDQGTHLSALGPAPSLQQPPYQQPLRSGSGPHDCRHSPHGCCPDGHTASLGPQWQGCPGAPCQQSRYGCCPDRVSVAEGPHHAGCTKSYGGDSTGGMPRSRAVASTVSVWNTHQPQAQQNEPSECRGSQFGCCYDNVATAAGPLGEGCVGQPSHAYPVRCLLPSAHGSCADWAARWYFVASVGQCNRFWYGGCHGNANNFASEQECMSSCQGSLHGPRRPQPGASGRSTHTDGGGSSPAGEQEPSQHRTGAAVQRKPWPSGGLWRQDQQPGPGEAPHTQAFGEWPWGQELGSRAPGLGGDAGSPAPPFHSSSYRISLAGVEPSLVQAALGQLVRLSCSDDTAPESQAAWQKDGQPISSDRHRLQFDGSLIIHPLQAEDAGTYSCGSTRPGRDSQKIQLRIIGGDMAVLSEAELSRFPQPRDPAQDFGQAGAAGPLGAIPSSHPQPANRLRLDQNQPRVVDASPGQRIRMTCRAEGFPPPAIEWQRDGQPVSSPRHQLQPDGSLVISRVAVEDGGFYTCVAFNGQDRDQRWVQLRVLGELTISGLPPTVTVPEGDTARLLCVVAGESVNIRWSRNGLPVQADGHRVHQSPDGTLLIYNLRARDEGSYTCSAYQGSQAVSRSTEVKVVSPAPTAQPRDPGRDCVDQPELANCDLILQAQLCGNEYYSSFCCASCSRFQPHAQPIWQ


[0484] Further analysis of the NOV22a protein yielded the following properties shown in Table 22B.
122TABLE 22BProtein Sequence Properties NOV22aPSort analysis:0.4896 probability located in outside; 0.1800 probability located in nucleus;0.1000 probability located in endoplasmic reticulum (membrane); 0.1000probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 19 and 20


[0485] A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22C.
123TABLE 22CGeneseq Results for NOV22aIdentities/NOV22aSimilaritiesProtein/Residues/for theGeneseqOrganism/LengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU12196Human PRO4799899 . . . 1280375/3840.0polypeptide(97%)sequence—Homo94 . . . 477377/384sapiens, 477 aa.(97%)[WO200140466-A2, 7 JUN.2001]ABB71150Drosophila27 . . . 538209/529e−110melanogaster(39%)polypeptide SEQ18 . . . 536282/529ID NO 40242—(52%)Drosophilamelanogaster,2858 aa.[WO200171042-A2, 27 SEP.2001]ABB58064Drosophila27 . . . 538209/529e−110melanogaster(39%)polypeptide SEQ18 . . . 536282/529ID NO 984—(52%)Drosophilamelanogaster,3060 aa.[WO200171042-A2, 27 SEP.2001]AAU72890Human metallo-29 . . . 549201/529e−105partial protein(37%)sequence #2—550 . . . 1064272/529Homo sapiens,(50%)1103 aa.[WO200183782-A2, 8 NOV.2001]AAB74945Human ADAM29 . . . 549201/529e−105type metal(37%)protease MDTS2550 . . . 1064272/529protein SEQ ID(50%)NO: 10—Homosapiens, 1103 aa.[JP2001008687-A, 16 JAN.2001]


[0486] In a BLAST search of public sequence datbases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22D.
124TABLE 22DPublic BLASTP Results for NOV22aIdentities/NOV22aSimilaritiesProteinResidues/for theAccessionProtein/MatchMatchedExpectNumberOrganism/LengthResiduesPortionValueO95428Hypothetical 133.5 1 . . . 12801136/13210.0kDa protein—Homo(85%)sapiens (Human), 1 . . . 12351146/13211235 aa.(85%)Q9EPX2Papilin—Mus 5 . . . 1280 952/12830.0musculus (Mouse),(74%)1280 aa. 6 . . . 12781052/1283(81%)Q99JQ8Hypothetical 52.5803 . . . 1280340/4830.0kDa protein—Mus(70%)musculus (Mouse), 1 . . . 482382/483484 aa.(78%)Q9U8G8Lacunin precursor—29 . . . 538211/530e−113Manduca sexta(39%)(Tobacco hawk-63 . . . 582288/530moth) (Tobacco(53%)hornworm),3198 aa.Q9VAV4CG1540 protein—27 . . . 538209/529e−109Drosophila(39%)melanogaster18 . . . 536282/529(Fruit fly), 3060 aa.(52%)


[0487] PFam analysis predicts that the NOV22a protein contains the domains shown in the Table 22E.
125TABLE 22EDomain Analysis of NOV22aPfamNOV22aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValuetsp_130 . . . 7923/55 (42%)3.7e−1039/55 (71%)tsp_1309 . . . 36014/58 (24%)0.042 34/58 (59%)tsp_1366 . . . 42415/65 (23%)0.001339/65 (60%)tsp_1425 . . . 48019/61 (31%)0.001340/61 (66%)tsp_1488 . . . 53814/54 (26%)0.009536/54 (67%)Kunitz_BPTI756 . . . 80624/62 (39%)  2e−2741/62 (66%)ig926 . . . 98217/60 (28%)2.9e−0741/60 (68%)ig1060 . . . 111620/60 (33%)4.1e−1245/60 (75%)ig1149 . . . 120615/62 (24%)1.2e−0942/62 (68%)



Example 23

[0488] The NOV23 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 23A.
126TABLE 23ANOV23 Sequence AnalysisSEQ ID NO. 931088 BPNOV23a,CTCCTGGAGGAGGAACAGCTGAGAGGCCTTGGATTCCGACAGACTCGAGGATACAAGAGCTTAGCAGCG146202-01DNA SequenceGGTGTCTTGGCCATGGTCCCCTGGTGCTGCAACTCCTCTCCTTCACGCTCTTGGCTGGGCTCCTTGTCCAAGTGTCCAAGGTCCCCAGCTCCATAAGTCAGGAACAATCCAGGCAAGACGCGATCTACCAGAACCTGACCCAGCTTAAAGCTGCAGTGGGTGAGCTCTCAGAGAAATCCAAGCTGCAGGAGATCTACCAGGAGCTGACCCAGCTGAAGGCTGCAGTGGGTGAGCTTCCAGAGAAATCTAAGCTGCAGGAGATCTACCAGGAGCTGACCCGGCTGAAGGCTGCAGTGGGTGAGCTTCCAGAGAAATCTAAGCTGCAGGAGATCTACCAGGAGCTGACCTGGCTGAAGGCTGCAGTGGGTGAGCTTCCAGAGAAATCTAAGATGCAGGAGATCTACCAGGAGCTGACTCGGCTGAAGGCTGCAGTGGGTGAGCTTCCAGAGAAATCTAAGCAGCAGGAGATCTACCAGGAGCTGACCCGGCTGAAGGCTGCAGTGGAACGCCTGTGCCACCCCTGTCCCTGGGAATGGACATTCTTCCAAGGAAACTGTTACTTCATGTCTAACTCCCAGCGGAACTGGCACGACTCCATCACCGCCTGCAAAGAAGTGGGGGCCCAGCTCGTCGTAATCAAAAGTGCTGAGGAGCAGAACTTCCTACAGCTGCAGTCTTCCAGAAGTAACCGCTTCACCTGGATGGGACTTTCAGATCTAAATCAGGAAGGCACGTGGCAATGGGTGGACGGCTCACCTCTGTTGCCCAGCTTCAAGCAGTATTGGAACAGAAGAGAGCCCAACAACGTTGGGGAGGAAGACTGCGCGGAATTTAGTGGCAATGGCTGGAACGACGACAAATGTAATCTTGCCAAATTCTGGATCTGCAAAAAGTCCGCAGCCTCCTGCTCCAGGGATGAAGAACAGTTTCTTTCTCCAGCCCCTGCCACCCCAAACCCCCCTCCTGCGTAGCAGAACTTCACCCCCTTTTAAGCTACAGTTCCTTCTCTCCATCCTTCGACORF Start: at 1ORF Stop: TAG at 1036SEQ ID NO: 94345 aaMW at 39149.0 kDNOV23a,LLEEEQLRGLGFRQTRGYKSLAGCLGHGPLVLQLLSFTLLAGLLVQVSKVPSSISQEQSRQDAIYQNCG146202-01Protein SequenceLTQLKAAVGELSEKSKLQEIYQELTQLKAAVGELPEKSKLQEIYQELTRLKAAVGELPEKSKLQEIYQELTWLKAAVGELPEKSKMQEIYQELTRLKAAVGELPEKSKQQEIYQELTRLKAAVERLCHPCPWEWTFFQGNCYFMSNSQRNWHDSITACKEVGAQLVVIKSAEEQNFLQLQSSRSNRFTWMGLSDLNQEGTWQWVDGSPLLPSFKQYWNRREPNNVGEEDCAEFSGNGWNDDKCNLAKFWICKKSAASCSRDEEQFLSPAPATPNPPPA


[0489] Further analysis of the NOV23a protein yielded the following properties shown in Table 23B.
127TABLE 23BProtein Sequence Properties NOV23aPSort0.7900 probability located in plasma membrane; 0.3000analysis:probability located in microbody (peroxisome); 0.3000probability located in Golgi body; 0.2000 probabilitylocated in endoplasmic reticulum (membrane)SignalPCleavage site between residues 50 and 51analysis:


[0490] A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23C.
128TABLE 23CGeneseq Results for NOV23aNOV23aIdentities/Protein/Residues/Similarities forGeneseqOrganism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU88025Mouse OtS1-B7 1 . . . 345344/391 (87%)0.0ORF protein—14 . . . 404344/391 (87%)Mus sp, 404 aa.[WO200214366-A2, 21 FEB.2002]AAG79086Human DC- 1 . . . 345344/391 (87%)0.0SIGN, a dendritic14 . . . 404344/391 (87%)cell-speciificC-type lectin—Homo sapiens,404 aa.[WO200164752-A2, 7 SEP.2001]AAB28614Human C-type 1 . . . 345344/391 (87%)0.0lectin receptor—14 . . . 404344/391 (87%)Homo sapiens,404 aa.[WO200063251-A1, 26 OCT.2000]AAB19714Dendritic cell 1 . . . 345344/391 (87%)0.0specific C-type14 . . . 404344/391 (87%)lectin DC-SIGN—Homosapiens, 404 aa.[EP1046651-A1,25 OCT. 2000]AAR32188Sequence of a 1 . . . 345338/391 (86%)0.0non-CD4 glyco-14 . . . 404340/391 (86%)protein gp120receptor protein—Homo sapiens,404 aa.[WO9301820-A,4 FEB. 1993]


[0491] In a BLAST search of public sequence datbases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23D.
129TABLE 23DPublic BLASTP Results for NOV23aNOV23aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueQ9NNX6Membrane- 1 . . . 345344/391 (87%)0.0associated lectin14 . . . 404344/391 (87%)type-C (Probablemannose-bindingC-type lectin DC-SIGN) (MDC-SIGN1A type Iisoform)—Homosapiens (Human),404 aa.Q96QQ1MDC-SIGN1B type 3 . . . 345342/389 (87%)0.0I isoform—Homo16 . . . 404342/389 (87%)sapiens (Human),404 aa.Q96QQ8MDC-SIGN1A type 1 . . . 345338/391 (86%)0.0II isoform—Homo14 . . . 398338/391 (86%)sapiens (Human),398 aa.Q95LC6Dendritic cell- 1 . . . 345319/368 (86%)0.0specific ICAM-314 . . . 381332/368 (89%)grabbing non-integrin—Macaca nemestrina(Pig-tailedmacaque), 381 aa.Q95LA8Dendritic cell- 1 . . . 345317/368 (86%)0.0specific ICAM-314 . . . 381331/368 (89%)grabbing non-integrin—Macaca mulatta(Rhesus macaque),381 aa.


[0492] PFam analysis predicts that the NOV23a protein contains the domains shown in the Table 23E.
130TABLE 23EDomain Analysis of NOV23aPfamNOV23aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueintegrin_B65 . . . 83 13/21 (62%)0.25 19/21 (90%)lectin_c214 . . . 32045/127 (35%)3.6e−3487/127 (69%)



Example 24

[0493] The NOV24 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 24A.
131TABLE 24ANOV24 Sequence AnalysisSEQ ID NO: 951191 bpNOV24a,GAGTACGTATCGTCCACTCTGAGCCTTAGAGGTGGGGGTTCATCAGGAGCACTTCGAGGAGGAGGAGCG146250-01DNA SequenceGAGGAGGCCGGGGTGGAGGGGTGGGCTCTGGCGGCCTCTGTCGAGCCCTCCGCTCCTATGCGCTCTGCACTCGGCGCACCGCCCGCACCTGCCGCGGGGACCTCGCCTTCCATTCGGCGGTACATGGCATCGAAGACCTGATGATCCAGCACAACTGCTCCCGCCAGGGCCCTACAGCCCCTCCCCCGCCCCGGGCCCCGCCCTTCCAGGCGCGGGCTCCGGCCTCCCTGCCCCGGACCCTTGTGACTATGAAGGCCGGTTTTCCCGGCTGCATGGTCGTCCCCCGGGGTTCTTGCATTGCGCTTCCTTCGGGGACCCCCATGTGCGCAGCTTCCACCATCACTTTCACACATGCCGTGTCCAAGGAGCTTGGCCTCTACTGGATAATGACTTCCTCTTTGTCCAAGCCACCAGCTCCCCCATGGCGTTGGGGGCCAACGCTACCGCCACCCGGAAGGTCACCATCATATTTAAGAACATGCAGGAATGCATTGATCAGAAGGTGTATCAGGCTGAGGTGGATAATCTTCCTGTAGCCTTTGAAGATGGTTCTATCAATGGAGGTGACCGACCTGGGGGATCCAGTTTGTCGATTCAAACTGCTAACCCTGGGAACCATGTGGAGATCCAAGCTGCCTACATTGGCACAACTATAATCATTCGGCAGACAGCTGGGCAGCTCTCCTTCTCCATCAAGGTAGCAGAGGATGTGGCCATGGCCTTCTCAGCTGAACAGGACCTGCAGCTCTGTGTTGGGGGGTGCCCTCCAAGTCAGCGACTCTCTCGATCAGAGCGCAATCGTCGGGGAGCTATAACCATTGATACTGCCAGACGGCTGTGCAAGGAAGGGCTTCCAGTGGAAGATGCTTACTTCCATTCCTGTGTCTTTGATGTTTTAATTTCTGGTGATCCCAACTTTACCGTGGCAGCTCAGGCAGCACTGGAGGATGCCCGAGCCTTCCTGCCAGACTTAGAGAAGCTGCATCTCTTCCCCTCAGATGCTGGGGTTCCTCTTTCCTCAGCAACCCTCTTAGCTCCACTCCTTTCTGGGCTCTTTGTTCTGTGGCTTTGCATTCAGTAAGGGGACCATCAGTCCCATTACTAGTTTGGAAATGATTTGGAGORF Start: ATG at 208ORF Stop: TAA at 1147SEQ ID NO: 96313 aaMW at 33664.8 kDNOV24a,MIQHNCSRQGPTAPPPPRGPALPGAGSGLPAPDPCDYEGRFSRLHGRPPGFLHCASFGDPHVRSFHHCG146250-01Protein SequenceHFHTCRVQGAWPLLDNDFLFVQATSSPMALGANATATRKVTIIFKNMQECIDQKVYQAEVDNLPVAFEDGSINGGDRPGGSSLSIQTANPGNHVEIQAAYIGTTIIIRQTAGQLSFSIKVAEDVAMAFSAEQDLQLCVGGCPPSQRLSRSERNRRGAITIDTARRLCKEGLPVEDAYFHSCVFDVLISGDPNFTVAAQAALEDARAFLPDLEKLHLFPSDAGVPLSSATLLAPLLSGLFVLWLCIQSEQ ID NO: 97974 bpNOV24b,AAGACCTGATGATCCAGCACAACTGCTCCCGCCAGGGCCCTACAGCCCCTCCCCCGCCCCGGGGCCCCG146250-02DNA SequneceCGCCCTTCCAGGCGCGGGCTCCGGCCTCCCTGCCCCGGACCCTTGTGACTATGAAGGCCGGTTTTCCCGGCTGCATGGTCGTCCCCCGGGGTTCTTGCATTGCGCTTCCTTCGGGGACCCCCATGTGCGCAGCTTCCACCATCACTTTCACACATGCCGTGTCCAAGGAGCTCGGCCTCTACTGGATAATGACTTCCTCTTTGTCCAAGCCACCAGCTCCCCCATGGCGTTGGGGGCCAACGCTACCGCCACCCGGAAGCTCACCATCATATTTAAGAACATGCAGGAATGCATTGATCAGAAGGTGTATCAGGCTGAGGTGGATAATCTTCCTGTAGCCTTTGAAGATGGTTCTATCAATGGAGGTGACCGACCTGGGGGATCCAGTTTGTCGATTCAAACTGCTAACCCTGGGAACCATGTGGAGATCCAAGCTGCCTACATTGGCACAACTATAATCATTCGGCAGACAGCTGGGCAGCTCTCCTTCTCCATCAAGGTAGCAGAGGATGTGGCCATGGCCTTCTCAGCTGAACAGGACCTGCAGCTCTGTGTTGGGGGGTGCCCTCCAAGTCAGCGACTCTCTCGATCAGAGCGCAATCGTCGGGGAGCTATAACCATTGATACTGCCAGACGGCTGTGCAAGGAAGGGCTTCCAGTGGAAGATGCTTACTTCCATTCCTGTGTCTTTGATGTTTTAATTTCTGGTGATCCCAACTTTACCGTGGCAGCTCAGGCAGCACTGGAGGATGCCCGAGCCTTCCTGCCAGACTTAGAGAAGCTGCATCTCTTCCCCTCAGATGCTGGGGTTCCTCTTTCCTCAGCAACCCTCTTAGCTCCACTCCTTTCTGGGCTCTTTGTTCTGTGGCTTTGCATTCAGTAAGGGGAACCATCAGTACAGGGCGATORF Start: ATG at 9ORF Stop: TAA at 948SEQ ID NO: 98313 aaMW at 33648.8 kDNOV24b,MIQHNCSRQGPTAPPPPGPALPGAGSGLPAPDPCDYEGRFSRLHGRPPGFLHCASFGDPLHVRSFHHCG146250-02Protein SequenceHFHTCRVQGARPLLDNDFLFVQATSSPMALGANATATRKLTIIFKNMQECIDQKVYQAEVDNLPVAFEDGSINGGDRPGGSSLSIQTANPGNHVEIQAAYIGTTIIIRQTAGQLSFSIKVAEDVAMAFSAEQDLQLCVGGCPPSQRLSRSERNRRGAITIDTARRLCKEGLPVEDAYFHSCVFDVLISGDPNFTVAAQAALEDARAFLPDLEKLHLFPSDAGVPLSSATLLAPLLSGLFVLWLCIQSEQ ID NO: 991338 bpNOV24c,CCGGCGCCTGGGAAACCTGGCTGAATAGGTATGGGGGAGCCAGGCCAGTCCCCTAGTCCCAGGTCCTCG146250-03DNA SequenceCCCATGGCAGTCCCCCAACTCTAAGCACTCTCACTCTCCTGCTGCTCCTCTGTGGATTAGCTCATTCTCAATGCAAGATCCTCCGCTGCAATGCTGAGTACGTATCGTCCACTCTGAGCCTTAGAGGTGGGGGTTCATCAGGAGCACTTCGAGGAGGAGGAGGAGGAGGCCGGGGTGGAGGGGTGGGCTCTGGCGGCCTCTGTCGAGCCCTCCGCTCCTATGCGCTCTGCACTCGGCGCACCGCCCGCACCTGCCGCGGGGACCTCGCCTTCCATTCGGCGGTACATGGCATCGAAGACCTGATGATCCAGCACAACTGCTCCCGCCAGGGCCCTACAGCCCCTCCCCCGCCCCGGGGCCCCGCCCTTCCAGGCGCGGGCTCCGGCCTCCCTGCCCCGGACCCTTGTGACTATGAAGGCCGGTTTTCCCGGCTGCATGGTCGTCCCCCGGGGTTCTTGCATTGCGCTTCCTTCGGGGACCCCCATGTGCGCAGCTTCCACCATCACTTTCACACATGCCGTGTCCAAGGAGCTTGGCCTCTACTGGATAATGACTTCCTCTTTGTCCAAGCCACCAGCTCCCCCATGGCGTTGGGGGCCAACGCTACCGCCACCCGGAAGGTCACCATCATATTTAAGAACATGCAGGAATGCATTGATCAGAAGGTGTATCAGGCTGAGGTGGATAATCTTCCTGTAGCCTTTGAAGATGGTTCTATCAATGGAGGTGACCGACCTGGGGGATCCAGTTTGTCGATTCAAACTGCTAACCCTGGGAACCATGTGGAGATCCAAGCTGCCTACATTGGCACAACTATAATCATTCGGCAGACAGCTGGGCAGCTCTCCTTCTCCATCAAGGTAGCAGAGGATGTGGCCATGGCCTTCTCAGCTGAACAGGACCTGCAGCTCTGTGTTGGGGGGTGCCCTCCAAGTCAGCGACTCTCTCGATCAGAGCGCAATCGTCGGGGAGCTATAACCATTGATACTGCCAGACGGCTGTGCAAGGAAGGGCTTCCAGTGGAAGATGCTTACTTCCATTCCTGTGTCTTTGATGTTTTAATTTCTGGTGATCCCAACTTTACCGTGGCAGCTCAGGCAGCACTGGAGGATGCCCGAGCCTTCCTGCCAGACTTAGAGAAGCTGCATCTCTTCCCCTCAGATGCTGGGGTTCCTCTTTCCTCAGCAACCCTCTTAGCTCCACTCCTTTCTGGGCTCTTTGTTCTGTGGCTTTGCATTCAGTAAGGGGACCATCAGTCCCATTACTAGTTTORF Start: ATG at 31ORF Stop: TAA at 1309SEQ ID NO: 100426 aaMW at 45041.5 kDNOV24c,MGEPGQSPSPRSSHGSPPTLSTLTLLLLLCGLAHSQCKILRCNAEYVSSTLSLRGGGSSGALRGGGGCG146250-03Protein SequenceGGRGGGVGSGGLCRALRSYALCTRRTARTCRGDLAFHSAVHGIEDLMIQHNCSRQGPTAPPPPRGPALPGAGSGLPAPDPCDYEGRFSRLHGRPPGFLHCASFGDPHVRSFHHHFHTCRVQGAWPLLDNDFLFVQATSSPMALGANATATRKVTIIFKNMQECIDQKVYQAEVDNLPVAFEDGSINGGDRPGGSSLSITQTANPGNHVEIQAAYIGTTIIIRQTAGQLSFSIKVAEDVAMAFSAEQDLQLCVGGCPPSQRLSRSERNRRGAITIDTARRLCKEGLPVEDAYFHSCVFDVLISGDPNFTVAAOAALEDARAFLPDLEKLHLFPSDAGVPLSSATLLAPLLSGLFVLWLCIQ


[0494] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 24B.
132TABLE 24BComparison of NOV24a against NOV24b and NOV24c.ProteinNOV24a Residues/Identities/SimilaritiesSequenceMatch Residuesfor the Matched RegionNOV24b 1 . . . 313271/313 (86%) 1 . . . 313272/313 (86%)NOV24c 1 . . . 313273/313 (87%)114 . . . 426273/313 (87%)


[0495] Further analysis of the NOV24a protein yielded the following properties shown in Table 24C.
133TABLE 24CProtein Sequence Properties NOV24aPSort0.7000 probability located in plasma membrane; 0.3740analysis:probability located in microbody (peroxisome); 0.2000probability located in endoplasmic reticulum (membrane);0.1000 probability located in mitochondrial inner membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0496] A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24D.
134TABLE 24DGeneseq Results for NOV24aNOV24aIdentities/Protein/Residues/Similarities forGeneseqOrganism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU70169Rat secreted 1 . . . 313273/313 (87%) e−161factor protein110 . . . 422284/313 (90%)encoded by DNAcloneP0248_B04—Rattusnorvegicus,422 aa.[WO200174901-A2, 11 OCT.2001]AAM93823Human poly- 1 . . . 308158/340 (46%)1e−76 peptide, SEQ ID110 . . . 446206/340 (60%)NO: 3881—Homo sapiens,450 aa.[EP1130094-A2,5 SEP. 2001]ABG65106Human albumin 1 . . . 308157/340 (46%)4e−76 fusion protein 94 . . . 430205/340 (60%)#1781—Homosapiens, 434 aa.[WO200177137-A1, 18 OCT.2001]AAE07112Human gene 6 1 . . . 308157/340 (46%)4e−76 encoded secreted131 . . . 467205/340 (60%)protein fragment,SEQ ID NO:129—Homosapiens, 471 aa.[WO200154708-A1, 2 AUG.2001]AAE07056Human gene 6 1 . . . 308157/340 (46%)4e−76 encoded secreted 94 . . . 430205/340 (60%)proteinHARMJ38, SEQID NO: 73—Homo sapiens,434 aa.[WO200154708-A1, 2 AUG.2001]


[0497] In a BLAST search of public sequence datbases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24E.
135TABLE 24EPublic BLASTP Results for NOV24aIdentities/NOV24aSimilaritiesProteinResidues/for theAccessionProtein/MatchMatchedExpectNumberOrganism/LengthResiduesPortionValueBAC03944CDNA FLJ35363 1 . . . 313311/3130.0fis, clone (99%)SKMUS2000679— 1 . . . 313313/313Homo sapiens (99%)(Human), 313 aa.BAC05248CDNA FLJ40846 1 . . . 313273/313 e−161fis, clone (87%)TRACH2014544—110 . . . 422284/313Homo sapiens (90%)(Human), 422 aa.Q8WVJ5Similar to114 . . . 313200/200 e−111RIKEN cDNA(100%)2310035L15 gene— 1 . . . 200200/200Homo sapiens(100%)(Human), 200 aa.AAH22603Hypothetical114 . . . 311177/1981e−97 protein—Mus (89%)musculus (Mouse), 1 . . . 198182/198201 aa. (91%)Q9D7412310035L15Rik114 . . . 311177/1982e−97 protein—Mus (89%)musculus (Mouse), 1 . . . 198182/198201 aa.(91%)


[0498] PFam analysis predicts that the NOV24a protein contains the domains shown in the Table 24F.
136TABLE 24FDomain Analysis of NOV24aPfamNOV24aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValue



Example 25

[0499] The NOV25 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 25A.
137TABLE 25ANOV25 Sequence AnalysisSEQ ID NO: 101381 bpNOPV25a,ATTCCTGGTGGTGAAAGGATGTGGCCCCAGGACCCATCCCGGAAGGAGGTGCTGAGGTTTGCAGTCACG146625-01DNA SequenceGCTGCCGTATCCTGACTCTGATGCTGCAGGTTCTCACCAGGTTTTTGGGCTCCTCCACTCCTATTATGTACTGGTTTCCAGCTCACTTGCTTCAGGATCAAGAGCCGCTGTTGAGATCCTTAAAGACTGTGCCTTGGAAGCCTCTTGCAGAGGACTCCCCACCAGGACAAAAGGTCCCCAGAAATCCTATCATGGGACTTTTGTATCACTGGAAAACCTGTTCTCCAGTCACACGATACATTCTAGGCTACTTCCTGACTTACTGGCTCCTGGGACTACTCCTACATTGCAACTTCCTGCCTTGGACATGACCTORF Start: ATG at 19ORF Stop: TGA at 376SEQ ID NO: 102119 aaMW at 13984.5 kDNOV25a,MWPQDPSRKEVLRFAVSCRILTLMLQVLTRFLGSSTPIMYWFPAHLLQDQEPLLRSLKTVPWKPLAECG146625-01Protein SequenceDSPPGQKVPRNPIMGLLYHWKTCSPVTRYILGYFLTYWLLGLLLHCNFLPWTSEQ ID NO: 103906 bpNOV25b,GGAGCTCAATCCTGGTAGCAACACCCCTGAATTCCTGGTGGTGAAAGGATGTGGCCCCAGGACCCATCG146625-02DNA SequenceCCCGGAAGGAGGTGCTGAGGTTTGCAGTCAGCTGCCGTATCCTGACTCTGATGCTGCAGGCCCTCTTCAATGCCATCATCCCAGATCACCATGCAGAAGCCTTCTCTCCTCCTCGCCTGGCCCCCTCAGGCTTTGTGGACCAACTCGTGGAAGGCTCAGCCCGCCCCATTCCTGAGCCTTTGGTACAGTTAGCTGTAGACAAGGGCTACCGGATTGCAGAGGGAAATGAACCGCCTTGGTGCTTCTGGGATGTTCCACTAATATACAGCTATATCCAGGATGTCTGCTGGAATGTTGGCTTTTTGAAATACTATGAGCTCAAGCAGGTGCCCAATTTTCTACTGGCTGCACCAGTGGCTATACTGGTTGCCTGGGCAACTTGGACATACGTGACCACTCACCCTTGGCTCTGCCTTACACTTGGGCTGCAAAGGAGCAAGAACAATAAGACCCTAGAGAAGCCCGATCTTGGATTCCTCAGTCCTCAGGTGTTTGTGTACGTGGTCCACGCTGCAGTGCTGCTGCTGTTTGGAGGTCTGTGCATGCATGTTCAGGTTCTCACCAGGTTTTTGGGCTCCTCCACTCCTATTATGTACTGGTTTCCAGCTCACTTGCTTCAGGATCAAGAGCCGCTGTTGAGATCCTTAAAGACTGTGCCTTGGAAGCCTCTTGCAGAGGACTCCCCACCAGGACAAAAGGTCCCCAGAAATCCTATCATGGGACTTTTGTATCACTGGAAAACCTGTTCTCCAGTCACACGATACATTCTAGGCTACTTCCTGACTTACTGGCTCCTGGGACTACTCCTACATTGCAACTTCCTGCCTTGGACATGACCTORF Start: ATG at 49ORF Stop: TGA at 901SEQ ID NO: 104284 aaMW at 32499.9 kDNOV25b,MWPQDPSRKEVLRFAVSCRILTLMLQALFNAIIPDHHAEAFSPPRLAPSGFVDQLVEGSARPIPEPLCG146625-02Protein SequenceVQLAVDKGYRIAEGNEPPWCFWDVPLIYSYIQDVCWNVGFLKYYELKQVPNFLLAAPVAILVAWATWTYVTTHPWLCLTLGLQRSKNNKTLEKPDLGFLSPQVFVYVVHAAVLLLFGGLCMHVQVLTRFLGSSTPIMYWFPAHLLQDQEPLLRSLKTVPWKPLAEDSPPGQKVPRNPIMGLLYHWKTCSPVTRYILGYFLTYWLLGLLLHCNFLPWTSEQ ID NO: 1052114 bpNOV25c,CTCGTCTGCTTCCGGCCCTGTGGCCTGGTGGGGCTCTGCAGGCTCCCTCGGGAGTGGTCCTTGGGCCCG146625-03DNA SequenceGTGGCCCCTCTGGGAGGCCTGAGGGAGCTCAATCCTGGTAGCAACACCCCTGAATTCCTGGTGGTGAAAGGATGTGGCCCCAGGACCCATCCCGGAAGGAGGTGCTGAGGTTTGCAGTCAGCTGCCGTATCCTGACTCTGATGCTGCAGGCCCTCTTCAATGCCATCACCCCAGATCACCATGCAGAAGCCTTCTCTCCTCCTCGCCTGGCCCCCTCAGGCTTTGTGGACCAACTCGTGGAAGGTCTTCTGGGCGGCCTGTCTCACTGGGATGCTGAACACTTCTTGTTCATTGCTGAGCATGGCTACCTGTATGAGCACAACTTTGCCTTCTTTCCTGGTTTCCCCTTGGCCCTGCTGGTGGGGACTGAACTGTTGAGACCCTTACGGGGGTTACTGAGTCTACGCAGTTGCCTGCTGATTTCGGTAGCATCACTCAATTTCTTGTTCTTCATGTTGGCTGCAGTTGCACTTCATGACCTGGGTTGTCTGGTTTTGCACTGTCCCCACCAGTCCTTTTATGCAGCTCTGCTTTTCTGTCTCAGCCCTGCCAATGTCTTCCTGGCAGCTGGTTACTCAGAAGCTTTGTTTGCCCTCCTGACATTCAGTGCCATGGGGCAGCTGGAGAGGGGCCGAGTCTGGACTAGTGTACTCCTCTTTGCCTTTGCCACTGGGGTACGCTCCAACGGGCTGGTCAGTGTTGGCTTCCTCATGCATTCTCAATGCCAAGGCTTTTTCTCTTCTCTAACGATGCTGAATCCTCTGAGACAGCTCTTTAAGCTGATGGCCTCTCTGTTTCTGTCGGTGTTCACACTTGGCCTTCCCTTTGCCCTCTTTCAGTATTATGCCTACACCCAATTCTGTCTGCCAGGCTCAGCCCGCCCCATTCCTGAGCCTTTGGTACAGTTAGCTGTAGACAAGGGCTACCGGATTGCAGAGGGAAATGAACCGCCTTGGTGCTTCTGGGATGTTCCACTAATATACAGCTATATCCAGGATGTCTACTGGAATGTTGGCTTTTTGAAATACTATGAGCTCAAGCAGGTGCCCAATTTTCTACTGGCTGCACCAGTGGCTATACTGGTTGCCTGGGCAACTTGGACATACGTGACCACTCACCCTTGGCTCTGCCTTACACTTGGGCTGCAAAGGAGCAAGAACAATAAGACCCTAGAGAAGCCCGATCTTGGATTCCTCAGTCCTCAGGTGTTTGTGTACGTGGTCCACGCTGCAGTGCTGCTGCTGTTTGGAGGTCTGTGCATGCATGTTCAGGTTCTCACCAGGTTTTTGGGCTCCTCCACTCCTATTATGTACTGGTTTCCAGCTCACTTGCTTCAGGATCAAGAGCCGCTGTTGAGATCCTTAAAGACTGTGCCTTGGAAGCCTCTTGCAGAGGACTCCCCACCAGGACAAAAGGTCCCCAGAAATCCTATCATGGGACTTTTGTATCACTGGAAAACCTGTTCTCCAGTCACACGATACATTCTAGGCTACTTCCTGACTTACTGGCTCCTGGGACTACTCCTACATTGCAACTTCCTGCCTTGGACATGACCTGGACTCTCCAGGGACAGGTTGGAAGCCAACTTAACCCAGGGGTCTGAAAGTAAAAATACACATTGGAACTGCCTCTGCTGCCCTGGGATCATTACTGTGTCCATTATAAATCTTTCTCTTTCTCTTTGAAAGCTGGTCAGGAATGGGAGAAGTGTCAGACACTAGAGAGCCCCTTCTGGTCCTGGCTAGGGCAAATTTTAGACAACTATTTTCTCTGTAAGTGAAGATTGTCGTATTCCAAGTCTAAAATACACCTGGATCTGTCTAGTCAATCAACATAGCAGAGACAGTCTTAAACCTACCATTGACCTGTGTGTAAATTTAAATGTCAATTTATTGAAGTGTAAATTTCATCAAAGGCATTAGCTGACAGGCTGGTAACAGTCCACACAAGATGGTATAGGCCTGAACAGTGTAGTGGCAGTAATAAAGTGGGACCATTTTTTCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 139ORF Stop: TGA at 1618SEQ ID NO: 106493 aaMW at 55699.9 kDNOV25c,MWPQDPSRKEVLRFAVSCRILTLMLQALFNAITPDHHAEAFSPPRLAPSGFVDQLVEGLLGGLSHWDCG146625-03Protein SequenceAEHFLFIAEHGYLYEHNFAFFPGFPLALLVGTELLRPLRGLLSLRSCLLISVASLNFLFFMLAAVALHDLGCLVLHCPHQSFYAALLFCLSPANVFLAAGYSEALFALLTFSAMGQLERGRVWTSVLLFAFATGVRSNGLVSVGFLMHSQCQGFFSSLTMLNPLRQLFKLMASLFLSVFTLGLPFALFQYYAYTQFCLPGSARPIPEPLVQLAVDKGYRIAEGNEPPWCFWDVPLIYSYIQDVYWNVGFLKYYELKQVPNFLLAAPVAILVAWATWTYVTTHPWLCLTLGLQRSKNNKTLEKPDLGFLSPQVFVYVVHAAVLLLFGGLCMHVQVLTRFLGSSTPIMYWFPAHLLQDQEPLLRSLKTVPWKPLAEDSPPGQKVPRNPIMGLLYHWKTCSPVTRYILGYFLTYWLLGLLLHCNFLPWT


[0500] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 25B.
138TABLE 25BComparison of NOV25a against NOV25b and NOV25c.ProteinNOV25a Residues/Identities/SimilaritiesSequenceMatch Residuesfor the Matched RegionNOV25b 21 . . . 11981/99 (81%)186 . . . 28483/99 (83%)NOV25c 21 . . . 11981/99 (81%)395 . . . 49383/99 (83%)


[0501] Further analysis of the NOV25a protein yielded the following properties shown in Table 25C.
139TABLE 25CProtein Sequence Properties NOV25aPSort0.8025 probability located in lysosome (lumen); 0.7480analysis:probability located in microbody (peroxisome); 0.4715probability located in mitochondrial matrix space; 0.1742probability located in mitochondrial inner membraneSignalPCleavage site between residues 34 and 35analysis:


[0502] A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 25D.
140TABLE 25DGeneseq Results for NOV25aNOV25aIdentities/Protein/Residues/Similarities forGeneseqOrganism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABG65069Human albumin 21 . . . 11995/99 (95%)8e−55fusion protein182 . . . 28097/99 (97%)#1744—Homosapiens, 280 aa.[WO200177137-A1, 18 OCT.2001]ABB89811Human poly- 21 . . . 11995/99 (95%)8e−55peptide SEQ ID 75 . . . 17397/99 (97%)NO 2187—Homosapiens, 173 aa.[WO200190304-A2, 29 NOV.2001]ABB97380Novel human 21 . . . 11995/99 (95%)8e−55protein SEQ ID395 . . . 49397/99 (97%)NO: 648—Homosapiens, 493 aa.[WO200222660-A2, 21 MAR.2002]AAE07114Human gene 9 21 . . . 11995/99 (95%)8e−55encoded secreted213 . . . 31197/99 (97%)protein fragment,SEQ ID NO:131—Homosapiens, 311 aa.[WO200154708-A1, 2 AUG.2001]AAE07059Human gene 9 21 . . . 11995/99 (95%)8e−55encoded secreted182 . . . 28097/99 (97%)proteinHTEGF16, SEQID NO: 76—Homo sapiens,280 aa.[WO200154708-A1, 2 AUG.2001]


[0503] In a BLAST search of public sequence datbases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25E.
141TABLE 25EPublic BLASTP Results for NOV25aNOV25aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueQ9NUD9DJ50O24.5.1 21 . . . 11995/99 (95%)2e−54(Novel protein395 . . . 49397/99 (97%)(Translation ofcDNA KAT07271(Em: AK000484)))(Hypothetical 55.7kDa protein)—Homo sapiens(Human), 493 aa.Q9NX26CDNA FLJ20477 21 . . . 11995/99 (95%)2e−54fis, clone395 . . . 49397/99 (97%)KAT07271—Homosapiens (Human),493 aa.Q9U3X2VEGETABLE 9 . . . 11938/123 (30%)0.057precursor—361 . . . 44950/123 (39%)Drosophilamelanogaster(Fruit fly), 449 aa.Q9V7W1CG6657 protein— 9 . . . 11938/123 (30%)0.057Drosophila361 . . . 44950/123 (39%)melanogaster(Fruit fly), 449 aa.Q95TV6GM14315p— 9 . . . 11938/123 (30%)0.057Drosophila185 . . . 27350/123 (39%)melanogaster(Fruit fly), 273 aa.


[0504] PFam analysis predicts that the NOV25a protein contains the domains shown in the Table 25F.
142TABLE 25FDomain Analysis of NOV25aPfamNOV25aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValue



Example 26

[0505] The NOV26 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 26A.
143TABLE 26ANOV26 Sequence AnalysisSEQ ID NO: 1071139 bpNOV26a,GCACTCACTACGCACAGACTCGACGGTGCCATCAGCATGAGAACTTACCGCTACTTCTTGCTGCTCTCG147284-01DNA SequenceTTTGGGTGGGCCAGCCCTACCCAACTCTCTCAACTCCACTATCAAAGAGGACTAGTGGTTTCCCAGCAAAGAAAAGGGCCCTGGAGCTCTCTGGAAACAGCAAAAATGAGCTGAACCGTTCAAAAAGGAGCTGGATGTGGAATCAGTTCTTTCTCCTGGAGGAATACACAGGATCCGATTATCAGTATGTGGGCAAGTTACATTCAAACTTTACCATTCAAGACAACAAAGACAACACGGCGGGAATCTTAACTCGGAAAAATGGCTATAATAGACACGAGATGAGCACCTATCTCTTGCCTGTGGTCATTTCAGACAACGACTACCCAGTTCAAAGCAGCACTGGGACAGTGACTGTCCGGGTCTGTGCATCTGACCACCACGGGAACATGCAATCCTGCCACGCGGAGGCGCTCATCCACCCCACGGGACTGAGCACGGGGGCTCTGGTTGCCATCCTTCTGTGCATCGTGATCCTACTAGTGACAGTGGTGCTGTTTGCAGCTCTGAGGCGGCAGCGAAAAAAAGAGCCTTTGATCATTTCCAAAGAGGACATCAGAGATAACATTGTCAGTTACAACGACGAAGGTGGTGGAGAGGAGGACACCCAGGCTTTTGATATCGGCACCCTGAGGAATCCTGAAGCCATAGAGGACAACAAATTACGAAGGGACATTGTGCCCGAAGCCCTTTTCCTACCCCGACGGACTCCAACAGCTCGCGACAACACCGATGTCAGAGATTTCATTAACCAAAGGTTAAAGGAAAATGACACGGACCCCACTGCCCCGCCATACGACTCCTTGGCCACTTACGCCTATGAAGGCACTGGCTCCGTGGCGGATTCCCTGAGCTCGCTGGAGTCAGTGACCACGGATGCAGATCAAGACTATGATTACCTTAGTGACTGGGGACCTCGATTCAAAAAGCTTGCAGATATGTATGGAGGAGTGGACAGTGACAAAGACTCCTAATCTGTTGCCTTTTTCATTTTCCAATACGACACTGAAATATGTGAAGTGGCTATTTCTTTATATTTATCCACTACTCCGTGAAGGCTTCTCTGTTCTACORF Start: ATG at 37ORF Stop: TAA at 1039SEQ ID NO: 108334 aaMW at 37675.7 kDNOV26a,MRTYRYFLLLFWVGQPYPTLSTPLSKRTSGFPAKKRALELSGNSKNELNRSKRSWMWNQFFLLEEYTCG14728-01Protein SequenceGSDYQYVGKLHSNFTIQDNKDNTAGILTRKNGYNRHEMSTYLLPVVISDNDYPVQSSTGTVTVRVCACDHHGNMQSCHAEALIHPTGLSTGALVAILLCIVILLVTVVLFAALRRQRKKEPLIISKEDIRDNIVSYNDEGGGEEDTQAFDIGTLRNPEAIEDNKLRRDIVPEALFLPRRTPTARDNTDVRDFINQRLKENDTDPTAPPYDSLATYAYEGTGSVADSLSSLESVTTDADQDYDYLSDWGPRFKKLADMYGGVDSDKDS


[0506] Further analysis of the NOV26a protein yielded the following properties shown in Table 26B.
144TABLE 26BProtein Sequence Properties NOV26aPSort0.7300 probability located in plasma membrane; 0.6400analysis:probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum (lumen);0.1000 probability located in outsideSignalPCleavage site between residues 22 and 23analysis:


[0507] A search of the NOV26a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 26C.
145TABLE 26CGeneseq Results for NOV26aIdentities/NOV26aSimilaritiesProtein/Residues/for theGeneseqOrganism/LengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAW13131Partial human 79 . . . 334256/256e−148cadherin-6—Homo(100%)sapiens, 414 aa.159 . . . 414256/256[US5597725-A,(100%)28 JAN. 1997]AAW25659Human cadherin- 79 . . . 334256/256e−1486—Homo(100%)sapiens, 414 aa.159 . . . 414256/256[US5646250-A,(100%)8 JUL. 1997]AAR43564Human cadherin- 79 . . . 311233/233e−1336—Homo(100%)sapiens, 391 aa.159 . . . 391233/233[WO9321302-A,(100%)28 OCT. 1993]ABP47864Human polypeptide 77 . . . 334212/258e−125SEQ ID NO 294— (82%)Homo sapiens,101 . . . 358238/258358 aa. (92%)[US2002042386-A1, 11 APR.2002]AAU19644Human novel extra- 77 . . . 334212/258e−125cellular matrix(82%)protein, Seq ID No101 . . . 358238/258294—Homo(92%)sapiens, 358 aa.[WO200155368-A1,2 AUG. 2001]


[0508] In a BLAST search of public sequence datbases, the NOV26a protein was found to have homology to the proteins shown in the BLASTP data in Table 26D.
146TABLE 26DPublic BLASTP Results for NOV26aNOV26aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueP55285Cadherin-6 79 . . . 334256/256 (100%)e−147precursor535 . . . 790256/256 (100%)(Kidney-cadherin)(K-cadherin)—Homo sapiens(Human), 790 aa.P97326Cadherin-6 79 . . 334246/256 (96%) e−143precursor535 . . . 790253/256 (98%) (Kidney-cadherin)(K-cadherin)—Mus musculus(Mouse), 790 aa.P55280Cadherin-6 79 . . . 334239/256 (93%) e−136precursor535 . . . 789246/256 (95%) (Kidney-cadherin)(K-cadherin)—Rattus norvegicus(Rat), 789 aa.Q90762Cadherin-6 79 . . . 334232/256 (90%) e−134precursor535 . . . 790243/256 (94%) (Cadherin-6B)(c-cad6B)—Gallus gallus(Chicken),790 aa.Q9DFS1Cadherin-6— 80 . . . 334227/255 (89%) e−132Xenopus laevis538 . . . 792240/255 (94%) (African clawedfrog), 792 aa.


[0509] PFam analysis predicts that the NOV26a protein contains the domains shown in the Table 26E.
147TABLE 26EDomain Analysis of NOV26aIdentities/SimilaritiesNOV26a Matchfor the MatchedExpectPfam DomainRegionRegionValueCadherin_C_term182 . . . 328108/156 (69%)6.6e−102142/156 (91%)



Example 27

[0510] The NOV27 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 27A.
148TABLE 27ANOV27 Sequence AnalysisSEQ ID NO: 1091082 bpNOV27a,AAGTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAAATGGCTGGTTCCCCAACATGCCTCACCCG147937-01DNA SequenceTCATCTATATCCTTTGGCAGCTCACAGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAGCAAGTTGACTCTATTGTCTGGACCTTCAACACAACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGTGACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAGAAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCAATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGATGTGATTTATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTCCTGGAGATGGGGAGAAAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCTGTCAGCAGAAACTTCTCAAGCCCCATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATGGTCCTCCTGTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTGGTTTCTGAAGAGAGAGAGACAAGAAGAGTACATTGAAGAGAAGAAGAGAGTGGACATTTGTCGGGAAACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACACAATCCCTCACACTAATAGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGATGGAAAATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTATCTAGACAGCAGTGCACTCCCCTAAGTCTCTGCTCAAAAAORF Start: ATG at 40ORF Stop: TAG at 1045SEQ ID NO: 110335 aaMW at 37420.5 kDNOV27a,MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVTIQPEGCG147937-01Protein SequenceGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYEHLSKPKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFICVARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLWFLKRERQEEYIEEKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPLANTVYSTVEIPKKEMPLHSLLTMPDTPRLFAYENVISEQ ID NO:1111121 bpNOV27b,AAGTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAATATGGCTGGTTCCCCAACATGCCTCACCCCG147937-01DNA SequenceTCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTCTATTGTCTGGACCTTCAACACAACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGTGACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAGAAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCAATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGATGTGATTTATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTCCTGGAGATGGGGAGAAAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCTGTCAGCAGAAACTTCTCAAGCCCCATCCTGCCAGGAAGCTCTGTGAAGGTGACTGCCTCTCCCTCTCCACAGGAGACTCTGCCCAGGTGCTGCTGATGACCCAGATTCCTCCATGGTCCTCCTGTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTGGTTTCTGAAGAGAGAGAGACAAGAAGAGTACATTGAAGAGAAGAAGAGAGTGGACATTTGTCGGGAAACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACACAATCCCTCACACTAATAGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGATGGAAAATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTATCTAGACAGCAGTGCACTCCCCTAAGTCTCTGCTCAAAAAORF Start: ATG at 40ORF Stop: TAG at 1084SEQ ID NO: 112348 aaMW at 38869.2 kDNOV27b,MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVTIQPEGCG147937-02Protein SequenceGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYEHLSKPKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFICVARNPVSRNFSSPILARKLCEGDCLSPLHRRLCPGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLWFLKRERQEEYIEEKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIPKKMENPHSLLTMPDTPRLFAYENVI


[0511] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 27B.
149TABLE 27BComparison of NOV27a against NOV27b.NOV27a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV27b1 . . . 335290/348 (83%)1 . . . 348290/348 (83%)


[0512] Further analysis of the NOV27a protein yielded the following properties shown in Table 27C.
150TABLE 27CProtein Sequence Properties NOV27aPSort analysis:0.4600 probability located in plasma membrane; 0.1000 probability located inendoplasmic reticulum (membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000 probability located in outsideSignalP analysis:Cleavage site between residues 23 and 24


[0513] A search of the NOV27a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 27D.
151TABLE 27DGeneseq Results for NOV27aNOV27aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB65224Human PRO1138 (UNQ576)1 . . . 335335/335 (100%)0.0protein sequence SEQ ID1 . . . 335335/335 (100%)NO:253 - Homo sapiens, 335aa. [WO200073454-A1,Dec. 7, 2000]AAB87548Human PRO1138 - Homo1 . . . 335335/335 (100%)0.0sapiens, 335 aa.1 . . . 335335/335 (100%)[WO200116318-A2,Mar. 8, 2001]AAB47321APEX-1 - Homo sapiens,1 . . . 335335/335 (100%)0.0335 aa. [WO200146260-A2.1 . . . 335335/335 (100%)Jun. 28, 2001]AAU29119Human PRO polypeptide1 . . . 335335/335 (100%)0.0sequence #96 - Homo1 . . . 335335/335 (100%)sapiens, 335 aa.[WO200168848-A2,Sep. 20, 2001]AAY66701Membrane-bound protein1 . . . 335335/335 (100%)0.0PRO1138 - Homo sapiens,1 . . . 335335/335 (100%)335 aa. [WO9963088-A2,Dec. 9, 1999]


[0514] In a BLAST search of public sequence datbases, the NOV27a protein was found to have homology to the proteins shown in the BLASTP data in Table 27E.
152TABLE 27EPublic BLASTP Results for NOV27aNOV27aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9NQ25BA404F10.4 (Novel LY9 1 . . . 335335/335 (100%)0.0(Lymphocyte antigen 9) like 1 . . . 335335/335 (100%)protein) (NK cell receptor)(Membrane proteinFOAP-12) (CD2-likereceptor activating cytotoxiccells) - Homo sapiens(Human), 335 aa.Q9NY0819A protein - Homo sapiens 1 . . . 335334/335 (99%)0.0(Human), 335 aa. 1 . . . 335335/335 (99%)Q9NY2319A24 protein - Homo 1 . . . 316273/316 (86%)e−152sapiens (Human), 328 aa. 1 . . . 281276/316 (86%)AAH2786719A24 protein - Homo 1 . . . 257257/257 (100%)e−149sapiens (Human), 296 aa. 1 . . . 257257/257 (100%)CAD39085Hypothetical protein - Homo120 . . . 335212/217 (97%)e−123sapiens (Human), 228 aa. 12 . . . 228214/217 (97%)


[0515] PFam analysis predicts that the NOV27a protein contains the domains shown in the Table 27F.
153TABLE 27FDomain Analysis of NOV27aPfam DomainNOV27a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 28

[0516] The NOV28 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 28A.
154TABLE 28ANOV28 Sequence AnalysisSEQ ID NO: 113561 bpNOV28a,CTTGTGGCCCCCGGCTGCAGCCTCAGTGGCATGGGGGTGAAGCGGAGCCTCCAGAGTGGGGGCATTCCG148221-01DNA SequenceTGCTCAGCCTCGTGGCCAACGTCCTCATGGTGCTCTCCACGGCCACCAACTACTGGACCCGCCAACAAGAGGGCCACAGTGGCCTGTGGCAGGAATGCAACCACGGCATCTGCTCCAGCATCCCCTGCCAGAGTACGCTGGCGGTGACTGTGGCGTGCATGGTGCTGGCGGTGGGTGTCGGCGTGGTGGGCATGGTGATGGGACTGCGGATTCGGTGCGACGAGGGCGAGTCGCTGCGGGGCCAGACCACGAGCGCCTTCCTCTTCCTCGGCGGACTGCTGCTGCTGACCGCCTTGATAGGCTACACCGTGAAGAATGCGTGGAAGAACAACGTCTTCTTCTCTTGGTCCTATTTTTCTGGGTGGCTGGCCTTACCCTTCTCAATTCTCGCGGGCTTCTGCTTTCTGCTGGCAGACATGATCATGCAGAGCACCGACGCCATCAGTGGATTCCCCGTGTGTCTGTGACTGCAGCCTGCCTGGGGCAGAATAAAGORF Start: ATG at 31ORF Stop: TGA at 532SEQ ID NO: 114167 aaMW at 17970.0 kdNOV28a,MGVKRSLQSGGILLSLVANVLMVLSTATNYWTRQQEGHSGLWQECNHGICSSIPCQSTLAVTVACMVCG148221-01Protein SequenceLAVGVGVVGMVMGLRIRCDEGESLRGQTTSAFLFLGGLLLLTALIGYTVKNAWKNNVFFSWSYFSGWLALPFSILAGFCFLLADMIMQSTDAISGFPVCLSEQ ID NO: 115561 bpNOV28b,CTTGTGGCCCCCGGCTGCAGCCTCAGTGGCATGGGGGTGAAGCGGAGCCTCCAGAGTGGGGGCATTCCG148221-02DNA SequenceTGCTCAGCCTCGTGGCCAACGTCCTCATGGTGCTCTCCACGGCCACCAACTACTGGACCCGCCAACAAGAGGGCCACAGTGGCCTGTGGCAGGAATGCAACCACGGCATCTGCTCCAGCATCCCCTGCCAGAGTACGCTGGCGGTGACTGTGGCGTGCATGGTGCTGGCGGTGGGTGTCGGCGTGGTGGGCATGGTGATGGGACTGCGGATTCGGTGCGACGAGGGCGAGTCGCTGCGGGGCCAGACCACGAGCGCCTTCCTCTTCCTCGGCGGACTGCTGCTGCTGACCGCCTTGATAGGCTACACCGTGAAGAATGCGTGGAAGAACAACGTCTTCTTCTCTTGGTCCTATTTTTCTGGGTGGCTGGCCTTACCCTTCTCAATTCTCGCGGGCTTCTGCTTTCTGCTGGCAGACATGATCATGCAGAGCACCGACGCCATCAGTGGATTCCCCGTGTGTCTGTGACTGCAGCCTGCCTGGGGCAGAATAAAGORF Start: ATG at 31ORF Stop: TGA at 532SEQ ID NO: 116167 aaMW at 17970.0 kDNOV28b,MGVKRSLQSGGILLSLVANVLMVLSTATNYWTRQQEGHSGLWQECNHGICSSIPCQSTALVTVACMWCG148221-02Protein SequenceLAVGVGVVGMVMGLRIRCDEGESLRGQTTSAFLFLGGLLLLTALIGYTVKNAWKNNVFFSWSYFSGWLALPFSILAGFCFLLADMIMQSTDAISGFPVCL


[0517] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 28B.
155TABLE 28BComparison of NOV28a against NOV28b.NOV28a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV28b1 . . . 167134/167 (80%)1 . . . 167134/167 (80%)


[0518] Further analysis of the NOV28a protein yielded the following properties shown in Table 28C.
156TABLE 28CProtein Sequence Properties NOV28aPSort analysis:0.6850 probability located in endoplasmic reticulum (membrane); 0.6760probability located in plasma membrane; 0.4600 probability located in Golgibody; 0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 28 and 29


[0519] A search of the NOV28a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 28D.
157TABLE 28DGeneseq Results for NOV28aNOV28aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU74822Human REPTR 5 protein - 6 . . . 15042/158 (26%)2e−07Homo sapiens, 173 aa. 3 . . . 16071/158 (44%)[WO200198354-A2,Dec. 27, 2001]AAR30057Rat PMP - Rattus rattus, 16010 . . . 14937/149 (24%)1e−06aa. [WO9221694-A, 7 . . . 15566/149 (43%)Dec. 10, 1992]AAB48599Mouse PMP-22 - Mus sp, 16110 . . . 14938/149 (25%)3e−06aa. [U.S. Pat. NO. 6,150,136-A, 7 . . . 15566/149 (43%)Nov. 21, 2000]AAR30058Mouse PMP - Mus musculus,10 . . . 14938/149 (25%)3e−06160 aa. [WO9221694-A, 7 . . . 15566/149 (43%)Dec. 10, 1992]AAR30059Bovine PMP - Bos taurus,10 . . . 14937/150 (24%)2e−05160 aa. [WO9221694-A, 7 . . . 15569/150 (45%)Dec. 10, 1992]


[0520] In a BLAST search of public sequence datbases, the NOV28a protein was found to have homology to the proteins shown in the BLASTP data in Table 28E.
158TABLE 28EPublic BLASTP Results for NOV28aNOV28aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueAAH29518Similar to RIKEN cDNA1 . . . 167166/167 (99%)2e−931700071E18 gene - Homo1 . . . 167167/167 (99%)sapiens (Human), 167 aa.Q9D9H21700071E18Rik protein -1 . . . 167117/167 (70%)2e−65Mus musculus (Mouse), 1671 . . . 167136/167 (81%)aa.P54825Lens fiber membrane6 . . . 150 46/159 (28%)4e−08intrinsic protein (MP17)3 . . . 160 73/159 (44%)(MP18) (MP19) (MP20) -Rattus norvegicus (Rat), 173aa.P56563Lens fiber membrane6 . . . 150 46/159 (28%)4e−08intrinsic protein (MP17)3 . . . 160 73/159 (44%)(MP18) (MP19) (MP20) -Mus musculus (Mouse), 173aa.P20274Lens fiber membrane6 . . . 150 45/159 (28%)6e−07intrinsic protein (MP18)3 . . . 160 72/159 (44%)(MP19) (MP21) (MP23) -Bos taurus (Bovine), 173 aa.


[0521] PFam analysis predicts that the NOV28a protein contains the domains shown in the Table 28F.
159TABLE 28FDomain Analysis of NOV28aIdentities/SimilaritiesNOV28a Matchfor the MatchedExpectPfam DomainRegionRegionValuePMP22_Claudin5 . . . 147 36/188 (19%)1.5e−05108/188 (57%)



Example 29

[0522] The NOV29 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 29A.
160TABLE 29ANOV29 Sequence AnalysisSEQ ID NO: 1172603 bpNOV29a,CGTGGGCCGGGGTCGCGCAGCGGGCTGTGGGCGCGCCCGGAGGAGCGACCGCCGCAGTTCTCGAGCTCG148476-01DNA SequenceCCAGCTGCATTCCCTCCGCGTCCGCCCCACGCTTCTCCCGCTCCGGGCCCCGCAATGGCCCAGGCAGTGTGGTCGCGCCTCGGCCGCATCCTCTGGCTTGCCTGCCTCCTGCCCTGGGCCCCGGCAGGGGTGGCCGCAGGCCTGTATGAACTCAATCTCACCACCGATAGCCCTGCCACCACGGGAGCGGTGGTGACCATCTCGGCCAGCCTGGTGGCCAAGGACAACGGCAGCCTGGCCCTGCCCGCTGACGCCCACCTCTACCGCTTCCACTGGATCCACACCCCGCTGGTGCTTACTGGCAAGATGGAGAAGGGTCTCAGCTCCACCATCCGTGTGGTCGGCCACGTGCCCGGGGAATTCCCGGTCTCTGTCTGGGTCACTGCCGCTGACTGCTGGATGTGCCAGCCTGTGGCCAGGGGCTTTGTGGTCCTCCCCATCACAGAGTTCCTCGTGGGGGACCTTGTTGTCACCCAGAACACTTCCCTACCCTGGCCCAGCTCCTATCTCACTAAGACCGTCCTGAAAGTCTCCTTCCTCCTCCACGACCCGAGCAACTTCCTCAAGACCGCCTTGTTTCTCTACAGCTGGGACTTCGGGGACGGGACCCAGATGGTGACTGAAGACTCCGTGGTCTATTATAACTATTCCATCATCGGGACCTTCACCGTGAAGCTCAAAGTGGTGGCGGAGTGGGAAGAGGTGGAGCCGGATGCCACGAGGGCTGTGAAGCAGAAGACCGGGGACTTCTCCGCCTCGCTGAAGCTGCAGGAAACCCTTCGAGGCATCCAAGTGTTGGGGCCCACCCTAATTCAGACCTTCCAAAAGATGACCGTGACCTTGAACTTCCTGGGGAGCCCTCCTCTGACTGTGTGCTGGCGTCTCAAGCCTGAGTGCCTCCCGCTGGAGGAAGGGGAGTGCCACCCTGTGTCCGTGGCCAGCACAGCGTACAACCTGACCCACACCTTCAGGGACCCTGGGGACTACTGCTTCAGCATCCGGGCCGAGAATATCATCAGCAAGACACATCAGTACCACAAGATCCAGGTGTGGCCCTCCAGAATCCAGCCGGCTGTCTTTGCTTTCCCATGTGCTACACTTATCACTGTGATGTTGGCCTTCATCATGTACATGACCCTGCGGAATGCCACTCAGCAAAAGGACATGGTGGAGGTGGCTGATTTTGACTTTTCCCCCATGTCTGACAAGAACCCGGAGCCACCCTCTGGGGTCAGGTGCTGCTGCCAGATGTGCTGTGGGCCTTTCTTGCTGGAGACTCCATCTGAGTACCTGGAAATTGTTCGTGAGAACCACGGGCTGCTCCCGCCCCTCTATAAGTCTGTCAAAACTTACACCGTGTGA+E,UN GCACTCCCCCTCCCCACCCCATCTCAGTGTTAACTGACTGCTGACTTGGAGTTTCCAGCAGGGTGGTGTGCACCACTGACCAGGAGGGGTTCATTTGCGTGGGGCTGTTGGCCTGGATCATCCATCCATCTGTACAGTTCAGCCACTGCCACAAGCCCCTCCCTCTCTGTCACCCCTGACCCCAGCCATTCACCCATCTGTACAGTCCAGCCACTGACATAAGCCCCACTCGGTTACCACCCCCTTGACCCCCTACCTTTGAAGAGGCTTCGTGCAGGACTTTGATGCTTGGGGTGTTCCGTGTTGACTCCTAGGTGGGCCTGGCTGCCCACTGCCCATTCCTCTCATATTGGCACATCTGCTGTCCATTGGGGGTTCTCAGTTTCCTCCCCCAGACAGCCCTACCTGTGCCAGAGAGCTAGAAAGAAGGTCATAAAGGGTTAAAAATCCATAACTAAAGGTTGTACACATAGATGGGCACACTCACAGAGAGAAGTGTGCATGTACACACACCACACACACACACACACACACACACACAGAAATATAAACACATGCGTCACATGGGCATTTCAGATGATCAGCTCTGTATCTGGTTAAGTCGGTTGCTGGGATGCACCCTGCACTAGAGCTGAAAGGAAATTTGACCTCCAAGCAGCCCTGACAGGTTCTGGGCCCGGGCCCTCCCTTTGTGCTTTGTCTCTGCAGTTCTTGCGCCCTTTATAAGGCCATCCTAGTCCCTGCTGGCTGGCAGGGGCCTGGATGGGGGGCAGGACTAATACTGAGTGATTGCAGAGTGCTTTATAAATATCACCTTATTTTATCGAAACCCATCTGTGAAACTTTCACTGAGGAAAAGGCCTTGCAGCGGTAGAAGAGGTTGAGTCAAGGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGTGGATCACGAGATCAGGAGATCGAGACCACCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAAAATACAAAAAGTTAGCCGGGCGTGGTGGTGGGTGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGTGCGAACCCGGGAGGCGGAGCTTGCAGTGAGCCCAGATGGCGCCACTGCACTCCAGCCTGAGTGACAGAGCGAGACTCTGTCTCCAORF Start: ATG at 122ORF Stop: TGA at 1427SEQ ID NO: 118435 aaMW at 48328.6 kDNOV29a,MAQAVWSRLGRILWLACLLPWAPAGVAAGLYELNLTTDSPATTGAVVTISASLVAKDNGSLALPADACG148476-01Protein SequenceHLYRFHWIHTPLVLTGKMEKGLSSTIRVVGHVPGEFPVSVWVTAADCWMCQPVARGFVVLPITEFLVGDLVVTQNTSLPWPSSYLTKTVLKVSFLLHDPSNFLKTALFLYSWDFGDGTQMVTEDSVVYYNYSIIGTFTVKLKVVAEWEEVEPDATRAVKQKTGDFSASLKLQETLRGIQVLGPTLIQTFQKMTVTLNFLGSPPLTVCWRLKPECLPLEEGECHPVSVASTAYNLTHTFRDPGDYCFSIRAENIISKTHQYHKIQVWPSRIQPAVFAFPCATLITVMLAFIMYMTLRNATQQKDMVEVADFDFSPMSDKNPEPPSGVRCCCQMCCGPFLLETPSEYLEIVRENHGLLPPLYKSVKTYTV


[0523] Further analysis of the NOV29a protein yielded the following properties shown in Table 29B.
161TABLE 29BProtein Sequence Properties NOV29aPSort analysis:0.6400 probability located in plasma membrane; 0.4600 probability located inGolgi body; 0.3700 probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 25 and 26


[0524] A search of the NOV29a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 29C.
162TABLE 29CGeneseq Results for NOV29aNOV29aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB65220Human PRO1383 (UNQ719) 1 . . . 435423/435 (97%)0.0protein sequence SEQ ID 1 . . . 423423/435 (97%)NO:241 - Homo sapiens, 423aa. [WO200073454-A1,Dec. 7, 2000]AAM25558Human protein sequence 1 . . . 435423/435 (97%)0.0SEQ ID NO: 1073 - Homo 46 . . . 468423/435 (97%)sapiens, 468 aa.[WO200153455-A2,Jul. 26, 2001]AAU29113Human PRO polypeptide 1 . . . 435423/435 (97%)0.0sequence #90 - Homo 1 . . . 423423/435 (97%)sapiens, 423 aa.[WO200168848-A2,Sep. 20, 2001]AAY66697Membrane-bound protein 1 . . . 435423/435 (97%)0.0PRO1383 - Homo sapiens, 1 . . . 423423/435 (97%)423 aa. [WO9963088-A2,Dec. 9, 1999]ABG43580Human peptide encoded by185 . . . 239 55/55 (100%)7e−24genome-derived single exon 1 . . . 55 55/55 (100%)probe SEQ ID 33245 - Homosapiens, 55 aa.[WO200186003-A2,Nov. 15, 2001]


[0525] In a BLAST search of public sequence datbases, the NOV29a protein was found to have homology to the proteins shown in the BLASTP data in Table 29D.
163TABLE 29DPublic BLASTP Results for NOV29aNOV29aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueCAD39014Hypothetical protein - Homo 1 . . . 435435/435 (100%)0.0sapiens (Human), 435 aa. 1 . . . 435435/435 (100%)AAH30793Similar to QNR-71 protein - 1 . . . 435423/435 (97%)0.0Homo sapiens (Human), 423 1 . . . 423423/435 (97%)aa.CAD38628Hypothetical protein - Homo 27 . . . 435396/409 (96%)0.0sapiens (Human), 397 aa 1 . . . 397396/409 (96%)(fragment).AAM31285Surface layer protein B -177. . . 339 40/166 (24%)1e−04Methanosarcina mazei331 . . . 476 64/166 (38%)(Methanosarcina frisia), 879aa.AAH32783Similar to glycoprotein150 . . . 212 23/64 (35%)0.001(transmembrane) nmb -254 . . . 317 36/64 (55%)Homo sapiens (Human), 572aa.


[0526] PFam analysis predicts that the NOV29a protein contains the domains shown in the Table 29E.
164TABLE 29EDomain Analysis of NOV29aPfam DomainNOV29a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 30

[0527] The NOV30 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 30A.
165TABLE 30ANOV30 Sequence AnalysisSEQ ID NO: 1193273 bpNOV30a,CTCCCGGAGATGCCCCGCGGCAGCCGCGCTCGGGCTCTAAGAGAAAAAGGAGTTGGAATACAGAATCG148818-01DNA SequenceGCCCATCCTTTCCAGGAGAAAGACCACTGCAGGTCAGAAGAGCAGGTCTCAGGACAGCAGGGGCAGCTGCCTCTCTCTCTGAAGCATGGCTCAGGTGTGGAGAAGGGTTTCAGAACACTTCTGGGAATCCGTCATTAACAGCTGAAGAGAAGACGATTACAGAAAAGCACCTTGAATTATGCCCTAGACCCAAGCAAGAAACCACCACATCTAAAAGCACCAGTGGGCTTACAGACATAACATGGAGCTCCAGTGGAAGTGATTTGTCGGATGAAGATAAGACACTTTCTCAGTTACAGAGAGATGAATTACAGTTTATCGACTGGGAGATTGACAGTGACAGGGCAGAGGCTAGTGACTGTGATGAATTTGAAGATGACGAGGGTGCTGTGGAAATCTCAGACTGTGCTTCTTGTGCAAGTAATCAGTCTTTGACAAGTGATGAGAAGCTGTCGGAGCTTCCCAAGCCAAGTTCTATAGAAATTTTAGAGTATTCATCAGATAGTGAAAAAGAAGATGATTTGGAAAATGTCCTACTCATTGATTCAGAATCCCCTCACAAATACCACGTGCAGTTTGCATCGGATGCAAGACAGATTATGGAGAGACTGATAGATCCAAGGACAAAATCAACAGAGACCATTTTGCATACACCTCAGAAACCCACAGCTAAGTTTCCCAGGACTCCAGAAAATTCAGCAAAGAAGAAGCTTTTAAGAGGTGGACTAGCAGAAAGACTAAATGGACTGCAGAATCGAGAGAGATCTGCTATTTCTTTGTGGAGACATCAATGTATTTCTTACCAAAAGACACTTTCAGGTAGAAAATCTGGTGTATTAACTGTGAAAATTTTAGAGCTGCATGAGGAATGTGCCATGCAAGTTGCCATGTGTGAGCAGTTATTGGGGTCACCAGCCACCAGCTCCTCCCAAAGTGTGGCTCCCAGGCCTGGAGCTGGCCTGAAAGTTCTCTTCACCAAGGAGACTGCAGGCTACCTCAGGGGCCGTCCCCAGGACACTGTCCGGATCTTCCCTCCCTGGCAAAAACTGATTATTCCAAGTGGAAGTTGCCCTGTTATTCTGAATACTTACTTTTGTGAGAAAGTTGTTGCCAAAGAAGATTCAGAAAAAACTTGTGAAGTGTACTGTCCGGACATACCCCTTCCAAGAAGAAGCATCTCTTTGGCCCAGATGTTTGTAATTAAGGGTCTAACAAATAATTCACCTGAAATCCAGGTTGTGTGTAGTGGTGTAGCCACTACAGGGACAGCCTGGACCCATGGGCACAAAGAAGCAAAACAGCGCATCCCAACCAGCACTCCCCTGAGGGATTCTCTCCTGGATGTGGTGGAAAGCCAGGGAGCTGCCTCGTGGCCAGGAGCTGGAGTCCGAGTGGTGGTGCAAAGAGTGTATTCTCTTCCCAGCAGAGACAGCACCAGGGGTCAGCAGGGGGCCAGCTCAGGACACACAGACCCAGCTGGAACTCGAGCCTGCCTTCTGGTACAAGATGCCTGTGGAATGTTCGGTGAAGTGCACTTGGAGTTCACCATGTCGAAGGCAAGACAGTTGGAAGGGAAGTCTTGCAGCCTGGTGGGAATGAAGGTTCTACAGAAAGTCACCAGAGGAAGGACAGCGGGGATTTTCAGTTTGATTGACACCCTGTGGCCCCCAGCGATACCTCTGAAAACACCTGGCCGCGACCAGCCCTGTGAAGAGATAAAAACTCATCTGCCTCCTCCAGCCTTGTGTTACATCCTCACAGCTCATCCAAATCTGGGACAAATTGATATAATTGACGAAGACCCCATTTATAAGCTTTACCAGCCTCCAGTTACCCGCTGCTTAAGAGACATTCTCCAGATGAATGATCTTGGTACCCGTTGCAGTTTCTATGCCACGGTGATTTACCAAAAACCACAGCTGAAGAGTCTGCTGCTTCTGGAGCAAAGGGAGATCTGGCTGCTAGTGACCGATGTCACTCTGCAAACGAAGGAGGAGAGAGACCCCAGGCTCCCCAAAACCCTGCTGGTCTATGTGGCCCCCTTGTGTGTGCTGGGCTCTGAAGTCCTGGAGGCACTCGCTGGGGCTGCCCCTCACAGCCTCTTCTTCAAGGACGCTCTCCGTGACCAGGGTCGGATTGTTTGTGCTGAACGAACTGTCCTCTTGCTTCAGAAGCCCCTTTTGAGTGTGGTCTCTGGTGCAAGTTCCTGTGAGCTGCCTGGCCCGGTGATGCTCGACAGCCTGGACTCTGCAACACCTGTCAACTCCATCTGCAGTGTTCAAGGCACTGTGGTTGGCGTGGACGAGAGCACTGCTTTCTCATGGCCTGTGTGTGACATGTGTGGCAACGGGAGATTGGAACAGAGGCCGGAAGACAGAGGCGCCTTTTCCTGTGGGGACTGCTCCCGGGTGGTCACATCTCCTGTTCTCAAGAGGCACCTGCAGGTCTTCCTGGACTGCCGCTCAAGACCGCAGTGCAGAGTGAAGGTCAAGGTAGGAGCCAGGCCAGAGCACGCACGCACTCCTAGCTCACTCCAACATAGCGAAGCTGTTGCAGCGCAGCATTTCCTCCCTGCTGAGGTTTGCCGCCGGTGAAGATGGGAGCTACGAAGTGAAGAGTGTCCTCGGAAAGGAAGTGGGGTTGTTAAATTGTTTTGTCCAGTCCGTAACCGCCCACCCGACCAGCTGCATTGGATTGGAGGAAATCGAGCCTCTGAGTGCAGGAGGGGCCTCTGCAGAACACTAGCGGTTGCCGCAGGATCTGTGAACTTTGCAATGTGGCTGCAAGGGTGGTGGTGGTGGTGGTGATTTGGGGTAGTTATTTGTTAACTATGGACACAGTGAACGTAGTTTACGATCTTGAAATGAAACTTAGATTTTTCTGGGGAAATGTTCAGATACAGTTTTGTGAACTGTAAATCAAAATACCTTTTTCTACAGTTTATCTTTTATTTTCTGCAAATTTAGGAACATATTTACTCGTTTTCACATTGAATCTTAAGTTTAAGCTCTTCATTTGGTATTTAGGCAATATATGAGAAAAAAATTTTTTTTGTTCATTTGTAATTTTAACAAGTTGAACATTTTACCATGATTGAACATGTTTTTATTACAGTATTTAACATTCCCCCAAAGAATACCCTGCAAAGTGTAAACCTTTGTCCCATACTGTGATATTACTGTTCTGCTACAATAAATGTCAAACCTORF Start: ATG at 10ORF Stop: TGA at 2659SEQ ID NO: 120883 aaMW at 97134.4 kDNOV30a,MPRGSRARGSKRKRSWNTECPSFPGERPLQVRRAGLRTAGAAASLSEAWLRCGEGFQNTSGNPSLTACG148818-01Protein SequenceEEKTITEKHLELCPRPKQETTTSKSTSGLTDITWSSSGSDLSDEDKTLSQLQRDELQFIDWEIDSDRAEASDCDEFEDDEGAVEISDCASCASNQSLTSDEKLSELPKPSSIEILEYSSDSEKEDDLENVLLIDSESPHKYHVQFASDARQIMERLIDPRTKSTETILHTPQKPTAKFPRTPENSAKKKLLRGGLAERLNGLQNRERSAISLWRHQCISYQKTLSGRKSGVLTVKILELHEECAMQVAMCEQLLGSPATSSSQSVAPRPGAGLKVLFTKETAGYLRGRPQDTVRIFPPWQKLIIPSGSCPVILNTYFCEKVVAKEDSEKTCEVYCPDIPLPRRSISLAQMFVIKGLTNNSPEIQVVCSGVATTGTAWTHGHKEAKQRIPTSTPLRDSLLDVVESQGAASWPGAGVRVVVQRVYSLPSRDSTRGQQGASSGHTDPAGTRACLLVQDACGMFGEVHLEFTMSKARQLEGKSCSLVGMKVLQKVTRGRTAGIFSLIDTLWPPAIPLKTPGRDQPCEEIKTHLPPPALCYILTAHPNLGQIDIIDEDPIYKLYQPPVTRCLRDILQMDLGTRCSFYATVIYQKPQLKSLLLLLEQREIWLLVTDVTLQTKEERDPRLPKTLLVYVAPLCVLGSEVLEALAGAAPHSLFFKDALRDQGRIVCAERTVLLLQKPLLSVVSGASSCELPGPVMLDSLDSATPVNSICSVQGTVVGVDESTAFSWPVCDMCGNGRLEQRPEDRGAFSCGDCSRVVTSPVLKRHLQVFLDCRSRPQCRVKVKVGARPEHARTPSSLQHSEAVAAQHFLPAEVCRR


[0528] Further analysis of the NOV30a protein yielded the following properties shown in Table 30B.
166TABLE 30BProtein Sequence Properties NOV30aPSort analysis:0.4400 probability located in plasma membrane; 0.4284 probability located inmitochondrial inner membrane; 0.2397 probability located in mitochondrialmatrix space; 0.2397 probability located in mitochondrial intermembranespaceSignalP analysis:No Known Signal Sequence Predicted


[0529] A search of the NOV30a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 30C.
167TABLE 30CGeneseq Results for NOV30aNOV30aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAG76160Human colon cancer antigen 175 . . . 206 29/32 (90%)5e−08protein SEQ ID NO:6924 - 12 . . . 43 30/32 (93%)Homo sapiens, 43 aa.[WO200122920-A2,Apr. 5, 2001]ABB60641Drosophila melanogaster 59 . . . 25551/199 (25%)0.004polypeptide SEQ ID NO 284 . . . 46285/199 (42%)8715 - Drosophilamelanogaster, 476 aa.[WO200171042-A2,Sep. 27, 2001]ABP39618Staphylococcus epidermidis 17 . . . 23752/224 (23%)0.017ORF amino acid sequence1831 . . . 204888/224 (39%)SEQ ID NO:4463 -Staphylococcus epidermidis,2137 aa. [U.S. Pat. No. 6,380,370-B1,Apr. 30, 2002]AAB30809Amino acid sequence of a 64 . . . 19632/133 (24%)0.030prion-like amyloidogenic 30 . . . 15461/133 (45%)protein - Saccharomycescerevisiae, 414 aa.[WO200075324-A2,Dec. 14, 2000]AAW10529Saccharomyces cerevisiae 64 . . . 19632/133 (24%)0.030nucleolin like protein, NOL1 - 30 . . . 15461/133 (45%)Saccharomyces cerevisiae(S288C), 414 aa.[U.S. Pat. No. 5,470,971-A,Nov. 28, 1995]


[0530] In a BLAST search of public sequence datbases, the NOV30a protein was found to have homology to the proteins shown in the BLASTP data in Table 30D.
168TABLE 30DPublic BLASTP Results for NOV30aNOV30aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ14159KIAA0146 protein - Homo 1 . . . 851850/851 (99%)0.0sapiens (Human), 918 aa 4 . . . 854851/851 (99%)(fragment).Q8R305Hypothetical 43.0 kDa protein -527 . . . 851223/325 (68%) e−125Mus musculus (Mouse), 393 6 . . . 325258/325 (78%)aa.Q96BI5Hypothetical 23.1 kDa protein -701 . . . 851150/151 (99%)1e−82Homo sapiens (Human), 218 4 . . . 154151/151 (99%)aa (fragment).P97399Dentin sialophosphoprotein 86 . . . 196 29/112 (25%)0.029precursor (Dentin matrix581 . . . 692 50/112 (43%)protein-3) (DMP-3)[Contains: Dentinphosphoprotein (Dentinphosphophoryn) (DPP) Dentinsialoprotein (DSP)] - Musmusculus (Mouse), 934 aa.Q01538Myelin transcription factor I 67 . . . 193 32/136 (23%)0.051(MYT1) (MYTI) (Proteolipid221 . . . 355 65/136 (47%)protein binding protein)(PLPB1) - Homo sapiens(Human), 1121 aa.


[0531] PFam analysis predicts that the NOV30a protein contains the domains shown in the Table 30E.
169TABLE 30EDomain Analysis of NOV30aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV30a Match RegionRegionValuezf-B_box792 . . . 83711/49 (22%)0.4832/49 (65%)



Example 31

[0532] The NOV31 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 31A.
170TABLE 31ANOV31 Sequence AnalysisSEQ ID NO: 121144 bpNOV31a,ACCATGAACCACACTGTCCAAACCCTCTTCACTCCTGCCAACACCGGCCGCTCCACCAACCATGAGACC149332-01DNA SequenceTGCTCAAGGAGAAGCATGAGGTGGCTGTGCTGGGGGCACCCCACAACCCTGTGCCTCCAGCGTTCACCATGATCCACATCTGCAGTGAGACCTCCCTGCCCGACCATGTCGTCTGGTCCCTATTCCCACCCTCTTCAAGAATTCCTGCTGCCCGGACTTCATAGCATTCATCTACTCTGTGAAGTCTAGGGACAGGAAGATGGTTGGTGACCTGACTGGGGCCCAGGCCTGTGTCTCCACTGCCAAGTGCCTGAACATCTGGGCCCTGGCTCTGGGCATCCTCCTGACCATTCTGCTCATCATCATCTCAGTGCTGATCTTCCAAGTCTCTCGATAGAACAGGAGACAGCATCCGGGCCAGGAGCTCTGCCCAACCTORF Start: ATG at 4ORF Stop: TAG at 403SEQ ID NO: 122133 aaMW at 14678.1 kDNOV31a,MNHTVQTLFTPANTGRSTNHEMLKEKHEVAVLGAPHNPVPPAFTMIHICSETSVPDHVVWSLFNTLFCG149332-01Protein SequenceKNSCCPDFIAFIYSVKSRDRKMVGDLTGAQACVSTAKCLNIWALALGILLTILLIIISVLIFQVSR


[0533] Further analysis of the NOV31a protein yielded the following properties shown in Table 31B.
171TABLE 31BProtein Sequence Properties NOV31aPSort analysis:0.7000 probability located in plasma membrane; 0.2000 probability located inendoplasmic reticulum (membrane); 0.1242 probability located in microbody(peroxisome); 0.1000 probability located in mitochondrial inner membraneSignalP analysis:No Known Signal Sequence Predicted


[0534] A search of the NOV31a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 31C.
172TABLE 31CGeneseq Results for NOV31aNOV31aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABP43105Human ovarian antigen 1 . . . 130104/130 (80%)3e−56HVCBB19, SEQ ID11 . . . 140113/130 (86%)NO:4237 - Homo sapiens,143 aa. [WO200200677-A1,Jan. 3, 2002]AAE13797Human lung tumour-specific 1 . . . 130104/130 (80%)3e−56protein SALT-T8 - Homo 1 . . . 130113/130 (86%)sapiens, 133 aa.[WO200172295-A2,Oct. 4, 2001]AAB44456Human lung tumour-specific 1 . . . 130104/130 (80%)3e−56antigen encoded by cDNA 1 . . . 130113/130 (86%)#71 - Homo sapiens, 133 aa.[WO200060077-A2,Oct. 12, 2000]AAY29544Human lung tumour protein 1 . . . 130104/130 (80%)3e−56SALT-T8 predicted amino 1 . . . 130113/130 (86%)acid sequence - Homosapiens, 133 aa.[WO9938973-A2,Aug. 5, 1999]AAY93594Protein encoded by I-8U gene 1 . . . 130102/130 (78%)3e−55from interferon-inducible 1 . . . 130112/130 (85%)gene family - Homo sapiens,133 aa. [WO200035473-A2,Jun. 22, 2000]


[0535] In a BLAST search of public sequence datbases, the NOV31a protein was found to have homology to the proteins shown in the BLASTP data in Table 31D.
173TABLE 31DPublic BLASTP Results for NOV31aNOV31aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ01628Interferon-induced1 . . . 130104/130 (80%)7e−56transmembrane protein 31 . . . 130113/130 (86%)(Interferon-inducible protein1-8U) - Homo sapiens(Human), 133 aa.AAH22439Interferon induced1 . . . 130103/130 (79%)6e−55transmembrane protein 31 . . . 130112/130 (85%)(1-8U) - Homo sapiens(Human), 133 aa.S17182interferon-induced protein1 . . . 130102/130 (78%)8e−551-8U - human, 133 aa.1 . . . 130112/130 (85%)Q01629Interferon-induced1 . . . 133 98/133 (73%)2e−51transmembrane protein 21 . . . 132110/133 (82%)(Interferon-inducible protein1-8D) - Homo sapiens(Human), 132 aa.Q95MQ3Interferon-induced protein1 . . . 124 78/124 (62%)9e−391-8U - Bos taurus (Bovine),1 . . . 124 97/124 (77%)146 aa.


[0536] PFam analysis predicts that the NOV31a protein contains the domains shown in the Table 31E.
174TABLE 31EDomain Analysis of NOV31aPfam DomainNOV31a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 32

[0537] The NOV32 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 32A.
175TABLE 32ANOV32 Sequence AnalysisSEQ ID NO: 123702 bpNOV32a,GGTGGTCAGGGCGCCATGGCGCTGTCCTGGCTGCACCCCGTCGAGCTTGCGCTCTTTGCTGCCGCCTCG149649-01DNA SequenceTCCTGTGCGGGGGCCGTGGCGGCCGCGGCGATGACTCGGACCCAGGGCTCCTTCAGTGGTAGATGTCCTGCTACTTTGTAGCTGGGGCCTCTGGCCTCTTGGCCCTCTACTGCCTCCTGCTTTTGCTCTTCTGGATCTACAGCAGCTGCATCGAGGACTCCCACAGGGGTGCTATAGGGCTGCGCATTGCACTGGCCATCTCAGCTATAGCCGTCTTCCTGGTCTTGGTGTCTGCCTGTATCCTTCGATTTGGCACCAGGTCTCTCTGCAACTCCATCATCTCCTTGAACACTACAATTAGCTGTTCTGAAGCCCAGAAAATTCCATGGACACCCCCTGGAACTGCTCTGCAGTTTTACTCCAACCTACACAATGCTGAAACCTCTTCTTGGGTGAATTTGGTATTGTGGTGTGTGGTCTTGGTGCTCCAGGTCGTGCAGTGGAAGTCTGAAGCCACCCCATACCGGCCTCTGGAGAGGGGTGACCCTGAGTGGAGCTCTGAGACAGATGCTCTCGTTGGGTCACGCCTTTCCCATTCCTGAAGAATAAGCGGAGTGCTTCCTGCAGCCORF Start: ATG at 16ORF Stop: TGA at 673SEQ ID NO: 124219 aaMW at 23550.0 kDNOV32a,MALSWLQRVELALFAAAFLCGAVAAAAMTRTQGSFSGRCPLYGVATLNGSSLALSRPSAPSLCYFVACG149649-01Protein SequenceGASGLLALYCLLLLLFWIYSSCIEDSHRGAIGLRIALAISAIAVFLVLVSACILRFGTRSLCNSIISCLNTTISCSEAQKIPWTPPGTALQFYSNLHNAETSSWVNLVLWCVVLVLQVVQWKSEATPYRPLERCDPEWSSETDALVGSRLSHSSEQ ID NO: 125708bpNOV32b,GTGCTGCAATTCGCCCTTCATGGCGCTGTCCTGGCTGCAGCGCGTCGAGCTTGCGCTCTTTGCTCCCCG149649-02DNA SequenceGCCTTCCTGTCCGGGGCCGTCGCGGCCGCGGCGATGACTCGGACCCAGGGCTCCTTCAGTGGTAGATGTCCCCTGTATGGTGTGGCCACCCTGAATGGCTCCTCCCTCGCCTTATCCCGTCCCTCAGCACCATCCCTGTGCTACTTTGTAGCTGGGGCCTCTCGCCTCTTGGCCCTCTACTGCCTCCTGCTTTTGCTCTTCTGGATCTACACCAGCTGCATCGAGGACTCCCACAGAGGTGCTATAGGGCTGCGCATTGCACTGGCCATCTCAGCTATAGCCGTCTTCCTGGTCTTGCTGTCTCCCTGTATCCTTCGATTTGGCACCAGGTCTCTCTGCAACTCCATCATCTCTTTGAACACTACAATTAGCTGTTCTCAAGCCCAGAAAATTCCATCGACACCCCCTGGAACTGCTCTGCAGTTTTACTCCAACCTACACAATGCTGAAACCTCTTCTTGGCTGAATTTGGTATTGTGGTGTGTGGTCTTGGTGCTCCAGGTCGTGCAGTGGAAGTCTGAAGCCACCCCATACCGGCCTCTGCAGAGGGGTGACCCTGAGTCGAGCTCTGACACAGATGCTCTCGTTGGGTCACGCCTTTCCCATTCCTGAACAATAAGCGGAGTGCTAAGGGCCATTCCORF Start: ATG at 20ORF Stop: TGA at 677SEQ ID NO: 126219aaMW at 23550.0 kDNOV32b,MALSWLQRVELALFAAAFLCGAVAAAAMTRTQGSFSGRCPLYGVATLNGSSLALSRPSAPSLCYFVACG149649-02Protein SequenceGASGLLALYCLLLLLFWIYSSCIEDSHRGAICLRIALAISAIAVFLVLVSACILRFGTRSLCNSIISLNTTISCSEAQKIPWTPPGTALQFYSNLHNAETSSNVNLVLWCVVLVLQVVQWKSEATPYRPLERGDPEWSSETDALVGSRLSHS


[0538] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 32B.
176TABLE 32BComparison of NOV32a against NOV32b.NOV32a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV32b1 . . . 219160/219 (73%)1 . . . 219160/219 (73%)


[0539] Further analysis of the NOV32a protein yielded the following properties shown in Table 32C.
177TABLE 32CProtein Sequence Properties NOV32aPSort analysis:0.6400 probability located in plasma membrane; 0.4600 probability located inGolgi body; 0.3700 probability located in endoplasmic reticulum (membrane);0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 25 and 26


[0540] A search of the NOV32a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 32D.
178TABLE 32DGeneseq Results for NOV32aNOV32aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU12071Human PHT1 variant protein 19 . . . 13840/134 (29%)3.3from Caco-2 cells - Homo 14 . . . 14254/134 (39%)sapiens, 577 aa.[WO200192468-A2,Dec. 6, 2001]AAU12070Human PHT1 variant protein 19 . . . 13840/134 (29%)3.3from BeWo cells - Homo 14 . . . 14254/134 (39%)sapiens, 577 aa.[WO200192468-A2,Dec. 6, 2001]AAU12069Human PHT1 protein splice 19 . . . 13840/134 (29%)3.3variant - Homo sapiens, 295 14 . . . 14254/134 (39%)aa. [WO200192468-A2,Dec. 6, 2001]AAU12068Human PHT1 protein isolated 19 . . . 13840/134 (29%)3.3from Caco-2 cells - Homo 14 . . . 14254/134 (39%)sapiens, 577 aa.[WO200192468-A2,Dec. 6, 2001]ABB91559Herbicidally active 32 . . . 125 20/94 (21%)5.6polypeptide SEQ ID NO 770 -603 . . . 689 42/94 (44%)Arabidopsis thaliana, 763aa. [WO200210210-A2,Feb. 7, 2002]


[0541] In a BLAST search of public sequence datbases, the NOV32a protein was found to have homology to the proteins shown in the BLASTP data in Table 32E.
179TABLE 32EPublic BLASTP Results for NOV32aNOV32aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9CY241810059G22Rik protein - 1 . . . 219177/219 (80%)e−100Mus musculus (Mouse), 219 1 . . . 219191/219 (86%)aa.Q9D8L71810059G22Rik protein - 1 . . . 219176/219 (80%)e−100Mus musculus (Mouse), 219 1 . . . 219191/219 (86%)aa.Q9FLD9Similarity to114 . . . 182 24/69 (34%)0.60hedgehog-interacting protein -611 . . . 676 35/69 (49%)Arabidopsis thaliana(Mouse-ear cress), 677 aa.O83823Hypothetical protein TP0851 - 96 . . . 143 20/48 (41%)1.4Treponema pallidum, 724 aa.280 . . . 326 28/48 (57%)Q9JVM8Hypothetical protein132 . . . 188 15/58 (25%)5.2NMA0774 - Neisseria156 . . . 213 30/58 (50%)meningitidis (serogroup A),352 aa.


[0542] PFam analysis predicts that the NOV32a protein contains the domains shown in the Table 32F.
180TABLE 32FDomain Analysis of NOV32aPfam DomainNOV32a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 33

[0543] The NOV33 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 33A.
181TABLE 33ANOV33 Sequence AnalysisSEQ ID NO: 1272105 bpNOV33a,AGGTGCAAAGCCTGGTGCCCCCGAGCCCTGCGGAGCTCGGGGCCAGCATGGCCCCCACGCTGCAACAGCG149680-01DNA SequenceGCGTACCGGAGGCGCTGGTGCATGGCCTGCACGGCTGTGCTGGAGAACCTCTTCTTCTCTCCTGTACTCCTGGGCTGGGGCTCCCTGTTGATCATTCTGAAGAACGAGGGCTTCTATTCCAGCACGTGCCCAGCTGAGAGCAGCACCAACACCACCCAGGATGAGCAGCGCAGGTGCCCTTGCTTCACTGCGTCCTGCACCCTCATGGCCCTGGCCTCCCGGGACGTCGAAGCTCTGTCTCCGTTGATATTCCTGGCGCTGTCCCTGAATGGCTTTGGTGGCATCTGCCTAACGTTCACTTCACTCACGCTGCCCAACATGTTTGGCAACCTGCGCTCCACGTTAATGGCCCTCATGATTGGCTCTTACGCCTCTTCTGCCATTACGTTCCCAGGAATCAAGCTGATCTACGATGCCGGTGTGGCCTTCGTGGTCATCATGTTCACCTGGTCTGGCCTGGCCTGCCTTATCTTTCTGAACTGCACCCTCAACTGGCCCATCGAAGCCTTTCCTGCCCCTGAGGAAOTCAATTACACGAAGAAGATCAAGCTCAGTGGGCTGGCCCTGGACCACAAGGTGACAGGTGACCTCTTCTACACCCATGTGACCACCATGGGCCAGAGGCTCAGCCAGAAGGCCCCCAGCCTGGAGGACGGTTCOGATGCCTTCATGTCACCCCAGGATGTTCGGGGCACCTCAGAAAACCTTCCTGAGAGGTCTGTCCCCTTACGCAAGAGCCTCTGCTCCCCCACTTTCCTGTGGAGCCTCCTCACCATGGGCATGACCCAGCTGCGGATCATCTTCTACATGGCTGCTGTGAACAAGATGCTGGAGTACCTTGTGACTGGTGGCCAGGAGCATGAGACAAATGAACAGCAACAAAAGGTCGCAGAGACAGTTGGGTTCTACTCCTCCGTCTTCGGGGCCATGCAGCTGTTGTGCCTTCTCACCTGCCCCCTCATTCGCTACATCATGGACTGCCGGATCAAGGACTGCGTGGACGCCCCAACTCAGGGCACTGTCCTCGCAGATGCCAGGGACGGGGTTGCTACCAAATCCATCAGACCACGCTACTGCAAGATCCAAAAGCTCACCAATGCCATCAGTGCCTTCACCCTGACCAACCTGCTGCTTGTGGGTTTTGGCATCACCTGTCTCATCAACAACTTACACCTCCAGTTTGTGACCTTTGTCCTGCACACCATTGTTCGACGTTTCTTCCACTCAGCCTGTGGGAGTCTCTATGCTGCAGTGTTCCCATCCAACCACTTTGGGACGCTGACAGGCCTGCAGTCCCTCATCAGTGCTGTGTTCGCCTTGCTTCAGCAGCCACTTTTCATGGCGATGGTGGGACCCCTGAAAOGACAGCCCTTCTGGGTGAATCTGCGCCTCCTCCTATTCTCACTCCTGGGATTCCTGTTGCCTTCCTACCTCTTCTATTACCGTGCCCGGCTCCAGCAGGAGTACGCCGCCAATGGGATGGGCCCACTCAAGGTCCTTAGCGGCTCTGAGGTGACCCCATAGACTTCTCAGACCAAGGGCCTCTGCTCCCCCACTTTCCTGTGGAGCCTCCTCACCATGGGCATGACCCAGCTGCGGATCATCTTCTACATGCACATAGAGCCATGGCCGTAGATTTATAAATACCAAGAGAAGTTCTATTTTTGTAAAGACTGCAAAAAGGAGGAAAAAAAAACCTTCAAAAACGCCCCCTAAGTCAACGCTCCATTGACTGAAGACACTCCCTATCCTAGAGGGCTTGAGCTTTCTTCCTCCTTGGGTTGCAGGACACCAGGGTGCCTCTTATCTCCTTCTAGCGGTCTGCCTCCTGGTACCTCTTGGGGCGATCGGCAAACAGGCTACCCCTGAGGTCCCATGTGCCATGAGTGTGCACACATGCATGTGTCTGTGTATGTGTGAATGTGAGAGAGACACAGCCCTCCTTTCAGAAGGAAAGGGGCCTGAGGTGCCAGCTGTCTCCTCGGTTACGGGTTGGCCGTCGGCCCCTTCCAGGGCCAGGAGGTCAGGTTCCTCAGCGORF Start: ATG at 47ORF Stop: TAG at 1589SEQ ID NO: 128514 aaMW at 56699.6 kDNOV33a,MAPTLQQAYRRRWWMACTAVLENLFFSAVLLGWGSLLIILKNEGFYSSTCPAESSTNTTQDEQRRWPCG149680-01Protein SequenceCFTASCTLMALASRDVEALSPLIFLALSLNGFGGICLTFTSLTLPNMFGNLRSTLMALMIGSYASSAITFPGIKLIYDAGVAFVVIMFTWSGLACLTFLNCTLNWPIEAFPAPEEVNYTKKIKLSGLALDHKVTGDLFYTHVTTMGQRLSQKAPSLEDGSDAFMSPQDVRGTSENLPERSVPLRKSLCSPTFLWSLLTMGMTQLRIIFYMAAVNKMLEYLVTGGQEHETNEQQQKVAETVGFYSSVFGAMQLLCLLTCPLIGYIMDWRIKDCVDAPTQGTVLGDARDGVATXSIRPRYCKIQKLTNAISAFTLTNLLLVGFGITCLINNLHLQFVTFVLHTIVRFGGHSACGSLYAAVFPSNHFGTLTGLQSLISAVFALLQQPLFMAMVGPLKGEPFWVNLGLLLFSLLGFLLPSYLFYYRARLQQEYAANGMGPLKVLSGSEVTASEQ ID NO: 1292284 bpNOV33b,AGGTGCAAAGCCTGGTGCCCCGAGCCCTGCGGAGCTCGGCCCAGCATGCCCCCCACGCTGCAACACCG149680-02DNA SequnceGCGTACCGGAGGCGCTGGTGGATGGCCTCCACGGCTGTGCTGGAGAACCTCTTCTTCTCTGCTGTACTCCTGGGCTGGGGCTCCCTGTTGATCATTCTGAAGAACGAGGGCTTCTATTCCAGCACGTGCCCAGCTGTTCCTGGTGTCATGTCCTGCGCCCTCCCTTCCCCCTCCTCAGCTGAGAGCAGCACCAACACCACCCAGGATGAGCAGCGCAGGTCGCCAGGCTGTGACCAGCAGGACGAGATGCTCAACCTGGGCTTCACCATTGCTTCCTTCGTGCTCAGCGCCACCACCCTGCCACTGGGGATCCTCATGGACCGCTTTGGCCCCCGACCCGTGCGGCTGGTTGGCAGTGCCTGCTTCACTGCGTCCTGCACCCTCATGGCCCTGCCCTCCCGGGACGTGGAAGCTCTGTCTCCGTTGATATTCCTGGCGCTGTCCCTGAATGGCTTTGGTGGCATCTGCCTAACGTTCACTTCACTCACGCTGCCCAACATGTTTGGGAACCTGCGCTCCACGTTAATGGCCCTCATGATTGGCTCTTACGCCTCTTCTGCCATTACGTTCCCAGGAATCAAGCTGATCTACGATGCCGCTGTGGCCTTCGTGGTCATCATGTTCACCTGGTCTGGCCTGGCCTGCCTTATCTTTCTGAACTGCACCCTCAACTGGCCCATCGAAGCCTTTCCTGCCCCTGAGGAAGTCAATTACACCAAGAAGATCAAGCTCAGTGGGCTGGCCCTGGACCACAAGGTGACAGGTGACCTCTTCTACACCCATGTGACCACCATGGGCCAGAGGCTCAGCCAGAAGGCCCCCAGCCTGGAGGACGGTTCGGATGCCTTCATGTCACCCCAGGATGTTCGGGGCACCTCAGAAAACCTTCCTGAGAGGTCTGTCCCCTTACGCAAGAGCCTCTGCTCCCCCACTTTCCTGTGGAGCCTCCTCACCATGGGCATGACCCAGCTGCGGATCATCTTCTACATGGCTGCTGTGAACAAGATGCTGGAGTACCTTGTGACTGGTGGCCAGGAGCATGACACAAATCAACAGCAACAAAAGGTGGCAGAGACAGTTGGGTTCTACTCCTCCGTCTTCGGGGCCATGCAGCTGTTGTGCCTTCTCACCTGCCCCCTCATTGGCTACATCATGGACTGGCGGATCAAGGACTGCGTGGACGCCCCAACTCAGGCCACTGTCCTCGCAGATGCCAGGGACGGGGTTGCTACCAAATCCATCAGACCACGCTACTGCAACATCCAAAAGCTCACCAATGCCATCAGTGCCTTCACCCTGACCAACCTGCTGCTTGTGGGTTTTGGCATCACCTGTCTCATCAACAACTTACACCTCCAGTTTGTGACCTTTGTCCTGCACACCATTGTTCGAGGTTTCTTCCACTCAGCCTGTGGGAGTCTCTATGCTGCAGTGTTCCCATCCAACCACTTTGGGACGCTGACAGGCCTGCAGTCCCTCATCAGTGCTGTGTTCGCCTTGCTTCAGCAGCCACTTTTCATGGCGATGGTGGGACCCCTGAAAGGAGAGCCCTTCTGGGTGAATCTGGGCCTCCTGCTATTCTCACTCCTGGGATTCCTGTTGCCTTCCTACCTCTTCTATTACCGTGCCCGGCTCCAGCAGGAGTACGCCGCCAATGGGATGGGCCCACTGAAGGTGCTTAGCGGCTCTGAGGTGACCGCATAGACTTCTCAGACCAAGGGACCTGGATGACAGGCAATCAAGGCCTGAGCAACCAAAAGGAGTGCCCCATATGGCTTTTCTACCTGTAACATGCACATAGAGCCATCGCCGTAGATTTATAAATACCAAGACAAGTTCTATTTTTCTAAAGACTGCAAAAAGGAGGAAAAAAAACCTTCAAAAACGCCCCCTAAGTCAACGCTCCATTGACTGAAGACAGTCCCTATCCTAGAGGGGTTGAGCTTTCTTCCTCCPTGGGTTGGAGGAGACCAGGGTGCCTCTTATCTCCTTCTAGCGGTCTGCCTCCTGCTTTCTTCCTCCTTGGGTTGGAGGAGACCAGGGTGCCTCTTATCTCCTTCTAGCGGTCTGCCTCCTGGTACCTCTTGGGGGGATCGGCAAACAGGCTACCCCTGAGGTCCCATGTGCCATGAGTGTGCACACATGCATGTGTCTGTGTATGTGTGAATCTGAGAGAGACACAGCCCTCCTTTCAGAAGGAAAGGGGCCTGAGGTGCCAGCTGTGTCCTGGGTTAGGGGTTGGGGGTCGGCCCCTTCCAGGGCCAGGAGGTCAGGTTCCTCAGCGORF Start: ATG at 47ORF Stop: TAG at 1769SEQ ID NO: 130574 aaMW at 62959.8 kDNOV33b,MAPTLQQAYRRRWWMACTAVLENLFFSAVLLGWGSLLIILKNEGFYSSTCPAVPGVMCWALPSPSSACG149680-02Protein SequenceESSTNTTQDEQRRWPGCDQQDEMLNLGFTIGSVLSATTLPLGILMDRFGPRPVRLVGSACFTASCTLMALASRDVEALSPLIFLALSLNGFGGICLTFTSLTLPNMFGNLRSTLMALMIGSYASSAITFPGIKLIYDAGVAFVVIMFTWSGLACLIFLNCTLNWPTEAFPAPEEVNYTKKIKLSGLALDHKVTGDLFYTHVTTMGQRLSQKAPSLEDGSDAFMSPQDVRGTSENLPERSVPLRKSLCSPTFLWSLLTMGMTQLRIIFYMAAVNKMLEYLVTGGQEHETNEQQQKVAETVGFYSSVFGAMQLLCLLTCPLIGYIMDWRIKDCVDAPTQGTVLGDARDGVATKSIRPRYCKIQKLTNAISAFTLTNLLLVGFCITCLINNLHLQFVTFVLHTIVRGFFHSACGSLYAAVFPSNHFGTLTGLQSLISAVFALLQQPLFMAMVGPLKGEPFWVNLGLLLFSLLGFLLPSYLFYYRARLQQEYAANGMCPLKVLSGSEVTA


[0544] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 33B.
182TABLE 33BComparison of NOV33a against NOV33b.NOV33a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV33b1 . . . 514494/574 (86%)1 . . . 574494/574 (86%)


[0545] Further analysis of the NOV33a protein yielded the following properties shown in Table 33C.
183TABLE 33GProtein Sequence Properties NOV33aPSort analysis:0.6450 probability located in mitochondrial inner membrane; 0.6000probability located in plasma membrane; 0.5634 probability located inmitochondrial intermembrane space; 0.4367 probability located inmitochondrial matrix spaceSignalP analysis:Cleavage site between residues 45 and 46


[0546] A search of the NOV33a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 33D.
184TABLE 33DGeneseq Results for NOV33aNOV33aIdentities/GeneseqProtein/Organism/lengthResidues/MatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAY44897Human PB39 protein1 . . . 514514/559 (91%)0.0dysregulated in prostate1 . . . 559514/559 (91%)cancer - Homo sapiens, 559aa. [W0200005376-A1,03 Feb. 2000]AAW64554Human liver cell clone1 . . . 514514/559 (91%)0.0HP10301 protein - Homo 1 . . . 559514/559 (91%)sapiens, 559 aa.[W09821328-A2,22 May 1998]AAY44898Human PB39 variant protein1 . . . 467467/512 (91%)0.0dysregulated in prostate1 . . . 512467/512 (91%)cancer - Homo sapiens, 560aa. [W0200005376-A1,03 Feb. 2000]AAB94537Human protein sequence68 . . . 514 447/447 (100%)0.0SEQ ID NO: 15277 - Homo 39 . . . 485 447/447 (100%)sapiens, 485 aa.[EP1074617-A2,07 Feb. 2001]AAE05505Mature human HC-like68 . . . 495 250/436 (57%)e−38protein #2 - Homo sapiens,85 . . . 505 320/436 (73%)529 aa. [W0200155435-A2,02 Aug. 2001]


[0547] In a BLAST search of public sequence datbases, the NOV33a protein was found to have homology to the proteins shown in the BLASTP data in Table 33E.
185TABLE 33EPublic BLASTP Results for NOV33aProteinNOV33aIdentities/AccessionResidues/MatchSimilarities forExpectNumberProtein/Organism/LengthResiduesthe Matched PortionValueO75387PB39 (Prostate cancer 1 . . . 514514/559 (91%)0.0OVEREXPRESSED gene 1) 1 . . . 559514/559 (91%)- Homo sapiens (Human),559 aa.Q9D0H72610016F07Rik protein -11 . . . 512417/552 (75%)0.0Mus musculus (Mouse), 654101 . . . 652 453/552 (81%)aa.AAH27923Hypothetical 62.7 kDa 1 . . . 495297/560 (53%)e−154protein - Homo sapiens 1 . . . 545374/560 (66%)(Human), 569 aa.BAC11450CDNA FLJ90692 fis, clone68 . . . 495250/436 (57%)e−138PLACE1006443, weakly16 . . . 436320/436 (73%)similar to Homo sapiensPB39 mRNA - Homo sapiens(Human), 460 aa.BAC11383CDNA FLJ90587 fis, clone68 . . . 495249/436 (57%)e−137PLACE1000914, weakly16 . . . 436320/436 (73%)similar to Homo sapiens PB39 mRNA - Homo sapiens (Human), 460 aa.


[0548] PFam analysis predicts that the NOV33a protein contains the domains shown in the Table 33F.
186TABLE 33FDomain Analysis of NOV33aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV33a Match RegionRegionValue



Example 34

[0549] The NOV34 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 34A.
187TABLE 34ANOV34 Sequence AnalysisSEQ ID NO: 131458 bpNOV34a,AATCGCCTTACATGATGTGGCCCATGCACACCCCACTGCTGCTGCTGACTGCCTTGATGGTGGCCGTCG149777-01DNA SequenceGGCCGGGAGTGCCTCGGCCCAATCTAGGACCTTGGCAGGTGGCATCCATGCCACAGACCTCAATGACAAGAGTGTGCAGCGTGCCCTGGACTTTGCCATCAGCGAGTACAACAAGGTCATTAATAAGGATGAGTACTACAGCCGCCCTCTGCAGGTGATGGCTGCCTACCAGCAGATCGTGGGTGGGGTGAACTACTACTTCAATGTGAAGTTCGGTCGAACCACATGCACCAAGTCCCAGCCCAACTTGGACAACTGTCCCTTCAATGACCAGCCAAAACTGAAAGAGGAAGAGTTCTGCTCTTTCCAGATCAATGAAGTTCCCTCGGAGGATAAAATTTCCATTCTGAACTACAAGTGCCGGAAAGTCTAGGGGTCTGTGCAAGGCCTGORF Start: ATG at 12ORF Stop: TAG at 438SEQ ID NO: 132142 aaMW at 16133.4 kDNOV34a,MMWPMHTPLLLLTALMVAVAGSASAQSRTLAGCIHATDLNDKSVQRALDFAISEYNKVINKDEYYSRCG149777-01Protein SequencePLQVMAAYQQIVGGVNYYFNVKFGRTTCTKSQPNLDNCPFNDQPKLKEEEFCSFQIMEVPWEDKISILNYKCRKVSEQ ID NO: 133285 bpNOV34b,AACATGATGTGGCCCATGCACACCCCACTGCTGCTGCTGACTGCCTTGATGGTGGCCGTGGCCGGGACG149777-02DNA SequenceGTGCCTCGGCCCAATCTAGGACCTTGGCAGGTGGCATCCATGCCACAGACCTCAATGACAAGAGTGTGCAGCGTGCCCTGGACTTTGCCTTCAATGACCAGCCAAAACTGAAAGAGGAAGAGTTCTGCTCTTTCCAGATCAATGAAGTTCCCTGGGAGGATAAAATTTCCATTCTGAACTACAAGTGCCGGAAAGTCTAGGGGTCTCTGCAAGGCCTGORF Start: ATG at 4ORF Stop: TAG at 265SEQ ID NO: 13487 aaMW at 9781.2 kDNOV34b,MMWPMHTPLLLLTALMVAVAGSASAQSRTLAGGIHATDLNDKSVQRALDFAFNDQPKLKEEEFCSFQCG149777-02Protein SequenceINEVPWEDKISILNYKCRKVSEQ ID NO: 135280 bpNOV34c,CACCAACCTTATGATGTCGCCCATGCACACCCCACTGCTGCTGCTGACTGCCTTGATCGTGGCCGTG257474374 DNASequenceGCCGGGAGTCCCTCGGCCCAATCTAGGACCTTGGCAGGTGGCATCCATGCCACAGACCTCAATGACAAGAGTGTGCAGCGTGCCCTGGACTTTGCCTTCAATGACCAGCCAAAACTGAAAGAGGAAGAGTTCTGCTCTTTCCAGATCAATGAAGTTCCCTGGGAGGATAAAATTTCCATTCTGAACTACAAGTGCCGGAAAGTCCTCGAGGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 13693 aaMW at 10423.0 kDNOV34c,TKLMMWPMHTPLLLLTALMVAVAGSASAQSRTRLAGGIHATDLNDKSVQRALDFAFNDQPKLKEEEFC257474374Protein SequenceSFQINEVPWEDKISILNYKCRKVLEGSEQ ID NO: 137205 bpNOV34d,cACCAAGCTTCAATCTAGGACCTTGGCAGGTGGCATCCATGCCACAGACCTCAATGACAAGAGTGTG257474386 DNASequenceCAGCGTGCCCTGGACTTTGCCTTCAATGACCAGCCAAAACTGAAAGAGGAGAGTTCTGCTCTTTCCAGATCAATGAAGTTCCCTGGGAGGATAAAATTTCCATTCTGAACTACAAGTGCCGGAAAGTCCTCGAGGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 13868 aaMW at 7827.8 kDNOV34d,TKLQSRTLAGGIHATDLNDKSVQRALDFAFNDQPKLKEEEFCSFQINEVPWEDKISILNYKCRKVLE257474386Protein SequenceG


[0550] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 34B.
188TABLE 34BComparison of NOV34a against NOV34b through NOV34d.Identities/NOV34a Residues/Similarities forProtein SequenceMatch Residuesthe Matched RegionNOV34b 1 . . . 14267/142 (47%)1 . . . 8769/142 (48%)NOV34c 1 . . . 14267/142 (47%)4 . . . 9069/142 (48%)NOV34d26 . . . 14258/117 (49%)4 . . . 6560/117 (50%)


[0551] Further analysis of the NOV34a protein yielded the following properties shown in Table 34C.
189TABLE 34CProtein Sequence Properties NOV34aPSort analysis:0.7857 probability located in outside; 0.1000 probability located inendoplasmic reticulum (membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000 probability located in lysosome(lumen)SignalP analysis:Cleavage site between residues 26 and 27


[0552] A search of the NOV34a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 34D.
190TABLE 34DGeneseq Results for NOV34aNOV34aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAO15149Human cystatin D protein1 . . . 142142/142 (100%)2e−80sequence - Homo sapiens,1 . . . 142142/142 (100%)142 aa. [US2002052476-A1,02 May 2002]AAE02408Human cystatin D precursor1 . . . 142142/142 (100%)2e−80protein - Homo sapiens, 1421 . . . 142142/142 (100%)aa. [US6235708-B1,22 May 2001]AAE04437Human cystatin D1 . . . 142142/142 (100%)2e−80homologue protein - Homo 1 . . . 142142/142 (100%)sapiens, 142 aa.[US6245529-B1,12 Jun. 2001]AAE11210Human cystatin D (CysD)1 . . . 142142/142 (100%)2e−80protein - Homo sapiens, 1421 . . . 142142/142 (100%)aa. [US6300477-B1,09 Oct. 2001]AAY81137Human wild-type cystatin D21 . . . 142 122/122 (100%)3e−68- Homo sapiens, 122 aa.1 . . . 122122/122 (100%)[WO200008159-A2,17 Feb. 2000]


[0553] In a BLAST search of public sequence datbases, the NOV34a protein was found to have homology to the proteins shown in the BLASTP data in Table 34E.
191TABLE 34EPublic BLASTP Results for NOV34aProteinNOV34aIdentities/AccessionResidues/MatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueA47142cystatin D precursor - human,1 . . . 142142/142 (100%)7e−80142 aa.1 . . . 142142/142 (100%)P28325Cystatin D precursor - Homo 1 . . . 142141/142 (99%)6e−79sapiens (Human), 142 aa.1 . . . 142141/142 (99%)P09228Cystatin SA precursor1 . . . 141 80/141 (56%)2e−42(Cystatin S5) - Homo sapiens 1 . . . 141108/141 (75%)(Human), 141 aa.P01036Cystatin S precursor (Salivary1 . . . 141 79/141 (56%)2e−41acidic protein-1) (Cystatin1 . . . 140109/141 (77%)SA-III) - Homo sapiens (Human), 141 aa.P01037Cystatin SN precursor5 . . . 141 78/137 (56%)5e−40(Salivary cystatin SA-1)5 . . . 140105/137 (75%)(Cystain SA-I) - Homo sapiens (Human), 141 aa.


[0554] PFam analysis predicts that the NOV34a protein contains the domains shown in the Table 34F.
192TABLE 34FDomain Analysis of NOV34aIdentities/NOV34aSimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValuecystatin32 . . . 13845/113 (40%)1.6e-3999/113 (88%)



Example 35

[0555] The NOV35 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 35A.
193TABLE 35ANOV35 Sequence AnalysisSEQ ID NO: 1391733 bpNOV35a,GACACCGTGCGTACCGGCCTCCGGCCCCCGGCCACCGGGGCGGACCGCGGACCCCAGGCCATGTCCG150005-01DNA SequenceCCATGAAAAGAGTTTTTTGGTGTCTGGGGACAACTATCCTCCCCCCAACCCTGGATATCCGGGGGGGCCCCACCCACCCATGCCCCCCTATGCTCAGCCTCCCTACCCTGGGGCCCCTTACCCACAGCCCCCTTTCCAGCCCTCCCCCTACGGTCAGCCAGGGTACCCCCATGGCCCCAGCCCCTACCCCCAAGCCCTACCCCCAGGGCCCCTACCCACAAGAGGGCTACCCACAGCCCCCCTACCCCCAGAGCCCCTTCCCCCCCAACCCCTATGGACAGCCATTCCCAGGACAACACCCTGACTCACCCCAGCATGGAAACTACCAGGAGGAGGGTCCCCCATCCTACTATGACAACCAGGACTTCCCTGCCACCAACTGGGATAAGAGCATCCGACAGGCCTTCATCCGCAAGGTCTTCCTAGTGCTGACCTTGCAGCTGTCGGTGACCCTGTCCACGGTGTCTGTGTTCACTTTTGTTGCGGAGGTGAAGGGCTTTGTCCGGGAGAATGTCTGGACCTACTATGTCTCCTATGCTGTCTTCTTCATCTCTCTCATCGTCCTCAGCTGTTGTGCGGACTTCCGGCGAAAGCACCCCTGGAACCTTCTTGCACTGTCGGTCCTCACCGCCAGCCTGTCGTACATGGTGGGGATGATCGCCAGCTTCTACAACACCGAGGCAGTCATCATGGCCGTGGGCATCACCACAGCCGTCTGCTTCACCGTCGTCATCTTCTCCATGCAGACCCGCTACGACTTCACCTCATGCATGGGCGTGCTCCTGGTGAGCATGGTGGTGCTCTTCATCTTCGCCATTCTCTGCATCTTCATCCGGAACCGCATCCTGGAGATCGTGTACGCCTCAACTGGGGCTCTGCTGCTGACCTGCTTCCTCGCAGTGCACACCCAGCTGCTGCTGGGGAACAAGCAGCTGTCCCTGACCCCAGAAGAGTATGTGTTTGCTGCGCTGAACCTGTACACAGACATCATCAACATCTTCCTGTACATCCTCACCATCATTGGCCCGCCAAGGAGTAGCCGAGCTCCAGCTCGCTGTCCCCGCTCAGGTGGCACGGCTGCCCCTGGCACGGCAGTGCCAGCTGTACTTCCCCTCTCTCTTGTCCCCAGGCACAGCCTAGGCAAAAGGATGCCTCTCTCCAACCCTCCTGTATGTACACTGCAGATACTTCCATTTGGACCCGCTGTGGCCACAGCATGGGCCCCTTTAGTCCTCCCGCCCCCGCCAAGGGGCACCAAGGCCACCTTTCCGTGCCACCTCCTGTCTACTCATTGTTGCATGAGCCCTGTCTGCCAGCTTCCACCCCAGGGACTGGGGGTCAGCGAACAGGTCCAAGGATTGAGCTCAATGGGTGAGGGTGCACGTCTTCCCTCCTGTCCCAGCTCCCCAGCCTGCCGTAGAGCACCCCTCCCCTCCCCCCCAAGTGCTGCCCTCTGGGGACATGGCGGAGTGGGGGTCTTATCCCCTCAGGGCAGAGGATCGCATGTTTCAGGGCAGAGAGGAAGCCTTCCTCTCAATTTGTTGTCAGTGAAATTCCAATAAATGGGATTTGCTCTCTGCAAAAAAAAAAAAAAAAAAAAAAAAAGGAAGCAAAGCCCCCAACCGACAGCACCATCAAATCAGCAACTCACAACCGACCGACACCAORF Start: ATG at 70ORF Stop: TAA at 1627SEQ ID NO: 140519 aaMW AT 56107.8 kDNOV35a,MKRVFWCLGTTILPPTLDIRGGPSHPCPPMLSLPTLGPLTHSPLSSPPPTVSQGTPMAPPAPTPKPYPCG150005-01Protein SequenceQGPYPQEGYPQGPYPQSPFPPNPYGQPFPGQDPDSPQHGNYQEEGPPSYYDNQDFPATNWDKSIRQAFIRKVFLVLTLQLSVTLSTVSVFTFVAEVKGFVRENVWTYYVSYAVFFISLIVLSCCGDFRRKHPWNLVALSVLTASLSYMVGMIASFYNTEAVINAVGITTAVCFTVVIFSMQTRYDFTSCMGVLLVSMVVLFIFAILCIFIRNRILEIVYASTGALLLTCFLAVDTQLLLGNKQLSLSPEEYVFAALNLYTDIINIFLYILTIIGFPRSSRAPARCARSGGTAAPGTAVPAVLPLSLVPRHSLGKRMPLSNPPVCTLQILPFGPAVATAWAPLVLPPPPRGTKATFPCHLLSTHCCMSPVCQLPPQGLGVSEQVQGLSSMGEGARLPSCPSSPAWRRAPLPSPPSAALWGHGGVGVLSPEGRGWHVSGERGSLPLNLLSVKFQ


[0556] Further analysis of the NOV35a protein yielded the following properties shown in Table 35B.
194TABLE 35BProtein Sequence Properties NOV35aPSort analysis:0.6000 probability located in plasma membrane; 0.5510 probability located inmitochondrial inner membrane; 0.4000 probability located in Golgi body;0.3000 probability located in endoplasmic reticulum (membrane)SignalP analysis:Cleavage site between residues 22 and 23


[0557] A search of the NOV35a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 35C.
195TABLE 35CGeneseq Results for NOV35aNOV35aIdentities/GeneseqProtein/Organism/LengthResidues/MatchSimilarities forExpectIdentifier[Patent #, Date]Residuesthe Matched RegionValueAAW62612Human glutamate-binding1 . . . 341337/365 (92%)0.0protein (HGLUBP) - Homo 1 . . . 365337/365 (92%)sapiens, 369 aa.[W09821241-A1,22 May 1998]ABB12050Human leukocyte HP0080449 . . . 496 339/463 (73%)e−180protein homologue, SEQ ID1 . . . 461350/463 (75%)NO:2420 - Homo sapiens,461 aa. [WO200157188-A2,09 Aug. 2001]AAW64535Human leukocyte cell clone2 . . . 341293/364 (80%)e−161HP00804 protein - Homo 4 . . . 367297/364 (81%)sapiens, 371 aa.[WO9821328-A2,22 May 1998]AAY48255Human prostate50 . . . 328 240/304 (78%)e−129cancer-associated protein 411 . . . 304246/304 (79%)- Homo sapiens, 321 aa.[DE19811193-A1,16 Sep. 1999]ABB60180Drosophila melanogaster 67 . . . 344 134/291 (46%)1e−65polypeptide SEQ ID NO36 . . . 323 190/291 (65%)7332 - Drosophila melanogaster, 324 aa.[WO200171042-A2,27 Sep. 2001]


[0558] In a BLAST search of public sequence datbases, the NOV35a protein was found to have homology to the proteins shown in the BLASTP data in Table 35D.
196TABLE 35DPublic BLASTP Results for NOV35aNOV35aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueS19586N-methyl-D- 1 . . . 513380/517 (73%)0.0aspartate receptor 1 . . . 516403/517 (77%)glutamate-bindingchain—rat,516 aa.Q63863NMDA receptor 1 . . . 513379/517 (73%)0.0glutamate-binding 1 . . . 516402/517 (77%)subunit—Rattussp, 516 aa.Q9ESF4LAG protein— 22 . . . 341277/322 (86%) e−158Mus musculus 21 . . . 341287/322 (89%)(Mouse), 345 aa.O43836NMDA receptor197 . . . 399172/207 (83%)4e−83 glutamate-binding 6 . . . 208178/207 (85%)chain—Homosapiens (Human),208 aa(fragment).AAM68613CG3798-PA— 67 . . . 344134/291 (46%)3e−65 Drosophila 25 . . . 312190/291 (65%)melanogaster(Fruit fly),313 aa.


[0559] PFam analysis predicts that the NOV35a protein contains the domains shown in the Table 35E.
197TABLE 35EDomain Analysis of NOV35aPfamNOV35aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueUPF0005157 . . . 344 76/208 (37%)7.9e−79180/208 (87%)



Example 36

[0560] The NOV36 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 36A.
198TABLE 36ANOV36 Sequence AnalysisSED ID NO: 1411675 bpNOV36a,ATGGAGGGCGCAGGGCCCCGGGGGGCCGGGCCGGCGCGGCGCCGGGGAGCCGGGGGGCCGCCGTCACCG150189-01DNA SequenceCGCTGCTGCCGTCGCTGCTGCTGCTGCTGCTGCTCTGGATGCTGCCGGACACCGTGGCGCCTCAGGAACTGAACCCTCGCGGCCGCAACGTGTGCCGTGCTCCCGGCTCCCAGGTGCCCACGTGCTCCGCTGGCTGGAGGCAGCAAGGGGACGAGTGTGGGATTGCGGTGTGCGAAGGCAACTCCACGTGCTCAGAGAACGAGGTGTGCGTGAGGCCTGGCGAGTGCCGCTGCCGCCACGGCTACTTCGGTGCCAACTGCGACACCAAGTGCCCGCGCCAGTTCTGCGGCCCCGACTGCAAGGAGCTGTGTAGCTGCCACCCACACGGGCAGTGCGAGGACGTGACAGGCCGGTGCAAGGGCCAGCAGCCGTGCACGGTGGCCGAGGGCCGCTGCTTGACGTGCGAGCCCGGCTGGAACGGAACCAAGTGCGACCAGCCTTGCGCCACCGGTTTCTATGGCGAGGGCTGCAGCCACCGCTGTCCGCCATGCCGCGACGGGCATGCCTGTAACCATGTCACCGGCAAGTGTACGCGCTGCAACGCGGGCTGGATCGGCGACCGGTGCGAGACCAACTGTAGCAATGCCACTTACGGCGAGGACTGCGCCTTCGTGTGCGCCGACTGCGGCAGCGGACACTGCGACTTCCAGTCGGGGCGCTGCCTGTGCAGCCCTGGCGTCCACGGGCCCCACTGTAACGTGACGTGCCCGCCCGGACTCCACGGCGCGGACTGTGCTCAGGCCTCCAGCTGCCACGAGGACTCGTGCGACCCGGTCACTGGTGCCTGCCACCTAGAAACCAACCAGCGCAAGGGCGTGATGGGCGCGGGCGCGCTGCTCGTCCTGCTCGTCTGCCTGCTGCTCTCGCTGCTTGGCTGCTGCTGCGCTTGCCGCGGCAAGGACCCTACGCGCCGGGAGCTTTCGCTTGGGAGGAAGAAGGCGCCGCACCGACTATGCGGGCGCTTCAGTCGCATCAGCATGAAGCTGCCCCGGATCCCGCTCCGGAGGCAGAAACTACCCAAAGTCGTAGTGGCCCACCACGACCTGGATAACACACTCAACTGCAGCTTCCTGGAGCCACCCTCAGGGCTGGAGCAGCCCTCACCATCCTGGTCCTCTCGGGCCTCCTTCTCCTCGTTTGACACCACTGATGAAGGCCCTGTGTACTGTGTACCCCATGAGGGTAAGTAAGGCCCTACCTGGGCATCACTCCAGCCCAGTGAAATGTTCCCATGGAAAAGCTGTGTTCTGGGTGGGACACAGGAGAAGGGCAGGCAGCATGGAGAGGAAGGCCTTGGCCATGCTGGTACCTGAGGGTTGCCCACAGAGCTGAGGCCATAGAGCTGGACTCTGCTGCTCAGTACCGGAGACAGGTGTGGGGAGATGGGTAGGCCACAGCCCAGGGTTGCTCCTCGGGGAAAGTAGGCAGAGACAAGTTTCTGGGCTTAGGTAGGGGGTGGCAGAGGAGACAGGAGGAAGGGATCCACAGAGTATGGGAGTTGGATCCACACACAGCCTTTGATCCACAGATAGCAGAAAGGAGCCTGATGGTCTGGCATTCTGCCCCTAGAATTCAGCGGCCGCTTTTTTTTTTTTTTTTTTTTTTTTTORF Start: ATG at 1ORF Stop: TAA at 1255SEQ ID NO: 142418 aaMW at 44706.5 kDNOV36a,MEGAGPRGAGPARRRGAGGPPSPLLPSLLLLLLLWMLPDTVAPQELNPRGRNVCRAPGSQVPTCCAGCG150189-01Protein SequenceWRQQGDECGIAVCEGNSTCSENEBCBRPGECRCRHGYFGANCDTKCPRQFWGPDCKELCSCHPHGQCEDVTGRCKGQQPCTVAEGRCLTCEPGWNGTKCDQPCATCFYGEGCSHRCPPCRDACNHVTGKCTRCNAGWIGDRCETKCSNGTYGEDCAFVCADCGSGHCDFQSGRCLCSPGVHGPHCNVTCPPGLHGADCAQACSCHEDSCDPVTGACHLETNQRKGVMCAGALLVLLVCLLLSLLGCCCACRGKDPTRRELSLGRKKAPHRLCGRFSRISMXLPRIPLRRQKLPKVVVAHHDLDNTLNCSFLEPPSGLEQPSPSWSSRASFSSFDTTDEGPVYCVPHEGK


[0561] Further analysis of the NOV36a protein yielded the following properties shown in Table 36B.
199TABLE 36BProtein Sequence Properties NOV36aPSort0.6000 probability located in plasma membrane; 0.4000analysis:probability located in Golgi body; 0.3000 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in mitochondrial inner membraneSignalPCleavage site between residues 44 and 45analysis:


[0562] A search of the NOV36a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 36C.
200TABLE 36CGeneseq Results for NOV36aNOV36aIdentities/Protein/Residues/Similarities forGeneseqOrganism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM47668MOL8b protein 64 . . . 416298/370 (80%)0.0sequence—Homo202 . . . 564308/370 (82%)sapiens, 865 aa.[WO200181578-A2, 1 NOV.2001]AAM47667MOL8a protein 64 . . . 416298/370 (80%)0.0sequence—Homo271 . . . 633308/370 (82%)sapiens, 884 aa.[WO200181578-A2, 1 NOV.2001]AAB60394Human nurse cell 64 . . . 416298/370 (80%)0.0receptor202 . . . 564308/370 (82%)B6TNC#10a,SEQ ID NO:24—Homosapiens, 866 aa.[JP2000308492-A, 7 NOV. 2000]AAB60393Human nurse cell 64 . . . 416298/370 (80%)0.0receptor202 . . . 564308/370 (82%)B6TNC#10,SEQ ID NO:21—Homosapiens, 866 aa.[JP2000308492-A, 7 NOV. 2000]AAB60395Human nurse cell 64 . . . 416298/375 (79%)0.0receptor202 . . . 569308/375 (81%)B6TNC#10b,SEQ ID NO:26—Homosapiens, 871 aa.[JP2000308492-A, 7 NOV. 2000]


[0563] In a BLAST search of public sequence datbases, the NOV36a protein was found to have homology to the proteins shown in the BLASTP data in Table 36D.
201TABLE 36DPublic BLASTP Results for NOV36aNOV36aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueQ96GP6Unknown113 . . . 416282/304 (92%)0.0(Protein for 5 . . . 296286/304 (93%)IMAGE:4125591)—Homosapiens (Human),598 aa(fragment).CAD29035Sequence 17 1 . . . 205153/205 (74%)2e−88from Patent 1 . . . 175158/205 (76%)WO0214358—Homo sapiens(Human), 254 aa.BAC02696SREC-5—Homo 28 . . . 414172/462 (37%)7e−76sapiens (Human), 6 . . . 455224/462 (48%)744 aa.Q14162Endothelial cells 35 . . . 414153/405 (37%)2e−75scavenger154 . . . 541195/405 (47%)receptor precursor(Acetyl LDLreceptor)—Homosapiens (Human),830 aa.BAC02694SREC-3—Homo 35 . . . 367130/355 (36%)1e−64sapiens (Human),154 . . . 497168/355 (46%)569 aa.


[0564] PFam analysis predicts that the NOV36a protein contains the domains shown in the Table 36E.
202TABLE 36EDomain Analysis of NOV36aPfamNOV36aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValuelaminin_EGF 80 . . . 12213/60 (22%)0.1329/60 (48%)laminin_EGF126 . . . 18319/66 (29%) 0.03941/66 (62%)laminin_EGF186 . . . 22816/60 (27%)0.3328/60 (47%)laminin_EGF231 . . . 27118/60 (30%)0.2231/60 (52%)



Example 37

[0565] The NOV37 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 37A.
203TABLE 37ANOV37 Sequence AnalysisSEQ ID NO: 1431025 bpNOV37a,TTGTGTCTCGCGCCGGCCCGCCAGCCCACCGGCGCCTGCGGCGGGGCGCGAAGCCATGGAGCCGCGCG150267-01DNA SequenceGGCCCTCGTCACGGCGCTCAGCCTCGGCCTCAGCCTGTGCTCCCTGGGCCTGCTCGTCACGCCCATCTTCACCGACCACTGGTACGAGACCGACCCCCGGCGCCACAAGGAGAGCTGCGAGCGCAGCCGCGCGGGCGCCGACCCCCCGGACCAGAAGAACCGCCTGATGCCGCTGTCGCACCTGCCGCTGCGGGACTCGCCCCCGCTGGGCCGCCGGCTGCTCCCGGGCGGCCCGGGGCGCGCCGACCCCGAGTCCTGGCGCTCGCTCCTGGGCCTCGGCGGGCTGGACGCCGAGTCCGGCCGGCCCCTCTTCGCCACCTACTCGGGCCTCTGGAGGAAGTGCTACTTCCTGGGCATCGACCGGGACATCGACACCCTCATCCTGAAAGGTATTGCGCAGCGATGCACGGCCATCAAGTACCACTTTTCTCAGCCCATCCGCTTGCGAAACATTCCTTTTAATTTAACCAAGACCATACAGCAAGATGAGTGGCACCTGCTTCCGATATTTTGCACCATTTCCCTCTGTACTTATGCCGCCAGTATCTCCTATGATTTGAACCGGCTCCCAAAGCTAATTTATAGCCTGCCTGCTGATGTGGAACATGGTTACAGCTGGTCCATCTTTTGCGCCTGGTGCAGTTTAGGCTTTATTGTGGCAGCTGGAGGTCTCTGCATCGCTTATCCGTTTATTAGCCGGACCAAGATTGCACAGCTAAAGTCTGGCAGAGACTCCACGGTAATGACTGTCCTCACTGGGCCTGTCCACAGTGCGAGCGACTCCTGACGGGGACAGCGCGGAGTTCAGGAGTCCAAGCACAAAGCGCTCTTTTACATTCCAACCTGTTGCCTGCCAGCCCTTTCTGGATTACTGATAGAAAATCATGCAAAACCTCCCAACCTTTCTAAGGACAAGACTACTGTGGATTCAAGTGCTTTAATGACTATTTATGCGTTGAORF Start: ATG at 57ORF Stop: TGA at 810SEQ ID NO: 144251 aaMW at 28111.1 kDNOV37a,MEPRALVTALSLGLSLCSLGLLVTAIFTDHWYETDPRRHKESCERSRAGADPPDQKNRLMPLSHLPLCG150267-01Protein SequenceRDSPPLGRRLLPGGPGRADPESWRSLLGLGGLDAECGRPLFATYSGLWRKCYFLGIDRDIDTLILKGIAQRCTAIKYHFSQPIRLRNIPFNLTKTIQQDEWHLLRIGCTISLCTYAASISYDLNRLPKLIYSLPADVEHGYSWSIFCAWCSLGFIVAAGGLCIAYPFISRTKIAQLKSGRDSTV


[0566] Further analysis of the NOV37a protein yielded the following properties shown in Table 37B.
204TABLE 37BProtein Sequence Properties NOV37aPSort0.4600 probability located in plasma membrane; 0.3000analysis:probability located in lysosome (membrane); 0.2800probability located in endoplasmic reticulum (membrane);0.2196 probability located in microbody (peroxisome)SignalPCleavage site between residues 26 and 27analysis:


[0567] A search of the NOV37a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 37C.
205TABLE 37CGeneseq Results for NOV37aIdentities/NOV37aSimilaritiesProtein/Residues/for theGeneseqOrganism/LengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABG61908Prostate cancer- 1 . . . 251250/297 e−142associated protein(84%)#109—Mammalia, 1 . . . 297250/297297 na.(84%)[WO200230268-A2,18 APR. 2002]AAB88388Human membrane 1 . . . 251250/297 e−142or secretory protein (84%)clone PSEC0131— 1 . . . 297250/297Homo sapiens, (84%)297 aa.[EP1067182-A2,10 JAN. 2001]AAE21272Human gene 16 92 . . . 251159/2064e−85 encoded secreted(77%)protein fragment, 2 . . . 207159/206SEQ ID NO: 138—(77%)Homo sapiens,207 aa.[WO200216390-A1,28 FEB. 2002]ABG64865Human albumin173 . . . 25179/794e−41 fusion protein(100%)#1540—Homo 37 . . . 11579/79sapiens, 115 aa.(100%)[WO200177137-A1,18 OCT. 2001]ABB90241Human polypeptide173 . . . 25179/794e−41 SEQ ID NO 2617—(100%)Homo sapiens, 37 . . . 11579/79115 aa.(100%)[WO200190304-A2,29 NOV. 2001]


[0568] In a BLAST search of public sequence datbases, the NOV37a protein was found to have homology to the proteins shown in the BLASTP data in Table 37D.
206TABLE 37DPublic BLASTP Results for NOV37aNOV37aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueCAC39753Sequence 143 1 . . . 251250/297 (84%)e−142from Patent 1 . . . 297250/297 (84%)EP1067182—Homo sapiens(Human), 297 aa.AAH29530Similar to 1 . . . 251249/297 (83%)e−142RIKEN cDNA 1 . . . 297250/297 (83%)2810417M05gene—Homosapiens (Human),297 aa.Q9CZ162810417M05Rik 1 . . . 194188/240 (78%)e−104protein—Mus 1 . . . 240191/240 (79%)musculus(Mouse), 241 aa.BAC11344CDNA FLJ9051610 . . . 64 23/60 (38%)0.43fis, clone323 . . . 376 31/60 (51%)NT2RP3004481,weakly similar toBUTYROPHILINPRECURSOR—Homo sapiens(Human), 388 aa.CAC35426Sequence 110 . . .64 23/60 (38%)0.43from Patent275 . . . 328 31/60 (51%)WO0118204—Homo sapiens(Human), 340 aa.


[0569] PFam analysis predicts that the NOV37a protein contains the domains shown in the Table 37E.
207TABLE 37EDomain Analysis of NOV37aPfamNOV37aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValue



Example 38

[0570] The NOV38 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 38A.
208TABLE 38ANOV38 Sequence AnalysisSEQ ID NO: 1456094 bpNOV38a,CAGGTGGGCGGGCTGGTGGGCAGAAGGGCAGACGGGCAGAGGAAGTGCCAGTGCCACTGGGACCATGCG1503662-01DNA SequenceGCTCTGACGGTAAGCGTGCACGACTAACAGGGCTGACCGGCACCCACGACCGACAAGTGAAGCTCACCTTTCGAGGCTTTACCCAGAAAACAAGAAAAATTCACTGTGGTCCAGAAGCAGATATCGGTGAGCTGTTCCGATGGCCCCACTATGGGGCTCCACTCGCTGGGGAGTGTCTGTCTGTGCAGGTGGTCAACTGCAGCCGTGTATTCAGCCTTAGGCCTCTAGCGACCCTGGTGATCTCCCTGCAGCAGCTACAGAATGCTGGGCATTTGGTGCTACGGGAAGCCCTAGTGGATGAGAATCTTCAAGTGTCCCCGATCCAGGTGGAGCTTGACCTGAAGTACCAGCCCCCAGAGGGCGCTACTGGAGCCTGGTCAGAGGAGGACTTTGGGGCACCCATCCAGGACAGCTTCGAGTTAATCATCCCCAATGTGGGCTTCCAGGAACTGGAGCCTGGGGAGGCCCAGCTGGAGCGGCGGGCAGTGGCTCTAGGCCGCAGGCTAGCTCGAAGTCTAGGCCAGCAGGACGATGAAGAGAATGAGCTGGAGCTTGAGCTGGAGCAGGACCTGGATGATGAGCCTGACGTGGAACTTTCTGGTGTTATGTTCAGCCCCCTCAAGAGCCGCGCCAGGGCCCTGCCCCATGGGGATCCCTTCCAGGTGTCCAGAGCTCAAGACTTCCAGGTGGGAGTCACTGTGCTGGAAGCCCAGAAACTGGTGGGAGTCAACATTAACCCCTATGTGGCCGTGCAAGTGGCGGGGCAGCGCCGTGTGACCGCCACACAGCGTGCGACCAGTTGCCCCTTCTACAATGAGTACTTCTTGTTCGAATTTCATGACACGCGGCTTCGTCTCCAAGACTTGCTGCTGGAGATCACGGTGAGTGGGGTAGGGGTGACCAGTGTCCTTCACAGAAGGGGGGATGAGAAAGCTGCAGGACTAACACCACCTTCCCCCAAGGCTTTCCATTCGCAGACCCTCCCCTTTATGGCCACCCGGATAGGCACCTTCAGGATGCACCTGGGCATCATCTTGGACCAGCCAGATGGCCAGTTCTACCAAAGATGGGTTCCGCTGCATGATCCCCGAGACACCCGCGCCGGGACCAAGGGTTTCATTAAGGTCACCTTGTCCGTGAGGGCGCGCGGGGACCTGCCCCCTCCAATGCTACCCCCCGCCCCAGGGCACTGTTCGGACATCGAGAAGAACCTGCTCCTGCCGCGCGGGGTGCCCGCCGAGAGGCCATGGCCGCGGCTCCGCGTGCGCCTGTACCGCGCCGAGGGGCTTCCCGCGCTGCGCCTGGGGCTGCTGGGCAGCCTGGTCCGCGCCCTGCACGACCAGCGCGTCCTGGTGGAGCCCTATGTGCGGGTGTCTTTCCTGGGCCAGGAGGGCGAGACGTCGGTGAGCCCCGAGGCCGCGGCGCCCGAATGGAACGAGCAGCTGAGCTTCGTCCAGCTCTTCCCGCCGCTGACGCGCAGCCTCCGCCTGCAGCTGCGGGACGACGCGCCCCTGGTCGACGCGGCACTCGCTACGCACGTGCCGGACCTGAGGCGGATCTCCCATCCGGGCCGCGCGGCGGGGTTTAACCCTACCTTCGGCCCGGCCTGGGTGCCCCTCTATGGCTCGCCCCCCCGCGCGGGGCTCCGGGATACTCTTCAAGGTCTCAACGAAGGCGTTGGCCAAGGCATTTGGTTCCGCGGCCGCCTTCTGCTGGCTGTGTCCATGCAGCTGTTGGAAGGGAGAGCTGAACCTGAGCCTCCCCAGGCCCAGCAGGGGTCCACGTTGTCCCGGCTCACCCGAAAGAAGAAAAAGAAAGCCAGAACGGATCAGACCCCAAAGGCGGTTCCGCACCACTTGGACGCCAGCCCCGGTGCCGAGGGGCCTGAGATCCCCCGTGCCATGGAGGTGGAGGTCGAGGACCTGCTGCCCCTGCCAGAGAATGTCCTCGCGCCCTGTGAAGATTTCCTGCTTTTCGGTGTGCTCTTCGAGGCCACCATGATCGACCCCACCGTGGCCTCCCAGCCCATCAGCTTCGAGATCTCCATTGGTCGCGCAGGCCGTCTGGAGGACCAATTGGGCCGAGGGTCCAGGGCTGGGGAGGGAACTGAGGGTGCAGCCGTGGAGGCTCAGCCTCTGCTGGGAGCCAGGCCAGAGGAGGAGAAAGAGGAGGAAGAACTGGGGACCCATGCTCAGCGGCCTGAGCCCATGGACGGCAGTGGGCCATACTTCTGCTTGCCCCTCTGTCACTGCAAGCCATGCATGCATGTGTGGACTTGCTGGGAGGACCACACCTGGCGCCTGCAGAGCAGCAACTGCGTGCGCAAAGTGGCCGAGAGGCTGGACCAGGGGCTGCAGGAGGTTGAGACACTGCAGCGCAAGCCGGGGCCTGGCGCCTGTGCACAGCTCAAGCACGCACTGGAAGTACTGGTGGCTGGGAGCAGACAGTTTTGCCACGGTGCCGAGCGCAGGACGATGACCCGGCCCAATGCCCTGGATCGATGCCCGAGGGAACTCCTGGTGCACAGCCTGAACCTTTTGGCTAAGCAAGGACTGCGACTTCTACGCAGCCTGAGACCGCGCAATGTGCAAAAGAAGGTGGCACTGGCCAAGAAGCTCCTGCCAAAACTGCGCTTTCTGGCTGAGGAGCCCCAGCCACCCCTCCCCGATGTGCTGGTCTGGATCCTCAGCGGCCAGCGCCGTGTGGCCTGGGCCCGGATCCCTGCCCACGATGTGCTGTTCTCTGTGGTTGAGGAGGAACGGGGCCGAGACTGTGGCAAGATCCAGAGTCTAATGCTCACGGCACCCGGGGCAGCCCCTGGTGAGGTCTGTGCCAAGCTGGAGCTCTTCCTGCGGCTGGGCCTGGGCAAGCAAGCCAAGGCCTGCACCTCTGAGCTGCCCCCGGATTTGCTGCCCCAGCCCTCAGCCGGGCTGCCCTCCAGCCTACACCGGGACGACTTTAGCTACTTCCAACTCCGCGCTCACTTGTACCAGGCCCGGGGTGTGTTGGCTGCAGATGACAGTCGCCTCTCGGACCCCTTTGCTCGAGTCCTCATCTCTACCCAGTGTCAGACCACACGGGTCCTGGAGCAGACGCTGAGCCCTCTGTGGGATGAACTCCTGGTATTTCAGCAGTTGATCGTGGATGGGAGGAGGGAGCACCTGCAGGAGGAGCCTCCATTAGTGATCATCAATGTATTTGACCACACTAAGTTTGGCCCCCCCGTGTTCCTGCGCAGGGCACTGGCCGCCCCAAGGGTAAAGCTCATGGAGGACCCATACCAACGCCCAGAGTTGCAGTTCTTCCCCCTGAGGAAGGGACCCTGGGCACCCGGAGAGCTCATTGCCGCCTTTCAACTCATTGAACTAGACTACAGTCGCCGACTTGAGCCCTCAGTGCCCAGTGAGGTGGAGCCCCAGGATCTGGCACCCCTGGTTGAGCCCCACTCTGGACGCCTGTCCCTTCCACCCAACGTGTGCCCAGTGCTCAGGGAGTTCCGTGTTCAGGTGCTGTTCTGGGGTCTTAGGGGACTTGGTCGTGTGCATCTGCTCGAGGTGGAGCAGCCCCAGGTTGTACTGGAGGTGGCTGGGCAAGGTGTGGAGTCTGAGGTCCTGGCCAGCTACCGTGAGAGCCCCAATTTCACTGAGCTTGTCAGCCATCTCACAGTGGTCTTCAAAGACACAGCTCCTCTCTTCCACCCCCAGGACTTGCCGGAGCAGCCTTACTTGCAGCCTCCACTCAGCATCTTGGTGATTGAGCGCCGGGCCTTTGGCCACACAGTCCTTGTGGGTTCCCACATTGTCCCCCACATGCTGCGATTCACATTTCGGGGTCATGAGGATCCTCCTGAGGAGGAAGGAGAGATGGAGGAGACAGGGGATATGATGCCCAAGGGACCTCAAGGACAGAAGTCCCTGGATCCCTTCTTGGCTGAAGCGGGTATATCCAGACAGCTCCTGAAGCCTCCTCTGAAGAAGCTCCCACTAGGAGGCCTCCTAAATCAAGGCCCTGGGCTGGAGGAAGACATCCCAGATCCAGAGGAGCTCGACTGGGGGTCCAAGTACTATGCGTCGCTGCAGGAGCTCCAGGGGCAGCACAACTTTGATGAAGATGAAATGGATGATCCTGGAGATTCAGATGGGGTCAACCTCATTTCTATGGTTGGGGAGATCCAAGACCAGGGTGAGGCTGAAGTCAAAGGCACTGTGTCCCCAAAAAAAGCAGTTGCCACCCTGAAGATCTACAACAGGTCCCTGAAGGAAGAATTTAACCACTTTGAAGACTGGCTGAATGTGTTTCCTCTGTACCGAGGGCAAGGGGGCCAGGATGGAGGTGGAGAAGAGGAAGGATCTGGACACCTTGTGGGCAAGTTCAAGGGCTCCTTCCTCATTTACCCTGAATCAGAGGCAGTGTTGTTCTCTGAGCCCCAGATCTCCCGGGGGATCCCACAGAACCGGCCCATCAAGCTCCTGGTCAGAGTGTATGTTGTAAAGGCTACCAACCTCGCTCCTGCAGACCCCAATGGCAAAGCAGACCCTTACGTGGTGGTGAGCGCTGGCCGGGAGCGGCAGGACACCAAGGAACGCTACATCCCCAAGCAGCTCAACCCCATCTTTGGACAGATCCTGGAGCTAAGCATCTCTCTCCCAGCTGAGACGGAGCTGACGGTCGCCGTATTTGATCATGACCTCGTGGGTTCTGACGACCTCATCGGGGAGACCCACATTGATCTGGAAAACCGATTCTATAGCCACCACAGAGCAAACTGTGGGCTGGCCTCCCAGTATGAAGTAGATGGTTACAATGCCTGGCGTGATGCATTCTGGCCTTCGCAGATCCTGGCGGGGCTGTGCCAACGCTGTGGCCTCCCTGCCCCTGAATACCGAGCCGGTGCTGTCAAGGTGGGCAGCAAAGTCTTCCTGACACCACCGGAGACCCTGCCCCCAGTGGCGAGCGGGGACCCTGAACAGGCCCAGGCATTGCTTGTGCTGCGGCGCTGGCAGGAAATGCCGGGTTTTGGGATCCAGCTGGTACCCGAGCATGTAGAAACCAGGCCTCTCTACCATCCCCACAGCCCAGGGCTGCTACAGGGATCTCTTCACATGTGGATTGACATCTTTCCTCAAGATGTGCCTGCTCCACCCCCAGTTGACATCAAGCCTCGGCAGCCAATCAGCTATGAGCTCAGAGTTGTCATCTGGAACACGGAGGATGTGGTTCTGGATGACGAGAATCCACTCACCGCAGAGATGTCGAGTGACATCTATGTGAAGAGCTGAATGAAGGGGTTGGAGCATGACAAGCAGGAGACAGACGTTCACTTCAACTCCCTGACTGGGGAGGGGAACTTCAATTGGCGCTTTGTGTTCCGCTTTGACTACCTGCCCACGCAGCGGGAGGTCAGCGTCTGGCGCAGGTCTGGACCCTTTGCCCTGGAGGAGGCGGAGTTCCGGCAGCCTGCAGTGCTGGTCCTGCAGGTCTGGGACTATGACCGCATCTCTCCCAATCACTTCCTTGCATCCCTOCAGTTGCAGCTACCAGACATCGTCCGTGGGGCCCGGGGCCCCGAGCTCTGCTCTCTGCAGCTCGCCCGCAATGGGGCCGGGCCGACGTGCAATCTCTTTCGCTGCCGCCGCCTGAGGGGCTGGTGGCCGGTAGTGAAGCTGAAGGAGGCAGAGGACGGCAAGGTGGAGGCAGAGTTTGAGCTGCTGACTGTGGAGGAGGCCGAGAAACGGCCAGTGGGGAAGGGGCGGAAGCACCCACAGCCTCTGGAGAAACCCAGCCGCCCCAAAACTTCCTTCAACTGCTTTGTGAACCCGCTGAAGACCTTTGTCTTCTTCATCTGGCGCCGGTACTGGCGCACCCTGGTGCTGCTGCTACTGGTGCTGCTCACCGTCTTCCTCCTCCTGGTCTTCTACACCATCCCTGCCCAGATCAGCCAGGTCATCTTCCGTCCCCTCCACAAGTGACTCTCGCTGACCTTGGACACTCACCCAGGGTGCCAACCCTTCAATGCCTGCTCCTGGORF Start: ATG at 65ORF Stop: TGA at 6035SEQ ID NO: 1461990 aaMW at 222395.9 kDNOV38a,MALTVSVQRLTGLTGTHDRQVKLTFRGFTQKTRKIHCGPEADIGELGRWPHYGAPLAGECLSVQVVNCG150362-01Protein SequenceCSRVFSLRPLGTVISLQQLQNAGHLVLREALVDENLQVSPIQVELDLKYQPPEGATGAWSEEDFGAPIQDSFELIIPNVGFQELEPGEAQLERRAVALGRRLARSLGQQDDEENELELELEQDLDDEPDVELSGVMFSPLKSRARALAHGDPFQVSRAQDFQVGVTVLEAQKLVGVNINPYVAVQVGGQRRVTATQRGTSCPFYNEYFLFEFHDTRLRLQDLLLEITVSGVGVTSVLQRRGDEKAAGLTPPSPKAFHSQTLPFMATRIGTFRMDLGIILDQPDCQFYQRWVPLHDPRDTFAGTKGFIKVTLSVRARGDLPPPMLPPAPGHCSDIEKNILLPRGVPAERPWARLRVRLYRAECLPALRLGLLGSLVRALHDQRVLVEPYVRVSFLGQEGETSVSAEAAAPEWNEQLSFVELFPPLTRSLRLQLRDDAPLVDAALATHVPDLRRISHPGRAAGFNPTFGPAWVPLYGSPPGAGLRDSLQGLNEGVGQGIWFRCRLLLAVSMQVLEGRAEPEPPQAQQGSTLSRLTRKKKKKARRDQTPKAVPQHLDASPGAECPEIPRAMEVEVEELLPLPENVLAFCEDFLLFGVLFEATMIDFTVASQPISFEISIGRAGRLEEQLGRGSRAGEGTEGAAVEAQPLLGARPEEEKEEEELGTHAQRPEPMDGSGPYFCLPLCHCKPCMHVWSCWEDHTWRLQSSNCVRKVAERLDQGLQEVERLQRKPGPGACAQLKQALEVLVAGSRQFCHGAERRTMTRPNALDRCRGKLLVHSLNLLAKQGLRLLRSLRRRNVQKKVALAKKLLAKLRFLAEEPQPPLPDVLVWMLSGQRRVAWARIPAQDVLFSVVEEERGRDCGKIQSLMLTAPGAPPGEVCAKLELFLRLGLGKQAKACTSELPPDLLPEPSAGLPSSLHRDDFSYFQLRAHLYQARGVLAADDSCLSDPFARVLTSTQCQTTRVLEQTLSPLWDELLVFEQLIVDGRREHLQEEPPLVIINVFDHNKFGPPVFLGRALAAPRVKLMEDPYQRPELQFFPLRKGPWAAGELIAAFQLIELDYSGRLEPSVPSEVEPQDLAPLVEPHSGRLSLPPNVCPVLREFRVEVLFWGLRGLGRVHLLEVEQPQVVLEVAGQGVESEVLASYRESPNFTELVRHLTVVFKDTAPLFHPQDLPEQPYLQPPLSILVTERRAFGHTVLVGSHIVPHMLRFTFRGHEDFPEEEGEMEETGDMMPKGPQCQKSLDFFLAEAGTSRQLLKPPLKKLPLGGLLNQGPGLEEDIPDPEELDWGSKYYASLQELQGQHNFDEDEMDDPGDSDGVNLISMVGEIQDQGEAEVKGTVSPKKAVATLKIYNRSLKEEFNHFEDWLNVFPLYRGQGGQDGGGEEECSGHLVGKFKGSFLIYPESEAVLFSEPQISRGIPQNRPIKLLVRVYVVKATNLAPADPNGKADPYVVVSAGRERQDTKERYIPKQLNPIFGEILELSISLPAETELTVAVFDHDLVGSDDLIGETHIDLENRFYSHHRANCGLASQYEVDGYNAWRDAFWPSQILAGLCQRCGLPAPEYRAGAVKVGSKVFLTPPETLPPVASGDPEEAQALLVLRRWQEMPGFGIQLVPEHVETRPLYHPHSPGLLQGSLHMWIDIFPQDVPAPPPVDIKPRQPISYELRVVIWNTEDVVLDDENPLTGEMSSDTYXTKSWVKGLEHDKQETDVHFNSLTGEGNFNWRFVFRBDYLPTEREVSVRRSGPFALEEAEFRQPAVLVLQVWDYDRISANDFLGSLELQLPDMVRCARGPELCSVQLARNGAGPRCNLFRCRRLRGWWPVVKLKEAEDCKVEAEFELLTVEEAEKRPVCKGRKQPEPLEKPSRPKTSFNWFVNPLKTFVFFIWRRYWRTLVLLLLVLLTVFLLLVFYTIPGQISQVTFRPLHK


[0571] Further analysis of the NOV38a protein yielded the following properties shown in Table 38B.
209TABLE 38BProtein Sequence Properties NOV38aPSort0.8000 probability located in mitochondrial inner membrane;analysis:0.7000 probability located in plasma membrane; 0.3793probability located in microbody (peroxisome); 0.3500probability located in nucleusSignalPNo Known Signal Sequence Predictedanalysis:


[0572] A search of the NOV38a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 38C.
210TABLE 38CGeneseq Results for NOV38aIdentities/NOV38aSimilaritiesProtein/Residues/for theGeneseqOrganism/LengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU70673Human otoferlin 1 . . . 1984 811/21040.0#2—Homo(38%)sapiens, 1997 aa. 1 . . . 19941198/2104[WO200170972-(56%)A2, 27 SEP.2001]AAU70669Murine cochlea 1 . . . 1978 797/20910.0otoferlin—Mus (38%)sp, 2298 aa. 35 . . . 20171188/2091[W0200170972-(56%)A2, 27 SEP.2001]AAU70674Murine otoferlin 1 . . . 1978 797/20910.0#2—Mus(38%)sp, 1992 aa. 1 . . . 19831188/2091[W0200170972-(56%)A2, Sep. 27,2001]AAU70675Human803 . . . 1984 540/12490.0otoferlin—Homo(43%)sapiens, 1230 aa. 12 . . . 1227 769/1249[WO200170972-(61%)A2, 27 SEP.2001]AAU70672Human otoferlin783 . . . 1984 542/12890.0#1—Homo(42%)sapiens, 1307 aa. 49 . . . 1304 778/1289[WO200170972-(60%)A2, 27 SEP.2001]


[0573] In a BLAST search of public sequence datbases, the NOV38a protein was found to have homology to the proteins shown in the BLASTP data in Table 38D.
211TABLE 38DPublic BLASTP Results for NOV38aIdentities/NOV38aSimilaritiesProteinResidues/for theAccessionProtein/MatchMatchedExpectNumberOrganism/LengthResiduesPortionValueQ9HC10Otoferlin (Fer-1 like  1 . . . 1984 810/21040.0protein 2)—Homo(38%)sapiens (Human),  1 . . . 19941197/21041997 aa.(56%)Q9ESF1Otoferlin (Fer-1 like  1 . . . 1984 803/21000.0protein 2)—Mus(38%)musculus (Mouse),  1 . . . 19941188/21001997 aa.(56%)Q9H4S7BA563A22B.1 885 . . . 1499615/6150.0(Contains a novel(100%) protein similar to 1 . . . 615615/615otoferlin (A FER-1-(100%) like protein))—Homo sapiens(Human), 615 aa(fragment).Q9NTZ8DJ309K20.1.1231 . . . 782552/5520.0(Novel protein(100%) similar to dysferlin, 1 . . . 552552/552isoform 1)—Homo(100%) sapiens (Human),552 aa (fragment).Q9H448DJ477O4.1.11500 . . . 1990491/5310.0(Novel protein(92%)similar to 1 . . . 531491/531otoferlin and(92%)dysferlin, isoform1)—Homo sapiens(Human), 531 aa(fragment).


[0574] PFam analysis predicts that the NOV38a protein contains the domains shown in the Table 38E.
212TABLE 38EDomain Analysis of NOV38aPfamNOV38aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueC2231 . . . 303 23/97 (24%)0.037  49/97 (51%)C2421 . . . 51526/107 (24%)0.003860/107 (56%)C2 993 . . . 108326/101 (26%)0.001561/101 (60%)C21493 . . . 1576 32/97 (33%)1.8e−11 57/97 (59%)



Example 39

[0575] The NOV39 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 39A.
213TABLE 39ANOV39 Sequence AnalysisSEQ ID NO: 1471293 bpNOV39a,ATCAATACCAGCTCTGCCAGTAAGAGTTGCATCTCCCAGTGAATGCTGCTGCTCCCATTTCAACCG150637-01DNA SequenceTGTTAGCTGTTCTCTTTCCTGGTGGTAACAGTGAACATGCCTTCCAGGGGCCGACCTCCTTTCATGTTATCCAGACCTCGTCCTTTACCAATAGTACCTGGGCACAACTCAAGGCTCAGGCTGGTTGGATGATTTGCAGATTCATGGCTGGGATAGCGACTCAGGCACTGCCATATTCCTGAAGCCTTGGTCTAAAGGTAACTTTAGTGATAAGGAGGTTGCTGAGTTAGAGGAGATATTCCGAGTCTACATCTTTGGATTCGCTCGAGAAGTACAAGACTTTGCCGGTGATTTCCAGATGAAATACCCCTTTGAGATCCAGGGCATAGCAGGCTGTGAGCTACATTCTGGAGGTGCCATAGTAAGCTTCCTCAGGGGAGCTCTAGGAGGATTGGATTTCCTGAGTGTCAAGAATGCTTCATGTGTGCCTTCCCCAGAAGGTGGCAGCAGGGCACAGAAATTCTGTGCACTAATCATACAATATCAAGGTATCATGCAAACTGTGAGAATTCTCCTCTATGAAACCTGCCCCCGATATCTCTTGGGCGTCCTCAATGCAGGAAAAGCAGATCTGCAAAGACAAGTGAAGCCTGAGGCCTGGCTGTCCAGTGGCCCCAGTCCTGGACCTGGCCGTCTGCAGCTTGTCTGCCATGTCTCAGGATTCTACCCAAACCCCGTGTGGGTGATGTGGATGCGGGGTGAGCAGGAGCAGCAGGGCACTCAGCTAGGGGACATCCTGCCCAATCCTAACTGCACATGGTATCTCCGAGCAACCCTGGATGTGGCAGATGGGGAGGCGGCTGGCCTGTCCTGTCGGGTGAAGCACAGCAGTTTAGAGGGCCAGGACATCATCCTCTACTGGAGAAACCCCACCTCCATTGGCTCAATTGTTTTGGCAATAATAGTGCCTTCCTTGCTCCTTTTGCTATGCCTTGCATTATGGTATATGAGGCGCCGGTCATATCAGAATATCCCATGAGCCATCATCATGTCTCCTCTCCCATTCGCAATAAGCTACCAAGAAGCCCAAGATATCAGCCCAAAAATCAATCTTATCATATTTCAAATGATTTTCAAATTTGATGAAATCAGAGTTTTCATGTATTTTTAAAATTATTATTTAAAACATCAGCAAAAAAGTACTTAAAACTGTAAATTTATTATGACACTGTACTAACAGTGTGATTCACCCTCATTTTACACACATTAAAATGTTAGAAAAAORF Start: ATG at 46ORF Stop: TGA at 1045SEQ ID NO: 148333 aaMW at 36939.0 kDNOV39a,MLLLPFQLLAVLFPGGNSEHAFQGPTSFHVIQTSSFTNSTWAQTQGSGWLDDLQIHGWDSDSGTAIFCG150637-01Protein SequenceLKPWSKGNFSDKEVAELEEIFRVYIFGFAREVQDFAGDGQMKYPFEIQGIAGCELHSGGAIVSFLRGALGGLDFLSVKNASCVPSPEGGSRAQKFCALIIQYQGIMETVRILLYETCPRYLLGVLNAGKADLQRQVKPEAWLSSGPSPGPGRLQLVCHVSGFYPKPVMVMWMRGEQEQQGTQLDGILPNANWTWLRATLDVADGEAAGLSCRVKHSSLEGQDIILYWRNPTSIGSIVLAIIVPSLLLLLCLALWYMRRRSYQNIPSEQ ID NO: 149880 bpNOV39b,CCCTTATGCTGCTGCTGCCATTCAACTGTTAGCTGTTCTCTTTCCTGGTGGTAACAGTGAACATGCCG150637-02DNA SequenceCTTCCAGGGGCCGACCTCCTTTCATGTTATCCAGACCTCGTCCTTTACCAATAGTACCTGGGCACAAACTCAAGGCTCAGGCTGGTTGGATGATTTGCAGATTCATGGCTGGGATAGCGACTCAGCCACTGCCATATTCCTGAAGCCTTGGTCTAAAGCTAACTTTAGTGATAAGGAGGTTGCTGAGTTAGAGGAGATATTCCGAGTCTACATCTTTGGATTCGCTCGAGAAGTACAAGACTTTGCCGGTGATTTCCAGATGAAATACCCCTTTGAGATCCAGGGCATAGCAGGCTGTGAGCTACATTCTGGAGGTGCCATAGTAACCTTCCTGAGGGGAGCTCTAGGAGGATTGGATTTCCTCAGTGTCAAGAATGCTTCATCTGTGCCTTCCCCAGAAGGTGGCAGCAGGGCACAGAAATTCTGTGCACTAATCATACAATATCAAGGTATCATGGAAACTGTGAGAATTCTCCTCTATGAAACCTGCCCCCGATATCTCTTGGGCGTCCTCAATGCAGGAAAAGCAGATCTGCAAACACAAGTGAAGCCTGAGGCCTGCCTGTCCAGTGGCCCCAGTCCTGGACCTGGCCGTCTGCAGCTTGTGTGCCATGTCTCACGATTCTACCCAAAGCCCGTGTGGGTGATGTGGATCCGGGGAAACCCCACCTCCATTGGCTCAATTGTTTTGGCAATAATAGTGCCTTCCTTCCTCCTTTTGCTATGCCTTGCATTATCGTATATGAGGCGCCGGTCATATCAGAATATCCCATGAGCCATCATCATGTCTCCTCTCCCATTCGCAATAAGTACORF Start: ATG at 6ORF Stop: TGA at 840SEQ ID NO: 150278 aaMW at 30739.2 kDNOV39b,MLLLPFQLLAVLFPGGNSEHAFQGPTSFHVIQTSSFTNSTWAQTQGSGWLDDLQIHGWDSDSGTAIFCG150637-02Protein SequenceLKPWSKGNFSDKEVAELEEIFRVYIFGFAREVQDFAGDFDQMKYPFEIQGIAGCELHSGGAIVSFLRGALGGLDFLSVKNASCVPSPEGGSRAQKFCALIIQYQFIMETVRILLYETCPRVYLLGVLNAGKADLQRQVKPEAWLSSGPSPGPGRLQLVCHVSGFYPKPVWVMWMRGNPTSIGSIVLAIIVPSLLLLLCLALWYMRRRSYQNIP


[0576] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 39B.
214TABLE 39BComparison of NOV39a against NOV39b.ProteinNOV39a Residues/Identities/SimilaritiesSequenceMatch Residuesfor the Matched RegionNOV39b15 . . . 247228/233 (97%)15 . . . 247228/233 (97%)


[0577] Further analysis of the NOV39a protein yielded the following properties shown in Table 39C.
215TABLE 39CProtein Sequence Properties NOV39aPSort0.4600 probability located in plasma membrane; 0.3000analysis:probability located in lysosome (membrane); 0.2800probability located in endoplasmic reticulum (membrane);0.2404 probability located in microbody (peroxisome)SignalPCleavage site between residues 19 and 20analysis:


[0578] A search of the NOV39a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 39D.
216TABLE 39DGeneseq Results for NOV39aNOV39aIdentities/Protein/Residues/Similarities forGeneseqOrganism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABG13799Novel human 35 . . . 196 93/163 (57%)5e−49diagnostic protein518 . . . 680118/163 (72%)#13790—Homosapiens, 681 aa.[WO200175067-A2, 11 OCT.2001]AAY94506Chicken BFIV21114 . . . 329 61/221 (27%)4e−17class I MHC114 . . . 326107/221 (47%)protein—Gallusgallus, 355 aa.[US6075125-A,13 JUN. 2000]AAY94508Chicken114 . . . 329 60/221 (27%)1e−15BFIV19v1 class I 97 . . . 309105/221 (47%)MHC protein—Gallus gallus,338 aa.[US6075125-A,13 JUN. 2000]AAG00593Human secreted 1 . . . 64 39/64 (60%)1e−15protein, SEQ ID 1 . . . 64 46/64 (70%)NO: 4674—Homo sapiens,64 aa.[EP1033401-A2,6 SEP. 2000]ABB08372B-FIV*12 amino114 . . . 315 58/211 (27%)2e−15acid sequence— 93 . . . 295 99/211 (46%)Gallusdomesticus,334 aa.[WO200194615-A2, 13 DEC.2001]


[0579] In a BLAST search of public sequence datbases, the NOV39a protein was found to have homology to the proteins shown in the BLASTP data in Table 39E.
217TABLE 39EPublic BLASTP Results for NOV39aNOV39aIdentities/ProteinResidues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueP29016T-cell surface1 . . . 333333/333 (100%)0.0glycoprotein CD1b1 . . . 333333/333 (100%)precursor (CD1bantigen)—Homosapiens (Human),333 aa.Q28565T-cell surface1 . . . 332248/332 (74%)e−150glycoprotein1 . . . 332280/332 (83%)CD1b-1 precursor(CD1b-1 antigen)(SCD1A25)—Ovisaries (Sheep),333 aa.Q29422T-cell surface1 . . . 332244/332 (73%)e−147glycoprotein CD1b-1 . . . 332282/332 (84%)2 precursor (CD1b-2antigen)(SCD1B-42)(Antigen IAH-CC14)—Ovisaries (Sheep),333 aa.Q9GKE4CD1B—1 . . . 332237/332 (71%)e−140Oryctolagus1 . . . 331271/332 (81%)cuniculus (Rabbit),332 aa.Q9QZZ1T-cell surface1 . . . 332228/332 (68%)e−134glycoprotein1 . . . 331267/332 (79%)CD1b2 precursor(CD1-b2 antigen)—Cavia porcellus(Guinea pig),332 aa.


[0580] PFam analysis predicts that the NOV39a protein contains the domains shown in the Table 39F.
218TABLE 39FDomain Analysis of NOV39aPfamNOV39aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueig217 . . . 28115/67 (22%)0.0001945/67 (67%)



Example 40

[0581] The NOV40 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 40A.
219TABLE 40ANOV40 Sequence AnalysisSEQ ID NO: 151505 bpNOV40a,AATATGTCGCTCTTGGGACCCAAGGTGCTGCTGTTTCTTGCTGCATTCATCATCACCTCTGACTGGACG150694-01DNA SequenceTACCCCTGGGGGTCAATAGTCAACGAGGAGACGATGTGACTCAAGCGACTCCAGAAACATTCACAGAAGATCCTAATCTGCTGAATGATCCCGCTACAGATGAAACAGAGTGCTCGGATGAGAAATTTACCTGCACAAGGCTCTACTCTGTGCATCGGCCGGTTAAACAATGCATTCATCAGTTATGCTTCACCAGTTTACGACGTATGTACATCGTCAACAAGGAGATCTCCTCTCCTCTTGTCTGTAAGGAACACGAAGCTATGAAAGATGAGCTTTGCCGTCAGATGGCTGGTCTGCCCCCTAGGAGACTCCGTCGCTCCAATTACTTCCGACTTCCTCCCTGTGAAAATGTGGATTTGCAGAGACCCAATGGTCTGTGATCATTGAAAAACAGGAAAGAGAAAAAATGTATGGGTGAGAGGAAGGAGGATCTCORF Start: ATG at 4ORF Stop: TGA at 448SEQ ID NO: 15248 aaMW at 17113.5kDNOV40a,MSLLGPKVLLFLAAFIITSDWIPLGXTNSQRGDDVTQATPETFTEDPNLVNDPATDETECWDEKFTCTCG150694-01Protein SequenceRLYSVHRPVKQCIHQLCFTSLRRMYIVNKEICSRLVCKEEEAHKDELCRQNAGLPPRRLRRSNYFRLPPCENVDLQRPNGL


[0582] Further analysis of the NOV40a protein yielded the following properties shown in Table 40B.
220TABLE 40BProtein Sequence Properties NOV40aPSort0.6850 probability located in plasma membrane; 0.6400analysis:probability located in endoplasmic reticulum (membrane);0.3700 probability located in Golgi body; 0.1000probability located in endoplasmic reticulum (lumen)SignalPCleavage site between residues 29 and 30analysis:


[0583] A search of the NOV40a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 40C.
221TABLE 40CGeneseq Results for NOV40aNOV40aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB10284Human fetal placenta protein 1 . . . 148148/173 (85%)5e−82fragment AC175_2i - Homo 1 . . . 173148/173 (85%)sapiens, 173 aa.[WO200037630-A1,Jun. 29, 2000]AAG03464Human secreted protein, SEQ 1 . . . 76 76/91 (83%)5e−37ID NO: 7545 - Homo 1 . . . 91 76/91 (83%)sapiens, 91 aa.[EP1033401-A2,Sep. 6, 2000]ABP41833Human ovarian antigen 58 . . . 116 33/59 (55%)4e−17HOPJF55, SEQ ID NO:2965 -145 . . . 203 48/59 (80%)Homo sapiens, 232 aa.[WO200200677-A1,Jan. 3, 2002]AAU30569Novel human secreted 58 . . . 115 32/58 (55%)2e−16protein #1060 - Homo114 . . . 171 47/58 (80%)sapiens, 203 aa.[WO200179449-A2,Oct. 25, 2001]AAY35324Chlamydia pneumoniae 72 . . . 107 11/41 (26%)7.8transmembrane protein 3 . . . 43 19/41 (45%)sequence - Chlamydiapneumoniae, 172 aa.[WO9927105-A2,Jun. 3, 1999]


[0584] In a BLAST search of public sequence datbases, the NOV40a protein was found to have homology to the proteins shown in the BLASTP data in Table 40D.
222TABLE 40DPublic BLASTP Results for NOV40aNOV40aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ13361Microfibrillar-associated 1 . . . 148148/173 (85%)1e−81protein 5 precursor (MFAP-5) 1 . . . 173148/173 (85%)(Microfibril- associatedglycoprotein 2) (MAGP-2)(MP25) - Homo sapiens(Human), 173 aa.Q28022Microfibrillar-associated 1 . . . 148118/170 (69%)2e−64protein 5 precursor (MFAP-5) 1 . . . 170130/170 (76%)(Microfibril- associatedglycoprotein 2) (MAGP-2)(MP25) - Bos taurus (Bovine),170 aa.Q9QZJ6Microfibrillar-associated 1 . . . 148118/168 (70%)7e−64protein 5 precursor (MFAP-5) 1 . . . 164130/168 (77%)(Microfibril- associatedglycoprotein 2) (MAGP-2) -Mus musculus (Mouse), 164aa.Q99PM0Microfibril-associated29 . . . 116 42/93 (45%)1e−17glycoprotein 1 - Mus64 . . . 156 58/93 (62%)musculus (Mouse), 185 aa.P55002Microfibrillar-associated29 . . . 116 42/93 (45%)1e−17protein 2 precursor (MFAP-2)62 . . . 154 58/93 (62%)(Microfibril- associatedglycoprotein) (MAGP)(MAGP-1) - Mus musculus(Mouse), 183 aa.


[0585] PFam analysis predicts that the NOV40a protein contains the domains shown in the Table 40E.
223TABLE 40EDomain Analysis of NOV40aPfam DomainNOV40a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 41

[0586] The NOV41 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 41A.
224TABLE 41A1NOV41 Sequence AnalysisSEQ ID NO: 1532518 bpNOV41a,CAAAAGGGAACTTTATATGGAAAAGCTTCAAGAACATTTAATCAAAGCAAAAGCCTTTACCATAAAGCG151069-01DNA SequenceAAGACGCTGGAGATCTATGTGCCCATCAAACAGTTCTTTTACAACCTCATCCACCCGGAGTATAGCGCCGTGACTGACGTGTATGTACTCATGTTCCTGGCTGACACTGTGGACTTCATCATCATTGTCTTCGGCTTTTGGGCCTTTGGGAAACACTCAGCAGCTGCAGACATCACCTCTTCACTGTCAGAGGACCAGGTCCCGGGGCCGTTTTTGGTGATGGTCCTCATTCAGTTTGGAACCATGGTGGTGGACCGAGCCCTCTACCTCAGGAAGACTGTACTGGGAAAGGTCATCTTCCAGGTCATTCTTGTGTTCGGAATTCACTTCTGGATGTTCTTCATCTTACCTGGTGTGACTGAGAGGAAATTCAGCCAGAACCTGGTTGCCCAGCTTTGGTACTTTGTGAAATGTGTTTACTTCGGGTTGTCTGCTTACCAGATCCGTTGTGGCTACCCAACGCGAGTCCTGGGGAACTTCCTCACCAAGAGCTACAATTACGTCAACCTCTTCTTATTCCAAGGGTTTCGCCTCGTGCCCTTTTTGACTGAGCTGAGGGCAGTGATGGACTGGGTGTGGACGGACACAACTTTGAGCCTGTCCAGCTGGATCTGTGTGGAGGACATCTATGCTCACATATTCATCCTGAAGTGTTGGCGGGAGTCGGAGAAGAGATACCCTCAGCCACGGGGCCAGAAGAAGAAGAAAGTGGTGAAGTATGGCATGGGAGGAATGATCATCGTCCTGCTCATCTGCATTGTCTGGTTTCCTCTTCTCTTCATGTCTTTGATCAAATCTGTGGCTGGGGTCATCAACCAGCCCCTGGACGTCTCCGTCACAATTACCCTGGGAGGGTATCAGCCTATTTTCACAATGAGTGCCCAACAAAGCCAGTTGAAAGTTATGGACCAGCAGAGCTTTAACAAATTTATACAAGCTTTTTCTAGGGACACCGGTGCTATGCAATTTCTGGAAAATTATGAAAAAGAAGACATAACAGTAGCAGAACTGGAAGGAAACTCAAATTCTTTGTGGACCATCAGCCCACCCAGTAAGCAGAAAATGATACACGAACTCCTGGACCCCAATAGTAGCTTCTCTGTTGTTTTTTCATGGAGTATTCAGAGAAACTTAAGTCTGGGTGCAAAATCGGAAATAGCAACAGATAAGCTTTCTTTTCCTCTTAAAAATATTACTCGAAAGAATATCGCTAAAATGATAGCAGGCAACAGCACAGAAAGTTCAAAAACACCAGTGACCATAGAAAAGATTTATCCATATTATGTGAAAGCACCTAGTGATTCTAACTCAAAACCTATAAAGCAACTTTTATCTGAAAATAATTTCATGGATATTACCATCATTTTGTCCAGAGACAATACAACTAAATATAACAGTGAGTGGTGGGTTCTCAACCTGACTGGAAACAGAATATACAATCCGAACTCTCAGGCCCTGGAACTGGTGGTCTTCAATGACAAAGTCAGTCCCCCAAGTCTGGGGTTCCTGGCTGGCTATGGTATTATGGGATTATATGCTTCAGTTGTCCTTGTGATTGGGAAATTTGTCCGTGAATTCTTCAGTGGGATTTCTCACTCCATCATGTTTGAAGAGCTTCCAAATGTGGATCGAATTTTGAAGTTGTGCACAGATATTTTTTTAGTTCGAGAGACAGGAGAACTGGAGCTAGAAGAAGATCTCTATGCCAAATTAATATTCCTATATCGCTCACCAGAGACAATGATCAAATGGACTAGAGAAAAAACAAATTGAAACCTTAGAACACAGACTGCAAATAATGTTAACATTTGAATTTTTTTTAAAAGCACAATATTCTCATAAGAGCTAAGCATTTCTAGTTCGACGGAAATGGTTTGTTTCTCTTCTGATAGGTAGACAAAAGGAGCTGATATCCTTCTGCAGTAAAAGCTACCTGGCAAGTTAAGGCACTGTTGAAAATGTTATTTGTAACTCCATTTCTCTGAAATCAGGGCTACTTGCTTTATGTTTTAGTCAACAGTGTCTCGCATTCTGATTGATCATGTGAAGGAATCATTTATGGGCCCCGTCCCTAAGAGAAACAGAAGAGGAGTCAGAAAGAAAGATGCCTGTGTTTTCCTCTGTGGGGCCCGTGCACTTCCTGGAGAGATGCTACAATGCAATATACAGCGCTCCATCCCCACTGGGGAAGCTGCTGTGATGAGACTAGATGAGCCTTCAACACACTCAGAAAATGCAACAGCAATAGGGGGCAGACAGCTCCTACCTGTGTTTCTAGGAGCAAAAGAGAGGGAACTAATTGCCCGTGAAGACGCCAGTGGAAGGATCAGCCTCATTCTAAGCAAAAACATAGTATTAGTGATACTCTTACTGCCTTATCTTAACCAAGGACTAATAGGATACCTTTCCATTAAACACCAGTGACTTCTCAGGAAAAAAAAAAAAAAAAAAORF Start: ATG at 17ORF Stop: TGA at 1838SEQ ID NO: 154607 aaMW at 69659.7 kDNOV41a,MEKLQEHLIKAKAFTIKKTLEIYVPIKQFFYNLIHPEYSAVTDVYVLMFLADTVDFIIIVFGFWAFGCG151069-01Protein SequenceKHSAAADITSSLSEDQVPGPFLVMVLIQFGTMVVDRALYLRKTVLGKVIFQVILVFGIHFWMFFILPGVTERKFSQNLVAQLWYFVKCVYFGLSAYQIRCGYPTRVLGNFLTKSYNYVNLFLFQGFRLVPFLTELRAVMDWVWTDTTLSLSSWICVEDIYAHIFILKCWRESEKRYPQPRGQKKKKVVKYGMGGMIIVLLICIVWFPLLFMSLIKSVAGVINQPLDVSVTITLGGYQPIFTMSAQQSQLKVMDQQSFNKFIQAFSRDTGAMQFLENYEKEDITVAELEGNSNSLWTISPPSKQKMIHELLDPNSSFSVVFSWSIQRNLSLGAKSEIATDKLSFPLKNITRKNIAKMIAGNSTESSKTPVTIEKIYPYYVKAPSDSNSKPIKQLLSENNFMDITIILSRDNTTKYNSEWWVLNLTGNRIYNPNSQALELVVFNDKVSPPSLGFLAGYGIMGLYASVVLVIGKFVREFFSGISHSIMFEELPNVDRILKLCTDIFLVRETGELELEEDLYAKLIFLYRSPETMIKWTREKTN


[0587] Further analysis of the NOV41a protein yielded the following properties shown in Table 41B.
225TABLE 41BProtein Sequence Properties NOV41aPSort analysis:0.6000 probability located in plasma membrane; 0.4000 probability located inGolgi body; 0.3000 probability located in endoplasmic reticulum (membrane);0.3000 probability located in microbody (peroxisome)SignalP analysis:No Known Signal Sequence Predicted


[0588] A search of the NOV41a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 41C.
226TABLE 41CGeneseq Results for NOV41aNOV41aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAY53635A bone marrow secreted 141 . . . 605290/471 (61%) e−169protein designated BMS53 -  2 . . . 465362/471 (76%)Homo sapiens, 466 aa.[WO9933979-A2,Jul. 8, 1999]ABB89128Human polypeptide SEQ ID 338 . . . 607266/270 (98%) e−150NO 1504 - Homo sapiens,  1 . . . 270266/270 (98%)270 aa. [WO200190304-A2,Nov. 29, 2001]ABB63880Drosophila melanogaster 28 . . . 605233/607 (38%) e−125polypeptide SEQ ID NO2140 . . . 2740366/607 (59%)18432 - Drosophilamelanogaster, 2771 aa.[WO200171042-A2,Sep. 27, 2001]AAB56086Human secreted protein 246 . . . 605201/366 (54%) e−109sequence encoded by gene 10 20 . . . 378261/366 (70%)SEQ ID NO:180 - Homosapiens, 379 aa.[WO200070042-A1,Nov. 23, 2000]ABB89513Human polypeptide SEQ ID 48 . . . 180 97/133 (72%)2e−48NO 1889 - Homo sapiens,  1 . . . 132105/133 (78%)135 aa. [WO200190304-A2,Nov. 29, 2001]


[0589] In a BLAST search of public sequence datbases, the NOV41a protein was found to have homology to the proteins shown in the BLASTP data in Table 41D.
227TABLE 41DPublic BLASTP Results for NOV41aNOV41aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9H515CDNA: FLJ23403 fis, clone  1 . . . 607533/607 (87%)0.0HEP18857 - Homo sapiens  1 . . . 544537/607 (87%)(Human), 544 aa.Q92508Hypothetical protein 10 . . . 605381/602 (63%)0.0KIAA0233 - Homo sapiens1440 . . . 2034467/602 (77%)(Human), 2035 aa.Q9VLS3CG8486 protein - Drosophila 28 . . . 605233/607 (38%) e−124melanogaster (Fruit fly), 27712140 . . . 2740366/607 (59%)aa.C88779protein T20D3.9 [imported] - 25 . . . 603215/637 (33%)5e−96Caenorhabditis elegans, 1001 371 . . . 994337/637 (52%)aa.Q9H5R4CDNA: FLJ23144 fis, clone 423 . . . 572150/150 (100%)2e−81LNG09262 - Homo sapiens  1 . . . 150150/150 (100%)(Human), 150 aa.


[0590] PFam analysis predicts that the NOV41a protein contains the domains shown in the Table 41E.
228TABLE 41EDomain Analysis of NOV41aPfam DomainNOV41a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 42

[0591] The NOV42 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 42A.
229TABLE 42ANOV42 Sequence AnalysisSEQ ID NO: 1552035 bpNOV42a,AGCGGGGCAGGTGGTGGCCGCCGGCCGGGCCCCGCCCTGGGGCCGCCTCCCCGCGGGTTCCGTTGGCCG151189-01DNA SequenceTGTGGCGGCAGCTGACGCTTGTGGCGGCGGTGGCTTCGGGGTGGGCGTAAGATGGCGACAGCAGCGCAGGGACCCCTAAGCTTGCTGTGGGGCTGGCTGTGGAGCGAGCGCTTCTGGCTACCCGAGAACGTGAGCTGGGCTGATCTGGAGGGGCCGGCCGACGGCTACGGTTACCCCCGCGGCCGGCACATCCTCTCGGTGTTCCCGCTGGCGGCGGGCATCTTCTTCGTGAGGCTGCTCTTCGAGCGATTTATTGCCAAACCCTGTGCACTCCGTATTGGCATCGAGGACAGTGGTCCTTATCAGGCCCAACCCAATGCCATCCTTGAAAAGGTGTTCATATCTATTACCAAGTATCCTGATAAGAAAAGGCTGGAGGGCCTGTCAAAGCAGCTGGATTGGAATGTCCGAAAAATCCAATGCTGGTTTCGCCATCGGAGGAATCAGGACAAGCCCCCAACGCTTACTAAATTCTGTGAAAGCATGTGGAGATTCACATTTTATTTATGTATATTCTGCTATGGAATTAGATTTCTCTGGTCGTCACCTTGGTTCTGGGACATCCGACAGTGCTGGCATAACTATCCATTTCAGCCTCTTTCAAGTGGGCTTTATCACTATTATATCATGGAATTGGCCTTCTATTGGTCCCTTATGTTTTCTCAGTTTACAGACATTAAAAGAAAGGACTTCCTGATCATGTTTGTGCATCACTTGGTCACCATTGGGCTTATCTCCTTCTCCTACATCAACAATATGGTTCGAGTGGGAACTCTGATCATGTGTCTACATGATGTCTCAGACTTCTTGCTGGAGGCAGCCAAACTGGCCAATTATGCCAAGTATCAGCGGCTCTGTGACACCCTTTTTGTGATCTTCAGTGCTGTTTTTATGGTTACACGACTAGGAATCTATCCATTCTGGATTCTGAACACGACCCTCTTTGAGAGTTGGGAGATAATCGGGCCTTATGCTTCATGGTGGCTCCTCAATGGCCTGCTGCTGACCCTACAGCTTCTGCATGTCATCTGGTCCTACCTAATTGCACGGATTGCTTTGAAAGCCTTGATCAGGGGAAAGGTATCGAAGGATGATCGCAGTGATGTGGAGAGCAGCTCAGAGGAAGAAGATGTGACCACCTGCACAAAAAGTCCCTGTGACAGTAGCTCCAGCAATGGTGCCAATCGGGTGAATGGTCACATGGGAGGCAGCTACTGGGCTGAAGAGTAAGGTGGTTGCTATAGGGACTTCAGCACACATGGACTTGTAGGGCCACTGGCAACATACTCCTCTTGGCCCTTCCCATATCTACTCTTCTGTGATTGGGAGACTGCAAGGCACTGAGGAGTATCAAAGAAGCAAATATTTTCACTTTGAAAGAAAACTGCCATTTTGTATTTAATAGCCTCCAGGTTCTTTCAGTAATGTTATTTGCTCTGTGTGTTTTTGTGTGTTTGTTGATGTGCGTTTGTGCATATGCGTGAGTTTCATTGCCGGGGTTGGGGCACAATTGTGGACTGGGGCCATGAGGCCTTCCCTGGTCCCCACTGAACCCACCTTAGTTCCACATTTGGCTGCATCTTGAATTATGCCGACTCCAGACTTCTCCTCCTTTTTTGCCCTTGGCTCTTGACACTCTAAACCCCTGGACCATCTGAATGGAGCAGCCAAGTTCAGTCCCACATTTCTGTACTGTTCCTCTTTCACAGCTGGAATATGTCACATGATGAAGTTGTATAGAAACAGAACCATGGATGGATGGCCAGGATTGCCGTGGTCCCTAGCTAGATCCCCTTCCTATCAATCACCTGATAGCAACAGGGACAGCTGCCAATACCCTGCTCTTTACTCAATGGTACCCAGGGAGGGAGCATGGGAAGAGGGTGAGCTGAGGGCTGGAGGAGGGCAACAGCCACTGGGTGAGCTGTTCACGGTCTTATACTATTGTTTGTGATTAAAAGTGCTTCAORF Start: ATG at 119ORF Stop: TAA at 1295SEQ ID NO: 156392 aaMW at 45804.6 kDNOV42a,MATAAQGPLSLLWGWLWSERFWLPENVSWADLEGPADGYGYPRGRHILSVFPLAAGIFFVRLLFERFCG151189-01Protein SequenceIAKPCALRIGIEDSGPYQAQPNAILEKVFISITKYPDKKRLEGLSKQLDWNVRKIQCWFRHRRNQDKPPTLTKFCESMWRFTFYLCIFCYGIRFLWSSPWFWDIRQCWHNYPFQPLSSGLYHYYIMELAFYWSLMFSQFTDIKRKDFLIMFVHHLVTIGLISFSYINNMVRVGTLIMCLHDVSDFLLEAAKLANYAKYQRLCDTLFVIFSAVFMVTRLGIYPFWILNTTLFESWEIIGPYASWWLLNGLLLTLQLLHVIWSYLIARIALKALIRGKVSKDDRSDVESSSEEEDVTTCTKSPCDSSSSNGANRVNGHHGGSYWAEE


[0592] Further analysis of the NOV42a protein yielded the following properties shown in Table 42B.
230TABLE 42BProtein Sequence Properties NOV42aPSort analysis:0.6000 probability located in plasma membrane; 0.4000 probability located inGolgi body; 0.3104 probability located in mitochondrial intermembrane space;0.3000 probability located in endoplasmic reticulum (membrane)SignalP analysis:Cleavage site between residues 31 and 32


[0593] A search of the NOV42a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 42C.
231TABLE 42CGeneseq Results for NOV42aNOV42aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU00782Human apoptosis protein,100 . . . 392291/293 (99%) e−179APOP-2 - Homo sapiens, 311 19 . . . 311293/293 (99%)aa. [WO200118042-A2,Mar. 15, 2001]ABB90335Human polypeptide SEQ ID 15 . . . 293183/279 (65%) e−116NO 2711 - Homo sapiens, 7 . . . 284230/279 (81%)296 aa. [WO200190304-A2,Nov. 29, 2001]AAB93884Human protein sequence 15 . . . 361160/347 (46%)4e−90SEQ ID NO:13813 - Homo 8 . . . 353218/347 (62%)sapiens, 394 aa.[EP1074617-A2,Feb. 7, 2001]ABB90167Human polypeptide SEQ ID 15 . . . 360159/346 (45%)1e−89NO 2543 - Homo sapiens, 8 . . . 352217/346 (61%)394 aa. [WO200190304-A2,Nov. 29, 2001]AAM78909Human protein SEQ ID NO 15 . . . 360159/346 (45%)1e−891571 - Homo sapiens, 394 aa. 8 . . . 352217/346 (61%)[WO200157190-A2,Aug. 9, 2001]


[0594] In a BLAST search of public sequence datbases, the NOV42a protein was found to have homology to the proteins shown in the BLASTP data in Table 42D.
232TABLE 42DPublic BLASTP Results for NOV42aNOV42aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueAAH32565Similar to RIKEN cDNA 1 . . . 392391/392 (99%)0.02310081H14 gene - Homo 1 . . . 392391/392 (99%)sapiens (Human), 392 aa.Q924Z3TRH4 - Mus musculus 1 . . . 392301/392 (76%)0.0(Mouse), 414 aa. 1 . . . 392339/392 (85%)Q9D6K92310081H14Rik protein - 1 . . . 392301/392 (76%)0.0Mus musculus (Mouse), 414 1 . . . 392339/392 (85%)aa.Q8QGA3TRH4 - Xenopus laevis 9 . . . 392288/385 (74%) e−179(African clawed frog), 382 1 . . . 382326/385 (83%)aa.Q90YY6Trh1 - Brachydanio rerio15 . . . 360166/348 (47%)4e−92(Zebrafish) (Zebra danio),11 . . . 358224/348 (63%)406 aa.


[0595] PFam analysis predicts that the NOV42a protein contains the domains shown in the Table 42E.
233TABLE 42EDomain Analysis of NOV42aIdentities/Similaritiesfor the MatchedExpectPfam DomainNov42a Match RegionRegionValuehomeobox92 . . . 13516/44 (36%)0.02928/44 (64%)



Example 43

[0596] The NOV43 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 43A.
234TABLE 43ANOV43 Sequence AnalysisSEQ ID NO: 1571845 bpNOV43a,GTGTGAAAATCACAAATGTCAAATGATGGAAGATCCAGGAATCGGGACAGGCGCTACGATGAGGTCCCG151801-01DNA SequenceCAAGCGACCTGCCCTATCAAGATACCACCATAAGAACCCACCCAACTCTTCATGACAGTGAGCGGGCAGTGAGCGCTGATCCCTTGCCACCACCCCCTCTCCCATTACAGCCACCATTCGGCCCAGACTTCTACTCAAGTGACACAGAAGAACCAGCTATAGCGCCAGATCTCAAACCAGTAAGGCGCTTTGTCCCTGACTCCTGGAAGAACTTTTTCAGAGGGAAGAAAAAGGACCCCGAATGGGATAAGCCGGTGTCTGATATCAGGTACATCTCCGATGGAGTGGAGTGTTCACCACCAGCCTCTCCAGCAAGACCAAACCACCGTTCGCCCCTCAACTCCTGCAAAGATCCCTACGGCGGGTCAGAAGGAACCTTTAGTTCCCGGAAAGAGGCTGACGCAGTGTTTCCCCGGGATCCCTATGGATCTCTAGACCGACACACACAAACAGTTCGAACATACAGTGAGAAGGTGGAGGAGTATAACCTGAGATACTCCTACATGAAGTCGTGGGCAGGCCTGCTGAGAATACTGGGTGTGGTGGAGCTGCTTTTGGGGGCCGGTGTCTTTGCTTGTGTCACAGCTTACATTCACAAGGACAGTGAGTGGTACAACTTGTTTGGATATTCACAACCGTATGGCATGGGAGGCGTTGGTGGATTGGGCAGTATGTATGGGGGCTATTACTACACTGGCCCTAAGACCCCTTTTGTACTCGTGGTTGCTGGATTAGCTTGGATCACCACCATTATTATTCTGGTTCTTGGCATGTCCATGTATTACCGGACCATTCTTCTGGACTCTAATTGGTGGCCCCTAACTGAATTTGGAATTAACGTTGCCTTGTTTATTTTGTATATGGCCGCAGCCATAGTCTATGTGAATGATACCAACCGAGGTGGCCTCTGCTACTATCCGTTATTTAATACACCAGTGAATGCAGTGTTCTGCCGGGTAGAAGGAGGACAGATAGCTGCAATGATCTTCCTGTTTGTCACCATGATAGTTTATCTCATTAGTGCTTTGGTTTGCCTAAAGTTATGGAGGCATGAGGCAGCTCGGAGACATAGAGAATATATGGAACAACAGGAGGTAAGTGATATAAATGAGCCATCATTGTCATCGAAAAGGAAAATGTGTGAAATGGCCACCAGTGGTGACAGACAAAGAGACTCAGAAGTTAATTTCAAGGAACTGAGAACAGCAAAAATGAAACCTGAACTACTGAGTGGACACATCCCCCCAGGCCACATTCCTAAACCTATCGTGATGCCCGACTATGTGGCGAAATACCCTGTGATTCAGACAGATGATGAGCGAGAACGCTATAAAGCTGTGTTCCAAGACCAGTTTTCAGAGTACAAAGAGCTGTCTGCAGAAGTTCAGGCTGTCCTGAGGAAGTTTGATGAGCTGGATGCAGTGATGAGCAGATTGCCACATCATTCGGAAAGCCGACAGGAACATGAGAGAATTTCAAGAATCCATGAAGAGTTTAAGAAAAAAAAGAATGATCCTACATTTCTGGAAAAAAAAGAACGCTGTGATTACCTAAAGAATAAACTTTCTCACATAAAGCAAAGAATTCAAGAATATGATAAAGTAATGAATTGGGATGTACAAGGTTATTCTTAACGCTTATTTGAAACCACTTTATTTTTTTATTTTATTTTATTTTTTTGAGATGAAGTCTCGCTCTGTTACCCAGGCTGGAATGCAGTGGCACAATCTCGGCTCACTGCAACCTCCACCTCCCGGGTTCAAGCAATTCTCCTGTTCORF Start: ATG at 16ORF Stop: TAA at 1699SEQ ID NO: 15861 aaMW at 64468.7 kDNOV43a,MSNDGRSRNRDRRYDEVPSDLPYQDTTIRTHPTLHDSERAVSADPLPPPPLPLQPPFGPDFYSSDTECG151801-01Protein SequenceEPAIAPDLKPVRRFVPDSWKNFFRGKKKDPEWDKPVSDIRYISDGVECSPPASPARPNHRSPLNSCKDPYGGSEGTFSSRKEADAVFPRDPYGSLDRHTQTVRTYSEKVEEYNLRYSYMKSWAGLLRILGVVELLLGAGVFACVTAYIHKDSEWYNLFGYSQPYGMGGVGGLGSMYGGYYYTGPKTPFVLVVAGLAWITTIIILVLGMSMYYRTILLDSNWWPLTEFGINVALFILYMAAAIVYVNDTNRGGLCYYPLFNTPVNAVFCRVEGGQIAAMIFLFVTMIVYLISALVCLKLWRHEAARRHREYMEQQEVSDINEPSLSSKRKMCEMATSGDRQRDSEVNFKELRTAKMKRELLSGHIPPGHIPKPIVMPDYVAKYPVIQTDDERERYKAVFQDQFSEYKELSAEVQAVLRKFDELDAVMSRLPHHSESRQEHERISRIHEEFKKKKNDPTFLEKKERCDYLKNKLSHIKQRIQEYDKVMNWDVQGYS


[0597] Further analysis of the NOV43a protein yielded the following properties shown in Table 43B.
235TABLE 43BProtein Sequence Properties NOV43aPSort analysis:0.6000 probability located in plasma membrane; 0.4000 probability located inGolgi body; 0.3000 probability located in endoplasmic reticulum (membrane);0.3000 probability located in microbody (peroxisome)SignalP analysis:No Known Signal Sequence Predicted


[0598] A search of the NOV43a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 43C.
236TABLE 43CGeneseq Results for NOV43aNOV43aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABG14568Novel human diagnostic 1 . . . 332325/333 (97%)0.0protein #14559 - Homo 1 . . . 333326/333 (97%)sapiens, 363 aa.[WO200175067-A2,Oct. 11, 2001]AAB82940Human androgen receptor392 . . . 550 63/161 (39%)2e−26trapped protein 5 (ARTS) - 94 . . . 253 98/161 (60%)Homo sapiens, 264 aa.[WO200172332-A1,Oct. 4, 2001]AAB56085Human secreted protein392 . . . 550 63/161 (39%)2e−26sequence encoded by gene 9 94 . . . 253 98/161 (60%)SEQ ID NO:179 - Homosapiens, 264 aa.[WO200070042-A1,Nov. 23, 2000]AAW76212Human ELL2 protein - Homo371 . . . 551 60/184 (32%)6e−19sapiens, 640 aa.466 . . . 633100/184 (53%)[WO9837194-A1,Aug. 27, 1998]AAB57048Human prostate cancer371 . . . 551 60/184 (32%)1e−18antigen protein sequence503 . . . 670 99/184 (53%)SEQ ID NO: 1626 - Homosapiens, 677 aa.[WO200055174-A1,Sep. 21, 2000]


[0599] In a BLAST search of public sequence datbases, the NOV43a protein was found to have homology to the proteins shown in the BLASTP data in Table 43D.
237TABLE 43DPublic BLASTP Results for NOV43aNOV43aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueAAH33689Similar to hypothetical 1 . . . 561557/561 (99%)0.0protein FLJ30532 - Homo 1 . . . 558557/561 (99%)sapiens (Human), 558 aa.Q96NM9CDNA FLJ30532 fis, clone 1 . . . 433429/433 (99%)0.0BRAWH2001129, weakly 1 . . . 430429/433 (99%)similar to occludin - Homosapiens (Human), 457 aa.Q99LE8Hypothetical 50.4 kDa121 . . . 560386/441 (87%)0.0protein - Mus musculus 1 . . . 435409/441 (92%)(Mouse), 436 aa (fragment).Q9H607CDNA: FLJ22709 fis, clone392 . . . 550 63/161 (39%)5e−26HSI13338 - Homo sapiens 94 . . . 253 98/161 (60%)(Human), 264 aa.Q8VCR9Similar to RIKEN cDNA437 . . . 550 49/114 (42%)2e−209430098E02 gene - Mus 94 . . . 206 73/114 (63%)musculus (Mouse), 219 aa.


[0600] PFam analysis predicts that the NOV43a protein contains the domains shown in the Table 43E.
238TABLE 43EDomain Analysis of NOV43aIdentities/SimilaritiesPfam DomainNOV43a Match Regionfor the Matched RegionExpect ValueOccludin444 . . . 55333/110 (30%)6.2e−0956/110 (51%)



Example 44

[0601] The NOV44 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 44A.
239TABLE 44ANOV44 Sequence AnalysisSEQ ID NO: 1591112 bpNOV44a,TGAGGCGAGTGAAGTGGACTCTGAGGGCTACCGCTACCGCCACTGCTGCGGCAGGGGCGTGGAGGGCCG165961-01DNA SequenceAGAGGGCCGCGGAGGCCGCAGTTGCAAACATGGCTCAGAGCAGAGACGGCGGAAACCCGTTCGCCGAGCCCAGCGAGCTTGACAACCCCTTTCAGGACCCAGCTGTGATCCAGCACCGACCCAGCCGGCAGTATGCCACGCTTGACGTCTACAACCCTTTTGAGACCCGGGAGGCCTCAGCTGCAGCAGCCACAGCTGAGCTGCTGAAGAAACAGGAGGAGCTCAACCGGAAGGCAGAGGAGTTGGACCGAAGGGAGCGAGAGCTGCAGCATGCTGCCCTGGGAGGCACAGCTACTCGACAGAACAATTGGCCCCCTCTACCTTCTTTTTGTCCAGTTCAGCCCTGCTTTTTCCAGGACATCTCCATGGAGATCCCCCAAGAATTTCAGAAGACTGTATCCACCATGTACTACCTCTGGATGTGCAGCACGCTGGCTCTTCTCCTGAACTTCCTCGCCTGCCTGGCCAGCTTCTGTGTGGAAACCAACAATGGCGCAGGCTTTGGGCTTTCTATCCTCTGGGTCCTCCTTTTCACTCCCTGCTCCTTTGTCTGCTGGTACCGCCCCATGTATAAGGCTTTCCGGAGTGACAGTTCATTCAATTTCTTCGTTTTCTTCTTCATTTTCTTCGTCCAGGATGTGCTCTTTGTCCTCCAGGCCATTGGTATCCCAGGTTGGGGATTCAGTGGCTGGATCTCTGCTCTGGTGGTGCCGAAGGGCAACACAGCAGTATCCGTGCTCATGCTGCTGGTCGCCCTGCTCTTCACTGGCATTGCTGTGCTAGGAATTGTCATGCTGAAACGGATCCACTCCTTATACCGCCGCACAGGTGCCAGCTTTCAGAAGGCCCAGCAAGAATTTGCTGCTGGTGTCTTCTCCAACCCTGCGGTGCGAACCGCAGCTGCCAATGCAGCCGCTGGGGCTGCTGAAAATGCCTTCCGGGCCCCGTGACCCCTGACTGGGATGCCCTGGCCCTGCTACTTGAGGGAGCTGACTTAGCTCCCGTCCCTAAGGTCTCTGGGACTTGGAGAGACATCACTAACTGAORF Start: ATG at 97ORF Stop: TGA at 1015SEQ ID NO: 160306 aaMW at 33990.7 kDNOV44a,MAQSRDGGNPFAEPSELDNPFQDPAVIQHRPSRQYATLDVYNPFETREASAAAATAELLKKQEELNRCG165961-01Protein SequenceKAEELDRRERELQHAALGGTATRQNNWPPLPSFCPVQPCFFQDISMEIPQEFQKTVSTMYYLWMCSTLALLLNFLACLASFCVETNNGAGFGLSILWVLLFTPCSFVCWYRPMYKAFRSDSSFNFFVFFFIFFVQDVLFVLQAIGIPGWGFSGWISALVVPKGNTAVSVLMLLVALLFTGIAVLGIVMLKRIHSLYRRTGASFQKAQQEFAAGVFSNPAVRTAAANAAAGAAENAFRAPSEQ ID NO: 1611310 bpNOV44b,TGAGGCGAGTGAAGTGGACTCTGAGGGCTACCGCTACCGCCACTGCTGCGGCAGGGGCGTGGAGGGCCG165961-02DNA SequenceAGAGGGCCGCGGAGGCCGCAGTTGCAAACATGGCTCAGAGCAGAGACGGCGGAAACCCGTTCGCCGAGCCCAGCGAGCTTGACAACCCCTTTCAGGACCCAGCTGTGATCCAGCACCGACCCAGCCGGCAGTATGCCACGCTTGACGTCTACAACCCTTTTGAGACCCGGGAGGCCTCAGCTGCAGCAGCCACAGCTGAGCTGCTGAAGAAACAGGAGGAGCTCAACCGGAAGGCAGAGGAGTTGGACCGAAGGGAGCGAGAGCTGCAGCATGCTGCCCTGGGAGGCACAGCTACTCGACAGAACAATTGGCCCCCTCTACCTTCTTTTTGTCCAGTTCAGCCCTGCTTTTTCCAGGACATCTCCATGGAGATCCCCCAAGAATTTCAGAAGACTGTATCCACCATGTACTACCTCTGGATGTGCAGCACGCTGGCTCTTCTCCTGAACTTCCTCGCCTGCCTGGCCAGCTTCTGTGTGGAAACCAACAATGGCGCAGGCTTTGGGCTTTCTATCCTCTGGGTCCTCCTTTTCACTCCCTGCTCCTTTGTCTGCTGGTACCGCCCCATGTATAAGGCTTTCCGGAGTGACAGTTCATTCAATTTCTTCGTTTTCTTCTTCATTTTCTTCGTCCAGGATGTGCTCTTTGTCCTCCAGGCCATTGGTATCCCAGGTTGGGGATTCAGTGGCTGGATCTCTGCTCTGGTGGTGCCGAAGGGCAACACAGCAGTATCCGTGCTCATGCTGCTGGTCGCCCTGCTCTTCACTGGCATTGCTGTGCTAGGAATTGTCATGCTGAAACGGATCCACTCCTTATACCGCCGCACAGGTGCCAGCTTTCAGAAGGCCCAGCAAGAATTTGCTGCTGGTGTCTTCTCCAACCCTGCGGTGCGAACCGCAGCTGCCAATGCAGCCGCTGGGGCTGCTGAAAATGCCTTCCGGGCCCCGTGACCCCTGACTGGGATGCCCTGGCCCTGCTACTTGAGGGAGCTGACTTAGCTCCCGGCCCTAAGGTCTCTGGGACTTGGAGAGACATCACTAACTGATGGCTCCTCCGTAGTGCTCCCAATCCTATGGCCATGACTGCTGAACCTGACAGGCGTGTGGGGAGTTCACTGTGACCTAGTCCCCCCATCAGGCCACACTGCTGCCACCTCTCACACGCCCCAACCCAGCTTCCCTCTGCTGTGCCACGGCTGTTGCTTCGGTTATTTAAATAAAAAGAAAGTGGAACTGGAACTGACORF Start: ATG at 97ORF Stop: TGA at 1015SEQ ID NO: 162306 aaMW at 33990.7 kDNOV44b,MAQSRDGGNPFAEPSELDNPFQDPAVIQHRPSRQYATLDVYNPFETREASAAAATAELLKKQEELNRCG165961-02Protein SequenceKAEELDRRERELQHAALGGTATRQNNWPPLPSFCPVQPCFFQDISMEIPQEFQKTVSTMYYLWMCSTLALLLNFLACLASFCVETNNGAGFGLSILWVLLFTPCSFVCWYRPMYKAFRSDSSFNFFVFFFIFFVQDVLFVLQAIGIPGWGFSGWISALVVPKGNTAVSVLMLLVALLFTGIAVLGIVMLKRIHSLYRRTGASFQKAQQEFAAGVFSNPAVRTAAANAAAGAAENAFRAPSEQ ID NO: 163135 bpNOV44c,TGAGGCGAGTGAAGTGGACTCTGAGGGCTACCGCTACCGCCACTGCTGCGGCAGGGGCGTGGAGGGCCG 165961-03DNA SequenceAGAGGGCCGCGGAGGCCGCAGTTGCGAACATGGCTCAGAGCAGAGACGGCGGAAACCCGTTCGCCGAGCCCAGCGAGCTTGACAACCCCTTTCAGGACCCACCTGTGATCCAGCACCGACCCAGCCGGCAGTATGCCACGCTTGACGTCTACAACCCTTTTGAGACCCGGGAGCCACCACCAGCCTATGAGCCTCCAGCCCCTGCCCCATTGCCTCCACCCTCAGCTCCCTCCTTGCAGCCCTCGAGAAAGCTCAGCCCCACAGAACCTAAGAACTATGGCTCATACAGCACTCAGGCCTCAGCTGCAGCAGCCACAGCTGAGCTGCTGAAGAAACAGGAGGAGCTCAACCGGAAGGCAGAGGAGTTGGACCGAAGGGAGCGAGAGCTGCAGCATGCTGCCCTGGGGGGCACAGCTACTCGACAGAACAATTGGCCCCCTCTACCTTCTTTTTGTCCAGTTCAGCCCTGCTTTTTCCAGGACATCTCCATGGAGATCCCCCAAGAATTTCAGAAGACTGTATCCACCATGTACTACCTCTGGATGTGCAGCACGCTGGCTCTTCTCCTGAACTTCCTCGCCTGCCTGGCCAGCTTCTGTGTGGAAACCAACAATGGCGCAGGCTTTGGGCTTTCTATCCTCTGGGTCCTCCTTTTCACTCCCTGCTCCTTTGTCTGCTGGTACCGCCCCATGTATAAGGCTTTCCGGAGTGACAGTTCATTCAATTTCTTCGTTTTCTTCTTCATTTTCTTCGTCCAGGATGTGCTCTTTGTCCTCCAGGCCATTGGTATCCCAGGTTGGGGATTCAGTGGCTGGATCTCTGCTCTGGTGGTGCCGAAGGGCAACACAGCAGTATCCGTGCTCATGCTGCTGGTCGCCCTGCTCTTCACTGGCATTGCTGTGCTAGGAATTGTCATGCTGAAACGGATCCACTCCTTATACCGCCGCACAGGTGCCAGCTTTCAGAAGGCCCAGCAAGAATTTGCTGCTGGTGTCTTCTCCAACCCTGCGGTGCGAACCGCAGCTGCCAATGCAGCCGCTGGGGCTGCTGAAAATGCCTTCCGGGCCCCGTTGACCCCTGACTGGGATGCCCTGGCCCTGCTACTTGAGGGAGCTGACTTAGCTCCCGTCCCTAAGGTCTCTGGGACTTGGAGAGACATCACTAACTGAORF Start: ATG at 97ORF Stop: TGA at 1138SEQ ID NO: 164347 aaMW at 38312.5 kDNOV44c,MAQSRDGGNPFAEPSELDNPFQDPPVIQHRPSRQYATLDVYNFPETREPPPAYEPPAPAPLPPPSAPCG165961-03Protein SequenceSLQPSRKLSPTEPKNYGSYSTQASAAAATAELLKKQEELNRKAEELDRRERELQHAALGGTATRQNNWPPLPSFCPVQPCFFQDISMEIPQEFQKTVSTMYYLWMCSTLALLLNFLACLASFCVETNNGAGFGLSILWVLLFTPCSFVCWYRPMYKAFRSDSSFNFFVFFFIFFVQDVLFVLQAIGIPGWGFSGWISALVVPKGNTAVSVLMLLVALLFTGIAVLGIVMLKRIHSLYRRTGASFQKAQQEFAAGVFSNPAVRTAAANAAAGAAENAFRAPSEQ ID NO: 1651543 bpNOV44d,CGGCCGCGTCGACGGACTCTGAGGGCTACCGCTACCGCCACTGCTGCGGCAGGGGCGTGGAGGGCAGCG165961-04DNA SequenceAGGGCCGCGGAGGCCGCAGTTGCAAACATGGCTCAGAGCAGAGACGGCGGAAACCCGTTCGCCGAGCCCAGCGAGCTTGACAACCCCTTTCAGCCACCACCAGCCTATGAGCCTCCAGCCCCTGCCCCATTGCCTCCACCCTCAGCTCCCTCCTTGCAGCCCTCGAGAAAGCTCAGCCCCACAGAACCTAAGAACTATGGCTCATACAGCACTCAGGCCTCAGCTGCAGCAGCCACAGCTCAGCTGCTGAAGAAACAGGAGGAGCTCAACCGGAAGGCAGAGGAGTTGGACCGAAGGGAGCGAGAGCTGCAGCATGCTGCCCTGGGGGGCACAGCTACTCGACAGAACAATTGGCCCCCTCTACCTTCTTTTTGTCCAGTTCAGCCCTGCTTTTTCCAGGACATCTCCATGGAGATCCCCCAAGAATTTCAGAAGACTGTATCCACCATGTACTACCTCTGGATGTGCAGCACGCTGGCTCTTCTCCTGAACTTCCTCGCCTGCCTGGCCAGCTTCTGTGTGGAAACCAACAATGGCGCAGGCTTTGGGCTTTCTATCCTCTGGGTCCTCCTTTTCACTCCCTGCTCCTTTGTCTGCTGGTACCGCCCCATGTATAAGGCTTTCCGGAGTGACAGTTCATTCAATTTCTTCGTTTTCTTCTTCATTTTCTTCGTCCAGGATGTGCTCTTTGTCCTCCAGGCCATTGGTATCCCAGGTTGGGGATTCAGTGGCTGGATCTCTGCTCTGGTGGTGCCGAAGGGCAACACAGCAGTATCCGTGCTCATGCTGCTGGTCGCCCTGCTCTTCACTGGCATTGCTGTGCTAGGAATTGTCATGCTGAAACGGATCCACTCCTTATACCGCCGCACAGGTGCCAGCTTTCAGAAGGCCCAGCAAGAATTTGCTGCTGGTGTCTTCTCCAACCCTGCGGTGCGAACCGCAGCTGCCAATGCAGCCGCTGGGGCTGCTGAAAATGCCTTCCGGGCCCCGTGACCCCTGACTGGGATGCCCTGGCCCTGCTACTTGAGGGAGCTGACTTAGCTCCCGTCCCTAAGGTCTCTGGGACTTGGAGAGACATCACTAACTGATGGCTCCTCCGTAGTGCTCCCAATCCTATGGCCATGACTGCTGAACCTGACAGGCGTGTGGGGAGTTCACTGTGACCTAGTCCCCCCATCAGGCCACACTGCTGCCACCTCTCACACGCCCCAACCCAGCTTCCCTCTGCTGTGCCACGGCTGTTGCTTCGGTTATTTAAATAAAAAGAAAGTGGAACTGGAACTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTATAATTTTTTTTTTTTTTTTTTTTTTTTACCCCCCCCGCTTTTTTTTTTTTTTTTTTTTTTTCCCCCCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGTGTTTTTTTTTTTTTTTTTTCCCCCORF Start: ATG at 95ORF Stop: TGA at 1058SEQ ID NO: 166321 aaMW at 35201.1 kDNOV44d,MAQSRDGGNPFAEPSELDNPFQPPPAYEPPAPAPLPPPSAPSLQPSRKLSPTEPKNYGSYSTQASAACG165961-04Protein SequenceAATAELLKKQEELNRKAEELDRRERELQHAALGGTATRQNNWPPLPSFCPVQPCFFQDISMEIPQEFQKTVSTMYYLWMCSTLALLLNFLACLASFCVETNNGAGFGLSILWVLLFTPCSFVCWYRPMYKAFRSDSSFNFFVFFFIFFVQDVLFVLQAIGIPGWGFSGWISALVVPKGNTAVSVLMLLVALLFTGIAVLGIVMLKRIHSLYRRTGASFQKAQQEFAAGVFSNPAVRTAAANAAAGAAENAFRAP


[0602] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 44B.
240TABLE 44BComparison of NOV44a against NOV44b through NOV44d.NOV44a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV44b1 . . . 285223/285 (78%)1 . . . 285223/285 (78%)NOV44c1 . . . 285228/326 (69%)1 . . . 326229/326 (69%)NOV44d1 . . . 285201/300 (67%)1 . . . 300203/300 (67%)


[0603] Further analysis of the NOV44a protein yielded the following properties shown in Table 44C.
241TABLE 44CProtein Sequence Properties NOV44aPSort analysis:0.6000 probability located in plasma membrane; 0.4000 probability located inGolgi body; 0.3000 probability located in endoplasmic reticulum (membrane);0.0300 probability located in mitochondrial inner membraneSignalP analysis:No Known Signal Sequence Predicted


[0604] A search of the NOV44a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 44D.
242TABLE 44DGeneseq Results for NOV44aNOV44aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB62698Human membrane recycling1 . . . 306306/347 (88%) e−173protein (HMRP)-1 - Homo1 . . . 347306/347 (88%)sapiens, 347 aa.[U.S. Pat. No. 6,235,715-B1,May 22, 2001]AAY30521A human membrane1 . . . 306306/347 (88%) e−173recycling protein designated1 . . . 347306/347 (88%)HMRP-1 - Homo sapiens,347 aa. [U.S. Pat. No. 5,962,263-A,Oct. 5, 1999]AAB62700Rat SCAMP 37 protein -9 . . . 304180/333 (54%)4e−92Rattus sp, 338 aa.7 . . . 334217/333 (65%)[U.S. Pat. No. 6,235,715-B1,May 22, 2001]ABG61921Prostate cancer-associated9 . . . 304178/333 (53%)3e−90protein #122 - Mammalia,7 . . . 334215/333 (64%)338 aa. [WO200230268-A2,Apr. 18, 2002]AAB62699Human membrane recycling9 . . . 298164/322 (50%)1e−87protein (HMRP)-2 - Homo7 . . . 325220/322 (67%)sapiens, 329 aa.[U.S. Pat. No. 6,235,715-B1,May 22, 2001]


[0605] In a BLAST search of public sequence datbases, the NOV44a protein was found to have homology to the proteins shown in the BLASTP data in Table 44E.
243TABLE 44EPublic BLASTP Results for NOV44aNOV44aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueO14828Secretory carrier-associated1 . . . 306302/347 (87%)e−170membrane protein 3 - Homo1 . . . 347302/347 (87%)sapiens (Human), 347 aa.T08826secretory carrier membrane1 . . . 306301/347 (86%)e−169protein homolog propin1 -1 . . . 347301/347 (86%)human, 347 aa.Q99M48Similar to secretory carrier1 . . . 306277/350 (79%)e−156membrane protein 3 - Mus1 . . . 350289/350 (82%)musculus (Mouse), 350 aa.Q9ERM9Secretory carrier membrane1 . . . 306276/349 (79%)e−155protein 3 - Mus musculus1 . . . 349288/349 (82%)(Mouse), 349 aa.O35609Secretory carrier-associated1 . . . 306274/349 (78%)e−154membrane protein 3 - Mus1 . . . 349286/349 (81%)musculus (Mouse), 349 aa.


[0606] PFam analysis predicts that the NOV44a protein contains the domains shown in the Table 44F.
244TABLE 44FDomain Analysis of NOV44aPfam DomainNOV44a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 45

[0607] The NOV45 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 45A.
245TABLE 45ANOV45 Sequence AnalysisSEQ ID NO: 1671356 bpNOV45a,CTGCGCTGCCGAGGCGAGCTAAGCGCCCGCTCGCCATGGGGAGCCCCGCACATCGGCCCGCGCTGCTCG171681-01DNA SequenceGCTGCTGCTGCCGCCTCTGCTGCTGCTGCTGCTGCTGCGCGTCCCGCCCAGCCGCAGCTTCCCAGATATGGAACCTCCTAGAATCAAGTGCCCAAGTGTGAAGGAACGCATTGCAGAACCCAACAAACTGACAGTCCGGGTGTCCTGGGAGACACCCGAAGGAAGAGACACAGCAGATGGAATTCTTACTGATGTCATTCTAAAAGGCCTCCCCCCAGGCTCCAACTTTCCAGAAGGAGACCACAAGATCCAGTACACAGTCTATGACAGAGCTGAGAATAAGGGCACTTGCAAATTTCGAGTTAAAGTAAGAGTCAAACGCTGTGGCAAACTCAATGCCCCAGAGAATGGTTACATGAAGTGCTCCAGCGACGGTGATAATTATGGAGCCACCTGTGAGTTCTCCTGCATCGGCGGCTATGAGCTCCAGGGTAGCCCTGCCCGAGTATGTCAATCCAACCTGGCTTGGTCTGGCACGGAGCCCACCTGTGCAGCCATGAACGTCAATGTGGGTGTCAGAACGGCAGCTGCACTTCTGGATCAGTTTTATGAGAAAAGGAGACTCCTCATTGTGTCCACACCCACAGCCCGAAACCTCCTTTACCGGCTCCAGCTAGGAATGCTGCAGCAAGCACAGTGTGGCCTTGATCTTCGACACATCACCGTGGTGGAGCTGGTGGGTGTGTTCCCGACTCTCATTGGCAGGATAGGAGCAAAGATTATGCCTCCAGCCCTAGCGCTGCAGCTCAGGCTGTTGCTGCGAATCCCACTCTACTCCTTCAGTATGGTGCTAGTGGATAAGCATGGCATGGACAAAGAGCGCTATGTCTCCCTGGTGATGCCTGTGGCCCTGTTCAACCTGATTGACACTTTTCCCTTGAGAAAAGAAGAGATGGTCCTACAAGCCGAAATGAGCCAGACCTGTAACACCTGACATGATGGTTCCTCTCTTGGCAATTCCTCTTCATTGTCTACATAGTGACATGCACACGGGAAAGCCTTAAAAATATCCTTGATGTACAGATTTTATTTGTAATTTTAAAAGTCTATTTTATTATGAGCTTTCTTTGCACTTAAAAATTAGCATGCTGCTTTTTGTACTTGGAAGTGTTTCAAAAAATTATATGACCATATTTACTCTTTCTAACCTTTCTTTACTCCATCATGGCTGGTTGATTTGTAGAGAAATTAGAACCCATAACCATACACAGGCTATCAACATGTTATTCAATGTGACACCTAACTCTTTTCTATTTTGTTTTTTAAGTAAGACTTTTATTAATAAAACGORF Start: ATG at 36ORF Stop: TGA at 999SEQ ID NO: 168321 aaMW at 35636.4 kDNOV45a,MGSPAHRPALLLLLPPLLLLLLLRVPPSRSFPDMEPPRIKCPSVKERIAEPNKLTVRVSWETPEGRDCG171681-01Protein SequenceTADGILTDVILKGLPPGSNFPEGDHKIQYTVYDRAENKGTCKFRVKVRVKRCGKLNAPENGYMKCSSDGDNYGATCEFSCIGGYELQGSPARVCQSNLAWSGTEPTCAAMNVNVGVRTAAALLDQFYEKRRLLIVSTPTARNLLYRLQLGMLQQAQCGLDLRHITVVELVGVFPTLIGRIGAKIMPPALALQLRLLLRIPLYSFSMVLVDKHGMDKERYVSLVMPVALFNLIDTFPLRKEEMVLQAIMSQTCNTSEQ ID NO: 1691798 bpNOV45b,CTTGGTCTCTTCGGTCTCCTGCCGCCCCCGGGAAGCGCGCTGCGCTGCCGAGGCGAGCTAAGCGCCCCG171681-02DNA SequenceGCTCGCCATGGGGAGCCCCGCACATCGGCCCGCGCTGCTGCTGCTGCTGCCGCCTCTGCTGCTGCTGCTGCTGCTGCGCGTCCCGCCCAGCCGCAGCTTCCCAGATACCCCGTGGTGCTCCCCCATCAAGGTGAAGTATGGGGATGTGTACTGCAGGGCCCCTCAAGGAGGATACTACAAAACAGCCCTGGGAACCAGGTGCGACATTCGCTGCCAGAAGGGCTACGAGCTGCATGGCTCTTCCCTACTGATCTGCCAGTCAAACAAACGATGGTCTGACAAGGTCATCTGCAAACAAAAGCGATGTCCTACCCTTGCCATGCCAGCAAATGGAGGGTTTAAGTGTGTAGATGGTGCCTACTTTAACTCCCGGTGTGAGTATTATTGTTCACCAGGATACACGTTGAAAGGGGAGCGGACCGTCACATGTATGGACAACAAGGCCTGGAGCGGCCGGCCAGCCTCCTGTGTGGATATGGAACCTCCTAGAATCAAGTGCCCAAGTGTGAAGGAACGCATTGCAGAACCCAACAAACTGACAGTCCGGGTGTCCTGGGAGACACCCGAAGGAAGAGACACAGCAGATGGAATTCTTACTGATGTCATTCTAAAAGGCCTCCCCCCAGGCTCCAACTTTCCAGAAGGAGACCACAAGATCCAGTACACAGTCTATGACAGAGCTGAGAATAAGGGCACTTGCAAATTTCGAGTTAAAGTAAGAGTCAAACGCTGTGGCAAACTCAATGCCCCAGAGAATGGTTACATGAAGTGCTCCAGCGACGGTGATAATTATGGAGCCACCTGTGAGTTCTCCTGCATCGGCGGCTATGAGCTCCAGGGTAGCCCTGCCCGAGTATGTCAATCCAACCTGGCTTGGTCTGGCACGGAGCCCACCTGTGCAGCCATGAACGTCAATGTGGGTGTCAGAACGGCAGCTGCACTTCTGGATCAGTTTTATGAGAAAAGGAGACTCCTCATTGTGTCCACACCCACAGCCCGAAACCTCCTTTACCGGCTCCAGCTAGGAATGCTGCAGCAAGCACAGTGTGGCCTTGATCTTCGACACATCACCGTGGTGGAGCTGGTGGGTGTGTTCCCGACTCTCATTGGCAGGATAGGAGCAAAGATTATGCCTCCAGCCCTAGCGCTGCAGCTCAGGCTGTTGCTGCGAATCCCACTCTACTCCTTCAGTATGGTGCTAGTGGATAAGCATGGCATGGACAAAGAGCGCTATGTCTCCCTGGTGATGCCTGTGGCCCTGTTCAACCTGATTGACACTTTTCCCTTGAGAAAAGAAGAGATGGTCCTACAAGCCGAAATGAGCCAGACCTGTAACACCTGACATGATGGTTCCTCTCTTGGCAATTCCTCTTCATTGTCTACATAGTGACATGCACACGGGAAAGCCTTAAAAATATCCTTGATGTACAGATTTTATTTGTAATTTTAAAAGTCTATTTTATTATGAGCTTTCTTTGCACTTAAAAATTAGCATGCTGCTTTTTGTACTTGGAAGTGTTTCAAAAAATTATATGACCATATTTACTCTTTCTAACTTTCTTTACTCCATCATGGCTGGTTGATTTTGTAGAGAAATTAGAACCCATAACCATACACAGGCTATCAACATGTTATTCAATGTGACACCTAACTCTTTTCTATTTTGTTTTTTAAGTAAGACTTTTATTAATAAAACAAAATGTTTTGGAGCAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 75ORF Stop: TGA at 1407SEQ ID NO: 170444 aaMW at 49381.1 kDNOV45b,MGSPAHRPALLLLLPPLLLLLLLRVPPSRSFPDTPWCSPIKVKYGDVYCRAPQGGYYKTALGTRCDICG171681-02Protein SequenceRCQKGYELHGSSLLICQSNKRWSDKVICKQKRCPTLAMPANGGFKCVDGAYFNSRCEYYCSPGYTLKGERTVTCMDNKAWSGRPASCVDMEPPRIKCPSVKERIAEPNKLTVRVSWETPEGRDTADGILTDVILKGLPPGSNFPEGDHKIQYTVYDRAENKGTCKFRVKVRVKRCGKLNAPENGYMKCSSDGDNYGATCEFSCIGGYELQGSPARVCQSNLAWSGTEPTCAAMNVNVGVRTAAALLDQFYEKRRLLIVSTPTARNLLYRLQLGMLQQAQCGLDLRHITVVELVGVFPTLIGRIGAKIMPPALALQLRLLLRIPLYSFSMVLVDKHGMDKERYVSLVMPVALFNLIDTFPLRKEEMVLQAEMSQTCNTSEQ ID NO: 1711795 bpNOV45c,CTTGGTCTCTTCGGTCTCCTGCCGCCCCCGGGAAGCGCGCTGCGCTGCCGAGGCCGAGCTAAGCGCCCCG171681-03DNA SequenceGCTCGCCATGGGGAGCCCCGCACATCGGCCCGCGCTGCTGCTGCTGCTGCCGCCTCTGCTGCTGCTGCTGCTGCGCGTCCCGCCCAGCCGCAGCTTCCCAGATACCCCGTGGTGCTCCCCCATCAAGGTGAAGTATGGGGATGTGTACTGCAGGGCCCCTCAAGGAGGATACTACAAAACAGCCCTGGGAACCAGGTGCGACATTCGCTGCCAGAAGGGCTACGAGCTGCATGGCTCTTCCCTACTGATCTGCCAGTCAAACAAACGATGGTCTGACAAGGTCATCTGCAAACAAAAGCGATGTCCTACCCTTGCCATGCCAGCAAATGGAGGGTTTAAGTGTGTAGATGGTGCCTACTTTAACTCCCGGTGTGAGTATTATTGTTCACCAGGATACACGTTGAAAGGGGAGCGGACCGTCACATGTATGGACAACAAGGCCTGGAGCGGCCGGCCAGCCTCCTGTGTGGATATGGAACCTCCTAGAATCAAGTGCCCAAGTGTGAAGGAACGCATTGCAGAACCCAACAAACTGACAGTCCGGGTGTCCTGGGAGACACCCGAAGGAAGAGACACAGCAGATGGAATTCTTACTGATGTCATTCTAAAAGGCCTCCCCCCAGGCTCCAACTTTCCAGAAGGAGACCACAAGATCCAGTACACAGTCTATGACAGAGCTGAGAATAAGGGCACTTGCAAATTTCGAGTTAAAGTAAGAGTCAAACGCTGTGGCAAACTCAATGCCCCAGAGAATGGTTACATGAAGTGCTCCAGCGACGGTGATAATTATGGAGCCACCTGTGAGTTCTCCTGCATCGGCGGCTATGAGCTCCAGGGTAGCCCTGCCCGAGTATGTCAATCCAACCTGGCTTGGTCTGGCACGGAGCCCACCTGTGCAGCCATGAACGTCAATGTGGGTGTCAGAACGGCAGCTGCACTTCTGGATCAGTTTTATGAGAAAAGGAGACTCCTCATTGTGTCCACACCCACAGCCCGAAACCTCCTTTACCGGCTCCAGCTAGGAATGCTGCAGCAAGCACAGTGTGGCCTTGATCTTCGACACATCACCGTGGTGGAGCTGGTGGGTGTGTTCCCGACTCTCATTGGCAGGATAGGAGCAAAGATTATGCCTCCAGCCCTAGCGCTGCAGCTCAGGCTGTTGCTGCGAATCCCACTCTACTCCTTCAGTATGGTGCTAGTGGATAAGCATGGCATGGACAAAGAGCGCTATGTCTCCCTGGTGATGCCTGTGGCCCTGTTCAACCTGATTGACACTTTTCCCTTGAGAAAAGAAGAGATGGTCCTACAAGCCGAAATGAGCCAGACCTGTAACACCTGACATGATGGTTCCTCTCTTGGCAATTCCTCTTCATTGTCTACATAGTGACATGCACACGGGAAAGCCTTAAAAATATCCTTGATGTACAGATTTTATTTGTAATTTTAAAAGTCTATTTTATTATGAGCTTTCTTTGCACTTAAAAATTAGCATGCTGCTTTTTGTACTTGGAAGTGTTTCAAAAAATTATATGACCATATTTACTCTTTCTAACTTTCTTTACTCCATCATGGCTGGTTGATTTTGTAGAGAAATTAGAACCCATAACCATACACAGGCTATCAACATGTTATTCAATGTGACACCTAACTCTTTTCTATTTTGTTTTTTAAGTAAGACTTTTATTAATAAAACAAAATGTTTTGGAGCAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 75ORF Stop: TGA at 1404SEQ ID NO: 172443 aaMW at 49267.9 kDNOV45c,MGSPAHRPALLLLLPPLLLLLLRVPPSRSFPDTPWCSPIKVKYGDVYCRAPQGGYYKTALGTRCDIRCG171681-03Protein SequenceCQKGYELHGSSLLICQSNKRWSDKVICKQKRCPTLAMPANGGFKCVDGAYFNSRCEYYCSPGYTLKGERTVTCMDNKAWSGRPASCVDMEPPRIKCPSVKERIAEPNKLTVRVSWETPEGRDTADGILTDVILKGLPPGSNFPEGDHKIQYTVYDRAENKGTCKFRVKVRVKRCGKLNAPENGYMKCSSDGDNYGATCEFSCIGGYELQGSPARVCQSNLAWSGTEPTCAAMNVNVGVRTAAALLDQFYEKRRLLIVSTPTARNLLYRLQLGMLQQAQCGLDLRHITVVELVGVFPTLIGRIGAKIMPPALALQLRLLLRIPLYSFSMVLVDKHGMDKERYVSLVMPVALFNLIDTFPLRKEEMVLQAEMSQTCNT


[0608] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 45B.
246TABLE 45BComparison of NOV45a against NOV45b and NOV45c.NOV45a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV45b 33 . . . 321273/289 (94%)156 . . . 444273/289 (94%)NOV45c 33 . . . 321273/289 (94%)155 . . . 443273/289 (94%)


[0609] Further analysis of the NOV45a protein yielded the following properties shown in Table 45C.
247TABLE 45CProtein Sequence Properties NOV45aPSort analysis:0.8200 probability located in outside; 0.1000 probability located inendoplasmic reticulum (membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000 probability located in lysosome(lumen)SignalP analysis:Cleavage site between residues 31 and 32


[0610] A search of the NOV45a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 45D.
248TABLE 45DGeneseq Results for NOV45aNOV45aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB07747A human cancer-associated 33 . . . 319148/287 (51%)7e−89protein-1 (CAP-1) - Homo178 . . . 464205/287 (70%)sapiens, 465 aa.[WO200043508-A2,Jul. 27, 2000]AAB59009Breast and ovarian cancer 33 . . . 319148/287 (51%)7e−89associated antigen protein144 . . . 430205/287 (70%)sequence SEQ ID 717 -Homo sapiens, 431 aa.[WO200055173-A1,Sep. 21, 2000]ABB72149Rat protein isolated from skin 88 . . . 203 71/116 (61%)3e−38cells SEQ ID NO: 188 - 3 . . . 118 89/116 (76%)Rattus sp, 118 aa.[WO200190357-A1,Nov. 29, 2001]AAB55949Skin cell protein, SEQ ID 88 . . . 203 71/116 (61%)3e−38NO: 188 - Rattus sp, 118 aa. 3 . . . 118 89/116 (76%)[WO200069884-A2,Nov. 23, 2000]AAY76010Rat DRS protein homologue, 88 . . . 203 71/116 (61%)3e−38SEQ ID NO:188 - Rattus sp, 3 . . . 118 89/116 (76%)118 aa. [WO9955865-A1,Nov. 4, 1999]


[0611] In a BLAST search of public sequence datbases, the NOV45a protein was found to have homology to the proteins shown in the BLASTP data in Table 45E.
249TABLE 45EPublic BLASTP Results for NOV45aNOV45aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP78539Sushi repeat-containing 33 . . . 321289/289 (100%) e−168protein SRPX precursor -176 . . . 464289/289 (100%)Homo sapiens (Human), 464aa.Q63769Sushi repeat-containing 33 . . . 321279/289 (96%) e−164protein SRPX precursor176 . . . 464286/289 (98%)(DRS protein) (Down-regulated by V-SRC) -Rattus norvegicus (Rat), 464aa.Q9R0M3Sushi-repeat-containing 33 . . . 320276/288 (95%) e−163protein - Mus musculus176 . . . 463285/288 (98%)(Mouse), 464 aa.Q9R0M2Sushi-repeat-containing 33 . . . 320276/288 (95%) e−163protein - Mus musculus 92 . . . 379285/288 (98%)(Mouse), 380 aa.AAM73691Sushi-repeat containing 33 . . . 319152/287 (52%)2e−89protein - Mus musculus181 . . . 467203/287 (69%)(Mouse), 468 aa.


[0612] PFam analysis predicts that the NOV45a protein contains the domains shown in the Table 45F.
250TABLE 45FDomain Analysis of NOV45aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV45a Match RegionRegionValueHYR 33 . . . 11427/86 (31%)2.2e−3478/86 (91%)sushi119 . . . 17419/64 (30%)2.7e−0941/64 (64%)



Example 46

[0613] The NOV46 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 46A.
251TABLE 46ANOV46 Sequence AnalysisSEQ ID NO: 1731785 bpNOV46a,GTCGCCAGCTGAGGCGGTTTGTAAGTTTTGGGTCGCAGTATGCTAGAATTTTGAGGCTCCCTTCTGACG173318-01DNA SequenceTGAAAATTGAGCTGTCCATGCAGCCATGGAACCCGGGTTACAGCAGTGAGGGGGCCACGGCTCAAGAAACTTACACATGTCCAAAAATGATTGAGATGGAGCAGGCGGAGGCCCAGCTTGCTGAGTTAGACCTGCTAGCCAGTATGTTCCCTGGTGAGAATGAGCTCATAGTGAATGACCAGCTGGCTGTAGCAGAACTGAAAGATTGTATTGAAAAGAAGACAATGGAGGGGCGATCTTCAAAAGTCTACTTTACTATCAATATGAACCTGGATGTATCTGACGAAAAAATGGTAATTCAGTTTTGCTTTTAGAGGGATTGAAACATGTTGAGACTTAAAACATTGGTTAGTGCACTTTTTCTTCTTCTCTTTAATCAGGCGATGTTTTCTCTGGCCTGTATTCTTCCCTTTAAATACCCGGCAGTTCTGCCTGAAATTACTGTCAGATCAGTATTATTGAGTAGATCCCAGCAGACTCAGCTGAACACAGATCTGACTGCATTCCTGCAAAAACATTGTCATGGAGATGTTTGTATACTGAATGCCACAGAGTGGGTTAGAGAACACGCCTCTGGCTATGTCAGCAGAGATACTTCATCTTCACCCACCACAGGAAGCACAGTCCAGTCAGTTGACCTCATCTTCACGAGACTCTGGATCTACAGCCATCATATCTATAACAAATGCAAAAGAAAGAATATTCTAGAGTGGGCAAAGGAGCTTTCCCTGTCTGGGTTTAGCATGCCTGGAAAACCTGGTGTTGTTTGTGTGGAAGGCCCACAAAGTGCCTGTGAAGAATTCTGGTCAAGACTCAGAAAATTAAACTGGAAGAGAATTTTAATTCGCCATCGAGAAGACATTCCTTTTGATGGTACAAATGATGAAACGGAAAGACAAAGGAAATTTTCCATTTTTGAAGAAAAAGTGTTCAGTGTTAATGGAGCCAGGGGAAACCACATGGACTTTGGTCAGCTCTATCAGTTCTTAAACACCAAAGGATGTGGGGATGTTTTCCAGATGTTCTTTGGTGTAGAAGGACAATGACATCAAGAGTAGTTGAAAGTATCTTGCCACTGTTGGCCTTTTGATTTTTTTTTCCCACTTTTTCTTGAAAGATTAAGTAATTTTATTTTAGTTCCATTCTAGAATGTTGGGGAGTGGGGCACAAGAAAAAATAGTATAGCTGAAATGCATCTGTTAAAAATGTCATGATTGAAAGCAGAACTGAGTTTCAAATTACAACCTTAAAATTGTTGTTAGATATTTCTTCACATATCAGCTGCCCATTTTGAAAAAGAAATTATCCATAAAGGTAATGTTGGTGCTCCAATTTGCCAGCCATTCCCAACCCCCTTCTCCCTTACCTGCCTTCACTAAAGAACCCAGAAAAGCTAATTGCTCCCCTTTCAGCCTCTGTTGCAACTAACAACTCTCAGTGGCCTCAGGACACAGCTTTGGCCTTGGGAATTCTGGGAAAACTTTTACTTCCTGATTAAAGATACATATGCAGCTAGGCCACCTCCTCCCCCCCTTACTGCCATAAACACCAAAGTGATGACTGGAGCTGGAGGAGTTATTTGAACCACGACGGAAGGGCCAAGAGAACCACGAAGATGCCAGTTGCCACATTGTTGAGCTGCTGACCCAACACCAGCCATTGCCTGTCTCTAAACATCTTATGAAATAAAACCAATTTTGTTTAAAAAAAAAAAAAAAORF Start: ATG at 394ORF Stop: TGA at 1111SEQ ID NO: 174239 aaMW at 27409.3kDNOV46a,MLRLKTLVSALFLLLFNQAMFSLACILPFKYPAVLPEITVRSVLLSRSQQTQLNTDLTAFLQKHCHGCG173318-01Protein SequenceDVCILNATEWVREHASGYVSRDTSSSPTTGSTVQSVDLIFTRLWIYSHHIYNKCKRKNILEWAKELSLSGFSMPGKPGVVCVEGPQSACEEFWSRLRKLNWKRILIRHREDIPFDGTNDETERQRKFSIFEEKVFSVNGARGNHMDFGQLYQFLNTKGCGDVFQMFFGVEGQ


[0614] Further analysis of the NOV46a protein yielded the following properties shown in Table 46B.
252TABLE 46BProtein Sequence Properties NOV46aPSort analysis:0.8000 probability located in outside; 0.2726 probability located in microbody(peroxisome); 0.1000 probability located in endoplasmic reticulum(membrane); 0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 23 and 24


[0615] A search of the NOV46a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 46C.
253TABLE 46CGeneseq Results for NOV46aNOV46aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAE15253Human RNA metabolism 19 . . . 239221/221 (100%) e−131protein-16 (RMEP-16) - 99 . . . 319221/221 (100%)Homo sapiens, 319 aa.[WO200183524-A2,Nov. 8, 2001]AAM78405Human protein SEQ ID NO 19 . . . 239221/221 (100%) e−1311067 - Homo sapiens, 319 99 . . . 319221/221 (100%)aa. [WO200157190-A2,Aug. 9, 2001]AAM79389Human protein SEQ ID NO 19 . . . 236215/218 (98%) e−1273035 - Homo sapiens, 354137 . . . 354216/218 (98%)aa. [WO200157190-A2,Aug. 9, 2001]ABB11888Human novel protein, SEQ 19 . . . 236215/218 (98%) e−127ID NO:2258 - Homo sapiens,137 . . . 354216/218 (98%)354 aa. [WO200157188-A2,Aug. 9, 2001]AAB58229Lung cancer associated 19 . . . 167147/149 (98%)9e−84polypeptide sequence SEQ103 . . . 251147/149 (98%)ID 567 - Homo sapiens, 305aa. [WO200055180-A2,Sep. 21, 2000]


[0616] In a BLAST search of public sequence datbases, the NOV46a protein was found to have homology to the proteins shown in the BLASTP data in Table 46D.
254TABLE 46DPublic BLASTP Results for NOV46aNOV46aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP57060Protein C21orf6 (GL011) -19 . . . 239221/221 (100%) e−130Homo sapiens (Human), 31999 . . . 319221/221 (100%)aa.Q99M03Similar to open reading frame21 . . . 239182/219 (83%) e−1055 - Mus musculus (Mouse),72 . . . 290192/219 (87%)290 aa.Q9DCJ3Open reading frame 5 - Mus21 . . . 239182/219 (83%) e−105musculus (Mouse), 244 aa.26 . . . 244192/219 (87%)Q9JLH4Orf5 protein - Mus musculus21 . . . 239181/219 (82%) e−105(Mouse), 291 aa.73 . . . 291192/219 (87%)Q9D9S31700030C20Rik protein -23 . . . 239 85/222 (38%)3e−38Mus musculus (Mouse), 29272 . . . 288127/222 (56%)aa.


[0617] PFam analysis predicts that the NOV46a protein contains the domains shown in the Table 46E.
255TABLE 46EDomain Analysis of NOV46aPfam DomainNOV46a Match RegionIdentities/ExpectSimilaritiesValuefor the MatchedRegion



Example 47

[0618] The NOV47 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 47A.
256TABLE 47ANOV47 Sequence AnalysisSEQ ID NO: 1756373 bpNOV47a,GACAGAGTGCAGCCTTTTCAGACTCTGTGACACAGTTCCCCTTTTGCAAAAATACTTAGCGAGGATCCG51595-01DNA SequenceATTACTTTCCAACAGTCGTGTCCAGAGACCTACTTTGTAACACCGCAGGGAAGTTAATGTACTAGGTCTTGAAAGGTCTTTCTGGAATGTGCAGTAACTTGTAGTTTTCTTCTAGTAGCACTGCTAATTTTTGTGTTATAATTTTTGTAGGTCCATGGGGCCGATGTATGGGAGATGAATGTGGTCCCGGCATCCAAACGAGGGCTGTGTGGTGTGCTCATGTGGAGGGATGGACTACACTGCATACTAACTGTAAGCAGGCCGAGAGACCCAATAACCAGCAGAATTGTTTCAAAGTTTGCGATTGGCACAAAGAGTTGTACGACTGGAGACTGGGACCTTGGAATCAGTGTCAGCCCGTGATTTCAAAAAGCCTAGAGAAACCTCTTGAGTGCATTAAGGGGGAAGAAGGTATTCAGGTGAGGGAGATAGCGTGCATCCAGAAAGACAAAGACATTCCTGCGGAGGATATCATCTGTGAGTACTTTGAGCCCAAGCCTCTCCTGGAGCAGGCTTGCCTCATTCCTTGCCAGCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATGTGGTGGCGCCCCCGCAGTTCGGAGGCTCTGGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGGCCCTGGAGCACCTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACGGGAAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCTTATTAAGAAAAAGAGAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAAGCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAAGAGTGCCAGGTTTCCGAGTGGTCAGAGTGGAGCCCCTGCTCAAAAACATGCCATGACATGGTGTCCCCTGCAGGCACTCGTGTAAGGACACGAACCATCAGGCAGTTTCCCATTGGCAGTGAAAAGGAGTGTCCAGAATTTGAAGAAAAAGAACCCTGTTTGTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACGTATGGCTGGAGAACTACAGAGTGGACTGAGTGCCGTGTGGACCCTTTGCTCAGTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGGGGGCATCCAGACCCGAGAGGTGTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAAGAACAAAGAAGCCTCAAAGCCAATGGACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCCTTGTCCAACTGAATGTGAAGTTTCACCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGGGAAAAAAGGCTTCAAACTGAGGAAGCGGCGCATTACCAATGAGCCCACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGGAAAGCGGTGAGACTGGGAGACTGCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGGAGAAGAAGTTGACAGACAGCTGTGCAGAGATGCCATCTTCCCCATCCCTGTGGCCTGTGATGCCCCATGCCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTGAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTGCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGGTCCCTGGGGCCAGTGCATTGAGGACACCTCAGTATCGTCCTTCAACACAACTACGACTTGGAATGGGGAGGCCTCCTGCTCTGTCGGCATGCAGACAAGAAAAGTCATCTGTGTGCGAGTCAATGTGGGCCAAGTGGGACCCAAAAAATGTCCTGAAAGCCTTCGACCTGAAACTGTAAGGCCTTGTCTGCTTCCTTGTAAGAAGGACTGTATTGTGACCCCATATAGTGACTGGACATCATGCCCCTCTTCGTGTAAAGAAGGGGACTCCAGTATCAGGAAGCAGTCTAGGCATCGGGTCATCATTCAGCTGCCAGCCAACGGGGGCCGAGACTGCACAGATCCCCTCTATGAAGAGAAGGCCTGTGAGGCACCTCAAGCGTGCCAAAGCTACAGGTGGAAGACTCACAAATGGCGCAGATGCCAATTAGTCCCTTGGAGCGTGCAACAAGACAGCCCTGGAGCACAGGAAGGCTGTGGGCCTGGGCGACAGGCAAGAGCCATTACTTGTCGCAAGCAAGATGGAGGACAGGCTGGAATCCATGAGTGCCTACAGTATGCAGGCCCTGTGCCAGCCCTTACCCAGGCCTGCCAGATCCCCTGCCAGGATGACTGTCAATTGACCAGCTGGTCCAAGTTTTCTTCATGCAATGGAGACTGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTTGGAAAAAGTAAAAAGAAGGAAAAATGTAAAAATTCCCATTTGTATCCCCTGATTGAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAACCTGTGGGGAACTGGTCAGACTGTATTTTACCAGAGGGAAAAGTGGAAGTGTTGCTGGGAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAAGGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGGCTTGTGGAAACATCTAGATGTAACAGCCATGGTTACATTGAGGAGGCCTGCATCATCCCCTGCCCCTCAGACTGCAAGCTCAGTGAGTGGTCCAACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAGGTTCGTTCTAAATGGCTGCGTGAAAAACCATATAATGGAGGAAGGCCTTGCCCCAAACTGGACCATGTCAACCAGGCACAGGTGTATGAGGTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTCACAGAGCCCTGGAGCATCTGCAAGGTGACCTTTGTGAATATGCGGGAGAACTGTGGAGAGGGCGTGCAAACCCGAAAAGTGAGATGCATGCAGAATACAGCAGATGGCCCTTCTGAACATGTAGAGGATTACCTCTGTGACCCAGAAGAGATGCCCCTGGGCTCTAGAGTGTGCAAATTACCATGCCCTGAGGACTGTGTGATATCTGAATGGGGTCCATGGACCCAATGTGTTTTGCCTTGCAATCAAAGCAGTTTCCGGCAAAGGTCAGCTGATCCCATCAGACAACCAGCTGATGAAGGAAGATCTTGCCCTAATGCTGTTGAGAAAGAACCCTGTAACCTGAACAAAAACTGCTACCACTATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAGAAGGCAGTTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGTGTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCGCTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCCTGCATGGTGGAATGCCCTGTGAACTGTCAGCTTTCTGATTGGTCTCCTTGGTCAGAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGACGAACAGTGACCCAGCCCTTTCAAGGTGATGGAAGACCATGCCCTTCCCTGATGGACCAGTCCAAACCCTGCCCAGTGAAGCCTTGTTATCGGTGGCAATATGGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCCCAGTGTGGAGAAGGGACCAGAACAAGGAACATTTCTTGTGTAGTAAGTGATGGGTCAGCTGATGATTTCAGCAAAGTGGTGGATGAGGAATTCTGTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATGGTTCTGGAGGAATCCTGCAGCCAGCCTTGCCCAGGTGACTGTTATTTGAAGGACTGGTCTTCCTGGAGCCTGTGTCAGCTGACCTGTGTGAATGGTGAGGATCTAGGCTTTGGTGGAATACAGGTCAGATCCAGACCGGTGATTATACAAGAACTAGAGAATCAGCATCTGTGCCCAGAGCAGATGTTAGAAACAAAATCATGTTATGATGGACAGTGCTATGAATATAAATGGATGGCCAGTGCTTGGAAGGGCTCTTCCCGAACAGTGTGGTGTCAAAGGTCAGATGGTATAAATGTAACAGGGGGCTGCTTGGTGATGAGCCAGCCTGATGCCGACAGGTCTTGTAACCCACCGTGTAGTCAACCCCACTCGTACTGTAGCGAGACAAAAACATGCCATTGTGAAGAAGGGTACACTGAAGTCATGTCTTCTAACAGCACCCTTGAGCAATGCACACTTATCCCCGTGGTGGTATTACCCACCATGGAGGACAAAAGAGGAGATGTGAAAACCAGTCGGGCTGTACATCCAACCCAACCCTCCAGTAACCCAGCAGGACGGGGAAGGACCTGGTTTCTACAGCCATTTGGGCCAGATGGGAGACTAAAGACCTGGGTTTACGGTGTAGCAGCTGGGGCATTTGTGTTACTCATCTTTATTGTCTCCATGATTTATCTAGCTTGCAAAAAGCCAAAGAAACCCCAAAGAAGGCAAAACAACCGACTGAAACCTTTAACCTTAGCCTATGATGGAGATGCCGACATGTAACATATAACTTTTCCTGGCAACAACCAGTTTCGGCTTTCTGACTTCATAGATGTCCAGAGGCCACAACAAATGTATCCAAACTGTGTGGATTAAAATATATTTTAATTTTTAAAAATGGCATCATAAAGACAAGAGTGAAAATCATACTGCCACTGGAGATATTTAAGACAGTACCACTTATATACAGACCATCAACCGTGAGAATTATAGGAGATTTAGCTGAATACATGCTGCATTCTGAAAGTTTTATGTCATCTTTTCTGAAATCTACCGACTGAAAAACCACTTTCATCTCTAAAAAATAATGGTGGAATTGGCCAGTTAGGATGCCTGATACAAGACCGTCTGCAGTGTTAATCCATAAAACTTCCTAGCATGAAGAGTTTCTACCAAGATCTCCACAATACTATGGTCAAATTAACATGTGTACTCAGTTGAATGACACACATTATGTCAGATTATGTACTTGCTAATAAGCAATTTTAACAATGCATAACAAATAAACTCTAAGCTAAGCAGAAAATCCACTGAATAAATTCAGCATCTTGGTGGTCGATGGTAGATTTTATTGACCTGCATTTCAGAGACAAAGCCTCTTTTTTAAGACTTCTTGTCTCTCTCCAAAGTAAGAATGCTGGACAAGTACTAGTGTCTTAGAAGAACGAGTCCTCAAGTTCAGTATTTTATAGTGGTAATTGTCTGGAAAACTAATTTACTTGTGTTAATACAATACGTTTCTACTTTCCCTGATTTTCAAACTGGTTGCCTGCATCTTTTTTGCTATATGGAAGGCACATTTTTGCACTATATTAGTGCAGCACGATAGGCGCTTAACCAGTATTGCCATAGAAACTGCCTCTTTTCATGTGGGATGAAGACATCTGTGCCAAGAGTGGCATGAAGACATTTGCAAGTTCTTGTATCCTGAAGAGAGTAAAGTTCAGTTTGGATGGCAGCAAGATGAAATCAGCTATTACACCTGCTGTACACACACTTCCTCATCACTGCAGCCATTGTGAAATTGACAACATGGCGGTAATTTAAGTGTTGAAGTCCCTAACCCCTTAACCCTCTAAAAGGTGGATTCCTCTAGTTGGTTTGTAATTGTTCTTTGAAGGCTGTTTATGACTAGATTTTTATATTTGTTATCTTTGTTAAGAAAAAAAAAAGAAAAAGGAACTGGATGTCTTTTTAATTTTGAGCAGATGGAGAAAATAAATAATGTATCAATGACCTTTGTAACTAAAGGAAAAAAAAAAAAAATGTGGATTTTCCTTTCTCTCTGATTTCCCAGTTTCAGATTGAATGTCTGTCTTGCAGGCAGTTATTTCAAAATCCATAGTCTTTNGCCTTTCTCACTGGCAAAATTTGAORF Start: ATG at 235ORF Stop: TAA at 4999SEQ ID NO: 1761588 aaMW at 178042.1 kDNOV47a,MGDECGPGGIQTRAVWCAHVEGWTTLHTNCKQAERPNNQQNCFKVCDWHKELYDWRLGPWNQCQPVICG51595-01Protein SequenceSKSLEKPLECIKGEEGIQVREIACIQKDKDIPAEDIICEYFEPKPLLEQACLIPCQQDCIVSEFSAWSECSKTCGSGLQHRTRHVVAPPQFGGSGCPNLTEFQVCQSSPCEAEELRYSLHVGPWSTCSMPHSRQVRQARRRGKNKEREKDRSKGVKDPEARELIKKKRNRNRQNRQENKYWDIQIGYQTREVMCINKTGKAADLSFCQQEKLPMTFQSCVITKECQVSEWSEWSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPEFEEKEPCLSQGDGVVPCATYGWRTTEWTECRVDPLLSQQDKRRGNQTALCGGGIQTREVYCVQANENLLSQLSTHKNKEASKPMDLKLCTGPIPNTTQLCHIPCPTECEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEPTGGSGVTGNCPHLLEAIPCEEPACYDWKAVRLGDCEPDNGKECGPGTQVQEVVCINSDGEEVDROLCRDAIFPIPVACDAPCPKDCVLSTWSTWSSCSHTCSGKTTEGKOIRARSILAYAGEEGGIRCPNSSALQEVRSCNEHPCTVYHWQTGPWGQCIEDTSVSSFNTTTTWNGEASCSVGMQTRKVICVRVNVGQVGPKKCPESLRPETVRPCLLPCKKDCIVTPYSDWTSCPSSCKEGDSSIRKQSRHRVIIQLPANGGRDCTDPLYEEKACEAPQACQSYRWKTHKWRRCQLVPWSVQQDSPGAQEGCGPGRQARAITCRKQDGGQAGIHECLQYAGPVPALTQACQIPCQDDCQLTSWSKFSSCNGDCGAVRTRKRTLVGKSDDDEKCKNSHLYPLIETQYCPCDKYNAQPVGNWSDCILPEGKVEVLLGMKVQGDIKECGQGYRYQAMACYDQNGRLVETSRCNSHGYIEEACIIPCPSDCKLSEWSNWSRCSKSCGSGVKVRSKWLREKPYNGGRPCPKLDHVNQAQVYEVVPCHSDCNQYLWVTEPWSICKVTFVNMRENCGEGVQTRKVRCMQNTADGPSEHVEDYLCDPEEMPLGSRVCKLPCPEDCVISEWGPWTQCVLPCNQSSFRQRSADPIRQPADEGRSCPNAVEKEPCNLNKNCYHYDYNVTDWSTCQLSEDAVCGNGIKTRMLDCVRSDGKSVDLKYCEALGLEKNWQMNTSCMVECPVNCQLSDWSPWSECSQTCGLTGKMIRRRTVTQPFQGDGRPCPSLMDQSKPCPVKPCYRWQYGQWSPCQVQEAQCGEGTRTRNISCVVSDGSADDFSKVVDEEFCADIELIIDGNKNMVLEESCSQPCPGDCYLKDWSSWSLCQLTCVNGEDLGFGGIQVRSRPVIIQELENQHLCPEQMLETKSCYDGQCYEYKWMASAWKGSSRTVWCQRSDGINVTGGCLVMSQPDADRSCNPPCSQPHSYCSETKTCHCEEGYTEVMSSNSTLEQCTLIPVVVLPTMEDKRGDVKTSRAVHPTQPSSNPAGRGRTWFLQPFGPDGRLKTWVYGVAAGAFVLLIFIVSMIYLACKKPKKPQRRQNNRLKPLTLAYDGDADMSEQ ID NO: 1771401 bpNOV47b,GAGTGGAGCCCCTGCTCAAAAACATGCCATGACATGGTGTCCCCTGCAGGCACTCGTGTAAGGACACCG51595-03DNA SequenceGAACCATCAGGCAGTTTCCCATTGGCAGTGAAAGGAGTGTCCAGAATTTGAAGAAAAAGAACCCTGTTTGTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACGTATGGCTGGAGAACTACAGAGTGGACTGAGTGCCGTGTGGACCCTTTGCTCAGTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGGGGGCATCCAGACCCGAGAGGTGTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAAGAACAAAGAAGCCTCAAAGCCAATGGACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCCTTGTCCAACTGAATGTGAAGTTTCACCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGGGAAAAAAGGCTTCAAACTGAGGAAGCGGCGCATTACCAATGAGCCCACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGGAAAGCGGTGAGACTGGGAGACTGCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGGAGAAGAAGTTGACAGACAGCTGTGCAGAGATGCCATCTTCCCCATCCCTGTGGCCTGTGATGCCCCGTCCCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTGAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTGCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGGTCCCTGGGGCCAGTGCATTGAGGACACCTCAGTATCGTCCTTCAACACAACTACGACTTGGAATGGGGAGGCCTCCTGCTCTGTCGGCATGCAGACAAGAAAAGTCATCTGTGTGCGAGTCAATGTGGGCCAAGTGGGACCCAAAAAATGTCCTGAAAGCCTTCGACCTGAAACTGTAAGGCCTTGTCTGCTTCCTTGTAAGAAGGAGTGTATTGTGACCCCATATAGTGACTGGACATCATGCCCCTCTTCGTGTAAAGAAGGGGACTCCAGTATCAGGAAGCAGTCTAGGCATCGGGTCATCATTCAGCTGCCAGCCAACGGGGGCCGAGACTGCACAGATCCCCTCTATGAAGAGAAGGCCTGTGAGGCACCTCAAGCGTGCCAAAGCTACAGGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 178467 aaMW at 51476.5 kDNOV47b,EWSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPEFEEKEPCLSQGDGVVPCATYGWRTTEWTECG51595-03Protein SequenceCRVDPLLSQQDKRRGNQTALCGGGIQTREVYCVQANENLLSQLSTHKNKEASKPMDLKLCTGPIPNTTQLCHIPCPTECEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEPTGGSGVTGNCPHLLEAIPCEEPACYDWKAVRLGDCEPDNGKECGPGTQVQEVVCINSDGEEVDRQLCRDAIFPIPVACDAPSPKDCVLSTWSTWSSCSHTCSGKTTEGKQIRARSILAYAGEEGGIRCPNSSALQEVRSCNEHPCTVYHWQTGPWGQCIEDTSVSSFNTTTTWNGEASCSVGMQTRKVICVRVNVGQVGPKKCPESLRPETVRPCLLPCKKECIVTPYSDWTSCPSSCKEGDSSIRKQSRHRVIIQLPANGGRDCTDPLYEEKACEAPQACQSYRSEQ ID NO: 1791713 bpNOV47c,TGCAATGGAGACTGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTTGGAAAAAGTAAAAAGAAGGCG51595-04DNA SequenceAAAAATGTAAAAATTCCCATTTGTATCCCCTGATTGAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAACCTGTGGGGAACTGGTCAGACTGTATTTTACCAGAGGGAAAAGTGGAAGTGTTGCTGGGAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAAGGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGGCTTGTGGAAACATCTAGATGTAACAGCCATGGTTACATTGAGGAGGCCTGCATCATCCCCTGCCCCTCAGACTGCAAGCTCAGTGAGTGGTCCAACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAGGTTCGTTCTAAATGGCTGCGTGAAAAACCATATAATGGAGGAAGGCCTTGCCCCAAACTGGACCATGTCAACCAGGCACAGGTGTATGAGGTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTCACAGAGCCCTGGAGCATCTGCAAGGTGACCTTTGTGAATATGCGGGAGAACTGTGGAGAGGGCGTGCAAACCCGAAAAGTGAGATGCATGCAGAATACAGCAGATGGCCCTTCTGAACATGTAGAGGATTACCTCTGTGACCCAGAAGAGATGCCCCTGGGCTCTAGAGTGTGCAAATTACCATGCCCTGAGGACTGTGTGATATCTGAATGGGGTCCATGGACCCAATGTGTTTTGCCTTGCAATCAAAGCAGTTTCCGGCAAAGGTCAGCTGATCCCATCAGACAACCAGCTGATGAAGGAAGATCTTGCCCTAATGCTGTTGAGAAAGAACCCTGTAACCTGAACAAAAACTGCTACCACTATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAGAAGGCAGTTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGTGTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCGCTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCCTGCATGGTGGAATGCCCTGTGAACTGTCAGCTTTCTGATTGGTCTCCTTGGTCAGAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGACGAACAGTGACCCAGCCCTTTCAAGGTGATGGAAGACCATGCCCTTCCCTGATGGACCAGTCCAAACCCTGCCCAGTGAAGCCTTGTTATCGGTGGCAATATGGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCCCAGTGTGGAGAAGGGACCAGAACAAGGAACATTTCTTGTGTAGTAAGTGATGGGTCAGCTGATGATTTCAGCAAAGTGGTGGATGAGGAATTCTGTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATGGTTCTGGAGGAATCCTGCAGCCAGCCTTGCCCAGGTGACTGTTATTTGAAGGACTGGTCTTCCTGGAGCCTGTGTCAGCTGACCTGCGTGAATGGTGAGGATCTAGGCTTTGGTGGAATACAGGTCAGATCCAGACCGGTGATTATACAAGAACTAGAGAATCAGCATCTGTGCCCAGAGCAGATGTTAGAAACAAAATCATGTTATGATGGACAGTGCTATGAATATAAATGGATGGCCAGTGCTTGGAAGGGCTCTTCCORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 180571 aaMW at 64468.4 kDNOV47c,CNGDCGAVRTRKRTLVGKSKKKEKCKNSHLYPLIETQYCPCDKYNAQPVGNWSDCILPEGKVEVLLGCG51595-04Protein SequenceMKVQGDIKECGQGYRYQAMACYDQNGRLVETSRCNSHGYIEEACIIPCPSDCKLSEWSNWSRCSKSCGSGVKVRSKWLREKPYNGGRPCPKLDHVNQAQVYEVVPCHSDCNQYLWVTEPWSICKVTFVNMRENCGEGVQTRKVRCMQNTADGPSEHVEDYLCDPEEMPLGSRVCKLPCPEDCVISEWGPWTQCVLPCNQSSFRQRSADPIRQPADEGRSCPNAVEKEPCNLNKNCYHYDYNVTDWSTCQLSEKAVCGNGIKTRMLDCVRSDGKSVDLKYCEALGLEKNWQMNTSCMVECPVNCQLSDWSPWSECSQTCGLTGKMIRRRTVTQPFQGDGRPCPSLMDQSKPCPVKPCYRWQYGQWSPCQVQEAQCGEGTRTRNISCVVSDGSADDFSKVVDEEFCADIELIIDGNKNMVLEESCSQPCPGDCYLKDWSSWSLCQLTCVNGEDLGFGGIQVRSRPVIIQELENQHLCPEQMLETKSCYDGQCYEYKWMASAWKGSSSEQ ID NO: 18114881 bpNOV47d,CGTCCATGGGGCCGATGTATGGGAGATGAATGTGGTCCCGGAGGCATCCAAACGAGGGCTGTGTGGTCG51595-06DNA SequenceGTGCTCATGTGGAGGGATGGACTACACTGCATACTAACTGTAAGCAGGCCGAGAGACCCAATAACCAGCAGAATTGTTTCAAAGTTTGCGATTGGCACAAAGAGTTGTACGACTGGAGACTGGGACCTTGGAATCAGTGTCAGCCCGTGATTTCAAAAAGCCTAGAGAAACCTCTTGAGTGCATTAAGGGGGAAGAAGGTATTCAGGTGAGGGAGATAGCGTGCATCCAGAAAGACAAAGACATTCCTGCGGAGGATATCATCTGTGAGTACTTTGAGCCCAAGCCTCTCCTGGAGCAGGCTTGCCTCATTCCTTGCCAGCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATGTGGTGGCGCCCCCGCAGTTCGGAGGCTCTGGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGGCCCTGGAGCACCTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACGGGAAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCTTATTAAGAAAAAGAGAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAAGCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAAGAGTGCCAGGTTTCCGAGTGGTCAGAGTGGAGCCCCTGCTCAAAAACATGCCATGACATGGTGTCCCCTGCAGGCACTCGTGTAAGGACACGAACCATCAGGCAGTTTCCCATTGGCAGTGAAAAGGAGTGTCCAGAATTTGAAGAAAAAGAACCCTGTTTGTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACGTATGGCTGGAGAACTACAGAGTGGACTGAGTGCCGTGTGGACCCTTTGCTCAGTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGGGGGCATCCAGACCCGAGAGGTGTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAAGAACAAAGAAGCCTCAAAGCCAATGGACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCCTTGTCCAACTGAATGTGAAGTTTCACCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGGGAAAAAAGGCTTCAAACTGAGGAAGCGGCGCATTACCAATGAGCCCACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGGAAAGCGGTGAGACTGGGAGACTGCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGGAGAAGAAGTTGACAGACAGCTGTGCAGAGATGCCATCTTCCCCATCCCTGTGGCCTGTGATGCCCCATGCCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTGAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTGCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGGTCCCTGGGGCCAGTGCATTGAGGACACCTCAGTATCGTCCTTCAACACAACTACGACTTGGAATGGGGAGGCCTCCTGCTCTGTCGGCATGCAGACAAGAAAAGTCATCTGTGTGCGAGTCAATGTGGGCCAAGTGGGACCCAAAAAATGTCCTGAAAGCCTTCGACCTGAAACTGTAAGGCCTTGTCTGCTTCCTTGTAAGAAGGACTGTATTGTGACCCCATATAGTGACTGGACATCATGCCCCTCTTCGTGTAAAGAAGGGGACTCCAGTATCAGGAAGCAGTCTAGGCATCGGGTCATCATTCAGCTGCCAGCCAACGGGGGCCGAGACTGCACAGATCCCCTCTATGAAGAGAAGGCCTGTGAGGCACCTCAAGCGTGCCAAAGCTACAGGTGGAAGACTCACAAATGGCGCAGATGCCAATTAGTCCCTTGGAGCGTGCAACAAGACAGCCCTGGAGCACAGGAAGGCTGTGGGCCTGGGCGACAGGCAAGAGCCATTACTTGTCGCAAGCAAGATGGAGGACAGGCTGGAATCCATGAGTGCCTACAGTATGCAGGCCCTGTGCCAGCCCTTACCCAGGCCTGCCAGATCCCCTGCCAGGATGACTGTCAATTGACCAGCTGGTCCAAGTTTTCTTCATGCAATGGAGACTGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTTGGAAAAAGTAAAAAGAAGGAAAAATGTAAAAATTCCCATTTGTATCCCCTGATTGAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAACCTGTGGGGAACTGGTCAGACTGTATTTTACCAGAGGGAAAAGTGGAAGTGTTGCTGGGAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAAGGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGGCTTGTGGAAACATCTAGATGTAACAGCCATGGTTACATTGAGGAGGCCTGCATCATCCCCTGCCCCTCAGACTGCAAGCTCAGTGAGTGGTCCAACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAGGTTCGTTCTAAATGGCTGCGTGAAAAACCATATAATGGAGGAAGGCCTTGCCCCAAACTGGACCATGTCAACCAGGCACAGGTGTATGAGGTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTCACAGAGCCCTGGAGCATCTGCAAGGTGACCTTTGTGAATATGCGGGAGAACTGTGGAGAGGGCGTGCAAACCCGAAAAGTGAGATGCATGCAGAATACAGCAGATGGCCCTTCTGAACATGTAGAGGATTACCTCTGTGACCCAGAAGAGATGCCCCTGGGCTCTAGAGTGTGCAAATTACCATGCCCTGAGGACTGTGTGATATCTGAATGGGGTCCATGGACCCAATGTGTTTTGCCTTGCAATCAAAGCAGTTTCCGGCAAAGGTCAGCTGATCCCATCAGACAACCAGCTGATGAAGGAAGATCTTGCCCTAATGCTGTTGAGAAAGAACCCTGTAACCTGAACAAAAACTGCTACCACTATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAGAAGGCAGTTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGTGTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCGCTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCCTGCATGGTGGAATGCCCTGTGAACTGTCAGCTTTCTGATTGGTCTCCTTGGTCAGAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGACGAACAGTGACCCAGCCCTTTCAAGGTGATGGAAGACCATGCCCTTCCCTGATGGACCAGTCCAAACCCTGCCCAGTGAAGCCTTGTTATCGGTGGCAATATGGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCCCAGTGTGGAGAAGGGACCAGAACAAGGAACATTTCTTGTGTAGTAAGTGATGGGTCAGCTGATGATTTCAGCAAAGTGGTGGATGAGGAATTCTGTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATGGTTCTGGAGGAATCCTGCAGCCAGCCTTGCCCAGGTCACTGTTATTTGAAGGACTGGTCTTCCTGGAGCCTGTGTCAGCTGACCTGTGTGAATGGTGAGGATCTAGGCTTTGGTGGAATACAGGTCAGATCCAGACCGGTGATTATACAAGAACTAGAGAATCAGCATCTGTGCCCAGAGCAGATGTTAGAAACAAAATCATGTTATGATGGACAGTGCTATGAATATAAATGGATGGCCAGTGCTTGGAAGGGCTCTTCCCGAACAGTGTGGTGTCAAAGGTCAGATGGTATAAATGTAACAGGGGGCTGCTTGGTGATGAGCCAGCCTGATGCCGACAGGTCTTGTAACCCACCGTGTAGTCAACCCCACTCGTACTGTAGCGAGACAAAAACATGCCATTGTGAAGAAGGGTACACTGAAGTCATGTCTTCTAACAGCACCCTTGAGCAATGCACACTTATCCCCGTGGTGGTATTACCCACCATGGAGGACAAAAGAGGAGATGTGAAAACCAGTCGGGCTGTACATCCAACCCAACCCTCCAGTAACCCAGCAGGACGGGGAAGGACCTGGTTTCTACAGCCATTTGGGCCAGCAAAAAGCCAAAGAAACCCCAAAGAAGGCAAAACAACCGACTGAAACCTTTAACCTTAGCCTATGATGGAGATGCCGACATGTAACATATAACTTTTCCTGGCAACAACCAGTTTCGGCTTTCTGACTTCATAGATGTCCAGAGGCCACAACAAATGTATCCAAACTGTGTGGATTAAAATATATTTTAATTTTTAAAAATGGCATCATAAAGACAAGAGTGAAAATCATACTGCCACTGGAGATATTTAAGACAGTACCACTTATATAORF Start: ATG at 19ORF Stop: TGA at 4654SEQ ID NO: 1821545 aaMW at 173146.2 kDNOV47d,MGDECGPGGIQTRAVWCAHVEGWTTLHTNCKQAERPNNQQNCFKVCDWHKELYDWRLGPWNQCQPVICG15195-06Protein SequenceSKSLEKPLECIKGEEGIQVREIACIQKDKDIPAEDIICEYFEPKPLLEQACLIPCQQDCIVSEFSAWSECSKTCGSGLQHRTRHVVAPPQFGGSGCPNDTEFQVCQSSPCEAEELRYSLHVGPWSTCSMPHSRQVRQARRRGKNKEREKDRSKGVKDPEARELIKKKRNRNRQNRQENKYWDIQIGYQTREVMCINKTGKAADLSFCQQEKLPMTFQSCVITKECQVSEWSEWSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPEFEEKEPCLSQGDGVVPCATYGWRTTEWTECRVDPLLSQQDKRRGNQTALCGGGIQTREVYCVQANENLLSQLSTHKNKEASKPMDLKLCTGPIPNTTQLCHIPCPTECEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEPTGGSGVTGNCPHLLEAIPCEEPACYDWKAVRLGDCEPDNGKECGPGTQVQEVVCINSDGEEVDRQLCRDAIFPIPVACDAPCPKDCVLSTWSTWSSCSHTCSGKTTEGKQIRARSILAYAGEEGGIRCPNSSALQEVRSCNEHPCTVYHWQTGPWGQCIEDTSVSSFNTTTTWNGEASCSVGMQTRKVICVRVNVGQVGPKKCPESLRPETVRPCLLPCKKDCIVTPYSDWTSCPSSCKEGDSSIRKQSRHRVIIQLPANGGRDCTDPLYEEKACEAPQACQSYRWKTHKWRRCQLVPWSVQQDSPGAQEGCGPGRQARAITCRKQDGGQAGIHECLQYAGPVPALTQACQIPCQDDCQLTSWSKFSSCNGDCGAVRTRKRTLVGKSKKKEKCKNSHLYPLIETQYCPCDKYNAQPVGNWSDCILPEGKVEVLLGMKVQGDIKECGQGYRYQAMACYDQNGRLVETSRCNSHGYIEEACIIPCPSDCKLSEWSNWSRCSKSCGSGVKVRSDWLREKPYNGGRPCPKLDHVNQAQVYEVVPCHSDCNQYLWVTEPWSICKVTFVNMRENCGEGVQTRKVRCMQNTADGPSEHVEDYLCDPEEMPLGSRVCKLPCPEDCVISEWGPWTQCVLPCNQSSFRQRSADPIRQPADEGRSCPNAVEKEPCNLNKNCYHYDYNVTDWSTCQLSEKAVCGNGIKTRMLDCVRSDGKSVDLKYCEALGLEKNWQMNTSCMVECPVNCQLSDWSPWSECSQTCGLTGKMIRRRTVTQPFQGDGRPCPSLMDQSKPCPVKPCYRWQYGQWSPCQVQEAQCGEGTRTRNISCVVSDGSADDFSKVVDEEFCADIELIIDGNKNMVLEESCSQPCPGDCYLKDWSSWSLCQLTCVNGEDLGFGGIQVRSRPVIIQELENQHLCPEQMLETKSCTDGQCYEYKWMASAWKGSSRTVWCQRSDGINVTGGCLVMSQPDADRSCNPPCSQPHSYCSETKTCHCEEGYTEVMSSNSTLEQCTLIPVVVLPTMEDKRGDVKTSRAVHPTQPSSNPAGRGRTWFLQPFGPAKSQRNPKEGKKTDSEQ ID NO: 1834679 bpNOV47e,GTCCATGGGGCCGATGTATGGGAGATGAATGTGGTCCCGGAGGCATCCAAACGAGGGCTGTGTGGTGCG51595-07DNA SequenceTGCTCATGTGGAGGGATGGACTACACTGCATACTAACTGTAAGCAGGCCGAGAGACCCAATAACCAGCAGAATTGTTTCAAAGTTTGCGATTGGCACAAAGAGTTGTACGACTGGAGACTGGGACCTTGGAATCAGTGTCAGCCCGTGATTTCAAAAAGCCTAGAGAAACCTCTTGAGTGCATTAAGGGGGAAGAAGGTATTCAGGTGAGGGAGATAGCGTGCATCCAGAAAGACAAAGACATTCCTGCGGAGGATATCATCTGTGAGTACTTTGAGCCCAAGCCTCTCCTGGAGCAGGCTTGCCTCATTCCTTGCCAGCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATGTGGTGGCGCCCCCGCAGTTCGGAGGCTCTGGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGGCCCTGGAGCACCTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACGGGAAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCTTATTAAGAAAAAGAGAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAAGCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAAGAGTGCCAGGTTTCCGAGTGGTCAGAGTGGAGCCCCTGCTCAAAAACATGCCATGACATGGTGTCCCCTGCAGGCACTCGTGTAAGGACACGAACCATCAGGCAGTTTCCCATTGGCAGTGAAAAGGAGTGTCCAGAATTTGAAGAAAAAGAACCCTGTTTGTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACGTATGGCTGGAGAACTACAGAGTGGACTGAGTGCCGTGTGGACCCTTTGCTCAGTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGGGGGCATCCAGACCCGAGAGGTGTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAAGAACAAAGAAGCCTCAAAGCCAATGGACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCCTTGTCCAACTGAATGTGAAGTTTCACCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGGGAAAAAAGGCTTCAAACTGAGGAAGCGGCGCATTACCAATGAGCCCACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGGAAAGCGGTGAGACTGGGAGACTGCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGGAGAAGAAGTTGACAGACAGCTGTGCAGAGATGCCATCTTCCCCATCCCTGTGGCCTGTGATGCCCCATGCCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTGAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTGCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGGTCCCTGGGGCCAGTGCATTGAGGACACCTCAGTATCGTCCTTCAACACAACTACGACTTGGAATGGGGAGGCCTCCTGCTCTGTCGGCATGCAGACAAGAAAAGTCATCTGTGTGCGAGTCAATGTGGGCCAAGTGGGACCCAAAAAATGTCCTGAAAGCCTTCGACCTGAAACTGTAAGGCCTTGTCTGCTTCCTTGTAAGAAGGACTGTATTGTGACCCCATATAGTGACTGGACATCATGCCCCTCTTCGTGTAAAGAAGGGGACTCCAGTATCAGGAAGCAGTCTAGGCATCGGGTCATCATTCAGCTGCCAGCCAACGGGGGCCGAGACTGCACAGATCCCCTCTATGAAGAGAAGGCCTGTGAGGCACCTCAAGCGTGCCAAAGCTACAGGTGGAAGACTCACAAATGGCGCAGATGCCAATTAGTCCCTTGGAGCGTGCAACAAGACAGCCCTGGAGCACAGGAAGGCTGTGGGCCTGGGCGACAGGCAAGAGCCATTACTTGTCGCAAGCAAGATGGAGGACAGGCTGGAATCCATGAGTGCCTACAGTATGCAGGCCCTGTGCCAGCCCTTACCCAGGCCTGCCAGATCCCCTGCCAGGATGACTGTCAATTGACCAGCTGGTCCAAGTTTTCTTCATGCAATGGAGACTGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTTGGAAAAAGTAAAAAGAAGGAAAAATGTAAAAATTCCCATTTGTATCCCCTGATTGAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAACCTGTGGGGAACTGGTCAGACTGTATTTTACCAGAGGGAAAAGTGGAAGTGTTGCTGGGAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAAGGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGGCTTGTGGAAACATCTAGATGTAACAGCCATGGTTACATTGAGGAGGCCTGCATCATCCCCTGCCCCTCAGACTGCAAGCTCAGTGAGTGGTCCAACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAGGTTCGTTCTAAATGGCTGCGTGAAAAACCATATAATGGAGGAAGGCCTTGCCCCAAACTGGACCATGTCAACCAGGCACAGGTGTATGAGGTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTCACAGAGCCCTGGAGCATCTGCAAGGTGACCTTTGTGAATATGCGGGAGAACTGTGGAGAGGGCGTGCAAACCCGAAAAGTGAGATGCATGCAGAATACAGCAGATGGCCCTTCTGAACATGTAGAGGATTACCTCTGTGACCCAGAAGAGATGCCCCTGGGCTCTAGAGTGTGCAAATTACCATGCCCTGAGGACTGTGTGATATCTGAATGGGGTCCATGGACCCAATGTGTTTTGCCTTGCAATCAAAGCAGTTTCCGGCAAAGGTCAGCTGATCCCATCAGACAACCAGCTGATGAAGGAAGATCTTGCCCTAATGCTGTTGAGAAAGAACCCTGTAACCTGAACAAAAACTGCTACCACTATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAGAAGGCAGTTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGTGTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCGCTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCCTGCATGGTGGAATGCCCTGTGAACTGTCAGCTTTCTGATTGGTCTCCTTGGTCAGAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGACGAACAGTGACCCAGCCCTTTCAAGGTGATGGAAGACCATGCCCTTCCCTGATGGACCAGTCCAAACCCTGCCCAGTGAAGCCTTGTTATCGGTGGCAATATGGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCCCAGTGTGGAGAAGGGACCAGAACAAGGAACATTTCTTGTGTAGTAAGTGATGGGTCAGCTGATGATTTCAGCAAAGTGGTGGATGAGGAATTCTGTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATGGTTCTGGAGGAATCCTGCAGCCAGCCTTGCCCAGGTGACTGTTATTTGAAGGACTGGTCTTCCTGGAGCCTGTGTCAGCTGACCTGTGTGAATGGTGAGGATCTAGGCTTTGGTGGAATACAGGTCACATCCAGACCGGTGATTATACAAGAACTAGAGAATCAGCATCTGTGCCCAGAGCAGATGTTAGAAACAAAATCATGTTATGATGGACAGTGCTATGAATATAAATGGATGGCCAGTGCTTGGAAGGGCTCTTCCCGAACAGTGTGGTGTCAAAGGTCAGATGGTATAAATGTAACAGATGGGAGACTAAAGACCTGGGTTTACGGTGTAGCAGCTGGGGCATTTGTGTTACTCATCTTTATTGTCTCCATGATTTATCTAGCTTGCAAAAAGCCAAAGAAACCCCAAAGAAGGCAAAACAACCGACTGAAACCTTTAACCTTAGCCTATGATGGAGATGCCGACATGTAACATATAACTTTTCCTGGCAACAACCAGTTTCGGCTTTCTGACTTCATAGATGTCCAGAGGCCACAAORF Start: ATG at 18ORF Stop: TAA at 4488SEQ ID NO: 1841490 aaMW at 167403.2 kDNOV47e,MGDECGPGGIQTRAVWCAHVEGWTTLHTNCKQAERPNNQQNCFKVCDWHKELYDWRLGPWNQCQPVICG51595-07Protein SequenceSKSLEKPLECIKGEEGIQVREIACIQKDKDIPAEDIICEYFEPKPLLEQACLIPCQQDCIVSEFSAWSECSKTCGSGLQHRTRHVVAPPQFGGSGCPNLTEFQVCPSSPCEAEELRYSLHVGPWSTCSMPHSRQVRQARRRGKNKEREKDRSKGVKDPEARELIKKKRNRNRQNRQENKYWDIQIGYQTREVMCINKTGKAADLSFCQQEKLPMTFQSCVITKECQVSEWSEWSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPEFEEKEPCLSQGDGVVPCATYGWRTTEWTECRVDPLLSQQDKRRGNQTALCGGGIQTREVYCVQANENLLSQLSTHKNKEASKPMDLKLCTGPIPNTTQLCHIPCPTECEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEPTGGSGVTGNCPHLLEAIPCEEPACYDWKAVRLGDCEPDNGKECGPGTQVQEVVCINSDGEEVDRQLCRDAIFPIPVACDAPCPKDCVLSTWSTWSSCSHTCSGKTTEGKQIRARSILAYAGEEGGIRCPNSSALOEVRSCNEHPCTVYHWOTGPWGOCIEDTSVSSFNTTTTWNGEASCSVGMOTRKVICVRVNVGQVGPKKCPESLRPETVRPCLLPCKKDCIVTPYSDWTSCPSSCKEGDSSIRKQSRHRVIIQLPANGGRDCTDPLYEEKACEAPQACQSYRWKTHKWRRCQLVPWSVQQDSPGAQEGCGPGRQARAITCRKQDGGQAGIHECLQYAGPVPALTQACQIPCQDDCQLTSWSKFSSCNGDCGAVRTRKRTLVGKSKKKEKCKNSHLYPLIETQYCPCDKYNAQPVGNWSDCILPEGKVEVLLGMKVQGDIKECGQGYRYOAMACYDQNGRLVETSRCNSHGYIEEACIIPCPSDCKLSEWSNWSRCSKSCGSGVKVRSKWLREKPYNGGRPCPKLDHVNQAQVYEVVPCHSDCNQYLWVTEPWSICKVTFVNMRENCGEGVQTRKVRCMQNTADGPSEHVEDYLCDPEEMPLGSRVCKLPCPEDCVISEWGPWTQCVLPCNQSSFRQRSADPIRQPADEGRSCPNAVEKEPCNLNKNCYHYDYNVTDWSTCQLSEKAVCGNGIKTRMLDCVRSDGKSVDLRYCEALGLEKNWQMNTSCMVENPVNCQLSDWSPWSECSQTCGLTGKMIRRRTVTQPFQGDGRPCPSLMDQSKPCPVKPCYRWQYGQWSPCQVQEAQCGEGTRTRNISCVVSDGSADDFSKVVDEEFCADIELIIDGNKNMVLEESCSQPCPGDCYLKDWSSWSLCQLTCVNGEDLGFGGIQVRSRPVIIQELENQHLCPEQMLETKSCYDGQCYEYKWMASAWKGSSRTVWCQRSDGINVTDGRLKTWVYGVAAGAFVLLIFIVSMIYLACKKPKKPQRRQNNRLKPLTLAYDGDADMSEQ ID NO: 1854647 bpNOV47f,GGTACCATGGGAGATGAATGTGGTCCCGGAGGCATCCAAACGAGGGCTGTGTGGTGTGCTCATGTGG306395637 DNASequenceAGGGATGGACTACACTGCATACTAACTGTAAGCAGGCCGAGAGACCCAATAACCAGCAGAATTGTTTCAAAGTTTGCGATTGGCACAAAGAGTTGTACGACTGGAGACTGGGACCTTGGAATCAGTGTCAGCCCGTGATTTCAAAAAGCCTAGAGAAACCTCTTGAGTGCATTAAGGGGGAAGAAGGTATTCAGGTGAGGGAGATAGCGTGCATCCAGAAAGACAAAGACATTCCTGCGGAGGATATCATCTGTGAGTACTTTGAGCCCAAGCCTCTCCTGGAGCAGGCTTGCCTCATTCCTTGCCAGCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATGTGGTGGCGCCCCCGCAGTTCGGAGGCTCTGGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGGCCCTGGAGCAGGTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACGGGAAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCTTATTAAGAAAAAGAGAAACAGAAACAGACAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAAGCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAAGAGTGCCAGGTTTCCGAGTGGTCAGAGCGGAGCCCCTGCTCAAAAACATGCCATGACATGGTGTCCCCTGCAGGCACTCGTGTAAGGACACGAACCATCAGGCAGTTTCCCATTGGCAGTGAAAAGGAGTGTCCAGAATTTGAAGAAAAAGAACCCTGTTTGTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACGTATGGCTGGAGAACTACAGAGTGGACTGAGTGCCGTGTGGACCCTTTGCTCAGTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGGGGGCATCCAGACCCGAGAGGTGTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAAGAACAAAGAAGCCTCAAAGCCAATGGACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCCTTGTCCAACTGAATGTGAAGTTTCACCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGGGAAAAAAGGCTTCAAACTGAGGAAGCGGCGCATTACCAATGAGCCCACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGGAAAGCAGTGAGACTGGGAAACTGCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGGAGAAGAAGTTGACAGACAGCTGTGCAGAGATGCCATCTTCCCCATCCCTGTGGCCTGTGATGCCCCGTGCCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTGAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTGCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGGTCCCTGGGGCCAGTGCATTGAGGACACCTCAGTATCGTCCTTCAACACAACTACGACTTGGAATGGGGAGGCCTCCTGCTCTGTCGGCATGCAGACAAGAAAAGTCATCTGTGTGCGAGTCAATGTGGGCCAAGTGGGACCCAAAAAATGTCCTGAAAGCCTTCGACCTGAAACTGTAAGGCCTTGTCTGCTTCCTTGTAAGAAGGAGTGTATTGTGACCCCATATAGTGACTGGACATCATGCCCCTCTTCGTGTAAAGAAGGGGACTCCAGTATCAGGAAGCAGTCTAGGCATCGGGTCATCATTCAGCTGCCAGCCAACGGGGGCCGAGACTGCACAGATCCCCTCTATGAAGAGAAGGCCTGTGAGGCACCTCAAGCGTGCCAAAGCTACAGGTGGAAGACTCACAAATGGCGCAGATGCCAATTAGTCCCTTGGAGCGTGCAACAAGACAGCCCTGGAGCACAGGAAGGCTGTGGGCCTGGGCGACAGGCAAGAGCCATTACTTGTCGCAAGCAAGATGGAGGACAGGCTGGAATCCATGAGTGCCTACAGTATGCAGGCCCTGTGCCAGCCCTTACCCAGGCCTGCCAGATCCCCTGCCAGGATGACTGTCAATTGACCAGCTGGTCCAAGTTTTCTTCATGCAATGGAGACTGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTTGGAAAAAGTAAAAAGAAGGAAAAATGTAAAAATTCCCATTTGTATCCCCTGATTGAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAACCTGTGGGGAACTGGTCAGACTGTATTTTACCAGAGGGAAAAGTGGAAGTGTTGCTGGGAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAAGGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGGCTTGTGGAAACATCTAGATGTAACAGCCATGGTTACATTGAGGAGGCCTGCATCATCCCCTGCCCCTCAGACTGCAAGCTCAGTGAGTGGTCCAACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAGGTTCGTTCTAAATGGCTGCGTGAAAAACCATATAATGGAGGAAGGCCTTGCCCCAAACTGGACCATGTCAACCAGGCACAGGTGTATGAGGTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTCACAGAGCCCTGGAGCATCTGCAAGGTGACCTTTGTGAATATGCGGGAGAACTGTGGAGAGGGCGTGCAAACCCGAAAAGTGAGATGCATGCAGAATACAGCAGATGGCCCTTCTGAACATGTAGAGGATTACCTCTGTGACCCAGAAGAGATGCCCCTGGGCTCTAGAGTGTGCAAATTACCATGCCCTGAGGACTGTGTGATATCTGAATGGGGTCCATGGACCCAATGTGTTTTGCCTTGCAATCAAAGCAGTTTCCGGCAAAGGTCAGCTGATCCCATCAGACAACCAGCTGATGAAGGAAGATCTTGCCCTAATGCTGTTGAGAAAGAACCCTGTAACCTGAACAAAAACTGCTACCACTATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAGAAGGCAGTTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGTGTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCGCTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCCTGCATGGTGGAATGCCCTGTGAACTGTCAGCTTTCTGATTGGTCTCCTTGGTCAGAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGACGAACAGTGACCCAGCCCTTTCAAGGTGATGGAAGACCATGCCCTTCCCTGATGGACCAGTCCAAACCCTGCCCAGTGAAGCCTTGTTATCGGTGGCAATATGGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCCCAGTGTGGAGAAGGGACCAGAACAAGGAACATTTCTTGTGTAGTAAGTGATGGGTCAGCTGATGATTTCAGCAAAGTGGTGGATGAGGAATTCTGTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATGGTTCTGGAGGAATCCTGCAGCCAGCCTTGCCCAGGTGACTGTTATTTGAAGGACTGGTCTTCCTGGAGCCTGTGTCAGCTGACCTGTGTGAATGGTGAGGATCTAGGCTTTGGTGGAATACAGGTCAGATCCAGACCGGTGATTATACAAGAACTAGAGAATCAGCATCTGTGCCCAGAGCAGATGTTAGAAACAAAATCATGTTATGATGGACAGTGCTATGAATATAAATGGATGGCCAGTGCTTGGAAGGGCTCTTCCCGAACAGTGTGGTGTCAAAGGTCAGATGGTATAAATGTAACAGGGGGCTGCTTGGTGATGAGCCAGCCTGATGCCGACAGGTCTTGTAACCCACCGTGTAGTCAACCCCACTCGTACTGTAGCGAGACAAAAACATGCCATTGTGAAGAAGGGTACACTGAAGTCATGTCTTCTAACAGCACCCTTGAGCAATGCACACTTATCCCCGTGGTGGTATTACCCACCATGGAGGACAAAAGAGGAGATGTGAAAACCAGTCGGGCTGTACATCCAACCCAACCCTCCAGTAACCCAGCAGGACGGGGAAGGACCTGGTTTCTACAGCCATTTGGGCCAGCAAAAAGCCAAAGAAACCCCAAAGAAGGCAAAACAACCGACGTCGACORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 1861549 aaMW at 173501.6 kDNOV47f,GTMGDECGPGGIQTRAVWCAHVEGWTTLGTNCKQAERPNNQQNCFKVCDWHKELYDWRLGPWNQCQP306395637ProteinVISKSLEKPLECIKGEEGIQVREIACIQKDKDIPAEDIICEYFEPKPLLEQACLIPCQQDCIVSEFSSequenceAWSECSKTCGSGLQHRTRHVVAPPQFGGSGCPNLTEFQVCQSSPCEAEELRYSLHVGPWSTCSMPHSRQVRQARRRGKNKEREKDRSKGVKDPEARELIKKKRNRNRQNRQENKYWDIQIGYQTREVMCINKTGKAADLSFCQQELKPMTFQSCVITKECQVSEWSERSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPEFEEKEPCLSQGDGVVPCATYGWRTTEWTECRVDPLLSQQDKRRGNQTALCGGGIQTREVYCVQANENLLSQLSTHKNKEASKPMDLKLCTGPIPNTTQLCHIPCPTECEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEPTGGSGVTGNCPHLLEAIPCEEPACYDWKAVRLGNCEPDNGKECGPGTQVQEVVCINSDGEEVDRQLCRDAIFPIPVACDAPCPKDCVLSTWSTWSSCSHTCSGKTTEGKQIRARSILAYAGEEGGIRCPNSSALQEVRSCNEHPCTVYHWQTGPWGQCIEDTSVSSFNTTTTWNGEASCSVGMQTRKVICVRVNVGQVGPKKCPESLRPETVRPCLLPCKKECIVTPYSDWTSCPSSCKEGDSSIRKQSRHRVIIQLPANGGRDCTDPLYEEKACEAPQACQSYRWKTHKWRRCQLVPWSVQQDSPGAQEGCGPGRQARAITCRKQDGGQAGIHECLQYAGPVPALTQACQIPCQDDCQLTSWSKFSSCNGDCGAVRTRKRTLVGKSKKKEKCKNSHLYPLIETQYCPCDKYNAQPVGNWSDCILPEGKVEVLLGMKVQGDIKECGQGYRYQAMACYDQNGRLVETSRCNSHGYIEEACIIPCPSDCKLSEWSNWSRCSKSCGSGVKVRSKWLREKPYNGGRPCPKLDHVNQAQVYEVVPCHSDCNQYLWVTEPWSICKVTFVNMRENCGEGVQTRKVRCMQNTADGPSEHVEDYLCDPEEMPLGSRVCKPLCPEDCVISEWGPWTQCVLPCNQSSFRQRSADPIRQPADEGRSCPNAVEKEPCNLNKNCYHYDYNVTDWSTCQLSEKAVCGNGIKTRMLDCVRSDGKSVDLKYCEALGLEKNWQMNTSCMVECPVNCQLSDWSPWSECSQTCGLTGKMIRRRTVTQPFQGDGRPCPSLMDQSKPCPVKPCYRWQYGQWSPCQVQEAQCGEGTRTRNISCVVSDGSADDFSKVVDEEFCADIELIIDGNKNMVLEESCSQPCPGDCYLKDWSSWSLCQLTCVNGEDLGFGGIQVRSRPVIIQELENQHLCPEQMLETDSCYDGQCYEYKWMASAWKGSSRTVWCQRSDGINVYGGCDVMSQPDADRSCNPPCSQPHSYCSETKTCHCEEGYTEVMSSNSTLEQCTLIPVVVLPTMEDKRGDVKTSRAVHPTQPSSNPAGRGRTWFLQPFGPAKSQRNPKEGKTTDVDSEQ ID NO: 18716373 bpNOV47g,GACAGAGTGCAGCCTTTTCAGACTCTGTGACACAGTTCCCCTTTTGCAAAAATACTTAGCGAGGATCCG51595-01DNA SequenceATTACTTTCCAACAGTCGTGTCCAGAGACCTACTTTGTAACACCGCAGGGAAGTTAATGTACTAGGTCTTGAAAGGTCTTTCTGGAATGTGCAGTAACTTGTAGTTTTCTTCTAGTAGCACTGCTAATTTTTGTGTTATAATTTTTGTAGGTCCATGGGGCCGATGTATGGGAGATGAATGTGGTCCCGGAGGCATCCAAACGAGGGCTGTGTGGTGTGCTCATGTGGAGGGATGGACTACACTGCATACTAACTGTAAGCAGGCCGAGAGACCCAATAACCAGCAGAATTGTTTCAAAGTTTGCGATTGGCACAAAGAGTTGTACGACTGGAGACTGGGACCTTGGAATCAGTGTCAGCCCGTGATTTCAAAAAGCCTAGAGAAACCTCTTGAGTGCATTAAGGGGGAAGAAGGTATTCAGGTGAGGGAGATAGCGTGCATCCAGAAAGACAAAGACATTCCTGCGGAGGATATCATCTGTGAGTACTTTGAGCCCAAGCCTCTCCTGGAGCAGGCTTGCCTCATTCCTTGCCAGCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATGTGGTGGCGCCCCCGCAGTTCGGAGGCTCTGGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGGCCCTGGAGCACCTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACGGGAAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCTTATTAAGAAAAAGAGAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAAGCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAAGAGTGCCAGGTTTCCGAGTGGTCAGAGTGGAGCCCCTGCTCAAAAACATGCCATGACATGGTGTCCCCTGCAGGCACTCGTGTAAGGACACGAACCATCAGGCAGTTTCCCATTGGCAGTGAAAAGGAGTGTCCAGAATTTGAAGAAAAAGAACCCTGTTTGTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACGTATGGCTCCAGAACTACAGAGTGGACTGAGTGCCGTGTGGACCCTTTGCTCAGTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGGGGGCATCCAGACCCGAGAGGTGTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAAGAACAAAGAAGCCTCAAAGCCAATGGACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCCTTGTCCAACTGAATGTGAAGTTTCACCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGGGAAAAAAGGCTTCAAACTGAGGAAGCGGCGCATTACCAATGAGCCCACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGGAAAGCGGTGAGACTGGGAGACTGCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGGAGAAGAAGTTGACAGACAGCTGTGCAGAGATGCCATCTTCCCCATCCCTGTGGCCTGTGATGCCCCATGCCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTGAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTGCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGGTCCCTGGGGCCAGTGCATTGAGGACACCTCAGTATCGTCCTTCAACACAACTACGACTTGGAATGGGGAGGCCTCCTGCTCTGTCGGCATGCAGACAAGAAAAGTCATCTGTGTGCGAGTCAATGTGGGCCAAGTGGGACCCAAAAAATGTCCTGAAAGCCTTCGACCTGAAACTGTAAGGCCTTGTCTGCTTCCTTGTAAGAAGGACTGTATTGTGACCCCATATAGTGACTGGACATCATGCCCCTCTTCGTGTAAAGAAGGGGACTCCAGTATCAGGAAGCAGTCTAGGCATCGGGTCATCATTCAGCTGCCAGCCAACGGGGGCCGAGACTGCACAGATCCCCTCTATGAAGAGAAGGCCTGTGAGGCACCTCAAGCGTGCCAAAGCTACAGGTGGAAGACTCACAAATGGCGCAGATGCCAATTAGTCCCTTGGAGCGTGCAACAAGACAGCCCTGGAGCACAGGAAGGCTGTGGGCCTGGGCGACAGGCAAGAGCCATTACTTGTCGCAAGCAAGATGGAGGACAGGCTGGAATCCATGAGTGCCTACAGTATGCAGGCCCTGTGCCAGCCCTTACCCAGGCCTGCCAGATCCCCTGCCAGGATGACTGTCAATTGACCAGCTGGTCCAAGTTTTCTTCATGCAATGGAGACTGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTTGGAAAAAGTAAAAAGAAGGAAAAATGTAAAAATTCCCATTTGTATCCCCTGATTGAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAACCTGTGGGGAACTGGTCAGACTGTATTTTACCAGAGGGAAAAGTGGAAGTGTTGCTGGGAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAAGGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGGCTTGTGGAAACATCTAGATGTAACAGCCATGGTTACATTGAGGAGGCCTGCATCATCCCCTGCCCCTCAGACTGCAAGCTCAGTGAGTGGTCCAACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAGGTTCGTTCTAAATGGCTGCGTGAAAAACCATATAATGGAGGAAGGCCTTGCCCCAAACTGGACCATGTCAACCAGGCACAGGTGTATGAGGTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTCACAGAGCCCTGGAGCATCTGCAAGGTGACCTTTGTGAATATGCGGGAGAACTGTGGAGAGGGCGTGCAAACCCGAAAAGTGAGATGCATGCAGAATACAGCAGATGGCCCTTCTGAACATGTAGAGGATTACCTCTGTGACCCAGAAGAGATGCCCCTGGGCTCTAGAGTGTGCAAATTACCATGCCCTGAGGACTGTGTGATATCTGAATGGGGTCCATGGACCCAATGTGTTTTGCCTTGCAATCAAAGCAGTTTCCGGCAAAGGTCAGCTGATCCCATCAGACAACCAGCTGATGAAGGAAGATCTTGCCCTAATGCTGTTGAGAAAGAACCCTGTAACCTGAACAAAAACTGCTACCACTATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAGAAGGCAGTTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGTGTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCGCTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCCTGCATGGTGGAATGCCCTGTGAACTGTCAGCTTTCTGATTGGTCTCCTTGGTCAGAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGACGAACAGTGACCCAGCCCTTTCAAGGTGATGGAAGACCATGCCCTTCCCTGATGGACCAGTCCAAACCCTGCCCAGTGAAGCCTTGTTATCGGTGGCAATATGGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCCCAGTGTGGAGAAGGGACCAGAACAAGCAACATTTCTTGTGTAGTAAGTGATGGGTCAGCTGATGATTTCAGCAAAGTGGTGGATGAGGAATTCTGTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATGGTTCTGGAGGAATCCTGCAGCCAGCCTTGCCCAGGTGACTGTTATTTGAAGGACTGGTCTTCCTGGAGCCTGTGTCAGCTGACCTGTGTGAATGGTGAGGATCTAGGCTTTGGTGGAATACAGGTCAGATCCAGACCGGTGATTATACAAGAACTAGAGAATCAGCATCTGTGCCCAGAGCAGATGTTAGAAACAAAATCATGTTATGATGGACAGTGCTATGAATATAAATGGATGGCCAGTGCTTGGAAGGGCTCTTCCCGAACAGTGTGGTGTCAAAGGTCAGATGGTATAAATGTAACAGGGGGCTGCTTGGTGATGAGCCAGCCTGATGCCGACAGGTCTTGTAACCCACCGTGTAGTCAACCCCACTCGTACTGTAGCGAGACAAAAACATGCCATTGTGAAGAAGGGTACACTGAAGTCATGTCTTCTAACAGCACCCTTGAGCAATGCACACTTATCCCCGTGGTGGTATTACCCACCATGGAGGACAAAAGAGGAGATGTGAAAACCAGTCGGGCTGTACATCCAACCCAACCCTCCAGTAACCCAGCAGGACGGGGAAGGACCTGGTTTCTACAGCCATTTGGGCCAGATGGGAGACTAAAGACCTGGGTTTACGGTGTAGCAGCTCGGGCATTTGTGTTACTCATCTTTATTGTCTCCATGATTTATCTAGCTTGCAAAAAGCCAAAGAAACCCCAAAGAAGGCAAAACAACCGACTGAAACCTTTAACCTTAGCCTATGATGGAGATGCCGACATGTAACATATAACTTTTCCTGGCAACAACCAGTTTCGGCTTTCTGACTTCATAGATGTCCAGAGGCCACAACAAATGTATCCAAACTGTGTGGATTAAAATATATTTTAATTTTTAAAAATGGCATCATAAACACAAGAGTGAAAATCATACTGCCACTGGAGATATTTAAGACAGTACCACTTATATACAGACCATCAACCGTGAGAATTATAGGAGATTTAGCTGAATACATGCTGCATTCTGAAAGTTTTATGTCATCTTTTCTGAAATCTACCGACTGAAAAACCACTTTCATCTCTAAAAAATAATGGTGGAATTGGCCAGTTAGGATGCCTGATACAAGACCGTCTGCAGTGTTAATCCATAAAACTTCCTAGCATGAAGAGTTTCTACCAAGATCTCCACAATACTATGGTCAAATTAACATGTGTACTCAGTTGAATGACACACATTATGTCAGATTATGTACTTGCTAATAAGCAATTTTAACAATGCATAACAAATAAACTCTAAGCTAAGCAGAAAATCCACTGAATAAATTCAGCATCTTGGTGGTCGATGGTAGATTTTATTGACCTGCATTTCAGAGACAAAGCCTCTTTTTTAAGACTTCTTGTCTCTCTCCAAAGTAAGAATGCTGGACAAGTACTAGTGTCTTAGAAGAACGAGTCCTCAAGTTCAGTATTTTATAGTGGTAATTGTCTGGAAAACTAATTTACTTGTGTTAATACAATACGTTTCTACTTTCCCTGATTTTCAAACTGGTTCCCTGCATCTTTTTTGCTATATGCAAGGCACATTTTTGCACTATATTAGTGCACCACGATAGGCGCTTAACCAGTATTGCCATAGAAACTGCCTCTTTTCATGTGGGATGAAGACATCTGTGCCAAGAGTGGCATGAAGACATTTGCAAGTTCTTGTATCCTGAAGAGAGTAAAGTTCAGTTTGGATGGCAGCAAGATGAAATCAGCTATTACACCTGCTGTACACACACTTCCTCATCACTGCAGCCATTGTGAAATTGACAACATGGCGGTAATTTAAGTGTTGAAGTCCCTAACCCCTTAACCCTCTAAAAGGTGGATTCCTCTAGTTGGTTTGTAATTGTTCTTTGAAGGCTGTTTATGACTAGATTTTTATATTTGTTATCTTTGTTAAGAAAAAAAAAAGAAAAAGGAACTGGATGTCTTTTTAATTTTGAGCAGATGGAGAAAATAAATAATGTATCAATGACCTTTGTAACTAAAGGAAAAAAAAAAAAAATGTGGATTTTCCTTTCTCTCTGATTTCCCAGTTTCAGATTGAATGTCTGTCTTGCAGGCAGTTATTTCAAAATCCATAGTCTTTNGCCTTTCTCACTGGCAAAATTTGAORF Start: ATG at 235ORF Stop: TAA at 4999SEQ ID NO: 1881588 aaMW at 178042.1 kDNOV47g,MGDECGPGGIQTRAVWCAHVEGWTTLHTNCKQAERPNNQQNCFKVCDWHKELYDWRLGPWNQCQTVICG51595-01Protein SequenceSKSLEKPLECIKGEEGIQVREIACIQKDKDIPAEDIICEYFEPKPLLEQACLIPCQQDCIVSEFSAWSECSKTCCSGLQHRTRHVVAPPQFGGSGCFNLTEFQVCQSSPCEAEELRYSLHVGPWSTCSMPHSRQRQARRRGKNKEREKDRSKGVKDPEARELIKKKRNRNRQNRQENKYWDIQIGYQTREVMCINKTGKAADLSFCQQEKLPMTFQSCVITKECQVSEWSEWSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPEFEEKEPCLSQGDGVVPCATYGWRTTEWTECRVDPLLSQQDKRRGNQTALCGGGIQTREVYCVQANENLLSQLSTHKNXEASKPNDLKLCTGPIPNTTQLCHIPCPTECEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEPTGGSGVTGNCPHLLEAIPCEEPACYDWKAVRLGDCEPDNGKECGPGTQVQEVVCINSDGEEVDRQLCRDAIFPIPVACDAPCPKDCVLSTWSTWSSCSHTCSCKTTEGKQIRARSILAYAGEEGGIRCPNSSALQEVRSCNEHFCTVYHWQTGPWGQCIEDTSVSSFNTTTTWNGEASCSVGMQTRKVICVRVNVGQVGPKKCPESLRPETVRPCLLPCKKDCIVTPYSDWTSCPSSCKEGDSSTRKQSRHRVIIQLPANCGRDCTDPLYEEKACEAPQACQSYRWKTHKWRRCQLVPWSVQQDSPGAQEGCGPGRQARAITCRKQDGGQACIHECLQYAGPVPALTQACQIPCQDDCQLTSWSKFSSCNGDCGAVRTRKRTLVGKSKKKEKCKNSHLYPLIETQYCPCDKYNAQFVGNWSDCILPEGKVEVLLGMKVQCDIKECGQGYRYQAMACYDQNGRLVETSRCNSHGYIEEACIIPCPSDCKLSEWSNWSRCSKSCGSGVKVRSKWLREKPYNGCRPCPKLDHVNQAQVYEVVFCHSDCNQYLWVTEPWSICKVTFVNNRENCGECVQTRKVRCMQNTADGPSEHVEDYLCDPEEMPLGSRVCKLPCPEDCVISEWGPWTQCVLPCNQSSFRQRSADPIRQPADEGRSCPNAVEKEPCNLNKNCYHYDYNVTDWSTCQLSEKAVCGNGIKTRNLDCVRSDGKSVDLKYCEALGLEKNWQMNTSCMVECPVNCQLSDWSPWSECSQTCGLTGKMIRRRTVTQPFQGDGRPCPSLMDQSKPCPVKPCYRWQYGQWSPCQVQEAQCGEGTRTRNISCVVSDCSADDFSKVVDEEFCADIELIIDGNKNNVLEESCSQPCPGDCYLKDWSSWSLCQLTCVNGEDLGFGGIQVRSRPVIIQELENQHLCPEQMLETKSCYDGQCYEYKWNASAWKGSSRTVWCQRSDGINVTGGCLVNSQPDADRSCNPPCSQPHSYCSETKTCHCEEGYTEVMSSNSTLEQCTLIPVVVLPTMEDKRGDVKTSRAVHPTQPSSNPAGRGRTWFLQPFGPDGRLKTWVYGVAAGAEVLLIFIVSMIYLACKKPKKPQRRQNNRLKPLTLAYDGDADMSEQ ID NO: 1891605 bpNOV47h,GGTACCGATATCATCTGTGAGTACTTTGAGCGCAAGCCTCTCCTGGAGCAGGCTTGCCTCATTCCTT283842727 DNASequenceGCCAGCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATGTGGTGGCGCCCCCGCAGTTCGGAGGCTCTGGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGGCCCTGGAGCACCTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACCGGAAAAGGACCCCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCPTATTAAGAAAAACAGAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAACCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAAGAGTGCCAGGTTTCCGAGTGGTCACACTGGAGCCCCTGCTCAAAAACATGCCATGACATGCTGTCCCCTGCAGGCACTCGTOTAAGGACACGAACCATCAGGCAGTTTCCCATTGGCAGTGAAAAGGAGTGTCCAGAATTTGAAGAAAAAGAACCCTGTTTGTCTCAAGGAGATCGAGTTCTCCCCTGTGCCACGTATCGCTGGAGAACTACAGACTGGACTGAGTGCCGTGTGGACCCTTTGCTCAGTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGGGGGCATCCAGACCCGAGAGGTCTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAACAACAAAGAAGCCTCAAAGCCAATCGACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCCTTGTCCAACTGAATCTGAAGTTTCACCTTGGTCAGCTTCGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGGGAAAAAAGGCTTCAAACTGAGGAAGCGGCGCATTACCAATGAGCCCACTGCAGCCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAACAGCCTCCCTGTTATGACTCGAAAGCGGTGAGACTGGGAGACTCCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACCCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGCAGAAGAAGTTGACAGACAGCTCTGCAGACATGCCATCTTCCCCATCCCTGTGGCCTGTGATGCCCCATGCCCGAAAGACTGTCTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTCAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTCCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGTCGACORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 190535 aaMW at 59956.1 kDNOV47h,GRDIICEYFEPKPLLEQACLIPCQQDCIVSEFSAWSECSKTCGSGLQHRTRHVVAPPQFGGSGCPNL283842727Protein SequenceTEFQVCQSSPCEAEELRYSLHVGPWSTCSMPHSRQVRQARRRGKNREREKDRSKGVKDFEARELIKKKRNRNRQNRQENKYWDIQIGYQTREVMCINKTGKAADLSFCQQEKLPMTFQSCVITKECQVSEWSEWSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECFEEEEKEPCLSQGDGVVPCATYGWRTTEWTECRVDPLLSQQDKRRGNQTALCGGGIQTREVYCVQANENLLSQLSTHKNKEASKPMDLKLCTGPIPNTTQLCHIPCPTECEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEPTGGSGVTGNCPMLLEAIFCEEPACYDWKAVRLGDCEPDNGKECGPGTQVQEVVCINSDGEEVDRQLCRDAIFPIPVACDAPCPKDCVLSTWSTWSSCSHTCSGKTTEGKQIRARSILAYAGEEGGIRCPNSSALQEVRSCNEHPCTVYHWQTVDSEQ ID NO: 1911605 bpNOV47i,GGTACCGATATCATCTGTGAGTACTTTGAGCCCAAGCCTCTCCTGGAGCAGGCTTGCCTCATTCCTT283842704 DNASequnceGCCAGCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATGTGGTGGCGCCCCCGCAGTTCCGAGGCTCTGGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGCGGCCCTGGAGCACCTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACCGGAAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCTTATTAAGAAAAAGAGAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATCAGACCACAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAACCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAAGAGTGCCAGGTTTCCGAGTGGTCAGAGTGGAGCCCCTCCTCAAAAACATGCCATGACATGGTGTCCCCTGCAGGCACTCGTGTAAGGACACCAACCATCAGGCAGTTTCCCATTGGCAGTGAAAAGGAGTGTCCAGAATTTGAAGAAAAAGAACCCTCTTTGTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACCTATGGCTGGAGAACTACAGAGTGGACTGAGTGCCCTGTGGACCCTTTGCTCAOTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGOGGCCATCCAGACCCGAGAGGTGTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAAGAACAAAGAAGCCTCAAAGCCAATGCACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCQTTGTCCAACTGAATGTGAAGTTTCACCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGCGAAAAAAGGCTTCAAACTGAGGAAGCGGCGCATTACCAATGAGCCCACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGGAAAGCAGTGAGACTGGGAAACTGCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGGAGAAGAAGTTGACAGACAGCTGTGCAGAGATGCCATCTTCCCCATCCCTGTGGCCTGTGATGCCCCATGCCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTGAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTGCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGTCCACORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 192535 aaMW at 59955.1 kDNOV47i,GTDIICEYFEPKPLLEQACLIPCQQDCIVSEFSAWSECSKTCGSGLQHRTRHVVAPPQFGGSGCPNL283842704ProteinTEFQVCQSSPCEAEELRYSLHVGPWSTCSMPHSRQVRQARRRGKNKEREKDRSKGVKDPEARELIKKSequenceKRNRNRQNRQENKYWKIQIGYQTREVMCINKTGKAADLSFCQQEKLPMTFQSCVITKECQVSEWSEWSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPEFEEKEPCLSQGDGVVPCATYGWRTTEWTECRVDPLLSQQDKRRGNQTALCGGGIQTREVYCVQANENLLSQLSTHKNKEASKPNDLKLCTGPIPNTTQLCHIPCPTECEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEPTGCSGVTGNCPHLLEAIPCEEPACYDWKAVRLGNCEPDNGKECCPGTQVQEVVCINSDGEEVDRQLCRDAIFPIPVACDAPCPKDCVLSTWSTWSSCSHTCSGKTTEGKQIRARSILAYAGEEGGIRCPNSSALQEVRSCNEHPCTVYIIWQTVDSEQ ID NO: 1936373 bpNOV47J,GACAGAGTGCAGCCTTTTCAGACTCTGTGACACAGTTCCCCTTTTGCAAAAATACTTAGCGAGGATCCG51595-01DNA SequenceATTACTTTCCAACAGTCGTCTCCAGAGACCTACTTTGTAACACCGCAGGGAAGTTAATGTACTAGGTCTTGAAAGGTCTTTCTGGAATGTGCAGTAACTTGTAGTTTTCTTCTAGTAGCACTGCTAATTTTTGTGTTATAATTTTTGTAGGTCCATGGGGCCGATGTATGGGAGATGAATGTGGTCCCGGAGGCATCCAAACGAGGGCTGTGTGGTGTGCTCATGTGGAGGGATGGACTACACTGCATACTAACTGTAAGCAGGCCGAGAGACCCAATAACCAGCAGAATTGTTTCAAAGTTTGCGATTGGCACAAAGAGTTGTACGACTGGAGACTGCGACCTTCGAATCAGTGTCAGCCCGTGATTTCAAAAAGCCTAGAGAAACCTCTTGAGTGCATTAAGGGGGAAGAAGGTATTCACGTGAGGGAGATAGCGTGCATCCAGAAAGACAAAGACATTCCTGCGGAGGATATCATCTGTGACTACTTTGAGCCCAAGCCTCTCCTGGAGCAGGCTTGCCTCATTCCTTGCCAGCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATCTGGTGGCGCCCCCGCAGTTCGGAGGCTCTGGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGGCCCTGGAGCACCTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACGGGAAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCTTATTAAGAAAAAGAGAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAAGCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAAGAGTGCCAGGTTTCCGAGTGGTCAGAGTGGAGCCCCTGCTCAAAAACATGCCATGACATGGTGTCCCCTGCAGGCACTCGTGTAAGGACACGAACCATCAGGCAGTTTCCCATTGGCAGTGAAAAGCAGTGTCCAGAATTTGAAGAAAAAGAACCCTGTTTGTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACGTATGGCTGGAGAACTACAGAGTGGACTGAGTGCCGTGTGGACCCTTTGCTCAGTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGGGCGCATCCAGACCCGAGAGGTGTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAAGAACAAAGAAGCCTCAAAGCCAATGGACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCCTTGTCCAACTGAATGTGAAGTTTCACCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGGGAAAAAAGGCTTCAAACTGAGGAAGCGGCCCATTACCAATGACCCCACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGGAAAGCGGTGAGACTGGGAGACTGCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACCCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGGAGAAGAAGTTGACAGACAGCTGTGCAGAGATGCCATCTTCCCCATCCCTGTGGCCTGTGATGCCCCATGCCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTGAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTGCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGGTCCCTGGGGCCAGTGCATTGAGGACACCTCAGTATCGTCCTTCAACACAACTACGACTTGGAATGGGGAGGCCTCCTGCTCTGTCGGCATGCAGACAAGAAAAGTCATCTGTGTGCGAGTCAATGTGGGCCAAGTGGGACCCAAAAAATGTCCTGAAAGCCTTCGACCTGAAACTGTAAGGCCTTGTCTGCTTCCTTGTAAGAAGGACTGTATTGTGACCCCATATAGTGACTGGACATCATGCCCCTCTTCGTGTAAAGAAGGGGACTCCAGTATCAGGAAGCAGTCTAGGCATCGGGTCATCATTCAGCTGCCAGCCAACGGGGGCCGAGACTGCACAGATCCCCTCTATGAAGAGAAGGCCTGTGAGGCACCTCAAGCGTGCCAAAGCTACAGGTGGAAGACTCACAAATGGCGCAGATGCCAATTAGTCCCTTGGAGCGTGCAACAAGACAGCCCTGGAGCACAGGAAGGCTGTGGGCCTGGGCGACAGGCAAGAGCCATTACTTGTCGCAAGCAAGATGGAGGACAGGCTGGAATCCATGAGTGCCTACAGTATGCAGGCCCTGTGCCAGCCCTTACCCAGGCCTCCCAGATCCCCTGCCAGGATGACTCTCAATTGACCAGCTGGTCCAAGTTTTCTTCATGCAATGGAGACTGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTTGGAAAAAGTAAAAAGAAGGAAAAATGTAAAAATTCCCATTTGTATCCCCTGATTGAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAACCTGTGGGGAACTGGTCAGACTGTATTTTACCAGAGGGAAAAGTGGAAGTGTTGCTGGGAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAAGGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGGCTTGTGGAAACATCTAGATGTAACAGCCATGGTTACATTGAGGAGGCCTGCATCATCCCCTGCCCCTCAGACTGCAAGCTCAGTGAGTGGTCCAACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAGGTTCGTTCTAAATGGCTGCGTGAAAAACCATATAATGGAGGAAGGCCTTGCCCCAAACTGGACCATGTCAACCAGGCACAGGTGTATGAGGTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTCACAGAGCCCTGGAGCATCTGCAAGGTGACCTTTGTGAATATGCGGGAGAACTGTGGAGAGGGCGTGCAAACCCGAAAAGTGAGATGCATGCAGAATACAGCAGATGGCCCTTCTGAACATGTAGAGGATTACCTCTGTGACCCAGAAGAGATGCCCCTGGGCTCTAGAGTGTGCAAATTACCATGCCCTGAGGACTGTGTGATATCTGAATGGGGTCCATGGACCCAATGTGTTTTGCCTTGCAATCAAAGCAGTTTCCGGCAAAGGTCAGCTGATCCCATCAGACAACCAGCTGATGAAGGAAGATCTTGCCCTAATGCTGTTGAGAAAGAACCCTGTAACCTGAACAAAAACTGCTACCACTATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAGAAGGCAGTTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGTGTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCGCTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCCTGCATGGTGGAATGCCCTGTGAACTGTCAGCTTTCTGATTGGTCTCCTTGGTCAGAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGACGAACAGTGACCCAGCCCTTTCAAGGTGATGGAAGACCATGCCCTTCCCTGATGGACCAGTCCAAACCCTGCCCAGTGAAGCCTTGTTATCGGTGGCAATATGGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCCCAGTGTGGAGAAGGGACCAGAACAAGGAACATTTCTTGTGTAGTAAGTGATGGGTCAGCTGATGATTTCAGCAAAGTGGTGGATGAGGAATTCTGTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATGGTTCTGGAGGAATCCTGCAGCCAGCCTTGCCCAGGTGACTGTTATTTGAAGGACTGGTCTTCCTGGAGCCTGTGTCAGCTGACCTGTGTGAATGGTGAGGATCTAGGCTTTGGTGGAATACAGGTCAGATCCAGACCGGTGATTATACAAGAACTAGAGAATCACCATCTGTGCCCAGAGCAGATGTTAGAAACAAAATCATGTTATGATGGACAGTGCTATGAATATAAATGGATGGCCAGTGCTTGGAAGGGCTCTTCCCGAACAGTGTGGTGTCAAAGGTCAGATGGTATAAATGTAACAGGGGGCTGCTTGGTGATGAGCCAGCCTGATGCCGACAGGTCTTGTAACCCACCGTGTAGTCAACCCCACTCGTACTGTAGCGAGACAAAAACATGCCATTGTGAAGAAGGGTACACTGAAGTCATGTCTTCTAACAGCACCCTTGAGCAATGCACACTTATCCCCGTGGTGGTATTACCCACCATGGAGGACAAAAGAGGAGATGTGAAAACCAGTCGGGCTGTACATCCAACCCAACCCTCCAGTAACCCAGCAGGACGGGGAAGGACCTGGTTTCTACAGCCATTTGGGCCAGATGGGAGACTAAAGACCTGGGTTTACGGTGTAGCAGCTGGGGCATTTGTGTTACTCATCTTTATTGTCTCCATGATTTATCTAGCTTGCAAAAAGCCAAAGAAACCCCAAAGAAGGCAAAACAACCGACTGAAACCTTTAACCTTAGCCTATGATGGAGATGCCGACATGTAACATATAACTTTTCCTGGCAACAACCAGTTTCGGCTTTCTGACTTCATAGATGTCCAGAGGCCACAACAAATGTATCCAAACTGTGTGGATTAAAATATATTTTAATTTTTAAAAATGGCATCATAAAGACAAGAGTGAAAATCATACTGCCACTGGAGATATTTAAGACAGTACCACTTATATACAGACCATCAACCGTGAGAATTATAGGAGATTTAGCTGAATACATGCTGCATTCTGAAAGTTTTATGTCATCTTTTCTGAAATCTACCGACTGAAAAACCACTTTCATCTCTAAAAAATAATGGTGGAATTGGCCAGTTAGGATGCCTGATACAAGACCGTCTGCAGTGTTAATCCATAAAACTTCCTAGCATGAAGAGTTTCTACCAAGATCTCCACAATACTATGGTCAAATTAACATGTGTACTCAGTTGAATGACACACATTATGTCAGATTATGTACTTGCTAATAAGCAATTTTAACAATGCATAACAAATAAACTCTAAGCTAAGCAGAAAATCCACTGAATAAATTCAGCATCTTGGTGGTCGATGGTAGATTTTATTGACCTGCATTTCAGAGACAAAGCCTCTTTTTTAAGACTTCTTGTCTCTCTCCAAAGTAAGAATGCTGGACAAGTACTAGTGTCTTAGAAGAACGAGTCCTCAAGTTCAGTATTTTATAGTGGTAATTGTCTGGAAAACTAATTTACTTGTGTTAATACAATACGTTTCTACTTTCCCTGATTTTCAAACTGGTTGCCTGCATCTTTTTTGCTATATGCAAGGCACATTTTTGCACTATATTAGTGCAGCACGATAGGCGCTTAACCAGTATTGCCATAGAAACTGCCTCTTTTCATGTGGGATGAAGACATCTGTGCCAAGAGTGGCATGAAGACATTTGCAAGTTCTTGTATCCTGAAGAGAGTAAAGTTCAGTTTGGATGGCAGCAAGATGAAATCAGCTATTACACCTGCTGTACACACACTTCCTCATCACTGCAGCCATTGTGAAATTGACAACATGGCGGTAATTTAAGTGTTGAAGTCCCTAACCCCTTAACCCTCTAAAAGGTGGATTCCTCTAGTTGGTTTGTAATTGTTCTTTGAAGGCTGTTTATGACTAGATTTTTATATTTGTTATCTTTGTTAAGAAAAAAAAAAAAAAAAGGAACTGGATGTCTTTTTAATTTTGAGCAGATGGAGAAAATAAATAATGTATCAATGACCTTTGTAACTAAAGGAAAAAAAAAAAAAATGTGGATTTTCCTTTCTCTCTGATTTCCCAGTTTCAGATTGAATGTCTGTCTTGCAGGCAGTTATTTCAAAATCCATAGTCTTTNGCCTTTCTCACTGGCAAAATTTGAORF Start: ATG at 235ORF Stop: TAA at 4999SEQ ID NO: 1941588 aaMW at 178042.1 kDNOV47j,MGDECGPGGIQTRAVWCAHVEGWTTLHTNCKQAERPNNQQNCFKVCDWHKELYDWRLGPWNQCQPVICG51595-01ProteinSKSLEKPLECIKGEEGIQVREIACIQKDKDIPAEDITCEYFEPKPLLEQACLIPCQQDCIVSEFSAWSequenceSECSKTCGSGLQHRTRHVVAPPQFGGSGCPNLTEFQVCQSSPCEAEELRYSLHVGPWSTCSMPHSRQVRQARRRGKNKEREKDRSKGVKDPEARELIKKKRNRNRQNRQENKYWDIQIGYQTREVMCINKTGKAADLSFCQQEKLPMTFQSCVITKECQVSEWSEWSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPEFEEKEPCLSQGDGVVPCATYGWRTTEWTECRVDPLLSQQDKRRGNQTALCGGGIQTREVYCVQANENLLSOLSTHKNKEASKPMDLKLCTGPIPNTTOLCHIPCPTECEVSPWSAWGPCTYENCNCOOGKKGFKLRKRRITNEPTGGSGVTGNCPHLLEAIPCEEPACYDWKAVRLGDCEPDNGKECGPGTQVQEVVCINSDGEEVDRQLCRDAIFPIPVACDAPCPKDCVLSTWSTWSSCSHTCSGKTTEGKQIRARSILAYAGEEGGIRCPNSSALQEVRSCNEHPCTVYHWQTGPWGQCIEDTSVSSFNTTTTWNGEASCSVGMQTRKVICVRVNVGQVGPKKCPESLRFETVRPCLLPCKKDCIVTPYSDWTSCPSSCKEGDSSIRKQSRHRVIIQLPANGGRDCTDPLYEEKACEAPQACQSYRWKTHKWRRCQLVPWSVQQDSPGAQEGCGPGRQARAITCRKQDGGQAGIHECLQYAGPVPALTQACQIFCQDDCQLTSWSKFSSCNGDCGAVRTRKRTLVGKSKKKEKCKNSHLYPLIETQYCPCDKYNAQPVGNWSDCILPEGKVEVLLGMKVQGDIKECGQGYRYQAMACYDQNGRLVETSRCNSHGYIEEACIIPCPSDCKLSEWSNWSRCSKSCGSGVKVRSKWLREKPYNCGRPCPKLDHVNQAQVYEVVPCHSDCNQYLWVTEPWSICKVTFVNNRENCGEGVQTRKVRCMQNTADGPSEHVEDYLCDPEEMPLGSRVCKLPCPEDCVISEWGPWTQCVLPCNQSSFRQRSADPIRQPADEGRSCPNAVEKEPCNLNKNCYHYDYNVTDWSTCQLSEKAVCGNGIKTRMLDCVRSDGKSVDLKTCEALGLEKNWQMNTSCMVECPVNCQLSDWSPWSECSQTCGLTGKMIRRRTVTQPFQGDGRPCPSLMDQSKPCPVKPCYRWQYGQWSPCQVQEAQCGEGTRTRNISCVVSDCSADDFSKVVDEEFCADIELIIDGNKNMVLEESCSQPCPGDCYLKDWSSWSLCQLTCVNGEDLGFGGIQVRSRPVIIQELENQHLCPEQMLETKSCYDGQCYEYKWMASAWKGSSRTVWCQRSDGINVTGGCLVMSQPDADRSCNPPCSQPHSYCSETKTCHCEEGYTEVMSSNSTLEQCTLIPVVVLPTMEDKRGDVKTSRAVHPTQPSSNPAGRGRTWFLQPFGPDGRLKTWVYGVAAGAFVLLIFIVSMIYLACKKPKKPQRRQNNRLKPLTLAYDGDADMSEQ ID NO: 1951732 bpNOV47k,CACCTCGCGAGGAGACTGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTTGGAAAAAGTAAAAAG310658551 DNA SequenceAAGGAAAAATGTAAAAATTCCCATTTGTATCCCCTGATTGAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAACCTGTGGGGAACTGGTCAGACTGTATTTTACCAGAGGGAAAAGTGGAAGTGTTGCTGGGAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAAGGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGGCTTGTGGAAACATCTAGATGTAACAGCCATGGTTACATTGAGGAGGCCTGCATCATCCCCTGCCCCTCAGACTGCAAGCTCAGTGAGTGGTCCAACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAGGTTCGTTCTAAATGGCTGCGTGAAAAACCATATAATGGAGGAAGGCCTTGCCCCAAACTGGACCATGTCAACCAGCCACAGGTCTATGAGGTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTCACAGAGCCCTGGAGCATCTGCAAGGTGACCTTTGTGAATATGCGGGAGAACTGTGGAGAGGGCGTGCAAACCCGAAAAGTGAGATGCATGCAGAATACAGCAGATGGCCCTTCTGAACATGTAGAGGATTACCTCTGTGACCCAGAAGAGATGCCCCTGGGCTCTAGAGTGTGCAAATTACCATGCCCTGAGGACTGTGTGATATCTGAATGGGGTCCATGGACCCAATGTGTTTTGCCTTGCAATCAAAGCAGTTTCCGGCAAAGGTCAGCTGATCCCATCAGACAACCAGCTGATGAAGGAAGATCTTGCCCTAATGCTGTTGAGAAAGAACCCTGTAACCTGAACAAAAACTGCTACCACTATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAGAAGGCAGTTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGTGTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCGCTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCCTGCATGGTGGAATGCCCTGTGAACTGTCAGCTTTCTGATTGGTCTCCTTGGTCAGAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGACGAACAGTGACCCAGCCCTTTCAAGGTGATGGAAGACCATGCCCTTCCCTGATGGACCAGTCCAAACCCTGCCCAGTGAAGCCTTGTTATCGGTGGCAATATGGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCCCAGTGTGGAGAAGGGACCAGAACAAGGAACATTTCTTGTCTAGTAAGTCATGGCTCAGCTGATGATTTCAGCAAAGTGGTGGATGAGGAATTCTGTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATGGTTCTGGAGGAATCCTGCAGCCAGCCTTGCCCAGGTGACTGTTATTTGAAGGACTGGTCTTCCTGGAGCCTGTGTCAGCTGACCTGTGTGAATGGTGAGGATCTAGGCTTTGGTGGAATACAGGTCAGATCCAGACCGGTGATTATACAAGAACTAGAGAATCAGCATCTGTGCCCAGAGCAGATGTTAGAAACAAAATCATGTTATGATGGACAGTGCTATGAATATAAATGGATGGCCAGTGCTTCGAAGGGCTCTTCCCGAACAGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 196577 aaMW at 65124.1 kDNOV47k,TSRGDCGAVRTRKRTLVGKSKKKEKCKNSHLYPLIETQYCPCDKYNAQPVGNWSDCILPEGKVEVLL310658551Protein SequenceGMKVQGDIKECGQGYRYQANACYDQNGRLVETSRCNSHGYIEEACIIPCPSDCKLSEWSNWSRCSKSCGSGVKVRSKWLREKPYNGGRPCPKLDHVNQAQVYEVVPCHSDCNQYLWVTEPWSICKVTFVNMRENCGEGVQTRKVRCMQNTADGPSEHVEDYLCDPEEMPLGSRVCKLPCPEDCVISEWGPWTQCVLPCNQSVRSDGKSVDLKYCEALGLEKNWQMNTSCMVECPVNCQLSDWSPWSECSQTCGLTGKMIRRRTVTQPFQGDGRPCPSLMDQSKPCPVKPCYRWQYGQWSPCQVQEAQCGEGTRTRNISCVVSDGSADDFSKVVDEEFCADIELIIDGNKNMVLEESCSQPCPGDCYLKDWSSWSLCQLTCVNGEDLGFGGIQVRSRPVIIQELENQHLCPEQMLETKSCYDGQCYEYKWMASAWKGSSRTVDGSEQ ID NO: 197921 bpN0V47l,ATGGGAGATGAATGTGGTCCCGGAGGCATCCAAACGAGGGCTGTGTGGTGTGCTCATGTGGAGGGATCG 51595-02DNA SequenceGGACTACACTGCATACTAACTGTAAGCAGGCCGAGAGACCCAATAACCAGCAGAATTGTTTCAAAGTTTGCGATTGGCACAAAGAGTTGTACGACTGGAGACTGGGACCTTGGAATCAGTGTCAGCCCGTGATTTCAAAAAGCCTAGAGAAACCTCTTGAGTGCATTAAGGGGGAAGAAGGTATTCAGGTGAGGGAGATAGCGTGCATCCAGAAAGACAAAGACATTCCTGCGGAGGATATCATCTGTGAGTACTTTGAGCCCAAGCCTCTCCTGGAGCAGGCTTGCCTCATTCCTTGCCAGCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATCCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATCTGGTGGCGCCCCCGCAGTTCGGAGGCTCTGGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGGCCCTGGAGCACCTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACGGGAAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCTTATTAAGAAAAAGAGAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAAGCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAAGAGTGCCAGGTTTCCGAGTGGTCAGAGTGGAGCCCCTGCTCAAAAACATGCORF Start: ATG at 1ORF Stop: end of sequenceSEQ ID NO: 198307 aaMW at 35305.8 kDNOV47l,MGDECGPGGIQTRAVWCAHVEGWTTLHTNCKQAERPNNQQNCFKVCDWHKELTDWRLGPWNQCQPVICG51595-02ProteinSKSLEKPLECIKGEEGIQVREIACIQKDKDIPAEDIICEYFEPKPLLEQACLTPCQQDCIVSEFSAWSequenceSECSKTCGSGLQHRTRHVVAPPQFGGSGCPNLTEFQVCQSSPCEAEELRYSLHVGPWSTCSMPHSRQVRQARRRGKNKEREKDRSKGVKDPEARELIKKKRNRNRQNRQENKYWDIQIGYQTREVMCINKTGKAADLSFCQQEKLPMTFQSCVITKECQVSEWSEWSPCSKTCSEQ ID NO: 1994810 bpNOV47m,GTCCATGGGGCCGATGTATGGGAGATGAATGTGGTCCCGGAGGCATCCAAACGAGGGCTGTGTGGTCG51595-05DNA SequenceGTGCTCATGTGGAGGGATGGACTACACTGCATACTAACTGTAAGCAGGCCGAGAGACCCAATAACCAGCAGAATTGTTTCAAAGTTTGCGATTGGCACAAAGAGTTGTACGACTGGAGACTGGGACCTTGGAATCAGTGTCAGCCCGTGATTTCAAAAAGCCTAGAGAAACCTCTTGAGTGCATTAAGGGGGAAGAAGGTATTCAGGTGAGGGAGATAGCGTGCATCCAGAAAGAGAAAGACATTCCTGCGGAGGATATCATCTGTGAGTACTTTGAGCCCAAGCCTCTCCTGGACCACGCTTGCCTCATTCCTTGCCACCAAGATTGCATCGTGTCTGAATTTTCTGCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCACCGGACGCGTCATGTGGTGGCGCCCCCGCAGTTCGGAGGCTCTCGCTGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATCTGGGGCCCTGGAGCACCTGCTCAATGCCCCACTCCCGACAAGTAAGACAAGCAAGGAGACGCGGGAAGAATAAAGAACGGGAAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGCCCGCGAGCTTATTAAGAAAAAGAGAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTCCGACATCCAGATTGGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAAGCTGCTGATTTAAGCTTTTGCCAGCAAGAGAAGCTTCCAATGACCTTCCAGTCCTGTGTGATCACCAAACAGTCCCAGGTTTCCGAGTGGTCAGACTGGACCCCCTGCTCAAAAACATGCCATGACATGGTGTCCCCTGCAGGCACTCGTGTAAGGACACGAACCATCAGGCAGTTTCCCATTGGCAGTGAAAAGGAGTGTCCAGAATTTGAAGAAAAAGAACCCTGTTTGTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACGTATGGCTGGAGAACTACAGAGTGGACTGAGTGCCGTGTGGACCCTTTGCTCAGTCAGCAGGACAAGAGGCGCGGCAACCAGACGGCCCTCTGTGGAGGGGGCATCCAGACCCGAGAGGTGTACTGCGTGCAGGCCAACGAAAACCTCCTCTCACAATTAAGTACCCACAAGAACAAAGAAGCCTCAAAGCCAATGGACTTAAAATTATGCACTGGACCTATCCCTAATACTACACAGCTGTGCCACATTCCTTGTCCAACTGAATGTGAAGTTTCACCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAACTGTAATGATCAGCAAGGGAAAAAAGGCTTCAAACTGAGGAAGCGGCGCATTACCAATGAGCCCACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCACTTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGGAAAGCGGTGAGACTGGGAGACTGCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGTGCATCAACAGTGATGGAGAAGAAGTTGACAGACAGCTGTGCAGAGATGCCATCTTCCCCATCCCTGTGGCCTCTGATGCCCCATGCCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGATCCATTCTGGCCTATGCGGGTGAAGAAGGTGGAATTCGCTGTCCAAATAGCAGTGCTTTGCAAGAAGTACGAAGCTGTAATGAGCATCCTTGCACAGTGTACCACTGGCAAACTGGTCCCTGGGGCCAGTGCATTGAGGACACCTCAGTATCGTCCTTCAACACAACTACGACTTGGAATGGGGAGGCCTCCTGCTCTGTCGGCATGCAGACAAGAAAAGTCATCTGTGTGCGAGTCAATGTGGGCCAAGTGGGACCCAAAAAATGTCCTGAAAGCCTTCGACCTGAAACTGTAAGGCCTTGTCTGCTTCCTTGTAAGAAGGACTGTATTGTGACCCCATATAGTGACTCGACATCATGCCCCTCTTCGTGTAAAGAAGGGGACTCCAGTATCAGGAAGCAGTCTAGGCATCGGGTCATCATTCAGCTGCCAGCCAACGGGGGCCGAGACTGCACAGATCCCCTCTATGAAGAGAAGGCCTGTGAGGCACCTCAAGCGTGCCAAAGCTACAGGTGGAAGACTCACAAATGGCGCAGATGCCAATTAGTCCCTTGGAGCGTGCAACAAGACAGCCCTGGAGCACAGGAAGGCTGTGGGCCTGGGCGACAGGCAAGAGCCATTACTTGTCGCAAGCAAGATGGAGGACAGGCTGGAATCCATGAGTGCCTACAGTATGCAGGCCCTGTGCCAGCCCTTACCCAGGCCTGCCAGATCCCCTGCCAGGATGACTGTCAATTGACCAGCTGGTCCAAGTTTTCTTCATGCAATGGAGACTGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTTGGAAAAAGTAAAAAGAAGGAAAAATGTAAAAATTCCCATTTGTATCCCCTGATTGAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAACCTGTGGGGAACTGGTCAGACTGTATTTTACCAGAGGGAAAAGTGGAAGTGTTGCTGGGAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAAGGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGGCTTGTGGAAACATCTAGATGTAACAGCCATGGTTACATTGAGGAGGCCTGCATCATCCCCTGCCCCTCAGACTGCAAGCTCAGTGAGTGGTCCAACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAGGTTCGTTCTAAATGGCTGCGTGAAAAACCATATAATGGAGGAAGGCCTTGCCCCAAACTGCACCATGTCAACCAGGCACAGGTGTATGAGGTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTCACAGAGCCCTGGAGCATCTGCAAGGTGACCTTTGTGAATATGCGGGAGAACTGTGGAGAGGGCGTGCAAACCCGAAAAGTGAGATGCATGCAGAATACAGCAGATGGCCCTTCTGAACATGTAGAGGATTACCTCTGTGACCCAGAAGAGATGCCCCTGGGCTCTAGAGTGTGCAAATTACCATGCCCTGAGGACTGTCTGATATCTGAATGGGGTCCATGGACCCAATGTGTTTTGCCTTGCAATCAAAGCAGTTTCCGGCAAAGGTCAGCTGATCCCATCAGACAACCAGCTGATGAAGGAAGATCTTGCCCTAATGCTGTTGAGAAAGAACCCTGTAACCTGAACAAAAACTGCTACCACTATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAGAAGGCAGTTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGTGTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCGCTTGGCTTGGAGAAGAACTCGCAGATGAACACGTCCTGCATGGTGGAATGCCCTGTGAACTGTCAGCTTTCTGATTGGTCTCCTTGCTCAGAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGACCAACAGTGACCCAGCCCTTTCAAGGTGATGGAAGACCATGCCCTTCCCTGATGGACCAGTCCAAACCCTGCCCAGTGAACCCTTGTTATCCGTGGCAATATGGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCCCAGTGTGGAGAAGGGACCAGAACAAGGAACATTTCTTGTGTAGTAAGTGATGGGTCAGCTGATGATTTCAGCAAAGTCGTGGATCACCAATTCTCTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATGGTTCTGGAGGAATCCTGCAGCCAGCCTTGCCCAGCTGACTGTTATTTGAAGGACTGGTCTTCCTGGAGCCTGTGTCAGCTGACCTGTGTGAATCGTGAGGATCTAGGCTTTGGTGGAATACAGGTCAGATCCAGACCGGTGATTATACAAGAACTAGAGAATCAGCATCTGTGCCCAGAGCAGATGTTAGAAACAAAATCATGTTATGATGCACAGTGCTATGAATATAAATGGATGGCCAGTGCTTGGAAGGGCTCTTCCCGAACAGTGTGCTGTCAAAGGTCAGATGGTATAAATGTAACAGGGGGCTGCTTGGTGATGAGCCAGCCTGATGCCGACAGGTCTTGTAACCCACCGTGTAGTCAACCCCACTCGTACTCTAGCGAGACAAAAACATGCCATTGTGAAGAAGGGTACACTGAAGTCATGTCTTCTAACAGCACCCTTGAGCAATGCACACTTATCCCCGTGGTGGTATTACCCACCATGGAGGACAAAAGAGGAGATGTGAAAACCAGTCGGOCTGTACATCCAACCCAACCCTCCAGTAACCCAGCAGGACGGGGAAGGACCTGGTTTCTACAGCCATTTGCGCCAGATCGGAGACTAAAGACCTGGGTTTACGGTGTAGCAGCTGCGGCATTTGTGTTACTCATCTTTATTCTCTCCATGATTTATCTAGCTTGCAAAAAGCCAAAGAAACCCCAAAGAAGGCAAAACAACCGACTGAAACCTTTAACCTTAGCCTATGATGGAGATGCCGACATGTAACATATAACTTTTCCTGGCAACAACCAORF Start: ATG at 18ORF Stop: TAA at 4782SEQ ID NO: 20011588 aaMW at 178042.1 kDNOV47m,MGDECGPGGIQTRAVWCAHVAGWTTLHTNCKQAERPNNQQNCFKVCDWHKELYDWRLGPWNQCQPVCG51595-05Protein SequenceISKSLEKPLECIKGEEGIQVREIACIQKDKDIPAEDIICEYFEPKPLLEQACLIPCQQDCIVSEFSAWSECSKTCGSGLQHRTRHVVAPPQFGGSGCPNLTEFQVCQSSPCEAEELRYSLHVGPWSTCSMPHSRQVRQARRRGKNKEREKDRSKGVKDPEARELIKKKRNRNRQNRQENKYWDIQIGYQTEEVMCINKTGKAADLSFCQQEKLPMTFQSCVITKECQVSEWSEWSPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPEFEEKEPCLSQGDGVVPCATYGWRTTEWTECRVDPLLSQQDKRRGNQTALCGGGTQTREVYCVQANENLLSQLSTHKNKEASKPHDLKLCTGPTPNTTQLCHIPCPTECEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEPTGGSGVTGNCPHLLEAIPCEEPACYDWKAVRLGDCEPDNGKECCPGTQVQEVVCINSDGEEVDRQLCRDAIFPTPVACDAPCPKDCVLSTWSTWSSCSHTCSGKTTEGKQIRARSILAYAGEEGGIRCPNSSALQEVRSCNEHPCTVYHWQTGPWGQCIEDTSVSSFNTTTTWNGEASCSVCMQTRKVICVRVNVGQVGPKKCPESLRPETVRPCLLPCKKDCTVTPYSDWTSCPSSCKEGDSSIRKQSRHRVIIQLPANGGRDCTDPLYEEKACEAPQACQSYRWKTHKWRRCQLVPWSVQQDSPGAQEGCGPGRQARAITCRKQDGGQAGIHECLQYAGPVPALTQACQIPCQDDCQLTSWSKFSSCNGDCGAVRTRKRTLVCKSKKKEKCKNSHLYPLIETQYCPCDKYNAQPVCNWSDCILPEGKVEVLLGMKVQGDIKECGQGYRYQAMACYDQNGRLVETSRCNSHGYIEEACIIPCPSDCKLSEWSNWSRCSKSCGSGVKVRSKWLREKPYNGGRPCPKLDHVNQAQVYEVVPCHSDCNQYLWVTEPWSICKVTFVNNRENCGEGVQTRKVRCMQNTADGPSEHVEDYLCDPEEMPLGSRVCKLPCPEDCVISEGWPWTQCVLPCNQSSFRQRSADPIRQPADEGRSCPNAVEKEPCNLNXNCYHYDYNVTDWSTCQLSEKAVCGNGIKTRMLDCVRSDGKSVDLKYCEALGLEKNWQMNTSCMVECPVNCQLSDWSPWSECSQTCGLTGKMIRRRTVTQPFQGDGRPCPSLMDQSKPCPVKPCYRWQYGQWSPCQVQEAQCGEGTRTRNTSCVVSDGSADDFSKVVDEEFCADIELIIDGNKNMVLEESCSQPCPGDCYLKDWSSWSLCQLTCVNGEDLGFGGIQVRSRPVIIQELENQHLCPEQMLETKSCYDGQCYEYKWMASAWKGSSRTVWCQRSDGINVTGGCLVMSQPDADRSCNPPCSQPHSYCSETKTCHCEEGYTEVMSSNSTLEQCTLIPVVVLPTMEDKRGDVKTSRAVHPTQPSSNPAGRGRTWELQPFGPDGRLKTWVYGVAAGAFVLLIFIVSMIYLACKKPKKPQRRQNNRLKPLTLAYDGDADM


[0619] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 47B.
257TABLE 47BComparison of NOV47a against NOV47b through NOV47m.NOV47a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV47b299 . . . 765 438/467 (93%) 1 . . . 467 439/467 (93%)NOV47c849 . . . 1419 562/571 (98%) 1 . . . 571 562/571 (98%)NOV47d 1 . . . 15311480/1531 (96%) 1 . . . 15311480/1531 (96%)NOV47e 1 . . . 14371384/1437 (96%) 1 . . . 14371384/1437 (96%)NOV47f 1 . . . 15311477/1531 (96%) 3 . . . 15331479/1531 (96%)NOV47g 1 . . . 15881537/1588 (96%) 1 . . . 15881537/1588 (96%)NOV47h102 . . . 632 489/531 (92%) 3 . . . 533 489/531 (92%)NOV47i102 . . . 632 488/531 (91%) 3 . . . 533 489/531 (91%)NOV47j 1 . . . 15881537/1588 (96%) 1 . . . 15881537/1588 (96%)NOV47k851 . . . 1422 563/572 (98%) 4 . . . 575 563/572 (98%)NOV47l 1 . . . 307 292/307 (95%) 1 . . . 307 292/307 (95%)NOV47m 1 . . . 15881537/1588 (96%) 1 . . . 15881537/1588 (96%)


[0620] Further analysis of the NOV47a protein yielded the following properties shown in Table 47C.
258TABLE 47CProtein Sequence Properties NOV47aPSort analysis:0.7000 probability located in plasma membrane; 0.3500 probability located innucleus; 0.3000 probability located in microbody (peroxisome); 0.2000probability located in endoplasmic reticulum (membrane)SignalP analysis:No Known Signal Sequence Predicted


[0621] A search of the NOV47a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 47D.
259TABLE 47DGeneseq Results for NOV47aNOV47aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB20155Secreted protein SECP1 - 1 . . . 15881588/1588 (100%)0.0Homo sapiens, 1588 aa. 1 . . . 15881588/1588 (100%)[WO200105971-A2,Jan. 25, 2001]AAM39295Human polypeptide SEQ ID 1 . . . 15881587/1588 (99%)0.0NO 2440 - Homo sapiens, 1 . . . 15881588/1588 (99%)1588 aa.[WO200153312-A1,Jul. 26, 2001]AAM41081Human polypeptide SEQ ID48 . . . 15881540/1541 (99%)0.0NO 6012 - Homo sapiens,11 . . . 15511540/1541 (99%)1551 aa.[WO200153312-A1,Jul. 26, 2001]AA342496Human ORFX ORF2260 1 . . . 614 605/614 (98%)0.0polypeptide sequence SEQ 6 . . . 617 607/614 (98%)ID NO:4520 - Homosapiens, 617 aa.[WO200058473-A2,Oct. 5, 2000]AAM28984Peptide #3021 encoded by 1 . . . 271271/271 (100%)e−169probe for measuring 6 . . . 276 271/271 (100%)placental gene expression -Homo sapiens, 277 aa.[WO200157272-A2,Aug. 9, 2001]


[0622] In a BLAST search of public sequence datbases, the NOV47a protein was found to have homology to the proteins shown in the BLASTP data in Table 47E.
260TABLE 47EPublic BLASTP Results for NOV47aNOV47aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueCAC32422Sequence 1 from Patent 1 . . . 15881588/1588 (100%)0.0WO0105971 - Homo 1 . . . 15881588/1588 (100%)sapiens (Human), 1588 aa.BAA76804KIAA0960 protein - Homo 87 . . . 15881502/1502 (100%)0.0sapiens (Human), 1502 aa 1 . . . 15021502/1502 (100%)(fragment).Q9UPZ6KIAA0960 protein - Homo299 . . . 15881290/1290 (100%)0.0sapiens (Human), 1290 aa 1 . . . 12901290/1290 (100%)(fragment).Q9C0I4KIAA1679 protein - Homo 22 . . . 1588 790/1574 (50%)0.0sapiens (Human), 1536 aa 1 . . . 15361044/1574 (66%)(fragment).O43384Hypothetical protein954 . . . 1401 446/448 (99%)0.0GS164B05.1 in 1 . . . 446 446/448 (99%)chromosome 7 - Homosapiens (Human), 446 aa(fragment).


[0623] PFam analysis predicts that the NOV47a protein contains the domains shown in the Table 47F.
261TABLE 47FDomain Analysis of NOV47aIdentities/Similaritiesfor the MatchedExpectPfam DomainNOV47a Match RegionRegionValuetsp_1 129 . . . 17720/54 (37%)1.8e−1339/54 (72%)tsp_1 295 . . . 35323/63 (37%)0.001545/63 (71%)tsp_1 447 . . . 50421/62 (34%)0.139/62 (63%)tsp_1 569 . . . 62519/60 (32%)0.001241/60 (68%)tsp_1 706 . . . 76117/59 (29%)0.001440/59 (68%)tsp_1 841 . . . 88917/57 (30%)0.02234/57 (60%)tsp_1 970 . . . 102118/55 (33%)1.1e−0540/55 (73%)tsp_11030 . . . 109314/69 (20%)0.7946/69 (67%)tsp_11100 . . . 115015/55 (27%)0.03936/55 (65%)tsp_11221 . . . 127120/55 (36%)6.9e−1139/55 (71%)tsp_11349 . . . 140517/62 (27%)0.2934/62 (55%)



Example 48

[0624] The NOV48 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 48A.
262TABLE 48ANOV48 Sequence AnalysisSEQ ID NO: 2013149 bpNOV48a,CTAAAGTTTTTTTCTTTGAATGACAGAACTACAGCATAATGCGTGGCTTCAACCTGCTCCTCTTCTGCG57209-01DNA SequenceGGGATGTTGTGTTATGCACAGCTGGGAAGGGCACATAAGACCCACACGGAAACCAAACACAAAGGGTAATAACTGTAGAGACAGTACCTTGTGCCCAGCTTATGCCACCTGCACCAATACGGTGGACAGTTACTATTGCACTTGCAAACAAGGCTTCCTGTCCAGCAATGGGCAAAATCACTTCAAGGATCCAGGAGTGCGATGCAAAGATATTGATGAATGTTCTCAAAGCCCCCAGCCCTGTGGTCCTAACTCATCCTGCAAAAACCTGTCAGGGAGGTACAAGTGCAGCTGTTTAGATGGTTTCTCTTCTCCCACTGGAAATGACTGGGTCCCAGGAAAGCCGGGCAATTTCTCCTGTACTGATATCAATGAGTGCCTCACCAGCAGGGTCTGCCCTGAGCATTCTGACTGTGTCAACTCCATGGGAAGCTACAGTTGCAGCTGTCAAGTTGGATTCATCTCTAGAAACTCCACCTGTGAAGACGTGAATGAATGTGCAGATCCAAGAGCTTGCCCAGAGCATGCAACTTGTAATAACACTGTTGGAAACTACTCTTGTTTCTGCAACCCAGGATTTGAATCCAGCAGTGGCCACTTGAGTTGCCAGGGTCTCAAAGCATCGTGTGAAGATATTGATGAATGCACTGAAATGTGCCCCATCAATTCAACATGCACCAACACTCCTGGGAGCTACTTTTGCACCTGCCACCCTGGCTTTGCACCAAGCAGTGGACAGTTGAATTTCACAGACCAAGGAGTGGAATGTAGAGATATTGATGAGTGCCGCCAAGATCCATCAACCTGTGGTCCTAATTCTATCTGCACCAATGCCCTGGGCTCCTACAGCTGTGGCTGCATTGTAGGCTTTCATCCCAATCCAGAAGGCTCCCAGAAAGATGGCAACTTCAGCTGCCAAAGGGTTCTCTTCAAATGTAAGGAAGATGTGATACCCGATAATAAGCAGATCCAGCAATGCCAAGAGGGAACCGCAGTGAAACCTGCATATGTCTCCTTTTGTGCACAAATAAATAACATCTTCAGCGTTCTGGACAAAGTGTGTGAAAATAAAACGACCGTAGTTTCTCTGAAGAATACAACTGAGAGCTTTGTCCCTGTGCTTAAACAAATATCCATGTGGACTAAATTCACCAAGGAAGAGACGTCCTCCCTGGCCACAGTCTTCCTGGAGAGTGTGGAAAGCATGACACTGGCATCTTTTTGGAAACCCTCAGCAAATGTCACTCCGGCTGTTCGGGCGGAATACTTAGACATTGAGAGCAAAGTTATCAACAAAGAATGCAGTGAAGAGAATGTGACGTTGGACTTGGTAGCCAAGGGGGATAAGATGAAGATCGGGTGTTCCACAATTGAGGAATCTGAATCCACAGAGACCACTGGTGTGGCTTTTGTCTCCTTTGTGGGCATGGAATCGGTTTTAAATGAGCGCTTCTTCCAAGACCACCAGGCTCCCTTGACCACCTCTGAGATCAAGCTGAAGATGAATTCTCGAGTCGTTGGGGGCATAATGACTGGAGAGAAGAAAGACGGCTTCTCAGATCCAATCATCTACACTCTGGAGAACGTTCAGCCAAAGCAGAAGTTTGAGAGGCCCATCTGTGTTTCCTGGAGCACTGATGTGAAGGGTGGAAGATGGACATCCTTTGGCTGTGTGATCCTGGAAGCTTCTGAGACATATACCATCTGCAGCTGTAATCAGATGGCAAATCTTGCCGTTATCATGGCGTCTGGGGAGCTCACGATGGACTTTTCCTTGTACATCATTAGCCATGTAGGCATTATCATCTCCTTGGTGTGCCTCGTCTTGGCCATCGCCACCTTTCTGCTGTGTCGCTCCATCCGAAATCACAACACCTACCTCCACCTGCACCTCTGCGTGTGTCTCCTCTTGGCGAAGACTCTCTTCCTCGCCGGTATACACAAGACTGACAACAAGACGGGCTGCGCCATCATCGCGGGCTTCCTGCACTACCTTTTCCTTGCCTGCTTCTTCTGGATGCTGGTGGAGGCTGTGATACTGTTCTTGATGGTCAGAAACCTGAAGGTGGTGAATTACTTCAGCTCTCGCAACATCAAGATGCTGCACATCTGTGCCTTTGGTTATGGGCTGCCGATGCTGGTGGTGGTGATCTCTGCCAGTGTGCAGCCACAGGGCTATGGAATGCATAATCGCTGCTGGCTGAATACAGAGACAGGGTTCATCTGGAGTTTCTTGGGGCCAGTTTGCACAGTTATAGTGATCAACTCCCTTCTCCTGACCTGGACCTTGTGGATCCTGAGGCAGAGGCTTTCCAGTGTTAATGCCGAAGTCTCAACGCTAAAAGACACCAGGTTACTGACCTTCAAGGCCTTTGCCCAGCTCTTCATCCTGGGCTGCTCCTGGGTGCTGGGCATTTTTCAGATTGGACCTGTGGCAGGTGTCATGGCTTACCTGTTCACCATCATCAACAGCCTGCAGGGGGCCTTCATCTTCCTCATCCACTGTCTGCTCAACGGCCAGGTACGAGAAGAATACAAGAGGTGGATCACTGGGAAGACGAAGCCCAGCTCCCAGTCCCAGACCTCAAGGATCTTGCTGTCCTCCATGCCATCCGCTTCCAAGACGGGTTAAAGCCTTTCTTGCTTTCAAATATGCTATGGAGCCACAGTTGAGGACAGTAGTTTCCTGCAGGAGCCTACCCTGAAATCTCTTCTCAGCTTAACATGGAAATGAGGATCCCACCAGCCCCAGAACCCTCTGGGGAAGAATGTTGGGGGCCGTCTTCCTGTGGTTGTATGCACTGATGAGAAATCAGACGTTTCTGCTCCAAACGACCATTTTATCTTCGTGCTCTGCAACTTCTTCAATTCCAGAGTTTCTGAGAACAGACCCAAATTCAATGGCATGACCAAGAACACCTGGCTACCATTTTGTTTTCTCCTGCCCTTGTTGGTGCATGGTTCTAAGCGTGCCCCTCCAGCGCCTATCATACGCCTGACACAGAGAACCTCTCAATAAATGATTTGTCGCCTGTCTGACTGATTTACCCTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 39ORF Stop: TAA at 2697SEQ ID NO: 202886 aaMW at 97679.1 kDNOV48a,MRGFNLLLFWGCCVMHSWEGHIRPTRKPNTKGNNCRDSTLCPAYATCTNTVDSYYCTCKQGFLSSNGCG57209-01Protein SequenceQNHFKDPGVRCKDIDECSQSPQPCGPNSSCKNLSGRYKCSCLDGFSSPTGNDWVPGKPGNFSCTDINECLTSRVCPEHSDCVNSMGSYSCSCQVGFISRNSTCEDVNECADPRACPEHATCNNTVGNYSCFCNPGFESSSGHLSCQGLKASCEDIDECTEMCPINSTCTNTPGSYFCTCHPGFAPSSGQLNFTDQGVECRDIDECRQDPSTCGPNSICTNALGSYSCGCIVGFHPNPEGSQKDGNFSCQRVLFKCKEDVIPDNKQIQQCQEGTAVKPAYVSFCAQINNIFSVLDKVCENKTTVVSLKNTTESFVPVLKQISMWTKFTKEETSSLATVFLESVESMTLASFWKPSANVTPAVRAEYLDIESKVINKECSEENVTLDLVAKGDKMKIGCSTIEESESTETTGVAFVSFVGMESVLNERFFQDHQAPLTTSEIKLKMNSRVVGGIMTGEKKDGFSDPIIYTLENVOPKOKFERPICVSWSTDVKGGRWTSFGCVILEASETYTICSCNOMANLAVIMASGELTMDFSLYIISHVGIIISLVCLVLAIATFLLCRSIRNHNTYLHLHLCVCLLLAKTLFLAGIHKTDNKTGCAIIAGFLHYLFLACFFWMLVEAVILFLMVRNLKVVNYFSSRNIKMLHICAFGYGLPMLVVVISASVQPQGYGMHNRCWLNTETGFIWSFLGPVCTVIVINSLLLTWTLWILRQRLSSVNAEVSTLKDTRLLTFKAFAQLFILGCSWVLGIFQIGPVAGVMAYLFTIINSLQGAFIFLIHCLLNGQVREEYKRWITGKTKPSSQSQTSRILLSSMPSASKTGSEQ ID NO: 2031764 bpNOV48b,AGATCTTGGGAAGGGCACATAAGACCCACACGGAAACCAAACACAAAGGGTAATAACTGTAGAGACACGA57209-03DNA SequenceGTACCTTGTGCCCAGCTTATGCCACCTGCACCAATACAGTGGACAGTTACTATTGCACTTGCAAACAAGGCTTCCTGTCCAGCAATGGGCAAAATCACTTCAAGGATCCAGGAGTGCGATGCAAAGATATTGATGAATGTTCTCAAAGCCCCCAGCCCTGTGGTCCTAACTCATCCTGCAAAAACCTGTCAGGGAGGTACAAGTGCAGCTGTTTAGATGGTTTCTCTTCTCCCACTGGAAATGACTGGGTCCCAGGAAAGCCGGGCAATTTCTCCTGTACTGATATCAATGAGTGCCTCACCAGCAGGGTCTGCCCTGAGCATTCTGACTGTGTCAACTCCATGGGAAGCTACAGTTGCAGCTGTCAAGTTGGATTCATCTCTAGAAACTCCACCTGTGGAGACGTGAATGAATGTGCAGATCCAAGAGCTTGCCCAGAGCATGCAACTTGTAATAACACTGTTGGAAACTACTCTTGTTTCTGCAACCCAGGATTTGAATCCAGCAGTGGCCACTTGAGTTTCCAGGGTCTCAAAGCATCGTGTGAAGATATTGATGAATGCACTGAAATGTGCCCCATCAATTCAACATGCACCAACACTCCTGGGAGCTACTTTTGCACCTGCCACCCTGGCTTTGCACCAAGCAATGGACAGTTGAATTTCACAGACCAAGGAGTGGAATGTAGAGATATTGATGAGTGCCGCCAAGATCCATCAACCTGTGGTCCTAATTCTATCTGCACCAATGCCCTGGGCTCCTACAGCTGTGGCTGCATTGTAGGCTTTCATCCCAATCCAGAAGGCTCCCAGAAAGATGGCAACTTCAGCTGTCAAAGGGTTCTCTTCAAATGTAAGGAAGATGTGATACCCGATAATAAGCAGATCCAGCAATGCCAAGAGGGAACCGCAGTGAAACCTGCATATGTCTCCTTTTGTGCACAAATAAATAACATCTTCAGCGTTCTGGACAAAGTGTGTGAAAATAAAACGACCGTAGTTTCTCTGAAGAATACAACTGAGAGCTTTGTCCCTGTGCTTAAACAAATATCCACGTGGACTAAATTCACCAAGGAAGAGACGTCCTCCCTGGCCACAGTCTTCCTGGAGAGTGTGGAAAGCATGACACTGGCATCTTTTTGGAAACCCTCAGCAAATGTCACTCCGGCTGTTCGGACGGAATACTTAGACATTGAGAGCAAAGTTATCAACAAAGAATGCAGTGAAGAGAATGTGACGTTGGACTTGGTAGCCAAGGGGGATAAGATGAAGATCGGGTGTTCCACAATTGAGGAATCTGAATCCACAGAGACCACTGGTGTGGCTTTTGTCTCCTTTGTGGGCATGGAATCGGTTTTAAATGAGCGCTTCTTCCAAGACCACCAGGCTCCCTTGACCACCTCTGAGATCAAGCTGAAGATGAATTCTCGAGTCGTTGGGGGCATAATGACTGGAGAGAAGAAAGACGGCTTCTCAGATCCAATCATCTACACTCTGGAGAACGTTCAGCCAAAGCAGAAGTTTGAGAGGCCCATCTGTGTTTCCTGGAGCACTGATGTGAAGGGTGGAAGATGGACATCCTTTGGCTGTGTGATCCTGGAAGCTTCTGAGACATATACCATCTGCAGCTGTAATCAGATGGCAAATCTTGCCGTTATCATGGCGTCTGGGGAGCTCACGGTCGACAAGGGCGAATTTORF Start: at 7ORF Stop: at 1747SEQ ID NO: 204580 aaMW at 63248.2 kDNOV48b,WEGHIRPTRKPNTKGNNCRDSTLCPAYATCTNTVDSYYCTCKQGFLSSNGQNHFKDPGVRCKDIDECCG57209-03Protein SequenceSQSPQPCGPNSSCKNLSGRYKCSCLDGFSSPTGNDWVPGKPGNFSCTDINECLTSRVCPEHSDCVNSMGSYSCSCQVGFISRNSTCGDVNECADPRACPEHATCNNTVGNYSCFCNPGFESSSGHLSFQGLKASCEDIDECTEMCPINSTCTNTPGSYFCTCHPGFAPSNGQLNFTDQGVECRDIDECRQDPSTCGPNSICTNALGSYSCGCIVGFHPNPEGSQKDGNFSCQRVLFKCKEDVIPDNKQIQQCQEGTAVKPAYVSFCAQINNIFSVLDKVCENKTTVVSLKNTTESFVPVLKQISTWTKFTKEETSSLATVFLESVESMTLASFWKPSANVTPAVRTEYLDIESKVINKECSEENVTLDLVAKGDKMKIGCSTIEESESTETTGVAFVSFVGMESVLNERFFQDHQAPLTTSEIKLKMNSRVVGGIMTGEKKDGFSDPIIYTLENVQPKQKFERPICVSWSTDVKGGRWTSFGCVILEASETYTICSCNQMANLAVIMASGELTSEQ ID NO: 2051740 bpNOV48c,TGGGAAGGGCACATAAGACCCACACGGAAACCAAACACAAAGGGTAATAACTGTAGAGACAGTACCTCG57209-02DNA SequenceTGTGCCCAGCTTATGCCACCTGCACCAATACAGTGGACAGTTACTATTGCACTTGCAAACAAGGCTTCCTGTCCAGCAATGGGCAAAATCACTTCAAGGATCCAGGAGTGCGATGCAAAGATATTGATGAATGTTCTCAAAGCCCCCAGCCCTGTGGTCCTAACTCATCCTGCAAAAACCTGTCAGGGAGGTACAAGTGCAGCTGTTTAGATGGTTTCTCTTCTCCCACTGGAAATGACTGGGTCCCAGGAAAGCCGGGCAATTTCTCCTGTACTGATATCAATGAGTGCCTCACCAGCAGGGTCTGCCCTGAGCATTCTGACTGTGTCAACTCCATGGGAAGCTACAGTTGCAGCTGTCAAGTTGGATTCATCTCTAGAAACTCCACCTGTGGAGACGTGAATGAATGTGCAGATCCAAGAGCTTGCCCAGAGCATGCAACTTGTAATAACACTGTTGGAAACTACTCTTGTTTCTGCAACCCAGGATTTGAATCCAGCAGTGGCCACTTGAGTTTCCAGGGTCTCAAAGCATCGTGTGAAGATATTGATGAATGCACTGAAATGTGCCCCATCAATTCAACATGCACCAACACTCCTGGGAGCTACTTTTGCACCTGCCACCCTGGCTTTGCACCAAGCAATGGACAGTTGAATTTCACAGACCAAGGAGTGGAATGTAGAGATATTGATGAGTGCCGCCAAGATCCATCAACCTGTGGTCCTAATTCTATCTGCACCAATGCCCTGGGCTCCTACAGCTGTGGCTGCATTGTAGGCTTTCATCCCAATCCAGAAGGCTCCCAGAAAGATGGCAACTTCAGCTGTCAAAGGGTTCTCTTCAAATGTAAGGAAGATGTGATACCCGATAATAAGCAGATCCAGCAATGCCAAGAGGGAACCGCAGTGAAACCTGCATATGTCTCCTTTTGTGCACAAATAAATAACATCTTCAGCGTTCTGGACAAAGTGTGTGAAAATAAAACGACCGTAGTTTCTCTGAAGAATACAACTGAGAGCTTTGTCCCTGTGCTTAAACAAATATCCACGTGGACTAAATTCACCAAGGAAGAGACGTCCTCCCTGGCCACAGTCTTCCTGGAGAGTGTGGAAAGCATGACACTGGCATCTTTTTGGAAACCCTCAGCAAATGTCACTCCGGCTGTTCGGACGGAATACTTAGACATTGAGAGCAAAGTTATCAACAAAGAATGCAGTGAAGAGAATGTGACGTTGGACTTGGTAGCCAAGGGGGATAAGATGAAGATCGGGTGTTCCACAATTGAGGAATCTGAATCCACAGAGACCACTGGTGTGGCTTTTGTCTCCTTTGTGGGCATGGAATCGGTTTTAAATGAGCGCTTCTTCCAAGACCACCAGGCTCCCTTGACCACCTCTGAGATCAAGCTGAAGATGAATTCTCGAGTCGTTGGGGGCATAATGACTGGAGAGAAGAAAGACGGCTTCTCAGATCCAATCATCTACACTCTGGAGAACGTTCAGCCAAAGCAGAAGTTTGAGAGGCCCATCTGTGTTTCCTGGAGCACTGATGTGAAGGGTGGAAGATGGACATCCTTTGGCTGTGTGATCCTGGAAGCTTCTGAGACATATACCATCTGCAGCTGTAATCAGATGGCAAATCTTGCCGTTATCATGGCGTCTGGGGAGCTCACGORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 206580 aaMW at 63248.2kDNOV48c,WEGHIRPTRKPNTKGNNCRDSTLCPAYATCTNTVDSYYCTCKQGFLSSNGQNHFKDPGVRCKDIDECCG57209-02Protein SequenceSQSPQPCGPNSSCKNLSGRYKCSCLDGFSSPTGNDWVPGKPGNFSCTDINECLTSRVCPEHSDCVNSMGSYSCSCQVGFISRNSTCGDVNECADPRACPEHATCNNTVGNYSCFCNPGFESSSGHLSFQGLKASCEDIDECTEMCPINSTCTNTPGSYFCTCHPGFAPSNGQLNFTDQGVECRDIDECRQDPSTCGPNSICTNALGSYSCGCIVGFHPNPEGSQKDGNFSCQRVLFKCKEDVIPDNKQIQQCQEGTAVKPAYVSFCAQINNIFSVLDKVCENKTTVVSLKNTTESFVPVLKQISTWTKFTKEETSSLATVFLESVESMTLASFWKPSANVTPAVRTEYLDIESKVINKECSEENVTLDLVAKGDKMKIGCSTIEESESTETTGVAFVSFVGMESVLNERFFQDHQAPLTTSEIKLKMNSRVVGGIMTGEKKDGFSDPIIYTLENVQPKQKFERPICVSWSTDVKGGRWTSFGCVILEASETYTICSCNQMANLAVIMASGELTSEQ ID NO: 2072851 bpNOV48d,GCTCCTCTTCTGGGGTGTTGTGTTATGCACAGCTGGGAAGGGCACATAAGACCCACACGGAAACCAACG57209-04DNA SequenceACACAAAGGGTAATAACTGTAGAGACAGTACCTTGTGCCCAGCTTATGCCACCTGCACCAATACAGTGGACAGTTACTATTGCGCTTGCAAACAAGGCTTCCTGTCCAGCAATGGGCAAAATCACTTCAAGGATCCAGGAGTGCGATGCAAAGATATTGATGAATGTTCTCAAAGCCCCCAGCCCTGTGGTCCTAACTCATCCTGCAAAAACCTGTCAGGGAGGTACAAGTGCAGCTGTTTAGATGGTTTCTCTTCTCCCACTGGAAATGACTGGGTCCCAGGAAAGCCGGGCAATTTCTCCTGTACTGATATCAATGAGTGCCTCACCAGCAGCGTCTGCCCTGAGCATTCTGACTGTGTCAACTCCATGGGAAGCTACAGTTGTAGCTGTCAAGTTGGATTCATCTCTAGAAACTCCACCTGTGAAGACGTGGATGAATGTGCAGATCCAAGAGCTTGCCCAGAGCATGCAACTTGTAATAACACTGTTGGAAACTACTCTTGTTTCTGCAACCCAGGATTTGAATCCAGCAGTGGCCACTTGAGTTTCCAGGGTCTCAAAGCATCGTGTGAAGATATTGATGAATGCACTGAAATGTGCCCCATCAATTCAACATGCACCAACACTCCTGGGAGCTACTTTTGCACCTGCCACCCTGGCTTTGCACCAAGCAATGGACAGTTGAATTTCACAGACCAAGGAGTGGAATGTAGAGATATTGATGAGTGCCGCCAAGATCCATCAACCTGTGGTCCTAATTCTATCTGCACCAATGCCCTGGGCTCCTGCAGCTGTGGCTGCATTGCAGGCTTTCATCCCAATCCAGAAGGCTCCCAGAAAGATGGCAACTTCAGCTGCCAAAGGGTTCTCTTCAAATGTAAGGAAGATGTGATACCCGATAATAAGCAGATCCAGCAATGCCAAGAGGGAACCGCAGTGAAACCTGCATATGTCTCCTTTTGTGCACAAATAAATAACATCTTCAGCGTTCTGGACAAAGTGTGTGAAAATAAAACGACCGTAGTTTCTCTGAAGAATACAACTGAGAGCTTTGTCCCTGTGCTTAAACAAATATCCACGTGGACTAAATTCACCAAGGAAGAGACGTCCTCCCTGGCCACAGTCTTCCTGGAGAGTGTGGAAAGCATGACACTGGCATCTTTTTGGAAACCCTCAGCAAATGTCACTCCGGCTGTTCGGACGGAATACTTAGACATTGAGAGCAAAGTTATCAACAAAGAATGCAGTGAAGAGAATGTGACGTTGGACTTGGTAGCCAAGGGGGATAAGATGAAGATCGGGTGTTCCACAATTGAGGAATCTGAATCCACAGAGACCACTGGTGTGGCTTTTGTCTCCTTTGTGGGCATGGAATCGGTTTTAAATGAGCGCTTCTTCCAAGACCACCAGGCTCCCTTGACCACCTCTGAGATCAAGCTGAAGATGAATTCTCGAGTCGTTGGGGGCATAATGACTGGAGAGAAGAAAGACGGCTTCTCAGATCCAATTATCTACACTCTGGAGAACGTTCAGCCAAAGCAGAAGTTTGAGAGGCCCATCTGTGTTTCCTGGAGCACTGATGTGAAGGGTGGAAGATGGACATCCTTTGGCTGTGTGATCCTGGAAGCTTCTGAGACATATACCATCTGCAGCTGTAATCAGATGGCAAATCTTGCCGTTATCATCGCGTCTGGGGAGCTCACGATGGGCTGCGCCATCATCGCGGGCTTCCTGCACTACCTTTTCCTTGCCTGCTTCTTCTGGATGCTGGTGGAGGCTGTGATACTGTTCTTGATGGTCAGAAACCTGAAGGTGGTGAATTACTTCAGCTCTCGCAACATCAAGATGCTGCACATCTGTGCCTTTGGTTATGGGCTGCCGATGCTGGTGGTGGTGATCTCTGCCAGTGTGCAGCCACAGGGCTATGGAATGCATAATCGCTGCTGGCTGAATACAGAGACAGGGTTCATCTGGAGTTTCTTGGGGCCAGTTTGCACAGTTATAGTGATCAACTCCCTTCTCCTGACCTGGACCTTGTGGATCCTGAGGCAGAGGCTTTCCAGTGTTAATGCCGAAGTCTCAACGCTAAAAGACACCAGGTTACTGACCTTCAAGGCCTTTGCCCAGCTCTTCATCCTGGGCTGCTCCTGGGTGCTGGGCATTTTTCAGATTGGACCTGTGGCAGGTGTCATGGCTTACCTGTTCACCATCATCAACAGCCTGCAGGGGGCCTTCATCTTCCTCATCCACTGTCTGCTCAACGGCCAGGTACGAGAAGAATACAAGAGGTGGATCACTGGGAAGACGAAGCCCAGCTCCCAGTCCCAGACCTCAAGGATCTTGCTGTCCTCCATGCCATCCGCTTCCAAGACGGGTTAAAGTCCTTTCTTGCTTTCAAATATGCTATGGAGCCACAGTTGAGGACAGTAGTTTCCTGCAGGAGCCTACCCTGAAATCTCTTCTCAGCTTAACATGGAAATGAGGATCCCACCAGCCCCAGAACCCTCTGGGGAAGAATGTTGGGGGCCGTCTTCCTGTGGTTGTATGCACTGATGAGAAATCAGGCGTTTCTGCTCCAAACGACCATTTTATCTTCGTGCTCTGCAACTTCTTCAATTCCAGAGTTTCTGAGAACAGACCCAAATTCAATGGCATGACCAAGAACACCTGGCTACCATTTTGTTTTCTCCTGCCCTTGTTGGTGCATGGTTCTAAGCGTGCCCCTCCAGCGCCTATCATACGCCTGACACAGAGAACCTCTCAATAAATGATTTGTCGCCTGORF Start: at 13ORF Stop: TAA at 2446SEQ ID NO: 208811 aaMW at 89011.6 kDNOV48d,GCCVMHSWEGHIRPTRKPNTKGNNCRDSTLCPAYATCTNTVDSYYCACKQGFLSSNGQNHFKDPGVRCG57209-04Protein SequenceCKDIDECSQSPQPCGPNSSCKNLSGRYKCSCLDGFSSPTGNDWVPGKPGNFSCTDINECLTSSVCPEHSDCVNSMGSYSCSCQVGFISRNSTCEDVDECADPRACPEHATCNNTVGNYSCFCNPGFESSSGHLSFQGLKASCEDIDECTEMCPINSTCTNTPGSYFCTCHPGFAPSNGQLNFTDQGVECRDIDECRQDPSTCGPNSICTNALGSCSCGCIAGFHPNPEGSQKDGNFSCQRVLFKCKEDVIPDNKQIQQCQEGTAVKPAYVSFCAQINNIFSVLDKVCENKTTVVSLKNTTESFVPVLKQISTWTKFTKEETSSLATVFLESVESMTLASFWKPSANVTPAVRTEYLDIESKVINKECSEENVTLDLVAKGDKMKIGCSTIEESESTETTGVAFVSFVGMESVLNERFFQDHQAPLTTSEIKLKMNSRVVGGIMTGEKKDGFSDPIIYTLENVQPKQKFERPICVSWSTDVKGGRWTSFGCVILEASETYTICSCNQMANLAVIMASGELTMGCAIIAGFLHYLFLACFFWMLVEAVILFLMVRNLKVVNYFSSRNIKMLHICAFGYGLPMLVVVISASVQPQGYGMHNRCWLNTETGFIWSFLGPVCTVIVINSLLLTWTLWILRQRLSSVNAEVSTLKDTRLLTFKAFAQLFILGCSWVLGIFQIGPVAGVMAYLFTIINSLQGAFIFLIHCLLNGQVREEYKRWITGKTKPSSQSQTSRILLSSMPSASKTG


[0625] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 48B.
263TABLE 48BComparison of NOV48a against NOV48b through NOV48d.NOV48a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV48b18 . . . 597563/580 (97%) 1 . . . 580564/580 (97%)NOV48c18 . . . 597563/580 (97%) 1 . . . 580564/580 (97%)NOV48d11 . . . 886783/876 (89%) 1 . . . 811788/876 (89%)


[0626] Further analysis of the NOV48a protein yielded the following properties shown in Table 48C.
264TABLE 48CProtein Sequence Properties NOV48aPSort analysis:0.6850 probability located in endoplasmic reticulum (membrane); 0.6400probability located in plasma membrane; 0.4600 probability located in Golgibody; 0.1000 probability located in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 18 and 19


[0627] A search of the NOV48 a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 48D.
265TABLE 48DGeneseq Results for NOV48aNOV48aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB71869Human EMR1 seven 1 . . . 886886/886 (100%)0.0transmembrane domain - 1 . . . 886886/886 (100%)Homo sapiens, 886 aa.[WO200109328-A1,Feb. 8, 2001]AAB01249Human EMR1 hormone 1 . . . 886880/886 (99%)0.0receptor - Homo sapiens, 880 1 . . . 880880/886 (99%)aa. [WO200034473-A2,Jun. 15, 2000]AAE17043Human CD 97 protein -74 . . . 872272/853 (31%)e−122Homo sapiens, 835 aa.16 . . . 817422/853 (48%)[WO200202602-A2,Jan. 10, 2002]AAB15728Human CD97 protein -74 . . . 872272/853 (31%)e−122Homo sapiens, 835 aa.16 . . . 817422/853 (48%)[WO200052039-A2,Sep. 8, 2000]AAY41090Human CD97 protein -74 . . . 872272/853 (31%)e−122Homo sapiens, 835 aa.16 . . . 817422/853 (48%)[WO9945111-A1,Sep. 10, 1999]


[0628] In a BLAST search of public sequence datbases, the NOV48a protein was found to have homology to the proteins shown in the BLASTP data in Table 48E.
266TABLE 48EPublic BLASTP Results for NOV48aNOV48aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ14246Cell surface glycoprotein 1 . . . 886886/886 (100%)0.0EMR1 precursor (EMR1 1 . . . 886886/886 (100%)hormone receptor) - Homosapiens (Human), 886 aa.BAC06133Seven transmembrane helix11 . . . 885866/877 (98%)0.0receptor - Homo sapiens29 . . . 905868/877 (98%)(Human), 929 aa.Q61549Cell surface glycoprotein 1 . . . 886606/937 (64%)0.0EMR1 precursor (EMR1 1 . . . 931709/937 (74%)hormone receptor) (Cellsurface glycoprotein F4/80) -Mus musculus (Mouse), 931aa.BAC06178Seven transmembrane helix74 . . . 872272/853 (31%)e−121receptor - Homo sapiens18 . . . 819422/853 (48%)(Human), 837 aa.O00718CD97 - Homo sapiens74 . . . 872272/853 (31%)e−121(Human), 835 aa.16 . . . 817422/853 (48%)


[0629] PFam analysis predicts that the NOV48a protein contains the domains shown in the Table 48F.
267TABLE 48FDomain Analysis of NOV48aIdentities/SimilaritiesPfam DomainNOV48a Match Regionfor the Matched RegionExpect ValueEGF 35 . . . 70 13/47 (28%)0.29 26/47 (55%)TILa 34 . . . 89 16/58 (28%)0.42 36/58 (62%)EGF176 . . . 212 15/47 (32%)0.0038 25/47 (53%)EGF225 . . . 255 13/47 (28%)0.29 23/47 (49%)GPS546 . . . 596 19/54 (35%)1.5e−18 46/54 (85%)7tm_2599 . . . 851 96/276 (35%)9.2e−104228/276 (83%)



Example 49

[0630] The NOV49 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 49A.
268TABLE 49ANOV49 Sequence AnalysisSEQ ID NO: 2095184 bpNOV49a,CCCCGCAGGGGAAGGCGGGTCCTGGCGGCCAGCGCGCGGTCCGCGCCCACCCTAGCCGACGGGGCCGCG57292-01DNA SequenceGCAGAGCGCGCGGCGTCGGTGCCCTTGACCATGGCGGCGGCTGCGCTTCTGCTGGGGCTGGCGCTGCTGGCACCGCGGGCGGCCGGCGCGGGCATGGGCGCGTGCTATGACGGCGCAGGGCGCCCGCAGCGCTGCCTGCCGGTGTTCGAGAACGCGGCGTTTGGGCGGCTCGCCCAGGCCTCGCACACGTGCGGCAGCCCGCCCGAGGACTTCTGTCCCCACGTGGGCGCCGCGGGCGCGGGGGCTCATTGCCAGCGCTGCGACGCCGCCGACCCCCAGCGCCACCACAACGCCTCCTACCTCACCGACTTCCACAGCCAGGACGAGAGCACCTGGTGGCAGAGCCCGTCCATGGCCTTCGGCGTGCAGTACCCCACCTCGGTCAACATCACCCTCCGCCTAGGGAAGGCTTATGAGATCACGTATGTGAGGCTGAAGTTCCACACCAGTCGCCCTGAGAGCTTTGCCATCTACAAGCGCAGCCGCGCCGACGGCCCATGGGAGCCCTACCAGTTCTACAGCGCCTCCTGCCAGAAGACCTACGGCCGGCCCGAGGGCCAGTACCTGCGCCCCGGCGAGGACGAGCGCGTGGCCTTCTGCACCTCTGAGTTCAGCGACATCTCCCCGCTGAGTGGCGGCAACGTGGCCTTCTCCACCCTGGAGGGCCGGCCCAGCGCCTACAACTTCGAGGAGAGCCCTGGGCTGCAGGAGTGGGTCACCAGCACCGAACTCCTCATCTCTCTAGACCGGCTCAACACGTTTGGGGACGACATCTTCAAGGACCCCAAGGTGCTCCAGTCCTACTATTATGCCGTGTCCGACTTCTCTGTGGGCGGCAGGTGCAAGTGCAACGGGCATGCCAGCGAGTGCGGCCCCGACGTGGCAGGCCAGTTGGCCTGCCGGTGCCAGCACAACACCACCGGCACAGACTGTGAGCGCTGCCTGCCCTTCTTCCAGGACCGCCCGTGGGCCCGGGGCACCGCCGAGGCTGCCCACGAGTGTCTGCCCTGCAACTGCAGTGGCCGCTCCGAGGAATGCACGTTTGATCGGGAGCTCTTCCGCAGCACAGGCCACGGCGGGCGCTGTCACCACTGCCGTGACCACACAGCTGGGCCACACTGTGAGCGCTGTCAGGAGAATTTCTATCACTGGGACCCGCGGATGCCATGCCAGCCCTGTGACTGCCAGTCGGCAGGCTCCCTACACCTCCAGTGCGATGACACAGGCACCTGCGCCTGCAAGCCCACAGTGACTGGCTGGAAGTGTGACCGCTGTCTGCCCGGGTTCCACTCGCTCAGTGAGGGAGGCTGCAGACCCTGCACTTGCAATCCCGCTGGCAGCCTGGACACCTGTGACCCCCGCAGTGGGCGCTGCCCCTGCAAAGAGAATGTGGAAGGCAACCTATGTGACAGATGTCGCCCGGGGACCTTTAACCTGCAGCCCCACAATCCAGCTGGCTGCAGCAGCTGTTTCTGCTATGGCCACTCCAAGGTGTGCGCGTCCACTGCCCAGTTCCAGGTGCATCACATCCTCAGCGATTTCCACCAGGGAGCCGAAGGCTGGTGGGCCAGAAGTGTGGGGGGCTCTGAGCACTCCCCACAATGGAGCCCAAATGGGGTCCTCCTGAGCCCAGAAGACGAGGAGGAGCTCACAGCACCAGGGAAGTTCCTGGGAGACCAGCGGTTCAGCTATGGGCAGCCCCTCATACTGACCTTCCGGGTGCCCCCCGGGGACTCCCCACTCCCTGTACAGCTGAGGCTGGAAGGGACAGGCTTGGCCCTGTCCCTGAGGCACTCTAGCCTGTCTGGCCCCCAGGATGCCAGGGCATCCCAGGGAGGTAGAGCTCAGGTTCCACTGCAGGAGACCTCCGAGGACGTGGCCCCTCCACTGCCCCCCTTCCACTTCCAGCGGCTCCTCGCCAACCTGACCAGCCTCCGCCTCCGCGTCAGTCCCGGCCCCAGCCCTGCCGGTCCAGTGTTCCTGACTGAGGTCCGGCTCACATCCGCCCGGCCAGGGCTTTCCCCGCCAGCCTCCTGGGTGGAGATTTGTTCATGTCCCACTGGCTACACGGGCCAGTTCTGTGAATCCTGTGCTCCGGGATACAAGAGGGAGATGCCACAGGGGGGTCCCTATGCCAGCTGTGTCCCCTGCACCTGTAACCAGCATGGCACCTGTGACCCCAACACAGGGATCTGTGTCTGCAGCCACCATACCGAGGGCCCATCCTGTGAACGCTGTTTGCCAGGTTTCTATGGCAACCCTTTCGCGGGCCAAGCCGACGACTGCCAGCCCTGTCCCTGCCCTGGCCAGTCGGCCTGTACGACCATCCCAGAGAGCGGGGAGGTGGTGTGTACCCACTGCCCCCCGGGCCAGAGAGGGCGGCGCTGTGAGGTCTGTGATGATGGCTTTTTTGGGGACCCGCTGGGGCTCTTTGGGCACCCCCAGCCCTGCCACCAGTGCCAGTGTAGCGGGAACGTGGACCCCAATGCCGTGGGCAACTGTGACCCCCTGTCTGGCCACTGCCTGCGCTGCCTGCACAACACCACGGGTGACCACTGTGAGCACTGTCAGGAAGGCTTCTACGGGAGCGCCCTGGCCCCTCGACCCGCAGACAAATGCATGCCTTGCAGCTGTCACCCACAGGGCTCGGTCAGTGAGCAGATGCCCTGCGACCCAGTGACAGGCCAATGCTCCTGCCTGCCTCATGTGACTGCACGGGACTGCAGCCGCTGCTACCCTGGCTTCTTCGACCTCCAGCCTGGGAGGGGCTGCCGGAGCTGCAAGTGTCACCCACTGGGCTCCCAGGAGGACCAGTGCCATCCCAAGACTGGACAGTGCACCTGCCGCCCAGGTGTCACAGGCCAGGCCTGTGACAGGTGCCAGCTGGGTTTCTTCGGCTCCTCAATCAAGGGCTGCCGGGCCTGCAGGTGCTCCCCACTGGGCGCTGCCTCGGCCCAGTGCCACTATAACGGCACATGCGTGTGCAGGCCTGGCTTCGAGGGCTACAAATGTGACCGCTGCCACTACAACTTCTTCCTCACGGCAGACGGCACACACTGCCAGCAATGTCCGTCCTGCTACGCCCTGGTGAAGGAGGAGACAGCCAAGCTGAAGGCCAGACTGACTTTGACGGAGGGGTGGCTCCAAGGGTCCGACTGTGGCAGTCCCTGGGGACCACTAGACATTCTGCTGGGAGAGGCCCCAAGGGGGGACGTCTACCAGGGCCATCACCTGCTTCCAGGGGCTCGGGAAGCCTTCCTGGAGCAGATGATGGGCCTCGAGGGTGCTGTCAAGGCCGCCCGGGAGCAGCTGCAGAGGCTGAACAAGGGTGCCCGCTGTGCCCAGGCCGGATCCCAGAAGACCTGCACCCAGCTGGCAGACCTGGAGGCAGTGCTGGAGTCCTCGGAAGAGGAGATTCTGCATGCAGCTGCCATTCTCGCGTCTCTGGAGATTCCTCAGGAAGGTCCCAGTCAGCCGACCAAATGGAGCCACCTGGCCATAGAGGCCCGTGCCCTCGCCAGGAGCCACAGAGACACCGCCACCAAGATCGCAGCCACTGCTTGGAGGGCCCTGCTCGCCTCCAACACCAGCTACGCGCTTCTCTGGAATCTGCTGGAGGGAAGGGTGGCCCTAGAGACCCAGCGGGACCTGGAGGACAGGTACCAGGAGGTCCAGGCGGCCCAGAAAGCACTGAGGACGGCTGTGGCAGAGGTGCTGCCTGAAGCGGAAAGCGTGTTGGCCACCGTGCAGCAAGTTGGCGCAGATACAGCCCCGTACCTGGCCTTGCTGGCTTCCCCGGGAGCTCTGCCTCAGAAGTCCCGGGCTGAAGACCTGGGCCTGAAGGCGAAGGCCCTGGAGAAGACAGTTGCATCATGGCAGCACATGGCCACTGAGGCTGCCCGAACCCTCCAGACTGCTGCCCAGGCGACGCTACGGCAAACAGAACCCCTCACAATGGCGCGATCTCGGCTCACTGCAACCTTTGCCTCCCAGCTGCACCAGGGGGCCAGAGCCGCCCTGACCCAGGCTTCCTCATCTGTCCAGGCTGCGACAGTGACTGTCATGGGAGCCAGGACTCTGCTGGCTGATCTGGAAGGAATGAAGCTGCAGTTTCCCCGGCCCAAGGACCAGGCGGCATTGCAGAGGAAGGCAGACTCCGTCAGTGACAGACTCCTTGCAGACACGAGAAAGAAGACCAAGCAGGCGGAGAGGATGCTGGGAAACGCGGCCCCTCTTTCCTCCAGTGCCAAGAAGAAGGGCAGAGAAGCAGAGGTGTTGGCCAAGGACAGTGCCAAGCTTGCCAAGGCCTTGCTGAGGGAGCGGAAACAGGCGCACCGCCGTGCCAGCAGGCTCACCAGCCAGACGCAAGCCACGCTCCAACAGGCGTCCCAGCAGGTGCTGGCGTCTGAAGCACGCAGACAGGAGCTGGAGGAAGCTGAGCGGGTGGGTGCTGGGCTGAGCGAGATGGAGCAGCAGATCCGGGAATCGCGTATCTCACTGGAGAAGGACATCGAGACCTTGTCAGAGCTGCTTGCCAGGCTGGGGTCGCTGGACACCCATCAAGCCCCAGCCCAGGCCCTGAACGAGACTCAGTGGGCACTAGAACGCCTGAGGCTGCAGCTGGGCTCCCCGGGGTCCTTGCAGAGGAAACTCAGTCTGCTGGAGCAGGAATCCCAGCAGCAGGAGCTGCAGATCCAGGGCTTCGAGAGTGACCTCGCCGAGATCCGCGCCGACAAACAGAACCTGGAGGCCATTCTGCACAGCCTGCCCGAGAACTGTGCCAGCTGGCAGTGAGGGCTGCCCAGATCCCCGGCACACACTCCCCCACCTGCTGTTTACATGACCCAGGGGGTGCACACTACCCCACAGGTGTGCCCATACAGACATTCCCCGGAGCCGGCTGCTGTGAACTCGACCCCGTGTGGATAGTCACACTCCCTGCCGATTCTGTCTGTGGCTTCTTCCCTGCCAGCAGGACTGAGTGTGCGTACCCAGTTCACCTGGACATGAGTGCACACTCTCACCCCTGCACATGCATAAACGGGCACACCCCAGTGTCAATAACATACACACGTGAGGGTGCATGTCTGTGTGTATGACCCAAATAAAAAAAAAAAORF Start: ATG at 98ORF Stop: TGA at 4859SEQ ID NO: 2101587 aaMW at 172049.3 kDNOV49a,MAAAALLLGLALLAPRAAGAGMGACYDGAGRPQRCLPVFENAAFGRLAQASHTCGSPPEDFCPHVGACG57292-01Protein SequenceAGAGAHCQRCDAADPQRHHNASYLTDFHSQDESTWWQSPSMAFGVQYPTSVNITLRLGKAYEITYVRLKFHTSRPESFAIYKRSRADGPWEPYQFYSASCQKTYGRPEGQYLRPGEDERVAFCTSEFSDISPLSGGNVAFSTLEGRPSAYNFEESPGLQEWVTSTELLISLDRLNTFGDDIFKDPKVLQSYYYAVSDFSVGGRCKCNGHASECGPDVAGQLACRCQHNTTGTDCERCLPFFQDRPWARGTAEAAHECLPCNCSGRSEECTFDRELFRSTGHGGRCHHCRDHTAGPHCERCQENFYHWDPRMPCQPCDCQSAGSLHLQCDDTGTCACKPTVTGWKCDRCLPGFHSLSEGGCRPCTCNPAGSLDTCDPRSGRCPCKENVEGNLCDRCRPGTFNLQPHNPAGCSSCFCYGHSKVCASTAQFQVHHILSDFHQGAEGWWARSVGGSEHSPQWSPNGVLLSPEDEEELTAPGKFLGDQRFSYGQPLILTFRVPPGDSPLPVQLRLEGTGLALSLRHSSLSGPQDARASQGGRAQVPLQETSEDVAPPLPPFHFQRLLANLTSLRLRVSPGPSPAGPVFLTEVRLTSARPGLSPPASWVEICSCPTGYTGQFCESCAPGYKREMPQGGPYASCVPCTCNQHGTCDPNTGICVCSHHTEGPSCERCLPGFYGNPFAGQADDCQPCPCPGQSACTTIPESGEVVCTHCPPGQRGRRCEVCDDGFFGDPLGLFGHPQPCHQCQCSGNVDPNAVGNCDPLSGHCLRCLHNTTGDHCEHCQEGFYGSALAPRPADKCMPCSCHPQGSVSEQMPCDPVTGQCSCLPHVTARDCSRCYPGFFDLQPGRGCRSCKCHPLGSQEDQCHPKTGQCTCRPGVTGQACDRCQLGFFGSSIKGCRACRCSPLGAASAQCHYNGTCVCRPGFEGYKCDRCHYNFFLTADGTHCQQCPSCYALVKEETAKLKARLTLTEGWLQGSDCGSPWGPLDILLGEAPRGDVYQGHHLLPGAREAFLEQMMGLEGAVKAAREQLQRLNKGARCAQAGSQKTCTQLADLEAVLESSEEEILHAAAILASLEIPQEGPSQPTKWSHLAIEARALARSHRDTATKIAATAWRALLASNTSYALLWNLLEGRVALETQRDLEDRYQEVQAAQKALRTAVAEVLPEAESVLATVQQVGADTAPYLALLASPGALPQKSRAEDLGLKAKALEKTVASWQHMATEAARTLQTAAQATLRQTEPLTMARSRLTATFASQLHQGARAALTQASSSVQAATVTVMGARTLLADLEGMKLQFPRPKDQAALQRKADSVSDRLLADTRKKTKQAERMLGNAAPLSSSAKKKGREAEVLAKDSAKLAKALLRERKQAHRRASRLTSQTQATLQQASQQVLASEARRQELEEAERVGAGLSEMEQQIRESRISLEKDIETLSELLARLGSLDTHQAPAQALNETQWALERLRLQLGSPGSLQRKLSLLEQESQQQELQIQGFESDLAEIRADKQNLEAILHSLPENCASWQSEQ ID NO: 2115148 bpNOV49b,CCCCGCAGGGGAAGGCGGGTCCTGGCGGCCAGCGCGCGGTCCGCGCCCACCCTAGCCGACGGGGCCGCG57292-02DNA SequenceGCAGAGCGCGCGGCGTCGGTGCCCTTGACCATGGCGGCGGCTGCGCTTCTGCTGGGGCTGGCGCTGCTGGCACCGCGGGCGGCCGGCGCGGGCATGGGCGCGTGCTATGACGGCGCAGGGCGCCCGCAGCGCTGCCTGCCGGTGTTCGAGAACGCGGCGTTTGGGCGGCTCGCCCAGGCCTCGCACACGTGCGGCAGCCCGCCCGAGGACTTCTGTCCCCACGTGGGCGCCGCGGGCGCGGGGGCTCATTGCCAGCGCTGCGACGCCGCCGACCCCCAGCGCCACCACAACGCCTCCTACCTCACCGACTTCCACAGCCAGGACGAGAGCACCTGGTCGCAGAGCCCGTCCATGGCCTTCGGCGTGCAGTACCCCACCTCGGTCAACATCACCCTCCGCCTAGGGAAGGCTTATGAGATCACGTATGTGAGGCTGAAGTTCCACACCAGTCGCCCTGAGAGCTTTGCCATCTACAAGCGCAGCCGCGCCGACGGCCCATGGGAGCCCTACCAGTTCTACAGCGCCTCCTGCCAGAAGACCTACGGCCGGCCCGAGGGCCAGTACCTGCGCCCCGGCGAGGACGAGCGCGTGGCCTTCTGCACCTCTGAGTTCAGCGACATCTCCCCGCTGAGTGGCGGCAACGTGGCCTTCTCCACCCTGGAGGGCCGGCCCAGCGCCTACAACTTCGAGGAGAGCCCTGGGCTGCAGGAGTGGGTCACCAGCACCGAACTCCTCATCTCTCTAGACCGGCTCAACACGTTTGGGGACGACATCTTCAAGGACCCCAAGGTGCTCCAGTCCTACTATTATGCCGTGTCCGACTTCTCTGTGGGCGGCAGGTGCAAGTGCAACGGGCATGCCAGCGAGTGCGGCCCCGACGTGGCAGGCCAGTTGGCCTGCCGGTGCCAGCACAACACCACCGGCACAGACTGTGAGCGCTGCCTGCCCTTCTTCCAGGACCGCCCGTGGGCCCGGGGCACCGCCGAGGCTGCCCACGAGTGTCTGCCCTGCAACTGCAGTGGCCGCTCCGAGGAATGCACGTTTGATCGGGAGCTCTTCCGCAGCACAGGCCACGGCGGGCGCTGTCACCACTGCCGTGACCACACAGCTGGGCCACACTGTGAGCGCTGTCAGGAGAATTTCTATCACTGGGACCCGCGGATGCCATGCCAGCCCTGTGACTGCCAGTCGGCAGGCTCCCTACACCTCCAGTGCGATGACACAGGCACCTGCGCCTGCAAGCCCACAGTGACTGGCTGGAAGTGTGACCGCTGTCTGCCCGGGTTCCACTCGCTCAGTGAGGGAGGCTGCAGACCCTGCACTTGCAATCCCGCTGGCAGCCTGGACACCTGTGACCCCCGCAGTGGGCGCTGCCCCTGCAAAGAGAATGTGGAAGGCAACCTATGTGACAGATGTCGCCCGGGGACCTTTAACCTGCAGCCCCACAATCCAGCTGGCTGCAGCAGCTGTTTCTGCTATGGCCACTCCAAGGTGTGCGCGTCCACTGCCCAGTTCCAGGTGCATCACATCCTCAGCGATTTCCACCAGGGAGCCGAAGGCTGGTGGGCCAGAAGTGTGGGGGGCTCTGAGCACTCCCCACAATGGAGCCCAAATGGGGTCCTCCTGAGCCCAGAAGACGAGGAGGAGCTCACAGCACCAGGGAAGTTCCTGGGAGACCAGCGGTTCAGCTATGGGCAGCCCCTCATACTGACCTTCCGGGTGCCCCCCGGGGACTCCCCACTCCCTGTACAGCTGAGGCTGGAAGGGACAGGCTTGGCCCTGTCCCTGAGGCACTCTAGCCTGTCTGGCCCCCAGGATGCCAGGGCATCCCAGGGAGGTAGAGCTCAGGTTCCACTGCAGGAGACCTCCGAGGACGTGGCCCCTCCACTGCCCCCCTTCCACTTCCAGCGGCTCCTCGCCAACCTGACCAGCCTCCGCCTCCGCGTCAGTCCCGGCCCCAGCCCTGCCGGTCCAGTGTTCCTGACTGAGGTCCGGCTCACATCCGCCCGGCCAGGGCTTTCCCCGCCAGCCTCCTGGGTGGAGATTTGTTCATGTCCCACTGGCTACACGGGCCAGTTCTGTGAATCCTGTGCTCCGGGATACAAGAGGGAGATGCCACAGGGGGGTCCCTATGCCAGCTGTGTCCCCTGCACCTGTAACCAGCATGGCACCTGTGACCCCAACACAGGGATCTGTGTCTGCAGCCACCATACCGAGGGCCCATCCTGTGAACGCTGTTTGCCAGGTTTCTATGGCAACCCTTTCGCGGGCCAAGCCGACGACTGCCAGCCCTGTCCCTGCCCTGGCCAGTCGGCCTGTACGACCATCCCAGAGAGCGGGGAGGTGGTGTGTACCCACTGCCCCCCGGGCCAGAGAGGGCGGCGCTGTGAGGTCTGTGATGATGGCTTTTTTGGGGACCCGCTGGGGCTCTTTGGGCACCCCCAGCCCTGCCACCAGTGCCAGTGTAGCGGGAACGTGGACCCCAATGCCGTGGGCAACTGTGACCCCCTGTCTGGCCACTGCCTGCGCTGCCTGCACAACACCACGGGTGACCACTGTGAGCACTGTCAGGAAGGCTTCTACGGGAGCGCCCTGGCCCCTCGACCCGCAGACAAATGCATGCCTTGCAGCTGTCACCCACAGGGCTCGGTCAGTGAGCAGATGCCCTGCGACCCAGTGACAGGCCAATGCTCCTGCCTGCCTCATGTGACTGCACGGGACTGCAGCCGCTGCTACCCTGGCTTCTTCGACCTCCAGCCTGGGAGGGGCTGCCGGAGCTGCAAGTGTCACCCACTGGGCTCCCAGGAGGACCAGTGCCATCCCAAGACTGGACAGTGCACCTGCCGCCCAGGTGTCACAGGCCAGGCCTGTGACAGGTGCCAGCTGGGTTTCTTCGGCTCCTCAATCAAGGGCTGCCGGGCCTGCAGGTGCTCCCCACTGGGCGCTGCCTCGGCCCAGTGCCACTATAACGGCACATGCGTGTGCAGGCCTGGCTTCGAGGGCTACAAATGTGACCGCTGCCACTACAACTTCTTCCTCACGGCAGACGGCACACACTGCCAGCAATGTCCGTCCTGCTACGCCCTGGTGAAGGAGGAGACAGCCAAGCTGAAGGCCAGACTGACTTTGACGGAGGGGTGGCTCCAAGGGTCCGACTGTGGCAGTCCCTGGGGACCACTAGACATTCTGCTGGGAGAGGCCCCAAGGGGGGACGTCTACCAGGGCCATCACCTGCTTCCAGGGGCTCGGGAAGCCTTCCTGGAGCAGATGATGGGCCTCGAGGGTGCTGTCAAGGCCGCCCGGGAGCAGCTGCAGAGGCTGAACAAGGGTGCCCGCTGTGCCCAGGCCGGATCCCAGAAGACCTGCACCCAGCTGGCAGACCTGGAGGCAGTGCTGGAGTCCTCGGAAGAGGAGATTCTGCATGCAGCTGCCATTCTCGCGTCTCTGGAGATTCCTCAGGAAGGTCCCAGTCAGCCGACCAAATGGAGCCACCTGGCCATAGAGGCCCGTGCCCTCGCCAGGAGCCACAGAGACACCGCCACCAAGATCGCAGCCACTGCTTGGAGGGCCCTGCTCGCCTCCAACACCAGCTACGCGCTTCTCTGGAATCTGCTGGAGGGAAGGGTGGCCCTAGAGACCCAGCGGGACCTGGAGGACAGGTACCAGGAGGTCCAGGCGGCCCAGAAAGCACTGAGGACGGCTGTGGCAGAGGTGCTGCCTGAAGCGGAAAGCGTGTTGGCCACCGTGCAGCAAGTTGGCGCAGATACAGCCCCGTACCTGGCCTTGCTGGCTTCCCCGGGAGCTCTGCCTCAGAAGTCCCGGGCTGAAGACCTGGGCCTGAAGGCGAAGGCCCTGGAGAAGACAGTTGCATCATGGCAGCACATGGCCACTGAGGCTGCCCGAACCCTCCAGACTGCTGCCCAGGCGACGCTACGGCAAACAGAACCCCTCACAAAGCTGCACCAGGAGGCCAGAGCCGCCCTGACCCAGGCTTCCTCATCTGTCCAGGCTGCGACAGTGACTGTCATGGGAGCCAGGACTCTGCTGGCTGATCTGGAAGGAATGAAGCTGCAGTTTCCCCGGCCCAAGGACCAGGCGGCATTGCAGAGGAAGGCAGACTCCGTCAGTGACAGACTCCTTGCAGACACGAGAAAGAAGACCAAGCAGGCGGAGAGGATGCTGGGAAACGCGGCCCCTCTTTCCTCCAGTGCCAAGAAGAAGGGCAGAGAAGCAGAGGTGTTGGCCAAGGACAGTGCCAAGCTTGCCAAGGCCTTGCTGAGGGAGCGGAAACAGGCGCACCGCCGTGCCAGCAGGCTCACCAGCCAGACGCAAGCCACGCTCCAACAGGCGTCCCAGCAGGTGCTGGCGTCTGAAGCACGCAGACAGGAGCTGGAGGAAGCTGAGCGGGTGGGTGCTGGGCTGAGCGAGATGGAGCAGCAGATCCGGGAATCGCGTATCTCACTGGAGAAGGACATCGAGACCTTGTCAGAGCTGCTTGCCAGGCTGGGGTCGCTGGACACCCATCAAGCCCCAGCCCAGGCCCTGAACGAGACTCAGTGGGCACTAGAACGCCTGAGGCTGCAGCTGGGCTCCCCGGGGTCCTTGCAGAGGAAACTCAGTCTGCTGGAGCAGGAATCCCAGCAGCAGGAGCTGCAGATCCAGGGCTTCGAGAGTGACCTCGCCGAGATCCGCGCCGACAAACAGAACCTGGAGGCCATTCTGCACAGCCTGCCCGAGAACTGTGCCAGCTGGCAGTGAGGGCTGCCCAGATCCCCGGCACACACTCCCCCACCTGCTGTTTACATGACCCAGGGGGTGCACACTACCCCACAGGTGTGCCCATACAGACATTCCCCGGAGCCGGCTGCTGTGAACTCGACCCCGTGTGGATAGTCACACTCCCTGCCGATTCTGTCTGTGGCTTCTTCCCTGCCAGCAGGACTGAGTGTGCGTACCCAGTTCACCTGGACATGAGTGCACACTCTCACCCCTGCACATGCATAAACGGGCACACCCCAGTGTCAATAACATACACACGTGAGGGTGCATGTCTGTGTGTATGACCCAAATAAAAAAAAAAAORF Start: ATG at 98ORF Stop: TGA at 4823SEQ ID NO: 2121575 aaMW at 170827.9 kDNOV49b,MAAAALLLGLALLAPRAAGAGMGACYDGAGRPQRCLPVFENAAFGRLAQASHTCGSPPEDFCPHVGACG57292-02Protein SequenceAGAGAHCQRCDAADPQRHHNASYLTDFHSQDESTWWQSPSMAFGVQYPTSVNITLRLGKAYEITYVRLKFHTSRPESFAIYKRSRADGPWEPYQFYSASCQKTYGRPEGQYLRPGEDERVAFCTSEFSDISPLSGGNVAFSTLEGRPSAYNFEESPGLQEWVTSTELLISLDRLNTFGDDIFKDPKVLQSYYYAVSDFSVGGRCKCNGHASECGPDVAGQLACRCQHNTTGTDCERCLPFFQDRPWARGTAEAAHECLPCNCSGRSEECTFDRELFRSTGHGGRCHHCRDHTAGPHCERCQENFYHWDPRMPCQPCDCQSAGSLHLQCDDTGTCACKPTVTGWKCDRCLPGFHSLSEGGCRPCTCNPAGSLDTCDPRSGRCPCKENVEGNLCDRCRPGTFNLQPHNPAGCSSCFCYGHSKVCASTAQFQVHHILSDFHQGAEGWWARSVGGSEHSPQWSPNGVLLSPEDEEELTAPGKFLGDQRFSYGQPLILTFRVPPGDSPLPVQLRLEGTGLALSLRHSSLSGPQDARASQGGRAQVPLQETSEDVAPPLPPFHFQRLLANLTSLRLRVSPGPSPAGPVFLTEVRLTSARPGLSPPASWVEICSCPTGYTGQFCESCAPGYKREMPQGGPYASCVPCTCNQHGTCDPNTGICVCSHHTEGPSCERCLPGFYGNPFAGQADDCQPCPCPGQSACTTIPESGEVVCTHCPPGQRGRRCEVCDDGFFGDPLGLFGHPQPCHQCQCSGNVDPNAVGNCDPLSGHCLRCLHNTTGDHCEHCQEGFYGSALAPRPADKCMPCSCHPQGSVSEQMPCDPVTGQCSCLPHVTARDCSRCYPGFFDLQPGRGCRSCKCHPLGSQEDQCHPKTGQCTCRPGVTGQACDRCQLGFFGSSIKGCRACRCSPLGAASAQCHYNGTCVCRPGFEGYKCDRCHYNFFLTADGTHCQQCPSCYALVKEETAKLKARLTLTEGWLQGSDCGSPWGPLDILLGEAPRGDVYQGHHLLPGAREAFLEQMMGLEGAVKAAREQLQRLNKGARCAQAGSQKTCTQLADLEAVLESSEEEILHAAAILASLEIPQEGPSQPTKWSHLAIEARALARSHRDTATKIAATAWRALLASNTSYALLWNLLEGRVALETQRDLEDRYQEVQAAQKALRTAVAEVLPEAESVLATVQQVGADTAPYLALLASPGALPQKSRAEDLGLKAKALEKTVASWQHMATEAARTLQTAAQATLRQTEPLTKLHQEARAALTQASSSVQAATVTVMGARTLLADLEGMKLQFPRPKDQAALQRKADSVSDRLLADTRKKTKQAERMLGNAAPLSSSAKKKGREAEVLAKDSAKLAKALLRERKQAHRRASRLTSQTQATLQQASQQVLASEARRQELEEAERVGAGLSEMEQQIRESRISLEKDIETLSELLARLGSLDTHQAPAQALNETQWALERLRLQLGSPGSLQRKLSLLEQESQQQELQIQGFESDLAEIRADKQNLEAILHSLPENCASWQ


[0631] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 49B.
269TABLE 49BComparison of NOV49a against NOV49b.NOV49a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV49b25 . . . 15871417/1563 (90%)25 . . . 15751418/1563 (90%)


[0632] Further analysis of the NOV49a protein yielded the following properties shown in Table 49C.
270TABLE 49CProtein Sequence Properties NOV49aPSort0.5517 probability located in outside; 0.1900 probabilityanalysis:located in lysosome (lumen); 0.1080 probability located innucleus; 0.1000 probability located in endoplasmic reticulum(membrane)SignalPCleavage site between residues 20 and 21analysis:


[0633] A search of the NOV49a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 49D.
271TABLE 49DGeneseq Results for NOV49aIdentities/NOV49aSimilaritiesProtein/Residues/for theGeneseqOrganism/LengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM50361Mouse laminin-15 1 . . . 15871587/15870.0gamma 3 chain—(100%)Mus musculus, 1 . . . 15871587/15871587 aa.(100%)[WO200183516-A1,8 NOV. 2001]AAB40917Human ORFX 1 . . . 15871585/15870.0ORF681 poly- (99%)peptide sequence 1 . . . 15871586/1587SEQ ID NO: (99%)1362—Homosapiens, 1587 aa.[WO200058473-A2,5 OCT. 2000]AAY15458Human laminin67 . . . 15871493/15240.0gamma 3 subunit— (97%)Homo sapiens, 1 . . . 15241496/15241524 aa. (97%)[WO9919348-A1,22 APR. 1999]AAB19803Human laminin 210 . . . 1583 698/15990.0gamma-1 chain with (43%)C-terminal FLAG21 . . . 1600 964/1599epitope—Homo (59%)sapiens, 1617 aa.[WO200066730-A2,9 NOV. 2000]AAB19801Human laminin 210 . . . 1583 698/15990.0gamma-1 chain— (43%)Homo sapiens,21 . . . 1600 964/15991609 aa. (59%)[WO200066730-A2,9 NOV. 2000]


[0634] In a BLAST search of public sequence datbases, the NOV49a protein was found to have homology to the proteins shown in the BLASTP data in Table 49E.
272TABLE 49EPublic BLASTP Results for NOV49aIdentities/NOV49aSimilaritiesProtein/Residues/for theAccessionProtein/MatchMatchedExpectNumberOrganism/LengthResiduesPortionValueQ9Y6N6Laminin gamma-3 1 . . . 15871587/15870.0chain precursor(100%)(Laminin 12 gamma 1 . . . 15871587/15873)—Homo sapiens(100%)(Human), 1587 aa.Q9R0B6Laminin gamma-317 . . . 15851169/15720.0chain precursor (74%)(Laminin 12 gamma26 . . . 15811296/15723)—Mus musculus (82%)(Mouse), 1581 aa.CAC17325Sequence 25 from10 . . . 1583 698/15990.0Patent WO0066730 (43%)precursor—Homo21 . . . 1600 964/1599sapiens (Human), (59%)1617 aa.CAC17323Sequence 21 from10 . . . 1583 698/15990.0Patent WO0066730 (43%)precursor—Homo21 . . . 1600 964/1599sapiens (Human), (59%)1609 aa.P11047Laminin gamma-110 . . . 1583 697/15990.0chain precursor (43%)(Laminin B221 . . . 1600 963/1599chain)—Homo (59%)sapiens (Human),1609 aa.


[0635] PFam analysis predicts that the NOV49a protein contains the domains shown in the Table 49F.
273TABLE 49FDomain Analysis of NOV49aPfamNOV49aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValuelaminin_Nterm 35 . . . 269108/264 (41%)2.3e−110182/264 (69%)laminin_EGF271 . . . 324 17/63 (27%)3.4e−10 43/63 (68%)laminin_EGF327 . . . 380 18/61 (30%)  2e−13 49/61 (80%)laminin_EGF383 . . . 427 27/59 (46%)  5e−11 35/59 (59%)laminin_EGF430 . . . 477 28/61 (46%)1.8e−14 46/61 (75%)laminin_B541 . . . 671 44/152 (29%)1.6e−09 86/152 (57%)laminin_EGF707 . . . 752 22/60 (37%)2.3e−12 39/60 (65%)laminin_EGF755 . . . 807 17/61 (28%)0.0069 32/61 (52%)laminin_EGF810 . . . 863 18/61 (30%)2.2e−15 45/61 (74%)laminin_EGF866 . . . 914 27/60 (45%)1.3e−16 43/60 (72%)laminin_EGF917 . . . 962 24/59 (41%)  2e−15 39/59 (66%)laminin_EGF 965 . . . 1013 18/59 (31%)  2e−07 37/59 (63%)



Example 50

[0636] The NOV50 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 50A.
274TABLE 50ANOV50 Sequence AnalysisSEQ ID NO: 213942 bpNOV50a,CCCCGGCTGCTTCTGCTCTTTCTGGTTCCGCTGCTGTGGGCCCCGGCTGCGGTCCGGGCCGGCCCAGCG97715-01DNA SequenceATGAAGACCTTAGCCACCGGAACAAAGAACCGCCGGCGCCGGCCCAGCAGCTGCAGCCGCAGCCTGTGGCTGTGCAGGGCCCCGAGCCGGCCCGGGTCGAGAAAATATTTACACCAGCAGCTCCAGTTCATACCAATAAAGAAGATCCTGCTACCCAAACTAATTTGGGATTTATCCATGCATTTGTCGCTGCCATATCAGTTATTATTGTATCTGAATTGGGTGATAAGACATTTTTTATAGCAGCCATCATGGCAATGCGCTATAACCGCCTGACCGTGCTGGCTGGTGCAATGCTTGCCTTGGGACTAATGACATGCTTGTCAGTTTTGTTTGGCTATGCCACCACAGTCATCCCCAGGGTCTATACATACTATGTTTCAACTGTATTATTTGCCATTTTTGGCATTAGAATGCTTCGGGAAGGCTTAAAGATGAGCCCTGATGAGGGTCAAGAGGAACTGGAAGAAGTTCAAGCTGAATTAAAGAAGAAAGATGAAGAATTTCAACGAACCAAACTTTTAAATGGACCGGGAGATGTTGAAACGGGTACAAGCATAACAGTACCTCAGAAAAAGTGGTTGCATTTTATTTCACCCATTTTTGTTCAAGCTCTTACATTAACATTCTTAGCAGAATGGGGTGATCGCTCTCAACTAACTACAATTGTATTGGCAGCTAGAGAGGACCCCTATGGTGTAGCCGTGGGTGGAACTGTGGGGCACTGCCTGTGCACGGGATTGGCAGTAATTGGAGGAAGAATGATAGCACAGAAAATCTCTGTCAGAACTGTGACAATCATAGGAGGCATCGTTTTTTTGGCGTTTGCATTTTCTGCACTATTTATAAGGCCTGATTCTGGTTTTTAACAAGCTORF Start: at 1ORF Stop: TAA at 934SEQ ID NO: 214311 aaMW at 33848.2 kDNOV50a,PRLLLLFLVPLLWAPAAVRAGPDEDLSHRNKEPPAPAQQLQPQPVAVQGPEPARVEKIFTPAAPVHTCG97715-01Protein SequenceNKEDPATQTNLGFIHAFVAAISVIIVSELGDKTFFIAAIMAMRYNRLTVLAGAMLALGLMTCLSVLFGYATTVIPRVYTYYVSTVLFAIFGIRMLREGLKMSPDEGQEELEEVQAELKKKDEEFQRTKLLNGPGDVETGTSITVPQKKWLHFISPIFVQALTLTFLAEWGDRSQLTTIVLAAREDPYGVAVGGTVGHCLCTGLAVIGGRMIAQKISVRTVTIIGGIVFLAFAFSALFIRPDSGF


[0637] Further analysis of the NOV50a protein yielded the following properties shown in Table 50B.
275TABLE 50BProtein Sequence Properties NOV50aPSort0.6400 probability located in plasma membrane; 0.4600analysis:probability located in Golgi body; 0.3700 probability locatedin endoplasmic reticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalPCleavage site between residues 21 and 22analysis:


[0638] A search of the NOV50a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 50C.
276TABLE 50CGeneseq Results for NOV50aNOV50aIdentities/Protein/Residues/Similarities forGeneseqOrganism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB90211Human poly- 1 . . . 311310/311 (99%)e−176peptide SEQ ID14 . . . 324310/311 (99%)NO 2587—Homosapiens, 324 aa.[WO200190304-A2, 29 NOV.2001]AAB51239Human hTMPT27 1 . . . 311310/311 (99%)e−176protein sequence14 . . . 324310/311 (99%)SEQ ID NO: 7—Homo sapiens,324 aa.[CN1268567-A,4 OCT. 2000]AAB20092Human hydro- 1 . . . 311310/311 (99%)e−176phobic domain-14 . . . 324310/311 (99%)containing proteinHP03373—Homosapiens, 324 aa.[WO200100824-A2, 4 JAN. 2001]AAB41971Human ORFX 1 . . . 311310/311 (99%)e−176ORF1735 poly-12 . . . 322310/311 (99%)peptide sequenceSEQ ID NO:3470—Homosapiens, 322 aa.[WO200058473-A2, 5 OCT.2000]ABB57033Mouse ischaemic 2 . . . 311282/310 (90%)e−158condition related15 . . . 323288/310 (91%)protein sequenceSEQ ID NO:39—Musmusculus, 323 aa.[WO200188188-A2, 22 NOV.2001]


[0639] In a BLAST search of public sequence datbases, the NOV50a protein was found to have homology to the proteins shown in the BLASTP data in Table 50D.
277TABLE 50DPublic BLASTP Results for NOV50aNOV50aIdentities/Protein/Residues/Similarities forAccessionProtein/Matchthe MatchedExpectNumberOrganism/LengthResiduesPortionValueQ9HC07Transmembrane 1 . . . 311310/311 (99%)e−176protein PT27—14 . . . 324310/311 (99%)Homo sapiens(Human), 324 aa.Q9NZ34Uncharacterized 1 . . . 311310/311 (99%)e−176hypothalamus14 . . . 324310/311 (99%)protein HTMP—Homo sapiens(Human), 324 aa.Q9R292TPARDL—12 . . . 311287/310 (92%)e−161Mus musculus15 . . . 323293/310 (93%)(Mouse), 323 aa.P52875Transmembrane 2 . . . 311282/310 (90%)e−158protein PFT2715 . . . 323288/310 (91%)(TPA regulatedlocus protein)—Mus musculus(Mouse), 323 aa.AAM21311Transmembrane41 . . . 311216/272 (79%)e−118protein HTP-1—34 . . . 305236/272 (86%)Brachydaniorerio (Zebrafish)(Danio rerio),305 aa.


[0640] PFam analysis predicts that the NOV50a protein contains the domains shown in the Table 50E.
278TABLE 50EDomain Analysis of NOV50aPfamNOV50aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueUPF0016 84 . . . 15836/76 (47%)9.9e−3974/76 (97%)UPF0016224 . . . 29942/76 (55%)8.1e−44 76/76 (100%)



Example B


Sequencing Methodology and Identification of NOVX Clones

[0641] 1. GeneCalling™ Technology: This is a proprietary method of performing differential gene expression profiling between two or more samples developed at CuraGen and described by Shimkets, et al., “Gene expression analysis by transcript profiling coupled to a gene database query” Nature Biotechnology 17:198-803 (1999). cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then digested with up to as many as 120 pairs of restriction enzymes and pairs of linker-adaptors specific for each pair of restriction enzymes were ligated to the appropriate end. The restriction digestion generates a mixture of unique cDNA gene fragments. Limited PCR amplification is performed with primers homologous to the linker adapter sequence where one primer is biotinylated and the other is fluorescently labeled. The doubly labeled material is isolated and the fluorescently labeled single strand is resolved by capillary gel electrophoresis. A computer algorithm compares the electropherograms from an experimental and control group for each of the restriction digestions. This and additional sequence-derived information is used to predict the identity of each differentially expressed gene fragment using a variety of genetic databases. The identity of the gene fragment is confirmed by additional, gene-specific competitive PCR or by isolation and sequencing of the gene fragment.


[0642] 2. SeqCalling™ Technology: cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen's proprietary SeqCalling technology. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0643] 3. PathCalling™ Technology: The NOVX nucleic acid sequences are derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, are sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.


[0644] The laboratory screening was performed using the methods summarized below:


[0645] cDNA libraries were derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then directionally cloned into the appropriate two-hybrid vector (Gal4-activation domain (Gal4-AD) fusion). Such cDNA libraries as well as commercially available cDNA libraries from Clontech (Palo Alto, Calif.) were then transferred from E. coli into a CuraGen Corporation proprietary yeast strain (disclosed in U.S. Pat. Nos. 6,057,101 and 6,083,693, incorporated herein by reference in their entireties).


[0646] Gal4-binding domain (Gal4-BD) fusions of a CuraGen Corportion proprietary library of human sequences was used to screen multiple Gal4-AD fusion cDNA libraries resulting in the selection of yeast hybrid diploids in each of which the Gal4-AD fusion contains an individual cDNA. Each sample was amplified using the polymerase chain reaction (PCR) using non-specific primers at the cDNA insert boundaries. Such PCR product was sequenced; sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0647] Physical clone: the cDNA fragment derived by the screening procedure, covering the entire open reading frame is, as a recombinant DNA, cloned into pACT2 plasmid (Clontech) used to make the cDNA library. The recombinant plasmid is inserted into the host and selected by the yeast hybrid diploid generated during the screening procedure by the mating of both CuraGen Corporation proprietary yeast strains N106′ and YULH (U.S. Pat. Nos. 6,057,101 and 6,083,693).


[0648] 4. RACE: Techniques based on the polymerase chain reaction such as rapid amplification of cDNA ends (RACE), were used to isolate or complete the predicted sequence of the cDNA of the invention. Usually multiple clones were sequenced from one or more human samples to derive the sequences for fragments. Various human tissue samples from different donors were used for the RACE reaction. The sequences derived from these procedures were included in the SeqCalling Assembly process described in preceding paragraphs.


[0649] 5. Exon Linking: The NOVX target sequences identified in the present invention were subjected to the exon linking process to confirm the sequence. PCR primers were designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence was examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective was encountered, or, in the case of the reverse primer, until the stop codon was reached. Such primers were designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the predicted exons to closely related human sequences from other species. These primers were then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain—amygdala, brain—cerebellum, brain—hippocampus, brain—substantia nigra, brain—thalamus, brain—whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma—Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, trachea, uterus. Usually the resulting amplicons were gel purified, cloned and sequenced to high redundancy. The PCR product derived from exon linking was cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial clone has an insert covering the entire open reading frame cloned into the pCR2.1 vector. The resulting sequences from all clones were assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs were included as components for an assembly when the extent of their identity with another component of the assembly was at least 95% over 50 bp. In addition, sequence traces were evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.


[0650] 6. Physical Clone: Exons were predicted by homology and the intron/exon boundaries were determined using standard genetic rules. Exons were further selected and refined by means of similarity determination using multiple BLAST (for example, tBlastN, BlastX, and BlastN) searches, and, in some instances, GeneScan and Grail. Expressed sequences from both public and proprietary databases were also added when available to further define and complete the gene sequence. The DNA sequence was then manually corrected for apparent inconsistencies thereby obtaining the sequences encoding the full-length protein.


[0651] The PCR product derived by exon linking, covering the entire open reading frame, was cloned into the pCR2.1 vector from Invitrogen to provide clones used for expression and screening purposes.



Example C


Quantitative Expression Analysis of Clones in Various cells and Tissues

[0652] The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/51 (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoinflammatory diseases), Panel CNSD.01 (containing samples from normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).


[0653] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[0654] First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.


[0655] In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 μg of total RNA were performed in a volume of 20 μl and incubated for 60 minutes at 42° C. This reaction can be scaled up to 50 μg of total RNA in a final volume of 100 μl. sscDNA samples are then normalized to reference nucleic acids as described previously, using 1×TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions.


[0656] Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration=250 nM, primer melting temperature (Tm) range=58°-60° C., primer optimal Tm=59° C., maximum primer difference=2° C., probe does not have 5′G, probe Tm must be 10° C. greater than primer Tm, amplicon size 75 bp to 100 bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, Tex., USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5′ and 3′ ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900 nM each, and probe, 200 nM.


[0657] PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR plate (Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48° C. for 30 minutes followed by amplification/PCR cycles as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.


[0658] When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using 1×TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were analyzed and processed as described previously.


[0659] Panels 1, 1.1, 1.2, and 1.3D


[0660] The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.


[0661] In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used:


[0662] ca.=carcinoma,


[0663] *=established from metastasis,


[0664] met=metastasis,


[0665] s cell var=small cell variant,


[0666] non-s=non-sm=non-small,


[0667] squam=squamous,


[0668] pl.eff=pl effusion=pleural effusion,


[0669] glio=glioma,


[0670] astro=astrocytoma, and


[0671] neuro=neuroblastoma.


[0672] General_screening_panel_v1.4, v1.5 and v1.6


[0673] The plates for Panels 1.4, 1.5, and 1.6 include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in Panels 1.4, 1.5, and 1.6 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panels 1.4, 1.5, and 1.6 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panels 1.4, 1.5, and 1.6 are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.


[0674] Panels 2D, 2.2, 2.3 and 2.4


[0675] The plates for Panels 2D, 2.2, 2.3 and 2.4 generally include 2 control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI) or from Ardais or Clinomics). The tissues are derived from human malignancies and in cases where indicated many malignant tissues have “matched margins” obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted “NAT” in the results below. The tumor tissue and the “matched margins” are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI/CHTN/Ardais/Clinomics). Unmatched RNA samples from tissues without malignancy (normal tissues) were also obtained from Ardais or Clinomics. This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, Calif.), Research Genetics, and Invitrogen.


[0676] HASS Panel v 1.0


[0677] The HASS panel v 1.0 plates are comprised of 93 cDNA samples and two controls. Specifically, 81 of these samples are derived from cultured human cancer cell lines that had been subjected to serum starvation, acidosis and anoxia for different time periods as well as controls for these treatments, 3 samples of human primary cells, 9 samples of malignant brain cancer (4 medulloblastomas and 5 glioblastomas) and 2 controls. The human cancer cell lines are obtained from ATCC (American Type Culture Collection) and fall into the following tissue groups: breast cancer, prostate cancer, bladder carcinomas, pancreatic cancers and CNS cancer cell lines. These cancer cells are all cultured under standard recommended conditions. The treatments used (serum starvation, acidosis and anoxia) have been previously published in the scientific literature. The primary human cells were obtained from Clonetics (Walkersville, Md.) and were grown in the media and conditions recommended by Clonetics. The malignant brain cancer samples are obtained as part of a collaboration (Henry Ford Cancer Center) and are evaluated by a pathologist prior to CuraGen receiving the samples. RNA was prepared from these samples using the standard procedures. The genomic and chemistry control wells have been described previously.


[0678] ARDAIS Panel v 1.0


[0679] The plates for ARDAIS panel v 1.0 generally include 2 control wells and 22 test samples composed of RNA isolated from human tissue procured by surgeons working in close cooperation with Ardais Corporation. The tissues are derived from human lung malignancies (lung adenocarcinoma or lung squamous cell carcinoma) and in cases where indicated many malignant samples have “matched margins” obtained from noncancerous lung tissue just adjacent to the tumor. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue) in the results below. The tumor tissue and the “matched margins” are evaluated by independent pathologists (the surgical pathologists and again by a pathologist at Ardais). Unmatched malignant and non-malignant RNA samples from lungs were also obtained from Ardais. Additional information from Ardais provides a gross histopathological assessment of tumor differentiation grade and stage. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical state of the patient.


[0680] Panel 3D, 3.1 and 3.2


[0681] The plates of Panel 3D, 3.1, and 3.2 are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D, 3.1, 3.2, 1, 1.1., 1.2, 1.3D, 1.4, 1.5, and 1.6 are of the most common cell lines used in the scientific literature.


[0682] Panels 4D, 4R, and 4.1D


[0683] Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, Calif.) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, Calif.). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, Pa.).


[0684] Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, Md.) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5 ng/ml, TNF alpha at approximately 5-10 ng/ml, WN gamma at approximately 20-50 ng/ml, IL-4 at approximately 5-10 ng/ml, IL-9 at approximately 5-10 ng/ml, IL-13 at approximately 5-10 ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.


[0685] Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco/Life Technologies, Rockville, Md.), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20 ng/ml PMA and 1-21 g/ml ionomycin, IL-12 at 5-10 ng/ml, IFN gamma at 20-50 ng/ml and IL-18 at 5-10 ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5 μg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2×106cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol (5.5×10−5M) (Gibco), and 10 mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1-7 days for RNA preparation.


[0686] Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions. Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, Utah), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco), 50 ng/ml GMCSF and 5 ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50 ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 1O0 ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10 μg/ml for 6 and 12-14 hours.


[0687] CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and plated at 106cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with 0.5 μg/ml anti-CD28 (Pharmingen) and 3 ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10M (Gibco), and 10 mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.


[0688] To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 106cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). To activate the cells, we used PWM at 5 μg/ml or anti-CD40 (Pharmingen) at approximately 10 μg/ml and IL-4 at 5-10 ng/ml. Cells were harvested for RNA preparation at 24, 48 and 72 hours.


[0689] To prepare the primary and secondary Th1/Th2 and Tr1 cells, six-well Falcon plates were coated overnight with 10 μg/ml anti-CD28 (Pharmingen) and 2 μg/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, German Town, Md.) were cultured at 105-106cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (4 ng/ml). IL-12 (5 ng/ml) and anti-IL4 (1 μg/ml) were used to direct to Th1, while IL-4 (5 ng/ml) and anti-IFN gamma (lug/ml) were used to direct to Th2 and IL-10 at 5 ng/ml was used to direct to Tr1. After 4-5 days, the activated Th1, Th2 and Tr1 lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×105M (Gibco), 10 mM Hepes (Gibco) and IL-2 (1 ng/ml). Following this, the activated Th1, Th2 and Tr1 lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L (1 μg/ml) to prevent apoptosis. After 4-5 days, the Th1, Th2 and Tr1 lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Th1 and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Th1, Th2 and Tr1 after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.


[0690] The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1 mM dbcAMP at 5×105cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5×105 cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10 ng/ml and ionomycin at 1 μg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). CCD1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1 ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5 ng/ml IL-4, 5 ng/ml IL-9, 5 ng/ml IL-13 and 25 ng/ml IFN gamma.


[0691] For these cell lines and blood cells, RNA was prepared by lysing approximately 107cells/ml using Trizol (Gibco BRL). Briefly, {fraction (1/10)} volume of bromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15 ml Falcon Tube. An equal volume of isopropanol was added and left at −20° C. overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 μl of RNAse-free water and 35 μl buffer (Promega) 5 μl DTT, 7 μl RNAsin and 8 μl DNAse were added. The tube was incubated at 37° C. for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with {fraction (1/10)} volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at −80° C.


[0692] AI_comprehensive panel_v1.0


[0693] The plates for AI_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, Md.). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.


[0694] Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.


[0695] Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.


[0696] Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.


[0697] Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-i anti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.


[0698] In the labels employed to identify tissues in the AI_comprehensive panel_v1.0 panel, the following abbreviations are used:


[0699] AI=Autoimmunity


[0700] Syn=Synovial


[0701] Normal=No apparent disease


[0702] Rep22 IRep20=individual patients


[0703] RA=Rheumatoid arthritis


[0704] Backus=From Backus Hospital


[0705] OA=Osteoarthritis


[0706] (SS) (BA) (MF)=Individual patients


[0707] Adj=Adjacent tissue


[0708] Match control=adjacent tissues


[0709] -M=Male


[0710] -F=Female


[0711] COPD=Chronic obstructive pulmonary disease


[0712] Panels 5D and 5I


[0713] The plates for Panel 5D and 5I include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.


[0714] In the Gestational Diabetes study subjects are young (18-40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:


[0715] Patient 2: Diabetic Hispanic, overweight, not on insulin


[0716] Patient 7-9: Nondiabetic Caucasian and obese (BMI>30)


[0717] Patient 10: Diabetic Hispanic, overweight, on insulin


[0718] Patient 11: Nondiabetic African American and overweight


[0719] Patient 12: Diabetic Hispanic on insulin


[0720] Adiocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr. 2, 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:


[0721] Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose


[0722] Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated


[0723] Donor 2 and 3 AD: Adipose, Adipose Differentiated


[0724] Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.


[0725] Panel 5I contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 5I.


[0726] In the labels employed to identify tissues in the 5D and 5I panels, the following abbreviations are used:


[0727] GO Adipose=Greater Omentum Adipose


[0728] SK=Skeletal Muscle


[0729] UT=Uterus


[0730] PL=Placenta


[0731] AD=Adipose Differentiated


[0732] AM=Adipose Midway Differentiated


[0733] U=Undifferentiated Stem Cells


[0734] Panel CNSD.01


[0735] The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0736] Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supernuclear Palsy, Depression, and “Normal controls”. Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.


[0737] In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:


[0738] PSP=Progressive supranuclear palsy


[0739] Sub Nigra=Substantia nigra


[0740] Glob Palladus=Globus palladus


[0741] Temp Pole=Temporal pole


[0742] Cing Gyr=Cingulate gyrus


[0743] BA 4=Brodman Area 4


[0744] Panel CNS_Neurodegeneration_V1.0


[0745] The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0746] Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from “Normal controls” who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0=no evidence of plaques, 3=severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a “control” region within AD patients. Not all brain regions are represented in all cases.


[0747] In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used:


[0748] AD=Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy


[0749] Control=Control brains; patient not demented, showing no neuropathology


[0750] Control (Path)=Control brains; pateint not demented but showing sever AD-like pathology


[0751] SupTemporal Ctx=Superior Temporal Cortex


[0752] Inf Temporal Ctx=Inferior Temporal Cortex


[0753] A. CG105472-01: KIAA0575/Greb1


[0754] Expression of gene CG105472-01 was assessed using the primer-probe sets Ag3041, Ag3042, Ag4301 and Ag4300, described in Tables AA, AB, AC and AD. Results of the RTQ-PCR runs are shown in Tables AE, AF, AG, AH, AI, AJ and AK.
279TABLE AAProbe Name Ag3041StartSEQ IDPrimersLengthPositionNoForward5′-gtattacctggtccgtaatgca-3′22870215ProbeTET-5′-caagggactctaaccaaaggaccttt-3′-TAMRA26892216Reverse5′-ggcttctaaactctgagccttt-3′22928217


[0755]

280





TABLE AB










Probe Name Ag3042















Start
SEQ ID



Primers
Sequence
Length
Position
No





Forward
5′-gtattacctggtccgtaatgca-3′
22
870
218






Probe
TET-5′-caagggactctaaccaaaqgaccttt-3′-TAMRA
26
892
219





Reverse
5′-ggcttctaaactctgagccttt-3′
22
928
220










[0756]

281






TABLE AC










Probe Name Ag4301
















Start
SEQ ID



Primers
Sequences
Length
Position
No





Forward
5′-ctgtggaaagaaaggcttctg-3′
21
777
221






Probe
TET-5′-tcacggaattctccaatcatataaatctg-3′-TAMRA
29
803
222





Reverse
5′-cttgggttgagtggtcagttt-3′
21
832
223










[0757]

282






TABLE AD










Probe Name Ag4300
















Start
SEQ ID



Primers
Sequence
Length
Position
No





Forward
5′-gccaagtaggttcccctgta-3′
20
6545
224






Probe
TET-5′-cctcctacaaagcaatattccaaagga-3′-TAMRA
27
6566
225





Reverse
5′-ttcttgtctccagcctttacag-3′
22
6602
226










[0758]

283





TABLE AE










CNS neurodegeneration v1.0













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



Ag4300,
Ag4301,

Ag4300,
Ag4301,



Run
Run

Run
Run


Tissue Name
224063041
224064603
issue Name
224063041
224064603















AD 1 Hippo
32.8
15.4
Control (Path) 3
30.1
10.8





Temporal Ctx


AD 2 Hippo
59.0
28.9
Control (Path) 4
48.0
42.0





Temporal Ctx


AD 3 Hippo
20.6
10.0
AD 1 Occipital Ctx
31.6
24.3


AD 4 Hippo
22.4
9.2
Ad 2 Occipital Ctx
0.0
0.0





(Missing)


AD 5 Hippo
100.0
100.0
AD 3 Occipital Ctx
21.6
6.6


AD 6 Hippo
79.6
35.1
AD 4 Occipital Ctx
40.3
26.1


Control 2 Hippo
43.8
21.3
AD 5 Occipital Ctx
72.7
25.9


Control 4 Hippo
25.2
12.3
AD 6 Occipital Ctx
40.6
47.0


Control (Path) 3
18.8
7.7
Control 1 Occipital
5.6
5.5


Hippo


Ctx


AD 1 Temporal Ctx
52.9
17.1
Control 2 Occipital
73.2
62.9





Ctx


AD 2 Temporal Ctx
90.1
34.6
Control 3 Occipital
34.6
2.0





Ctx


AD 3 Temporal Ctx
20.6
8.9
Control 4 Occipital
22.1
8.1





Ctx


AD 4 Temporal Ctx
45.7
31.0
Control (Path) 1
87.7
65.1





Occipital Ctx


AD 5 Inf Temporal
89.5
71.7
Control (Path) 2
28.5
27.0


Ctx


Occipital Ctx


AD 5 Sup Temporal
58.6
31.9
Control (Path) 3
8.2
3.4


Ctx


Occipital Ctx


AD 6 Inf Temporal
59.0
29.7
Control (Path) 4
31.6
33.0


Ctx


Occipital Ctx


AD 6 Sup Temporal
65.5
43.8
Control 1 Parietal
27.4
12.1


Ctx


Ctx


Control 1 Temporal
18.9
8.5
Control 2 Parietal
66.0
31.2


Ctx


Ctx


Control 2 Temporal
43.5
30.4
Control 3 Parietal
31.6
28.5


Ctx


Ctx


Control 3 Temporal
37.6
24.1
Control (Path) 1
81.2
62.0


Ctx


Parietal Ctx


Control 3 Temporal
22.4
13.0
Control (Path) 2
45.4
35.1


Ctx


Parietal Ctx


Control (Path) 1
67.4
48.6
Control (Path) 3
13.4
7.9


Temporal Ctx


Parietal Ctx


Control (Path) 2
48.0
38.4
Control (Path) 4
58.6
57.8


Temporal Ctx


Parietal Ctx










[0759]

284





TABLE AF










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4300,

(%) Ag4300,



Run

Run


Tissue Name
221998703
issue Name
221998703













Adipose
0.8
Renal ca. TK-10
9.3


Melanoma*
0.1
Bladder
1.1


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
0.3


Hs688(B).T

NCI-N87


Melanoma* M14
3.8
Gastric ca. KATO III
0.0


Melanoma*
3.9
Colon ca. SW-948
0.0


LOXIMVI


Melanoma*
45.7
Colon ca. SW480
0.5


SK-MEL-5


Squamous cell
0.0
Colon ca.* (SW480
0.4


carcinoma SCC-4

met) SW620


Testis Pool
7.4
Colon ca. HT29
0.0


Prostate ca.* (bone
0.0
Colon ca. HCT-116
2.2


met) PC-3


Prostate Pool
14.9
Colon ca. CaCo-2
1.4


Placenta
0.8
Colon cancer tissue
0.3


Uterus Pool
8.6
Colon ca. SW1116
0.0


Ovarian ca.
2.5
Colon ca. Colo-205
0.3


OVCAR-3


Ovarian ca.
1.9
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
0.0
Colon Pool
36.3


OVCAR-4



Ovarian ca.
16.7
Small Intestine Pool
11.4


OVCAR-5


Ovarian ca.
1.5
Stomach Pool
12.3


IGROV-1


Ovarian ca.
1.6
Bone Marrow Pool
22.8


OVCAR-8


Ovary
24.8
Fetal Heart
1.6


Breast ca. MCF-7
100.0
Heart Pool
6.7


Breast ca.
0.2
Lymph Node Pool
48.3


MDA-MB-231


Breast ca. BT 549
0.2
Fetal Skeletal Muscle
3.3


Breast ca. T47D
44.8
Skeletal Muscle Pool
1.3


Breast ca. MDA-N
11.9
Spleen Pool
0.5


Breast Pool
39.8
Thymus Pool
14.6


Trachea
0.9
CNS cancer (glio/
5.8




astro) U87-MG


Lung
39.2
CNS cancer (glio/
0.2




astro) U-118-MG


Fetal Lung
1.4
CNS cancer (neuro;
3.1




met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
0.5




SF-539


Lung ca. LX-1
0.0
CNS cancer (astro)
1.6




SNB-75


Lung ca. NCI-H146
1.0
CNS cancer (glio)
1.0




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
2.2




SF-295


Lung ca. A549
1.3
Brain (Amygdala)
2.4




Pool


Lung ca. NCI-H526
0.6
Brain (cerebellum)
2.9


Lung ca. NCI-H23
0.6
Brain (fetal)
2.4


Lung ca. NCI-H460
1.6
Brain (Hippocampus)
3.4




Pool


Lung ca. HOP-62
1.6
Cerebral Cortex Pool
5.8


Lung ca. NCI-H522
3.3
Brain (Substantia
2.8




nigra) Pool


Liver
0.1
Brain (Thalamus) Pool
5.6


Fetal Liver
4.6
Brain (whole)
3.7


Liver ca. HepG2
20.9
Spinal Cord Pool
4.3


Kidney Pool
21.5
Adrenal Gland
3.4


Fetal Kidney
3.6
Pituitary gland Pool
1.1


Renal ca. 786-0
0.0
Salivary Gland
0.1


Renal ca. A498
3.0
Thyroid (female)
0.0


Renal ca. ACHN
1.3
Pancreatic ca.
0.0




CAPAN2


Renal ca. UO-31
1.3
Pancreas Pool
25.2










[0760]

285





TABLE AG










Panel 1.3D













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



g3041,
Ag3042,

Ag3041,
Ag3042,



Run
Run

Run
Run


Tissue Name
167964342
167964481
Tissue Name
167964342
167964481















Liver
0.1
0.1
Kidney (fetal)
2.1
1.6


adenocarcinoma


Pancreas
0.1
0.3
Renal ca. 786-0
0.0
0.0


Pancreatic ca.
0.0
0.0
Renal ca. A498
0.0
0.1


CAPAN 2


Adrenal gland
0.6
0.5
Renal ca. RXF 393
0.0
0.0


Thyroid
0.0
0.0
Renal ca. ACHN
0.0
0.0


Salivary gland
0.0
0.0
Renal ca. UO-31
0.0
0.0


Pituitary gland
0.6
1.0
Renal ca. TK-10
0.0
0.0


Brain (fetal)
0.5
0.3
Liver
0.1
0.0


Brain (whole)
1.1
0.4
Liver (fetal)
0.3
0.5


Brain (amygdala)
0.6
0.6
Liver ca.
32.3
27.5





(hepatoblast) HepG2


Brain (cerebellum)
1.4
1.0
Lung
0.1
0.0


Brain (hippocampus)
0.6
1.0
Lung (fetal)
0.1
0.2


Brain (substantia
0.7
0.6
Lung ca. (small cell)
0.0
0.0


nigra)


LX-1


Brain (thalamus)
0.2
0.1
Lung ca. (small cell)
0.5
0.3





NCI-H69


Cerebral Cortex
4.4
4.4
Lung ca. (s.cell var.)
0.5
0.3





SHP-77


Spinal cord
0.5
0.9
Lung ca. (large
0.1
0.1





cell)NCI-H460


glio/astro U87-MG
0.0
0.0
Lung ca. (non-sm.
0.3
0.1





cell) A549


glio/astro U-118-MG
0.0
0.0
Lung ca. (non-s.cell)
0.3
0.5





NCI-H23


astrocytoma
0.0
0.0
Lung ca. (non-s.cell)
0.1
0.1


SW1783


HOP-62


neuro*; met
1.3
0.9
Lung ca. (non-s.cl)
1.8
1.6


SK-N-AS


NCI-H522


astrocytoma SF-539
0.1
0.0
Lung ca. (squam.)
0.5
0.2


astrocytoma



SW 900


astrocytoma SNB-75
0.2
0.2
Lung ca. (squam.)
3.2
2.7





NCI-H596


glioma SNB-19
0.0
0.0
Mammary gland
0.7
0.5


glioma U251
0.0
0.0
Breast ca.* (pl.ef)
100.0
100.0





MCF-7


glioma SF-295
0.0
0.0
Breast ca.* (pl.ef)
0.0
0.0





MDA-MB-231


Heart (fetal)
2.2
1.0
Breast ca.* (pl.ef)
91.4
90.8





T47D


Heart
0.3
0.3
Breast ca. BT-549
0.0
0.0


Skeletal muscle
2.5
2.5
Breast ca. MDA-N
0.0
0.0


(fetal)


Skeletal muscle
0.8
0.5
Ovary
46.0
46.7


Bone marrow
0.0
0.0
Ovarian ca.
0.9
0.6





OVCAR-3


Thymus
0.0
0.0
Ovarian ca.
0.1
0.1





OVCAR-4


Spleen
0.0
0.0
Ovarian ca.
0.1
0.0





OVCAR-5


Lymph node
0.0
0.0
Ovarian ca.
0.1
0.1





OVCAR-8


Colorectal
0.1
0.1
Ovarian ca.
0.9
0.6





IGROV-1


Stomach
0.1
0.1
Ovarian ca.*
2.2
1.3





(ascites) SK-OV-3


Small intestine
0.2
0.1
Uterus
7.1
6.2


Colon ca. SW480
0.1
0.1
Placenta
0.1
0.1


Colon ca.*
0.7
0.6
Prostate
7.6
7.7


SW620(SW480 met)


Colon ca. HT29
0.0
0.0
Prostate ca.* (bone
0.0
0.0





met)PC-3


Colon ca. HCT-116
0.5
0.5
Testis
1.0
0.8


Colon ca. CaCo-2
0.9
0.7
Melanoma
0.0
0.0





Hs688(A).T


Colon ca.
0.1
0.1
Melanoma* (met)
0.0
0.0


tissue(ODO3866)


Hs688(B).T


Colon ca. HCC-2998
0.6
0.3
Melanoma
0.0
0.1





UACC-62


Gastric ca.* (liver
0.0
0.0
Melanoma M14
0.0
0.0


met) NCI-N87


Bladder
0.5
0.4
Melanoma LOX
0.0
0.0





IMVI


Trachea
0.0
0.0
Melanoma* (met)
0.0
0.0





SK-MEL-5


Kidney
0.7
0.7
Adipose
0.4
0.3










[0761]

286





TABLE AH










Panel 2.2











Rel. Ex.

Rel. Exp.



(%) Ag3041,

(%) Ag3041,



Run

Run


Tissue Name
174441332
Tissue Name
174441332













Normal Colon
6.3
Kidney Margin
5.2




(OD04348)


Colon cancer
0.4
Kidney malignant
0.5


(OD06064)

cancer (OD06204B)


Colon Margin
0.3
Kidney normal
0.6


(OD06064)

adjacent tissue




(OD06204E)


Colon cancer
0.0
Kidney Cancer
2.5


(OD06159)

(OD04450-01)


Colon Margin
0.3
Kidney Margin
1.0


(OD06159)

(OD04450-03)


Colon cancer
0.0
Kidney Cancer
0.0


(OD06297-04)

8120613


Colon Margin
0.0
Kidney Margin
5.4


(OD06297-05)

8120614


CC Gr.2 ascend
0.0
Kidney Cancer
0.4


colon (ODO3921)

9010320


CC Margin
0.4
Kidney Margin
1.0


(ODO3921)

9010321


Colon cancer
0.0
Kidney Cancer
0.0


metastasis

8120607


(OD06104)


Lung Margin
0.3
Kidney Margin
1.2


(OD06104)

8120608


Colon mets to lung
0.0
Normal Uterus
54.0


(OD04451-01)


Lung Margin
0.0
Uterine Cancer
7.1


(OD04451-02)

064011


Normal Prostate
22.4
Normal Thyroid
0.0


Prostate Cancer
16.6
Thyroid Cancer
0.0


(OD04410)

064010


Prostate Margin
24.1
Thyroid Cancer
0.0


(OD04410)

A302152


Normal Ovary
100.0
Thyroid Margin
0.0




A302153


Ovarian cancer
1.3
Normal Breast
10.3


(OD06283-03)


Ovarian Margin
0.0
Breast Cancer
1.2


(OD06283-07)

(OD04566)


Ovarian Cancer
1.4
Breast Cancer 1024
17.1


064008



Ovarian cancer
0.7
Breast Cancer
62.0


(OD06145)

(OD04590-01)


Ovarian Margin
17.9
Breast Cancer Mets
40.6


(OD06145)

(OD04590-03)


Ovarian cancer
3.8
Breast Cancer
53.2


(OD06455-03)

Metastasis




(OD04655-05)


Ovarian Margin
10.4
Breast Cancer 064006
7.9


(OD06455-07)


Normal Lung
0.1
Breast Cancer
87.7




9100266


Invasive poor diff.
0.6
Breast Margin
43.2


lung adeno

9100265


(ODO4945-01


Lung Margin
0.3
Breast Cancer
2.1


(ODO4945-03)

A209073


Lung Malignant
0.0
Breast Margin
17.0


Cancer (OD03126)

A2090734


Lung Margin
0.0
Breast cancer
52.1


(OD03126)

(OD06083)


Lung Cancer
0.0
Breast cancer node
40.9


(OD05014A)

metastasis (OD06083)


Lung Margin
0.3
Normal Liver
1.1


(OD05014B)


Lung cancer
0.4
Liver Cancer 1026
0.5


(OD06081)


Lung Margin
0.1
Liver Cancer 1025
3.0


(OD06081)


Lung Cancer
0.0
Liver Cancer 6004-T
0.0


(OD04237-01)


Lung Margin
0.2
Liver Tissue 6004-N
0.0


(OD04237-02)


Ocular Melanoma
2.0
Liver Cancer 6005-T
1.6


Metastasis


Ocular Melanoma
0.9
Liver Tissue 6005-N
1.3


Margin (Liver)


Melanoma
0.1
Liver Cancer 064003
4.0


Metastasis


Melanoma Margin
0.2
Normal Bladder
0.6


(Lung)


Normal Kidney
1.5
Bladder Cancer 1023
2.7


Kidney Ca, Nuclear
1.4
Bladder Cancer
0.0


grade 2 (OD04338)

A302173


Kidney Margin
1.7
Normal stomach
1.2


(OD04338)


Kidney Ca Nuclear
0.0
Gastric Cancer
0.0


grade ½

9060397


(OD04339)


Kidney Margin
1.7
Stomach Margin
0.5


(OD04339)

9060396


Kidney Ca, Clear
0.0
Gastric Cancer
0.5


cell type (OD04340)

9060395


Kidney Margin
1.1
Stomach Margin
1.5


(OD04340)

9060394


Kidney Ca, Nuclear
0.0
Gastric Cancer
0.2


grade 3 (OD04348)

064005










[0762]

287





TABLE AI










Panel 3D













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



Ag3041,
Ag4300,

Ag3041,
Ag4300,



Run
Run

Run
Run


Tissue Name
182098857
182114559
Tissue Name
182098857
182114559















Daoy-
11.9
0.0
Ca Ski- Cervical
2.7
0.0


Medulloblastoma


epidermoid carcinoma





(metastasis)


TE671-
0.8
0.0
ES-2- Ovarian clear
0.0
0.0


Medulloblastoma


cell carcinoma


D283 Med-
9.4
0.0
Ramos- Stimulated
0.0
0.0


Medulloblastoma


with PMA/ionomycin





6h


PFSK-1- Primitive
27.4
0.0
Ramos- Stimulated
0.0
0.0


Neuroectodermal


with PMA/ionomycin





14h


XF-498-CNS
0.0
10.3
MEG-01- Chronic
21.0
0.0





myelogenous leukemia





(megokaryoblast)


SNB-78-Glioma
0.0
0.0
Raji- Burkitt's
0.9
0.0





lymphoma


SF-268- Glioblastoma
1.0
0.0
Daudi- Burkitt's
2.0
0.0





lymphoma


T98G- Glioblastoma
0.0
0.0
U266- B-cell
75.8
2.5





plasmacytoma


SK-N-SH-
100.0
7.9
CA46- Burkitt's
5.6
0.0


Neuroblastoma


lymphoma


(metastasis)


SF-295- Glioblastoma
0.0
0.0
RL- non-Hodgkin's
2.2
0.0





B-cell lymphoma


Cerebellum
22.4
00
JM1- pre-B-cell
0.0
0.0





lymphoma


Cerebellum
19.8
0.0
Jurkat- T cell leukemia
1.0
0.0


NCI-H292-
0.0
0.0
TF-1- Erythroleukemia
0.0
0.0


Mucoepidermoid lung


carcinoma


DMS-114- Small cell
1.8
0.0
HUT 78- T-cell
40.6
0.0


lung cancer


lymphoma


DMS-79- Small cell
32.1
100.0
U937- Histiocytic
14.7
0.0


lung cancer


lymphoma


NCI-H146- Small cell
24.1
0.0
KU-812- Myelogenous
0.9
0.0


lung cancer


NCI-H526- Small cell
57.4
0.0
769-P- Clear cell renal
2.9
0.0


lung cancer


carcinoma


NCI-N417- Small cell
0.9
0.0
Caki-2- Clear cell
0.0
0.0


lung cancer


renal carcinoma


NCI-H82- Small cell
69.7
5.5
SW 839- Clear cell
0.0
0.0


lung cancer


renal carcinoma


NCI-H157- Squamous
1.7
0.0
G401- Wilms'tumor
36.1
0.0


cell lung cancer


(metastasis)


NCI-H1155- Large
8.5
0.0
Hs766T- Pancreatic
0.0
0.0


cell lung cancer


carcinoma (LN





metastasis)


NCI-H1299- Large
4.5
0.0
CAPAC-1- Pancreatic
2.1
0.0


cell lung cancer


adenocarcinoma (liver





metastasis)


NCI-H727- Lung
1.9
0.0
SU86.86- Pancreatic
6.8
0.0


carcinoid


carcinoma (liver





metastasis)


NCI-UMC-11-Lung
2.2
0.0
BxPC-3- Pancreatic
0.0
0.0


carcinoid


adenocarcinoma


LX-1- Small cell lung
0.0
0.0
HPAC- Pancreatic
0.0
0.0


cancer


adenocarcinoma


Colo-205- Colon
9.2
0.0
MIA PaCa-2-
0.0
0.0


cancer


Pancreatic carcinoma


KM12- Colon cancer
2.0
0.0
CFPAC-1- Pancreatic
3.3
0.0





ductal adenocarcinoma


KM20L2- Colon
0.0
0.0
PANC-1- Pancreatic
0.0
0.0


cancer


epithelioid ductal





carcinoma


NCI-H716- Colon
0.9
0.0
T24- Bladder carcinma
0.0
0.0


cancer


(transitional cell)


SW-48- Colon
0.0
0.0
5637- Bladder
0.0
0.0


adenocarcinoma


carcinoma


SW1116- Colon
0.0
0.0
HT-1197- Bladder
0.0
0.0


adenocarcinoma


carcinoma


LS 174T- Colon
0.0
0.0
UM-UC-3- Bladder
0.0
0.0


adenocarcinoma


carcinma (transitional





cell)


SW-948- Colon
1.1
0.0
A204-
6.7
0.0


adenocarcinoma


Rhabdomyosarcoma


SW-480- Colon
0.0
0.0
HT-1080-
0.0
5.4


adenocarcinoma


Fibrosarcoma


NCI-SNU-5- Gastric
3.9
0.0
MG-63- Osteosarcoma
7.7
0.0


carcinoma


KATO III- Gastric
1.0
0.0
SK-LMS-1-
0.0
0.0


carcinoma


Leiomyosarcoma





(vulva)


NCI-SNU-16- Gastric
0.0
0.0
SJRH30-
0.0
0.0


carcinoma


Rhabdomyosarcoma





(met to bone marrow)


NCI-SNU-1 - Gastric
0.0
0.0
A431- Epidermoid
0.0
0.0


carcinoma


carcinoma


RF-1- Gastric
1.9
0.0
WM266-4- Melanoma
0.0
94.6


adenocarcinoma


RF-48- Gastric
0.0
0.0
DE 145- Prostate
0.0
0.0


adenocarcinoma


carcinoma (brain





metastasis)


MKN-45- Gastric
0.0
0.0
MDA-MB-468- Breast
0.0
0.0


carcinoma


adenocarcinoma


NCI-N87- Gastric
0.0
0.0
SCC-4- Squamous cell
0.0
0.0


carcinoma


carcinoma of tongue


OVCAR-5- Ovarian
1.8
0.0
SCC-9- Squamous cell
0.0
0.0


carcinoma


carcinoma of tongue


RL95-2- Uterine
0.0
0.0
SCC-15- Squamous
0.0
0.0


carcinoma


cell carcinoma of





tongue


HelaS3- Cervical
8.0
0.0
CAL 27- Squamous
0.0
0.0


adenocarcinoma


cell carcinoma of





tongue










[0763]

288





TABLE AJ










Panel 4.1D











Rel. Exp.

Rel. Exp.



() Ag4301,

(%) Ag4301,



Run

Run


Tissue Name
181981970
Tissue Name
181981970













Secondary Th1 act
0.2
HUVEC IL-1beta
0.0


Secondary Th2 act
1.0
HUVEC IFN gamma
0.1


Secondary Tr1 act
1.3
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
0.5
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
0.6
HUVEC IL-11
0.0


Secondary Tr1 rest
0.7
Lung Microvascular
0.0




EC none


Primary Th1 act
0.0
Lung Microvascular
0.0




EC TNFalpha +




IL-1beta


Primary Th2 act
0.9
Microvascular Dermal
0.0




EC none


Primary Tr1 act
0.5
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
0.0




TNFalpha + IL-1beta


Primary Th2 rest
1.8
Small airway
0.0




epithelium none


Primary Tr1 rest
0.0
Small airway
0.0




epithelium




TNFalpha + IL-1beta


CD45RA CD4
0.0
Coronery artery SMC
0.0


lymphocyte act

rest


CD45RO CD4
0.8
Coronery artery SMC
0.0


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
4.6
Astrocytes rest
1.8


Secondary CD8
0.4
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
2.1
KU-812 (Basophil)
0.4


lymphocyte act

rest


CD4 lymphocyte
0.6
KU-812 (Basophil)
0.6


none

PMA/ionomycin


2ry Th1/Th2/
1.9
CCD1106
0.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
0.0
CCD1106
0.6




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
3.1
Liver cirrhosis
1.5


LAK cells IL-2 +
2.1
NCI-H292 none
0.0


IL-12


LAK cells IL-2 +
0.9
NCI-H292 IL-4
0.0


IFN gamma


LAK cells IL-2 +
0.0
NCI-H292 IL-9
0.0


IL-18


LAK cells PMA/
0.0
NCI-H292 IL-13
0.6


ionomycin


NK Cells IL-2 rest
2.0
NCI-H292 IFN gamma
0.3


Two Way MLR 3
0.6
HPAEC none
0.0


day


Two Way MLR 5
0.8
HPAEC TNF alpha +
0.4


day

IL-1 beta


Two Way MLR 7
1.3
Lung fibroblast
0.0


day

none


PBMC rest
0.0
Lung fibroblast TNF
0.0




alpha + IL-1 beta


PBMC PWM
1.0
Lung fibroblast IL-4
0.0


PBMC PHA-L
0.7
Lung fibroblast IL-9
0.0


Ramos (B cell) none
1.3
Lung fibroblast IL-13
1.3


Ramos (B cell)
3.8
Lung fibroblast IFN
0.0


ionomycin

gamma


B lymphocytes
0.6
Dermal fibroblast
0.6


PWM

CCD1070 rest


B lymphocytes
0.0
Dermal fibroblast
1.4


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
100.0
Dermal fibroblast
0.0




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.3
Dermal fibroblast IFN
0.0


PMA/ionomycin

gamma


Dendritic cells none
0.3
Dermal fibroblast IL-4
0.0


Dendritic cells LPS
0.0
Dermal Fibroblasts
0.0




rest


Dendritic cells
0.0
Neutrophils TNFa +
0.7


anti-CD40

LPS


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
0.4
Colon
0.9


Macrophages rest
0.0
Lung
5.1


Macrophages LPS
0.0
Thymus
5.8


HUVEC none
0.0
Kidney
54.3


HUVEC starved
0.0










[0764]

289





TABLE AK










AK general oncology screening panel v 2.4















Rel.
Rel.
Rel.

Rel.
Rel.
Rel.



Exp. (%)
Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)
Exp. (%)



Ag3042,
Ag4300,
Ag4301,

Ag3042,
Ag4300,
Ag4301,



Run
Run
Run

Run
Run
Run


Tissue Name
268695244
260280468
268665966
issue Name
268695244
260280468
268665966

















Colon cancer 1
0.1
0.0
0.1
Bladder NAT
0.0
0.0
0.0






2


Colon NAT 1
0.1
0.0
0.0
Bladder NAT
0.0
0.0
0.0






3


Colon cancer 2
0.2
0.0
0.1
Bladder NAT
0.1
0.0
0.0






4


Colon NAT 2
0.0
0.0
0.0
Prostate
1.7
5.6
1.1






adenocarcinoma






1


Colon cancer 3
0.1
0.0
0.1
Prostate
2.6
0.8
1.1






adenocarcinoma






2


Colon NAT 3
0.1
0.0
0.1
Prostate
20.0
31.9
13.4






adenocarcinoma






3


Colon
0.1
0.0
0.1
Prostate
0.7
0.0
0.7


malignant



adenocarcinoma


cancer 4



4


Colon NAT 4
0.0
0.0
0.0
Prostate NAT
4.3
6.5
2.5






5


Lung cancer 1
0.0
0.0
0.0
Prostate
11.1
14.5
9.2






adenocarcinoma






6


Lung NAT 1
0.0
0.0
0.0
Prostate
7.0
9.9
3.3






adenocarcinoma






7


Lung cancer 2
6.9
14.7
5.8
Prostate
2.9
4.0
1.6






adenocarcinoma






8


Lung NAT 2
0.0
0.0
0.0
Prostate
7.9
12.5
5.8






adenocarcinoma






9


Squamous cell
0.3
0.0
0.2
Prostate NAT
2.7
4.7
2.0


carcinoma 3



10


Lung NAT 3
0.0
0.0
0.0
Kidney
0.0
0.0
0.0






cancer 1


Metastatic
15.8
24.1
15.2
Kidney NAT
0.1
0.0
0.1


melanoma 1



1


Melanoma 2
0.1
0.0
0.0
Kidney
3.3
8.8
2.1






cancer 2


Melanoma 3
0.0
0.0
0.0
Kidney NAT
0.3
0.0
0.5






2


Metastatic
100.0
100.0
100.0
Kidney
0.3
0.0
0.2


melanoma 4



cancer 3


Metastatic
34.9
63.3
24.0
Kidney NAT
0.1
0.0
0.1


melanoma 5



3


Bladder cancer
0.0
0.0
0.0
Kidney
0.5
0.3
0.5


1



cancer 4


Bladder NAT 1
0.0
0.0
0.0
Kidney NAT
0.2
0.0
0.3






4


Bladder cancer
0.1
0.0
0.1



2










[0765] CNS_neurodegeneration_v1.0 Summary: Ag4300/Ag4301 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.


[0766] General_screening_panel_v1.4 Summary: Ag4300 Highest expression of this gene is detected in a breast cancer MCF-7 cell line (CT=25). This gene codes for Greb 1 protein. High expression of this gene is upregulated in response to estrogen in MCF-7 (Ghosh et al., 2000, Cancer Res 60(22):6367-75, PMID: 11103799). In addition, high to moderate levels of expression of this gene is also seen in number of cell lines derived from melanoma, ovarian, breast, lung, liver, renal, colon and brain cancers. Therefore, expression of this gene may be used as diagnostic marker for detection of these cancers. Furthermore, therapeutic modulation of this gene may be useful in the treatment of these cancers.


[0767] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, pituitary gland, skeletal muscle, heart, fetal liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0768] Interestingly, this gene is expressed at much higher levels in fetal (CT=29.6) when compared to adult liver (CT=35.9). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver related diseases.


[0769] High expression of this gene is also detected in adult lung (CT=26). Expression of this gene is higher in adult as compared to fetal lung (CT=31). Therefore, expression of this gene may be used to distinguish between adult and fetal lung.


[0770] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0771] Panel 1.3D Summary: Ag3041/Ag3042 Two experiments with same probe and primer sets are in excellent agreement. Highest expression of this gene is detected in a breast cancer MCF-7 cell line (CTs=26.9). Moderate to low levels of expression of this gene is also seen in ovarian, breast, lung, liver, and brain cancer cell lines, brain and tissues with metabolic and endocrine function such as adipose, skeletal muscle, fetal heart, adrenal and pituatary glands. Please see panel 1.4 for further discussion on the utility of this gene.


[0772] Panel 2.2 Summary: Ag3041 Highest expression of this gene is detected in normal uterus (CT=30.9). Moderate to low levels of expression of this gene are also seen in both cancer and normal prostate, breast, and uterus. Therefore, therapeutic modulation of this gene may be useful in the treatment of these cancers.


[0773] Panel 3D Summary: Ag3041 Highest expression of this gene is detected in a neuroblastoma SK-N-SH cell line (CT=32.9). In addition, moderate to low levels of expression of this gene is also seen in cancer cell line derived from small lung cancer, B and T cell lymphoma, and Wilm's tumor. Ag4300 Highest expression of this gene is seen in small lung cancer and melanoma cell line (CT=31.7).


[0774] Therefore, therapeutic modulation of this gene may be useful in the treatment of neuroblastoma, small lung cancer, B and T cell lymphoma and Wilm's tumor.


[0775] Panel 4.1D Summary: Ag4301 Highest expression of this gene is detected in eosinophils (CT=30.7). Differential gene expression is observed in the eosinophil cell line EOL-1 under resting conditions over that in EOL-1 cells stimulated by phorbol ester and ionomycin (CT=39). Thus, this gene may be involved in eosinophil function. Antibodies raised against this protein that stimulate its activity may be useful in the reduction of eosinophil activation and in the treatment of asthma and allergy and T cell-mediated autoimmune and inflammatory diseases.


[0776] Moderate levels of expression of this gene are also detected in kidney. Therefore, therapeutic modulation of this gene may be useful in kidney related diseases including lupus and glomerulonephritis.


[0777] Ag4300 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0778] Panel 4D Summary: Ag3041/Ag3042 Results from two experiments with this gene are not included. The amp plot indicates that there were experimental difficulties with this run. (Data not shown).


[0779] general oncology screening panel_v2.4 Summary: Ag3042/Ag4300/Ag4301 Three experiments with different probe and primer sets are in excellent agreement. Highest expression of this gene is detected in metastatic melanoma (CTs=25-25.9). In addition, moderate to high expression of this gene is also detected in lung, prostate and kidney cancers. Thus, expression of this gene may be used as diagnostic marker for the detection of metastic melanoma, lung, prostate and kidney cancers.


[0780] B. CG106417-01: von Willebrand Factor Like Protein


[0781] Expression of gene CG106417-01 was assessed using the primer-probe set Ag4470, described in Table BA. Results of the RTQ-PCR runs are shown in Tables BB, BC, BD, BE and BF.
290TABLE BAProbe Name Ag4470StartSEQ IDPrimersLengthPositionNoForward5′-gcatcaggtgtacagacattga-3′22441227ProbeTET-5′-cgaatgtgtaacctcctcctgcgag-3′-TAMRA25463228Reverse5′-acaaacccaccttctgtgttc-3′21499229


[0782]

291





TABLE BB










AI_comprehensive panel_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag4470,

(%) Ag4470,



Run

Run


Tissue Name
249008358
issue Name
249008358













110967 COPD-F
3.0
112427 Match Control
25.7




Psoriasis-F


110980 COPD-F
8.7
112418 Psoriasis-M
4.3


110968 COPD-M
3.4
112723 Match Control
27.5




Psoriasis-M


110977 COPD-M
38.2
112419 Psoriasis-M
2.6


110989
31.4
112424 Match Control
4.0


Emphysema-F

Psoriasis-M


110992
3.3
112420 Psoriasis-M
13.7


Emphysema-F


110993
5.5
112425 Match Control
25.7


Emphysema-F

Psoriasis-M


110994
2.1
104689 (MF) OA
7.3


Emphysema-F

Bone-Backus


110995
15.4
104690 (MF) Adj
1.2


Emphysema-F

“Normal” Bone-




Backus


110996
2.0
104691 (MF) OA
11.3


Emphysema-F

Synovium-Backus


110997 Asthma-M
0.8
104692 (BA) OA
7.4




Cartilage-Backus


111001 Asthma-F
7.7
104694 (BA) OA
2.0




Bone-Backus


111002 Asthma-F
5.5
104695 (BA) Adj
5.3




“Normal” Bone-




Backus


111003 Atopic
6.0
104696 (BA) OA
6.3


Asthma-F

Synovium-Backus


111004 Atopic
12.4
104700 (SS) OA
5.6


Asthma-F

Bone-Backus


111005 Atopic
5.6
104701 (SS) Adj
5.8


Asthma-F

“Normal” Bone-




Backus


111006 Atopic
1.4
104702 (SS) OA
15.1


Asthma-F

Synovium-Backus


111417 Allergy-M
3.5
117093 OA Cartilage
12.2




Rep7


112347 Allergy-M
5.8
112672 OA Bone5
97.3


112349 Normal
6.1
112673 OA
46.0


Lung-F

Synovium5


112357 Normal
100.0
112674 OA Synovial
32.5


Lung-F

Fluid cells5


112354 Normal
69.3
117100 OA Cartilage
0.0


Lung-M

Rep14


112374 Crohns-F
9.4
112756 OA Bone9
14.8


112389 Match
7.1
112757 OA
17.4


Control Crohns-F

Synovium9


112375 Crohns-F
7.4
112758 OA Synovial
5.2




Fluid Cells9


112732 Match
6.7
117125 RA Cartilage
7.9


Control Crohns-F

Rep2


112725 Crohns-M
5.8
113492 Bone2 RA
1.5


112387 Match
0.0
113493 Synovium2
0.0


Control Crohns-M

RA


112378 Crohns-M
4.7
113494 Syn Fluid
0.0




Cells RA


112390 Match
52.5
113499 Cartilage4 RA
2.0


Control Crohns-M


112726 Crohns-M
7.9
113500 Bone4 RA
1.7


112731 Match
13.1
113501 Synovium4
2.3


Control Crohns-M

RA


112380 Ulcer Col-F
13.2
113502 Syn Fluid
0.7




Cells4 RA


112734 Match
8.4
113495 Cartilage3 RA
1.2


Control Ulcer Col-F


112384 Ulcer Col-F
2.8
113496 Bone3 RA
2.3


112737 Match
2.8
113497 Synovium3
0.0


Control Ulcer Col-F

RA


112386 Ulcer Col-F
0.0
113498 Syn Fluid
0.8




Cells3 RA


112738 Match
1.6
117106 Normal
5.7


Control Ulcer Col-F

Cartilage Rep20


112381 Ulcer
9.4
113663 Bone3 Normal
0.9


Col-M


112735 Match
25.2
113664 Synovium3
1.6


Control Ulcer

Normal


Col-M


112382 Ulcer
7.6
113665 Syn Fluid
3.3


Col-M

Cells3 Normal


112394 Match
0.0
117107 Normal
3.5


Control Ulcer

Cartilage Rep22


Col-M


112383 Ulcer
6.6
113667 Bone4 Normal
8.7


Col-M



112736 Match
2.4
113668 Synovium4
12.8


Control Ulcer

Normal


Col-M


112423 Psoriasis-F
4.5
113669 Syn Fluid
24.3




Cells4 Normal










[0783]

292





TABLE BC










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag4470,

(%) Ag4470,



Run

Run


Tissue Name
224535165
issue Name
224535165













AD 1 Hippo
13.7
Control (Path) 3
2.8




Temporal Ctx


AD 2 Hippo
22.2
Control (Path) 4
31.6




Temporal Ctx


AD 3 Hippo
6.3
AD 1 Occipital Ctx
17.8


AD 4 Hippo
10.7
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
35.1
AD 3 Occipital Ctx
7.9


AD 6 Hippo
95.9
AD 4 Occipital Ctx
11.3


Control 2 Hippo
15.8
AD 5 Occipital Ctx
9.3


Control 4 Hippo
23.7
AD 6 Occipital Ctx
20.3


Control (Path) 3
0.0
Control 1 Occipital
5.8


Hippo

Ctx


AD 1 Temporal Ctx
15.0
Control 2 Occipital
36.3




Ctx


AD 2 Temporal Ctx
14.8
Control 3 Occipital
9.4




Ctx


AD 3 Temporal Ctx
2.6
Control 4 Occipital
10.7




Ctx


AD 4 Temporal Ctx
23.7
Control (Path) 1
54.7




Occipital Ctx


AD 5 Inf Temporal
38.4
Control (Path) 2
10.0


Ctx

Occipital Ctx


AD 5 SupTemporal
29.7
Control (Path) 3
0.0


Ctx

Occipital Ctx


AD 6 Inf Temporal
85.3
Control (Path) 4
18.3


Ctx

Occipital Ctx


AD 6 Sup Temporal
100.0
Control 1 Parietal Ctx
7.4


Ctx



Control 1 Temporal
7.7
Control 2 Parietal Ctx
33.2


Ctx


Control 2 Temporal
28.5
Control 3 Parietal Ctx
9.6


Ctx


Control 3 Temporal
16.7
Control (Path) 1
22.4


Ctx

Parietal Ctx


Control 4 Temporal
14.5
Control (Path) 2
28.1


Ctx

Parietal Ctx


Control (Path) 1
32.3
Control (Path) 3
2.2


Temporal Ctx

Parietal Ctx


Control (Path) 2
34.9
Control (Path) 4
44.1


Temporal Ctx

Parietal Ctx










[0784]

293





TABLE BD










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4470,

(%) Ag4470,



Run

Run


Tissue Name
222655825
issue Name
222655825













Adipose
4.8
Renal ca. TK-10
54.0


Melanoma*
3.3
Bladder
2.9


Hs688(A).T


Melanoma*
3.1
Gastric ca. (liver met.)
2.3


Hs688(B).T

NCI-N87


Melanoma* M14
2.8
Gastric ca. KATO III
0.8


Melanoma*
0.2
Colon ca. SW-948
0.5


LOXIMVI


Melanoma*
0.8
Colon ca. SW480
3.3


SK-MEL-5


Squamous cell
0.6
Colon ca.* (SW480
16.2


carcinoma SCC-4

met) SW620


Testis Pool
5.5
Colon ca. HT29
0.0


Prostate ca.* (bone
3.0
Colon ca. HCT-116
4.4


met) PC-3


Prostate Pool
1.1
Colon ca. CaCo-2
94.0


Placenta
10.0
Colon cancer tissue
16.5


Uterus Pool
2.3
Colon ca. SW1116
0.6


Ovarian ca.
0.8
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
0.4
Colon ca. SW-48
0.2


SK-OV-3


Ovarian ca.
0.3
Colon Pool
2.6


OVCAR-4


Ovarian ca.
1.6
Small Intestine Pool
10.8


OVCAR-5


Ovarian ca.
0.5
Stomach Pool
2.4


IGROV-1


Ovarian ca.
0.9
Bone Marrow Pool
1.0


OVCAR-8


Ovary
7.7
Fetal Heart
2.6


Breast ca. MCF-7
0.9
Heart Pool
1.7


Breast ca.
1.2
Lymph Node Pool
2.7


MDA-MB-231


Breast ca. BT 549
1.8
Fetal Skeletal Muscle
2.3


Breast ca. T47D
4.9
Skeletal Muscle Pool
0.8


Breast ca. MDA-N
0.3
Spleen Pool
0.6


Breast Pool
2.4
Thymus Pool
16.3


Trachea
4.5
CNS cancer (glio/
5.7




astro) U87-MG


Lung
7.9
CNS cancer (glio/
2.7




astro) U-118-MG


Fetal Lung
3.8
CNS cancer (neuro;
4.8




met) SK-N-AS


Lung ca. NCI-N417
3.9
CNS cancer (astro)
0.0




SF-539


Lung ca. LX-1
0.9
CNS cancer (astro)
5.2




SNB-75


Lung ca. NCI-H146
0.8
CNS cancer (glio)
0.5




SNB-19


Lung ca. SHP-77
2.3
CNS cancer (glio)
8.3




SF-295


Lung ca. A549
0.9
Brain (Amygdala)
2.9




Pool


Lung ca. NCI-H526
2.9
Brain (cerebellum)
5.9


Lung ca. NCI-H23
1.4
Brain (fetal)
25.3


Lung ca. NCI-H460
2.2
Brain (Hippocampus)
3.7




Pool


Lung ca. HOP-62
2.0
Cerebral Cortex Pool
4.6


Lung ca. NCI-H522
31.6
Brain (Substantia
4.7




nigra) Pool


Liver
20.7
Brain (Thalamus) Pool
3.8


Fetal Liver
63.7
Brain (whole)
9.2


Liver ca. HepG2
100.0
Spinal Cord Pool
3.6


Kidney Pool
11.2
Adrenal Gland
4.2


Fetal Kidney
5.3
Pituitary gland Pool
0.8


Renal ca. 786-0
1.6
Salivary Gland
1.0


Renal ca. A498
0.8
Thyroid (female)
2.0


Renal ca. ACHN
2.2
Pancreatic ca.
0.0




CAPAN2


Renal ca. UO-31
12.9
Pancreas Pool
3.0










[0785]

294





TABLE BE










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag4470,

(%) Ag4470,



Run

Run


Tissue Name
191882058
Tissue Name
191882058













Secondary Th1 act
21.8
HUVEC IL-1beta
11.1


Secondary Th2 act
14.9
HUVEC IFN gamma
29.9


Secondary Tr1 act
11.3
HUVEC TNF alpha +
4.5




IFN gamma


Secondary Th1 rest
5.3
HUVEC TNF alpha +
45.7




IL4


Secondary Th2 rest
1.8
HUVEC IL-11
28.3


Secondary Tr1 rest
2.3
Lung Microvascular
71.2




EC none


Primary Th1 act
42.0
Lung Microvascular
27.7




EC TNFalpha +




IL-1beta


Primary Th2 act
37.6
Microvascular Dermal
38.4




EC none


Primary Tr1 act
42.3
Microsvasular Dermal
24.1




EC TNFalpha +




IL-1beta


Primary Th1 rest
1.1
Bronchial epithelium
5.0




TNFalpha + IL-1beta


Primary Th2 rest
1.3
Small airway
6.6




epithelium none


Primary Tr1 rest
0.0
Small airway
1.3




epithelium




TNFalpha + IL-1beta


CD45RA CD4
5.9
Coronery artery SMC
10.3


lymphocyte act

rest


CD45RO CD4
9.9
Coronery artery SMC
1.8


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
19.2
Astrocytes rest
1.4


Secondary CD8
10.4
Astrocytes
3.1


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
4.5
KU-812 (Basophil)
29.5


lymphocyte act

rest


CD4 lymphocyte
0.6
KU-812 (Basophil)
18.9


none

PMA/ionomycin


2ry Th1/Th2/
4.9
CCD1106
2.3


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
1.1
CCD1106
0.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
3.5
Liver cirrhosis
10.2


LAK cells IL-2 +
1.4
NCI-H292 none
16.6


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
9.0


IFN gamma


LAK cells IL-2 +
2.3
NCI-H292 IL-9
32.5


IL-18


LAK cells PMA/
3.3
NCI-H292 IL-13
5.3


ionomycin


NK Cells IL-2 rest
3.9
NCI-H292 IFN gamma
15.5


Two Way MLR 3
4.8
HPAEC none
37.9


day


Two Way MLR 5
9.3
HPAEC TNF alpha +
17.4


day

IL-1 beta


Two Way MLR 7
9.4
Lung fibroblast
22.7


day

none


PBMC rest
0.0
Lung fibroblast TNF
11.7




alpha + IL-1 beta


PBMC PWM
20.6
Lung fibroblast IL-4
17.7


PBMC PHA-L
18.3
Lung fibroblast IL-9
36.1


Ramos (B cell) none
4.5
Lung fibroblast IL-13
36.1


Ramos (B cell)
9.2
Lung fibroblast IFN
11.7


ionomycin

gamma


B lymphocytes
20.3
Dermal fibroblast
1.3


PWM

CCD1070 rest


B lymphocytes
10.4
Dermal fibroblast
0.8


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
1.9
Dermal fibroblast
1.6




CCD1070 IL-1 beta


EOL-1 dbcAMP
2.7
Dermal fibroblast IFN
5.4


PMA/ionomycin

gamma


Dendritic cells none
5.1
Dermal fibroblast IL-4
100.0


Dendritic cells LPS
6.7
Dermal Fibroblasts
39.5




rest


Dendritic cells
7.9
Neutrophils TNFa +
0.0


anti-CD40

LPS


Monocytes rest
1.0
Neutrophils rest
0.5


Monocytes LPS
1.6
Colon
0.5


Macrophages rest
13.0
Lung
0.7


Macrophages LPS
0.0
Thymus
59.9


HUVEC none
18.3
Kidney
0.7


HUVEC starved
13.5










[0786]

295





TABLE BF










general oncology screening panel_v_2.4











Rel. Exp.

Rel. Exp.



(%) Ag4470,

(%) Ag4470,



Run

Run


Tissue Name
260280484
Tissue ame
260280484













Colon cancer 1
1.0
Bladder NAT 2
0.1


Colon NAT 1
3.0
Bladder NAT 3
0.0


Colon cancer 2
0.0
Bladder NAT 4
1.1


Colon NAT 2
0.3
Prostate
4.3




adenocarcinoma 1


Colon cancer 3
1.1
Prostate
1.5




adenocarcinoma 2


Colon NAT 3
0.0
Prostate
1.8




adenocarcinoma 3


Colon malignant
2.2
Prostate
4.4


cancer 4

adenocarcinoma 4


Colon NAT 4
0.0
Prostate NAT 5
1.0


Lung cancer 1
0.4
Prostate
0.5




adenocarcinoma 6


Lung NAT 1
0.2
Prostate
0.2




adenocarcinoma 7


Lung cancer 2
58.2
Prostate
0.7




adenocarcinoma 8


Lung NAT 2
0.0
Prostate
1.7




adenocarcinoma 9


Squamous cell
1.3
Prostate NAT 10
0.6


carcinoma 3


Lung NAT 3
46.3
Kidney cancer 1
9.5


Metastatic melanoma 1
28.9
Kidney NAT 1
3.7


Melanoma 2
1.4
Kidney cancer 2
100.0


Melanoma 3
0.3
Kidney NAT 2
2.2


Metastatic melanoma 4
26.2
Kidney cancer 3
71.7


Metastatic melanoma 5
16.3
Kidney NAT 3
1.9


Bladder cancer 1
0.3
Kidney cancer 4
75.8


Bladder NAT 1
0.0
Kidney NAT 4
0.9


Bladder cancer 2
1.0










[0787] AI_comprehensive panel_v1.0 Summary: Ag4470 These results confirm expression of this gene in cells involved in the immune response. Highest expression of this gene is seen in normal lung (CT=30.5). Please see Panel 4D for discussion of utility of this gene in inflammation.


[0788] CNS_neurodegeneration_v1.0 Summary: Ag4470 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at low but significant levels in the brain. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0789] General_screening_panel_v1.4 Summary: Ag4470 Highest expression of this gene is seen in a liver cancer cell line (CT=30), with moderate levels of expression seen in fetal and adult liver, and cell lines derived from colon, renal and lung cancers. Thus, expression of this gene could be used to differentiate liver derived tissue from other samples on this panel.


[0790] Panel 4.1D Summary: Ag4470 Highest expression of this gene in this experiment is detected in IL-4 treated dermal fibroblasts (CTs=30). In addition, this experiment shows low but significant levels of expresion in resting neutrophils (CT=33.2). In addition, this gene is expressed at moderate levels in IFN gamma stimulated dermal fibroblasts, activated lung fibroblasts, BPAECs, lung and dermal microvasculature, activated small airway and bronchial epithelium, activated NCI-H292 cells, acutely activated T cells, and activated B cells. Based on these levels of expression in T cells, activated B cells and cells in lung and skin, therapeutics that block the function of this gene product may be useful as therapeutics that reduce or eliminate the symptoms in patients with autoimmune and inflammatory diseases in which activated B cells present antigens in the generation of the aberrant immune response and in treating T-cell mediated diseases, including Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, allergy, emphysema, rheumatoid arthritis, or psoriasis.


[0791] general oncology screening panel_v2.4 Summary: Ag4470 Highest expression of this gene is seen in kidney cancer (CT=30). In addition, this gene is more highly expressed in lung and kidney cancer than in the corresponding normal adjacent tissue. Thus, expression of this gene could be used as a marker of these cancers. Furthemore, therapeutic modulation of the expression or function of this gene product may be useful in the treatment of lung and kidney cancer.


[0792] C. CG106417-04: von Willebrand Factor like Protein


[0793] Expression of gene CG106417-04 was assessed using the primer-probe sets Ag1294b, Ag746, Ag905 and Ag4726, described in Tables CA, CB, CC and CD. Results of the RTQ-PCR runs are shown in Tables CE, CF, CG, CH, CI, CJ and CK.
296TABLE CAProbe Name Ag1294bStartSEQ IDPrimersLengthPositionNoForward5′-cattggcagctacaagtgttc-3′21408230ProbeTET-5′-ctgtcgaactggcttccaccttcat-3′-TAMRA25429231Reverse5′-cctccgacactcgtttacatc-3′21475232


[0794]

297






TABLE CB










Probe Name Ag746
















Start
SEQ ID



Primers

Length
Position
No





Forward
5′-gcattggcagctacaagtgt-3′
20
407
233






Probe
TET-5′-ctgtcgaactggcttccaccttcat-3′-TAMRA
25
429
234





Reverse
5′-cctccgacactcgtttacatc-3′
21
475
235










[0795]

298






TABLE CC










Probe Name Ag905












Primers
Sequence
Length
Start Position
SEQ ID No















Forward
5′-cattggcagctacaagtgttc-3′
21
408
236






Probe
TET-5′-ctgtcgaactggcttccaccttcat-
25
429
237



3′-TAMRA








Reverse
5′-cctccgacactcgtttacatc-3′
21
475
238










[0796]

299






TABLE CD










Probe Name Ag4726











Primers
Length
Start Position
SEQ ID No















Forward
5′-gtgtctgtctggctggaaac-3′
20
1226
239






Probe
TET-5′-tgcatctctcctgagtgtccttctgg
26
1252
240



-3′-TAMRA








Reverse
5′-acaagtacagcaatccgtctgt-3′
22
1296
241










[0797]

300





TABLE CE










AI_comprehensive panel_v1.0











Rel. Exp.

Rel. Exp.



(%)

(%)



Ag1294b,

Ag1294b,



Run

Run


Tissue Name
249007981
issue Name
249007981













110967 COPD-F
6.6
112427 Match Control
30.8




Psoriasis-F


110980 COPD-F
16.6
112418 Psoriasis-M
4.6


110968 COPD-M
3.9
112723 Match Control
23.8




Psoriasis-M


110977 COPD-M
31.6
112419 Psoriasis-M
2.7


110989
45.1
112424 Match Control
1.9


Emphysema-F

Psoriasis-M


110992
7.2
112420 Psoriasis-M
4.9


Emphysema-F


110993
5.8
112425 Match Control
25.9


Emphysema-F

Psoriasis-M


110994
3.3
104689 (MF) OA
12.9


Emphysema-F

Bone-Backus


110995
2.0
104690 (MF) Adj
3.7


Emphysema-F

“Normal” Bone-




Backus


110996
3.1
104691 (MF) OA
6.9


Emphysema-F

Synovium-Backus


110997 Asthma-M
3.7
104692 (BA) OA
21.3




Cartilage-Backus


111001 Asthma-F
2.8
104694 (BA) OA
6.6




Bone-Backus


111002 Asthma-F
5.3
104695 (BA) Adj
2.3




“Normal” Bone-




Backus


111003 Atopic
6.1
104696 (BA) OA
5.7


Asthma-F

Synovium-Backus


111004 Atopic
3.4
104700 (SS) OA
6.2


Asthma-F

Bone-Backus


111005 Atopic
3.9
104701 (SS) Adj
3.8


Asthma-F

“Normal” Bone-




Backus


111006 Atopic
2.4
104702 (SS) OA
15.4


Asthma-F

Synovium-Backus


111417 Allergy-M
6.6
117093 OA Cartilage
18.0




Rep7


112347 Allergy-M
3.3
112672 OA Bone5
90.1


112349 Normal
3.2
112673 OA
63.7


Lung-F

Synovium5


112357 Normal
100.0
112674 OA Synovial
32.3


Lung-F

Fluid cells5


112354 Normal
58.6
117100 OA Cartilage
3.3


Lung-M

Rep14


112374 Crohns-F
7.5
112756 OA Bone9
7.0


112389 Match
3.5
112757 OA
12.2


Control Crohns-F

Synovium9


112375 Crohns-F
5.1
112758 OA Synovial
3.9




Fluid Cells9


112732 Match
0.5
117125 RA Cartilage
4.6


Control Crohns-F

Rep2


112725 Crohns-M
10.6
113492 Bone2 RA
2.4


112387 Match
3.5
113493 Synovium2
1.1


Control Crohns-M

RA


112378 Crohns-M
1.7
113494 Syn Fluid
1.4




Cells RA


112390 Match
55.5
113499 Cartilage4 RA
1.4


Control Crohns-M


112726 Crohns-M
3.6
113500 Bone4 RA
0.5


112731 Match
13.9
113501 Synovium4
1.7


Control Crohns-M

RA


112380 Ulcer Col-F
13.7
113502 Syn Fluid
1.8




Cells4 RA


112734 Match
5.6
113495 Cartilage3 RA
1.6


Control Ulcer Col-F


112384 Ulcer Col-F
3.9
113496 Bone3 RA
1.1


112737 Match
3.3
113497 Synovium3
0.0


Control Ulcer Col-F

RA


112386 Ulcer Col-F
0.0
113498 Syn Fluid
0.6




Cells3 RA


112738 Match
0.0
117106 Normal
4.5


Control Ulcer Col-F

Cartilage Rep20


112381 Ulcer
4.2
113663 Bone3 Normal
6.7


Col-M


112735 Match
18.2
113664 Synovium3
1.2


Control Ulcer

Normal


Col-M


112382 Ulcer
4.2
113665 Syn Fluid
0.9


Col-M

Cells3 Normal


112394 Match
0.0
117107 Normal
1.3


Control Ulcer

Cartilage Rep22


Col-M


112383 Ulcer
12.2
113667 Bone4 Normal
11.8


Col-M



112736 Match
2.0
113668 Synovium4
12.0


Control Ulcer

Normal


Col-M


112423 Psoriasis-F
3.9
113669 Syn Fluid
10.7




Cells4 Normal










[0798]

301





TABLE CF










CNS neurodegeneration v1.0













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



Ag1274b,
Ag4726,

Ag1294b,
Ag4726,



Run
Run

Run
Run


Tissue Name
206231468
224706360
issue Name
206231468
224706360















AD 1 Hippo
11.2
11.6
Control (Path) 3
1.5
11.4





Temporal Ctx


AD 2 Hippo
22.5
23.5
Control (Path) 4
19.2
20.3





Temporal Ctx


AD 3 Hippo
4.7
0.0
AD 1 Occipital Ctx
15.8
17.4


AD 4 Hippo
8.7
15.2
AD 2 Occipital Ctx
0.0
0.0





(Missing)


AD 5 hippo
37.6
35.6
AD 3 Occipital Ctx
1.2
3.6


AD 6 Hippo
100.0
100.0
AD 4 Occipital Ctx
17.8
7.9


Control 2 Hippo
28.7
21.9
AD 5 Occipital Ctx
8.7
17.6


Control 4 Hippo
30.4
40.3
AD 6 Occipital Ctx
12.3
30.8


Control (Path) 3
6.9
3.6
Control 1 Occipital
0.0
3.0


Hippo


Ctx


AD 1 Temporal Ctx
16.3
26.1
Control 2 Occipital
27.4
34.6





Ctx


AD 2 Temporal Ctx
31.6
25.2
Control 3 Occipital
5.4
2.8





Ctx


Ad 3 Temporal Ctx
3.8
5.6
Control 4 Occipital
6.7
15.4





Ctx


AD 4 Temporal Ctx
10.9
36.1
Control (Path) 1
56.3
85.3





Occipital Ctx


AD 5 Inf Temporal
34.6
35.8
Control (Path) 2
10.4
21.8


Ctx


Occipital Ctx


AD 5 SupTemporal
19.6
55.9
Control (Path) 3
1.2
0.0


Ctx


Occipital Ctx


AD 6 Inf Temporal
73.7
76.8
Control (Path) 4
6.3
5.0


Ctx


Occipital Ctx


AD 6 Sup Temporal
81.2
97.9
Control 1 Parietal
6.4
9.7


Ctx


Ctx


Control 1 Temporal
1.2
5.1
Control 2 Parietal
39.5
55.9


Ctx


Ctx


Control 2 Temporal
15.5
42.9
Control 3 Parietal
4.4
11.2


Ctx


Ctx


Control 3 Temporal
5.9
18.4
Control (Path) 1
17.6
45.4


Ctx


Parietal Ctx


Control 4 Temporal
7.9
17.2
Control (Path) 2
17.6
12.1


Ctx


Parietal Ctx


Control (Path) 1
41.8
43.5
Control (Path) 3
0.0
4.2


Temporal Ctx


Parietal Ctx


Control (Path) 2
26.2
36.6
Control (Path) 4
26.4
30.1


Temporal Ctx


Parietal Ctx










[0799]

302





TABLE CG










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4726,

(%) Ag4726,



Run

Run


Tissue Name
222842378
issue Name
222842378













Adipose
3.3
Renal ca. TK-10
41.8


Melanoma*
2.7
Bladder
1.8


Hs688(A).T


Melanoma*
2.7
Gastric ca. (liver met.)
2.0


Hs688(B).T

NCI-N87


Melanoma* M14
4.8
Gastric ca. KATO III
0.6


Melanoma*
0.1
Colon ca. SW-948
0.6


LOXIMVI


Melanoma*
0.4
Colon ca. SW480
0.7


SK-MEL-5


Squamous cell
0.2
Colon ca.* (SW480
12.8


carcinoma SCC-4

met) SW620


Testis Pool
4.3
Colon ca. HT29
0.1


Prostate ca.* (bone
1.6
Colon ca. HCT-116
3.7


met) PC-3


Prostate Pool
0.5
Colon ca. CaCo-2
31.9


Placenta
7.7
Colon cancer tissue
7.9


Uterus Pool
0.1
Colon ca. SW1116
1.0


Ovarian ca.
0.7
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
0.6
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
0.3
Colon Pool
1.0


OVCAR-4


Ovarian ca.
1.1
Small Intestine Pool
4.9


OVCAR-5


Ovarian ca.
1.4
Stomach Pool
3.4


IGROV-1


Ovarian ca.
0.7
Bone Marrow Pool
0.0


OVCAR-8


Ovary
5.0
Fetal Heart
0.7


Breast ca. MCF-7
0.4
Heart Pool
0.7


Breast ca.
0.5
Lymph Node Pool
2.6


MDA-MB-231


Breast ca. BT 549
0.7
Fetal Skeletal Muscle
1.6


Breast ca. T47D
4.2
Skeletal Muscle Pool
1.0


Breast ca. MDA-N
0.2
Spleen Pool
0.4


Breast Pool
0.8
Thymus Pool
7.9


Trachea
1.3
CNS cancer (glio/
6.4




astro) U87-MG


Lung
5.5
CNS cancer (glio/
1.6




astro) U-118-MG


Fetal Lung
1.8
CNS cancer (neuro;
4.4




met) SK-N-AS


Lung ca. NCI-N417
3.6
CNS cancer (astro)
0.2




SF-539


Lung ca. LX-1
0.7
CNS cancer (astro)
4.4




SNB-75


Lung ca. NCI-H146
0.8
CNS cancer (glio)
1.1




SNB-19


Lung ca. SHP-77
0.3
CNS cancer (glio)
5.1




SF-295


Lung ca. A549
0.8
Brain (Amygdala)
2.5




Pool


Lung ca. NCI-H526
2.1
Brain (cerebellum)
7.3


Lung ca. NCI-H23
0.8
Brain (fetal)
12.2


Lung ca. NCI-H460
1.2
Brain (Hippocampus)
1.9




Pool


Lung ca. HOP-62
0.5
Cerebral Cortex Pool
2.6


Lung ca. NCI-H522
20.2
Brain (Substantia
2.1




nigra) Pool


Liver
11.6
Brain (Thalamus) Pool
3.9


Fetal Liver
61.1
Brain (whole)
8.5


Liver ca. HepG2
100.0
Spinal Cord Pool
1.9


Kidney Pool
6.7
Adrenal Gland
2.6


Fetal Kidney
2.0
Pituitary gland Pool
0.6


Renal ca. 786-0
1.7
Salivary Gland
0.9


Renal ca. A498
1.3
Thyroid (female)
1.8


Renal ca. ACHN
2.5
Pancreatic ca.
0.0




CAPAN2


Renal ca. UO-31
10.6
Pancreas Pool
1.1










[0800]

303





TABLE CH










Panel 1.2













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



Ag746,
Ag746,

Ag746,
Ag746,



Run
Run

Run
Run


Tissue Name
115163442
119442272
Tissue Name
115163442
119442272















Endothelial cells
12.3
5.9
Renal ca. 786-0
0.0
0.0


Heart (Fetal)
0.0
0.0
Renal ca. A498
0.0
0.0


Pancreas
0.0
0.0
Renal ca. RXF 393
0.0
0.0


Pancreatic ca.
0.0
0.0
Renal ca. ACHN
0.0
0.0


CAPAN 2


Adrenal Gland
0.0
0.2
Renal ca. UO-31
0.0
0.0


Thyroid
0.1
0.0
Renal ca. TK-10
0.0
0.0


Salivary gland
0.0
0.0
Liver
32.8
53.2


Pituitary gland
0.2
0.1
Liver (fetal)
72.7
100.0


Brain (fetal)
2.4
16.0
Liver ca.
100.0
94.0





(hepatoblast) HepG2


Brain (whole)
0.0
0.3
Lung
0.0
0.0


Brain (amygdala)
0.0
0.0
Lung (fetal)
0.0
0.0


Brain (cerebellum)
0.0
0.0
Lung ca. (small cell)
0.0
0.0





LX-1


Brain (hippocampus)
0.0
0.0
Lung ca. (small cell)
0.0
0.0





NCI-H69


Brain (thalamus)
0.0
0.0
Lung ca. (s.cell var.)
0.0
0.0





SHP-77


Cerebral Cortex
0.0
0.0
Lung ca. (large
0.0
0.0





cell)NCI-H460


Spinal cord
0.0
0.0
Lung ca. (non-sm.
0.0
0.0





cell) A549


glio/astro U87-MG
0.0
0.0
Lung ca. (non-s.cell)
0.0
0.0





NCI-H23


glio/astro U-118-MG
0.0
0.0
Lung ca. (non-s.cell)
0.0
0.0





HOP-62


astrocytoma
0.0
0.0
Lung ca. (non-s.cl)
63.7
90.1


SW1783


NCI-H522


neuro*; met
0.0
0.2
Lung ca. (squam.)
0.0
0.0


SK-N-AS


SW 900


astrocytoma SF-539
0.0
0.0
Lung sa. (squam.)
0.0
0.0





NCI-H596


astrocytoma SNB-75
0.0
0.0
Mammary gland
0.7
3.6


glioma SNB-19
0.0
0.0
Breast ca.* (pl.ef)
0.0
0.0





MCF-7


glioma U251
0.0
0.0
Breast ca.* (pl.ef)
0.0
0.0





MDA-MB-231


glioma SF-295
0.0
0.0
Breast ca.* (pl. ef)
0.0
0.0





T47D


Heart
0.0
0.0
Breast ca. BT-549
0.0
0.0


Skeletal Muscle
0.0
0.0
Breast ca. MDA-N
0.0
0.0


Bone marrow
0.0
0.0
Ovary
0.5
11.7


Thymus
1.2
2.8
Ovarian ca.
0.0
0.0





OVCAR-3


Spleen
0.0
0.0
Ovarian ca.
0.0
0.0





OVCAR-4


Lymph node
0.0
0.0
Ovarian ca.
0.0
0.0





OVCAR-5


Colorectal Tissue
0.0
0.0
Ovarian ca.
0.0
0.0





OVCAR-8


Stomach
0.0
0.0
Ovarian ca.
0.0
0.0





IGROV-1


Small intestine
0.0
0.0
Ovarian ca. (ascites)
0.0
0.0





SK-OV-3


Colon ca. SW480
0.0
0.0
Uterus
0.0
0.0


Colon ca.* SW620
1.1
1.9
Placenta
34.4
39.5


(SW480 met)


Colon ca. HT29
0.0
0.0
Prostate
0.0
0.0


Colon ca. HCT-116
0.0
0.0
Prostate ca.* (bone
0.0
0.0





met) PC-3


Colon ca. CaCo-2
46.3
56.6
Testis
1.0
3.5


Colon ca. Tissue
0.0
0.0
Melanoma
0.0
0.0


(ODO3866)


Hs688(A).T


Colon ca. HCC-2998
0.0
0.0
Melanoma* (met)
0.0
0.0





Hs688(B).T


Gastric ca.* (liver
0.0
0.0
Melanoma
0.0
0.0


met) NCI-N87


UACC-62


Bladder
0.0
0.0
Melanoma M14
0.0
0.0


Trachea
0.0
0.0
Melanoma LOX
0.0
0.0





IMVI


Kidney
0.0
0.0
Melanoma* (met)
0.0
0.0





SK-MEL-5


Kidney (fetal)
0.1
0.9










[0801]

304





TABLE CI










Panel 2D













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



Ag746,
Ag746,

Ag746,
Ag746,



Run
Run

Run
Run


Tissue Name
147127131
148019631
Tissue Name
147127131
148019631















Normal Colon
18.3
21.8
Kidney Margin
6.5
6.4





8120608


CC Well to Mod Diff
16.5
23.7
Kidney Cancer
2.2
0.7


(ODO3866)


8120613


CC Margin
3.1
0.0
Kidney Margin
6.3
3.0


(ODO3866)


8120614


CC Gr.2 rectosigmoid
0.0
0.8
Kidney Cancer
10.9
16.5


(ODO3868)


9010320


CC Margin
0.5
2.0
Kidney Margin
9.0
11.3


(ODO3868)


9010321


CC Mod Diff
1.2
2.3
Normal Uterus
4.3
6.3


(ODO3920)


CC Margin
1.3
2.3
Uterus Cancer
13.4
17.7


(ODO3920)


064011


CC Gr.2 ascend colon
3.4
4.4
Normal Thyroid
9.1
14.9


(ODO3921)


CC Margin
1.3
0.0
Thyroid Cancer
6.4
5.9


(ODO3921)


CC from Partial
8.4
1.9
Thyroid Cancer
4.4
5.1


Hepatectomy


A302152


(ODO4309) Mets


Liver Margin
49.7
41.5
Thyroid Margin
12.0
22.1


(ODO4309)


A302153


Colon mets to lung
0.3
5.3
Normal Breast
9.9
14.3


(ODO4451-01)


Lung Margin
0.0
1.8
Breast Cancer
0.4
0.2


(ODO4451-02)


(ODO4566)


Normal Prostate
9.1
12.1
Breast Cancer
5.3
3.9


6546-1


(ODO4590-01)


Prostate Cancer
2.0
9.7
Breast Cancer Mets
4.0
10.4


(ODO4410)


(ODO4590-03)


Prostate Margin
16.8
20.3
Breast Cancer
7.2
4.4


(ODO4410)


Metastasis





(ODO4655-05)


Prostate Cancer
13.5
14.4
Breast Cancer
5.2
3.3


(ODO4720-01)


064006


Prostate Margin
14.0
22.4
Breast Cancer 1024
12.1
18.6


(ODO4720-02)


Normal Lung 061010
6.8
11.7
Breast Cancer
2.7
5.3





9100266


Lung Met to Muscle
1.8
0.7
Breast Margin
5.0
5.8


(ODO4286)


9100265


Muscle Margin
11.5
13.1
Breast Cancer
0.5
1.8


(ODO4286)


A209073


Lung Malignant
1.5
6.0
Breast Margin
1.7
0.4


Cancer (ODO3126)


A209073


Lung Margin
4.8
2.4
Normal Liver
39.5
47.0


(ODO3126)


Lung Cancer
4.2
2.3
Liver Cancer
4.2
0.6


(ODO4404)


064003


Lung Margin
9.0
10.4
Liver Cancer 1025
66.4
74.2


(ODO4404)


Lung Cancer
0.3
0.0
Liver Cancer 1026
36.1
42.6


(ODO4565)


Lung Margin
0.4
0.3
Liver Cancer
100.0
100.0


(ODO4565)


6004-T


Lung Cancer
10.7
11.1
Liver Tissue
22.8
34.4


(ODO4237-01)


6004-N


Lung Margin
4.9
5.4
Liver Cancer
39.2
35.4


(ODO4237-02)


6005-T


Ocular Mel Met to
10.5
11.9
Liver Tissue
33.2
38.2


Liver (ODO4310)


6005-N


Liver Margin
22.4
32.8
Normal Bladder
6.6
4.9


(ODO4310)


Melanoma Mets to
0.0
0.0
Bladder Cancer
1.0
4.8


Lung (ODO4321)


1023


Lung Margin
0.6
0.0
Bladder Cancer
2.6
0.7


(ODO4321)


A302173


Normal Kidney
5.3
5.3
Bladder Cancer
0.0
0.7





(ODO4718-01)


Kidney Ca. Nuclear
39.8
43.8
Bladder Normal
3.5
14.4


grade 2 (ODO4338)


Adjacent





(ODO4718-30)


Kidney Margin
4.8
6.4
Normal Ovary
50.7
47.3


(ODO4338)


Kidney Ca Nuclear
3.0
0.3
Ovarian Cancer
10.2
7.4


grade ½ (ODO4339)


064008


Kidney Margin
5.4
10.0
Ovarian Cancer
73.7
80.7


(ODO4339)


(ODO4768-07)


Kidney Ca, Clear cell
18.2
19.2
Ovary Margin
2.6
0.8


type (ODO4340)


(ODO4768-08)


Kidney Margin
9.0
10.4
Normal Stomach
2.9
2.9


(ODO4340)


Kidney Ca, Nuclear
5.2
8.3
Gastric Cancer
0.0
1.1


grade 3 (ODO4348)


9060358


Kidney Margin
6.9
4.7
Stomach Margin
2.4
0.3


(ODO4348)


9060359


Kidney Cancer
41.8
45.4
Gastric Cancer
0.5
1.1


(ODO4622-01)


9060395


Kidney Margin
1.9
1.4
Stomach Margin
5.2
2.0


(ODO4622-03)

9060394


Kidney Cancer
9.2
6.2
Gastric Cancer
3.4
7.0


(ODO4450-01)


9060397


Kidney Margin
10.2
9.0
Stomach Margin
1.4
0.0


(ODO4450-03)


9060396


Kidney Cancer
2.2
1.7
Gastric Cancer
1.3
6.0


8120607


064005










[0802]

305





TABLE CJ.










Panel 4.1D













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



Ag1294b,
Ag4726,

Ag1294b,
Ag4726,



Run
Run

Run
Run


Tissue Name
200065765
204150067
Tissue Name
200065765
204150067















Secondary Th1 act
15.3
8.4
HUVEC IL-1beta
5.6
10.2


Secondary Th2 act
7.2
0.4
HUVEC IFN gamma
21.9
13.3


Secondary Tr1 act
5.5
3.1
HUVEC TNF alpha +
3.5
1.1





IFN gamma


Secondary Th1 rest
6.7
0.5
HUVEC TNF alpha +
31.2
19.1





IL4


Secondary Th2 rest
1.0
2.6
HUVEC IL-11
17.7
20.7


Secondary Tr1 rest
1.3
0.5
Lung Microvascular
65.1
61.6





EC none


Primary Th1 act
26.6
24.8
Lung Microvascular
34.4
30.4





EC TNFalpha +





IL-1beta


Primary Th2 act
34.2
19.8
Microvascular
42.3
29.9





Dermal EC none


Primary Tr1 act
40.3
27.9
Microvascular
16.7
7.6





Dermal EC





TNFalpha + IL-1beta


Primary Th1 rest
0.3
0.0
Bronchial epithelium
2.4
4.4





TNFalpha + IL1beta


Primary Th2 rest
0.5
0.0
Small airway
1.7
4.2





epithelium none


Primary Tr1 rest
0.0
1.1
Small airway
2.5
2.4





epithelium TNFalpha +





IL-1beta


CD45RA CD4
7.7
2.2
Coronery artery SMC
9.0
2.1


lymphocyte act


rest


CD45RO CD4
10.9
16.5
Coronery artery SMC
5.2
4.1


lymphocyte act


TNFalpha + IL-1beta


CD8 lymphocyte act
11.0
9.9
Astrocytes rest
2.1
0.8


Secondary CD8
11.8
8.9
Astrocytes TNFalpha +
2.2
1.2


lymphocyte rest


IL-1beta


Secondary CD8
4.7
1.9
KU-812 (Basophil)
10.2
14.9


lymphocyte act


rest


CD4 lymphocyte none
0.0
0.0
KU-812 (Basophil)
11.1
8.6





PMA/ionomycin


2ry
1.7
2.5
CCD1106
0.0
0.9


Th1/Th2/Tr1_anti-CD95


(Keratinocytes) none


CH11


LAK cells rest
0.0
1.4
CCD1106
0.6
0.0





(Keratinocytes)





TNFalpha + IL-1beta


LAK cells IL-2
3.1
1.7
Liver cirrhosis
6.8
6.0


LAK cells IL-2 + IL-12
2.9
1.1
NCI-H292 none
21.3
10.3


LAK cells IL-2 + IFN
0.5
1.3
NCI-H292 IL-4
11.5
7.3


gamma


LAK cells IL-2 + IL-18
0.5
1.1
NCI-H292 IL-9
13.8
17.4


LAK cells
1.0
4.2
NCI-H292 IL-13
19.9
6.7


PMA/ionomycin


NK Cells IL-2 rest
1.4
2.0
NCI-H292 IFN
7.3
13.8





gamma


Two Way MLR 3 day
3.1
1.8
HPAEC none
20.4
28.9


Two Way MLR 5 day
5.0
4.2
HPAEC TNF alpha +
21.5
15.4





IL-1 beta


Two Way MLR 7 day
4.7
4.0
Lung fibroblast none
23.5
15.7


PBMC rest
0.6
0.0
Lung fibroblast TNF
8.8
9.2





alpha + IL-1 beta


PBMC PWM
11.5
9.9
Lung fibroblast IL-4
21.2
24.7


PBMC PHA-L
7.2
14.1
Lung fibroblast IL-9
16.8
18.2


Ramos (B cell) none
1.8
2.0
Lung fibroblast IL-13
33.2
19.8


Ramos (B cell)
3.4
2.7
Lung fibroblast IFN
19.1
7.8


ionomycin


gamma





CCD1070 rest


B lymphocytes CD40L
12.2
11.0
Dermal fibroblast
0.0
0.2


and IL-4


CCD1070 TNF alpha


EOL-1 dbcAMP
1.5
3.2
Dermal fibroblast
1.5
4.5





CCD1070 IL-1 beta


EOL-1 dbcAMP
1.1
0.5
Dermal fibroblast
45.1
32.8


PMA/ionomycin


IFN gamma


Dendritic cells none
8.5
4.0
Dermal fibroblast
100.0
100.0





IL-4


Dendritic cell LPS
6.4
5.9
Dermal Fibroblasts
53.6
39.2





rest


Dendritic cells
8.7
4.7
Neutrophils
1.5
0.6


anti-CD40


TNFa + LPS


Monocytes rest
0.0
0.0
Neutrophils rest
10.2
0.1


Monocytes LPS
1.1
2.2
Colon
1.5
1.6


Macrophages rest
8.8
4.8
Lung
1.7
1.3


Macrophages LPS
0.0
0.0
Thymus
40.1
25.0


HUVEC none
10.1
8.5
Kidney
1.5
0.0


HUVEC starved
7.6
11.4










[0803]

306





TABLE CK










Panel 4D













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



Ag1294b,
Ag1294b,

Ag1294b,
Ag1294b,



Run
Run

Run
Run


Tissue Name
138944262
139408252
Tissue Name
138944262
139408252















Secondary Th1 act
10.9
7.7
HUVEC IL-1beta
4.1
1.7


Secondary Th2 act
6.4
8.0
HUVEC IFN gamma
21.0
13.7


Secondary Tr1 act
11.3
9.3
HUVEC TNF alpha +
2.8
0.6





IFN gamma


Secondary Th1 rest
3.4
2.7
HUVEC TNF alpha +
30.8
25.7





IL4


Secondary Th2 rest
1.5
2.5
HUVEC IL-11
11.6
7.3


Secondary Tr1 rest
1.4
2.0
Lung Microvascular
24.1
20.0





EC none


Primary Th1 act
48.0
46.0
Lung Microvascular
8.0
12.2





EC TNFalpha +





IL-1beta


Primary Th2 act
38.7
27.7
Microvascular
64.6
45.7





Dermal EC none


Primary Tr1 act
72.2
55.5
Microsvasular
18.4
11.7





Dermal EC





TNFalpha + IL-1beta


Primary Th1 rest
3.1
2.3
Bronchial epithelium
5.2
5.4





TNFalpha + IL1beta


Primary Th2 rest
1.0
0.8
Small airway
4.0
3.2





epithelium none


Primary Tr1 rest
1.1
0.5
Small airway
8.2
4.5





epithelium TNFalpha +





IL-1beta


CD45RA CD4
2.9
1.8
Coronery artery SMC
5.8
6.3


lymphocyte act


rest


CD45RO CD4
18.6
12.2
Coronery artery SMC
4.5
5.1


lymphocyte act


TNFalpha + IL-1beta


CD8 lymphocyte act
17.8
6.8
Astrocytes rest
0.8
0.5


Secondary CD8
6.8
6.0
Astrocytes TNFalpha +
3.6
1.9


lymphocyte rest


IL-1beta


Secondary CD8
5.5
4.1
KU-812 (Basophil)
16.0
11.1


lymphocyte act


rest


CD4 lymphocyte none
0.0
0.2
KU-812 (Basophil)
12.3
9.5





PMA/ionomycin


2ry
2.9
3.1
CCD1106
0.0
0.5


Th1/Th2/Tr1_anti-CD95


(Keratinocytes) none


CH11


LAK cells rest
1.4
0.3
CCD1106
0.7
0.4





(Keratinocytes)





TNFalpha + IL-1beta


LAK cells IL-2
3.8
2.2
Liver cirrhosis
8.4
3.8


LAK cells IL-2 + IL-12
3.0
0.8
Lupus kidney
2.0
3.2


LAK cells IL-2 + IFN
2.0
1.7
NCI-H292 none
21.9
25.7


gamma


LAK cells IL-2 + IL-18
0.5
0.2
NCI-H292 IL-4
15.7
12.3


LAK cells
0.7
1.3
NCI-H292 IL-9
20.6
14.7


PMA/ionomycin


NK Cells IL-2 rest
0.7
0.7
NCI-H292 IL-13
8.3
5.7


Two Way MLR 3 day
1.1
2.5
NCI-H292 IFN
5.1
8.2





gamma


Two Way MLR 5 day
2.5
2.8
HPAEC none
18.7
23.8


Two Way MLR 7 day
4.5
5.0
HPAEC TNF alpha +
11.9
12.9





IL-1 beta


PBMC rest
0.0
0.0
Lung fibroblast none
15.7
13.5


PBMC PWM
41.8
29.1
Lung fibroblast TNF
6.9
4.7





alpha + IL-1 beta


PBMC PHA-L
34.4
21.8
Lung fibroblast IL-4
25.0
16.6


Ramos (B cell) none
4.7
2.4
Lung fibroblast IL-9
14.7
15.8


Ramos (B cell)
9.2
5.8
Lung fibroblast IL-13
40.3
32.5


ionomycin


B lymphocytes PWM
51.8
51.4
Lung fibroblast IFN
15.4
17.4





gamma


B lymphocytes CD40L
10.2
12.3
Dermal fibroblast
0.5
0.9


and IL-4


CCD1070 rest


EOL-1 dbcAMP
0.3
0.2
Dermal fibroblast
0.9
0.8





CCD1070 TNF alpha


EOL-1 dbcAMP
0.4
1.8
Dermal fibroblast
0.6
0.6


PMA/ionomycin


CCD1070 IL-1 beta


Dendritic cells none
6.7
3.8
Dermal fibroblast
32.1
18.4





IFN gamma


Dendritic cells LPS
4.7
3.1
Dermal fibroblast
100.0
100.0





IL-4


Dendritic cells
6.0
5.6
IBD Colitis 2
0.0
0.0


anti-CD40


Monocytes rest
0.0
0.0
IBD Crohn's
0.3
0.8


Monocytes LPS
0.7
0.8
Colon
1.4
0.5


Macrophages rest
19.8
9.9
Lung
0.5
0.8


Macrophages LPS
0.7
0.5
Thymus
2.9
4.3


HUVEC none
9.3
10.2
Kidney
65.5
47.3


HUVEC starved
19.2
13.1










[0804] AI_comprehensive panel_v1.0 Summary: Ag1294b Expression of this gene in this panel confirms expression of this gene in cells involved in the immune response. Highest expression of this gene is seen in normal lung (CT=30.5). Please see Panel 4D for discussion of utility of this gene in inflammation.


[0805] CNS_neurodegeneration_v1.0 Summary: Ag1294b/Ag4726 Two experiments with different probe and primer sets produce results that are in reasonable agreement. This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at low but significant levels in the brain. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0806] General_screening_panel_v1.4 Summary: Ag4726 Highest expression of this gene is seen in a liver cancer cell line (CTs=30), with moderate levels of expression seen in fetal and adult liver, and cell lines derived from colon, renal and lung cancers. Thus, expression of this gene could be used to differentiate liver derived tissue from other samples on this panel.


[0807] Panel 1.2 Summary: Ag746 Two experiments with the same probe and primer set produce results that are in excellent agreement, with highest expression of this gene in a liver cancer cell line (CTs=27). High levels of expression are also seen in fetal and adult liver tissue, a colon cancer cell line and a lung cancer cell line. Thus, expression of this gene could be used to differentiate liver derived samples, the colon cancer cell line and the lung cancer cell line from other samples on this panel. Expression of this gene could also be used as a diagnostic marker to detect the presence of colon and lung cancers.


[0808] Moderate expression is also seen in the fetal brain, placenta, and endothelial cells.


[0809] Panel 2D Summary: Ag746 Two experiments with the same probe and primer set produce results that are in excellent agreement, with highest expression of this gene in liver cancer (CTs=31). The prominent expression in liver derived tissue is consistent with the results in Panel 1.2. Moderate levels of expression are also evident in samples from ovarian cancer and kidney cancer. Furthermore, expression of this gene is higher in these cancers than in the normal adjacent tissue. Thus, expression of this gene could be used to differentiate between liver derived samples and other samples on this panel and as a marker to detect the presence of liver, kidney, and ovarian cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of liver, kidney, and ovarian cancers.


[0810] Panel 4.1D Summary: Ag1294b/Ag4726 Results from three experiments with three different probe and primer sets are in agreement with the expression profile in Panel 4D, with highest expression of this gene in this experiment in IL-4 treated dermal fibroblasts (CTs=30). In addition, this experiment shows low but significant levels of expresion in resting neutrophils (CT=33.2), a sample absent in Panel 4D. Please see Panel 4D for discussion of utility of this gene in inflammation.


[0811] Panel 4D Summary: Ag1294b Two experiments with the same probe and primer set produce results that are in excellent agreement, with highest expression of this gene in IL-4 treated dermal fibroblasts (CTs=30). In addition, this gene is expressed at moderate levels in IFN gamma stimulated dermal fibroblasts, activated lung fibroblasts, HPAECs, lung and dermal microvasculature, activated small airway and bronchial epithelium, activated NCI-H292 cells, acutely activated T cells, and activated B cells.


[0812] Based on these levels of expression in T cells, activated B cells and cells in lung and skin, therapeutics that block the function of this gene product may be useful as therapeutics that reduce or eliminate the symptoms in patients with autoimmune and inflammatory diseases in which activated B cells present antigens in the generation of the aberrant immune response and in treating T-cell mediated diseases, including Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, allergy, emphysema, rheumatoid arthritis, or psoriasis.


[0813] D. CG108901-03: Cytokine Receptor


[0814] Expression of full length physical clone CG108901-03 was assessed using the primer-probe set Ag6889, described in Table DA. Results of the RTQ-PCR runs are shown in Table DB.
307TABLE DAProbe Name Ag6889PrimersLengthStart PositionSEQ ID NoForward5′-aaggaaagggccctgcct-3′1861242ProbeTET-5′-caacgtccaccagctgcaccatcac-2590243Reverse5′-gaaccatggagaacagctgga-3′21120244


[0815]

308





TABLE DB










General_screening_panel_v1.6











Rel. Exp.

Rel. Exp.



(%) Ag6889,

(%) Ag6889,



Run

Run


Tissue Name
278388254
issue Name
278388254













Adipose
0.1
Renal ca. TK-10
1.0


Melanoma*
0.0
Bladder
0.6


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
0.0


Hs688(B).T

NCI-N87


Melanoma* M14
0.0
Gastric ca. KATO III
0.0


Melanoma*
0.4
Colon ca. SW-948
0.0


LOXIMVI


Melanoma*
0.0
Colon ca. SW480
0.3


SK-MEL-5


Squamous cell
0.0
Colon ca.* (SW480
0.0


carcinoma SCC-4

met) SW620


Testis Pool
0.0
Colon ca. HT29
0.0


Prostate ca.* (bone
0.0
Colon ca. HCT-116
0.1


met) PC-3


Prostate Pool
0.1
Colon ca. CaCo-2
0.2


Placenta
100.0
Colon cancer tissue
0.2


Uterus Pool
0.0
Colon ca. SW1116
0.0


Ovarian ca.
0.0
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
0.1
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
0.1
Colon Pool
0.1


OVCAR-4


Ovarian ca.
0.1
Small Intestine Pool
0.1


OVCAR-5


Ovarian ca.
0.4
Stomach Pool
0.0


IGROV-1


Ovarian ca.
0.3
Bone Marrow Pool
0.0


OVCAR-8


Ovary
0.0
Fetal Heart
0.0


Breast ca. MCF-7
0.0
Heart Pool
0.0


Breast ca.
0.1
Lymph Node Pool
0.0


MDA-MB-231


Breast ca. BT 549
0.0
Fetal Skeletal Muscle
0.0


Breast ca. T47D
0.0
Skeletal Muscle Pool
0.0


Breast ca. MDA-N
0.0
Spleen Pool
0.4


Breast Pool
0.1
Thymus Pool
0.2


Trachea
0.1
CNS cancer (glio/
0.0




astro) U87-MG


Lung
0.0
CNS cancer (glio/
0.0




astro) U-118-MG


Fetal Lung
0.1
CNS cancer (neuro;
0.0




met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
0.0




SF-539


Lung ca. LX-1
0.0
CNS cancer (astro)
0.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
0.2




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
0.0




SF-295


Lung ca. A549
0.0
Brain (Amygdala)
0.1




Pool


Lung ca. NCI-H526
0.0
Brain (cerebellum)
0.3


Lung ca. NCI-H23
0.8
Brain (fetal)
0.2


Lung ca. NCI-H460
0.0
Brain (Hippocampus)
0.1




Pool


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
0.1


Lung ca. NCI-H522
0.4
Brain (Substantia
0.1




nigra) Pool


Liver
0.1
Brain (Thalamus) Pool
0.1


Fetal Liver
0.3
Brain (whole)
0.1


Liver ca. HepG2
0.3
Spinal Cord Pool
0.2


Kidney Pool
0.1
Adrenal Gland
0.3


Fetal Kidney
0.0
Pituitary gland Pool
0.0


Renal ca. 786-0
0.3
Salivary Gland
0.1


Renal ca. A498
0.2
Thyroid (female)
0.0


Renal ca. ACHN
0.1
Pancreatic ca.
0.1




CAPAN2


Renal ca. UO-31
0.5
Pancreas Pool
0.0










[0816] General_screening_panel_v1.6 Summary: Ag6889 High expression of this gene is restricted to placenta. Thus, expression of this gene may be used as a marker to distinguish placenta from other samples. This gene codes for a splice variant of EBV-induced gene 3 (EBI3), encodes a 34-kDa glycoprotein which lacks a membrane-anchoring motif and is secreted. EBI3 is shown to be expressed in vivo by scattered cells in interfollicular zones of tonsil tissue, by cells associated with sinusoids in perifollicular areas of spleen tissue, and at very high levels by placental syncytiotrophoblasts (Devergne et al., 1996, J. Virol. 70: 1143-1153, PMID:8551575). In addition, EBI3 levels are strongly up-regulated in sera from pregnant women and gradually increased with gestational age. EBI3 is an important immunomodulator in the fetal-maternal relationship, possibly involved in NK cell regulation (Devergne et al., 2001, Am J Pathol November 2001;159(5):1763-76, PMID: 11696437). Thus, therapeutic modulation of this gene or EBI3 protein encoded by this gene may be useful in the treatment of placenta or pregnancy related diseases.


[0817] E. CG108901-04: Cytokine Receptor


[0818] Expression of full length physical clone CG108901-04 was assessed using the primer-probe set Ag7033, described in Table EA. Results of the RTQ-PCR runs are shown in Tables EB and EC.
309TABLE EAProbe Name Ag7033PrimersSequenceLengthStart PositionSEQ ID NoForward5′-ctcccactgcacctgtagct-3′20254245ProbeTET-5′-taacagaccacatcatcaagcccgac27313246c-3′-TAMRAReverse5′-accagccccgtgccttt-3′17342247


[0819]

310





TABLE EB










General_screening_panel_v1.6











Rel. Exp.

Rel. Exp.



(%) Ag7033,

(%) Ag7033,



Run

Run


Tissue Name
282263480
issue Name
282263480













Adipose
0.0
Renal ca. TK-10
0.0


Melanoma*
0.0
Bladder
0.0


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
0.0


Hs688(B).T

NCI-N87


Melanoma* M14
0.0
Gastric ca. KATO III
0.0


Melanoma*
0.0
Colon ca. SW-948
0.0


LOXIMVI


Melanoma*
0.0
Colon ca. SW480
0.0


SK-MEL-5


Squamous cell
0.0
Colon ca.* (SW480
0.0


carcinoma SCC-4

met) SW620


Testis Pool
0.0
Colon ca. HT29
0.0


Prostate ca.* (bone
0.0
Colon ca. HCT-116
0.0


met) PC-3


Prostate Pool
0.0
Colon ca. CaCo-2
0.0


Placenta
100.0
Colon cancer tissue
0.0


Uterus Pool
0.0
Colon ca. SW1116
0.0


Ovarian ca.
0.0
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
0.0
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
0.0
Colon Pool
0.0


OVCAR-4


Ovarian ca.
0.0
Small Intestine Pool
0.0


OVCAR-5


Ovarian ca.
0.0
Stomach Pool
0.0


IGROV-1


Ovarian ca.
0.0
Bone Marrow Pool
0.0


OVCAR-8


Ovary
0.0
Fetal Heart
0.0


Breast ca. MCF-7
0.0
Heart Pool
0.0


Breast ca.
0.0
Lymph Node Pool
0.0


MDA-MB-231


Breast ca. BT 549
0.0
Fetal Skeletal Muscle
0.0


Breast ca. T47D
0.0
Skeletal Muscle Pool
0.0


Breast ca. MDA-N
0.0
Spleen Pool
0.0


Breast Pool
0.0
Thymus Pool
0.0


Trachea
0.0
CNS cancer (glio/
0.0




astro) U87-MG


Lung
0.0
CNS cancer (glio/
0.0




astro) U-118-MG


Fetal Lung
0.0
CNS cancer (neuro;
0.0




met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
0.0




SF-539


Lung ca. LX-1
0.0
CNS cancer (astro)
0.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
0.0




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
0.0




SF-295


Lung ca. A549
0.0
Brain (Amygdala)
0.0




Pool


Lung ca. NCI-H526
0.0
Brain (cerebellum)
0.0


Lung ca. NCI-H23
0.0
Brain (fetal)
0.0


Lung ca. NCI-H460
0.0
Brain (Hippocampus)
0.0




Pool


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
0.0


Lung ca. NCI-H522
0.0
Brain (Substantia
0.0




nigra) Pool


Liver
0.0
Brain (Thalamus) Pool
0.0


Fetal Liver
0.0
Brain (whole)
0.0


Liver ca. HepG2
0.0
Spinal Cord Pool
0.0


Kidney Pool
0.0
Adrenal Gland
0.0


Fetal Kidney
0.0
Pituitary gland Pool
0.0


Renal ca. 786-0
0.0
Salivary Gland
0.0


Renal ca. A498
0.0
Thyroid (female)
0.0


Renal ca. ACHN
0.0
Pancreatic ca.
0.0




CAPAN2


Renal ca. UO-31
0.0
Pancreas Pool
0.0










[0820]

311





TABLE EC










Panel 4.1D











Rel. Ep.

Rel. Exp.



(%) Ag7033,

(%) Ag7033,



Run

Run


Tissue Name
312115300
Tissue Name
312115300













Secondary Th1 act
0.0
HUVEC IL-1beta
0.0


Secondary Th2 act
0.0
HUVEC IFN gamma
0.0


Secondary Tr1 act
0.0
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
0.0
HUVEC IL-11
0.0


Secondary Tr1 rest
0.0
Lung Microvascular
0.0




EC none


Primary Th1 act
0.0
Lung Microvascular
0.0




EC TNFalpha +




IL-1beta


Primary Th2 act
0.0
Microvascular Dermal
0.0




EC none


Primary Tr1 act
0.0
Microsvasular Dermal
0.1




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
0.0




TNFalpha + IL-1beta


Primary Th2 rest
0.0
Small airway
0.0




epithelium none


Primary Tr1 rest
0.0
Small airway
0.0




epithelium




TNFalpha + IL-1beta


CD45RA CD4
0.0
Coronery artery SMC
0.0


lymphocyte act

rest


CD45RO CD4
0.0
Coronery artery SMC
0.0


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
0.0
Astrocytes rest
0.0


Secondary CD8
0.0
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
0.0
KU-812 (Basophil)
0.0


lymphocyte act

rest


CD4 lymphocyte
0.0
KU-812 (Basophil)
100.0


none

PMA/ionomycin


2ry Th1/Th2/
0.0
CCD1106
0.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
0.0
CCD1106
0.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
0.0


LAK cells IL-2 +
0.0
NCI-H292 none
0.1


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
0.0


IFN gamma


LAK cells IL-2 +
0.0
NCI-H292 IL-9
0.0


IL-18


LAK cells PMA/
0.3
NCI-H292 IL-13
0.0


ionomycin


NK Cells IL-2 rest
0.0
NCI-H292 IFN gamma
0.0


Two Way MLR 3
0.0
HPAEC none
0.0


day


Two Way MLR 5
0.0
HPAEC TNF alpha +
0.1


day

IL-1 beta


Two Way MLR 7
0.0
Lung fibroblast
0.0


day

none


PBMC rest
0.0
Lung fibroblast TNF
0.0




alpha + IL-1 beta


PBMC PWM
0.0
Lung fibroblast IL-4
0.0


PBMC PHA-L
0.0
Lung fibroblast IL-9
0.0


Ramos (B cell) none
0.0
Lung fibroblast IL-13
0.0


Ramos (B cell)
0.0
Lung fibroblast IFN
0.0


ionomycin

gamma


B lymphocytes
0.2
Dermal fibroblast
0.0


PWM

CCD1070 rest


B lymphocytes
0.0
Dermal fibroblast
0.0


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
0.0
Dermal fibroblast
0.0




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.0
Dermal fibroblast IFN
0.0


PMA/ionomycin

gamma


Dendritic cells none
0.3
Dermal fibroblast IL-4
0.0


Dendritic cells LPS
0.1
Dermal Fibroblasts
0.0




rest


Dendritic cells
0.0
Neutrophils TNFa +
0.0


anti-CD40

LPS


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
0.3
Colon
0.0


Macrophages rest
0.6
Lung
0.0


Macrophages LPS
0.1
Thymus
0.0


HUVEC none
0.0
Kidney
0.0


HUVEC starved
0.0










[0821] General_screening_panely1.6 Summary: Ag7033 Low expression of this gene is restricted to placenta. Thus, expression of this gene may be used as a marker to distinguish placenta from other samples. This gene codes for a splice variant of EBV-induced gene 3 (EBI3), a 34-kDa glycoprotein that lacks a membrane-anchoring motif and is secreted. EBI3 is shown to be expressed in vivo by scattered cells in interfollicular zones of tonsil tissue, by cells associated with sinusoids in perifollicular areas of spleen tissue, and at very high levels by placental syncytiotrophoblasts (Devergne et al., 1996, J. Virol. 70: 1143-1153, PMID:8551575). In addition, EBI3 levels are strongly up-regulated in sera from pregnant women and gradually increased with gestational age. EBI3 is an important immunomodulator in the fetal-maternal relationship, possibly involved in NK cell regulation (Devergne et al., 2001, Am J Pathol November 2001;159(5):1763-76, PMID: 11696437). Thus, therapeutic modulation of this gene or EBI3 protein encoded by this gene may be useful in the treatment of placenta or pregnancy related diseases.


[0822] Panel 4.1D Summary: Ag7033 High expression of this gene is restricted to PMA/ionomycin activated basophils (CT=27.9). Basophils release histamines and other biological modifiers in reponse to allergens and play an important role in the pathology of asthma and hypersensitivity reactions. Therefore, therapeutics designed against the putative protein encoded by this gene may reduce or inhibit inflammation by blocking basophil function in these diseases. In addition, these cells are a reasonable model for the inflammatory cells that take part in various inflammatory lung and bowel diseases, such as asthma, Crohn's disease, and ulcerative colitis. Therefore, therapeutics that modulate the function of this gene product may reduce or eliminate the symptoms of patients suffering from asthma, Crohn's disease, and ulcerative colitis.


[0823] F. CG126129-02: Epithelium Differentiation Factor (PEDF) (Similar to Serine or Cysteine Proteinase Inhibitor)


[0824] Expression of full length physical clone CG126129-02 was assessed using the primer-probe set Ag7039, described in Table FA.
312TABLE FAProbe Name Ag7039PrimersSequenceLengthStart PositionSEQ ID NoForward5′-ggtggaggaggaggatcct-3′19169248ProbeTET-5′-cttcaaagtccccgtgaacaagctgg26190249Reverse5′-tggattctgttcgctggat-3′19259250


[0825] General_screening_panel_v1.6 Summary: Ag7039 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0826] G. CG142202-03: CRL-2


[0827] Expression of full length physical clone CG142202-03 was assessed using the primer-probe set Ag4530, described in Table GA. Results of the RTQ-PCR runs are shown in Tables GB and GC.
313TABLE GAProbe Name Ag4530PrimersLengthStart PositionSEQ ID NoForward5′-acatggaatgccagcaaatac-3′21994251ProbeTET-5′-tccaggaccaacctgactttccacta26968252-3′-TAMRAReverse5′-actggtcataggcctcatcac-3′21936253


[0828]

314





TABLE GB










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4530,

(%) Ag4530,



Run

Run


Tissue Name
222735181
issue Name
222735181













Adipose
2.3
Renal ca. TK-10
19.1


Melanoma*
0.0
Bladder
0.6


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
3.1


Hs688(B).T

NCI-N87


Melanoma* M14
0.0
Gastric ca. KATO III
0.5


Melanoma*
0.0
Colon ca. SW-948
0.0


LOXIMVI


Melanoma*
6.3
Colon ca. SW480
1.3


SK-MEL-5


Squamous cell
0.3
Colon ca.* (SW480
0.0


carcinoma SCC-4

met) SW620


Testis Pool
0.5
Colon ca. HT29
0.0


Prostate ca.* (bone
0.0
Colon ca. HCT-116
1.2


met) PC-3


Prostate Pool
0.5
Colon ca. CaCo-2
0.0


Placenta
0.2
Colon cancer tissue
1.5


Uterus Pool
0.0
Colon ca. SW1116
0.0


Ovarian ca.
0.0
Colon ca. Colo-205
0.1


OVCAR-3


Ovarian ca.
0.0
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
1.6
Colon Pool
3.1


OVCAR-4


Ovarian ca.
1.4
Small Intestine Pool
0.7


OVCAR-5


Ovarian ca.
0.3
Stomach Pool
0.5


IGROV-1


Ovarian ca.
0.8
Bone Marrow Pool
2.3


OVCAR-8


Ovary
0.6
Fetal Heart
0.0


Breast ca. MCF-7
0.1
Heart Pool
0.7


Breast ca.
66.0
Lymph Node Pool
2.9


MDA-MB-231


Breast ca. BT 549
13.2
Fetal Skeletal Muscle
0.3


Breast ca. T47D
1.7
Skeletal Muscle Pool
0.5


Breast ca. MDA-N
0.9
Spleen Pool
1.1


Breast Pool
2.0
Thymus Pool
2.5


Trachea
4.2
CNS cancer (glio/
0.0




astro) U87-MG


Lung
0.0
CNS cancer (glio/
1.9




astro) U-118-MG


Fetal Lung
0.4
CNS cancer (neuro;
0.0




met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
0.3




SF-539


Lung ca. LX-1
0.3
CNS cancer (astro)
0.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
0.2




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
0.0




SF-295


Lung ca. A549
2.2
Brain (Amygdala)
0.0




Pool


Lung ca. NCI-H526
0.0
Brain (cerebellum)
0.0


Lung ca. NCI-H23
0.5
Brain (fetal)
0.0


Lung ca. NCI-H460
100.0
Brain (Hippocampus)
0.0




Pool


Lung ca. HOP-62
1.3
Cerebral Cortex Pool
0.0


Lung ca. NCI-H522
0.0
Brain (Substantia
0.0




nigra) Pool


Liver
0.0
Brain (Thalamus) Pool
0.0


Fetal Liver
0.8
Brain (whole)
0.0


Liver ca. HepG2
0.0
Spinal Cord Pool
0.0


Kidney Pool
1.9
Adrenal Gland
0.0


Fetal Kidney
0.2
Pituitary gland Pool
0.0


Renal ca. 786-0
0.0
Salivary Gland
0.0


Renal ca. A498
0.0
Thyroid (female)
0.7


Renal ca. ACHN
1.0
Pancreatic ca.
5.1




CAPAN2


Renal ca. UO-31
0.0
Pancreas Pool
1.1










[0829]

315





TABLE GC










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag4530,

(%) Ag4530,



Run

Run


Tissue Name
198383582
Tissue Name
198383582













Secondary Th1 act
1.8
HUVEC IL-1beta
0.0


Secondary Th2 act
20.9
HUVEC IFN gamma
0.0


Secondary Tr1 act
15.5
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
1.3
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
3.0
HUVEC IL-11
0.1


Secondary Tr1 rest
5.2
Lung Microvascular
0.0




EC none


Primary Th1 act
0.5
Lung Microvascular
0.0




EC TNFalpha +




IL-1beta


Primary Th2 act
4.0
Microvascular Dermal
0.0




EC none


Primary Tr1 act
0.8
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
3.4
Bronchial epithelium
0.0




TNFalpha + IL-1beta


Primary Th2 rest
3.7
Small airway
0.0




epithelium none


Primary Tr1 rest
4.2
Small airway
0.0




epithelium




TNFalpha + IL-1beta


CD45RA CD4
0.5
Coronery artery SMC
0.0


lymphocyte act

rest


CD45RO CD4
0.7
Coronery artery SMC
0.0


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
0.8
Astrocytes rest
0.0


Secondary CD8
0.5
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
1.7
KU-812 (Basophil)
0.0


lymphocyte act

rest


CD4 lymphocyte
0.5
KU-812 (Basophil)
0.5


none

PMA/ionomycin


2ry Th1/Th2/
19.1
CCD1106
0.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
0.5
CCD1106
0.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
0.7
Liver cirrhosis
0.0


LAK cells IL-2 +
0.2
NCI-H292 none
0.0


IL-12


LAK cells IL-2 +
0.5
NCI-H292 IL-4
0.0


IFN gamma


LAK cells IL-2 +
0.3
NCI-H292 IL-9
0.0


IL-18


LAK cells PMA/
6.2
NCI-H292 IL-13
0.0


ionomycin


NK Cells IL-2 rest
0.9
NCI-H292 IFN gamma
0.0


Two Way MLR 3
1.3
HPAEC none
0.0


day


Two Way MLR 5
0.4
HPAEC TNF alpha +
0.1


day

IL-1 beta


Two Way MLR 7
0.5
Lung fibroblast
0.0


day

none


PBMC rest
0.1
Lung fibroblast TNF
0.1




alpha + IL-1 beta


PBMC PWM
0.2
Lung fibroblast IL-4
0.0


PBMC PHA-L
0.5
Lung fibroblast IL-9
0.0


Ramos (B cell) none
7.6
Lung fibroblast IL-13
0.0


Ramos (B cell)
3.8
Lung fibroblast IFN
0.0


ionomycin

gamma


B lymphocytes
0.2
Dermal fibroblast
0.1


PWM

CCD1070 rest


B lymphocytes
0.6
Dermal fibroblast
1.4


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
0.4
Dermal fibroblast
0.0




CCD1070 IL-1 beta


EOL-1 dbcAMP
100.0
Dermal fibroblast IFN
0.0


PMA/ionomycin

gamma


Dendritic cells none
0.1
Dermal fibroblast IL-4
0.0


Dendritic cells LPS
3.9
Dermal Fibroblasts
0.1




rest


Dendritic cells
0.6
Neutrophils TNFa +
0.8


anti-CD40

LPS


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
9.0
Colon
0.1


Macrophages rest
0.2
Lung
0.0


Macrophages LPS
2.4
Thymus
0.4


HUVEC none
0.0
Kidney
0.0


HUVEC starved
0.0










[0830] CNS_neurodegeneration_v1.0 Summary: Ag4530 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0831] General_screening_panel_v1.4 Summary: Ag4530 Highest expression of this gene is detected in a lung cancer NCI-H460 cell line (CT=27.7). In addition, moderate levels of expression of this gene is also seen in cancer cell lines derived from melanoma, breast, pancreatic, lung, renal, brain and colon cancers. Thus, expression of this gene may be used as diagnostic marker to detect the presence of these cancers. Furthermore, therapeutic modulation of this gene may be useful in the treatment of melanoma, lung, breast, colon, renal, pancreatic and brain cancers.


[0832] Among the tissues with metabolic or endocrine function, this gene is expressed at moderate to low levels in pancreas, adipose, thyroid, heart, fetal liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0833] Interestingly, this gene is expressed at much higher levels in fetal (CT=34.7) when compared to adult liver (CT=40). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver related diseases.


[0834] Panel 4.1D Summary: Ag4530 Highest expression of this gene is detected in PMA/ionomycin treated eosinophils (CT=26.4). Expression of this gene is higher in activated as compared to resting eosinophil (CT=34.3). Thus, expression of this gene may be used to distinguish between resting and activated eosinophils and also from other samples used in this panel. In addition, expression of this gene in activated eosinophil suggests a role for this gene in eosinophil functions. Therefore, therapeutic modulation of this gene through the use of antibodies or small molecule drug may be useful in the treatment of T cell-mediated autoimmune and inflammatory diseases including asthma and allergy and also hematopoietic disorders involving eosinphils, parasitic infections.


[0835] In addition, low to moderate levels of expression of this gene is also detected in T lymphocytes prepared under a number of conditions, as well as, in different activated cell types involved in inflammatory and autoimmune disorders such as dendritic cells, monocytes, macrophages, neutrophils and dermal fibroblasts. Dendritic cells and macrophages are powerful antigen-presenting cells (APC) whose function is pivotal in the initiation and maintenance of normal immune responses. Autoimmunity and inflammation may also be reduced by suppression of this function. Therefore, small molecule drugs and antibodies that antagonzie the function of this gene product may reduce or eliminate the symptoms in patients with several types of autoimmune and inflammatory diseases, such as lupus erythematosus, Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, or psoriasis.


[0836] H. CG142621-01: Hypothetical Membrane Protein


[0837] Expression of gene CGI42621-01 was assessed using the primer-probe set Ag7570, described in Table HA.
316TABLE HAProbe Name Ag7570PrimersSequencesLengthStart PositionSEQ ID NoForward5′-gccagcatccaactcagattat-3′22234254ProbeTET-5′-cacaatctccttacattgacagttttg30260255Reverse5′-ggattccaagttcttctagcaaa-3′23300256


[0838] CNS_neurodegeneration_v1.0 Summary: Ag7570 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0839] Panel 4.1D Summary: Ag7570 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0840] I. CG142761-01: Similar to histocompatibility 13


[0841] Expression of gene CG142761-01 was assessed using the primer-probe set Ag7623, described in Table IA. Results of the RTQ-PCR runs are shown in Tables IB and IC.
317TABLE IAProbe Name Ag7623PrimersSequenceLengthStart PositionSEQ ID NoForward5′-cccagcgccatgtaatg-3′171293257ProbeTET-5′-atttgactcctcataacttgggcccc261350258-3′-TAMRAReverse5′-gccgctggatccttagg-3′171376259


[0842]

318





TABLE IB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag7623,

(%) Ag7623,



Run

Run


Tissue Name
311288617
issue Name
311288617













AD 1 Hippo
8.1
Control (Path) 3
7.7




Temporal Ctx


AD 2 Hippo
28.9
Control (Path) 4
41.8




Temporal Ctx


AD 3 Hippo
18.7
AD 1 Occipital Ctx
24.1


AD 4 Hippo
16.8
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
57.8
AD 3 Occipital Ctx
9.8


AD 6 Hippo
31.6
AD 4 Occipital Ctx
63.7


Control 2 Hippo
61.6
AD 5 Occipital Ctx
93.3


Control 4 Hippo
6.0
AD 6 Occipital Ctx
12.8


Control (Path) 3
9.2
Control 1 Occipital
6.9


Hippo

Ctx


AD 1 Temporal Ctx
23.7
Control 2 Occipital
86.5




Ctx


AD 2 Temporal Ctx
37.1
Control 3 Occipital
37.4




Ctx


AD 3 Temporal Ctx
18.3
Control 4 Occipital
11.7




Ctx


AD 4 Temporal Ctx
36.1
Control (Path) 1
66.9




Occipital Ctx


AD 5 Inf Temporal
72.2
Control (Path) 2
21.6


Ctx

Occipital Ctx


AD 5 Sup Temporal
25.9
Control (Path) 3
15.3


Ctx

Occipital Ctx


AD 6 Inf Temporal
16.7
Control (Path) 4
17.7


Ctx

Occipital Ctx


AD 6 Sup Temporal
31.4
Control 1 Parietal Ctx
21.2


Ctx



Control 1 Temporal
23.2
Control 2 Parietal Ctx
25.9


Ctx


Control 2 Temporal
76.8
Control 3 Parietal Ctx
23.5


Ctx


Control 3 Temporal
43.5
Control (Path) 1
94.0


Ctx

Parietal Ctx


Control 3 Temporal
13.9
Control (Path) 2
37.9


Ctx

Parietal Ctx


Control (Path) 1
100.0
Control (Path) 3
4.9


Temporal Ctx

Parietal Ctx


Control (Path) 2
37.1
Control (Path) 4
52.9


Temporal Ctx

Parietal Ctx










[0843]

319





TABLE IC










Panel 4.1D











Rel. Exp.

Rel. Exp.



%) Ag7623,

(%) Ag7623,



Run

Run


Tissue Name
311288446
Tissue Name
311288446













Secondary Th1 act
9.3
HUVEC IL-1beta
9.9


Secondary Th2 act
2.4
HUVEC IFN gamma
3.7


Secondary Tr1 act
6.9
HUVEC TNF alpha +
9.9




IFN gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha +
8.2




IL4


Secondary Th2 rest
0.0
HUVEC IL-11
2.5


Secondary Tr1 rest
1.8
Lung Microvascular
15.0




EC none


Primary Th1 act
2.6
Lung Microvascular
6.0




EC TNFalpha +




IL-1beta


Primary Th2 act
6.2
Microvascular Dermal
6.6




EC none


Primary Tr1 act
8.9
Microsvasular Dermal
20.3




EC TNFalpha +




IL-1beta


Primary Th1 rest
2.0
Bronchial epithelium
10.6




TNFalpha + IL-1beta


Primary Th2 rest
0.0
Small airway
9.6




epithelium none


Primary Tr1 rest
0.0
Small airway
11.5




epithelium




TNFalpha + IL-1beta


CD45RA CD4
9.5
Coronery artery SMC
23.2


lymphocyte act

rest


CD45RO CD4
2.5
Coronery artery SMC
12.0


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
4.0
Astrocytes rest
5.3


Secondary CD8
0.9
Astrocytes
6.4


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
1.5
KU-812 (Basophil)
0.0


lymphocyte act

rest


CD4 lymphocyte
4.1
KU-812 (Basophil)
0.0


none

PMA/ionomycin


2ry Th1/Th2/
1.4
CCD1106
4.8


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
15.7
CCD1106
11.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
6.9
Liver cirrhosis
3.8


LAK cells IL-2 +
4.9
NCI-H292 none
19.3


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
11.2


IFN gamma


LAK cells IL-2 +
2.5
NCI-H292 IL-9
20.7


IL-18


LAK cells PMA/
14.4
NCI-H292 IL-13
7.3


ionomycin


NK Cells IL-2 rest
2.2
NCI-H292 IFN gamma
5.7


Two Way MLR 3
1.5
HPAEC none
2.7


day


Two Way MLR 5
7.0
HPAEC TNF alpha +
6.7


day

IL-1 beta


Two Way MLR 7
1.9
Lung fibroblast
12.7


day

none


PBMC rest
0.0
Lung fibroblast TNF
10.3




alpha + IL-1 beta


PBMC PWM
3.2
Lung fibroblast IL-4
11.1


PBMC PHA-L
7.6
Lung fibroblast IL-9
48.3


Ramos (B cell) none
5.8
Lung fibroblast IL-13
10.0


Ramos (B cell)
7.4
Lung fibroblast IFN
14.9


ionomycin

gamma


B lymphocytes
3.2
Dermal fibroblast
20.6


PWM

CCD1070 rest


B lymphocytes
3.7
Dermal fibroblast
11.0


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
2.5
Dermal fibroblast
14.0




CCD1070 IL-1 beta


EOL-1 dbcAMP
4.9
Dermal fibroblast IFN
5.3


PMA/ionomycin

gamma


Dendritic cells none
12.2
Dermal fibroblast IL-4
7.4


Dendritic cells LPS
1.6
Dermal Fibroblasts
11.2




rest


Dendritic cells
6.0
Neutrophils TNFa +
6.2


anti-CD40

LPS


Monocytes rest
1.2
Neutrophils rest
4.8


Monocytes LPS
100.0
Colon
0.0


Macrophages rest
7.9
Lung
0.0


Macrophages LPS
22.4
Thymus
0.0


HUVEC none
3.1
Kidney
5.1


HUVEC starved
5.7










[0844] CNS_neurodegeneration_v1.0 Summary: Ag7623 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene is found to be slightly down-regulated in the temporal cortex of Alzheimer's disease patients. Therefore, up-regulation of this gene or its protein product, or treatment with specific agonists for this receptor may be of use in reversing the dementia, memory loss, and neuronal death associated with this disease.


[0845] Panel 4.1D Summary: Ag7623 Highest expression of this gene is detected in LPS treated monocytes (CT=32.3). Expression of this gene is higher in the stimulted as compared to resting monocytes (CT=38). Thus, expression of this gene may be used to distinguish between activated and resting monocytes. In addition, upon activation with pathogens such as LPS, monocytes contribute to the innate and specific immunity by migrating to the site of tissue injury and releasing inflammatory cytokines. This release contributes to the inflammation process. Therefore, therapeutic modulation of the expression of this gene or the protein encoded by this gene may prevent the recruitment of monocytes and the initiation of the inflammatory process, and reduce the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, or rheumatoid arthritis.


[0846] In addition, low levels of expression of this gene are also seen in NCI-H292, coronery artery SMC, activated macrophage and lung fibroblasts. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of asthma, psoriasis, arthritis, allergy, chronic obstructive pulmonary disease, and emphysema.


[0847] J. CG144193-01: Secreted Phosphoprotein 24 Precursor


[0848] Expression of full length physical clone CG144193-01 was assessed using the primer-probe set Ag7040, described in Table JA. Results of the RTQ-PCR runs are shown in Table JB.
320TABLE JAProbe Name Ag7040PrimersSequencsLengthStart PositionSEQ ID NoForward5′-actatgtgtccacgtctgagtctt-3′24326260ProbeTET-5′-atttatgagatcccaacatgtccccaa28370261a-3′-TAMRAReverse5′-tgagaccaaatagataattgcttctc-3′26399262


[0849]

321





TABLE JB










General_screening_panel_v1.6











Rel. Exp.

Rel. Exp.



(%) Ag7040,

(%) Ag7040,



Run

Run


Tissue Name
282273676
issue Name
282273676













Adipose
0.0
Renal ca. TK-10
0.0


Melanoma*
0.0
Bladder
0.0


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
0.0


Hs688(B).T

NCI-N87


Melanoma* M14
0.0
Gastric ca. KATO III
0.0


Melanoma*
0.0
Colon ca. SW-948
0.0


LOXIMVI


Melanoma*
0.0
Colon ca. SW480
0.0


SK-MEL-5


Squamous cell
0.0
Colon ca.* (SW480
0.0


carcinoma SCC-4

met) SW620


Testis Pool
0.0
Colon ca. HT29
0.0


Prostate ca.* (bone
0.0
Colon ca. HCT-116
0.0


met) PC-3


Prostate Pool
0.0
Colon ca. CaCo-2
0.0


Placenta
0.0
Colon cancer tissue
0.0


Uterus Pool
0.0
Colon ca. SW1116
0.0


Ovarian ca.
0.0
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
0.0
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
0.0
Colon Pool
0.0


OVCAR-4


Ovarian ca.
0.0
Small Intestine Pool
0.0


OVCAR-5


Ovarian ca.
0.0
Stomach Pool
0.0


IGROV-1


Ovarian ca.
0.0
Bone Marrow Pool
0.0


OVCAR-8


Ovary
0.0
Fetal Heart
0.0


Breast ca. MCF-7
0.0
Heart Pool
0.0


Breast ca.
0.0
Lymph Node Pool
0.0


MDA-MB-231


Breast ca. BT 549
0.0
Fetal Skeletal Muscle
0.0


Breast ca. T47D
0.0
Skeletal Muscle Pool
0.0


Breast ca. MDA-N
0.0
Spleen Pool
0.0


Breast Pool
0.0
Thymus Pool
0.0


Trachea
0.0
CNS cancer (glio/
0.0




astro) U87-MG


Lung
0.0
CNS cancer (glio/
0.0




astro) U-118-MG


Fetal Lung
0.0
CNS cancer (neuro;
0.0




met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
0.0




SF-539


Lung ca. LX-1
0.0
CNS cancer (astro)
0.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
0.0




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
0.0




SF-295


Lung ca. A549
0.0
Brain (Amygdala)
0.0




Pool


Lung ca. NCI-H526
0.0
Brain (cerebellum)
0.0


Lung ca. NCI-H23
0.0
Brain (fetal)
0.0


Lung ca. NCI-H460
0.0
Brain (Hippocampus)
0.0




Pool


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
0.0


Lung ca. NCI-H522
0.0
Brain (Substantia
0.0




nigra) Pool


Liver
20.6
Brain (Thalamus) Pool
0.0


Fetal Liver
100.0
Brain (whole)
0.0


Liver ca. HepG2
0.0
Spinal Cord Pool
0.0


Kidney Pool
0.0
Adrenal Gland
0.0


Fetal Kidney
0.0
Pituitary gland Pool
0.0


Renal ca. 786-0
0.0
Salivary Gland
0.0


Renal ca. A498
0.0
Thyroid (female)
0.0


Renal ca. ACHN
0.0
Pancreatic ca.
0.0




CAPAN2


Renal ca. UO-31
0.0
Pancreas Pool
0.0










[0850] General_screening_panel_v1.6 Summary: Ag7040 Significant expression is detected only in fetal liver (CT=33.8). Interestingly, this gene is expressed at much higher levels in fetal when compared to adult liver tissue (CT=40). This observation suggests that expression of this gene can be used to differentiate between the fetal and adult sources of this tissue. In addition, the relative overexpression of this gene in fetal liver suggests that the protein product may enhance liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult to restore liver mass and/or function. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver related diseases, including cirrhosis and fibrosis.


[0851] K. CG144884-02: B-Lymphocyte Activation Marker Blast-1 Precursor


[0852] Expression of full-length physical clone CG144884-02 was assessed using the primer-probe set Ag4390, described in Table KA. Results of the RTQ-PCR runs are shown in Tables KB and KC.
322TABLE KAProbe Name Ag4390PrimersLengthStart PositionSEQ ID NoForward5′-gtctggctctggaattgctact-3′2245263ProbeTET-5′-ctctgtcactcctggtgaccagcatt2672264-3′-TAMRAReverse5′-agaccacggtcatatgtaccaa-3′22107265


[0853]

323





TABLE KB










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4390,

(%) Ag4390,



Run

Run


Tissue Name
222641236
issue Name
222641236













Adipose
38.7
Renal ca. TK-10
0.0


Melanoma*
0.0
Bladder
31.9


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
0.1


Hs688(B).T

NCI-N87


Melanoma* M14
0.0
Gastric ca. KATO III
0.0


Melanoma*
0.0
Colon ca. SW-948
0.0


LOXIMVI


Melanoma*
0.0
Colon ca. SW480
0.0


SK-MEL-5


Squamous cell
0.0
Colon ca.* (SW480
0.0


carcinoma SCC-4

met) SW620


Testis Pool
1.7
Colon ca. HT29
0.0


Prostate ca.* (bone
0.0
Colon ca. HCT-116
0.0


met) PC-3


Prostate Pool
8.6
Colon ca. CaCo-2
0.0


Placenta
4.8
Colon cancer tissue
40.6


Uterus Pool
5.8
Colon ca. SW1116
0.0


Ovarian ca.
0.0
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
0.0
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
0.0
Colon Pool
24.8


OVCAR-4


Ovarian ca.
0.0
Small Intestine Pool
9.4


OVCAR-5


Ovarian ca.
0.0
Stomach Pool
13.0


IGROV-1


Ovarian ca.
0.0
Bone Marrow Pool
19.6


OVCAR-8


Ovary
10.4
Fetal Heart
1.3


Breast ca. MCF-7
0.0
Heart Pool
5.6


Breast ca.
0.0
Lymph Node Pool
21.9


MDA-MB-231


Breast ca. BT 549
0.0
Fetal Skeletal Muscle
1.8


Breast ca. T47D
0.0
Skeletal Muscle Pool
2.9


Breast ca. MDA-N
0.0
Spleen Pool
69.7


Breast Pool
14.2
Thymus Pool
100.0


Trachea
49.0
CNS cancer (glio/
0.4




astro) U87-MG


Lung
0.9
CNS cancer (glio/
0.0




astro) U-118-MG


Fetal Lung
31.9
CNS cancer (neuro;
0.0




met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
0.0




SF-539


Lung ca. LX-1
0.0
CNS cancer (astro)
0.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
0.0




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
0.1




SF-295


Lung ca. A549
0.0
Brain (Amygdala)
0.4




Pool


Lung ca. NCI-H526
0.0
Brain (cerebellum)
0.3


Lung ca. NCI-H23
0.0
Brain (fetal)
0.8


Lung ca. NCI-H460
0.0
Brain (Hippocampus)
1.4




Pool


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
0.9


Lung ca. NCI-H522
0.0
Brain (Substantia
0.8




nigra) Pool


Liver
5.7
Brain (Thalamus) Pool
1.0


Fetal Liver
14.0
Brain (whole)
1.5


Liver ca. HepG2
0.0
Spinal Cord Pool
6.4


Kidney Pool
17.7
Adrenal Gland
7.0


Fetal Kidney
3.2
Pituitary gland Pool
1.2


Renal ca. 786-0
0.0
Salivary Gland
14.7


Renal ca. A498
0.0
Thyroid (female)
14.1


Renal ca. ACHN
0.0
Pancreatic ca.
0.0




CAPAN2


Renal ca. UO-31
0.0
Pancreas Pool
21.2










[0854]

324





TABLE KC










Panel 4.1D











Rel. Exp.

Rel. Exp.



() Ag4390,

(%) Ag4390,



Run

Run


Tissue Name
186502193
Tissue Name
186502193













Secondary Th1 act
40.3
HUVEC IL-1beta
0.0


Secondary Th2 act
33.0
HUVEC IFN gamma
0.0


Secondary Tr1 act
22.7
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
19.1
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
18.8
HUVEC IL-11
2.0


Secondary Tr1 rest
24.0
Lung Microvascular
0.2




EC none


Primary Th1 act
31.9
Lung Microvascular
0.0




EC TNFalpha +




IL-1beta


Primary Th2 act
18.2
Microvascular Dermal
0.0




EC none


Primary Tr1 act
22.4
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
19.3
Bronchial epithelium
0.0




TNFalpha + IL-1beta


Primary Th2 rest
17.1
Small airway
0.0




epithelium none


Primary Tr1 rest
31.0
Small airway
0.0




epithelium




TNFalpha + IL-1beta


CD45RA CD4
22.1
Coronery artery SMC
0.0


lymphocyte act

rest


CD45RO CD4
41.2
Coronery artery SMC
0.0


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
32.5
Astrocytes rest
0.0


Secondary CD8
20.4
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
24.3
KU-812 (Basophil)
0.7


lymphocyte act

rest


CD4 lymphocyte
22.4
KU-812 (Basophil)
0.3


none

PMA/ionomycin


2ry Th1/Th2/
27.0
CCD1106
0.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
23.7
CCD1106
0.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
37.4
Liver cirrhosis
0.5


LAK cells IL-2 +
38.2
NCI-H292 none
0.0


IL-12


LAK cells IL-2 +
35.1
NCI-H292 IL-4
0.0


IFN gamma


LAK cells IL-2 +
30.4
NCI-H292 IL-9
0.0


IL-18


LAK cells PMA/
22.8
NCI-H292 IL-13
0.0


ionomycin


NK Cells IL-2 rest
44.8
NCI-H292 IFN gamma
0.0


Two Way MLR 3
28.3
HPAEC none
0.3


day


Two Way MLR 5
19.6
HPAEC TNF alpha +
0.3


day

IL-1 beta


Two Way MLR 7
10.3
Lung fibroblast
0.2


day

none


PBMC rest
23.3
Lung fibroblast TNF
0.2




alpha + IL-1 beta


PBMC PWM
27.0
Lung fibroblast IL-4
0.1


PBMC PHA-L
12.8
Lung fibroblast IL-9
0.0


Ramos (B cell) none
16.5
Lung fibroblast IL-13
0.0


Ramos (B cell)
31.4
Lung fibroblast IFN
0.0


ionomycin

gamma


B lymphocytes
21.2
Dermal fibroblast
1.3


PWM

CCD1070 rest


B lymphocytes
25.0
Dermal fibroblast
27.4


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
1.1
Dermal fibroblast
0.2




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.3
Dermal fibroblast IFN
0.3


PMA/ionomycin

gamma


Dendritic cells none
14.6
Dermal fibroblast IL-4
0.7


Dendritic cells LPS
16.6
Dermal Fibroblasts
0.7




rest


Dendritic cells
6.3
Neutrophils TNFa +
18.9


anti-CD40

LPS


Monocytes rest
39.5
Neutrophils rest
6.0


Monocytes LPS
100.0
Colon
2.3


Macrophages rest
12.2
Lung
1.7


Macrophages LPS
40.1
Thymus
9.5


HUVEC none
0.0
Kidney
1.2


HUVEC starved
0.0










[0855] CNS_neurodegeneration_v1.0 Summary: Ag4390 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0856] General_screening_panel_v1.4 Summary: Ag4390 Highest expression of this gene is detected in thymus (CT=29.4). The protein encoded for by this gene could therefore may play an important role in T cell development. Small molecule therapeutics, or antibody therapeutics designed against the protein encoded for by this gene could be utilized to modulate immune function (T cell development) and be important for organ transplant, AIDS treatment or post chemotherapy immune reconstitution.


[0857] Moderate to low levels of expression of this gene is also seen in tissues with metabolic/endocrine functions including pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0858] Interestingly, this gene is expressed at much higher levels in fetal (CT=31) when compared to adult lung (CT=36). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance lung growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of lung related diseases.


[0859] Panel 4.1D Summary: Ag4390 This gene appears to be expressed mainly in hematopoietic cells, including T cells, B cells, LAK cells, dendritic cells, monocytes and macrophages. This gene encodes a protein with homology to BLAST1, an activation-associated cell surface glycoprotein expressed primarily in mitogen-stimulated human lymphocytes. The expression of this gene in hematopoietic cells and thymus on Panel 1.4 is consistent with this characterization. Highest expression of this gene is seen in LPS treated monocytes (CT=26). Upon activation with pathogens such as LPS, monocytes contribute to the innate and specific immunity by migrating to the site of tissue injury and releasing inflammatory cytokines. This release contributes to the inflammation process. Therefore, modulation of the expression of the protein encoded by this transcript may prevent the recruitment of monocytes and the iniltation of the inflammatory process, and reduce the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, or rheumatoid arthritis.


[0860] L. CG145198-01: Novel Secreted Protein


[0861] Expression of full-length physical clone CG145198-01 was assessed using the primer-probe set Ag6943, described in Table LA. Results of the RTQ-PCR runs are shown in Table LB.
325TABLE LAProbe Name Ag6943PrimersSequenceLengthStart PositionSEQ ID NoForward5′-cccagaccagatgacctatctt-3′22299266ProbeTET-5′-ccttccagctctgagtcacttcccat26321267-3′-TAMRAReverse5′-aatggtctcagtgacttcgattaac-3′25358268


[0862]

326





TABLE LB










General_screening_panel_v1.6











Rel. Exp.

Rel. Exp.



(%) Ag6943,

(%) Ag6943,



Run

Run


Tissue Name
278388849
issue Name
278388849













Adipose
9.9
Renal ca. TK-10
31.4


Melanoma*
19.9
Bladder
37.1


Hs688(A).T


Melanoma*
17.4
Gastric ca. (liver met.)
36.9


Hs688(B).T

NCI-N87


Melanoma* M14
87.1
Gastric ca. KATO III
75.3


Melanoma*
55.1
Colon ca. SW-948
7.4


LOXIMVI


Melanoma*
42.0
Colon ca. SW480
61.1


SK-MEL-5


Squamous cell
21.6
Colon ca.* (SW480
23.3


carcinoma SCC-4

met) SW620


Testis Pool
17.8
Colon ca. HT29
19.3


Prostate ca.* (bone
63.7
Colon ca. HCT-116
33.2


met) PC-3


Prostate Pool
13.6
Colon ca. CaCo-2
29.1


Placenta
6.6
Colon cancer tissue
15.4


Uterus Pool
4.6
Colon ca. SW1116
7.7


Ovarian ca.
18.6
Colon ca. Colo-205
4.0


OVCAR-3


Ovarian ca.
32.1
Colon ca. SW-48
10.7


SK-OV-3


Ovarian ca.
19.8
Colon Pool
17.6


OVCAR-4


Ovarian ca.
27.9
Small Intestine Pool
12.4


OVCAR-5


Ovarian ca.
14.9
Stomach Pool
6.9


IGROV-1


Ovarian ca.
19.8
Bone Marrow Pool
9.6


OVCAR-8


Ovary
6.3
Fetal Heart
5.2


Breast ca. MCF-7
19.9
Heart Pool
4.4


Breast ca.
97.3
Lymph Node Pool
12.5


MDA-MB-231


Breast ca. BT 549
100.0
Fetal Skeletal Muscle
3.5


Breast ca. T47D
9.6
Skeletal Muscle Pool
0.4


Breast ca. MDA-N
23.7
Spleen Pool
11.9


Breast Pool
11.4
Thymus Pool
73.7


Trachea
15.8
CNS cancer (glio/
22.7




astro) U87-MG


Lung
2.1
CNS cancer (glio/
63.3




astro) U-118-MG


Fetal Lung
16.2
CNS cancer (neuro;
44.4




met) SK-N-AS


Lung ca. NCI-N417
8.0
CNS cancer (astro)
31.0




SF-539


Lung ca. LX-1
13.1
CNS cancer (astro)
59.5




SNB-75


Lung ca. NCI-H146
19.1
CNS cancer (glio)
19.1




SNB-19


Lung ca. SHP-77
65.1
CNS cancer (glio)
59.5




SF-295


Lung ca. A549
39.2
Brain (Amygdala)
13.7




Pool


Lung ca. NCI-H526
5.4
Brain (cerebellum)
26.8


Lung ca. NCI-H23
33.2
Brain (fetal)
15.8


Lung ca. NCI-H460
11.3
Brain (Hippocampus)
10.0




Pool


Lung ca. HOP-62
28.1
Cerebral Cortex Pool
14.2


Lung ca. NCI-H522
70.7
Brain (Substantia
7.5




nigra) Pool


Liver
6.8
Brain (Thalamus) Pool
12.2


Fetal Liver
11.5
Brain (whole)
8.6


Liver ca. HepG2
21.3
Spinal Cord Pool
12.0


Kidney Pool
24.5
Adrenal Gland
12.9


Fetal Kidney
11.3
Pituitary gland Pool
3.2


Renal ca. 786-0
23.2
Salivary Gland
9.5


Renal ca. A498
8.5
Thyroid (female)
4.2


Renal ca. ACHN
11.0
Pancreatic ca.
15.1




CAPAN2


Renal ca. UO-31
21.0
Pancreas Pool
11.1










[0863] General_screening_panel_v1.6 Summary: Ag6943 Highest expression of this gene Is seen in a breast cancer cell line (CT=27.8). This gene is ubiquitously expressed in this panel, with moderate expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0864] In addition, this gene is expressed at much higher levels in fetal lung tissue (CT=30) when compared to expression in the adult counterpart (CT=33). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.


[0865] Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0866] This gene is also expressed at moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0867] M. CG145650-01 and CG145650-02: Lectin C-type Domain Protein


[0868] Expression of full-length physical clones CG145650-01 and CG145650-02 was assessed using the primer-probe sets Ag6531, AG7094, Ag7397, and Ag7478, described in Tables MA, MB, MC, and MD. Results of the RTQ-PCR runs are shown in Tables ME, MF, and MG. Please note that Ag7094 is specific to CG145650-02 and Ag6531 and Ag7397 are specific to CG145650-01.
327TABLE MAProbe Name Ag6531PrimersSequencsLengthStart PositionSEQ ID NoForward5′-agtagaaataaagtagcagttggaactaaa30401269-3′ProbeTET-5′-acttccaattctttgggcaacagctc26433270-3′-TAMRAReverse5′-cagcctcttctgcagagaca-3′20464271


[0869]

328






TABLE MB










Probe Name Ag7094












Primers
Sequence
Length
Start Position
SEQ ID No















Forward
5′-agacaccatacaatgatgttaattgtc-3′
27
636
272






Probe
TET-5′-tctcacaaactgacctttgaggacca
26
664
273
1664
273



-3′-TAMRA








Reverse
5′-agaatgttcagttcataagtggatctt-3′
27
695
274










[0870]

329






TABLE MC










Probe Name Ag7397












Primers
Sequencs
Length
Start Position
SEQ ID No















Forward
5′-cttgccaagatgctgattca-3′
20
382
275






Probe
TET-5′-cagttggaactaaatgacttccaattc
30
417
276





Reverse
5′-tctgcagagacagcctgga-3′
19
457
277










[0871]

330






TABLE MD










Probe Name A27478












Primers
Sequencs
Length
Start Position
SEQ ID No















Forward
5′-ggaagtcatttagttccaactgcta-3′
25
414
278






Probe
TET-5′-atttctactgaatcagcatcttggcaa
30
380
279



gac-3′-TAMRA








Reverse
5′-aggtgagcctccattctagc-3′
20
345
280










[0872]

331





TABLE MD










AI comprehensive panel v1.0















Rel.
Rel.
Rel.

Rel.
Rel.
Rel.



Exp. (%)
Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)
Exp. (%)



Ag7094,
Ag7397,
g7478,

Ag7094,
Ag7397,
Ag7478,


Tissue
Run
Run
Run
Tissue
Run
Run
Run


Name
306266972
306266974
306518766
Name
306266972
306266974
306518766

















110967
0.0
4.6
8.1
112427
14.2
65.1
75.3


COPD-F



Match






Control






Psoriasis-F


110980
2.3
3.9
11.3
112418
0.0
7.6
13.5


COPD-F



Psoriasis-M


110968
1.6
10.0
11.7
112723
2.2
21.6
13.6


COPD-M



Match






Control






Psoriasis-M


110977
6.0
47.0
39.2
112419
0.0
10.6
20.9


COPD-M



Psoriasis-M


110989
5.1
46.3
26.1
112424
3.1
10.5
24.1


Emphysema-



Match


F



Control






Psoriasis-M


110992
0.0
6.8
6.3
112420
2.0
35.8
43.2


Emphysema-



Psoriasis-M


F


110993
0.0
10.2
12.8
112425
5.4
38.4
44.8


Emphysema-



Match


F



Control






Psoriasis-M


110994
0.0
3.7
6.8
104689 (MF)
24.5
84.7
91.4


Emphysema-



OA


F



Bone-Backus


110995
0.0
2.5
19.9
104690 (MF)
5.0
22.5
26.2


Emphysema-



Adj


F



“Normal”






Bone-Backus


110996
0.0
3.0
2.4
104691 (MF)
11.6
37.1
39.8


Emphysema-



OA


F



Synovium-






Backus


110997
0.0
2.2
7.7
104692 (BA)
0.0
0.0
0.0


Asthma-M



OA






Cartilage-






Backus


111001
3.7
9.3
13.0
104694 (BA)
28.3
100.0
100.0


Asthma-F



OA






Bone-Backus


111002
2.5
14.6
25.2
104695 (BA)
7.6
33.9
33.2


Asthma-F



Adj






“Normal”






Bone-Backus


111003
3.9
16.4
23.0
104696 (BA)
6.6
27.9
33.4


Atopic



OA


Asthma-F



Synovium-






Backus


111004
2.6
23.3
20.2
104700 (SS)
15.6
38.2
35.4


Atopic



OA


Asthma-F



Bone-Backus


111005
3.8
13.1
12.5
104701 (SS)
8.6
37.6
39.2


Atopic



Adj


Asthma-F



“Normal”






Bone-Backus


111006
0.0
4.5
0.6
104702 (SS)
9.2
46.3
40.9


Atopic



OA


Asthma-F



Synovium-






Backus


111417
1.5
6.3
7.3
117093 OA
2.3
9.5
13.6


Allergy-M



Cartilage






Rep7


112347
0.0
0.0
0.5
112672 OA
1.6
11.3
23.8


Allergy-M



Bone5


112349
0.0
0.0
0.1
112673 OA
2.0
6.8
16.4


Normal



Synovium5


Lung-F


112357
4.0
41.8
37.6
112674 OA
0.0
15.1
19.3


Normal



Synovial


Lung-F



Fluid cells5


112354
5.4
17.9
21.2
117100 OA
0.0
3.1
5.6


Normal



Cartilage


Lung-M



Rep14


112374
3.4
22.7
19.1
112756 OA
0.0
11.2
12.6


Crohns-F



Bone9


112389
2.4
6.1
7.4
112757 OA
0.0
7.0
9.8


Match



Synovium9


Control


Crohns-F


112375
2.0
13.5
13.8
112758 OA
0.0
7.2
16.0


Crohns-F



Synovial






Fluid Cells9


112732
6.2
31.9
32.5
117125 RA
0.0
2.7
7.0


Match



Cartilage


Control



Rep2


Crohns-F


112725
0.0
3.3
11.0
113492
2.7
4.9
15.6


Crohns-M



Bone2 RA


112387
0.0
3.6
5.8
113493
0.0
2.2
6.6


Match



Synovium2


Control



RA


Crohns-M


112378
0.0
0.1
0.9
113494 Syn
0.0
4.3
13.4


Crohns-M



Fluid Cells






RA


112390
3.7
27.7
25.2
113499
0.0
5.8
16.5


Match



Cartilage4


Control



RA


Crohns-M


112726
3.3
22.2
18.9
113500
1.6
4.5
19.3


Crohns-M



Bone4 RA


112731
4.8
18.8
23.3
113501
3.7
3.7
17.9


Match



Synovium4


Control



RA


Crohns-M


112380
2.1
14.6
11.5
113502 Syn
0.0
4.1
12.2


Ulcer Col-F



Fluid Cells4






RA


112734
12.9
59.5
73.2
113495
2.1
3.5
11.3


Match



Cartilage3


Control



RA


Ulcer Col-F


112384
3.4
16.6
20.9
113496
0.0
3.4
10.9


Ulcer Col-F



Bone3 RA


112737
0.0
6.0
7.9
113497
1.7
2.3
6.7


Match



Synovium3


Control



RA


Ulcer Col-F


112386
0.0
3.3
7.6
113498 Syn
0.0
5.2
12.5


Ulcer Col-F



Fluid Cells3






RA


112738
0.0
8.2
7.7
117106
0.0
0.4
1.2


Match



Normal



Control



Cartilage


Ulcer Col-F



Rep20


112381
0.0
0.1
0.0
113663
0.0
0.0
0.0


Ulcer



Bone3


Col-M



Normal


112735
0.0
1.2
3.1
113664
0.0
0.0
0.0


Match



Synovium3


Control



Normal


Ulcer


Col-M


112382
0.0
6.0
11.3
113665 Syn
0.0
0.0
0.2


Ulcer



Fluid Cells3


Col-M



Normal


112394
0.0
1.9
4.4
117107
0.0
1.3
4.1


Match



Normal


Control



Cartilage


Ulcer



Rep22


Col-M


112383
100.0
22.2
17.8
113667
0.0
6.1
12.4


Ulcer



Bone4


Col-M



Normal


112736
0.0
5.6
6.2
113668
0.0
7.0
15.9


Match



Synovium4


Control



Normal


Ulcer


Col-M


112423
1.3
11.7
29.5
113669 Syn
0.0
16.5
15.8


Psoriasis-F



Fluid Cells4






Normal










[0873]

332





TABLE ME










General_screening_panel_v1.6











Rel. Exp.

Rel. Exp.



(%) Ag7397,

(%) Ag7397,



Run

Run


Tissue Name
306066639
issue Name
306066639













Adipose
36.6
Renal ca. TK-10
9.2


Melanoma*
5.2
Bladder
91.4


Hs688(A).T


Melanoma*
7.0
Gastric ca. (liver met.)
36.3


Hs688(B).T

NCI-N87


Melanoma* M14
0.0
Gastric ca. KATO III
12.6


Melanoma*
2.8
Colon ca. SW-948
5.6


LOXIMVI


Melanoma*
11.4
Colon ca. SW480
30.6


SK-MEL-5


Squamous cell
2.1
Colon ca.* (SW480
17.8


carcinoma SCC-4

met) SW620


Testis Pool
29.3
Colon ca. HT29
2.3


Prostate ca.* (bone
11.3
Colon ca. HCT-116
20.9


met) PC-3


Prostate Pool
4.4
Colon ca. CaCo-2
24.1


Placenta
0.0
Colon cancer tissue
100.0


Uterus Pool
12.0
Colon ca. SW1116
0.0


Ovarian ca.
3.8
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
8.5
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
0.0
Colon Pool
42.0


OVCAR-4


Ovarian ca.
48.3
Small Intestine Pool
69.3


OVCAR-5


Ovarian ca.
0.0
Stomach Pool
38.4


IGROV-1


Ovarian ca.
7.3
Bone Marrow Pool
12.2


OVCAR-8


Ovary
29.1
Fetal Heart
14.9


Breast ca. MCF-7
11.8
Heart Pool
8.4


Breast ca.
12.9
Lymph Node Pool
43.8


MDA-MB-231


Breast ca. BT 549
24.3
Fetal Skeletal Muscle
15.7


Breast ca. T47D
0.0
Skeletal Muscle Pool
0.0


Breast ca. MDA-N
0.0
Spleen Pool
70.7


Breast Pool
56.6
Thymus Pool
78.5


Trachea
15.4
CNS cancer (glio/
11.2




astro) U87-MG


Lung
33.9
CNS cancer (glio/
45.1




astro) U-118-MG


Fetal Lung
76.3
CNS cancer (neuro;
14.0




met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
9.1




SF-539


Lung ca. LX-1
19.2
CNS cancer (astro)
23.3




SNB-75


Lung ca. NCI-H146
4.3
CNS cancer (glio)
4.0




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
44.4




SF-295


Lung ca. A549
11.8
Brain (Amygdala)
0.0




Pool


Lung ca. NCI-H526
6.1
Brain (cerebellum)
11.1


Lung ca. NCI-H23
36.3
Brain (fetal)
28.1


Lung ca. NCI-H460
14.8
Brain (Hippocampus)
21.0




Pool


Lung ca. HOP-62
12.7
Cerebral Cortex Pool
32.3


Lung ca. NCI-H522
5.6
Brain (Substantia
22.4




nigra) Pool


Liver
0.0
Brain (Thalamus) Pool
27.5


Fetal Liver
6.2
Brain (whole)
14.1


Liver ca. HepG2
0.0
Spinal Cord Pool
28.9


Kidney Pool
0.0
Adrenal Gland
14.2


Fetal Kidney
2.0
Pituitary gland Pool
0.0


Renal ca. 786-0
11.3
Salivary Gland
0.0


Renal ca. A498
4.4
Thyroid (female)
10.4


Renal ca. ACHN
14.7
Pancreatic ca.
3.3




CAPAN2


Renal ca. UO-31
5.2
Pancreas Pool
16.7










[0874]

333





TABLE MF










Panel 4.1D













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



g7397,
Ag7478,

Ag7397,
Ag7478,



Run
Run

Run
Run


Tissue Name
305065214
306413263
Tissue Name
305065214
306413263















Secondary Th1 act
0.0
0.5
HUVEC IL-1beta
0.0
0.0


Secondary Th2 act
2.0
1.1
HUVEC IFN gamma
1.5
0.0


Secondary Tr1 act
0.0
0.0
HUVEC TNF alpha +
0.0
0.0





IFN gamma


Secondary Th1 rest
0.0
0.0
HUVEC TNF alpha +
0.4
0.0





IL4


Secondary Th2 rest
0.3
0.0
HUVEC IL-11
0.3
0.2


Secondary Tr1 rest
0.0
0.0
Lung Microvascular
2.3
0.3





EC none


Primary Th1 act
0.0
0.0
Lung Microvascular
0.0
0.0





EC TNFalpha +





IL-1beta


Primary Th2 act
2.2
0.4
Microvascular
0.0
0.0





Dermal EC none


Primary Tr1 act
1.7
0.0
Microsvasular
1.0
0.0





Dermal EC





TNFalpha + IL1beta


Primary Th1 rest
0.0
0.0
Bronchial epithelium
0.0
0.0





TNFalpha + IL1beta


Primary Th2 rest
0.0
0.0
Small airway
0.0
0.0





epithelium none


Primary Tr1 rest
0.0
0.0
Small airway
1.9
0.0





epithelium TNFalpha +





IL-1beta


CD45RA CD4
1.3
0.0
Coronery artery SMC
0.0
0.0


lymphocyte act


rest


CD45RO CD4
0.7
7.4
Coronery artery SMC
0.0
0.0


lymphocyte act


TNFalpha + IL-1beta


CD8 lymphocyte act
0.7
0.2
Astrocytes rest
0.3
0.0


Secondary CD8
0.4
0.0
Astrocytes TNFalpha +
0.7
0.0


lymphocyte rest


IL-1beta


Secondary CD8
0.0
0.0
KU-812 (Basophil)
0.0
0.0


lymphocyte act


rest


CD4 lymphocyte none
0.6
0.2
KU-812 (Basophil)
2.1
1.0





PMA/ionomycin


2ry
0.0
0.0
CCD1106
1.5
0.0


Th1/Th2/Tr1_anti-CD95


(Keratinocytes) none


CH11


LAK cells rest
37.1
8.6
CCD1106
1.4
0.0





(Keratinocytes)





TNFalpha + IL-1beta


LAK cells IL-2
0.0
0.0
Liver cirrhosis
1.9
1.4


LAK cells IL-2 + IL-12
0.0
0.0
NCI-H292 none
1.5
1.9


LAK cell IL-2 + IFN
1.0
0.3
NCI-H292 IL-4
2.9
0.0


gamma


LAK cells IL-2 + IL-18
1.0
0.0
NCI-H292 IL-9
1.5
0.0


LAK cells
40.6
73.7
NCI-H292 IL-13
0.3
2.6


PMA-ionomycin


NK Cells IL-2 rest
3.0
1.6
NCI-H292 IFN
0.0
0.0





gamma


Two Way MLR 3 day
17.8
45.7
HPAEC none
0.0
0.0


Two Way MLR 5 day
3.3
0.0
HPAEC TNF alpha +
0.0
3.5





IL-1 beta


Two Way MLR 7 day
0.0
0.0
Lung fibroblast none
3.0
2.4


PBMC rest
6.8
14.5
Lung fibroblast TNF
2.9
0.0





alpha + IL-1 beta


PBMC PWM
0.0
7.0
Lung fibroblast IL-4
1.1
0.0


PBMC PHA-L
6.8
8.8
Lung fibroblast IL-9
2.0
4.4


Ramos (B cell) none
0.0
0.0
Lung fibroblast IL-13
0.2
0.0


Ramos (B cell)
0.9
0.8
Lung fibroblast IFN
2.5
0.6


ionomycin


gamma


B lymphocytes PWM
0.0
0.0
Dermal fibroblast
1.4
1.1





CCD1070 rest


B lymphocytes CD40L
23.8
35.6
Dermal fibroblast
0.4
1.4


and IL-4


CCD1070 TNF alpha


EOL-1 dbcAMP
6.7
7.6
Dermal fibroblast
0.5
0.0





CCD1070 IL-1beta


EOL-1 dbcAMP
3.8
0.5
Dermal fibroblast
1.2
0.0


PMA-ionomycin


IFN gamma


Dendritic cells none
92.7
52.5
Dermal fibroblast
1.8
1.7





IL-4


Dendritic cells LPS
31.2
20.7
Dermal Fibroblasts
1.0
0.0





rest


Dendritic cells
62.0
75.8
Neutrophils
14.4
29.1


anti-CD40


TNFa + LPS


Monocytes rest
48.3
85.3
Neutrophils rest
100.0
100.0


Monocytes LPS
49.7
92.7
Colon
0.0
0.0


Macrophages rest
8.7
21.8
Lung
1.2
0.0


Macrophages LPS
6.6
23.0
Thymus
1.4
0.5


HUVEC none
0.0
0.0
Kidney
1.1
0.0


HUVEC starved
1.3
0.0










[0875] AI_comprehensive panel_v1.0 Summary: Ag7397/Ag7478 Two experiments with two different probe and primer sets produce results that are in excellent agreement, with highest expression detected in an osteoarthritic bone sample (CTs=27-29). Low to moderate expression is seen in many of the samples on this panel, with slightly higher expression in clusters of samples derived from psoriasis and OA samples. Thus, this gene may be involved in the pathogenesis and/or treatment of these diseases.


[0876] Ag7094 Low levels of expression of this gene are detected in a single ulcerative colitis sample (CT=33.3). Interestingly, expression of this gene is higher in colitis sample as compared to the matched control sample (CT=40). Therefore, expression of this gene may be used as marker to detect the presence of ulcerative colitis and also, therapeutic modulation of this gene or its protein product may be useful in the treatment of ulcerative colitis.


[0877] General_screening_panel_v1.6 Summary: Ag7397 Detectable levels of expression are limited to samples from fetal lung, bladder, thymus, colon cancer, and small intestine (CTs=34-35). Ag6531 Expression of this gene is low/undetectable in all samples on this panel (CTs>35). (Data not shown.)


[0878] Panel 4.1D Summary: Ag7397/Ag7478 Two experiments with two different probe and primer sets produce results that are in excellent agreement, with highest expression detected in resting neutrophils (CTs=30-31). In addition, prominent expression is seen in dendritic cells, macrophages, monocytes, and LAK cells. This transcript appears to be down-regulated in activated neutrophils (CTs=32-33), suggesting that the protein encoded by this gene is produced by resting neutrophils but not by activated neutrophils. Thus, expression of this gene could be used to differentiate between resting and activated neutrophils. Furthermore, the gene product may reduce activation of these inflammatory cells and be useful as a protein therapeutic to reduce or eliminate the symptoms in patients with Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, lupus erythematosus, or psoriasis. In addition, modulation of this gene product may be effective in increasing the immune response in patients with AIDS or other immunodeficiencies. Ag6531/Ag7094 Expression of this gene is low/undetectable in all samples on this panel (CTs>35). (Data not shown.)


[0879] N. CG145978-01: DUF221 Domain Containing Membrane Protein


[0880] Expression of gene CG145978-01 was assessed using the primer-probe set Ag7596, described in Table NA. Results of the RTQ-PCR runs are shown in Tables NB and NC.
334TABLE NAProbe Name Ag7596PrimersLengthStart PositionSEQ ID No.Forward5′-acagatgcagacagccatga-3′20250281ProbeTET-5′-tctcacctctgtctccagctccgttg26282282-3′-TAMRAReverse5′-cacattgtccctttggtcaaa-3′21310283


[0881]

335





TABLE NB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag7596,

(%) Ag7596,



Run

Run


Tissue Name
311288611
issue Name
311288611













AD 1 Hippo
4.9
Control (Path) 3
5.2




Temporal Ctx


AD 2 Hippo
15.9
Control (Path) 4
12.9




Temporal Ctx


AD 3 Hippo
5.3
AD 1 Occipital Ctx
9.3


AD 4 Hippo
4.7
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
100.0
AD 3 Occipital Ctx
4.1


AD 6 Hippo
15.9
AD 4 Occipital Ctx
8.2


Control 2 Hippo
27.5
AD 5 Occipital Ctx
62.0


Control 4 Hippo
4.5
AD 6 Occipital Ctx
12.2


Control (Path) 3
2.8
Control 1 Occipital
4.0


Hippo

Ctx


AD 1 Temporal Ctx
13.9
Control 2 Occipital
61.1




Ctx


AD 2 Temporal Ctx
19.8
Control 3 Occipital
9.0




Ctx


AD 3 Temporal Ctx
5.4
Control 4 Occipital
4.8




Ctx


AD 4 Temporal Ctx
9.9
Control (Path) 1
62.0




Occipital Ctx


AD 5 Inf Temporal
36.3
Control (Path) 2
6.3


Ctx

Occipital Ctx


AD 5 Sup Temporal
33.0
Control (Path) 3
2.3


Ctx

Occipital Ctx


AD 6 Inf Temporal
29.1
Control (Path) 4
11.3


Ctx

Occipital Ctx


AD 6 Sup Temporal
34.6
Control 1 Parietal Ctx
4.5


Ctx



Control 1 Temporal
2.8
Control 2 Parietal Ctx
27.2


Ctx


Control 2 Temporal
32.8
Control 3 Parietal Ctx
10.0


Ctx


Control 3 Temporal
19.9
Control (Path) 1
67.8


Ctx

Parietal Ctx


Control 3 Temporal
6.7
Control (Path) 2
15.6


Ctx

Parietal Ctx


Control (Path) 1
49.3
Control (Path) 3
2.0


Temporal Ctx

Parietal Ctx


Control (Path) 2
18.0
Control (Path) 4
30.4


Temporal Ctx

Parietal Ctx










[0882]

336





TABLE NC










Panel 4.1D











Rel. Exp.

Rel. Exp.



() Ag7596,

(%) Ag7596,



Run

Run


Tissue Name
310113205
Tissue Name
310113205













Secondary Th1 act
12.3
HUVEC IL-1beta
31.0


Secondary Th2 act
20.0
HUVEC IFN gamma
20.6


Secondary Tr1 act
9.3
HUVEC TNF alpha +
2.7




IFN gamma


Secondary Th1 rest
3.4
HUVEC TNF alpha +
10.0




IL4


Secondary Th2 rest
4.6
HUVEC IL-11
9.7


Secondary Tr1 rest
3.7
Lung Microvascular
64.6




EC none


Primary Th1 act
3.3
Lung Microvascular
25.7




EC TNFalpha +




IL-1beta


Primary Th2 act
16.6
Microvascular Dermal
6.5




EC none


Primary Tr1 act
16.8
Microsvasular Dermal
14.7




EC TNFalpha +




IL-1beta


Primary Th1 rest
2.0
Bronchial epithelium
46.3




TNFalpha + IL-1beta


Primary Th2 rest
0.6
Small airway
42.6




epithelium none


Primary Tr1 rest
0.5
Small airway
71.7




epithelium




TNFalpha + IL-1beta


CD45RA CD4
27.7
Coronery artery SMC
16.0


lymphocyte act

rest


CD45RO CD4
17.8
Coronery artery SMC
30.4


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
9.3
Astrocytes rest
32.8


Secondary CD8
7.6
Astrocytes
69.3


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
5.5
KU-812 (Basophil)
59.9


lymphocyte act

rest


CD4 lymphocyte
2.2
KU-812 (Basophil)
88.9


none

PMA/ionomycin


2ry Th1/Th2/
3.4
CCD1106
72.7


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
4.6
CCD1106
35.1




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
6.8
Liver cirrhosis
9.9


LAK cells IL-2 +
0.0
NCI-H292 none
42.9


IL-12


LAK cells IL-2 +
5.0
NCI-H292 IL-4
72.2


IFN gamma


LAK cells IL-2 +
4.0
NCI-H292 IL-9
91.4


IL-18


LAK cells PMA/
36.3
NCI-H292 IL-13
50.7


ionomycin


NK Cells IL-2 rest
18.6
NCI-H292 IFN gamma
31.0


Two Way MLR 3
16.4
HPAEC none
17.3


day


Two Way MLR 5
5.7
HPAEC TNF alpha +
64.6


day

IL-1 beta


Two Way MLR 7
4.4
Lung fibroblast
36.6


day

none


PBMC rest
3.1
Lung fibroblast TNF
29.9




alpha + IL-1 beta


PBMC PWM
7.9
Lung fibroblast IL-4
30.6


PBMC PHA-L
4.8
Lung fibroblast IL-9
33.0


Ramos (B cell) none
1.3
Lung fibroblast IL-13
15.2


Ramos (B cell)
7.0
Lung fibroblast IFN
27.0


ionomycin

gamma


B lymphocytes
7.7
Dermal fibroblast
22.2


PWM

CCD1070 rest


B lymphocytes
17.1
Dermal fibroblast
46.0


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
16.3
Dermal fibroblast
19.2




CCD1070 IL-1 beta


EOL-1 dbcAMP
18.0
Dermal fibroblast IFN
16.8


PMA/ionomycin

gamma


Dendritic cells none
24.3
Dermal fibroblast IL-4
33.4


Dendritic cells LPS
100.0
Dermal Fibroblasts
21.3




rest


Dendritic cells
12.1
Neutrophils TNFa +
2.8


anti-CD40

LPS


Monocytes rest
3.1
Neutrophils rest
11.8


Monocytes LPS
60.3
Colon
2.5


Macrophages rest
15.7
Lung
8.4


Macrophages LPS
28.1
Thymus
4.9


HUVEC none
12.9
Kidney
28.9


HUVEC starved
22.1










[0883] CNS_neurodegeneration_v1.0 Summary: Ag7596 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at moderate levels in the brain, including the cortex and hipppocampus. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0884] Panel 4.1D Summary: Ag7956 Highest expression of this gene is seen in LPS treated dendritic cells (CT=31.8). Moderate levels of expression are seen in many samples on this panel and particularly in cells derived from the lung and skin including IL-4, IL-9, IL-13 and IFN gamma activated-NCI-H292 mucoepidermoid cells as well as untreated NCI-H292 cells, IL-4, IL-9, IL-13 and IFN gamma activated lung and dermal fibroblasts, human pulmonary aortic endothelial cells (treated and untreated), small airway epithelium (treated and untreated), treated bronchial epithelium and lung and dermal microvascular endothelial cells (treated and untreated). The expression of this gene in cells derived from or within the lung and skin suggests that this gene may be involved in normal conditions as well as pathological and inflammatory lung and skin disorders that include chronic obstructive puimonai y disease, asthma, allergy, psoriasis and emphysema.


[0885] O. CG145997-01: Similar to Drosophila FRY Gene


[0886] Expression of gene CG145997-01 was assessed using the primer-probe set Ag7557, described in Table OA.
337TABLE OAProbe Name Ag7557PrimersSequencsLengthStart PositionSEQ ID NoForward5′-ctgagctcgagaaagaagcat-3′21976284ProbeTET-5′-cgagacattttcggatctttatttaat301002285acc-3′-TAMRAReverse5′-atctatacaaagattccagtgcaact-3′261032286


[0887] CNS_neurodegeneration_v1.0 Summary: Ag7557 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0888] Panel 4.1D Summary: Ag7557 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0889] P. CG146119-01: Papilin


[0890] Expression of gene CG146119-01 was assessed using the primer-probe set Ag7571, described in Table PA.
338TABLE PAProbe Name Ag7571PrimersSequenceLengthStart PositionSEQ ID NoForward5′-gcttctacagtaagtgtctggaacac-3′262362287ProbeTET-5′-cactcactgggctcattctgctgg-2424032883′-TAMRAReverse5′-gttgtcatagcaacagccaaac-3′222439289


[0891] CNS_neurodegeneration_v1.0 Summary: Ag7571 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0892] Panel 4.1D Summary: Ag7571 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0893] Q. CG146202-01: Membrane-Associated Lectin Type—


[0894] Expression of full-length physical clone CG146202-01 was assessed using the primer-probe set Ag7047, described in Table QA. Results of the RTQ-PCR runs are shown in Table QB.
339TABLE OAProbe Name Ag7047PrimersLengthStart PositionSEQ ID NoForward5′-tgcagtggaacgcctgt-3′17564290ProbeTET-5′-ctgtccctgggaatggacattcttcc26588291-3′-TAMRAReverse5′-gtgatggagtcgtgccagt-3′19650292


[0895]

340





TABLE QB










General_screening_panel_v1.6











Rel. Exp.

Rel. Exp.



(%) Ag7047,

(%) Ag7047,



Run

Run


Tissue Name
282273803
issue Name
282273803













Adipose
68.3
Renal ca. TK-10
0.8


Melanoma*
0.0
Bladder
47.3


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
0.0


Hs688(B).T

NCI-N87


Melanoma* M14
0.0
Gastric ca. KATO III
0.0


Melanoma*
0.0
Colon ca. SW-948
0.0


LOXIMVI


Melanoma*
0.4
Colon ca. SW480
0.7


SK-MEL-5


Squamous cell
0.0
Colon ca.* (SW480
0.0


carcinoma SCC-4

met) SW620


Testis Pool
13.9
Colon ca. HT29
0.0


Prostate ca.* (bone
0.0
Colon ca. HCT-116
0.0


met) PC-3


Prostate Pool
6.2
Colon ca. CaCo-2
0.0


Placenta
100.0
Colon cancer tissue
93.3


Uterus Pool
2.2
Colon ca. SW1116
0.0


Ovarian ca.
0.0
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
0.0
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
0.0
Colon Pool
24.1


OVCAR-4


Ovarian ca.
0.0
Small Intestine Pool
9.0


OVCAR-5


Ovarian ca.
0.0
Stomach Pool
27.5


IGROV-1


Ovarian ca.
0.0
Bone Marrow Pool
16.8


OVCAR-8


Ovary
20.7
Fetal Heart
4.8


Breast ca. MCF-7
0.0
Heart Pool
7.2


Breast ca.
0.0
Lymph Node Pool
12.3


MDA-MB-231


Breast ca. BT 549
0.0
Fetal Skeletal Muscle
24.7


Breast ca. T47D
0.0
Skeletal Muscle Pool
5.3


Breast ca. MDA-N
0.0
Spleen Pool
4.1


Breast Pool
14.7
Thymus Pool
35.1


Trachea
43.2
CNS cancer (glio/
0.0




astro) U87-MG


Lung
3.3
CNS cancer (glio/
0.4




astro) U-118-MG


Fetal Lung
51.4
CNS cancer (neuro;
0.0




met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
0.0




SF-539


Lung ca. LX-1
0.0
CNS cancer (astro)
0.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
0.0




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
0.0




SF-295


Lung ca. A549
0.0
Brain (Amygdala)
1.0




Pool


Lung ca. NCI-H526
0.0
Brain (cerebellum)
20.6


Lung ca. NCI-H23
0.0
Brain (fetal)
5.5


Lung ca. NCI-H460
0.0
Brain (Hippocampus)
0.4




Pool


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
3.3


Lung ca. NCI-H522
0.0
Brain (Substantia
2.3




nigra) Pool


Liver
10.3
Brain (Thalamus) Pool
1.3


Fetal Liver
55.5
Brain (whole)
5.9


Liver ca. HepG2
0.0
Spinal Cord Pool
2.7


Kidney Pool
32.1
Adrenal Gland
49.7


Fetal Kidney
9.0
Pituitary gland Pool
2.5


Renal ca. 786-0
0.0
Salivary Gland
19.5


Renal ca. A498
0.0
Thyroid (female)
6.3


Renal ca. ACHN
0.0
Pancreatic ca.
0.0




CAPAN2


Renal ca. UO-31
0.6
Pancreas Pool
1.7










[0896] General_screening_panel_v1.6 Summary: Ag7047 Highest expression of this gene is detected in placenta (CT=29). Moderate to low levels of expression of this gene are also seen in, tissues with metabolic/endocrine functions, including pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0897] Moderate levels of expression are also seen in a sample derived from colon cancer. Thus, therapeutic modulation of the expression or function of this gene may be useful in the treatment of colon cancer.


[0898] In addition, moderate levels of expression of this gene are also detected in fetal brain and cerebellum. Thus, therapeutic modulation of this gene may be useful in the treatment of neurological disorders such as ataxia and autism.


[0899] Interestingly, this gene is expressed at much higher levels in fetal (CT=30) when compared to adult lung (CT=34). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance lung growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of lung related diseases.


[0900] R. CG146250-02: Novel Membrane Protein


[0901] Expression of full-length physical clone CG146250-02 was assessed using the primer-probe set Ag7566, described in Table RA. Results of the RTQ-PCR runs are shown in Table RB.
341TABLE RAProbe Name Ag7566PrimersSequenceLengthStart PositionSEQ ID NoForward5′-agcttccaccatcactttca-3′20198293ProbeTET-5′-cacatgccgtgtccaaggagctc-323218294123218294′-TAMRAReverse5′-gacaaagaggaagtcattatccagtag-327246295


[0902]

342





TABLE RB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag7566,

(%) Ag7566,



Run

Run


Tissue Name
308751128
issue Name
308751128













AD 1 Hippo
0.0
Control (Path) 3
0.0




Temporal Ctx


AD 2 Hippo
10.4
Control (Path) 4
10.4




Temporal Ctx


AD 3 Hippo
5.5
AD 1 Occipital Ctx
10.6


AD 4 Hippo
0.0
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
22.8
AD 3 Occipital Ctx
2.9


AD 6 Hippo
0.0
AD 4 Occipital Ctx
29.9


Control 2 Hippo
0.0
AD 5 Occipital Ctx
0.0


Control 4 Hippo
11.2
AD 6 Occipital Ctx
0.0


Control (Path) 3
2.5
Control 1 Occipital
0.0


Hippo

Ctx


AD 1 Temporal Ctx
0.0
Control 2 Occipital
0.0




Ctx


AD 2 Temporal Ctx
13.6
Control 3 Occipital
38.7




Ctx


AD 3 Temporal Ctx
7.8
Control 4 Occipital
6.3




Ctx


AD 4 Temporal Ctx
11.0
Control (Path) 1
28.1




Occipital Ctx


AD 5 Inf Temporal
29.9
Control (Path) 2
12.8


Ctx

Occipital Ctx


AD 5 Sup Temporal
25.9
Control (Path) 3
0.0


Ctx

Occipital Ctx


AD 6 Inf Temporal
52.9
Control (Path) 4
0.0


Ctx

Occipital Ctx


AD 6 Sup Temporal
100.0
Control 1 Parietal Ctx
0.0


Ctx



Control 1 Temporal
11.2
Control 2 Parietal Ctx
61.6


Ctx


Control 2 Temporal
12.4
Control 3 Parietal Ctx
11.7


Ctx


Control 3 Temporal
31.4
Control (Path) 1
48.0


Ctx

Parietal Ctx


Control 3 Temporal
12.4
Control (Path) 2
0.0


Ctx

Parietal Ctx


Control (Path) 1
14.9
Control (Path) 3
0.0


Temporal Ctx

Parietal Ctx


Control (Path) 2
17.3
Control (Path) 4
12.7


Temporal Ctx

Parietal Ctx










[0903] CNS_neurodegeneration_v1.0 Summary: Ag7566 Low levels of expression of this gene is restricted to a sample derived from Alzheimer's patient (CT=34.5). Thus, expression of this gene may be useful in distinguishing this sample from other samples used in this panel.


[0904] Panel 4.1D Summary: Ag7566 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0905] S. CG146625-01: Type IIIa Membrane Protein


[0906] Expression of full-length physical clone CG146625-01 was assessed using the primer-probe set Ag7052, described in Table SA. Results of the RTQ-PCR runs are shown in Table SB.
343TABLE SAProbe Name Ag7052StartSEQ IDPrimersSequencesLengthPositionNoForward5′-tgagaacctgcagcatcaga-3′20279296ProbeTET-5′-atacggcagctgactgcaaacctcagc-3′-TAMRA273051297Reverse5′-tcctggtggtgaaaggatgt-3′120360298


[0907]

344





TABLE SB










General_screening_panel_v1.6











Rel. Exp.

Rel. Exp.



(%) Ag7052,

(%) Ag7052,



Run

Run


Tissue Name
282273862
issue Name
282273862













Adipose
5.9
Renal ca. TK-10
55.5


Melanoma*
19.2
Bladder
13.5


Hs688(A).T


Melanoma*
26.1
Gastric ca. (liver met.)
100.0


Hs688(B).T

NCI-N87


Melanoma* M14
37.1
Gastric ca. KATO III
40.3


Melanoma*
13.7
Colon ca. SW-948
17.9


LOXIMVI


Melanoma*
23.8
Colon ca. SW480
47.3


SK-MEL-5


Squamous cell
26.6
Colon ca.* (SW480
29.9


carcinoma SCC-4

met) SW620


Testis Pool
37.6
Colon ca. HT29
38.7


Prostate ca.* (bone
51.4
Colon ca. HCT-116
55.1


met) PC-3


Prostate Pool
9.9
Colon ca. CaCo-2
45.7


Placenta
17.4
Colon cancer tissue
14.4


Uterus Pool
4.5
Colon ca. SW1116
15.0


Ovarian ca.
22.1
Colon ca. Colo-205
24.5


OVCAR-3


Ovarian ca.
28.1
Colon ca. SW-48
24.5


SK-OV-3


Ovarian ca.
14.3
Colon Pool
15.4


OVCAR-4


Ovarian ca.
76.3
Small Intestine Pool
17.2


OVCAR-5


Ovarian ca.
29.3
Stomach Pool
7.7


IGROV-1


Ovarian ca.
47.3
Bone Marrow Pool
7.6


OVCAR-8


Ovary
12.0
Fetal Heart
4.7


Breast ca. MCF-7
46.3
Heart Pool
10.3


Breast ca.
64.2
Lymph Node Pool
24.1


MDA-MB-231


Breast ca. BT 549
26.4
Fetal Skeletal Muscle
5.2


Breast ca. T47D
9.5
Skeletal Muscle Pool
3.2


Breast ca. MDA-N
9.4
Spleen Pool
9.0


Breast Pool
12.0
Thymus Pool
16.6


Trachea
18.6
CNS cancer (glio/
66.4




astro) U87-MG


Lung
3.8
CNS cancer (glio/
74.7




astro) U-118-MG


Fetal Lung
14.1
CNS cancer (neuro;
29.1




met) SK-N-AS


Lung ca. NCI-N417
6.8
CNS cancer (astro)
23.8




SF-539


Lung ca. LX-1
45.1
CNS cancer (astro)
54.0




SNB-75


Lung ca. NCI-H146
7.0
CNS cancer (glio)
30.6




SNB-19


Lung ca. SHP-77
26.4
CNS cancer (glio)
82.9




SF-295


Lung ca. A549
35.8
Brain (Amygdala)
10.1




Pool


Lung ca. NCI-H526
4.8
Brain (cerebellum)
42.3


Lung ca. NCI-H23
59.9
Brain (fetal)
11.7


Lung ca. NCI-H460
22.1
Brain (Hippocampus)
11.7




Pool


Lung ca. HOP-62
44.4
Cerebral Cortex Pool
14.4


Lung ca. NCI-H522
45.7
Brain (Substantia
10.1




nigra) Pool


Liver
17.6
Brain (Thalamus) Pool
12.8


Fetal Liver
35.4
Brain (whole)
13.9


Liver ca. HepG2
36.3
Spinal Cord Pool
11.3


Kidney Pool
27.4
Adrenal Gland
24.3


Fetal Kidney
11.4
Pituitary gland Pool
5.0


Renal ca. 786-0
48.6
Salivary Gland
13.1


Renal ca. A498
7.0
Thyroid (female)
19.3


Renal ca. ACHN
25.9
Pancreatic ca.
62.4




CAPAN2


Renal ca. UO-31
39.8
Pancreas Pool
9.7










[0908] General_screening_panel_v1.6 Summary: Ag7052 Highest expression of this gene is seen in a gastric cancer cell line (CT=28). This gene is widely expressed in this panel, with moderate expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0909] Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0910] This gene is also expressed at moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0911] T. CG146625-02: Type IIIa Membrane Protein


[0912] Expression of full-length physical clone CG146625-02 was assessed using the primer-probe set Ag6939, described in Table TA. Results of the RTQ-PCR runs are shown in Table TB.
345TABLE TAProbe Name Ag6939StartSEQ IDPrimersLengthPositionNoForward5′-gctgagccttccacgagtt-3′19680299ProbeTET-5′-tcatcccagatcaccatgcagaagc-3′-TAMRA25740300Reverse5′-gtgctgagggtttgcagtcag-3′20809301


[0913]

346





TABLE TB










General_screening_panel_v1.6











Rel. Exp.

Rel. Exp.



(%) Ag6939,

(%) Ag6939,



Run

Run


Tissue Name
278700426
issue Name
278700426













Adipose
8.7
Renal ca. TK-10
59.9


Melanoma*
47.6
Bladder
13.4


Hs688(A).T


Melanoma*
36.9
Gastric ca. (liver met.)
88.3


Hs688(B).T

NCI-N87


Melanoma* M14
38.7
Gastric ca. KATO III
39.8


Melanoma*
18.2
Colon ca. SW-948
5.6


LOXIMVI


Melanoma*
22.2
Colon ca. SW480
55.5


SK-MEL-5


Squamous cell
54.3
Colon ca.* (SW480
25.7


carcinoma SCC-4

met) SW620


Testis Pool
24.3
Colon ca. HT29
36.3


Prostate ca.* (bone
60.3
Colon ca. HCT-116
35.4


met) PC-3


Prostate Pool
15.7
Colon ca. CaCo-2
32.8


Placenta
12.4
Colon cancer tissue
22.5


Uterus Pool
7.9
Colon ca. SW1116
19.3


Ovarian ca.
29.9
Colon ca. Colo-205
21.8


OVCAR-3


Ovarian ca.
27.2
Colon ca. SW-48
28.7


SK-OV-3


Ovarian ca.
14.8
Colon Pool
20.6


OVCAR-4


Ovarian ca.
50.7
Small Intestine Pool
16.5


OVCAR-5


Ovarian ca.
37.9
Stomach Pool
10.8


IGROV-1


Ovarian ca.
52.1
Bone Marrow Pool
5.3


OVCAR-8


Ovary
12.6
Fetal Heart
2.4


Breast ca. MCF-7
47.3
Heart Pool
11.9


Breast ca.
100.0
Lymph Node Pool
53.2


MDA-MB-231


Breast ca. BT 549
23.0
Fetal Skeletal Muscle
1.1


Breast ca. T47D
12.1
Skeletal Muscle Pool
1.5


Breast ca. MDA-N
16.3
Spleen Pool
8.1


Breast Pool
25.3
Thymus Pool
11.8


Trachea
18.0
CNS cancer (glio/
54.7




astro) U87-MG


Lung
8.2
CNS cancer (glio/
70.7




astro) U-118-MG


Fetal Lung
12.2
CNS cancer (neuro;
20.7




met) SK-N-AS


Lung ca. NCI-N417
8.1
CNS cancer (astro)
25.2




SF-539


Lung ca. LX-1
22.1
CNS cancer (astro)
39.8




SNB-75


Lung ca. NCI-H146
7.1
CNS cancer (glio)
33.9




SNB-19


Lung ca. SHP-77
18.7
CNS cancer (glio)
77.4




SF-295


Lung ca. A549
29.9
Brain (Amygdala)
7.6




Pool


Lung ca. NCI-H526
5.0
Brain (cerebellum)
17.3


Lung ca. NCI-H23
8.2
Brain (fetal)
8.3


Lung ca. NCI-H460
23.0
Brain (Hippocampus)
12.4




Pool


Lung ca. HOP-62
39.8
Cerebral Cortex Pool
10.0


Lung ca. NCI-H522
36.3
Brain (Substantia
11.7




nigra) Pool


Liver
11.6
Brain (Thalamus) Pool
11.7


Fetal Liver
41.2
Brain (whole)
10.4


Liver ca. HepG2
23.7
Spinal Cord Pool
9.9


Kidney Pool
39.2
Adrenal Gland
24.0


Fetal Kidney
6.1
Pituitary gland Pool
6.4


Renal ca. 786-0
39.0
Salivary Gland
12.2


Renal ca. A498
4.6
Thyroid (female)
23.0


Renal ca. ACHN
20.6
Pancreatic ca.
52.5




CAPAN2


Renal ca. UO-31
33.2
Pancreas Pool
10.3










[0914] General_screening_panel_v1.6 Summary: Ag6939 Highest expression of this gene is detected in a breast cancer MDA-MB-231 cell line (CT=32). Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0915] Low levels of expression of this gene is also seen in samples derived from normal tissues represented by testis, prostate, ovary, trachea, fetal liver, colon, small intestine, lymph node, cerebellum, thyroid and adrenal gland. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of diseases related to these tissues.


[0916] U. CG147284-01: Cadherin-6 Precursor


[0917] Expression of full-length physical clone CG147284-01 was assessed using the primer-probe set Ag7567, described in Table UA.
347TABLE UAProbe Name Ag7567StartSEQ IDPrimersSequencesLengthPositionNoForward5′-cgtgttgtctttgttgtcttga-3′22285302ProbeTET-5′-tgtgggcaagttacattcaaactttacca-3′-TAMRA29255303Reverse5′-gaatacacaggatccgattatcagta-3′26229304


[0918] CNS_neurodegeneration_v1.0 Summary: Ag7567 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0919] Panel 4.1D Summary: Ag7567 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[0920] V. CG148221-01 and CG148221-02: Claudin Domain Containing Novel TmMP


[0921] Expression of gene CG148221-01 and full-length physical clone was assessed using the primer-probe set Ag5625, described in Table VA. Results of the RTQ-PCR runs are shown in Tables VB, VC and VD.
348TABLE VAProbe Name Ag5625StartSEQ IDPrimersLengthPositionNoForward5′-tttctgctggcagacatgat-3′20469305ProbeTET-5′-agcaccgacgccatcagtggatt-3′-TAMRA23496306Reverse5′-caggctgcagtcacagaca-3′19526307


[0922]

349





TABLE VB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag5625,

(%) Ag5625,



Run

Run


Tissue Name
244647005
issue Name
244647005













AD 1 Hippo
23.5
Control (Path) 3
20.4




Temporal Ctx


AD 2 Hippo
62.4
Control (Path) 4
44.8




Temporal Ctx


AD 3 Hippo
2.8
AD 1 Occipital Ctx
11.7


AD 4 Hippo
10.5
AD 2 Occipital Ctx
3.0




(Missing)


AD 5 Hippo
45.7
AD 3 Occipital Ctx
4.7


AD 6 Hippo
76.8
AD 4 Occipital Ctx
20.7


Control 2 Hippo
30.4
AD 5 Occipital Ctx
37.9


Control 4 Hippo
10.4
AD 6 Occipital Ctx
40.6


Control (Path) 3
17.9
Control 1 Occipital
8.5


Hippo

Ctx


AD 1 Temporal Ctx
27.2
Control 2 Occipital
52.1




Ctx


AD 2 Temporal Ctx
57.8
Control 3 Occipital
17.7




Ctx


AD 3 Temporal Ctx
7.9
Control 4 Occipital
15.6




Ctx


AD 4 Temporal Ctx
24.5
Control (Path) 1
52.1




Occipital Ctx


AD 5 Inf Temporal
100.0
Control (Path) 2
5.3


Ctx

Occipital Ctx


AD 5 SupTemporal
69.7
Control (Path) 3
10.5


Ctx

Occipital Ctx


AD 6 Inf Temporal
74.7
Control (Path) 4
20.4


Ctx

Occipital Ctx


AD 6 Sup Temporal
57.8
Control 1 Parietal Ctx
14.7


Ctx



Control 1 Temporal
24.1
Control 2 Parietal Ctx
54.0


Ctx


Control 2 Temporal
33.9
Control 3 Parietal Ctx
31.6


Ctx


Control 3 Temporal
19.8
Control (Path) 1
54.0


Ctx

Parietal Ctx


Control 4 Temporal
18.2
Control (Path) 2
15.7


Ctx

Parietal Ctx


Control (Path) 1
34.9
Control (Path) 3
15.6


Temporal Ctx

Parietal Ctx


Control (Path) 2
44.1
Control (Path) 4
40.1


Temporal Ctx

Parietal Ctx










[0923]

350





TABLE VC










General_screening_panel_v1.5











Rel. Exp.

Rel. Exp.



(%) Ag5625,

(%) Ag5625,



Run

Run


Tissue Name
244646965
issue Name
244646965













Adipose
18.4
Renal ca. TK-10
29.5


Melanoma*
3.7
Bladder
22.2


Hs688(A).T


Melanoma*
2.4
Gastric ca. (liver met.)
12.2


Hs688(B).T

NCI-N87


Melanoma* M14
14.5
Gastric ca. KATO III
23.0


Melanoma*
1.7
Colon ca. SW-948
12.0


LOXIMVI


Melanoma*
4.8
Colon ca. SW480
82.9


SK-MEL-5


Squamous cell
4.0
Colon ca.* (SW480
36.6


carcinoma SCC-4

met) SW620


Testis Pool
30.6
Colon ca. HT29
24.0


Prostate ca.* (bone
7.8
Colon ca. HCT-116
31.2


met) PC-3


Prostate Pool
2.9
Colon ca. CaCo-2
31.2


Placenta
0.4
Colon cancer tissue
8.1


Uterus Pool
2.6
Colon ca. SW1116
4.2


Ovarian ca.
2.8
Colon ca. Colo-205
2.8


OVCAR-3


Ovarian ca.
8.2
Colon ca. SW-48
4.6


SK-OV-3


Ovarian ca.
10.6
Colon Pool
5.6


OVCAR-4


Ovarian ca.
23.2
Small Intestine Pool
12.3


OVCAR-5


Ovarian ca.
13.7
Stomach Pool
7.8


IGROV-1


Ovarian ca.
6.0
Bone Marrow Pool
6.7


OVCAR-8


Ovary
3.3
Fetal Heart
2.1


Breast ca. MCF-7
8.1
Heart Pool
3.0


Breast ca.
29.3
Lymph Node Pool
9.3


MDA-MB-231


Breast ca. BT 549
7.1
Fetal Skeletal Muscle
4.1


Breast ca. T47D
4.3
Skeletal Muscle Pool
4.9


Breast ca. MDA-N
22.1
Spleen Pool
5.0


Breast Pool
6.0
Thymus Pool
9.3


Trachea
1.8
CNS cancer (glio/
30.8




astro) U87-MG


Lung
16.6
CNS cancer (glio/
28.1




astro) U-118-MG


Fetal Lung
3.7
CNS cancer (neuro;
11.9




met) SK-N-AS


Lung ca. NCI-N417
6.4
CNS cancer (astro)
3.0




SF-539


Lung ca. LX-1
100.0
CNS cancer (astro)
25.9




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
17.1




SNB-19


Lung ca. SHP-77
18.4
CNS cancer (glio)
24.0




SF-295


Lung ca. A549
51.4
Brain (Amygdala)
8.7




Pool


Lung ca. NCI-H526
7.0
Brain (cerebellum)
28.5


Lung ca. NCI-H23
15.3
Brain (fetal)
11.3


Lung ca. NCI-H460
15.7
Brain (Hippocampus)
10.2




Pool


Lung ca. HOP-62
3.3
Cerebral Cortex Pool
11.4


Lung ca. NCI-H522
29.5
Brain (Substantia
11.6




nigra) Pool


Liver
1.7
Brain (Thalamus) Pool
14.3


Fetal Liver
8.5
Brain (whole)
7.3


Liver ca. HepG2
57.8
Spinal Cord Pool
7.9


Kidney Pool
24.1
Adrenal Gland
6.7


Fetal Kidney
7.4
Pituitary gland Pool
3.0


Renal ca. 786-0
10.4
Salivary Gland
6.8


Renal ca. A498
18.9
Thyroid (female)
5.2


Renal ca. ACHN
1.7
Pancreatic ca.
34.9




CAPAN2


Renal ca. UO-31
2.5
Pancreas Pool
6.4










[0924]

351





TABLE VD










Panel 4.1D











Rel. Exp.

Rel. Exp.



() Ag5625,

(%) Ag5625,



Run

Run


Tissue Name
246490692
Tissue Name
246490692













Secondary Th1 act
17.1
HUVEC IL-1beta
1.8


Secondary Th2 act
30.4
HUVEC IFN gamma
0.0


Secondary Tr1 act
15.2
HUVEC TNF alpha +
0.7




IFN gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
0.0
HUVEC IL-11
2.6


Secondary Tr1 rest
1.3
Lung Microvascular
1.0




EC none


Primary Th1 act
0.0
Lung Microvascular
0.0




EC TNFalpha +




IL-1beta


Primary Th2 act
15.0
Microvascular Dermal
0.0




EC none


Primary Tr1 act
10.2
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
1.7




TNFalpha + IL-1beta


Primary Th2 rest
0.0
Small airway
1.8




epithelium none


Primary Tr1 rest
0.5
Small airway
1.1




epithelium




TNFalpha + IL-1beta


CD45RA CD4
5.6
Coronery artery SMC
0.0


lymphocyte act

rest


CD45RO CD4
9.7
Coronery artery SMC
1.6


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
1.3
Astrocytes rest
0.6


Secondary CD8
4.8
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
6.7
KU-812 (Basophil)
1.3


lymphocyte act

rest


CD4 lymphocyte
0.0
KU-812 (Basophil)
2.3


none

PMA/ionomycin


2ry Th1/Th2/
0.1
CCD1106
2.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
3.4
CCD1106
1.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
8.5
Liver cirrhosis
2.6


LAK cells IL-2 +
2.6
NCI-H292 none
1.7


IL-12


LAK cells IL-2 +
5.8
NCI-H292 IL-4
0.7


IFN gamma


LAK cells IL-2 +
2.0
NCI-H292 IL-9
6.0


IL-18


LAK cells PMA/
16.4
NCI-H292 IL-13
1.8


ionomycin


NK Cells IL-2 rest
100.0
NCI-H292 IFN gamma
0.6


Two Way MLR 3
3.6
HPAEC none
0.0


day


Two Way MLR 5
0.0
HPAEC TNF alpha +
0.8


day

IL-1 beta


Two Way MLR 7
1.6
Lung fibroblast
1.3


day

none


PBMC rest
0.7
Lung fibroblast TNF
1.3




alpha + IL-1 beta


PBMC PWM
2.0
Lung fibroblast IL-4
1.4


PBMC PHA-L
1.3
Lung fibroblast IL-9
0.7


Ramos (B cell) none
0.0
Lung fibroblast IL-13
0.0


Ramos (B cell)
4.2
Lung fibroblast IFN
0.6


ionomycin

gamma


B lymphocytes
7.4
Dermal fibroblast
1.7


PWM

CCD1070 rest


B lymphocytes
6.0
Dermal fibroblast
31.4


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
14.2
Dermal fibroblast
0.3




CCD1070 IL-1 beta


EOL-1 dbcAMP
1.1
Dermal fibroblast IFN
1.0


PMA/ionomycin

gamma


Dendritic cells none
3.2
Dermal fibroblast IL-4
1.9


Dendritic cells LPS
1.3
Dermal Fibroblasts
0.0




rest


Dendritic cells
0.0
Neutrophils TNFa +
0.6


anti-CD40

LPS


Monocytes rest
0.5
Neutrophils rest
2.7


Monocytes LPS
3.5
Colon
0.7


Macrophages rest
0.7
Lung
0.0


Macrophages LPS
0.7
Thymus
0.0


HUVEC none
1.2
Kidney
2.3


HUVEC starved
2.5










[0925] CNS_neurodegeneration_v1.0 Summary: Ag5625 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at moderate levels in the brain. Please see Panel 1.5 for discussion of utility of this gene in the central nervous system.


[0926] General_screening_panel_v1.5 Summary: Ag5625 Highest expression of this gene is seen in a lung cancer cell line (CT=29.4). This gene is widely expressed in this panel, with moderate expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. This gene encodes a protein with homology to claudin, a family of proteins that are integral components of the tight junction. Members of this family have been shown to be upregulated in pancreatic cancer and colon cancer and in the former case proposed as novel targets for the treatment of this disease (Michl P. Gastroenterology 2001 September;121(3):678-84; Miwa, N. Oncol Res 2001;12(11-12):469-76) Therefore, therapeutic modulation of the expression or function of this protein may be of use in the treatment of these cancers.


[0927] Among tissues with metabolic function, this gene is expressed at low but significant levels in pituitary, adipose, adrenal gland, pancreas, thyroid, fetal liver and adult and fetal skeletal muscle and heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0928] This gene is also expressed at low but significant levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Claudin 11 has been shown to be a component of the CNS myelin and has been implicated in the regulation of growth and differentiation via signal transduction pathways. Furthermore, evidence has been presented that shows that claudin 11 may be involved in the autoantigen that is responsible for the development of autoimmune demyelinating disease.(Bronstein J M. J Neurosci Res Mar. 15, 2000;59(6):706-11). Therefore, therapeutic modulation of the expression or function of this putative claudin may be of use in the treatment of demyelinating diseases such as multiple sclerosis and in restoring normal function to the CNS.


[0929] Panel 4.1D Summary: Ag5625 Highest expression of this gene is seen in IL-2 treated NK cells (CT=29). This observation suggests that therapeutic modulation of this gene could be of use in the treatment of viral or bacterial intracellular infections.


[0930] W. CG149332-01: Interferon Induced Transmembrane Protein 3 (1-8U)—Like


[0931] Expression of gene CG149332-01 was assessed using the primer-probe set Ag7580, described in Table WA. Results of the RTQ-PCR runs are shown in Tables WB and WC.
352TABLE WAProbe Name Ag7580StartSEQ IDPrimersLengthPositionNoForward5′-gagaagcatgaggtggctgt-3′2076308ProbeTET-5′-accccacaaccctgtgcctccag-3′-TAMRA23105309Reverse5′-gcagatgtggatcatggtga-3′20131310


[0932]

353





TABLE WB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag7580,

(%) Ag7580,



Run

Run


Tissue Name
308752173
issue Name
308752173













AD 1 Hippo
17.2
Control (Path) 3
17.4




Temporal Ctx


AD 2 Hippo
30.4
Control (Path) 4
27.7




Temporal Ctx


AD 3 Hippo
3.7
AD 1 Occipital Ctx
12.9


AD 4 Hippo
29.7
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
24.3
AD 3 Occipital Ctx
0.0


AD 6 Hippo
100.0
AD 4 Occipital Ctx
14.8


Control 2 Hippo
8.7
AD 5 Occipital Ctx
7.0


Control 4 Hippo
40.1
AD 6 Occipital Ctx
3.5


Control (Path) 3
7.5
Control 1 Occipital
8.2


Hippo

Ctx


AD 1 Temporal Ctx
7.9
Control 2 Occipital
12.1




Ctx


AD 2 Temporal Ctx
23.2
Control 3 Occipital
13.8




Ctx


AD 3 Temporal Ctx
5.7
Control 4 Occipital
7.5




Ctx


AD 4 Temporal Ctx
11.8
Control (Path) 1
16.4




Occipital Ctx


AD 5 Inf Temporal
44.8
Control (Path) 2
3.5


Ctx

Occipital Ctx


AD 5 Sup Temporal
87.7
Control (Path) 3
3.2


Ctx

Occipital Ctx


AD 6 Inf Temporal
56.6
Control (Path) 4
10.2


Ctx

Occipital Ctx


AD 6 Sup Temporal
56.3
Control 1 Parietal Ctx
4.1


Ctx



Control 1 Temporal
14.4
Control 2 Parietal Ctx
62.0


Ctx


Control 2 Temporal
28.7
Control 3 Parietal Ctx
2.9


Ctx


Control 3 Temporal
28.5
Control (Path) 1
38.7


Ctx

Parietal Ctx


Control 3 Temporal
6.1
Control (Path) 2
13.4


Ctx

Parietal Ctx


Control (Path) 1
40.3
Control (Path) 3
3.7


Temporal Ctx

Parietal Ctx


Control (Path) 2
53.2
Control (Path) 4
29.1


Temporal Ctx

Parietal Ctx










[0933]

354





TABLE WC










Panel 4.1D











Rel. Exp.

Rel. Exp.



( ) Ag7580,

(%) Ag7580,



Run

Run


Tissue Name
308748674
Tissue Name
308748674













Secondary Th1 act
9.5
HUVEC IL-1beta
2.5


Secondary Th2 act
21.3
HUVEC IFN gamma
19.8


Secondary Tr1 act
4.2
HUVEC TNF alpha +
0.7




IFN gamma


Secondary Th1 rest
3.0
HUVEC TNF alpha +
1.4




IL4


Secondary Th2 rest
11.1
HUVEC IL-11
2.9


Secondary Tr1 rest
15.1
Lung Microvascular
2.4




EC none


Primary Th1 act
1.8
Lung Microvascular
1.1




EC TNFalpha +




IL-1beta


Primary Th2 act
25.0
Microvascular Dermal
0.0




EC none


Primary Tr1 act
12.1
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
12.4
Bronchial epithelium
10.1




TNFalpha + IL-1beta


Primary Th2 rest
21.2
Small airway
2.0




epithelium none


Primary Tr1 rest
2.8
Small airway
14.5




epithelium




TNFalpha + IL-1beta


CD45RA CD4
21.0
Coronery artery SMC
5.5


lymphocyte act

rest


CD45RO CD4
63.3
Coronery artery SMC
7.9


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
15.1
Astrocytes rest
0.0


Secondary CD8
10.7
Astrocytes
2.1


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
1.5
KU-812 (Basophil)
3.3


lymphocyte act

rest


CD4 lymphocyte
19.3
KU-812 (Basophil)
8.4


none

PMA/ionomycin


2ry Th1/Th2/
9.9
CCD1106
13.7


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
33.0
CCD1106
8.6




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
12.3
Liver cirrhosis
3.5


LAK cells IL-2 +
2.1
NCI-H292 none
19.3


IL-12


LAK cells IL-2 +
20.6
NCI-H292 IL-4
20.7


IFN gamma


LAK cells IL-2 +
11.1
NCI-H292 IL-9
31.6


IL-18


LAK cells PMA/
14.5
NCI-H292 IL-13
22.2


ionomycin


NK Cells IL-2 rest
100.0
NCI-H292 IFN gamma
5.3


Two Way MLR 3
31.9
HPAEC none
1.2


day


Two Way MLR 5
4.9
HPAEC TNF alpha +
5.9


day

IL-1 beta


Two Way MLR 7
5.7
Lung fibroblast
1.1


day

none


PBMC rest
6.1
Lung fibroblast TNF
1.1




alpha + IL-1 beta


PBMC PWM
9.9
Lung fibroblast IL-4
0.6


PBMC PHA-L
11.2
Lung fibroblast IL-9
2.0


Ramos (B cell) none
0.0
Lung fibroblast IL-13
0.9


Ramos (B cell)
1.9
Lung fibroblast IFN
4.2


ionomycin

gamma


B lymphocytes
5.9
Dermal fibroblast
16.2


PWM

CCD1070 rest


B lymphocytes
60.3
Dermal fibroblast
59.9


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
2.8
Dermal fibroblast
10.6




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.0
Dermal fibroblast IFN
1.5


PMA/ionomycin

gamma


Dendritic cells none
4.0
Dermal fibroblast IL-4
2.3


Dendritic cells LPS
1.8
Dermal Fibroblasts
0.4




rest


Dendritic cells
0.0
Neutrophils TNFa +
6.3


anti-CD40

LPS


Monocytes rest
0.3
Neutrophils rest
5.5


Monocytes LPS
4.7
Colon
0.6


Macrophages rest
2.0
Lung
0.6


Macrophages LPS
0.6
Thymus
1.2


HUVEC none
2.5
Kidney
4.2


HUVEC starved
1.4










[0934] CNS_neurodegeneration_v1.0 Summary: Ag7580 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at moderate levels in the brain, including the hippocampus and cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0935] Panel 4.1D Summary: Ag7580 Highest expression of this gene is seen in IL-2 treated NK cells. Moderate to low levels of expression are seen in many samples on this panel, inlucding TNF-a treated and resting dermal fibroblasts, TNF-a and LPS treated neutrophils, activated primary and secondary T cells, and LAK cells. This expression suggests that modulation of the expression or function of this gene may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0936] X. CG149649-01: Type IIIA Membrane Protein


[0937] Expression of gene CG149649-01 was assessed using the primer-probe set Ag7568, described in Table XA. Results of the RTQ-PCR runs are shown in Tables XB and XC.
355TABLE XAProbe Name Ag7568StartSEQ IDPrimersSequencesLengthPositionNoForward5′-ggcctcttggccctctact-3′19226311ProbeTET-5′-cctcctgcttttgctcttctggatctacag-3′-TAMRA30246312Reverse5′-tatagcacccctgtgggagt-3′20290313


[0938]

356





TABLE XB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag7568,

(%) Ag7568,



Run

Run


Tissue Name
308751131
issue Name
308751131













AD 1 Hippo
18.7
Control (Path) 3
10.4




Temporal Ctx


AD 2 Hippo
40.6
Control (Path) 4
20.2




Temporal Ctx


AD 3 Hippo
12.0
AD 1 Occipital Ctx
15.1


AD 4 Hippo
8.7
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
60.7
AD 3 Occipital Ctx
11.0


AD 6 Hippo
100.0
AD 4 Occipital Ctx
26.8


Control 2 Hippo
41.2
AD 5 Occipital Ctx
32.1


Control 4 Hippo
29.7
AD 6 Occipital Ctx
19.5


Control (Path) 3
14.2
Control 1 Occipital
9.9


Hippo

Ctx


AD 1 Temporal Ctx
20.2
Control 2 Occipital
55.5




Ctx


AD 2 Temporal Ctx
50.7
Control 3 Occipital
16.6




Ctx


AD 3 Temporal Ctx
10.7
Control 4 Occipital
12.0




Ctx


AD 4 Temporal Ctx
28.7
Control (Path) 1
68.8




Occipital Ctx


AD 5 Inf Temporal
60.3
Control (Path) 2
17.8


Ctx

Occipital Ctx


AD 5 Sup Temporal
47.3
Control (Path) 3
6.1


Ctx

Occipital Ctx


AD 6 Inf Temporal
76.3
Control (Path) 4
11.9


Ctx

Occipital Ctx


AD 6 Sup Temporal
82.9
Control 1 Parietal Ctx
16.5


Ctx



Control 1 Temporal
10.7
Control 2 Parietal Ctx
43.8


Ctx


Control 2 Temporal
42.6
Control 3 Parietal Ctx
15.1


Ctx


Control 3 Temporal
21.5
Control (Path) 1
59.0


Ctx

Parietal Ctx


Control 3 Temporal
13.0
Control (Path) 2
21.2


Ctx

Parietal Ctx


Control (Path) 1
39.2
Control (Path) 3
10.2


Temporal Ctx

Parietal Ctx


Control (Path) 2
34.7
Control (Path) 4
21.5


Temporal Ctx

Parietal Ctx










[0939]

357





TABLE XC










Panel 4.1D











Rel. Ep.

Rel. Exp.



(%) Ag7568,

(%) Ag7568,



Run

Run


Tissue Name
308748452
Tissue Name
308748452













Secondary Th1 act
45.4
HUVEC IL-1beta
39.5


Secondary Th2 act
70.2
HUVEC IFN gamma
47.3


Secondary Tr1 act
26.8
HUVEC TNF alpha +
13.6




IFN gamma


Secondary Th1 rest
4.5
HUVEC TNF alpha +
10.5




IL4


Secondary Th2 rest
5.5
HUVEC IL-11
19.1


Secondary Tr1 rest
10.4
Lung Microvascular
51.1




EC none


Primary Th1 act
5.4
Lung Microvascular
22.1




EC TNFalpha +




IL-1beta


Primary Th2 act
38.2
Microvascular Dermal
6.0




EC none


Primary Tr1 act
33.9
Microsvasular Dermal
14.7




EC TNFalpha +




IL-1beta


Primary Th1 rest
2.4
Bronchial epithelium
6.8




TNFalpha + IL-1beta


Primary Th2 rest
4.5
Small airway
27.0




epithelium none


Primary Tr1 rest
0.8
Small airway
39.8




epithelium




TNFalpha + IL-1beta


CD45RA CD4
24.7
Coronery artery SMC
40.3


lymphocyte act

rest


CD45RO CD4
38.4
Coronery artery SMC
31.6


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
13.1
Astrocytes rest
8.8


Secondary CD8
13.9
Astrocytes
7.5


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
6.2
KU-812 (Basophil)
36.9


lymphocyte act

rest


CD4 lymphocyte
2.7
KU-812 (Basophil)
63.3


none

PMA/ionomycin


2ry Th1/Th2/
6.0
CCD1106
48.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
18.8
CCD1106
14.9




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
18.7
Liver cirrhosis
7.4


LAK cells IL-2 +
1.4
NCI-H292 none
45.4


IL-12


LAK cells IL-2 +
7.4
NCI-H292 IL-4
49.3


IFN gamma


LAK cells IL-2 +
6.0
NCI-H292 IL-9
100.0


IL-18


LAK cells PMA/
20.4
NCI-H292 IL-13
43.5


ionomycin


NK Cells IL-2 rest
47.6
NCI-H292 IFN gamma
19.8


Two Way MLR 3
22.2
HPAEC none
9.2


day


Two Way MLR 5
6.8
HPAEC TNF alpha +
43.8


day

IL-1 beta


Two Way MLR 7
7.5
Lung fibroblast
47.6


day

none


PBMC rest
5.0
Lung fibroblast TNF
53.6




alpha + IL-1 beta


PBMC PWM
7.7
Lung fibroblast IL-4
26.4


PBMC PHA-L
10.2
Lung fibroblast IL-9
32.8


Ramos (B cell) none
9.3
Lung fibroblast IL-13
15.4


Ramos (B cell)
40.9
Lung fibroblast IFN
9.5


ionomycin

gamma


B lymphocytes
11.3
Dermal fibroblast
42.0


PWM

CCD1070 rest


B lymphocytes
27.7
Dermal fibroblast
70.7


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
32.3
Dermal fibroblast
24.7




CCD1070 IL-1 beta


EOL-1 dbcAMP
3.7
Dermal fibroblast IFN
24.8


PMA/ionomycin

gamma


Dendritic cells none
32.3
Dermal fibroblast IL-4
37.9


Dendritic cells LPS
9.8
Dermal Fibroblasts
35.4




rest


Dendritic cells
10.7
Neutrophils TNFa +
2.8


anti-CD40

LPS


Monocytes rest
13.7
Neutrophils rest
27.2


Monocytes LPS
36.3
Colon
6.4


Macrophages rest
14.2
Lung
4.7


Macrophages LPS
17.4
Thymus
4.9


HUVEC none
26.4
Kidney
36.9


HUVEC starved
26.4










[0940] CNS_neurodegeneration_v1.0 Summary: Ag7568 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene appears to be slightly upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene may decrease neuronal death and be of use in the treatment of this disease.


[0941] Panel 4.1D Summary: Ag7568 Highest expression of this gene is seen in IL-9 treated NCI-H292 cells (CT=31.2). In addition, this gene is also expressed at moderate to low levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthnrtis.


[0942] Y. CG149680-01 and CG149680-02: Prostate Cancer Overexpressed Gene 1


[0943] Expression of gene CG149680-02 and variant CG149680-01 was assessed using the primer-probe sets Ag4870 and Ag5280, described in Tables YA and YB. Results of the RTQ-PCR runs are shown in Tables YC, YD, YE and YF. Please note that Ag5280 is specific to CG149680-02.
358TABLE YAProbe Name Ag4870StartSEQ IDPrimersLengthPositionNoForward5′-gcctgccttatctttctgaact-3′22707314ProbeTET-5′-ctttcctgcccctgaggaagtcaatt-3′-TAMRA26754315Reverse5′-cactcagcttgatcttcttcgt-3′22782316


[0944]

359






TABLE YB










Probe Name Ag5280
















Start
SEQ ID



Primers

Length
Position
No





Forward
5′-gctccctgttgatcattctg-3′
20
147
317






Probe
TET-5′-aacgagggcttctattccagcacgt-3′-TAMRA
25
170
318





Reverse
5′-cagcacatgacaccaggaa-3′
19
204
319










[0945]

360





TABLE YC










AI comprehensive panel v1.0













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



Ag5280,
Ag5280,

Ag5280,
Ag5280,



Run
Run

Run
Run


Tissue Name
234222214
237378555
issue Name
234222214
237378555















110967 COPD-F
17.2
17.6
112427 Match Control
100.0
100.0





Psoriasis-F


110980 COPD-F
14.8
24.1
112418 Psoriasis-M
14.5
18.2


110968 COPD-M
10.5
25.3
112723 Match Control
5.8
5.6





Psoriasis-M


110977 COPD-M
39.0
65.5
112419 Psoriasis-M
19.5
20.6


110989
43.2
33.0
112424 Match Control
6.8
3.6


Emphysema-F


Psoriasis-M


110992
10.5
20.0
112420 Psoriasis-M
56.3
40.9


Emphysema-F


110993
14.5
27.2
112425 Match Control
62.4
47.3


Emphysema-F


Psoriasis-M


110994
12.2
20.0
104689 (MF) OA
11.2
13.7


Emphysema-F


Bone-Backus


110995
20.7
29.5
104690 (MF) Adj
11.5
8.8


Emphysema-F


“Normal”





Bone-Backus


110996
5.6
11.3
104691 (MF) OA
5.9
14.0


Emphysema-F


Synovium-Backus


110997 Asthma-M
0.0
0.0
104692 (BA) OA
0.0
0.0





Cartilage-Backus


111001 Asthma-F
13.8
22.5
104694 (BA) OA
14.7
14.3





Bone-Backus


111002 Asthma-F
23.0
22.4
104695 (BA) Adj
14.8
15.9





“Normal”





Bone-Backus


111003 Atopic
19.6
20.4
104696 (BA) OA
6.3
13.2


Asthma-F


Synovium-Backus


111004 Atopic
30.4
69.7
104700 (SS) OA
28.5
20.4


Asthma-F


Bone-Backus


111005 Atopic
20.6
23.5
104701 (SS) Adj
23.7
13.0


Asthma-F


“Normal”





Bone-Backus


111006 Atopic
2.6
7.9
104702 (SS) OA
16.6
20.9


Asthma-F


Synovium-Backus


111417 Allergy-M
22.8
26.8
117093 OA Cartilage
22.1
16.3





Rep7


112347 Allergy-M
0.0
0.0
112672 OA Bone5
31.0
39.8


112349 Normal
0.0
0.0
112673 OA
16.5
9.3


Lung-F


Synovium5


112357 Normal
59.5
79.0
112674 OA Synovial
11.8
11.3


Lung-F


Fluid cells5


112354 Normal
17.6
13.6
117100 OA Cartilage
2.6
5.7


Lung-M


Rep14


112374 Crohns-F
23.5
2.9
112756 OA Bone9
95.3
81.8


112389 Match
10.3
2.8
112757 OA
11.9
11.6


Control Crohns-F


Synovium9


112375 Crohns-F
19.6
12.8
112758 OA Synovial
13.8
5.3





Fluid Cells9


112732 Match
18.3
26.6
117125 RA Cartilage
11.7
25.0


Control Crohns-F


Rep2


112725 Crohns-M
2.5
3.0
113492 Bone2 RA
6.1
8.4


112387 Match
9.6
13.5
113493 Synovium2
6.7
5.2


Control Crohns-M


RA


112378 Crohns-M
0.0
0.0
113494 Syn Fluid
0.0
1.7





Cells RA


112390 Match
35.1
46.3
113499 Cartilage4 RA
1.6
10.6


Control Crohns-M


112726 Crohns-M
36.9
26.2
113500 Bone4 RA
11.9
11.7


112731 Match
17.6
11.1
113501 Synovium4
0.0
4.0


Control Crohns-M


RA


112380 Ulcer
19.9
24.0
113502 Syn Fluid
0.0
0.0


Col-F


Cells4 RA


112734 Match
14.8
20.9
113495 Cartilage3 RA
7.8
2.2


Control Ulcer


Col-F


112384 Ulcer
31.0
24.3
113496 Bone3 RA
20.6
9.0


Col-F


112737 Match
6.4
5.4
113497 Synovium3
2.6
0.0


Control Ulcer


RA


Col-F


112386 Ulcer
2.7
6.1
113498 Syn Fluid
5.4
10.5


Col-F


Cells3 RA


112738 Match
3.8
5.7
117106 Normal
5.9
15.4


Control Ulcer


Cartilage Rep20


Col-F


112381 Ulcer
0.0
0.0
113663 Bone3 Normal
0.0
0.0


Col-M


112735 Match
0.0
1.6
113664 Synovium3
0.0
0.0


Control Ulcer


Normal


Col-M


112382 Ulcer
12.9
8.4
113665 Syn Fluid
0.0
0.0


Col-M


Cells3 Normal


112394 Match
9.5
5.1
117107 Normal
3.4
0.0


Control Ulcer


Cartilage Rep22


Col-M


112383 Ulcer
9.4
17.2
113667 Bone4 Normal
13.4
9.5


Col-M


112736 Match
6.8
14.4
113668 Synovium4
11.2
4.1


Control Ulcer


Normal


Col-M


112423 Psoriasis-F
5.2
0.0
113669 Syn Fluid
9.0
22.8





Cells4 Normal










[0946]

361





TABLE YD










General_screening_panel_v1.5











Rel. Exp.

Rel. Exp.



(%) Ag4870,

(%) Ag4870,



Run

Run


Tissue Name
228903631
issue Name
228903631













Adipose
2.0
Renal ca. TK-10
31.4


Melanoma*
6.0
Bladder
26.6


Hs688(A).T


Melanoma*
4.2
Gastric ca. (liver met.)
7.4


Hs688(B).T

NCI-N87


Melanoma* M14
20.4
Gastric ca. KATO III
66.0


Melanoma*
0.9
Colon ca. SW-948
10.2


LOXIMVI


Melanoma*
7.8
Colon ca. SW480
16.8


SK-MEL-5


Squamous cell
0.5
Colon ca.* (SW480
63.7


carcinoma SCC-4

met) SW620


Testis Pool
1.3
Colon ca. HT29
17.1


Prostate ca.* (bone
24.7
Colon ca. HCT-116
4.4


met) PC-3


Prostate Pool
4.0
Colon ca. CaCo-2
36.6


Placenta
3.5
Colon cancer tissue
4.0


Uterus Pool
5.0
Colon ca. SW1116
5.7


Ovarian ca.
0.8
Colon ca. Colo-205
6.7


OVCAR-3


Ovarian ca.
1.2
Colon ca. SW-48
17.1


SK-OV-3


Ovarian ca.
0.5
Colon Pool
6.3


OVCAR-4


Ovarian ca.
17.1
Small Intestine Pool
5.0


OVCAR-5


Ovarian ca.
2.8
Stomach Pool
5.4


IGROV-1


Ovarian ca.
5.8
Bone Marrow Pool
2.3


OVCAR-8


Ovary
7.5
Fetal Heart
1.0


Breast ca. MCF-7
1.9
Heart Pool
3.3


Breast ca.
8.5
Lymph Node Pool
6.1


MDA-MB-231


Breast ca. BT 549
3.2
Fetal Skeletal Muscle
2.5


Breast ca. T47D
0.4
Skeletal Muscle Pool
9.0


Breast ca. MDA-N
15.6
Spleen Pool
1.8


Breast Pool
8.0
Thymus Pool
4.2


Trachea
7.3
CNS cancer (glio/
1.6




astro) U87-MG


Lung
1.5
CNS cancer (glio/
0.9




astro) U-118-MG


Fetal Lung
11.6
CNS cancer (neuro;
7.0




met) SK-N-AS


Lung ca. NCI-N417
1.6
CNS cancer (astro)
3.1




SF-539


Lung ca. LX-1
49.3
CNS cancer (astro)
14.9




SNB-75


Lung ca. NCI-H146
2.4
CNS cancer (glio)
4.2




SNB-19


Lung ca. SHP-77
3.5
CNS cancer (glio)
10.0




SF-295


Lung ca. A549
1.6
Brain (Amygdala)
0.5




Pool


Lung ca. NCI-H526
0.2
Brain (cerebellum)
1.1


Lung ca. NCI-H23
0.8
Brain (fetal)
1.0


Lung ca. NCI-H460
1.2
Brain (Hippocampus)
0.4




Pool


Lung ca. HOP-62
5.3
Cerebral Cortex Pool
0.4


Lung ca. NCI-H522
6.5
Brain (Substantia
0.3




nigra) Pool


Liver
21.6
Brain (Thalamus) Pool
0.6


Fetal Liver
100.0
Brain (whole)
3.0


Liver ca. HepG2
68.3
Spinal Cord Pool
0.4


Kidney Pool
9.3
Adrenal Gland
8.1


Fetal Kidney
1.8
Pituitary gland Pool
0.3


Renal ca. 786-0
0.5
Salivary Gland
9.3


Renal ca. A498
0.1
Thyroid (female)
1.7


Renal ca. ACHN
0.1
Pancreatic ca.
1.4




CAPAN2


Renal ca. UO-31
2.3
Pancreas Pool
16.6










[0947]

362





TABLE YE










Oncology_cell_line_screening_panel_v3.1











Rel. Exp.

Rel. Exp.



(%) Ag4870,

(%) Ag4870,



Run

Run


Tissue Name
225053014
Tissue Nme
225053014













Daoy
1.8
Ca Ski_Cervical
2.1


Medulloblastoma/

epidermoid carcinoma


Cerebellum

(metastasis)


TE671
2.6
ES-2_Ovarian clear
13.9


Medulloblastoma/

cell carcinoma


Cerebellum


D283 Med
11.2
Ramos/6h
94.6


Medulloblastoma/

stim_Stimulated with


Cerebellum

PMA/ionomycin 6h


PFSK-1 Primitive
9.8
Ramos/14h
27.7


Neuroectodermal/

stim_Stimulated with


Cerebellum

PMA/ionomycin 14h


XF-498_CNS
3.4
MEG-01_Chronic
14.5




myelogenous leukemia




(megokaryoblast)


SNG-78_CNS/
2.7
Raji_Burkitt's
11.7


glioma

lymphoma


SF-268_CNS/
0.9
Daudi_Burkitt's
27.5


glioblastoma

lymphoma


T98G_Glio-
5.7
U266_B-cell
0.9


blastoma

plasmacytoma/




myeloma


SK-H-SH_Neuro-
3.5
CA46_Burkitt's
24.3


blastoma

lymphoma


(metastasis)


SF-295_CNS/
1.1
RL_non-Hodgkin's
32.8


glioblastoma

B-cell lymphoma


Cerebellum
0.3
JM1_pre-B-cell
3.5




lymphoma/leukemia


Cerebellum
0.5
Jurkat_T cell
14.5




leukemia


NCI-H292_Muco-
0.3
TF-1_Erythro-
37.6


epidermoid lung ca.

leukemia


DMS-114_Small
0.6
HUT 78_T-cell
3.8


cell lung cancer

lymphoma


DMS-79_Small cell
1.4
U937_Histiocytic
48.6


cancer/neuro-

lymphoma


endocrine


NCI-H146_Small
8.4
KU-812_Myelo-
100.0


cell lung cancer/

genous leukemia


neuro-endocrine


NCI-H526_Small
1.7
769-P_Clear cell renal
0.4


cell lung cancer/

ca.


neuro-endocrine


NCI-H417_Small
5.1
Caki-2_Clear cell
0.0


cell lung cancer/

renal ca.


neuro-endocrine


NCI-H82_Small
10.1
SW 839_Clear cell
1.1


cell lung cancer/

renal ca.


neuro-endocrine


NCI-
2.0
G401_Wilms' tumor
5.4


H157_Squamous


cell lung cancer


(metastasis)


NCI-H1155_Large
13.8
Hs766T_Pancreatic
10.5


cell lung cancer/

ca. (LN metastasis)


neuroendocrine


NCI-H1299_Large
1.2
CAPAN-1_Pancreatic
4.3


cell lung cancer/

adenocarcinoma (liver


neuroendocrine

metastasis)


NCI-H727_Lung
23.7
SU86.86_Pancreatic
6.5


carcinoid

carcinoma (liver




metastasis)


NCI-UMC-
52.1
BxPC-3_Pancreatic
0.7


11_Lung

adenocarcinoma


carcinoid


LX-1_Small cell
13.1
HPAC_Pancreatic
1.5


lung cancer

adenocarcinoma


Colo-205_Colon
13.0
MIA
0.0


cancer

PaCa-2_Pancreatic ca.


KM12_Colon
2.5
CFPAC-1_Pancreatic
2.2


cancer

ductal adenocarcinoma


KM20L2_Colon
10.8
PANC-1_Pancreatic
0.3


cancer

epithelioid ductal ca.


NCI-H716_Colon
21.0
T24_Bladder ca.
6.5


cancer

(transitional cell)


SW-48_Colon
44.1
5637_Bladder ca.
1.7


adenocarcinoma


SW1116_Colon
8.7
HT-1197_Bladder ca.
0.2


adenocarcinoma


LS 174T_Colon
10.1
UM-UC-3_Bladder
0.4


adenocarcinoma

ca. (transitional cell)


SW-948_Colon
21.3
A204_Rhab-
0.3


adenocarcinoma

domyosarcoma


SW-480_Colon
12.9
HT-1080_Fibro-
9.3


adenocarcinoma

sarcoma


NCI-SNU-
12.3
MG-63_Osteosarcoma
1.7


5_Gastric ca.

(bone)


KATO III_Stomach
43.2
SK-LMS-1_Leiomyo-
6.6




sarcoma (vulva)


NCI-SNU-
4.1
SJRH30_Rhabdomyo-
4.6


16_Gastric ca.

sarcoma (met to bone




marrow)


NCI-SNU-
49.0
A431_Epidermoid ca.
0.4


1_Gastric ca.


RF-1_Gastric
6.6
WM266-4_Melanoma
4.1


adenocarcinoma


RF-48_Gastric
6.0
DU 145_Prostate
2.0


adenocarcinoma


MKN-45_Gastric
21.5
MDA-MB-468_Breast
0.8


ca.

adenocarcinoma


NCI-N87_Gastric
2.7
SSC-4_Tongue
0.3


ca.


OVCAR-5_Ovarian
0.7
SSC-9_Tongue
0.2


ca.


RL95-2_Uterine
0.3
SSC-15_Tongue
1.5


carcinoma



HelaS3_Cervical
0.1
CAL 27_Squamous
0.4


adenocarcinoma

cell ca. of tongue










[0948]

363





TABLE YF










Panel 4.1D











Rel. Ep.

Rel. Exp.



(%) Ag5280,

(%) Ag5280,



Run

Run


Tissue Name
230500483
Tissue Name
230500483













Secondary Th1 act
28.5
HUVEC IL-1beta
12.6


Secondary Th2 act
26.1
HUVEC IFN gamma
2.2


Secondary Tr1 act
11.0
HUVEC TNF alpha +
6.1




IFN gamma


Secondary Th1 rest
5.7
HUVEC TNF alpha +
12.7




IL4


Secondary Th2 rest
2.7
HUVEC IL-11
6.0


Secondary Tr1 rest
4.0
Lung Microvascular
14.9




EC none


Primary Th1 act
2.9
Lung Microvascular
5.3




EC TNFalpha +




IL-1beta


Primary Th2 act
25.2
Microvascular Dermal
0.0




EC none


Primary Tr1 act
8.2
Microsvasular Dermal
5.1




EC TNFalpha +




IL-1beta


Primary Th1 rest
1.8
Bronchial epithelium
0.0




TNFalpha + IL-1beta


Primary Th2 rest
0.0
Small airway
0.0




epithelium none


Primary Tr1 rest
0.0
Small airway
0.0




epithelium




TNFalpha + IL-1beta


CD45RA CD4
5.4
Coronery artery SMC
1.5


lymphocyte act

rest


CD45RO CD4
2.4
Coronery artery SMC
3.6


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
4.2
Astrocytes rest
0.0


Secondary CD8
8.3
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
3.0
KU-812 (Basophil)
100.0


lymphocyte act

rest


CD4 lymphocyte
0.0
KU-812 (Basophil)
90.8


none

PMA/ionomycin


2ry Th1/Th2/
0.0
CCD1106
0.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
0.0
CCD1106
0.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
7.6
Liver cirrhosis
9.8


LAK cells IL-2 +
0.0
NCI-H292 none
0.0


IL-12


LAK cells IL-2 +
3.8
NCI-H292 IL-4
0.0


IFN gamma


LAK cells IL-2 +
3.3
NCI-H292 IL-9
0.0


IL-18


LAK cells PMA/
8.4
NCI-H292 IL-13
2.9


ionomycin


NK Cells IL-2 rest
9.9
NCI-H292 IFN gamma
0.0


Two Way MLR 3
0.9
HPAEC none
4.8


day


Two Way MLR 5
3.8
HPAEC TNF alpha +
4.5


day

IL-1 beta


Two Way MLR 7
2.1
Lung fibroblast
27.4


day

none


PBMC rest
2.6
Lung fibroblast TNF
7.6




alpha + IL-1 beta


PBMC PWM
0.0
Lung fibroblast IL-4
1.0


PBMC PHA-L
7.1
Lung fibroblast IL-9
7.1


Ramos (B cell) none
21.8
Lung fibroblast IL-13
7.2


Ramos (B cell)
85.9
Lung fibroblast IFN
14.7


ionomycin

gamma


B lymphocytes
8.3
Dermal fibroblast
3.1


PWM

CCD1070 rest


B lymphocytes
28.5
Dermal fibroblast
19.5


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
20.2
Dermal fibroblast
9.9




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.0
Dermal fibroblast IFN
9.4


PMA/ionomycin

gamma


Dendritic cells none
3.5
Dermal fibroblast IL-4
13.8


Dendritic cells LPS
0.0
Dermal Fibroblasts
15.3




rest


Dendritic cells
0.0
Neutrophils TNFa +
0.0


anti-CD40

LPS


Monocytes rest
0.0
Neutrophils rest
1.5


Monocytes LPS
0.0
Colon
0.0


Macrophages rest
0.0
Lung
2.6


Macrophages LPS
0.0
Thymus
0.0


HUVEC none
9.9
Kidney
2.7


HUVEC starved
7.0










[0949] AI_comprehensive panel_v1.0 Summary: Ag5280 Two experiments with the same probe and primer produce results that are in excellent agreement. Highest expression is in a sample derived from normal tissue adjacent to psoriasis (CTs=33). Low levels of expression are also seen in an osteoarthritic bone sample.


[0950] CNS_neurodegeneration_v1.0 Summary: Ag5280 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0951] General_screening_panel_v1.5 Summary: Ag4870 Highest expression of this gene, a PB39 homolog, is seen in the fetal liver (CT=25.6). Significant levels of expression are also seen in cell lines derived from lung, gastric, colon, renal, liver, ovarian, breast, prostate, melanoma and brain cancers. This expression in proliferetive samples suggests a role for this gene in cell proliferation and growth. This is consistent with data that shows to be upregulated in prostate cancer and tissues undergoing growth and differentiation. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of these cancers.



REFERENCES

[0952] Cole K A, Chuaqui R F, Katz K, Pack S, Zhuang Z, Cole C E, Lyne J C, Linehan W M, Liotta L A, Emmert-Buck M R. cDNA sequencing and analysis of POV1 (PB39): a novel gene up-regulated in prostate cancer. Genomics Jul. 15, 1998;51(2):282-7


[0953] Stuart R O, Pavlova A, Beier D, Li Z, Krijanovski Y, Nigam S K. EEG1, a putative transporter expressed during epithelial organogenesis: comparison with embryonic transporter expression during nephrogenesis. Am J Physiol Renal Physiol December 2001;281(6):F1148-56


[0954] Oncology_cell_line_screening_panel_v3.1 Summary: Ag4870 Highest expression of this gene is seen in a myelogenous leukemia cell line (CT=27.2). Moderate levels of expression are seen in other cell line samples on this panel, including samples from colon, gastric, and lung cancers, leukemias, and lymphomas. Please see Panel 1.5 for discussion of utility of this gene in cancer.


[0955] Panel 4.1D Summary: Ag5280 Prominent expression is seen in two samples derived from the basophil cell line KU-812 (CTs=32.3). Basophils release histamines and other biological modifiers in reponse to allergens and play all important role in the pathology of asthma and hypersensitivity reactions. Therefore, therapeutics designed against the putative protein encoded by this gene may reduce or inhibit inflammation by blocking basophil function in these diseases. In addition, these cells are a reasonable model for the inflammatory cells that take part in various inflammatory lung and bowel diseases, such as asthma, Crohn's disease, and ulcerative colitis. Therefore, expression of this gene could be used to differentiate between these samples and other samples on this panel adn as a marker of these cells. Furthermore, therapeutics that modulate the function of this gene product may reduce or eliminate the symptoms of patients suffering from asthma, Crohn's disease, and ulcerative colitis.


[0956] Z. CG149777-02: Cystatin D Precursor


[0957] Expression of full-length physical clone CG149777-02 was assessed using the primer-probe set Ag6903, described in Table ZA.
364TABLE ZAProbe Name Ag6903StartSEQ IDPrimersLengthPositionNoForward5′-ccacagacctcaatgacaagag-3′22110320ProbeTET-5′-cctggactttgccttcaatgaccag-3′-TAMRA25144321Reverse5′-gaactcttcctctttcagttttgg-3′24169322


[0958] General_screening_panel_v1.6 Summary: Ag6903 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0959] AA. CG150005-01: Glutamate Binding Protien


[0960] Expression of gene CG150005-01 was assessed using the primer-probe set Ag5633, described in Table AAA.
365TABLE AAAProbe Name Ag5633StartSEQ IDPrimersLengthPositionNoForward5′-ccacctcctgtctactcattgt-3′221341323ProbeTET-5′-catgagccctgtctgccagcttc-3′-TAMRA231365324Reverse5′-gctcaatccttggacctgtt-3′201412325


[0961] AI_comprehensive panel_v1.0 Summary: Ag5633 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0962] CNS_neurodegeneration_v1.0 Summary: Ag5633 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0963] General_screening_panel_v1.5 Summary: Ag5633 The amp plot indicates that there were experimental difficulties with this run; therefore, no conclusions can be drawn from this data. (Data not shown)


[0964] Panel 4.1D Summary: Ag5633 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0965] Panel 5D Summary: Ag5633 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0966] Panel CNS1.1 Summary: Ag5633 Expression of this gene is low/undetectable in all samples on this panel (CTs>35).


[0967] AB. CG150189-01: Acetyl LDL Receptor


[0968] Expression of gene CG150189-01 was assessed using the primer-probe sets Ag3183 and Ag372, described in Tables ABA and ABB. Results of the RTQ-PCR runs are shown in Tables ABC, ABD, ABE, ABF, ABG and ABH.
366TABLE ABAProbe Name Ag3183StartSEQ IDPrimersLengthPositionNoForward5′-aaggggacgagtgtgggatt-3′20212326ProbeTET-5′-tggcaccgaagtagccgtggcg-3′-TAMRA22301327Reverse5′-gcgggcacttggtgtcgca-3′19325328


[0969]

367






TABLE ABB










Probe Name Ag372
















Start
SEQ ID



Primers

Length
Position
No





Forward
5′-tgtaaccatgtcaccggcaa-3′
20
574
329






Probe
TET-5′-cgatccagcccgcgttgca3-′-TAMRA
19
604
330





Reverse
5′-ctcgccgtaagtgccattg-3′
19
648
331










[0970]

368





TABLE ABC










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag3183,

(%) Ag3183,



Run

Run


Tissue Name
216861424
issue Name
216861424













Adipose
5.2
Renal ca. TK-10
2.2


Melanoma*
82.9
Bladder
10.5


Hs688(A).T


Melanoma*
100.0
Gastric ca. (liver met.)
2.0


Hs688(B).T

NCI-N87


Melanoma* M14
67.8
Gastric ca. KATO III
1.7


Melanoma*
4.1
Colon ca. SW-948
0.0


LOXIMVI


Melanoma*
9.8
Colon ca. SW480
0.8


SK-MEL-5


Squamous cell
0.0
Colon ca.* (SW480
0.5


carcinoma SCC-4

met) SW620


Testis Pool
2.7
Colon ca. HT29
0.0


Prostate ca.* (bone
3.7
Colon ca. HCT-116
0.5


met) PC-3


Prostate Pool
3.0
Colon ca. CaCo-2
0.0


Placenta
6.4
Colon cancer tissue
19.8


Uterus Pool
5.0
Colon ca. SW1116
0.8


Ovarian ca.
3.6
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
5.3
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
6.7
Colon Pool
9.7


OVCAR-4


Ovarian ca.
4.9
Small Intestine Pool
3.7


OVCAR-5


Ovarian ca.
37.1
Stomach Pool
8.5


IGROV-1


Ovarian ca.
84.1
Bone Marrow Pool
1.3


OVCAR-8


Ovary
18.3
Fetal Heart
2.4


Breast ca. MCF-7
0.0
Heart Pool
5.1


Breast ca.
8.2
Lymph Node Pool
12.1


MDA-MB-231


Breast ca. BT 549
14.5
Fetal Skeletal Muscle
2.4


Breast ca. T47D
15.5
Skeletal Muscle Pool
2.1


Breast ca. MDA-N
15.6
Spleen Pool
5.4


Breast Pool
10.7
Thymus Pool
12.2


Trachea
8.2
CNS cancer (glio/
0.0




astro) U87-MG


Lung
0.8
CNS cancer (glio/
21.8




astro) U-118-MG


Fetal Lung
18.2
CNS cancer (neuro;
34.2




met) SK-N-AS


Lung ca. NCI-N417
1.0
CNS cancer (astro)
90.8




SF-539


Lung ca. LX-1
0.9
CNS cancer (astro)
71.7




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
31.2




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
82.9




SF-295


Lung ca. A549
1.4
Brain (Amygdala)
3.5




Pool


Lung ca. NCI-H526
6.3
Brain (cerebellum)
0.0


Lung ca. NCI-H23
0.0
Brain (fetal)
2.0


Lung ca. NCI-H460
0.5
Brain (Hippocampus)
1.4




Pool


Lung ca. HOP-62
7.2
Cerebral Cortex Pool
1.0


Lung ca. NCI-H522
7.3
Brain (Substantia
6.2




nigra) Pool


Liver
2.1
Brain (Thalamus) Pool
1.1


Fetal Liver
2.1
Brain (whole)
1.7


Liver ca. HepG2
9.9
Spinal Cord Pool
6.8


Kidney Pool
24.5
Adrenal Gland
1.3


Fetal Kidney
18.8
Pituitary gland Pool
1.1


Renal ca. 786-0
1.8
Salivary Gland
0.0


Renal ca. A498
0.0
Thyroid (female)
4.2


Renal ca. ACHN
7.3
Pancreatic ca.
0.0




CAPAN2


Renal ca. UO-31
7.3
Pancreas Pool
15.6










[0971]

369





TABLE ABD










Panel 4.1D











Rel. Ex.

Rel. Exp.



(%)

(%)



Ag372,

Ag372,



Run

Run


Tissue Name
98747566
Tissue Name
98747566













Endothelial cells
13.1
Renal ca. 786-0
14.3


Endothelial cells
6.1
Renal ca. A498
4.4


(treated)


Pancreas
9.7
Renal ca. RXF 393
14.3


Pancreatic ca.
0.0
Renal ca. ACHN
15.7


CAPAN 2


Adrenal gland
27.0
Renal ca. UO-31
8.5


Thyroid
31.0
Renal ca. TK-10
0.4


Salivary gland
9.7
Liver
26.4


Pituitary gland
41.2
Liver (fetal)
11.8


Brain (fetal)
13.0
Liver ca. (hepatoblast)
25.3




HepG2


Brain (whole)
11.0
Lung
41.8


Brain (amygdala)
15.1
Lung (fetal)
32.5


Brain (cerebellum)
9.7
Lung ca. (small cell)
2.6




LX-1


Brain (hippocampus)
12.9
Lung ca. (small cell)
8.2




NCI-H69


Brain (substantia
10.2
Lung ca. (s. cell var)
2.9


nigra)

SHP-77


Brain (thalamus)
11.8
Lung ca. (large cell)
22.5




NCI-H460


Brain (hypothalamus)
42.9
Lung ca. (non-sm. cell)
7.4




A549


Spinal cord
15.7
Lung ca. (non-s. cell)
4.3




NCI-H23


glio/astro U87-MG
1.0
Lung ca. (non-s. cell)
29.5




HOP-62


glio/astro U-118-MG
12.2
Lung ca. (non-s. cl)
44.8




NCI-H522


astrocytoma SW1783
25.9
Lung ca. (squam.) SW
10.3




900


neuro*; met SK-N-AS
66.4
Lung ca. (squam.)
4.7




NCI-H596


astrocytoma SF-539
56.3
Mammary gland
41.5


astrocytoma SNB-75
23.3
Breast ca.* (pl. ef)
3.5




MCF-7


glioma SNB-19
23.5
Breast ca.* (pl. ef)
6.1




MDA-MB-231


glioma U251
18.2
Breast ca.* (pl. ef)
14.6


glioma SF-295
48.3
Breast ca. BT-549
4.0




T47D


Heart
32.1
Breast ca. MDA-N
32.8


Skeletal muscle
16.0
Ovary
67.8


Bone marrow
7.0
Ovarian ca. OVCAR-3
13.3


Thymus
11.3
Ovarian ca. OVCAR-4
9.4


Spleen
25.2
Ovarian ca. OVCAR-5
4.0


Lymph node
15.4
Ovarian ca. OVCAR-8
100.0


Colon (ascending)
5.9
Ovarian ca. IGROV-1
21.9


Stomach
10.2
Ovarian ca. (ascites)
6.3




SK-OV-3


Small intestine
62.9
Uterus
35.8


Colon ca. SW480
0.0
Placenta
33.9


Colon ca.* SW620
2.1
Prostate
31.4


(SW480 met)


Colon ca. HT29
0.2
Prostate ca.* (bone met)
23.7




PC-3


Colon ca. HCT-116
2.4
Testis
16.5


Colon ca. CaCo-2
0.3
Melanoma Hs688(A).T
44.4


Colon ca. HCT-15
5.9
Melanoma* (met)
55.9




Hs688(B).T


Colon ca. HCC-2998
12.1
Melanoma UACC-62
70.2


Gastric ca.* (liver met)
6.4
Melanoma M14
45.1


NCI-N87


Bladder
51.4
Melanoma LOX IMVI
6.5


Trachea
21.0
Melanoma* (met)
27.2




SK-MEL-5


Kidney
32.8
Melanoma SK-MEL-28
0.0


Kidney (fetal)
67.8










[0972]

370





TABLE ABE










Panel 1.3D











Rel. Exp.

Rel. Exp.



(% Ag3183,

(%) Ag3183,



Run

Run


Tissue Name
167927219
Tissue Name
167927219













Liver adenocarcinoma
5.5
Kidney (fetal)
100.0


Pancreas
0.0
Renal ca. 786-0
5.1


Pancreatic ca.
0.0
Renal ca. A498
16.6


CAPAN 2


Adrenal gland
4.7
Renal ca. RXF 393
9.9


Thyroid
2.8
Renal ca. ACHN
17.8


Salivary gland
6.1
Renal ca. UO-31
1.8


Pituitary gland
1.6
Renal ca. TK-10
0.0


Brain (fetal)
0.9
Liver
0.0


Brain (whole)
0.0
Liver (fetal)
9.9


Brain (amygdala)
1.7
Liver ca.
7.3




(hepatoblast) HepG2


Brain (cerebellum)
0.0
Lung
7.4


Brain (hippocampus)
0.0
Lung (fetal)
11.2


Brain (substantia
1.1
Lung ca. (small cell)
1.7


nigra)

LX-1


Brain (thalamus)
2.5
Lung ca. (small cell)
0.0




NCI-H69


Cerebral Cortex
0.0
Lung ca. (s. cell
5.1




var) SHP-77


Spinal cord
3.5
Lung ca. (large cell)
2.9




NCI-H460


glio/astro U87-MG
0.0
Lung ca. (non-sm.
0.0




cell) A549


glio/astro U-118-MG
7.7
Lung ca. (non-s.
0.0




cell) NCI-H23


astrocytoma SW1783
14.4
Lung ca. (non-s.
6.0




cell) HOP-62


neuro*; met SK-N-AS
7.5
Lung ca. (non-s. cl)
5.2




NCI-H522


astrocytoma SF-539
52.1
Lung ca. (squam.)
5.1




SW 900


astrocytoma SNB-75
49.7
Lung ca. (squam.)
1.0




NCI-H596


glioma SNB-19
3.1
Mammary gland
10.2


glioma U251
13.9
Breast ca.* (pl. ef)
0.0




MCF-7


glioma SF-295
25.9
Breast ca.* (pl. ef)
3.7




MDA-MB-231


Heart (fetal)
14.4
Breast ca.* (pl. ef)
11.8




T47D


Heart
7.0
Breast ca. BT-549
1.5


Skeletal muscle (fetal)
10.7
Breast ca. MDA-N
5.9


Skeletal muscle
0.0
Ovary
13.0


Bone marrow
1.7
Ovarian ca.
1.5




OVCAR-3


Thymus
3.3
Ovarian ca.
1.8




OVCAR-4


Spleen
6.9
Ovarian ca.
0.6




OVCAR-5


Lymph node
9.2
Ovarian ca.
5.3




OVCAR-8


Colorectal
1.6
Ovarian ca.
0.0




IGROV-1


Stomach
4.7
Ovarian ca.*
2.2




(ascites) SK-OV-3


Small intestine
11.7
Uterus
27.9


Colon ca. SW480
0.0
Placenta
0.0


Colon ca.* SW620
0.0
Prostate
0.8


(SW480 met)



Colon ca. HT29
0.0
Prostate ca.* (bone
4.6




met) PC-3


Colon ca. HCT-116
0.0
Testis
1.7


Colon ca. CaCo-2
0.0
Melanoma
50.3




Hs688(A).T


Colon ca. tissue
15.2
Melanoma* (met)
84.7


(ODO3866)

Hs688(B).T


Colon ca. HCC-2998
0.0
Melanoma
42.3




UACC-62


Gastric ca.* (liver met)
0.9
Melanoma M14
13.9


NCI-N87


Bladder
2.0
Melanoma LOX
10.3




IMVI


Trachea
5.8
Melanoma* (met)
0.0




SK-MEL-5


Kidney
22.8
Adipose
9.0










[0973]

371





TABLE ABF










Panel 4D











Rel.

Rel.



Ep. (%)

Exp. (%)



Ag83183,

Ag3183,



Run

Run


Tissue Name
164317572
Tissue Name
164317572













Secondary Th1 act
0.0
HUVEC IL-1 beta
5.7


Secondary Th2 act
0.0
HUVEC IFN gamma
18.4


Secondary Tr1 act
0.0
HUVEC TNF alpha + IFN gamma
9.6


Secondary Th1 act
0.0
HUVEC TNF alpha + IL4
11.2


Secondary Th2 rest
0.0
HUVEC IL-11
19.3


Secondary Tr1 rest
2.5
Lung Microvascular EC none
21.6


Primary Th1 act
0.0
Lung Microvascular EC TNF-
32.1




alpha + IL-1 beta


Primary Th2 act
0.0
Microvascular Dermal EC none
10.7


Primary Tr1 act
0.0
Microvascular Dermal EC
5.0




THFalpha + IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium TNFalpha +
11.7




IL1beta


Primary Th2 rest
2.3
Small airway epithelium none
5.6


Primary Tr1 rest
0.7
Small airway epithelium TNF-
4.9




alpha + IL-1beta


CD45RA CD4 lymphocyte act
29.9
Coronery artery SMC rest
47.0


CD45RO CD4 lymphocyte act
0.0
Coronery artery SMC TNFalpha +
45.4




IL-1beta


CD8 lymphocyte act
0.0
Astrocyte rest
82.4


Secondary CDS lymphocyte rest
0.0
Astrocytes TNFalpha + IL-1beta
75.3


Secondary CD8 lymphocyte act
0.0
KU-812 (Basophil) rest
0.0


CD4 lymphocyte none
0.4
KU-812 (Basophil)
0.0




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
2.1
CCD1106 (Keratinocytes) none
0.0


CH11


LAK cells rest
0.0
CCD1106 (Keratinocytes)
0.0




TNFalpha + IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
5.6


LAK cell IL-2 + IL-12
0.0
Lupus kidney
9.3


LAK cells IL-2 + IFN gamma
0.0
NCI-H292 none
2.5


LAK cells IL-2 + IL-18
0.0
NCI-H292 IL-4
0.0


LAK cells PMA/ionomycin
0.0
NCI-H292 IL-9
0.0


NK Cells IL-2 rest
0.0
NCI-H292 IL-13
3.8


Two Way MLR 3 day
0.0
NCI-H292 IFN gamma
0.0


Two Way MLR 5 day
0.0
HPAEC none
32.1


Two Way MLR 7 day
0.0
HPAEC TNF alpha + IL-1 beta
22.4


PBMC rest
0.0
Lung fibroblast none
44.4


PBMC PWM
1.8
Lung fibroblast TNF alpha + IL-1
28.3




beta


PBMC PHA-L
0.0
Lung fibroblast IL-4
62.9


Ramos (B cell) none
0.0
Lung fibroblast IL-9
100.0


Ramos (B cell) ionomycin
0.0
Lung fibroblast IL-13
73.7


B lymphocytes PWM
0.0
Lung fibroblast IFN gamma
57.0


B lymphocytes CD40L and IL-4
0.0
Dermal fibroblast CCD1070 rest
91.4


EOL-1 dbcAMP
0.0
Dermal fibroblast CCD1070 TNF
31.2




alpha


EOL-1 dbcAMP
1.2
Dermal fibroblast CCD1070 IL-1
69.7


PMA/ionomycin

beta


Dendritic cells none
1.8
Dermal fibroblast IFN gamma
18.3


Dendritic cells LPS
0.0
Dermal fibroblast IL-4
22.4


Dendritic cells anti-CD40
0.4
IBD Colitis 2
0.0


Monocytes rest
2.8
IBD Crohn's
0.8


Monocytes LPS
0.0
Colon
8.9


Macrophages rest
0.0
Lung
18.6


Macrophages LPS
0.0
Thymus
9.5


HUVEC none
8.4
Kidney
3.0


HUVEC starved
29.9










[0974]

372





TABLE ABG










Panel 5D











Rel. Exp.

Rel. Exp.



(%) Ag313,

(%) Ag3183,



Run

Run


Tissue Name
172171149
Tissue Name
172171149













97457_Patient-02go_adipose
11.3
94709_Donor 2 AM—A_adipose
31.6


97476_Patient-07sk_skeletal muscle
21.3
94710_Donor 2 AM—B_adipose
47.0


97477_Patient-07ut_uterus
3.3
94711_Donor 2 AM—C_adipose
36.3


97478_Patient-07pl_placenta
0.0
94712_Donor 2 AD—A_adipose
33.0


97481_Patient-08sk_skeletal muscle
9.0
94713_Donor 2 AD—B_adipose
27.0


97482_Patient-08ut_uterus
0.0
94714_Donor 2 AD—C_adipose
13.5


97483_Patient-08pl_placenta
5.4
94742_Donor 3 U—A_Mesenchymal Stem Cells
27.9


97486_Patient-09sk_skeletal muscle
2.4
94743_Donor 3 U—B_Mesenchymal Stem Cells
100.0


97487_Patient-09ut_uterus
11.3
94730_Donor 3 AM—A_adipose
69.3


97488_Patient-09pl_placenta
0.0
94731_Donor 3 AM—B_adipose
58.6


97492_Patient-10ut_uterus
3.4
94732_Donor 3 AM—C_adipose
11.2


97493_Patient-10pl_placenta
8.4
94733_Donor 3 AD—A_adipose
47.0


97495_Patient-11go_adipose
8.1
94734_Donor 3 AD—B_adipose
31.6


97496_Patient-11sk_skeletal muscle
0.0
94735_Donor 3 AD—C_adipose
44.8


97497_Patient-11ut_uterus
17.4
77138_Liver_HepG2untreated
9.1


97498_Patient-11pl_placenta
0.0
73556_Heart_Cardiac stromal cells (primary)
0.0


97500_Patient-12go_adipose
15.7
81735_Small Intestine
6.3


97501_Patient-12sk_skeletal muscle
0.0
72409_Kidney_Proximal Convoluted Tubule
0.0


97502_Patient-12ut_uterus
13.8
82685_Small intestine_Duodenum
0.0


97503_Patient-12pl_placenta
4.8
90650_Adrenal_Adrenocortical adenoma
15.4


94721_Donor 2 U—A_Mesenchymal Stem Cells
31.2
72410_Kidney_HRCE
14.2


94722_Donor 2 U—B_Mesenchymal Stem Cells
33.7
72411_Kidney_HRE
7.0


94723_Donor 2 U—C_Mesenchymal Stem Cells
20.7
73139_Uterus_Uterine smooth muscle cells
11.3










[0975]

373





TABLE ABH










general oncology screening panel_v_2.4











Rel. Exp.

Rel. Exp.



(%) Ag3183,

(%) Ag3183,



Run

Run


Tissue Name
259733268
Tissue Name
259733268













Colon cancer 1
24.7
Bladder NAT 2
0.0


Colon NAT 1
19.2
Bladder NAT 3
0.0


Colon cancer 2
6.6
Bladder NAT 4
15.9


Colon NAT 2
0.0
Prostate
3.2




adenocarcinoma 1


Colon cancer 3
23.8
Prostate
0.0




adenocarcinoma 2


Colon NAT 3
10.4
Prostate
4.5




adenocarcinoma 3


Colon malignant
3.1
Prostate
16.7


cancer 4

adenocarcinoma 4


Colon NAT 4
0.0
Prostate NAT 5
14.7


Lung cancer 1
21.5
Prostate
0.0




adenocarcinoma 6


Lung NAT 1
0.0
Prostate
7.6




adenocarcinoma 7


Lung cancer 2
100.0
Prostate
0.0




adenocarcinoma 8


Lung NAT 2
0.0
Prostate
5.3




adenocarcinoma 9


Squamous cell
39.2
Prostate NAT 10
0.0


carcinoma 3


Lung NAT 3
6.3
Kidney cancer 1
9.8


Metastatic melanoma 1
11.1
Kidney NAT 1
6.1


Melanoma 2
5.8
Kidney cancer 2
15.0


Melanoma 3
0.0
Kidney NAT 2
18.9


Metastatic melanoma 4
61.1
Kidney cancer 3
11.1


Metastatic melanoma 5
49.7
Kidney NAT 3
7.5


Bladder cancer 1
0.0
Kidney cancer 4
6.9


Bladder NAT 1
0.0
Kidney NAT 4
8.6


Bladder cancer 2
4.3










[0976] General_screening_panel_v1.4 Summary: Ag3183 Highest expression of this gene is seen in a melanoma cell line (CT=31.5). Prominent expression is seen in a cluster of cell lines derived ovarian, melanoma, and brain cells. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of ovarian, melanoma and brain cancers.


[0977] Panel 1 Summary: Ag4337 Highest expression of this gene is detected in a ovarian cancer OVCAR-8 cell line (CT=26.5). High to Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from liver, gastric, colon, lung, renal, breast, ovarian, melanoma and brain cancers. Therefore, therapeutic modulation of this gene may be useful in the treatment of these cancers.


[0978] Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, and adult and fetal liver. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0979] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0980] Panel 1.3D Summary: Ag3183 Highest expression of this gene is seen in fetal kidney (CT=32.2). In addition, prominent expression is seen in clusters of cell lines derived from melanoma, and brain cancer cell lines. Please see Panel 1 for discussion of utility of this gene in cancer. In another experiment (run 167966980) the amp plot indicates that there were experimental difficulties with this run; therefore, no conclusions can be drawn from this data (Data not shown).


[0981] Panel 4D Summary: Ag3183 Highest expression of this gene is detected in activated lung fibroblast (CT=31.9). This gene is also expressed in resting and treated fibroblasts, endothelium, and epithelium and activated naive T cells (CD4+ CD45RA cells). Interestingly, this gene is up-regulated activated in naive T cells (CD4+ CD45RA cells; CT=33.6) as compared to resting CD4 cells (CT=40). Furthermore, in activated memory T cells (CD45RO CD4 lymphocyte) or CD4 Th1 or Th2 cells (CTs>37), the expression of this gene is strongly down regulated suggesting a role for this putative protein in differentiation or activation of naive T cells. Activated T cells then initiate the inflammatory process by secreting cytokines and chemokines, activating B cells and inducing B cell antibody production, and inducing the extravasation of leukocytes including other T cells into inflammatory sites. Therefore, therapeutics that inhibit the action of this gene product may block T cell activation in response to tissue transplant and reduce or block rejection. These therapeutic drugs may also reduce or prevent inflammation in asthma/allergy, psoriasis, arthritis and diabetes in which activated T cells play a pivotal role. Expression of this gene may also serve as a diagnostic or experimental tools to identify naive activated T cells and discriminate them from more differentiated activated T cells (memory T cells).



REFERENCES

[0982] Study of LDL and acetylated LDL endocytosis by mononuclear cells in 1HV infection. Juompan L, Puel J, Fournie G J, Benoist H Biochim Biophys Acta Aug. 15, 1995;1272(1):21-8.


[0983] Panel 5D Summary: Ag3182 Highest expression of this gene is seen in a sample of mesenchymal stem cells (CT=34.2). Low but significant levels of expression are also seen in adipose tissue, in agreement with expression in Panel 1. Please see Panel 1 for discussion of this gene in metabolic disease.


[0984] general oncology screening panel_V2.4 Summary: Ag3183 Expression is seen in a lung cancer sample (CT=34.9). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of lung cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of lung cancer.


[0985] AC. CG150267-01: Type Ia Membrane Protein


[0986] Expression of gene CG150267-01 was assessed using the primer-probe set Ag7560, described in Table ACA. Results of the RTQ-PCR runs are shown in Tables ACB and ACC.
374TABLE ACAProbe Name Ag7560StartSEQ IDPrimersLengthPositionNoForward5′-gcacctgcttcggatatttt-3′20560332ProbeTET-5′-tttccctctgtacttatgccgccagt-3′-TAMRA26586333Reverse5′-ggagccggttcaaatcatac-3′20617334


[0987]

375





TABLE ACB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag7560,

(%) Ag7560,



Run

Run


Tissue Name
308750602
issue Name
308750602













AD 1 Hippo
8.8
Control (Path) 3
6.7




Temporal Ctx


AD 2 Hippo
12.3
Control (Path) 4
26.4




Temporal Ctx


AD 3 Hippo
10.7
AD 1 Occipital Ctx
22.5


AD 4 Hippo
8.2
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
51.4
AD 3 Occipital Ctx
8.1


AD 6 Hippo
24.7
AD 4 Occipital Ctx
26.4


Control 2 Hippo
25.0
AD 5 Occipital Ctx
29.5


Control 4 Hippo
9.8
AD 6 Occipital Ctx
13.4


Control (Path) 3
1.1
Control 1 Occipital
5.3


Hippo

Ctx


AD 1 Temporal Ctx
21.2
Control 2 Occipital
51.4




Ctx


AD 2 Temporal Ctx
23.2
Control 3 Occipital
4.5




Ctx


AD 3 Temporal Ctx
6.1
Control 4 Occipital
7.9




Ctx


AD 4 Temporal Ctx
19.2
Control (Path) 1
62.4




Occipital Ctx


AD 5 Inf Temporal
100.0
Control (Path) 2
9.7


Ctx

Occipital Ctx


AD 5 Sup Temporal
34.2
Control (Path) 3
1.1


Ctx

Occipital Ctx


AD 6 Inf Temporal
18.6
Control (Path) 4
11.1


Ctx

Occipital Ctx


AD 6 Sup Temporal
19.2
Control 1 Parietal Ctx
5.9


Ctx



Control 1 Temporal
3.2
Control 2 Parietal Ctx
19.5


Ctx


Control 2 Temporal
19.1
Control 3 Parietal Ctx
17.6


Ctx


Control 3 Temporal
9.5
Control (Path) 1
71.2


Ctx

Parietal Ctx


Control 3 Temporal
5.5
Control (Path) 2
17.0


Ctx

Parietal Ctx


Control (Path) 1
48.3
Control (Path) 3
5.0


Temporal Ctx

Parietal Ctx


Control (Path) 2
17.6
Control (Path) 4
22.2


Temporal Ctx

Parietal Ctx










[0988]

376





TABLE ACC










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag7560,

(%) Ag7560,



Run

Run


Tissue Name
308748085
Tissue Name
308748085













Secondary Th1 act
0.0
HUVEC IL-1beta
3.2


Secondary Th2 act
0.0
HUVEC IFN gamma
5.2


Secondary Tr1 act
0.0
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha +
6.5




IL4


Secondary Th2 rest
0.0
HUVEC IL-11
0.0


Secondary Tr1 rest
0.0
Lung Microvascular
3.8




EC none


Primary Th1 act
0.0
Lung Microvascular
0.0




EC TNFalpha +




IL-1beta


Primary Th2 act
0.0
Microvascular Dermal
20.0




EC none


Primary Tr1 act
0.0
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
3.5




TNFalpha + IL-1beta


Primary Th2 rest
0.0
Small airway
0.0




epithelium none


Primary Tr1 rest
0.0
Small airway
0.0




epithelium




TNFalpha + IL-1beta


CD45RA CD4
0.0
Coronery artery SMC
4.6


lymphocyte act

rest


CD45RO CD4
0.0
Coronery artery SMC
2.9


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
0.0
Astrocytes rest
75.3


Secondary CD8
0.0
Astrocytes
23.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
0.0
KU-812 (Basophil)
0.0


lymphocyte act

rest


CD4 lymphocyte
0.0
KU-812 (Basophil)
5.6


none

PMA/ionomycin


2ry Th1/Th2/
0.0
CCD1106
6.1


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
0.0
CCD1106
0.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
1.8


LAK cells IL-2 +
0.0
NCI-H292 none
10.6


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
3.8


IFN gamma


LAK cells IL-2 +
0.0
NCI-H292 IL-9
6.1


IL-18


LAK cells PMA/
0.0
NCI-H292 IL-13
0.0


ionomycin


NK Cells IL-2 rest
0.0
NCI-H292 IFN gamma
0.0


Two Way MLR 3
0.0
HPAEC none
4.2


day


Two Way MLR 5
0.0
HPAEC TNF alpha +
0.0


day

IL-1 beta


Two Way MLR 7
4.9
Lung fibroblast
3.0


day

none


PBMC rest
0.0
Lung fibroblast TNF
10.3




alpha + IL-1 beta


PBMC PWM
0.0
Lung fibroblast IL-4
0.0


PBMC PHA-L
0.0
Lung fibroblast IL-9
16.3


Ramos (B cell) none
0.0
Lung fibroblast IL-13
0.0


Ramos (B cell)
0.0
Lung fibroblast IFN
3.5


ionomycin

gamma


B lymphocytes
0.0
Dermal fibroblast
0.0


PWM

CCD1070 rest


B lymphocytes
0.0
Dermal fibroblast
4.2


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
11.2
Dermal fibroblast
0.0




CCD1070 IL-1 beta


EOL-1 dbcAMP
6.2
Dermal fibroblast IFN
0.0


PMA/ionomycin

gamma


Dendritic cells none
3.8
Dermal fibroblast IL-4
4.2


Dendritic cells LPS
0.0
Dermal Fibroblasts
0.0




rest


Dendritic cells
0.0
Neutrophils TNFa +
0.0


anti-CD40

LPS


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
0.0
Colon
4.0


Macrophages rest
6.5
Lung
3.8


Macrophages LPS
0.0
Thymus
10.5


HUVEC none
0.0
Kidney
100.0


HUVEC starved
7.5










[0989] CNS_neurodegeneration_v1.0 Summary: Ag7560 No differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. However, this panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0990] Panel 4.1D Summary: Ag7560 Highest expression of this gene is detected in kidney (CT=33.8). Therefore, expression of this gene could be used to differentiate the kidney-derived sample from other samples on this panel and as a marker of kidney tissue. In addition, therapeutic targeting of the expression or function of this gene may modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.


[0991] Low but significant levels of expression of this gene is also seen in resting astrocytes. Therefore, therapeutic modulation of this gene or the encoded protein could be important in the treatment of multiple sclerosis or other inflammatory diseases of the CNS.


[0992] AD. CG150362-01: Otoferlin


[0993] Expression of gene CG150362-01 was assessed using the primer-probe set Ag5684, described in Table ADA. Results of the RTQ-PCR runs are shown in Table ADB.
377TABLE ADAProbe Name Ag5684StartSEQ IDPrimersLengthPositionNoForward5′-cctggtatttgagcagttgatc-3′223187335ProbeTET 5′-atcactaatggaggctcctcctgcag-3′-TAMRA263230336Reverse5′-gccaaacttattgtggtcaaat-3′223265337


[0994]

378





TABLE ADB










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag5684,

(%) Ag5684,



Run

Run


Tissue Name
246498693
Tissue Name
246498693













Secondary Th1 act
0.0
HUVEC IL-1beta
1.9


Secondary Th2 act
0.0
HUVEC IFN gamma
15.0


Secondary Tr1 act
0.0
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
0.0
HUVEC IL-11
2.6


Secondary Tr1 rest
0.0
Lung Microvascular
17.3




EC none


Primary Th1 act
0.0
Lung Microvascular
1.1




EC TNFalpha +




IL-1beta


Primary Th2 act
1.9
Microvascular Dermal
0.0




EC none


Primary Tr1 act
0.0
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
6.4




TNFalpha + IL-1beta


Primary Th2 rest
1.7
Small airway
1.0




epithelium none


Primary Tr1 rest
0.0
Small airway
5.3




epithelium




TNFalpha + IL-1beta


CD45RA CD4
2.0
Coronery artery SMC
13.7


lymphocyte act

rest


CD45RO CD4
1.6
Coronery artery SMC
25.3


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
2.3
Astrocytes rest
0.0


Secondary CD8
0.0
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
0.6
KU-812 (Basophil)
0.0


lymphocyte act

rest


CD4 lymphocyte
2.5
KU-812 (Basophil)
0.0


none

PMA/ionomycin


2ry Th1/Th2/
0.4
CCD1106
7.2


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
0.0
CCD1106
5.7




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
6.4


LAK cells IL-2 +
0.0
NCI-H292 none
66.0


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
57.8


IFN gamma


LAK cells IL-2 +
0.0
NCI-H292 IL-9
92.7


IL-18


LAK cells PMA/
1.7
NCI-H292 IL-13
100.0


ionomycin


NK Cells IL-2 rest
0.0
NCI-H292 IFN gamma
51.8


Two Way MLR 3
0.0
HPAEC none
0.0


day


Two Way MLR 5
0.0
HPAEC TNF alpha +
3.0


day

IL-1 beta


Two Way MLR 7
0.5
Lung fibroblast
6.3


day

none


PBMC rest
0.0
Lung fibroblast TNF
3.8




alpha + IL-1 beta


PBMC PWM
0.0
Lung fibroblast IL-4
1.5


PBMC PHA-L
2.3
Lung fibroblast IL-9
3.5


Ramos (B cell) none
0.0
Lung fibroblast IL-13
0.0


Ramos (B cell)
16.0
Lung fibroblast IFN
2.1


ionomycin

gamma


B lymphocytes
0.0
Dermal fibroblast
0.3


PWM

CCD1070 rest


B lymphocytes
2.3
Dermal fibroblast
0.0


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
0.0
Dermal fibroblast
0.0




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.0
Dermal fibroblast IFN
0.0


PMA/ionomycin

gamma


Dendritic cells none
0.0
Dermal fibroblast IL-4
1.5


Dendritic cells LPS
0.0
Dermal Fibroblasts
1.9




rest


Dendritic cells
0.0
Neutrophils TNFa +
0.0


anti-CD40

LPS


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
0.0
Colon
0.0


Macrophages rest
0.0
Lung
0.0


Macrophages LPS
0.0
Thymus
0.0


HUVEC none
0.0
Kidney
4.5


HUVEC starved
2.9










[0995] CNS_neurodegeneration_v1.0 Summary: Ag5684 Expression of this gene is low/undetectable (CTs>34.8) across all of the samples on this panel (data not shown).


[0996] General_screening_panel_v1.5 Summary: Ag5684 The amp plot indicates that there were experimental difficulties with this run; therefore, no conclusions can be drawn from this data. (Data not shown).


[0997] Panel 4.1D Summary: Ag5684 Highest expression of this gene is detected in IL-13 treated NCI-H292 cell line (CT=30.4). This gene is also expressed in a cluster of treated and untreated NCI-H292 cell line, a human airway epithelial cell line that produces mucins. Mucus overproduction is an important feature of bronchial asthma and chronic obstructive pulmonary disease samples. This gene is also expressed at lower but still significant levels in ionomycin treated Ramos B cells, activated HUVEC cells, activated bronchial epithelium and small airway epithelium, resting lung fibroblasts, coronery artery SMC and keratinocytes. Therefore, therapeutics designed with the protein encoded by this gene may reduce or eliminate symptoms caused by inflammation in lung epithelia in chronic obstructive pulmonary disease, asthma, allergy, and emphysema.


[0998] AE. CG150637-02: T-Cell Surface Glycoprotein CD1B Precursor


[0999] Expression of full-length physical clone CG150637-02 was assessed using the primer-probe set Ag7126, described in Table AEA. Results of the RTQ-PCR runs are shown in Table AEB.
379TABLE AEAProbe Name Ag7126StartSEQ IDPrimersLengthPositionNoForward5′-ggatgcggggaaacc-3′15718338ProbeTET-5′-acctccattggctcaattgttttggc-3′-TAMRA26735339Reverse5′-ccataatgcaaggcatagca-3′20787340


[1000]

380





TABLE AEB










Panel 4.1D











Rel. Exp.

Rel. Exp.



(% Ag7126,

(%) Ag7126,



Run

Run


Tissue Name
306518354
Tissue Name
306518354













Secondary Th1 act
0.0
HUVEC IL-1beta
0.0


Secondary Th2 act
0.0
HUVEC IFN gamma
0.0


Secondary Tr1 act
0.0
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
0.0
HUVEC IL-11
0.0


Secondary Tr1 rest
0.0
Lung Microvascular
0.0




EC none


Primary Th1 act
0.0
Lung Microvascular
0.0




EC TNFalpha +




IL-1beta


Primary Th2 act
0.0
Microvascular Dermal
0.0




EC none


Primary Tr1 act
0.0
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
0.0




TNFalpha + IL-1beta


Primary Th2 rest
0.0
Small airway
0.0




epithelium none


Primary Tr1 rest
0.0
Small airway
0.0




epithelium




TNFalpha + IL-1beta


CD45RA CD4
0.0
Coronery artery SMC
0.0


lymphocyte act

rest


CD45RO CD4
0.0
Coronery artery SMC
0.0


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
0.0
Astrocytes rest
0.0


Secondary CD8
0.0
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
0.0
KU-812 (Basophil)
0.0


lymphocyte act

rest


CD4 lymphocyte
0.0
KU-812 (Basophil)
0.0


none

PMA/ionomycin


2ry Th1/Th2/
0.0
CCD1106
0.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
12.0
CCD1106
0.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
0.0


LAK cells IL-2 +
0.0
NCI-H292 none
0.0


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
0.0


IFN gamma


LAK cells IL-2 +
0.0
NCI-H292 IL-9
0.0


IL-18


LAK cells PMA/
11.2
NCI-H292 IL-13
0.0


ionomycin


NK Cells IL-2 rest
0.0
NCI-H292 IFN gamma
0.0


Two Way MLR 3
0.0
HPAEC none
0.0


day


Two Way MLR 5
0.0
HPAEC TNF alpha +
0.0


day

IL-1 beta


Two Way MLR 7
0.0
Lung fibroblast
0.0


day

none


PBMC rest
0.0
Lung fibroblast TNF
0.0




alpha + IL-1 beta


PBMC PWM
0.0
Lung fibroblast IL-4
0.0


PBMC PHA-L
0.0
Lung fibroblast IL-9
0.0


Ramos (B cell) none
0.0
Lung fibroblast IL-13
0.0


Ramos (B cell)
0.0
Lung fibroblast IFN
0.0


ionomycin

gamma


B lymphocytes
0.0
Dermal fibroblast
0.0


PWM

CCD1070 rest


B lymphocytes
0.0
Dermal fibroblast
0.0


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
1.1
Dermal fibroblast
0.0




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.0
Dermal fibroblast IFN
0.0


PMA/ionomycin

gamma


Dendritic cells none
100.0
Dermal fibroblast IL-4
0.0


Dendritic cells LPS
64.6
Dermal Fibroblasts
0.0




rest


Dendritic cells
86.5
Neutrophils TNFa +
0.0


anti-CD40

LPS


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
0.0
Colon
0.0


Macrophages rest
0.0
Lung
0.0


Macrophages LPS
0.0
Thymus
19.5


HUVEC none
0.0
Kidney
0.0


HUVEC starved
0.0










[1001] CNS_neurodegeneration_v1.0 Summary: Ag7126 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[1002] Panel 4.1D Summary: Ag7126 Highest expression of this gene is detected in dendritic cells (CT=32). Moderate to low levels of expression of this gene is restricted to resting and activated dendritic cells, and thymus. Dendritic cells are powerful antigen-presenting cells (APC), whose function is pivotal in the initiation and maintenance of normal immune responses. Autoimmunity and inflammation may be reduced by suppression of this function. Therefore, therapeutic modulation of the protein encoded by this gene may be important in the treatment of autoimmune and inflammatory diseases such as troin's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, lupus erythematosus, or psoriasis.


[1003] AF. CG150694-01: Microfibril-Associated Glycoprotein 2 Precursor


[1004] Expression of full-length physical clone CG150694-01 was assessed using the primer-probe set Ag7144, described in Table AFA. Results of the RTQ-PCR runs are shown in Tables AFB and AFC.
381TABLE AFAProbe Name Ag7144StartSEQ IDPrimersSequenceLengthPositionNoForward5′-gatgaaacagagtgctgggat-3′21166341ProbeTET-5′-atttacctgcacaaggctctactctgtgc-3′-TAMRA29192342Reverse5′-actgatgaatgcattgtttaacc-3′23228343


[1005]

382





TABLE AFB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag7144,

(%) Ag7144,



Run

Run


Tissue Name
306518753
issue Name
306518753













AD 1 Hippo
19.1
Control (Path) 3
13.1




Temporal Ctx


AD 2 Hippo
28.1
Control (Path) 4
2.6




Temporal Ctx


AD 3 Hippo
3.1
AD 1 Occipital Ctx
4.0


AD 4 Hippo
6.0
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
14.1
AD 3 Occipital Ctx
5.3


AD 6 Hippo
100.0
AD 4 Occipital Ctx
1.6


Control 2 Hippo
3.0
AD 5 Occipital Ctx
7.4


Control 4 Hippo
20.2
AD 6 Occipital Ctx
7.0


Control (Path) 3
0.0
Control 1 Occipital
9.2


Hippo

Ctx


AD 1 Temporal Ctx
2.9
Control 2 Occipital
15.0




Ctx


AD 2 Temporal Ctx
15.7
Control 3 Occipital
0.0




Ctx


AD 3 Temporal Ctx
0.0
Control 4 Occipital
3.2




Ctx


AD 4 Temporal Ctx
12.0
Control (Path) 1
31.0




Occipital Ctx


AD 5 Inf Temporal
51.1
Control (Path) 2
5.3


Ctx

Occipital Ctx


AD 5 Sup Temporal
39.5
Control (Path) 3
0.0


Ctx

Occipital Ctx


AD 6 Inf Temporal
22.2
Control (Path) 4
8.0


Ctx

Occipital Ctx


AD 6 Sup Temporal
23.8
Control 1 Parietal Ctx
0.0


Ctx



Control 1 Temporal
0.0
Control 2 Parietal Ctx
27.5


Ctx


Control 2 Temporal
1.0
Control 3 Parietal Ctx
2.3


Ctx


Control 3 Temporal
0.0
Control (Path) 1
17.9


Ctx

Parietal Ctx


Control 3 Temporal
1.1
Control (Path) 2
15.1


Ctx

Parietal Ctx


Control (Path) 1
5.3
Control (Path) 3
0.0


Temporal Ctx

Parietal Ctx


Control (Path) 2
4.7
Control (Path) 4
8.7


Temporal Ctx

Parietal Ctx










[1006]

383





TABLE AFC










Panel 4.1D











Rel. Ex.

Rel. Exp.



(%) Ag7144,

(%) Ag7144,



Run

Run


Tissue Name
306518356
Tissue Name
306518356













Secondary Th1 act
0.0
HUVEC IL-1beta
0.0


Secondary Th2 act
0.1
HUVEC IFN gamma
0.0


Secondary Tr1 act
0.0
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
0.0
HUVEC IL-11
0.0


Secondary Tr1 rest
0.0
Lung Microvascular
0.0




EC none


Primary Th1 act
0.0
Lung Microvascular
0.0




EC TNFalpha +




IL-1beta


Primary Th2 act
0.0
Microvascular Dermal
0.3




EC none


Primary Tr1 act
0.0
Microsvasular Dermal
0.3




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
2.3




TNFalpha + IL-1beta


Primary Th2 rest
0.0
Small airway
0.7




epithelium none


Primary Tr1 rest
0.0
Small airway
2.5




epithelium




TNFalpha + IL-1beta


CD45RA CD4
0.8
Coronery artery SMC
91.4


lymphocyte act

rest


CD45RO CD4
0.0
Coronery artery SMC
100.0


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
0.0
Astrocytes rest
24.7


Secondary CD8
0.0
Astrocytes
55.9


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
0.0
KU-812 (Basophil)
0.0


lymphocyte act

rest


CD4 lymphocyte
0.0
KU-812 (Basophil)
0.0


none

PMA/ionomycin


2ry Th1/Th2/
0.0
CCD1106
3.2


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
0.0
CCD1106
1.4




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
0.4


LAK cells IL-2 +
0.0
NCI-H292 none
13.0


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
25.2


IFN gamma


LAK cells IL-2 +
0.0
NCI-H292 IL-9
39.2


IL-18


LAK cells PMA/
0.0
NCI-H292 IL-13
41.5


ionomycin


NK Cells IL-2 rest
0.0
NCI-H292 IFN gamma
11.8


Two Way MLR 3
0.0
HPAEC none
0.1


day


Two Way MLR 5
0.1
HPAEC TNF alpha +
0.0


day

IL-1 beta


Two Way MLR 7
0.0
Lung fibroblast
0.0


day

none


PBMC rest
0.0
Lung fibroblast TNF
0.0




alpha + IL-1 beta


PBMC PWM
0.0
Lung fibroblast IL-4
0.0


PBMC PHA-L
0.0
Lung fibroblast IL-9
0.0


Ramos (B cell) none
0.0
Lung fibroblast IL-13
0.0


Ramos (B cell)
0.0
Lung fibroblast IFN
0.0


ionomycin

gamma


B lymphocytes
0.0
Dermal fibroblast
5.7


PWM

CCD1070 rest


B lymphocytes
0.1
Dermal fibroblast
4.3


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
0.0
Dermal fibroblast
3.3




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.0
Dermal fibroblast IFN
3.9


PMA/ionomycin

gamma


Dendritic cells none
0.0
Dermal fibroblast IL-4
5.6


Dendritic cells LPS
0.0
Dermal Fibroblasts
10.3




rest


Dendritic cells
0.0
Neutrophils TNFa +
0.0


anti-CD40

LPS


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
0.7
Colon
1.3


Macrophages rest
0.0
Lung
0.2


Macrophages LPS
0.0
Thymus
1.4


HUVEC none
0.0
Kidney
0.2


HUVEC starved
0.0










[1007] CNS_neurodegeneration_v1.0 Summary: Ag7144 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene is found to be slightly upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene may decrease neuronal death and be of use in the treatment of this disease.


[1008] Panel 4.1D Summary: Ag7144 Highest expression of this gene is detected in resting and activated coronery artery SMC (CTs=28). Moderate levels of expression of this gene is also seen in astrocytes, keratinocytes, mucoepidermoid NCI-H292 cells, activated bronchial and small airway epithelius and dermal fibroblasts. In addition, low levels of expression of this gene are also seen in colon and thymus. Therefore, therapeutic modulation of this gene or its protein product through the use of antibody or small molecule drug may be useful in the treatment of autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, osteoarthritis, multiple sclerosis and other inflammatory diseases of the CNS.


[1009] AG. CG151069-01: Membrane Protein AK027056.1


[1010] Expression of gene CG151069-01 was assessed using the primer-probe set Ag7562, described in Table AGA. Results of the RTQ-PCR runs are shown in Tables AGB and AGC.
384TABLE AGAProbe Name Ag7562StartSEQ IDPrimersLengthPositionNoForward5′-aatctgtggctggggtcat-3′19861344ProbeTET-5′-cccctggacgtctccgtcacaat-3′-TAMRA23887345Reverse5′-cactcattgtgaaaataggctgata-3′25923346


[1011]

385





TABLE AGB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag7562,

(%) Ag7562,



Run

Run


Tissue Name
308750605
issue Name
308750605













AD 1 Hippo
12.9
Control (Path) 3
0.9




Temporal Ctx


AD 2 Hippo
17.8
Control (Path) 4
9.2




Temporal Ctx


AD 3 Hippo
9.4
AD 1 Occipital Ctx
24.8


AD 4 Hippo
11.4
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
40.6
AD 3 Occipital Ctx
9.4


AD 6 Hippo
31.4
AD 4 Occipital Ctx
27.5


Control 2 Hippo
15.7
AD 5 Occipital Ctx
15.8


Control 4 Hippo
3.8
AD 6 Occipital Ctx
15.3


Control (Path) 3
3.0
Control 1 Occipital
3.9


Hippo

Ctx


AD 1 Temporal Ctx
38.4
Control 2 Occipital
19.3




Ctx


AD 2 Temporal Ctx
23.0
Control 3 Occipital
7.2




Ctx


AD 3 Temporal Ctx
8.9
Control 4 Occipital
9.2




Ctx


AD 4 Temporal Ctx
23.3
Control (Path) 1
70.7




Occipital Ctx


AD 5 Inf Temporal
100.0
Control (Path) 2
11.5


Ctx

Occipital Ctx


AD 5 Sup Temporal
35.6
Control (Path) 3
1.4


Ctx

Occipital Ctx


AD 6 Inf Temporal
53.6
Control (Path) 4
7.7


Ctx

Occipital Ctx


AD 6 Sup Temporal
37.9
Control 1 Parietal Ctx
9.1


Ctx



Control 1 Temporal
1.2
Control 2 Parietal Ctx
52.5


Ctx


Control 2 Temporal
14.3
Control 3 Parietal Ctx
9.0


Ctx


Control 3 Temporal
7.9
Control (Path) 1
31.9


Ctx

Parietal Ctx


Control 3 Temporal
6.1
Control (Path) 2
17.2


Ctx

Parietal Ctx


Control (Path) 1
30.8
Control (Path) 3
1.3


Temporal Ctx

Parietal Ctx


Control (Path) 2
10.2
Control (Path) 4
17.4


Temporal Ctx

Parietal Ctx










[1012]

386





TABLE AGC










Panel 4.1D











Rel. Exp

Rel. Exp.



(%) Ag7562,

(%) Ag7562,



Run

Run


Tissue Name
308748090
Tissue Name
308748090













Secondary Th1 act
0.0
HUVEC IL-1beta
4.2


Secondary Th2 act
0.0
HUVEC IFN gamma
17.2


Secondary Tr1 act
0.0
HUVEC TNF alpha +
1.2




IFN gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha +
1.2




IL4


Secondary Th2 rest
0.0
HUVEC IL-11
3.2


Secondary Tr1 rest
0.0
Lung Microvascular
88.3




EC none


Primary Th1 act
0.0
Lung Microvascular
17.6




EC TNFalpha +




IL-1beta


Primary Th2 act
0.0
Microvascular Dermal
11.0




EC none


Primary Tr1 act
0.0
Microsvasular Dermal
8.7




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
0.0




TNFalpha + IL-1beta


Primary Th2 rest
0.0
Small airway
0.8




epithelium none


Primary Tr1 rest
0.7
Small airway
0.0




epithelium




TNFalpha + IL-1beta


CD45RA CD4
1.8
Coronery artery SMC
1.6


lymphocyte act

rest


CD45RO CD4
0.0
Coronery artery SMC
1.6


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
0.0
Astrocytes rest
0.0


Secondary CD8
0.0
Astrocytes
0.7


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
0.0
KU-812 (Basophil)
57.8


lymphocyte act

rest


CD4 lymphocyte
0.0
KU-812 (Basophil)
92.7


none

PMA/ionomycin


2ry Th1/Th2/
0.0
CCD1106
0.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
0.0
CCD1106
0.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
0.5
Liver cirrhosis
3.7


LAK cells IL-2 +
0.0
NCI-H292 none
0.0


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
0.0


IFN gamma


LAK cells IL-2 +
0.0
NCI-H292 IL-9
0.0


IL-18


LAK cells PMA/
0.0
NCI-H292 IL-13
0.0


ionomycin


NK Cells IL-2 rest
0.0
NCI-H292 IFN gamma
0.0


Two Way MLR 3
0.0
HPAEC none
69.7


day


Two Way MLR 5
0.0
HPAEC TNF alpha +
100.0


day

IL-1 beta


Two Way MLR 7
0.0
Lung fibroblast
40.6


day

none


PBMC rest
0.0
Lung fibroblast TNF
6.4




alpha + IL-1 beta


PBMC PWM
0.0
Lung fibroblast IL-4
17.1


PBMC PHA-L
0.0
Lung fibroblast IL-9
10.3


Ramos (B cell) none
0.0
Lung fibroblast IL-13
6.6


Ramos (B cell)
0.0
Lung fibroblast IFN
16.2


ionomycin

gamma


B lymphocytes
0.0
Dermal fibroblast
0.0


PWM

CCD1070 rest


B lymphocytes
0.6
Dermal fibroblast
0.0


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
78.5
Dermal fibroblast
1.7




CCD1070 IL-1 beta


EOL-1 dbcAMP
40.1
Dermal fibroblast IFN
1.4


PMA/ionomycin

gamma


Dendritic cells none
0.0
Dermal fibroblast IL-4
5.1


Dendritic cells LPS
0.0
Dermal Fibroblasts
18.2




rest


Dendritic cells
0.0
Neutrophils TNFa +
0.0


anti-CD40

LPS


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
0.0
Colon
1.8


Macrophages rest
0.0
Lung
5.8


Macrophages LPS
0.0
Thymus
1.2


HUVEC none
9.7
Kidney
3.3


HUVEC starved
7.1










[1013] CNS_neurodegeneration_v1.0 Summary: Ag7562 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene is found to be upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene may decrease neuronal death and be of use in the treatment of this disease.


[1014] Panel 4.1D Summary: Ag7562 Highest expression of this gene is detected in alpha+IL-1 beta treated HPAEC (CT=32.2). Moderate to low levels of expression of this gene is also seen in eosinophils, lung microvascular endothelial cells, basophils, HPAEC, and activated lung fibroblasts. Therefore, therapeutic modulation of this gene or its protein product through the use of small molecule drug or antibodies may be useful in the treatment of autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[1015] AH. CG151189-01: Type IIIb Membrane Protein


[1016] Expression of gene CG 15119-01 was assessed using the primer-probe set Ag7561, described in Table AHA. Results of the RTQ-PCR runs are shown in Tables AHB and AHC.
387TABLE AHA16/28 Probe Name Ag7561StartSEQ IDPrimersLengthPositionNoForward5′-ctggagggcctgtcaaa-3′17440347ProbeTET-5′-cctccgatggcgaaaccagcatt-3′-TAMRA23486348Reverse5′-tcacagaatttagtaagcgttgg-3′23524349


[1017]

388





TABLE AHB










CNS neurodegeneration v1.0











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag7561,

Ag7561,



Run

Run


Tissue Name
308750603
issue Name
308750603













AD 1 Hippo
14.7
Control (Path) 3 Temporal Ctx
4.5


AD 2 Hippo
32.5
Control (Path) 4 Temporal Ctx
36.3


AD 3 Hippo
9.7
AD 1 Occipital Ctx
17.3


AD 4 Hippo
7.0
AD 2 Occipital Ctx (Missing)
0.0


AD 5 hippo
84.1
AD 3 Occipital Ctx
7.8


AD 6 Hippo
68.8
AD 4 Occipital Ctx
21.6


Control 2 Hippo
26.8
AD 5 Occipital Ctx
19.5


Control 4 Hippo
12.9
AD 6 Occipital Ctx
37.1


Control (Path) 3 Hippo
7.9
Control 1 Occipital Ctx
5.1


AD 1 Temporal Ctx
20.2
Control 2 Occipital Ctx
51.1


AD 2 Temporal Ctx
35.6
Control 3 Occipital Ctx
18.9


AD 3 Temporal Ctx
6.4
Control 4 Occipital Ctx
10.0


AD 4 Temporal Ctx
27.5
Control (Path) 1 Occipital Ctx
97.3


AD 5 Inf Temporal Ctx
100.0
Control (Path) 2 Occipital Ctx
15.3


AD 5 SupTemporal Ctx
54.0
Control (Path) 3 Occipital Ctx
3.6


AD 6 Inf Temporal Ctx
73.2
Control (Path) 4 Occipital Ctx
19.6


AD 6 Sup Temporal Ctx
74.2
Control 1 Parietal Ctx
9.9


Control 1 Temporal Ctx
6.9
Control 2 Parietal Ctx
55.9


Control 2 Temporal Ctx
33.4
Control 3 Parietal Ctx
21.5


Control 3 Temporal Ctx
14.8
Control (Path) 1 Parietal Ctx
63.7


Control 4 Temporal Ctx
13.9
Control (Path) 2 Parietal Ctx
29.7


Control (Path) 1 Temporal Ctx
57.8
Control (Path) 3 Parietal Ctx
5.0


Control (Path) 2 Temporal Ctx
44.8
Control (Path) 4 Parietal Ctx
34.6










[1018]

389





TABLE AHC










Panel 4.1D











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag7561,

Ag7561,



Run

Run


Tissue Name
308748088
Tissue Name
308748088













Secondary Th1 act
128.3
HUVEC IL-1beta
19.2


Secondary Th2 act
100.0
HUVEC IFN gamma
15.3


Secondary Tr1 act
25.0
HUVEC TNF alpha + IFN gamma
5.6


Secondary Th1 rest
1.9
HUVEC TNF alpha + IL4
9.6


Secondary Th2 rest
4.2
HUVEC IL-11
6.1


Secondary Tr1 rest
3.8
Lung Microvascular EC none
40.1


Primary Th1 act
4.7
Lung Microvascular EC TNFalpha +
10.1




IL-1beta


Primary Th2 act
26.1
Microvascular Dermal EC none
4.7


Primary Tr1 act
18.0
Microsvasular Dermal EC
9.0




TNFalpha + IL-1beta


Primary Th1 rest
2.3
Bronchial epithelium TNFalpha +
3.7




IL1beta


Primary Th2 rest
2.4
Small airway epithelium none
2.8


Primary Tr1 rest
0.8
Small airway epithelium TNFalpha +
14.0




IL-1beta


CD45RA CD4 lymphocyte act
27.0
Coronery artery SMC rest
14.5


CD45RO CD4 lymphocyte act
28.1
Coronery artery SMC TNFalpha +
12.4




IL-1beta


CD8 lymphocyte act
10.0
Astrocytes rest
14.8


Secondary CD8 lymphocyte rest
7.2
Astrocytes TNFalpha + IL-1beta
12.4


Secondary CD8 lymphocyte act
6.7
KU-812 (Basophil) rest
4.6


CD4 lymphocyte none
2.7
KU-812 (Basophil)
7.4




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
6.0
CCD1106 (Keratinobytes) none
22.2


CH11


LAK cells rest
11.0
CCD1106 (Keratinocytes)
6.1




TNFalpha + IL-1beta


LAK cells IL-2
6.9
Liver cirrhosis
2.3


LAK cells IL-2 + IL-12
0.7
NCI-H292 none
8.6


LAK cells IL-2 + IFN gamma
5.4
NCI-H292 IL-4
12.5


LAK cells IL-2 + IL-18
4.9
NCI-H292 IL-9
15.7


LAK cells PMA/ionomycin
18.9
NCI-H292 IL-13
15.8


NK Cells IL-2 rest
26.2
NCI-H292 IFN gamma
7.0


Two Way MLR 3 day
9.0
HPAEC none
4.5


Two Way MLR 5 day
4.0
HPAEC TNF alpha + IL-1 beta
24.3


Two Way MLR 7 day
3.6
Lung fibroblast none
13.6


PBMC rest
1.4
Lung fibroblast TNF alpha + IL-1
18.8




beta


PBMC PWM
6.7
Lung fibroblast IL-4
13.9


PBMC PHA-L
8.0
Lung fibroblast IL-9
31.4


Ramos (B cell) none
6.3
Lung fibroblast IL-13
11.1


Ramos (B cell) ionomycin
14.9
Lung fibroblast IFN gamma
26.8


B lymphocytes PWM
6.3
Dermal fibroblast CCD1070 rest
27.2


B lymphocytes CD40L and IL-4
20.7
Dermal fibroblast CCD1070 TNF
45.7




alpha


EOL-1 dbcAMP
14.4
Dermal fibroblast CCD1070 IL-1
20.7




beta


EOL-1 dbcAMP
14.1
Dermal fibroblast IFN gamma
6.1


PMA/ionomycin


Dendritic cells none
13.4
Dermal fibroblast IL-4
16.4


Dendritic cells LPS
5.5
Dermal Fibroblasts rest
12.2


Dendritic cells anti-CD40
6.7
Neutrophils TNFa + LPS
3.5


Monocytes rest
3.3
Neutrophils rest
11.7


Monocytes LPS
22.4
Colon
2.0


Macrophages rest
8.3
Lung
1.4


Macrophages LPS
6.5
Thymus
4.6


HUVEC none
12.7
Kidney
10.7


HUVEC started
17.9










[1019] CNS_neurodegeneration_v1.0 Summary: Ag7561 No differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. However, this panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[1020] Panel 4.1D Summary: Ag7561 Highest expression of this gene is detected in activated secondary Th2 cells (CT=29.3). This gene is expressed at moderate to low levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[1021] AI. CG151801-01: Occludin Like Membrane Protein


[1022] Expression of gene CG151801-01 was assessed using the primer-probe set Ag7563, described in Table AIA. Results of the RTQ-PCR runs are shown in Table AIB.
390TABLE AIAProbe Name Ag7563StartSEQ IDPrimersSequencesLengthPositionNoForward5′-actttctcacataaagcaaagaattc-3′261629350ProbeTET-5′-ccttgtacatcccaattcattactttatca-3′-TAMRA301662351Reverse5′-gtggtttcaaataagcgttaagaat-3′251694352


[1023]

391





TABLE AIB










Panel 4.1D











Rel.

Rel.



Ex. (%)

Exp. (%)



Ag7563,

Ag7563,



Run

Run


Tissue Name
308748092
Tissue Name
308748092













Secondary Th1 act
0.0
HUVEC IL-1beta
2.8


Secondary Th2 act
0.0
HUVEC IFN gamma
3.8


Secondary Tr1 act
0.0
HUVEC TNF alpha + IFN gamma
0.0


Secondary Th1 rest
0.0
HUVEC TNF alpha + IL4
0.0


Secondary Th2 rest
0.0
HUVEC IL-11
0.0


Secondary Tr1 rest
0.0
Lung Microvascular EC none
20.9


Primary Th1 act
0.0
Lung Microvascular EC TNFalpha +
1.8




IL-1beta


Primary Th2 act
0.0
Microvascular Dermal EC none
2.5


Primary Tr1 act
0.0
Microsvasular Dermal EC
0.0




TNFalpha + IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium TNFalpha +
12.2




IL1beta


Primary Th2 rest
0.0
Small airway epithelium none
18.4


Primary Tr1 rest
0.0
Small airway epithelium THFalpha +
100.0




IL-1beta


CD45RA CD4 lymphocyte act
0.0
Coronery artery SMC rest
0.0


CD45RO CD4 lymphocyte act
0.0
Coronery artery SMC TNFalpha +
0.0




IL-1beta


CD8 lymphocyte act
0.0
Astrocytes rest
0.0


Secondary CD8 lymphocyte rest
0.0
Astrocytes TNFalpha + IL-1beta
0.0


Secondary CD8 lymphocyte act
0.0
KU-812 (Basophil) rest
0.0


CD4 lymphocyte none
0.0
KU-812 (Basophil)
0.0




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
0.0
CCD1106 (Keratinocytes) none
41.5


CH11


LAK cells rest
0.0
CCD1106 (Keratinocytes)
334




TNFalpha + IL-1beta


LAX cells IL-2
0.0
Liver cirrhosis
4.3


LAK cells IL-2 + IL-12
0.0
NCI-H292 none
31.6


LAK cells IL-2 + IFN gamma
0.0
NCI-H292 IL-4
57.4


LAK cells IL-2 + IL-18
0.0
NCI-H292 IL-9
45.7


LAK cells PMA/ionomycin
0.0
NCI-H292 IL-13
59.9


NK Cells IL-2 rest
0.0
NCI-H292 IFN gamma
21.6


Two Way MLR 3 day
2.7
HPAEC none
0.0


Two Way MLR 5 day
0.0
HPAEC TNF alpha + IL-1 beta
25.9


Two Way MLR 7 day
0.0
Lung fibroblast none
2.8


PBMC rest
0.0
Lung fibroblast TNF alpha + IL-1
3.7




beta


PBMC PWM
0.0
Lung fibroblast IL-4
0.0


PBMC PHA-L
0.0
Lungfibroblast IL-9
3.5


Ramos (B cell) none
0.0
Lung fibroblast IL-13
0.0


Ramos (B cell) ionomycin
0.0
Lung fibroblast IFN gamma
7.1


B lymphocytes PWM
0.0
Dermal fibroblast CCD1070 rest
0.0


B lymphocytes CD40L and IL-4
0.0
Dermal fibroblast CCD1070 TNF
0.0




alpha


EOL-1 dbcAMP
0.0
Dermal fibroblast CCD1070 IL-1
0.0




beta


EOL-1 dbcAMP
0.0
Dermal fibroblast IFN gamma
0.0


PMA/ionomycin


Dendritic cells none
0.0
Dermal fibroblast IL-4
2.4


Dendritic cells LPS
0.0
Dermal Fibroblasts rest
0.0


Dendritic cells anti-CD40
29.3
Neutrophils TNFa + LPS
0.0


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
0.0
Colon
6.1


Macrophages rest
0.0
Lung
2.3


Macrophages LPS
0.0
Thymus
0.0


HUVEC none
1.9
Kidney
45.7


HUVEC starved
5.3










[1024] CNS_neurodegeneration_v1.0 Summary: Ag7563 Expression of this gene is low/undetectable (CTs>35) across all of the samples on this panel (data not shown).


[1025] Panel 4.1D Summary: Ag7563 Highest expression of this gene is seen in TNFalpha+IL-1beta treated small airway epithelium (CT=34). Therefore, expression of this gene may be used to distinguish activated small airway epithelium from other samples in this panel. In addition, low levels of expression of this gene are also seen in cytokine activated NCI-H292 cells, a human airway epithelial cell line that produces mucins. Therefore, modulation of the expression or activity of the protein encoded by this gene through the application of small molecule therapeutics or antibodies may be useful in the treatment of asthma, COPD, and emphysema.


[1026] AJ. CG165961-01 and CG165961-02: Secretory Carrier-Associated Membrane Protein 3


[1027] Expression of full-length physical clone CG165961-01 and variant CG165961-02 was assessed using the primer-probe set Ag7569, described in Table AJA. Results of the RTQ-PCR runs are shown in Tables AJB and AJC. Please note that CG165961-01 represents a full-length physical clone of the CG165961-02 gene, validating the prediction of the gene sequence.
392TABLE AJAProbe Name Ag7569StartSEQ IDPrimersLengthPositionNoForward5′-ctggctcttctcctgaacttc-3′21594353ProbeTET-5′-ccagcttctgtgtggaaaccaacaat-3′-TAMRA26555354Reverse5′-aggacccagaggatagaaagc-3′21520355


[1028]

393





TABLE AJB










CNS neurodegeneration v1.0











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag7569,

Ag7569,



Run

Run


Tissue Name
308751132
issue Name
308751132













AD 1 Hippo
22.8
Control (Path) 3 Temporal Ctx
7.2


AD 2 Hippo
41.5
Control (Path) 4 Temporal Ctx
34.2


AD 3 Hippo
11.3
AD 1 Occipital Ctx
21.8


AD 4 Hippo
9.6
AD 2 Occipital Ctx (Missing)
0.0


AD 5 hippo
88.3
AD 3 Occipital Ctx
10.8


AD 6 Hippo
68.8
AD 4 Occipital Ctx
25.7


Control 2 Hippo
35.4
AD 5 Occipital Ctx
27.9


Control 4 Hippo
19.8
AD 6 Occipital Ctx
49.3


Control (Path) 3 Hippo
8.1
Control 1 Occipital Ctx
6.9


AD 1 Temporal Ctx
21.5
Control 2 Occipital Ctx
86.5


AD 2 Temporal Ctx
37.6
Control 3 Occipital Ctx
18.7


AD 3 Temporal Ctx
8.4
Control 4 Occipital Ctx
9.9


AD 4 Temporal Ctx
21.0
Control (Path) 1 Occipital Ctx
88.3


AD 5 Inf Temporal Ctx
100.0
Control (Path) 2 Occipital Ctx
12.8


AD 5 SupTemporal Ctx
54.0
Control (Path) 3 Occipital Ctx
7.0


AD 6 Inf Temporal Ctx
62.4
Control (Path) 4 Occipital Ctx
16.6


AD 6 Sup Temporal Ctx
57.0
Control 1 Parietal Ctx
9.6


Control 1 Temporal Ctx
6.8
Control 2 Parietal Ctx
44.1


Control 2 Temporal Ctx
50.7
Control 3 Parietal Ctx
25.2


Control 3 Temporal Ctx
18.3
Control (Path) 1 Parietal Ctx
71.2


Control 4 Temporal Ctx
12.1
Control (Path) 2 Parietal Ctx
25.0


Control (Path) 1 Temporal Ctx
56.6
Control (Path) 3 Parietal Ctx
7.2


Control (Path) 2 Temporal Ctx
34.4
Control (Path) 4 Parietal Ctx
44.4










[1029]

394





TABLE AJC










Panel 4.1D











Rel.

Rel.



Ex. (%)

Exp. (%)



Ag7569,

Ag7569,



Run

Run


Tissue Name
308748454
Tissue Name
308748454













Secondary Th1 act
80.1
HUVEC IL-1beta
74.2


Secondary Th2 act
72.7
HUVEC IFN gamma
42.9


Secondary Tr1 act
26.2
HUVEC TNF alpha + IFN gamma
24.5


Secondary Th1 rest
3.7
HUVEC TNF alpha + IL4
25.9


Secondary Th2 rest
2.9
HUVEC IL-11
21.5


Second Tr1 rest
4.5
Lung Microvascular EC none
72.7


Primary Th1 act
12.6
Lung Microvascular EC TNFalpha +
41.5




IL-1beta


Primary Th2 act
59.5
Microvascular Dermal EC none
11.3


Primary Tr1 act
76.3
Microsvasular Dermal EC
26.8




TNFalpha + IL-1beta


Primary Th1 rest
5.3
Bronchial epithelium TNFalpha +
22.8




IL1beta


Primary Th2 rest
7.0
Small airway epithelium none
16.6


Primary Tr1 rest
2.5
Small airway epithelium TNFalpha +
33.0




IL-1beta


CD45RA CD4 lymphocyte act
55.9
Coronery artery SMC rest
32.1


CD45RO CD4 lymphocyte act
72.7
Coronery artery SMC TNFalpha +
39.0




IL-1beta


CD8 lymphocyte act
31.2
Astrocytes rest
15.7


Secondary CD8 lymphocyte rest
34.9
Astrocytes TNFalpha + IL-1beta
16.0


Secondary CD8 lymphocyte act
15.1
KU-812 (Basophil) rest
31.0


CD4 lymphocyte none
4.5
KU-812 (Basophil)
16.5




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
8.5
CCD1106 (Keratinocytes) none
44.4


CH11


LAK cells rest
14.0
CCD1106 (Keratinocytes)
15.7




TNFalpha + IL-1beta


LAK cells IL-2
16.4
Liver cirrhosis
6.5


LAK cells IL-2 + IL-12
1.5
NCI-H292 none
34.4


LAK cells IL-2 + IFN gamma
8.8
NCI-H292 IL-4
50.3


LAK cells IL-2 + IL-18
8.1
NCI-H292 IL-9
57.8


LAK cells PMA/ionomycin
33.0
NCI-H292 IL-13
44.1


NK Cells IL-2 rest
48.3
NCI-H292 IFN gamma
20.4


Two Way MLR 3 day
24.1
HPAEC none
9.7


Two Way MLR 5 day
11.8
HPAEC TNF alpha + IL-1 beta
68.8


Two Way MLR 7 day
12.5
Lung fibroblast none
48.6


PBMC rest
1.9
Lung fibroblast TNF alpha + IL-1
63.3




beta


PBMC PWM
25.7
Lung fibroblast IL-4
34.6


PBMC PHA-L
17.0
Lung fibroblast IL-9
59.5


Ramos (B cell) none
31.6
Lung fibroblast IL-13
23.3


Ramos (B cell) ionomycin
80.7
Lung fibroblast IFN gamma
99.3


B lymphocytes PWM
15.8
Dermal fibroblast CCD1070 rest
83.5


B lymphocytes CD40L and IL-4
44.8
Dermal fibroblast CCD1070 TNF
100.0




alpha


EOL-1 dbcAMP
21.0
Dermal fibroblast CCD1070 IL-1
47.6




beta


EOL-1 dbcAMP
3.3
Dermal fibroblast IFN gamma
32.8


PMA-ionomycin


Dendritic cells none
14.2
Dermal fibroblast IL-4
33.0


Dendritic cells LPS
13.8
Dermal Fibroblasts rest
47.3


Dendritic cells anti-CD40
8.0
Neutrophils TNFa + LPS
0.5


Monocytes rest
4.5
Neutrophils rest
1.4


Monocytes LPS
37.1
Colon
3.4


Macrophages rest
25.0
Lung
6.7


Macrophages LPS
21.8
Thymus
3.5


HUVEC none
43.5
Kidney
30.6


HUVEC starved
50.0










[1030] CNS_neurodegeneration_v1.0 Summary: Ag7569 No differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. However, this panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[1031] Panel 4.1D Summary: Ag7569 Highest expression of this gene is detected in TNF alpha treated dermal fibroblast (CT=29.9). This gene is expressed at moderate to low levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell farmily, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[1032] AK. CG51595-03 and CG51595-06 and CG51595-07:


[1033] Thrombospondin Related Protein


[1034] Expression of gene CG51595-06 and variants CG51595-03 and CG51595-07 was assessed using the primer-probe sets Ag815 and Ag127, described in Tables AKA and AKB. Results of the RTQ-PCR runs are shown in Tables AKC, AKD, AKE, AKF, AKG, AKH, AKI and AKJ. Please note that Ag127 is specific to CG51595-06 and CG51595-07 only.
395TABLE AKAProbe Name Ag815StartSEQ IDPrimersLengthPositionNoForward5′-tgtgctcagcacatggtcta-3′201716356ProbeTET-5′-acacctgctcagggaaaacgacagaa-3′-TAMRA261754357Reverse5′-tcgtgctcgtatctgtttcc-3′201781358


[1035]

396





TABLE AKB










Probe Name Ag127














Start
SEQ ID


Primers
Sequence
Length
Position
No





Forward
5′-cctgccaggatgactgtcaatt-3′
22
2516
359





Probe
TET-5′-ccagctggtccaagttttcttcatgcaa-3′-TAMRA
28
2540
360





Reverse
5′-tggtcctaactgcaccacagtct-3′
23
2571
361










[1036]

397





TABLE AKC










AI comprehensive panel v1.0











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag815,

Ag815,



Run

Run


Tissue Name
257809397
issue Name
257809397













110967 COPD-F
14.0
112427 Match Control Psoriasis-F
33.2


110980 COPD-F
9.0
112418 Psoriasis-M
10.6


110968 COPD-M
7.5
1112723 Match Control Psoriasis-M
1.1


110977 COPD-M
12.1
112419 Psoriasis-M
10.9


110989 Emphysema-F
18.7
112424 Match Control Psoriasis-M
12.4


110992 Emphysema-F
10.3
112420 Psoriasis-M
36.6


110993 Emphysema-F
10.2
1112425 Match Control Psoriasis-M
27.7


110994 Emphysema-F
3.8
104689 (MF) OA Bone-Backus
18.2


110995 Emphysema-F
20.4
104690 (MF) Adj “Normal”
9.3




Bone-Backus


110996 Emphysema-F
3.7
104691 (MF) OA Synovium-Backus
7.6


110997 Asthma-M
1.6
104692 (BA) OA Cartilage-Backus
4.5


111001 Asthma-F
9.9
104694 (BA) OA Bone-Backus
10.3


111002 Asthma-F
14.2
104695 (BA) Adj “Normal”
12.8




Bone-Backus


111003 Atopic Asthma-F
31.4
104696 (BA) OA Synovium-Backus
8.8


111004 Atopic Asthma-F
1.3
104700 (SS) OA Bone-Backus
8.9


111005 Atopic Asthma-F
10.1
104701 (SS) Adj “Normal”
9.0




Bone-Backus


111006 Atopic Asthma-F
1.2
104702 (SS) OA Synovium-Backus
17.3


111417 Allergy-M
7.6
117093 OA Cartilage Rep7
25.2


112347 Allergy-M
3.1
112672 OA Bone5
29.3


112349 Normal Lung-F
2.1
112673 OA Synovium5
11.8


112357 Normal Lung-F
6.9
112674 OA Synovial Fluid cells5
10.4


112354 Normal Lung-M
6.5
117100 OA Cartilage Rep14
2.0


112374 Crohns-F
8.0
112756 OA Bone9
6.7


112389 Match Control Crohns-F
7.0
112757 OA Synovium9
1.6


112375 Crohns-F
7.4
112758 OA Synovial Fluid Cells9
12.8


112732 Match Control Crohns-F
0.1
117125 RA Cartilage Rep2
14.6


112725 Crohns-M
18.3
113492 Bone2 RA
8.7


112387 Match Control
4.6
113493 Synovium2 RA
2.1


Crohns-M


112378 Crohns-M
2.1
113494 syn Fluid Cells RA
4.4


112390 Match Control
22.7
113499 Cartilage4 RA
6.6


Crohns-M


112726 Crohns-M
31.2
113500 Bone4 RA
7.9


112731 Match Control
18.7
113501 Synovium4 RA
4.8


Crohns-M


112380 Ulcer Col-F
14.9
113502 Syn Fluid Cells4 RA
3.9


112734 Match Control Ulcer
2.1
113495 Cartilage3 RA
4.8


Col-F


112384 Ulcer Col-F
51.4
113496 Bone3 RA
9.0


112737 Match Control Ulcer
13.3
113497 Synovium3 RA
2.5


Col-F


112386 Ulcer Col-F
3.6
113498 Syn Fluid Cells3 RA
9.3


112738 Match Control Ulcer
0.9
117106 Normal Cartilage Rep20
5.7


Col-F


112381 Ulcer Col-M
0.8
113663 Bone3 Normal
8.8


112735 Match Control Ulcer
100.0
113664 Synovium3 Normal
0.9


Col-M


112382 Ulcer Col-M
12.2
113665 Syn Fluid Cells3 Normal
4.0


112394 Match Control Ulcer
3.7
117107 Normal Cartilage Rep22
13.8


Col-M


112383 Ulcer Col-M
36.3
113667 Bone4 Normal
7.2


112736 Match Control Ulcer
1.1
113668 Synovium4 Normal
15.6


Col-M


112423 Psoriasis-F
12.9
113669 Syn Fluid Cells4 Normal
17.7










[1037]

398





TABLE AKD










Panel 1











Rel.

Rel.



Ex. (%)

Exp. (%)



Ag127,

Ag127,



Run

Run


Tissue Name
87588501
Tissue Name
87588501













Endothelial cells
9.2
Renal ca. 786-0
0.0


Endothelial cells (treated)
2.2
Renal ca. A498
0.1


Pancreas
1.4
Renal ca. RXF 393
0.1


Pancreatic ca. CAPAN 2
0.4
Renal ca. ACHN
0.1


Adrenal gland
4.9
Renal ca. UO-31
0.6


Thyroid
4.8
Renal ca. TK-10
0.2


Salivary gland
0.7
Liver
2.6


Pituitary gland
4.2
Liver (fetal)
1.1


Brain (fetal)
7.1
Liver ca. (hepatoblast) HepG2
0.0


Brain (whole)
33.9
Lung
4.7


Brain (amygdala)
6.0
Lung (fetal)
3.2


Brain (cerebellum)
47.6
Lung ca. (small cell) LX-1
0.0


Brain (hippocampus)
15.5
Lung ca. (small cell) NCI-H69
7.9


Brain (substantia nigra)
5.8
Lung ca. (s.cell var.) SHP-77
0.0


Brain (thalamus)
7.8
Lung ca. (large cell)NCI-H460
0.0


Brain (hypothalamus)
2.9
Lung ca. (non-sm. cell) A549
15.4


Spinal cord
6.6
Lung ca. (non-s.cell) NCI-H23
12.2


glio/astro U87-MG
1.2
Lung ca (non-s.cell) HOP-62
1.9


glio/astro U-118-MG
1.3
Lung ca. (non-s.cl) NCI-H522
0.1


astrocytoma SW1783
0.7
Lung ca. (squam.) SW 900
7.1


neuro*; met SK-N-AS
18.6
Lung ca. (squam.) NCI-H596
8.4


astrocytoma SF-539
0.0
Mammary gland
12.0


astrocytoma SNB-75
0.4
Breast ca.* (pl.ef) MCF-7
0.0


glioma SNB-19
0.7
Breast ca.* (pl.ef) MDA-MB-231
0.0


glioma U251
3.7
Breast ca.* (pl. ef) T47D
0.9


glioma SF-295
0.3
Breast ca. BT-549
0.0


Heart
1.4
Breast ca. MDA-N
0.1


Skeletal muscle
0.1
Ovary
7.4


Bone marrow
0.2
Ovarian ca. OVCAR-3
1.0


Thymus
2.1
Ovarian ca. OVCAR-4
0.0


Spleen
2.1
Ovarian ca. OVCAR-5
6.0


Lymph node
1.1
Ovarian ca. OVCAR-8
2.9


Colon (ascending)
6.4
Ovarian ca. IGROV-1
4.9


Stomach
5.1
Ovarian ca. (ascites) SK-OV-3
0.3


Small intestine
1.6
Uterus
25.7


Colon ca. SW480
0.0
Placenta
100.0


Colon ca.* SW620 (SW480 met)
0.0
Prostate
4.0


Colon ca. HT29
0.0
Prostate ca.* (bone met) PC-3
0.0


Colon ca. HCT-116
0.0
Testis
33.7


Colon ca. CaCo-2
0.2
Melanoma Hs688(A).T
0.0


Colon ca. HCT-15
0.3
Melanoma* (met) Hs688(B).T
0.1


Colon ca. HCC-2998
1.5
Melanoma UACC-62
0.0


Gastric ca.* (liver met) NCI-N87
2.0
Melanoma M14
0.4


Bladder
11.3
Melanoma LOX IMVI
0.0


Trachea
2.4
Melanoma* (met) SK-MEL-5
15.9


Kidney
17.1
Melanoma SK-MEL-28
0.1


Kidney (fetal)
31.4










[1038]

399





TABLE AKE










Panel 1.2













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



g815,
Ag815,

Ag815,
Ag815,



Run
Run

Run
Run


Tissue Name
118424515
122039235
Tissue Name
118424515
112039235















Endothelial cells
94.6
17.9
Renal ca. 786-0
0.1
0.0


Heart (Fetal)
4.7
4.2
Renal ca. A498
0.1
0.0


Pancreas
5.4
0.4
Renal ca. RXF 393
0.0
0.0


Pancreatic ca.
0.3
0.1
Renal ca. ACHN
0.1
0.0


CAPAN 2


Adrenal Gland
6.3
4.7
Renal ca. UO-31
0.4
0.3


Thyroid
9.0
1.0
Renal ca. TK-10
0.2
0.1


Salivary gland
2.1
1.4
Liver
3.6
1.7


Pituitary gland
20.3
4.6
Liver (fetal)
1.9
1.8


Brain (fetal)
31.4
5.9
Liver ca.
0.0
0.0





(hepatoblast) HepG2


Brain (whole)
19.6
16.8
Lung
3.1
2.9


Brain (amygdala)
4.5
5.9
Lung (fetal)
4.5
2.0


Brain (cerebellum)
6.8
10.3
Lung ca. (small cell)
0.0
0.0





LX-1


Brain (hippocampus)
8.2
10.8
Lung ca. (small cell)
27.5
8.4





NCI-H69


Brain (thalamus)
14.2
9.9
Lung ca. (s.cell var.)
8.4
4.1





SHP-77


Cerebral Cortex
73.7
100.0
Lung ca. (large
26.4
36.6





cell)NCI-H460


Spinal cord
7.5
5.7
Lung ca. (non-sm.
68.3
36.9





cell) A549


glio/astro U87-MG
3.4
1.2
Lung ca. (non-s.cell)
21.3
28.1





NCI-H23


glio/astro U-118-MG
2.0
0.7
Lung ca. (non-s.cell)
7.4
2.3





HOP-62


astrocytoma
0.8
0.2
Lung ca. (non-s.cl)
0.4
0.0


SW1783


NCI-H522


neuro*; met
88.9
15.2
Lung ca. (squam.)
8.2
9.4


SK-N-AS


SW 900


astrocytoma SF-539
0.1
0.0
Lung ca. (squam.)
47.0
13.3





NCI-H596


astrocytoma SNB-75
0.3
0.1
Mammary gland
4.3
2.2


glioma SNB-19
1.2
1.1
Breast ca.* (pl.ef)
0.0
0.0





MCF-7


glioma U251
12.8
7.9
Breast ca.* (pl.ef)
0.0
0.0





MDA-MB-231


glioma SF-295
0.8
0.2
Breast ca.* (pl.ef)
1.1
0.8





T47D


Heart
8.0
5.8
Breast ca. BT-549
0.1
0.0


Skeletal Muscle
3.6
0.9
Breast ca. MDA-N
0.4
0.1


Bone marrow
0.4
0.2
Ovary
8.9
6.6


Thymus
0.4
0.4
Ovarian ca.
3.5
0.8





OVCAR-3


Spleen
1.8
0.6
Ovarian ca.
0.1
0.0





OVCAR-4


Lymph node
2.6
1.4
Ovarian ca.
21.6
9.2





OVCAR-5


Colorectal Tissue
1.0
1.3
Ovarian ca.
3.0
2.3





OVCAR-8


Stomach
2.8
3.2
Ovarian ca.
27.9
5.6





IGROV-1


Small intestine
3.3
1.2
Ovarian ca. (ascites)
1.8
1.1





SK-OV-3


Colon ca. SW480
0.0
0.0
Uterus
8.2
4.8


Colon ca.* SW620
0.0
0.0
Placenta
100.0
95.3


(SW480 met)


Colon ca. HT29
0.2
0.0
Prostate
3.5
3.0


Colon ca. HCT-116
0.0
0.0
Prostate ca.* (bone
0.2
0.1





met) PC-3


Colon ca. CaCo-2
0.3
0.1
Testis
8.5
2.9


Colon ca. Tissue
1.8
2.6
Melanoma
0.0
0.2


(ODO3866)_


Hs688(A).T


Colon ca. HCC-2998
6.2
1.8
Melanoma* (met)
0.1
0.1





Hs688(B).T


Gastric ca.* (liver
3.5
2.0
Melanoma
0.1
0.1


met) NCI-N87


UACC-62


Bladder
21.6
12.5
Melanoma M14
0.3
0.1


Trachea
1.9
0.8
Melanoma LOX
0.0
0.0





IMVI


Kidney
34.4
49.0
Melanoma* (met)
26.2
16.7






SK-MEL-5


Kidney (fetal)
39.2
72.2










[1039]

400





TABLE AKF










Panel 1.3D













Rel.



Rel.

Exp. (%)



Exp.() Ag815,

Ag815,



Run

Run


Tissue Name
152862062
Tissue Name
152862062













Liver adenocarcinoma
0.0
Kidney (fetal)
11.3


Pancreas
0.6
Renal ca. 786-0
0.1


Pancreatic ca CAPAN 2
0.0
Renal ca A498
0.7


Adrenal gland
1.4
Renal ca. RXF 393
0.1


Thyroid
0.9
Renal ca. ACHN
0.0


Salivary gland
0.2
Renal ca UO-31
0.0


Pituitary gland
2.8
Renal ca. TK-10
0.2


Brain (fetal)
7.1
Liver
1.1


Brain (whole)
7.4
Liver (fetal)
0.5


Brain (amygdala)
4.3
Liver ca. (hepatoblast) HepG2
0.0


Brain (cerebellum)
3.4
Lung
2.0


Brain (hippocampus)
13.0
Lung (fetal)
5.0


Brain (substantia nigra)
1.1
Lung ca. (small cell) LX-1
5.8


Brain (thalamus)
8.0
Lung ca. (small cell) NCI-H69
23.8


Cerebral Cortex
100.0
Lung ca. (s.cell var.) SHP-77
9.0


Spinal cord
6.1
Lung ca. (large cell)NCI-H460
6.3


glio/astro U87-MG
0.9
Lung ca. (non-sm. cell) A549
13.4


glio/astro U-118-MG
3.8
Lung ca. (non-s.cell) NCI-H23
32.8


astrocytoma SW1783
0.4
Lung ca. (non-s.cell) HOP-62
2.1


neuro*; met SK-N-AS
57.0
Lung ca. (non-s.cl) NCI-H522
0.0


astrocytoma SF-539
0.0
Lung ca. (squam.) SW 900
3.3


astrocytoma SNB-75
3.3
Lung ca. (squam.) NCI-H596
12.1


glioma SNB-19
0.6
Mammary gland
0.6


glioma U251
8.5
Breast ca.* (pl.ef) MCF-7
0.0


glioma SF-295
0.8
Breast ca.* (pl.ef) MDA-MB-231
0.0


Heart (fetal)
4.1
Breast ca.* (pl.ef) T47D
0.5


Heart
1.3
Breast ca. BT-549
0.0


Skeletal muscle (fetal)
28.7
Breast ca. MDA-N
0.0


Skeletal muscle
0.8
Ovary
13.8


Bone marrow
0.7
Ovarian ca. OVCAR-3
1.1


Thymus
0.3
Ovarian ca. OVCAR-4
0.0


Spleen
2.5
Ovarian ca. OVCAR-5
5.4


Lymph node
1.3
Ovarian ca. OVCAR-8
2.5


Colorectal
4.0
Ovarian ca. IGROV-1
2.7


Stomach
1.1
Ovarian ca.* (ascites) SK-OV-3
1.2


Small intestine
1.8
Uterus
3.8


Colon ca. SW480
0.0
Placenta
36.6


Colon ca.* SW620(SW480 met)
0.0
Prostate
2.0


Colon ca. HT29
0.0
Prostate ca.* (bone met)PC-3
0.2


Colon ca. HCT-116
0.0
Testis
1.0


Colon ca. CaCo-2
0.0
Melanoma Hs688(A).T
0.0


Colon ca. tissue(ODO3866)
1.4
Melanoma* (met) Hs688(B).T
0.0


Colon ca. HCC-2998
1.5
Melanoma UACC-62
0.0


Gastric ca.* (liver met) NCI-N87
11.0
Melanoma M14
0.0


Bladder
3.8
Melanoma LOX IMVI
0.0


Trachea
1.3
Melanoma* (met) SK-MEL-5
7.5


Kidney
7.4
Adipose
6.2










[1040]

401





TABLE AKG










Panel 2D











Rel.

Rel.



Exp (%)

Exp. (%)



Ag815,

Ag815,



Run

Run


Tissue Name
144791433
Tissue Name
144791433













Normal Colon
5.8
Kidney Margin 8120608
7.0


CC Well to Mod Diff (ODO3866)
1.6
Kidney Cancer 8120613
100.0


CC Margin (ODO3866)
1.1
Kidney Margin 8120614
14.0


CC Gr.2 rectosigmoid (ODO3868)
0.6
Kidney Cancer 9010320
8.2


CC Margin (ODO3868)
0.8
Kidney Margin 9010321
24.7


CC Mod Diff (ODO3920)
0.3
Normal Uterus
6.6


CC Margin (ODO3920)
1.9
Uterus Cancer 064011
10.8


CC Gr.2 ascend colon (ODO3921)
1.8
Normal Thyroid
2.6


CC Margin (ODO3921)
0.7
Thyroid Cancer 064010
4.1


CC from Partial Hepatectomy
1.6
Thyroid Cancer A302152
2.8


(ODO4309) Mets


Liver Margin (ODO4309)
1.3
Thyroid Margin A302153
2.9


Colon mets to lung (ODO4451-01)
0.4
Normal Breast
3.5


Lung Margin (ODO4451-02)
3.1
Breast Cancer (ODO4566)
1.0


Normal Prostate 6546-1
2.5
Breast Cancer (ODO4590-01)
2.3


Prostate Cancer (ODO4410)
13.7
Breast Cancer Mets
3.7




(ODO4590-03)


Prostate Margin (ODO4410)
10.4
Breast Cancer Metastasis
0.9




(ODO4655-05)


Prostate Cancer (ODO4720-01)
5.8
Breast Cancer 064006
1.4


Prostate Margin (ODO4720-02)
12.9
Breast Cancer 1024
1.4


Normal Lung 061010
3.2
Breast Cancer 9100266
1.3


Lung Met to Muscle (ODO4286)
0.6
Breast Margin 9100265
0.8


Muscle Margin (ODO4286)
1.0
Breast Cancer A209073
3.0


Lung Malignant Cancer (ODO3126)
11.7
Breast Margin A209073
3.1


Lung Margin (ODO3126)
5.0
Normal Liver
0.9


Lung Cancer (ODO4404)
1.3
Liver Cancer 064003
1.0


Lung Margin (ODO4404)
6.9
Liver Cancer 1025
0.8


Lung Cancer (ODO4565)
0.7
Liver Cancer 1026
2.5


Lung Margin (ODO4565)
3.2
Liver Cancer 6004-T
1.5


Lung Cancer (ODO4237-01)
20.6
Liver Tissue 6004-N
0.3


Lung Margin (ODO4237-02)
5.4
Liver Cancer 6005-T
1.4


Ocular Mel Met to Liver
0.1
Liver Tissue 6005-N
0.5


(ODO4310)


Liver Margin (ODO4310)
1.1
Normal Bladder
3.8


Melanoma Mets to Lung
0.3
Bladder Cancer 1023
0.4


(ODO4321)


Lung Margin (ODO4321)
12.2
Bladder Cancer A302173
2.2


Normal Kidney
81.2
Bladder Cancer (ODO4718-01)
0.6


Kidney Ca, Nuclear grade 2
22.5
Bladder Normal Adjacent
12.6


(ODO4338)

(ODO4718-03)


Kidney Margin (ODO4338)
29.7
Normal Ovary
1.0


Kidney Ca Nuclear grade ≡1/2≢
15.1
Ovarian Cancer 064008
7.7


(ODO4339)


Kidney Margin (ODO4339)
46.3
Ovarian Cancer (ODO4768-07)
0.4


Kidney Ca, Clear cell type
7.2
Ovary Margin (ODO4768-08)
4.9


(ODO4340)


Kidney Margin (ODO4340)
41.5
Normal Stomach
2.8


Kidney Ca, Nuclear grade 3
5.5
Gastric Cancer 9060358
1.0


(ODO4348)


Kidney Margin (ODO4348)
32.3
Stomach Margin 9060359
1.1


Kidney Cancer (ODO4622-01)
4.6
Gastric Cancer 9060395
1.8


Kidney Margin (ODO4622-03)
5.3
Stomach Margin 9060394
0.5


Kidney Cancer (ODO4450-01)
12.6
Gastric Cancer 9060397
0.9


Kidney Margin (ODO4450-03)
37.9
Stomach Margin 9060396
0.1


Kidney Cancer 8120607
0.9
Gastric Cancer 064005
1.9










[1041]

402





TABLE AKH










Panel 3D











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag815,

Ag815,



Run

Run


Tissue Name
164886712
Tissue Name
164886712













Daoy- Medulloblastoma
1.9
Ca Ski- Cervical epidermoid
0.0




carcinoma (metastasis)


TE671- Medulloblastoma
0.3
ES-2- Ovarian clear cell carcinoma
0.0


D283 Med- Medulloblastoma
0.0
Ramos- Stimulated with
0.4




PMA/ionomycin 6h


PFSK-1- Primitive
0.4
Ramos- Stimulated with
0.5


Neuroectodermal

PMA/ionomycin 14h


XF-498-CNS
0.0
MEG-01- Chronic myelogenous
0.0




leukemia (megokaryoblast)


SNB-78- Glioma
0.0
Raji- Burkitt's lymphoma
0.0


SF-268- Glioblastoma
0.3
Daudi- Burkitt's lymphoma
0.4


T98G- Glioblastoma
0.0
U2o6- B-cell plasmacytoma
8.1


SK-N-SH- Neuroblastoma
39.0
CA46- Burkitt's lymphoma
0.0


(metastasis)


SF-295- Glioblastoma
0.3
RL- non-Hodgkin's B-cell
0.5




lymphoma


Cerebellum
22.4
JM1- pre-B-cell lymphoma
0.0


Cerebellum
3.6
Jurkat- T cell leukemia
0.0


NCI-H292- Mucoepidermoid
0.5
TF-1- Erythroleukemia
0.0


lung carcinoma


DMS-114- Small cell lung
12.7
HUT 78- T-cell lymphoma
0.7


cancer


DMS-79- Small cell lung cancer
0.0
U937- Histiocytic lymphoma
0.7


NCI-H146- Small cell lung
9.5
KU-812- Myelogenous leukemia
0.0


NCI-H526- Small cell lung
28.7
769-P- Clear cell renal carcinoma
0.0


cancer


NCI-N417- Small cell lung
55.1
Caki-2- Clear cell renal carcinoma
2.0


cancer


NCI-H82- Small cell lung cancer
0.7
SW 839- Clear cell renal carcinoma
0.0


NCI-H157- Squamous cell lung
0.0
G401- Wilm's tumor
0.0


cancer (metastasis)


NCI-H1155- Large cell lung
71.2
Hs766T- Pancreatic carcinoma (LN
53.6


cancer

metastasis)


NCI-H1299- Large cell lung
0.2
CAPAN-1- Pancreatic
28.5


cancer

adenocarcinoma (liver metastasis)


NCI-H727- Lung carcinoid
7.2
SU86.86- Pancreatic carcinoma
4.6




(liver metastasis)


NCI-UMC-11- Lung carcinoid
100.0
BxPC-3- Pancreatic
0.0




adenocarcinoma


LX-1- Small cell lung cancer
0.0
HPAC- Pancreatic adenocarcinoma
10.2


Colo-205- Colon cancer
0.0
MIA PaCa-2- Pancreatic carcinoma
15.6


KM12- Colon cancer
0.0
CFPAC-1- Pancreatic ductal
6.1




adenocarcinoma


KM20L2- Colon cancer
0.0
PANC-1- Pancreatic epithelioid
51.1




ductal carcinoma


NCI-H716- Colon cancer
70.2
T24- Bladder carcinma (transitional
0.7




cell)


SW-48- Colon adenocarcinoma
0.0
5637- Bladder carcinoma
0.0


SW1116- Colon adenocarcinoma
0.3
HT-1197- Bladder carcinoma
0.5


LS 174T- Colon
0.4
UM-UC-3- Bladder carcinma
0.0


adenocarcinoma

(transitional cell)


SW-948- Colon adenocarcinoma
0.0
A204- Rhabdomyosarcoma
0.0


SW-480- Colon adenocarcinoma
0.0
HT-1080-Fibrosarcoma
0.0


NCI-SNU-5- Gastric carcinoma
0.1
MG-63- Osteosarcoma
0.0


KATO III- Gastric carcinoma
1.1
SK-LMS-1- Leiomyosarcoma
0.3




(vulva)


NCI-SNU-16- Gastric carcinoma
2.2
SJRH30- Rhabdomyosarcoma (met
0.0




to bone marrow)


NCI-SNU-1- Gastric carcinoma
0.6
A431- Epidermoid carcinoma
0.0


RF-1- Gastric adenocarcinoma
0.0
WM266-4- Melanoma
1.7


RF-48- Gastric adenocarcinoma
0.0
DU 145- Prostate carcinoma (brain
0.0




metastasis)


MKN-45- Gastric carcinoma
0.0
MDA-MB-468- Breast
1.7




adenocarcinoma


NCI-N87- Gastric carcinoma
0.0
SCC-4- Squamous cell carcinoma of
0.0




tongue


OVCAR-5- Ovarian carcinoma
2.1
SCC-9- Squamous cell carcinoma of
0.0




tongue


RL95-2- Uterine carcinoma
27.2
SCC-15- Squamous cell carcinoma
0.0




of tongue


HelaS3- Cervical
0.0
CAL27- Squamous cell carcinoma
0.0


adenocarcinoma

of tongue










[1042]

403





TABLE AM










Panel 4D













Rel.
Rel.

Rel.
Rel.



Exp. (%)
Exp. (%)

Exp. (%)
Exp. (%)



Ag815,
Ag815,

Ag815,
Ag815,



Run
Run

Run
Run


Tissue Name
145703150
145918553
Tissue Name
145703150
145918553















Secondary Th1 act
0.0
0.0
HUVEC IL-1beta
3.5
10.1


Secondary Th2 act
0.0
0.0
HUVEC IFN gamma
42.6
72.7


Secondary Tr1 act
0.0
0.0
HUVEC TNF alpha +
0.6
3.2





IFN gamma


Secondary Th1 rest
0.0
0.0
HUVEC TNF alpha +
2.1
5.3





IL4


Secondary Th2 rest
0.0
0.0
HUVEC IL-11
10.3
22.4


Secondary Tr1 rest
0.0
0.0
Lung Microvascular
15.0
31.9





EC none


Primary Th1 act
0.0
0.0
Lung Microvascular
3.3
16.2





EC TNFalpha +





IL-1beta


Primary Th2 act
0.0
0.0
Microvascular
58.6
68.3





Dermal EC none


Primary Tr1 act
0.0
0.0
Microvascular
5.9
13.9





Dermal EC





TNFalpha + IL-1beta


Primary Th1 rest
0.0
0.4
Bronchial epithelium
0.1
0.0





TNFalpha + IL1beta


Primary Th2 rest
0.2
0.7
Small airway
0.2
0.0





epithelium none


Primary Tr1 rest
0.0
0.0
Small airway
0.1
0.0





epithelium TNFalpha +





IL-1beta


CD45RA CD4
0.0
0.0
Coronery artery SMC
0.3
1.0


lymphocyte act


rest


CD45RO CD4
0.0
0.0
Coronery artery SMC
0.0
0.2


lymphocyte act


TNFalpha + IL-1beta


CD8 lymphocyte act
0.0
0.0
Astrocytes rest
0.0
0.0


Secondary CD8
0.0
0.0
Astrocytes TNFalpha +
0.2
0.1


lymphocyte rest


IL-1beta


Secondary CD8
0.0
0.0
KU-812 (Basophil)
0.1
0.2


lymphocyte act


rest


CD4 lymphocyte none
0.1
0.1
KU-812 (Basophil)
0.0
0.1





PMA-ionomycin


2ry
0.1
0.0
CCD1106
0.0
0.0


Th1/Th2/Tr1_anti-CD95
0.1
0.0
(Keratinocytes) none


CH11


LAK cells rest
0.0
0.0
CCD1106
0.0
0.0





(Keratinocytes)





TNFalpha + IL-1beta


LAK cells IL-2
0.0
0.0
Liver cirrhosis
2.9
8.9


LAK cells IL-2 + IL-12
0.0
0.0
Lupus kidney
8.7
9.3


LAK cells IL-2 + IFN
0.0
0.2
NCI-H292 none
0.0
0.3


gamma


LAK cells IL-2 + IL-18
0.1
0.0
NCI-H292 IL-4
0.0
0.0


LAK cells
0.0
0.0
NCI-H292 IL-9
0.0
0.0


PMA-ionomycin


NK Cells IL-2 rest
0.0
0.0
NCI-H292 IL-13
0.0
0.0


Two Way MLR 3 day
0.0
0.2
NCI-H292 IFN
0.1
0.0





gamma


Two Way MLR 5 day
0.0
0.0
HPAEC none
15.6
24.7


Two Way MLR 7 day
0.0
0.0
HPAEC TNF alpha +
2.8
5.0





IL-1 beta


PBMC rest
0.3
0.4
Lung fibroblast none
0.5
1.5


PBMC PWM
0.0
0.0
Lung fibroblast TNF
0.0
0.2





alpha + IL-1 beta


PBMC PHA-L
0.0
0.0
Lung fibroblast IL-4
0.3
0.7


Ramos (B cell) none
0.2
0.0
Lung fibroblast IL-9
0.0
1.0


Ramos (B cell)
0.2
0.6
Lung fibroblast IL-13
0.5
0.3


ionomycin


B lymphocytes PWM
0.5
0.1
Lung fibroblat IFN
0.1
0.7





gamma


B lymphocytes CD40L
0.0
0.0
Dermal fibroblast
0.0
0.0


and IL-4


CCD1070 rest


EOL-1 dbcAMP
0.2
2.0
Dermal fibroblast
0.0
0.0





CCD1070 TNF alpha


EOL-1 dbcAMP
0.0
0.5
Dermal fibroblast
0.0
0.0


PMA-ionomycin


CCD 1070 IL-1 beta


Dendritic cells none
0.0
0.0
Dermal fibroblast
0.0
0.2





IFN gamma


Dendritic cells LPS
0.0
0.0
Dermal fibroblast
0.1
0.0





IL-4


Dendritic cells
0.0
0.0
IBD Colitis 2
0.3
0.5


anti-CD40


Monocytes rest
0.0
0.0
IBD Crohn's
0.7
0.2


Monocytes LPS
0.0
0.0
Colon
1.0
5.3


Macrophages rest
0.0
0.0
Lung
6.9
14.7


Macrophages LPS
0.0
0.0
Thymus
100.0
100.0


HUVEC none
4.9
11.6
Kidney
1.1
3.0


HUVEC starved
16.0
30.6










[1043]

404





TABLE AKJ










Panel 5 Islet











Rel. Exp.

Rel. Exp.



(%) Ag815,

(%) Ag815,



Run

Run


Tissue Name
254387842
Tissue Name
254387842













97457_Patient-02go_adipose
21.2
94709_Donor 2 AM—A_adipose
0.0


97476_Patient-07sk_skeletal muscle
2.7
94710_Donor 2 AM—B_adipose
0.0


97477_Patient-07ut_uterus
8.5
94711_Donor 2 AM—C_adipose
0.0


97478_Patient-07pl_placenta
100.0
94712_Donor 2 AD—A_adipose
0.1


99167_Bayer Patient 1
0.5
94713_Donor 2 AD—B_adipose
0.4


97482_Patient-08ut_uterus
3.4
94714_Donor 2 AD—C_adipose
0.2


97483_Patient-08pl_placenta
39.5
94742_Donor 3 U—A_Mesenchymal Stem Cells
0.0


97486_Patient-09sk_skeletal muscle
0.2
94743_Donor 3 U—B_Mesenchymal Stem Cells
0.0


97487_Patient-09ut_uterus
3.1
94730_Donor 3 AM—A_adipose
0.2


97488_Patient-09pl_placenta
26.2
94731_Donor 3 AM—B_adipose
0.1


97492_Patient-10ut_uterus
9.2
94732_Donor 3 AM—C_adipose
0.0


97493_Patient-10pl_placenta
89.5
94733_Donor 3 AD—A_adipose
0.3


97495_Patient-11go_adipose
8.5
94734_Donor 3 AD—B_adipose
0.2


97496_Patient-11sk_skeletal muscle
0.4
94735_Donor 3 AD—C_adipose
0.0


97497_Patient-11ut_uterus
12.2
77138_Liver_HepG2untreated
0.0


97498_Patient-11pl_placenta
72.7
73556_Heart_Cardiac stromal cells (primary)
4.2


97500_Patient-12go_adipose
17.0
81735_Small Intestine
1.9


97501_Patient-12sk_skeletal muscle
1.0
72409_Kidney_Proximal Convoluted Tubule
0.9


97502_Patient-12ut_uterus
5.8
82685_Small intestine_Duodenum
0.6


97503_Patient-12pl_placenta
54.0
90650_Adrenal_Adrenocortical adenoma
1.1


94721_Donor 2 U—A_Mesenchymal Stem Cells
0.0
72410_Kidney_HRCE
2.1


94722_Donor 2 U—B_Mesenchymal Stem Cells
0.0
72411_Kidney_HRE
6.7


94723_Donor 2 U—C_Mesenchymal Stem Cells
0.0
73139_Uterus_Uterine smooth muscle cells
1.4










[1044] AI_comprehensive panel_v1.0 Summary: Ag815 Highest expression of this gene is detected in control sample for ulcerative colitis (CT=27.6). This gene shows a widespread expression in this panel. Moderate to low levels of expression of this gene are detected in samples derived from normal and orthoarthitis/rheumatoid arthritis bone, cartilage, synovium and synovial fluid samples, normal lung, COPD lung, emphysema, atopic asthma, asthma, allergy, Crohn's disease (normal matched control and diseased), ulcerative colitis (normal matched control and diseased), and psoriasis (normal matched control and diseased). Therefore, therapeutic modulation of this gene product may ameliorate symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis.


[1045] The amp plot of another experiment (run 249247531) indicates that there were experimental difficulties with this run; therefore, no conclusions can be drawn from this data.


[1046] Panel 1 Summary: Ag127 Highest expression of this gene is detected in placenta (CT=25.4). High expression of this gene is also seen in testis and uterus. Therefore, therapeutic modulation of this gene may be useful in the treatment of reproductive disorders and fertility.


[1047] Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, melanoma, gastric, colon, lung, breast, ovarian, and brain cancers. Thus, therapeutic modulation of the expression or function of this gene or its protein product through the use of small molecule drug or antibodies may be effective in the treatment of pancreatic, gastric, colon, lung, breast, ovarian, and brain cancers.


[1048] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adrenal gland, thyroid, pituitary gland, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[1049] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[1050] Panel 1.2 Summary: Ag815 Two experiments with same probe and primer are in good agreement. Highest expression of this gene is detected in placenta and cerebral cortex (CTs=24-25.6). In addition, expression of this gene is seen in brain, tissues with metabolic/endocrine functions such as pancreas, adrenal gland, thyroid, pituitary gland, heart, liver and the gastrointestinal tract, endothelial cells and in cancer cell lines derived from gastric, colon, lung, breast, ovarian, and brain cancers. This pattern correlates to expression seen in panel 1. Please see panel 1 for further discussion on the utility of this gene.


[1051] Panel 1.3D Summary: Ag815 Highest expression of this gene is detected in cerebral cortex (CTs=27.4). In addition, expression of this gene is seen in brain, tissues with metabolic/endocrine functions such as adipose, pancreas, adrenal gland, thyroid, pituitary gland, heart, liver and the gastrointestinal tract, endothelial cells and in cancer cell lines derived from gastric, colon, lung, ovarian, and brain cancers. This pattern correlates to expression seen in panel 1. Please see panel 1 for further discussion on the utility of this gene.


[1052] Significant expression of this gene is also detected in fetal skeletal muscle. Interestingly, this gene is expressed at much higher levels in fetal (CT=29) when compared to adult skeletal muscle (CT=34). This observation suggests that expression of this gene can be used to distinguish fetal from adult skeletal muscle. In addition, the relative overexpression of this gene in fetal skeletal muscle suggests that the protein product may enhance muscular growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the GPCR encoded by this gene could be useful in treatment of muscle related diseases. More specifically, treatment of weak or dystrophic muscle with the protein encoded by this gene could restore muscle mass or function.


[1053] Panel 2D Summary: Ag815 Highest expression of this gene is detected in a kidney cancer (CT=28.3). Interestingly, expression of this gene is strongly associated with normal kidney samples as compared to kidney cancers. In addition, moderate to low levels of expression of this gene is also seen in colon, prostate, lung, breast, liver, bladder, ovarian, gastric and stomach cancers. Therefore, therapeutic modulation of this gene or its protein product through the use of antibodies and small molecule drug may be useful in the treatment of kidney, colon, prostate, lung, breast, liver, bladder, ovarian, gastric and stomach cancers.


[1054] Panel 3D Summary: Ag815 Highest expression of this gene is detected in a lung cancer cell line (CT=29.6). Moderate levels of expression of this gene is also seen in number of cell lines derived from lung, pancreatic, uterine, brain and colon cancers. Therefore, expression of this gene may be used as marker to detect the presence of these cancers. Furthermore, therapeutic modulation of this gene may be useful in the treatment of these cancers.


[1055] Panel 4D Summary: Ag815 Two experiments with same probe-primer sets are in good agreement. Highest expression of this gene is detected in thymus (CTs-27.7-28). Moderate levels of expression of this gene are also seen in endothelials cells including HUVEC, lung and dermal microvascular EC cells, and HPEAC cells. In addition, moderate to low levels of expression of this gene is also seen in liver cirrhosis, lupus kidney and normal colon, lung and kidney samples. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these endothelial cells and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, osteoarthritis and liver cirrhosis.


[1056] Panel 5 Islet Summary: Ag815 Highest expression of this gene is detected in placenta of a non-diabetic and obese patient (CT=28). Moderate levels of expression of this gene are mainly seen in placenta, uterus, adipose, kidney and small intestine of diabetic and non-diabetic patients. Please see panel 1 for further discussion on the utility of this gene.


[1057] AL. CG57209-02 and CG57209-03: EMR1 Hormone Receptor


[1058] Expression of gene CG57209-02 was assessed using the primer-probe set Ag6343, described in Table ALA. Results of the RTQ-PCR runs are shown in Tables ALB, ALC, ALD, ALE and ALF.
405TABLE ALAProbe Name Ag6343StartSEQ IDPrimersSequenceLengthPosition NoForward5′-caaataaataacatcttcagcgttct-3′261003362ProbeTET-5′-cggtcgttttattttcacacactttgtcc-3′-TAMRA291029363Reverse5′-ctctcagttgtattcttcagagaaacta-3′281058364


[1059]

406





TABLE ALB










AI_comprehensive panel_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag6343,

(%) Ag6343,



Run

Run


Tissue Name
276596900
Tissue Name
276596900













110967 COPD-F
1.4
112427 Match Control
5.4




Psoriasis-F


110980 COPD-F
2.2
112418 Psoriasis-M
2.5


110968 COPD-M
1.7
112723 Match Control
0.3




Psoriasis-M


110977 COPD-M
6.7
112419 Psoriasis-M
3.4


110989
4.5
112424 Match Control
0.6


Emphysema-F

Psoriasis-M


110992
2.2
112420 Psoriasis-M
14.2


Emphysema-F


110993
1.1
112425 Match Control
6.4


Emphysema-F

Psoriasis-M


110994
2.1
104689 (MF) OA
31.0


Emphysema-F

Bone-Backus


110995
8.4
104690 (MF) Adj
15.5


Emphysema-F

“Normal” Bone-




Backus


110996
0.5
104691 (MF) OA
3.9


Emphysema-F

Synovium-Backus


110997 Asthma-M
3.8
104692 (BA) OA
0.0




Cartilage-Backus


111001 Asthma-F
1.7
104694 (BA) OA
9.2




Bone-Backus


111002 Asthma-F
1.9
104695 (BA) Adj
10.0




“Normal” Bone-




Backus


111003 Atopic
1.4
104696 (BA) OA
8.4


Asthma-F

Synovium-Backus


111004 Atopic
0.9
104700 (SS) OA
100.0


Asthma-F

Bone-Backus


111005 Atopic
0.4
104701 (SS) Adj
14.4


Asthma-F

“Normal” Bone-




Backus


111006 Atopic
0.4
104702 (SS) OA
10.7


Asthma-F

Synovium-Backus


111417 Allergy-M
0.7
117093 OA Cartilage
5.5




Rep7


112347 Allergy-M
0.0
112672 OA Bone5
23.7


112349 Normal
0.0
112673 OA
6.8


Lung-F

Synovium5


112357 Normal
1.2
112674 OA Synovial
12.2


Lung-F

Fluid cells5


112354 Normal
0.9
117100 OA Cartilage
3.8


Lung-M

Rep14


112374 Crohns-F
3.8
112756 OA Bone9
6.0


112389 Match
0.2
112757 OA
0.7


Control Crohns-F

Synovium9


112375 Crohns-F
6.1
112758 OA Synovial
4.5




Fluid Cells9


112732 Match
17.4
117125 RA Cartilage
2.6


Control Crohns-F

Rep2


112725 Crohns-M
0.3
113492 Bone2 RA
42.6


112387 Match
1.6
113493 Synovium2
14.9


Control Crohns-M

RA


112378 Crohns-M
0.0
113494 Syn Fluid
26.8




Cells RA


112390 Match
1.9
113499 Cartilage4 RA
30.1


Control Crohns-M


112726 Crohns-M
1.4
113500 Bone4 RA
29.9


112731 Match
1.9
113501 Synovium4
18.2


Control Crohns-M

RA


112380 Ulcer Col-F
2.5
113502 Syn Fluid
15.1




Cells4 RA


112734 Match
43.2
113495 Cartilage3 RA
21.5


Control Ulcer Col-F


112384 Ulcer Col-F
10.1
113496 Bone3 RA
25.2


112737 Match
1.6
113497 Synovium3
11.7


Control Ulcer Col-F

RA


112386 Ulcer Col-F
3.6
113498 Syn Fluid
42.9




Cells3 RA


112738 Match
8.8
117106 Normal
0.3


Control Ulcer Col-F

Cartilage Rep20


112381 Ulcer
0.2
113663 Bone3 Normal
0.0


Col-M


112735 Match
0.8
113664 Synovium3
0.0


Control Ulcer

Normal


Col-M


112382 Ulcer
1.2
113665 Syn Fluid
0.0


Col-M

Cells3 Normal


112394 Match
0.7
117107 Normal
0.8


Control Ulcer

Cartilage Rep22


Col-M


112383 Ulcer
7.3
113667 Bone4 Normal
1.6


Col-M



112736 Match
0.0
113668 Synovium4
1.5


Control Ulcer

Normal


Col-M


112423 Psoriasis-F
11.3
113669 Syn Fluid
1.4




Cells4 Normal










[1060]

407





TABLE ALC










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag6343,

(%) Ag6343,



Run

Run


Tissue Name
269225500
issue Name
269225500













AD 1 Hippo
12.4
Control (Path) 3
0.0




Temporal Ctx


AD 2 Hippo
2.7
Control (Path) 4
3.0




Temporal Ctx


AD 3 Hippo
0.0
AD 1 Occipital Ctx
14.1


AD 4 Hippo
0.0
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
13.3
AD 3 Occipital Ctx
0.8


AD 6 Hippo
100.0
AD 4 Occipital Ctx
0.0


Control 2 Hippo
0.0
AD 5 Occipital Ctx
21.6


Control 4 Hippo
0.0
AD 6 Occipital Ctx
0.0


Control (Path) 3
3.4
Control 1 Occipital
6.6


Hippo

Ctx


AD 1 Temporal Ctx
21.3
Control 2 Occipital
5.7




Ctx


AD 2 Temporal Ctx
0.0
Control 3 Occipital
2.4




Ctx


AD 3 Temporal Ctx
3.4
Control 4 Occipital
3.8




Ctx


AD 4 Temporal Ctx
3.2
Control (Path) 1
0.0




Occipital Ctx


AD 5 Inf Temporal
0.0
Control (Path) 2
0.0


Ctx

Occipital Ctx


AD 5 Sup Temporal
14.1
Control (Path) 3
6.5


Ctx

Occipital Ctx


AD 6 Inf Temporal
97.3
Control (Path) 4
0.0


Ctx

Occipital Ctx


AD 6 Sup Temporal
50.0
Control 1 Parietal Ctx
10.7


Ctx



Control 1 Temporal
2.8
Control 2 Parietal Ctx
6.9


Ctx


Control 2 Temporal
1.2
Control 3 Parietal Ctx
10.0


Ctx


Control 3 Temporal
12.9
Control (Path) 1
0.0


Ctx

Parietal Ctx


Control 4 Temporal
0.0
Control (Path) 2
3.5


Ctx

Parietal Ctx


Control (Path) 1
0.0
Control (Path) 3
0.0


Temporal Ctx

Parietal Ctx


Control (Path) 2
2.9
Control (Path) 4
0.0


Temporal Ctx

Parietal Ctx










[1061]

408





TABLE ALD










General_screening_panel_v1.5











Rel. Exp.

Rel. Exp.



(%) Ag6343,

(%) Ag6343,



Run

Run


Tissue Name
259476287
issue Name
259476287













Adipose
12.2
Renal ca. TK-10
3.6


Melanoma*
0.0
Bladder
16.2


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
0.0


Hs688(B).T

NCI-N87


Melanoma* M14
0.0
Gastric ca. KATO III
0.0


Melanoma*
0.0
Colon ca. SW-948
0.0


LOXIMVI


Melanoma*
0.0
Colon ca. SW480
0.0


SK-MEL-5


Squamous cell
0.0
Colon ca.* (SW480
0.0


carcinoma SCC-4

met) SW620


Testis Pool
16.0
Colon ca. HT29
0.0


Prostate ca.* (bone
0.0
Colon ca. HCT-116
1.9


met) PC-3


Prostate Pool
1.0
Colon ca. CaCo-2
0.0


Placenta
15.5
Colon cancer tissue
15.8


Uterus Pool
4.0
Colon ca. SW1116
0.0


Ovarian ca.
1.3
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca.
0.0
Colon ca. SW-48
0.0


SK-OV-3


Ovarian ca.
0.0
Colon Pool
1.8


OVCAR-4


Ovarian ca.
0.0
Small Intestine Pool
0.0


OVCAR-5


Ovarian ca.
0.0
Stomach Pool
0.0


IGROV-1


Ovarian ca.
0.0
Bone Marrow Pool
5.3


OVCAR-8


Ovary
4.1
Fetal Heart
3.8


Breast ca. MCF-7
0.0
Heart Pool
0.0


Breast ca.
0.0
Lymph Node Pool
3.3


MDA-MB-231


Breast ca. BT 549
0.0
Fetal Skeletal Muscle
1.1


Breast ca. T47D
0.0
Skeletal Muscle Pool
1.8


Breast ca. MDA-N
0.0
Spleen Pool
100.0


Breast Pool
3.0
Thymus Pool
22.1


Trachea
5.4
CNS cancer (glio/
0.0




astro) U87-MG


Lung
0.0
CNS cancer (glio/
0.0




astro) U-118-MG


Fetal Lung
34.4
CNS cancer (neuro;
0.0




met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
0.0




SF-539


Lung ca. LX-1
0.0
CNS cancer (astro)
0.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
0.0




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio)
0.0




SF-295


Lung ca. A549
1.1
Brain (Amygdala)
0.0




Pool


Lung ca. NCI-H526
0.0
Brain (cerebellum)
6.5


Lung ca. NCI-H23
0.0
Brain (fetal)
1.1


Lung ca. NCI-H460
0.0
Brain (Hippocampus)
3.0




Pool


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
2.6


Lung ca. NCI-H522
0.0
Brain (Substantia
3.0




nigra) Pool


Liver
14.4
Brain (Thalamus) Pool
0.7


Fetal Liver
81.8
Brain (whole)
11.8


Liver ca. HepG2
0.0
Spinal Cord Pool
5.4


Kidney Pool
7.3
Adrenal Gland
12.1


Fetal Kidney
1.4
Pituitary gland Pool
2.4


Renal ca. 786-0
1.0
Salivary Gland
4.0


Renal ca. A498
1.0
Thyroid (female)
1.3


Renal ca. ACHN
0.0
Pancreatic ca.
0.0




CAPAN2


Renal ca. UO-31
0.5
Pancreas Pool
4.9










[1062]

409





TABLE ALE










Panel 4.1D











Rel. Exp.

Rel. Exp.



(% Ag6343,

(%) Ag6343,



Run

Run


Tissue Name
264776502
Tissue Name
264776502













Secondary Th1 act
0.0
HUVEC IL-1beta
0.0


Secondary Th2 act
0.0
HUVEC IFN gamma
0.0


Secondary Tr1 act
0.1
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
0.3
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
0.2
HUVEC IL-11
0.0


Secondary Tr1 rest
0.1
Lung Microvascular
0.0




EC none


Primary Th1 act
0.1
Lung Microvascular
0.0




EC TNFalpha +




IL-1beta


Primary Th2 act
0.5
Microvascular Dermal
0.0




EC none


Primary Tr1 act
0.4
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.1
Bronchial epithelium
0.0




TNFalpha + IL-1beta


Primary Th2 rest
0.2
Small airway
0.0




epithelium none


Primary Tr1 rest
0.0
Small airway
0.0




epithelium




TNFalpha + IL-1beta


CD45RA CD4
0.5
Coronery artery SMC
0.0


lymphocyte act

rest


CD45RO CD4
1.4
Coronery artery SMC
0.0


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
0.2
Astrocytes rest
0.0


Secondary CD8
0.5
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
0.0
KU-812 (Basophil)
0.0


lymphocyte act

rest


CD4 lymphocyte
0.8
KU-812 (Basophil)
0.0


none

PMA/ionomycin


2ry Th1/Th2/
0.0
CCD1106
0.0


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
0.1
CCD1106
0.0




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
0.2
Liver cirrhosis
0.1


LAK cells IL-2 +
0.0
NCI-H292 none
0.0


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
0.0


IFN gamma


LAK cells IL-2 +
0.1
NCI-H292 IL-9
0.0


IL-18


LAK cells PMA/
0.3
NCI-H292 IL-13
0.0


ionomycin


NK Cells IL-2 rest
0.2
NCI-H292 IFN gamma
0.0


Two Way MLR 3
0.9
HPAEC none
0.0


day


Two Way MLR 5
0.1
HPAEC TNF alpha +
0.0


day

IL-1 beta


Two Way MLR 7
0.0
Lung fibroblast
0.0


day

none


PBMC rest
1.0
Lung fibroblast TNF
0.0




alpha + IL-1 beta


PBMC PWM
1.1
Lung fibroblast IL-4
0.0


PBMC PHA-L
0.5
Lung fibroblast IL-9
0.0


Ramos (B cell) none
0.0
Lung fibroblast IL-13
0.0


Ramos (B cell)
0.0
Lung fibroblast IFN
0.0


ionomycin

gamma


B lymphocytes
0.1
Dermal fibroblast
0.0


PWM

CCD1070 rest


B lymphocytes
0.2
Dermal fibroblast
0.0


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
1.6
Dermal fibroblast
0.0




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.4
Dermal fibroblast IFN
0.0


PMA/ionomycin

gamma


Dendritic cells none
0.0
Dermal fibroblast IL-4
0.0


Dendritic cells LPS
0.3
Dermal Fibroblasts
0.0




rest


Dendritic cells
0.0
Neutrophils TNFa +
2.9


anti-CD40

LPS


Monocytes rest
5.0
Neutrophils rest
17.0


Monocytes LPS
100.0
Colon
0.2


Macrophages rest
0.2
Lung
0.5


Macrophages LPS
1.4
Thymus
0.4


HUVEC none
0.0
Kidney
0.1


HUVEC starved
0.0










[1063]

410





TABLE ALF










Panel 5 Islet











Rel. Exp.

Rel. Exp.



(%) Ag6343,

(%) Ag6343,



Run

Run


Tissue Name
259494665
Tissue Name
259494665













97457_Patient-02go_adipose
45.1
94709_Donor 2 AM—A_adipose
0.0


97476_Patient-07sk_skeletal muscle
55.5
94710_Donor 2 AM—B_adipose
0.0


97477_Patient-07ut_uterus
13.8
94711_Donor 2 AM—C_adipose
0.0


97478_Patient-07pl_placenta
61.1
94712_Donor 2 AD—A_adipose
0.0


99167_Bayer Patient 1
0.0
94713_Donor 2 AD—B_adipose
0.0


97482_Patient-08ut_uterus
0.0
94714_Donor 2 AD—C_adipose
0.0


97483_Patient-08pl_placenta
18.2
94742_Donor 3 U—A_Mesenchymal Stem Cells
0.0


97486_Patient-09sk_skeletal muscle
16.7
94743_Donor 3 U—B_Mesenchymal Stem Cells
0.0


97487_Patient-09ut_uterus
0.0
94730_Donor 3 AM—A_adipose
0.0


97488_Patient-09pl_placenta
12.1
94731_Donor 3 AM—B_adipose
0.0


97492_Patient-10ut_uterus
24.1
94732_Donor 3 AM—C_adipose
0.0


97493_Patient-10pl_placenta
34.2
94733_Donor 3 AD—A_adipose
0.0


97495_Patient-11go_adipose
28.9
94734_Donor 3 AD—B_adipose
0.0


97496_Patient-11sk_skeletal muscle
17.0
94735_Donor 3 AD—C_adipose
0.0


97497_Patient-11ut_uterus
15.4
77138_Liver_HepG2untreated
0.0


97498_Patient-11pl_placenta
63.3
73556_Heart_Cardiac stromal cells (primary)
0.0


97500_Patient-12go_adipose
30.8
81735_Small Intestine
0.0


97501_Patient-12sk_skeletal muscle
15.3
72409_Kidney_Proximal Convoluted Tubule
0.0


97502_Patient-12ut_uterus
21.6
82685_Small intestine_Duodenum
100.0


97503_Patient-12pl_placenta
0.0
90650_Adrenal_Adrenocortical adenoma
42.3


94721_Donor 2 U—A_Mesenchymal Stem Cells
0.0
72410_Kidney_HRCE
0.0


94722_Donor 2 U—B_Mesenchymal Stem Cells
0.0
72411_Kidney_HRE
0.0


94723_Donor 2 U—C_Mesenchymal Stem Cells
0.0
73139_Uterus_Uterine smooth muscle cells
0.0










[1064] AI_comprehensive panel_v1.0 Summary: Ag6343 Highest expression of this gene is detected in orthoarthritis (OA) bone (CT=29.3). Low to moderate levels of expression of this gene are detected in samples derived from osteoarthritic (OA) bone and adjacent bone as well as OA cartilage, and OA synovial fluid samples. Moderate level expression is also detected in cartilage, bone, synovium and synovial fluid samples from rheumatoid arthritis patients. No significant expression of this gene is detected in normal samples of cartilage, synovium, bone or synovial fluid cells. Low to moderate level of expression is also seen in samples derived from COPD lung, emphysema, asthma, Crohn's disease (normal matched control and diseased), ulcerative colitis (normal matched control and diseased), and psoriasis (normal matched control and diseased). Therefore, therapeutic modulation of this gene product may ameliorate symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis.


[1065] CNS_neurodegeneration_v1.0 Summary: Ag6343 Highest expression of this gene is detected in hippocampus sample derived from an Alzheimer's patient (CT=32.2). Moderate to low level of expression of this gene is alss seen in some of the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of this gene may be useful in the treatment of Alzheimer's disease.


[1066] General_screening_panel_v1.5 Summary: Ag6343 Highest expression of this gene is detected in spleen (CT=31.4). Moderate to low levels of expression of this gene is also seen in thymus, fetal lung and fetal liver. These tissues may contain monocytes or monocytic derived cell types. This gene codes for EMR1 hormone receptor precursor (human F4/80 homologue). EMR1 is a member of the family of hormone receptors with seven transmembrane segments. In addition, it has six egf-like modules at the N-terminus separated from the transmembrane segments by a serine/threonine-rich domain, a feature reminiscent of mucin-like, single-span, integral membrane glycoproteins with adhesive properties (Baud et al., 1995, Genomics 26(2):334-44, PMID: 7601460). EMR1 is shown to be abundantly expressed by cells of the myelomonocytic lineage (McKnight A J, Gordon S., 1998, J Leukoc Biol 63(3):271-80, PMID: 9500513). A potential role for EMR3, a member of EMR family of proteins, has suggested in myeloid-myeloid interactions during immune and inflammatory responses. Therefore, therapeutic modulation of the EMR1 encoded by this gene through the use of antibodies directed against this molecule or a small molecule drug could inhibit monocyte activation or extravasation into inflamed tissue and may be important for the treatment of a number of inflammatory diseases including asthma and rheumatoid arthritis.


[1067] Among tissues with metabolic or endocrine function, this gene is expressed at low levels in adipose, adrenal gland, and liver. In addition, expression of this gene has been found to be dysregulated in CuraGen GeneCalling studies. It is upregulated in adipose tissue of mice who develop diabetes and obesity after being fed a high-fat diet. The EMRI receptor encoded by this gene may be involved in a pathway leading to induction and release of TNF-alpha, IL-6 and resistin in adipose tissue. These molecules are known to be involved in the promotion of insulin resistance and are associated with obesity (Holst D, Grimaldi P A, 2002, Curr Opin Lipidol. 13(3):241-5, PMID: 12045392; Greenberg et al., 2002, Eur J Clin Invest. 32 Suppl 3:24-34, PMID: 12028372). Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes, including Type 2 diabetes.


[1068] Interestingly, this gene is expressed at much higher levels in fetal (CTs=31.7-32.9) when compared to adult liver and lung (CTs=3440). This observation suggests that expression of this gene can be used to distinguish fetal from adult tissues. In addition, the relative overexpression of this gene in fetal tissues suggests that the protein product may enhance liver and lung growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver and lung related diseases.


[1069] In addition, this gene is expressed at low levels in whole brain. Therefore, therapeutic modulation of this gene product may be useful in the treatment of neurological disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[1070] Panel 4.1D Summary: Ag6343 Highest expression of this gene is detected in LPS treated monocytes (CT=27.3). Expression of this gene is upregulated in activated monocytes as compared resting monocytes (CT=31.6). Therefore, expression of this gene may be used to distinguish between activated from resting monocytes and other samples used in this panel. The expression of this gene in LPS treated monocytes cells suggests that it plays a crucial role in linking innate immunity to adaptive immunity and also in initiating inflammatory reactions. Low to moderate levels of expression of this gene is also seen in neutrophils, eosinophils, PBMC, two way MLR, activated memory T cells, and CD4 lymphocytes. Therefore, modulation of the this gene or its product through the application of monoclonal antibodies or small molecule drug may reduce or prevent early stages of inflammation and reduce the severity of inflammatory diseases such as psoriasis, asthma, inflammatory bowel disease, rheumatoid arthritis, osteoarthritis and other lung inflammatory diseases. Please see panel 1.5 for further discussion on the utility of this gene.


[1071] Panel 5 Islet Summary: Ag6343 Low expression of this gene is restricted to sample derived from small intestine (CT=34.8). Therefore, expression of this gene may be used to distinguish this sample from other samples used in this panel. Please see panel 1.5 for further discussion on the utility of this gene.


[1072] AM. CG97715-01: Transmembrane Protein PT27


[1073] Expression of full-length physical clone CG97715-01 was assessed using the primer-probe set Ag3840, described in Table AMA. Results of the RTQ-PCR runs are shown in Tables AMB, AMC, AMD, AME and AMF.
411TABLE AMAProbe Name Ag3840StartSEQ IDPrimersSequenceLengthPositionNoForward5′-attcttagcagaatggggtgat-3′22693365ProbeTET-5′-cgctctcaactaactacaattgtattggca-3′-TAMRA30715366Reverse5′-acaccataggggtcctctctag-3′22746367


[1074]

412





TABLE AMB










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag3840,

(%) Ag3840,



Run

Run


Tissue Name
217312795
issue Name
217312795













Adipose
18.9
Renal ca. TK-10
22.7


Melanoma*
53.2
Bladder
27.5


Hs688(A).T


Melanoma*
56.6
Gastric ca. (liver met.)
59.9


Hs688(B).T

NCI-N87


Melanoma* M14
36.9
Gastric ca. KATO III
69.3


Melanoma*
15.1
Colon ca. SW-948
22.2


LOXIMVI


Melanoma*
29.3
Colon ca. SW480
49.0


SK-MEL-5


Squamous cell
19.3
Colon ca.* (SW480
30.1


carcinoma SCC-4

met) SW620


Testis Pool
8.0
Colon ca. HT29
18.6


Prostate ca.* (bone
35.8
Colon ca. HCT-116
31.2


met) PC-3


Prostate Pool
10.7
Colon ca. CaCo-2
24.1


Placenta
7.1
Colon cancer tissue
35.1


Uterus Pool
6.1
Colon ca. SW1116
12.4


Ovarian ca.
26.6
Colon ca. Colo-205
15.8


OVCAR-3


Ovarian ca.
52.9
Colon ca. SW-48
10.8


SK-OV-3


Ovarian ca.
17.4
Colon Pool
14.4


OVCAR-4


Ovarian ca.
50.7
Small Intestine Pool
8.8


OVCAR-5


Ovarian ca.
48.3
Stomach Pool
9.2


IGROV-1


Ovarian ca.
24.8
Bone Marrow Pool
7.6


OVCAR-8


Ovary
8.1
Fetal Heart
5.3


Breast ca. MCF-7
25.2
Heart Pool
7.2


Breast ca.
80.7
Lymph Node Pool
19.8


MDA-MB-231


Breast ca. BT 549
73.2
Fetal Skeletal Muscle
3.6


Breast ca. T47D
100.0
Skeletal Muscle Pool
5.4


Breast ca. MDA-N
22.2
Spleen Pool
11.8


Breast Pool
14.2
Thymus Pool
12.7


Trachea
11.6
CNS cancer (glio/
51.4




astro) U87-MG


Lung
3.0
CNS cancer (glio/
81.2




astro) U-118-MG


Fetal Lung
16.5
CNS cancer (neuro;
31.6




met) SK-N-AS


Lung ca. NCI-N417
12.8
CNS cancer (astro)
29.9




SF-539


Lung ca. LX-1
21.3
CNS cancer (astro)
61.6




SNB-75


Lung ca. NCI-H146
9.9
CNS cancer (glio)
50.3




SNB-19


Lung ca. SHP-77
34.9
CNS cancer (glio)
61.6




SF-295


Lung ca. A549
28.1
Brain (Amygdala)
9.9




Pool


Lung ca. NCI-H526
12.9
Brain (cerebellum)
7.3


Lung ca. NCI-H23
30.4
Brain (fetal)
6.2


Lung ca. NCI-H460
17.9
Brain (Hippocampus)
10.0




Pool


Lung ca. HOP-62
28.5
Cerebral Cortex Pool
9.8


Lung ca. NCI-H522
5.8
Brain (Substantia
9.0




nigra) Pool


Liver
0.6
Brain (Thalamus) Pool
13.9


Fetal Liver
9.6
Brain (whole)
6.3


Liver ca. HepG2
7.8
Spinal Cord Pool
12.7


Kidney Pool
18.4
Adrenal Gland
14.1


Fetal Kidney
14.1
Pituitary gland Pool
3.7


Renal ca. 786-0
50.7
Salivary Gland
4.2


Renal ca. A498
13.8
Thyroid (female)
10.6


Renal ca. ACHN
12.5
Pancreatic ca.
48.0




CAPAN2


Renal ca. UO-31
42.3
Pancreas Pool
33.4










[1075]

413





TABLE AMC










Oncology_cell_line_screening_panel_v3.1











Rel. Exp.

Rel. Exp.



(%) Ag3840,

(%) Ag3840,



Run

Run


Tissue Name
223130227
Tissue Nme
223130227













Daoy
13.3
Ca Ski_Cervical
50.3


Medulloblastoma/

epidermoid carcinoma


Cerebellum

(metastasis)


TE671
11.7
ES-2_Ovarian clear
20.3


Medulloblastoma/

cell carcinoma


Cerebellum


D283 Med
33.0
Ramos/6h
38.7


Medulloblastoma/

stim_Stimulated with


Cerebellum

PMA/ionomycin 6h


PFSK-1 Primitive
36.1
Ramos/14h
20.4


Neuroectodermal/

stim_Stimulated with


Cerebellum

PMA/ionomycin 14h


XF-498_CNS
69.3
MEG-01_Chronic
75.8




myelogenous leukemia




(megokaryoblast)


SNG-78_CNS/
38.7
Raji_Burkitt's
13.8


glioma

lymphoma


SF-268_CNS/
35.4
Daudi_Burkitt's
42.6


glioblastoma

lymphoma


T98G_Glio-
29.3
U266_B-cell
11.6


blastoma

plasmacytoma/




myeloma


SK-H-SH_Neuro-
37.4
CA46_Burkitt's
14.6


blastoma

lymphoma


(metastasis)


SF-295_CNS/
41.5
RL_non-Hodgkin's
9.5


glioblastoma

B-cell lymphoma


Cerebellum
18.4
JM1_pre-B-cell
11.1




lymphoma/leukemia


Cerebellum
10.0
Jurkat_T cell
24.0




leukemia


NCI-H292_Muco-
99.3
TF-1_Erythro-
100.0


epidermoid lung ca.

leukemia


DMS-114_Small
7.5
HUT 78_T-cell
28.3


cell lung cancer

lymphoma


DMS-79_Small cell
13.0
U937_Histiocytic
57.0


cancer/neuro-

lymphoma


endocrine


NCI-H146_Small
35.4
KU-812_Myelo-
66.9


cell lung cancer/

genous leukemia


neuroendocrine


NCI-H526_Small
56.6
769-P_Clear cell renal
39.2


cell lung cancer/

ca.


neuroendocrine


NCI-H417_Small
35.6
Caki-2_Clear cell
28.1


cell lung cancer/

renal ca.


neuroendocrine


NCI-H82_Small
15.1
SW 839_Clear cell
47.6


cell lung cancer/

renal ca.


neuroendocrine


NCI-
37.6
G401_Wilms' tumor
17.0


H157_Squamous


cell lung cancer


(metastasis)


NCI-H1155_Large
49.3
Hs766T_Pancreatic
50.3


cell lung cancer/

ca. (LN metastasis)


neuroendocrine


NCI-H1299_Large
26.2
CAPAN-1_Pancreatic
33.4


cell lung cancer/

adenocarcinoma (liver


neuroendocrine

metastasis)


NCI-H727_Lung
61.6
SU86.86_Pancreatic
52.5


carcinoid

carcinoma (liver




metastasis)


NCI-UMC-
30.8
BxPC-3_Pancreatic
37.4


11_Lung

adenocarcinoma


carcinoid


LX-1_Small cell
37.9
HPAC_Pancreatic
74.7


lung cancer

adenocarcinoma


Colo-205_Colon
48.3
MIA
5.7


cancer

PaCa-2_Pancreatic ca.


KM12_Colon
71.7
CFPAC-1_Pancreatic
92.7


cancer

ductal adenocarcinoma


KM20L2_Colon
17.8
PANC-1_Pancreatic
41.5


cancer

epithelioid ductal ca.


NCI-H716_Colon
83.5
T24_Bladder ca.
31.4


cancer

(transitional cell)


SW-48_Colon
31.2
5637_Bladder ca.
28.1


adenocarcinoma


SW1116_Colon
12.7
HT-1197_Bladder ca.
51.4


adenocarcinoma


LS 174T_Colon
20.7
UM-UC-3_Bladder
11.7


adenocarcinoma

ca. (transitional cell)


SW-948_Colon
24.8
A204_Rhab-
28.9


adenocarcinoma

domyosarcoma


SW-480_Colon
17.8
HT-1080_Fibro-
39.5


adenocarcinoma

sarcoma


NCI-SNU-
37.4
MG-63_Osteosarcoma
24.8


5_Gastric ca.

(bone)


KATO III_Stomach
41.8
SK-LMS-1_Leiomyo-
71.7




sarcoma (vulva)


NCI-SNU-
18.2
SJRH30_Rhabdomyo-
32.5


16_Gastric ca.

sarcoma (met to bone




marrow)


NCI-SNU-
75.8
A431_Epidermoid ca.
35.6


1_Gastric ca.


RF-1_Gastric
19.3
WM266-4_Melanoma
33.4


adenocarcinoma


RF-48_Gastric
21.2
DU 145_Prostate
32.8


adenocarcinoma


MKN-45_Gastric
20.7
MDA-MB-468_Breast
27.9


ca.

adenocarcinoma


NCI-N87_Gastric
51.1
SSC-4_Tongue
18.9


ca.


OVCAR-5_Ovarian
15.0
SSC-9_Tongue
37.4


ca.


RL95-2_Uterine
20.4
SSC-15_Tongue
55.1


carcinoma



HelaS3_Cervical
33.9
CAL 27_Squamous
21.8


adenocarcinoma

cell ca. of tongue










[1076]

414





TABLE AMD










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag3840,

(%) Ag3840,



Run

Run


Tissue Name
222546557
Tissue Name
222546557













Secondary Th1 act
41.2
HUVEC IL-1beta
64.6


Secondary Th2 act
41.5
HUVEC IFN gamma
42.6


Secondary Tr1 act
34.2
HUVEC TNF alpha +
40.6




IFN gamma


Secondary Th1 rest
5.8
HUVEC TNF alpha +
39.0




IL4


Secondary Th2 rest
9.2
HUVEC IL-11
20.7


Secondary Tr1 rest
5.7
Lung Microvascular
77.4




EC none


Primary Th1 act
17.1
Lung Microvascular
69.7




EC TNFalpha +




IL-1beta


Primary Th2 act
33.7
Microvascular Dermal
34.2




EC none


Primary Tr1 act
31.6
Microsvasular Dermal
46.7




EC TNFalpha +




IL-1beta


Primary Th1 rest
5.2
Bronchial epithelium
39.2




TNFalpha + IL-1beta


Primary Th2 rest
3.4
Small airway
18.2




epithelium none


Primary Tr1 rest
12.8
Small airway
69.7




epithelium




TNFalpha + IL-1beta


CD45RA CD4
47.0
Coronery artery SMC
47.6


lymphocyte act

rest


CD45RO CD4
36.6
Coronery artery SMC
48.3


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
24.8
Astrocytes rest
25.5


Secondary CD8
18.6
Astrocytes
29.1


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
7.9
KU-812 (Basophil)
38.2


lymphocyte act

rest


CD4 lymphocyte
2.1
KU-812 (Basophil)
57.4


none

PMA/ionomycin


2ry Th1/Th2/
11.8
CCD1106
43.8


Tr1_anti-CD95

(Keratinocytes) none


CH11


LAK cells rest
27.4
CCD1106
40.3




(Keratinocytes)




TNFalpha + IL-1beta


LAK cells IL-2
16.6
Liver cirrhosis
7.4


LAK cells IL-2 +
15.3
NCI-H292 none
31.9


IL-12


LAK cells IL-2 +
10.7
NCI-H292 IL-4
40.6


IFN gamma


LAK cells IL-2 +
19.8
NCI-H292 IL-9
50.3


IL-18


LAK cells PMA/
24.3
NCI-H292 IL-13
47.0


ionomycin


NK Cells IL-2 rest
20.9
NCI-H292 IFN gamma
39.8


Two Way MLR 3
29.1
HPAEC none
21.5


day


Two Way MLR 5
27.4
HPAEC TNF alpha +
100.0


day

IL-1 beta


Two Way MLR 7
17.9
Lung fibroblast
31.9


day

none


PBMC rest
2.3
Lung fibroblast TNF
69.7




alpha + IL-1 beta


PBMC PWM
31.2
Lung fibroblast IL-4
33.4


PBMC PHA-L
30.4
Lung fibroblast IL-9
52.1


Ramos (B cell) none
26.6
Lung fibroblast IL-13
30.1


Ramos (B cell)
40.1
Lung fibroblast IFN
66.0


ionomycin

gamma


B lymphocytes
20.3
Dermal fibroblast
54.7


PWM

CCD1070 rest


B lymphocytes
19.3
Dermal fibroblast
66.0


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
31.9
Dermal fibroblast
75.3




CCD1070 IL-1 beta


EOL-1 dbcAMP
35.4
Dermal fibroblast IFN
29.5


PMA/ionomycin

gamma


Dendritic cells none
39.5
Dermal fibroblast IL-4
39.0


Dendritic cells LPS
49.0
Dermal Fibroblasts
23.8




rest


Dendritic cells
44.1
Neutrophils TNFa +
3.1


anti-CD40

LPS


Monocytes rest
18.9
Neutrophils rest
5.0


Monocytes LPS
90.1
Colon
5.4


Macrophages rest
35.8
Lung
27.2


Macrophages LPS
28.9
Thymus
10.4


HUVEC none
36.1
Kidney
16.5


HUVEC starved
42.0










[1077]

415





TABLE AME










Panel 5D











Rel. Exp.

Rel. Exp.



(%) Ag380,

(%) Ag3840,



Run

Run


Tissue Name
169800718
Tissue Name
169800718













97457_Patient-02go_adipose
27.5
94709_Donor 2 AM—A_adipose
100.0


97476_Patient-07sk_skeletal muscle
21.8
94710_Donor 2 AM—B_adipose
58.2


97477_Patient-07ut_uterus
24.5
94711_Donor 2 AM—C_adipose
52.9


97478_Patient-07pl_placenta
29.9
94712_Donor 2 AD—A_adipose
40.9


97481_Patient-08sk_skeletal muscle
39.2
94713_Donor 2 AD—B_adipose
48.6


97482_Patient-08ut_uterus
28.3
94714_Donor 2 AD—C_adipose
52.5


97483_Patient-08pl_placenta
32.1
94742_Donor 3 U—A_Mesenchymal Stem Cells
31.0


97486_Patient-09sk_skeletal muscle
8.3
94743_Donor 3 U—B_Mesenchymal Stem Cells
46.0


97487_Patient-09ut_uterus
44.8
94730_Donor 3 AM—A_adipose
94.6


97488_Patient-09pl_placenta
17.6
94731_Donor 3 AM—B_adipose
55.1


97492_Patient-10ut_uterus
47.6
94732_Donor 3 AM—C_adipose
55.1


97493_Patient-10pl_placenta
36.3
94733_Donor 3 AD—A_adipose
100.0


97495_Patient-11go_adipose
11.3
94734_Donor 3 AD—B_adipose
55.1


97496_Patient-11sk_skeletal muscle
7.4
94735_Donor 3 AD—C_adipose
66.9


97497_Patient-11ut_uterus
31.6
77138_Liver_HepG2untreated
45.7


97498_Patient-11pl_placenta
17.3
73556_Heart_Cardiac stromal cells (primary)
12.2


97500_Patient-12go_adipose
29.7
81735_Small Intestine
15.0


97501_Patient-12sk_skeletal muscle
11.6
72409_Kidney_Proximal Convoluted Tubule
22.1


97502_Patient-12ut_uterus
32.5
82685_Small intestine_Duodenum
14.1


97503_Patient-12pl_placenta
15.9
90650_Adrenal_Adrenocortical adenoma
20.2


94721_Donor 2 U—A_Mesenchymal Stem Cells
41.8
72410_Kidney_HRCE
64.2


94722_Donor 2 U—B_Mesenchymal Stem Cells
55.5
72411_Kidney_HRE
38.2


94723_Donor 2 U—C_Mesenchymal Stem Cells
37.9
73139_Uterus_Uterine smooth muscle cells
15.8










[1078]

416





TABLE AMF










general oncology screening panel v 2.4











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag3840,

Ag3840,



Run

Run


Tissue Name
268036414
Tissue Nme
268036414













Colon cancer 1
35.6
Bladder cancer
1.7




NAT 2


Colon cancer NAT 1
16.0
Bladder cancer
2.6




NAT 3


Colon cancer 2
88.9
Bladder cancer
4.5




NAT 4


Colon cancer NAT 2
16.5
Prostate
49.3




adenocarcinoma 1


Colon cancer 3
77.4
Prostate
6.6




adenocarcinoma 2


Colon cancer NAT 3
29.1
Prostate
24.3




adenocarcinoma 3


Colon malignant
100.0
Prostate
25.2


cancer 4

adenocarcinoma 4


Colon normal
8.5
Prostate cancer
8.9


adjacent tissue 4

NAT 5


Lung cancer 1
45.7
Prostate
9.7




adenocarcinoma 6


Lung NAT 1
4.7
Prostate
14.2




adenocarcinoma 7


Lung cancer 2
75.8
Prostate
3.4




adenocarcinoma 8


Lung NAT 2
8.4
Prostate
47.6




adenocarcinoma 9


Squamous cell
46.0
Prostate cancer
5.3


carcinoma 3

NAT 10


Lung NAT 3
4.4
Kidney cancer 1
24.7


metastatic melanoma 1
14.2
Kidney NAT 1
7.6


Melanoma 2
4.4
Kidney cancer 2
62.9


Melanoma 3
4.8
Kidney NAT 2
23.5


metastatic melanoma 4
39.8
Kidney cancer 3
24.0


metastatic melanoma 5
50.3
Kidney NAT 3
4.1


Bladder cancer 1
7.5
Kidney cancer 4
18.4


Bladder cancer NAT 1
0.0
Kidney NAT 4
8.5


Bladder cancer 2
19.3










[1079] General_screening_panel_v1.4 Summary: Ag3840 Highest expression of this gene is detected in a breast cancer T47D cell line (CT=25.3). High levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[1080] Among tissues with metabolic or endocrine function, this gene is expressed at moderate to high levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[1081] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[1082] Interestingly, this gene is expressed at much higher levels in fetal (CT=28.7) when compared to adult liver (CT=32.7). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver related diseases.


[1083] Oncology_cell_line_screening_panel_v3.1 Summary: Ag3840 Highest expression of this gene is detected in a erythroleukemia TF-1 cell line (CT=26.6). This gene shows a widespread expression in all the cancer cell line and normal tissues in this panel. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Please see panel 1.4 for further discussion on the utility of this gene.


[1084] Panel 4.1D Summary: Ag3840 Highest expression of this gene is detected in TNF alpha and IL-1 beta treated HPAEC cells (CT=27.8). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[1085] Panel 5D Summary: Ag3840 Highest expression of this gene is detected in a midway differentiated and differentiated adipose tissue (CTs=29.4). This gene shows a widespread expression in this panel, which correlates to pattern seen in panel 1.4. Please see panel 1.4 for further discussion on the utility of this gene.


[1086] general oncology screening panel_v2.4 Summary: Ag3840 Highest expression of this gene is detected in a malignant colon cancer sample (CT=26.6). Expression of this gene is seen in both normal and cancer samples derived from colon, lung, melanoma, bladder, prostate and kidney. Interestingly, expression of this gene is consistently higher in the cancer samples as compared to the corresponding normal adjacent tissues. Therefore, expression of this gene may be used as diagnostic marker to detect the presence of colon, lung, bladder, prostate and kidney cancers. Furthermore, therapeutic modulation of this gene or its protein product may be useful in the treatment of colon, lung, melanoma, bladder, prostate and kidney cancers.



Example D


Identification of Single Nucleotide Polymorphisms in NOVX Nucleic Acid Sequences

[1087] Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a “cSNP” to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP may be due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele. SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.


[1088] SeqCalling assemblies produced by the exon linking process were selected and extended using the following criteria. Genomic clones having regions with 98% identity to all or part of the initial or extended sequence were identified by BLASTN searches using the relevant sequence to query human genomic databases. The genomic clones that resulted were selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences were analyzed for putative coding regions as well as for similarity to the known DNA and protein sequences. Programs used for these analyses include Grail, Genscan, BLAST, UMMER, FASTA, Hybrid and other relevant programs.


[1089] Some additional genomic regions may have also been identified because selected SeqCalling assemblies map to those regions. Such SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified was manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database. SeqCalling fragments suitable for inclusion were identified by the CuraTools™ program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.


[1090] The regions defined by the procedures described above were then manually integrated and corrected for apparent inconsistencies that may have arisen, for example, from miscalled bases in the original fragments or from discrepancies between predicted exon junctions, EST locations and regions of sequence similarity, to derive the final sequence disclosed herein. When necessary, the process to identify and analyze SeqCalling assemblies and genomic clones was reiterated to derive the full length sequence (Alderborn et al., Determination of Single Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing. Genome Research. 10 (8) 1249-1265, 2000).


[1091] Variants are reported individually but any combination of all or a select subset of variants are also included as contemplated NOVX embodiments of the invention.


[1092] NOV1a SNP Data:


[1093] NOV1a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:1 and 2, respectively. The nucleotide sequence of the NOV1a variant differs as shown in Table 51A.
417TABLE 51Adata for NOV1aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133812112786TG829IleSer


[1094] NOV2b SNP Data:


[1095] NOV2b has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:5 and 6, respectively. The nucleotide sequence of the NOV2b variant differs as shown in Table 51B.
418TABLE 51bdata for NOV2bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381047516TC148AsnAsn133811101479GA469GlnGln133811091542CT490AspAsp133811081751AG560AsnSer133811071821CT583IleIle133811063702CT0133811053971CT0133811044111GA0133811034141GA0133811024198CT0


[1096] NOV4c SNP Data:


[1097] NOV4c has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:21 and 22, respectively. The nucleotide sequence of the NOV4c variant differs as shown in Table 51C.
419TABLE 51cdata for NOV4cNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13380816440AG147IleVal13380815511AG170ThrThr


[1098] NOV5b SNP Data:


[1099] NOV5b has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:27 and 28, respectively. The nucleotide sequence of the NOV5b variant differs as shown in Table 51D.
420TABLE 51Ddata for NOV5bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381095372CA97SerSer13381096465CT128ProPro133810971797CT572CysCys133810981845TC588TyrTyr133810622254TC0133810632474AT0133811002593AG0133811012697CA0133810643183TC0133810653352GA0133810663541CT0


[1100] NOV6b SNP Data: NOV6b has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:31 and 32, respectively. The nucleotide sequence of the NOV6b variant differs as shown in Table 51E.
421TABLE 51Edata for NOV6bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381083168TC6PheLeu13381202181TC10LeuPro13381084359CA69LeuLeu13381085539AG129GluGlu13381086545GA131GlnGln13381087566CT138ValVal13381088658AT169AsnIle13381092786TC212CysArg13381093908TC252CysCys13381094933TC261SerPro


[1101] NOV8b SNP Data:


[1102] NOV8b has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:39 and 40, respectively. The nucleotide sequence of the NOV8b variant differs as shown in Table 51F.
422TABLE 51Fdata for NOV8bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381053770GA257ArgLys13381052965CT322SerPhe133810511047TC349GlyGly


[1103] NOV10a SNP Data:


[1104] NOV10a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:45 and 46, respectively. The nucleotide sequence of the NOV10a variant differs as shown in Table 51G.
423TABLE 51Gdata for NOV10aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381212 700CT193SerPhe133812131445AG0133812141449AG0133812151461GT0133808171463AG0133812171591CT0133812181601CA0


[1105] NOV14b SNP Data:


[1106] NOV14b has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:57 and 58, respectively. The nucleotide sequence of the NOV14b variant differs as shown in Table 51H.
424TABLE 51Hdata for NOV14bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381055323GC102GluGln13377369324AG102GluGly


[1107] NOV15a SNP Data:


[1108] NOV15a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:59 and 60, respectively. The nucleotide sequence of the NOV15a variant differs as shown in Table 51I.
425TABLE 51Idata for NOV15aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381041360TC114CysArg


[1109] NOV17a SNP Data:


[1110] NOV17a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:71 and 72, respectively. The nucleotide sequence of the NOV17a variant differs as shown in Table 51J.
426TABLE 51Jdata for NOV17aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381195 38CA 013381227474AG139ThrThr


[1111] NOV20a SNP Data:


[1112] NOV20a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:85 and 86, respectively. The nucleotide sequence of the NOV20a variant differs as shown in Table 51K.
427TABLE 51Kdata for NOV20aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133810601716AG567ProPro


[1113] NOV21a SNP Data:


[1114] NOV21a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:89 and 90, respectively. The nucleotide sequence of the NOV21a variant differs as shown in Table 51L.
428TABLE 51Ldata for NOV21aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133810806069TG2018AsnLys133810797885GA2624AspAsn133812258295CT2760PhePhe133810788365AG2784AsnAsp


[1115] NOV24a SNP Data:


[1116] NOV24a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:95 and 96, respectively. The nucleotide sequence of the NOV24a variant differs as shown in Table 51M.
429TABLE 51Mdata for NOV24aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381045439TC 78TrpArg13381262736AG177ThrAla


[1117] NOV27b SNP Data:


[1118] NOV27b has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:111 and 112, respectively. The nucleotide sequence of the NOV27b variant differs as shown in Table 51N
430TABLE 51Ndata for NOV27bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381221824TC262PheSer


[1119] NOV28a SNP Data:


[1120] NOV28a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:113 and 114, respectively. The nucleotide sequence of the NOV28a variant differs as shown in Table 51O
431TABLE 51Odata for NOV28aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381251285CT 85CysCys13381250341GT104GlyVal13381249501CT157ThrThr


[1121] NOV29a SNP Data:


[1122] NOV29a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:117 and 118, respectively. The nucleotide sequence of the NOV29a variant differs as shown in Table 51P
432TABLE 51Pdata for NOV29aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381050406GT95ValVal


[1123] NOV30a SNP Data:


[1124] NOV30a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:119 and 120, respectively. The nucleotide sequence of the NOV30a variant differs as shown in Table 51Q
433TABLE 51Qdata for NOV30aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133810491469AT487GlnLeu133810481857AG616IleMet


[1125] NOV32a SNP Data:


[1126] NOV32a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:123 and 124, respectively. The nucleotide sequence of the NOV32a variant differs as shown in Table 51R
434TABLE 51Rdata for NOV32aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381112369CG118AlaAla


[1127] NOV32b SNP Data:


[1128] NOV32b has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:125 and 126, respectively. The nucleotide sequence of the NOV32b variant differs as shown in Table 51S
435TABLE 51Sdata for NOV32bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13380823 113AG23AsnAsp133808241491AG482TyrCys133770281596TC517ValAla133812081900GT0133812072002GA0133812062012TC0133812052132AG0


[1129] NOV39b has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:149 and 150, respectively. The nucleotide sequence of the NOV39b variant differs as shown in Table 51T
436TABLE 51Tdata for NOV39bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381198359AG118AlaAla13381239581CT192LeuLeu13381238582AG193AsnAsp13381199615AG204LysGlu13381237625CT207AlaVal13381236631TC209LeuPro13381235705GA234ValMet13381234714AG237MetVal13381232777TC258LeuLeu13381231821GA272ArgArg


[1130] NOV42a SNP Data:


[1131] NOV42a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:155 and 156, respectively. The nucleotide sequence of the NOV42a variant differs as shown in Table 51U
437TABLE 51Udata for NOV42aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381081 341CT75 ArgCys133812421661GA0133812411678CT0


[1132] NOV43a SNP Data:


[1133] NOV43a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:157 and 158, respectively. The nucleotide sequence of the NOV43a variant differs as shown in Table 51V
438TABLE 51Vdata for NOV43aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381056113CT33ThrIle13381057166CT51LeuPhe13381058290GA92GlyGlu133810611485 TC490 AspAsp


[1134] NOV44a SNP Data:


[1135] NOV44a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:159 and 160, respectively. The nucleotide sequence of the NOV44a variant differs as shown in Table 51W
439TABLE 51Wdata for NOV44aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381043319AG 75ArgGly13381075351AG 85GlyGly13381074603TC169ThrThr13881073862CT256LeuLeu


[1136] NOV47d SNP Data:


[1137] NOV47d has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:181 and 182, respectively. The nucleotide sequence of the NOV47d variant differs as shown in Table 51X
440TABLE 51Xdata for NOV47dNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381257 213CT 65ProPro133755691316CT433ThrLie133755681441CT475MgCys133755671545GA509AlaAla133755661558GA514AspAsn133755724235AG1406 TyrCys133812564342CT1442 ProSer133776134402AG1462 ThrAla133812554658AG 0


[1138] NOV48c SNP Data:


[1139] NOV48c has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:205 and 206, respectively. The nucleotide sequence of the NOV48c variant differs as shown in Table 51Y
441TABLE 51Ydata for NOV48cNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13380257 118AG 40ThrAla13380253 842TC281ValAla133807431435CA479GlnLys133807411714GA572ValIle


[1140] NOV50a SNP Data:


[1141] NOV50a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:213 and 214, respectively. The nucleotide sequence of the NOV50a variant differs as shown in Table 51Z
442TABLE 51Zdata for NOV50aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381219132TC44ProPro13375293180AG60ThrThr13381220243CT81IleIle13374623494GA165 GlyAsp13375691713AG238 AspGly



Other Embodiments

[1142] Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims. The claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. Applicants reserve the right to pursue such inventions in later claims.


Claims
  • 1. An isolated polypeptide comprising the mature form of an amino acid sequenced selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107.
  • 2. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107.
  • 3. An isolated polypeptide comprising an amino acid sequence which is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107.
  • 4. An isolated polypeptide, wherein the polypeptide comprises an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107.
  • 5. The polypeptide of claim 1 wherein said polypeptide is naturally occurring.
  • 6. A composition comprising the polypeptide of claim 1 and a carrier.
  • 7. A kit comprising, in one or more containers, the composition of claim 6.
  • 8. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease selected from a pathology associated with the polypeptide of claim 1, wherein the therapeutic comprises the polypeptide of claim 1.
  • 9. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to an antibody that binds immunospecifically to the polypeptide; and (c) determining the presence of amount of antibody bound to said polypeptide, thereby determining the presence or amount of polypeptide in said sample.
  • 10. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the polypeptide of claim 1 in a first mammalian subject, the method comprising: a) measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and b) comparing the expression of said polypeptide in the sample of step (a) to the expression of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, said disease, wherein an alteration in the level of expression of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to said disease.
  • 11. A method of identifying an agent that binds to the polypeptide of claim 1, the method comprising: (a) introducing said polypeptide to said agent; and (b) determining whether said agent binds to said polypeptide.
  • 12. The method of claim 11 wherein the agent is a cellular receptor or a downstream effector.
  • 13. A method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of the polypeptide of claim 1, the method comprising: (a) providing a cell expressing the polypeptide of claim 1 and having a property or function ascribable to the polypeptide; (b) contacting the cell with a composition comprising a candidate substance; and (c) determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition in the absence of the substance, the substance is identified as a potential therapeutic agent.
  • 14. A method for screening for a modulator of activity of or of latency or predisposition to a pathology associated with the polypeptide of claim 1, said method comprising: (a) administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of claim 1, wherein said test animal recombinantly expresses the polypeptide of claim 1;(b) measuring the activity of said polypeptide in said test animal after administering the compound of step (a); and (c) comparing the activity of said polypeptide in said test animal with the activity of said polypeptide in a control animal not administered said polypeptide, wherein a change in the activity of said polypeptide in said test animal relative to said control animal indicates the test compound is a modulator activity of or latency or predisposition to, a pathology associated with the polypeptide of claim 1.
  • 15. The method of claim 14, wherein said test animal is a recombinant test animal that expresses a test protein transgene or expresses said transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein said promoter is not the native gene promoter of said transgene.
  • 16. A method for modulating the activity of the polypeptide of claim 1, the method comprising contacting a cell sample expressing the polypeptide of claim 1 with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.
  • 17. A method of treating or preventing a pathology associated with the polypeptide of claim 1, the method comprising administering the polypeptide of claim 1 to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject.
  • 18. The method of claim 17, wherein the subject is a human.
  • 19. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107 or a biologically active fragment thereof.
  • 20. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107.
  • 21. The nucleic acid molecule of claim 20, wherein the nucleic acid molecule is naturally occurring.
  • 22. A nucleic acid molecule, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 107.
  • 23. An isolated nucleic acid molecule encoding the mature form of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 107.
  • 24. An isolated nucleic acid molecule comprising a nucleic acid selected from the group consisting of 2n-1, wherein n is an integer between 1 and 107.
  • 25. The nucleic acid molecule of claim 20, wherein said nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 107, or a complement of said nucleotide sequence.
  • 26. A vector comprising the nucleic acid molecule of claim 20.
  • 27. The vector of claim 26, further comprising a promoter operably linked to said nucleic acid molecule.
  • 28. A cell comprising the vector of claim 26.
  • 29. An antibody that immunospecifically binds to the polypeptide of claim 1.
  • 30. The antibody of claim 29, wherein the antibody is a monoclonal antibody.
  • 31. The antibody of claim 29, wherein the antibody is a humanized antibody.
  • 32. A method for determining the presence or amount of the nucleic acid molecule of claim 20 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to a probe that binds to said nucleic acid molecule; and (c) determining the presence or amount of said probe bound to said nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in said sample.
  • 33. The method of claim 32 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
  • 34. The method of claim 33 wherein the cell or tissue type is cancerous.
  • 35. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the nucleic acid molecule of claim 20 in a first mammalian subject, the method comprising: a) measuring the level of expression of the nucleic acid in a sample from the first mammalian subject; and b) comparing the level of expression of said nucleic acid in the sample of step (a) to the level of expression of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of expression of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
  • 36. A method of producing the polypeptide of claim 1, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107.
  • 37. The method of claim 36 wherein the cell is a bacterial cell.
  • 38. The method of claim 36 wherein the cell is an insect cell.
  • 39. The method of claim 36 wherein the cell is a yeast cell.
  • 40. The method of claim 36 wherein the cell is a mammalian cell.
  • 41. A method of producing the polypeptide of claim 2, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 107.
  • 42. The method of claim 41 wherein the cell is a bacterial cell.
  • 43. The method of claim 41 wherein the cell is an insect cell.
  • 44. The method of claim 41 wherein the cell is a yeast cell.
  • 45. The method of claim 41 wherein the cell is a mammalian cell.
RELATED APPLICATIONS

[0001] This application claims priority to provisional patent applications U.S. S. No. 60/326,483, filed Oct. 2, 2001; U.S. S. No. 60/327,917, filed Oct. 9, 2001; U.S. S. No. 60/328,029, filed Oct. 9, 2001; U.S. S. No. 60/328,056, filed Oct. 9, 2001; U.S. S. No. 60/381,101, filed May 16, 2002; U.S. S. No. 60/371,972, filed Apr. 12, 2002; U.S. S. No. 60/327,342, filed Oct. 5, 2001; U.S. S. No. 60/328,044, filed Oct. 9, 2001; U.S. S. No. 60/328,849, filed Oct. 12, 2001; U.S. S. No. 60/374,738, filed Apr. 23, 2002; U.S. S. No. 60/329,414, filed Oct. 15, 2001; U.S. S. No. 60/330,142, filed Oct. 17, 2001; U.S. S. No. 60/383,830, filed May 29, 2002; U.S. S. No. 60/341,058, filed Oct. 22, 2001; U.S. S. No. 60/373,805, filed Apr. 19, 2002; U.S. S. No. 60/381,635, filed May 17, 2002; U.S. S. No. 60/371,980, filed Apr. 12, 2002; U.S. S. No. 60/343,629, filed Oct. 24, 2001; U.S. S. No. 60/339,266, filed Oct. 24, 2001; U.S. S. No. 60/349,575, filed Oct. 29, 2001; U.S. S. No. 60/346,357, filed Nov. 1, 2001; and U.S. S. No. 60/373,261, filed Apr. 17, 2002; each of which is incorporated herein by reference in its entirety.

Provisional Applications (22)
Number Date Country
60326483 Oct 2001 US
60327917 Oct 2001 US
60328029 Oct 2001 US
60328056 Oct 2001 US
60381101 May 2002 US
60371972 Apr 2002 US
60327342 Oct 2001 US
60328044 Oct 2001 US
60328849 Oct 2001 US
60374738 Apr 2002 US
60329414 Oct 2001 US
60330142 Oct 2001 US
60383830 May 2002 US
60341058 Oct 2001 US
60373805 Apr 2002 US
60381635 May 2002 US
60371980 Apr 2002 US
60343629 Oct 2001 US
60339266 Oct 2001 US
60349575 Oct 2001 US
60346357 Nov 2001 US
60373261 Apr 2002 US