The invention relates generally to ion sources and components thereof.
Ion sources generate a large amount of heat during operation. The heat is a product of the ionization of a working gas, which results in a high-temperature plasma in the ion source. To ionize the working gas, a magnetic circuit is configured to produce a magnetic field in an ionization region of the ion source. The magnetic field interacts with a strong electric field in the ionization region, where the working gas is present. The electrical field is established between a cathode, which emits electrons, and a positively charged anode, and the magnet circuit is established using a magnet and a pole piece made of magnetically permeable material. The sides and base of the ion source are other components of the magnetic circuit. In operation, the ions of the plasma are created in the ionization region and are then accelerated away from the ionization region by the induced electric field.
The magnet, however, is a thermally sensitive component, particularly in the operating temperature ranges of a typical ion source. For example, in typical end-Hall ion sources cooled solely by thermal radiation, discharge power is typically limited to about 1000 Watts, and ion current is typically limited to about 1.0 Amps to prevent thermal damage, particularly to the magnet. To manage higher discharge powers, and therefore higher ion currents, direct anode cooling systems have been developed to reduce the amount of heat reaching the magnet and other components of an ion source. For example, by pumping coolant through a hollow anode to absorb the excessive heat of the ionization process, discharge powers as high as 3000 Watts and ion currents as high as 3.0 Amps may be achieved. Alternative methods of actively cooling the anode have been hampered by the traditional difficulties of transferring heat between distinct components in a vacuum.
There are also components in an ion source that require periodic maintenance. In particular, a gas distributor through which the working gas flows into the ionization region erodes during operation or otherwise degenerates over time. Likewise, the anode must be cleaned when it becomes coated with insulating process material, and insulators must be cleaned when they become coated with conducting material. As such, certain ion source components are periodically replaced or serviced to maintain acceptable operation of the ion source.
Unfortunately, existing approaches for cooling the ion source require coolant lines running to and pumping coolant through a hollow anode. Such configurations present obstacles for constructing and maintaining ion sources, including the need for electrical isolation of the coolant lines, the risk of an electrical short through the coolant from the anode to ground, degradation and required maintenance of the coolant line electrical insulators, and the significant inconvenience of having to disassemble the coolant lines to gain access to serviceable components, like the gas distributor, the anode, and various insulators.
A thermal control plate is disclosed that is easily removable and replaceable in an ion source. The ion source has a removable anode assembly, including the thermal control plate, that is separable and from a base assembly to allow for ease of servicing consumable components of the anode assembly. The thermal control plate may support a gas distributor and an anode in the anode assembly. The thermal control plate may have a port for passing working gas from one side of the thermal control plate to the other. An interface surface on the thermal control plate may have a pattern of recesses to allow the working gas to disperse underneath the gas distributor.
In one implementation, a thermal control plate is provided for incorporation in an anode assembly of an ion source. The thermal control plate may be formed as a disk with a top surface and a bottom surface. The disk may define a gas duct positioned to interface with a gas port in a base assembly of the ion source adjacent to the bottom surface of the disk and further positioned to exit the top surface of the disk underneath a gas distributor adjacent to the top surface of the disk within the anode assembly. The disk may also define two or more inner apertures positioned to interface with corresponding fastening bolts that attach the gas distributor to the top surface of the thermal control plate. The disk may additionally define two or more outer apertures positioned to interface with corresponding inner bolts extending between a pole piece of the anode assembly and the bottom surface of the disk. The disk may additionally define at least one or more channels within the top surface traveling from the gas duct to a position radially outward of the gas duct.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other features, details, utilities, and advantages of the claimed subject matter will be apparent from the following more particular written Detailed Description of various embodiments and implementations as further illustrated in the accompanying drawings and defined in the appended claims.
Accordingly, the ion source 100 is cooled using a liquid or gaseous coolant (i.e., a fluid coolant) flowing through a cooling plate as described herein. Exemplary coolants may include without limitation distilled water, tap water, nitrogen, helium, ethylene glycol, and other liquids and gases. It should be understood that heat transfer between surfaces of adjacent bodies in a vacuum is less efficient than in a non-vacuum—the physical contact between two adjacent surfaces is typically minimal at the microscopic level and there is virtually no thermal transfer by convection in a vacuum. Therefore, to facilitate or improve such heat transfer, certain adjacent surfaces may be machined, compressed, coated or otherwise interfaced to enhance the thermal conductivity of the assembled components.
Furthermore, maintenance requirements and electrical leakage are also important operating considerations. Therefore, the configuration of the ion source 100 also allows an assembly of components to be easily removed from and inserted to the ion source body in convenient subassemblies, thereby facilitating maintenance of the ion source components. These components may be insulated or otherwise isolated to prevent electrical breakdown and leakage of current (e.g., from the anode through a grounded component, from the anode through the coolant to ground, etc.).
The pole piece 202 is made of magnetically permeable material and provides one pole of the magnetic circuit. A magnet 204 provides the other pole of the magnetic circuit. The pole piece 202 and the magnet 204 are connected through a magnetically permeable base 206 and a magnetically permeable body sidewall (not shown) to complete the magnetic circuit. The magnets used in a variety of ion source implementations may be permanent magnets or electromagnets and may be located along other portions of the magnetic circuit.
In the illustrated implementation, an anode 208, spaced beneath the pole piece 202 by insulating spacers (not shown), is powered to a positive electrical potential while the pole piece 202, the magnet 204, the base 206, and the sidewall are grounded (i.e., have a neutral electrical potential). The cathode 210 is electrically active, but has a net DC potential that is near ground potential relative to the anode potential. This arrangement sets up an interaction between a magnetic field and an electric field in an ionization region 212, where the molecules of the working gas are ionized to create a plasma. Eventually, the ions escape the ionization region 212 and are accelerated in the direction of the cathode 210 and toward a substrate.
In the implementation shown, a hot-filament type cathode is employed to generate electrons. A hot filament cathode works by heating a refractory metal wire by passing an alternating current through the hot filament cathode until its temperature becomes high enough that thermionic electrons are emitted. The electrical potential of the cathode is near ground potential, but other electrical variations are possible. In another typical implementation, a hollow-cathode type cathode is used to generate electrons. A hollow-cathode electron source operates by generating a plasma in a working gas and extracting electrons from the plasma by biasing the hollow cathode a few volts negative of ground, but other electrical variations are possible. Other types of cathodes beyond these two are contemplated.
The working gas is fed to the ionization region through a duct 214 and released behind a gas distributor 216 through an outlet 218. In operation, the illustrated gas distributor 216 is electrically isolated from the other ion source components by a ceramic isolator 220 and a thermally conductive, electrically insulating thermal transfer interface component 222. Therefore, the gas distributor 216 is left to float electrically, although the gas distributor 216 may be grounded or charged to a non-zero potential in alternative implementations. The gas distributor 216 assists in uniformly distributing the working gas in the ionization region 212. In many configurations, the gas distributor 216 is made of stainless steel and requires periodic removal and maintenance. Other exemplary materials for manufacturing a gas distributor include without limitation graphite, molybdenum, titanium, tantalum, boron nitride, aluminum nitride, alumina or alumina oxide, silicon oxide (i.e., quartz), silicon carbide, silica, mica or any high temperature conductive or ceramic composite.
The operation of the ion source 200 generates a large amount of heat, which is primarily transferred to the anode 208. For example, in a typical implementation, a desirable operating condition may be on the order of 3000 watts, 75% of which may represent waste heat absorbed by the anode 208. Therefore, to effect cooling, the bottom surface of the anode 208 presses against the top surface of the thermal transfer interface component 222, and the bottom surface of the thermal transfer interface component 222 presses against the top surface of a cooling plate 224. The cooling plate 224 includes a coolant cavity 226 through which coolant flows. In one implementation, the thermal transfer interface component 222 includes a thermally conductive, electrically insulating material, such as boron nitride, aluminum nitride or a boron nitride/aluminum nitride composite material (e.g., BIN77, marketed by GE-Advanced Ceramics). It should be understood that the thermal transfer interface component 222 may be a single layer or multi-layer interface component.
Generally, a thermally conductive, electrically insulating material having a lower elastic modulus works better in the ion source environment than materials having a higher elastic modulus. Materials with a lower elastic modulus can tolerate higher thermal deformation before material failure than higher elastic modulus materials. Furthermore, in a vacuum, even very small gaps between adjacent surfaces will greatly reduce heat transfer across the interface. Accordingly, lower elastic modulus materials tend to conform well to small planar deviations in thermal contact surfaces and minimize gaps in the interface, therefore enhancing thermal conductivity between the thermal contact surfaces.
In the illustrated implementation, the thermal transfer interface component 222 electrically isolates the cooling plate 224 from the positively charged anode 208 but also provides high thermal conductivity. Therefore, the thermal transfer interface component 222 allows the cooling plate 224 to be kept at ground potential while the anode has a high positive electrical potential. Furthermore, the cooling plate 224 cools the anode 208 and thermally isolates the magnet 204 from the heat of the anode 208.
It is desirable that as much working gas as possible travel through the ionization region 212. Gas molecules not passing through the ionization region 212 cannot be ionized and do not contribute to ion beam output. Therefore, gas molecules that are released from the ion source 200 into a process chamber without passing through the ionization region 212 represent a loss of efficiency and increase the process chamber pressure, which is often desired to be as low as possible. For maximum gas utilization, after the working gas emerges from the outlet 218 it should be prevented from leaking behind the gas distributor 216 and then behind and around the outside diameter of the anode 208 so that it is forced to pass through the ionization region 212. In the implementation shown in
A duct 314 allows a working gas to be fed through an outlet 318 and a gas distributor 316 to the ionization region 312 of the ion source 300. The gas distributor 316 is electrically isolated from the anode 308 by the insulator 320 and from the cooling plate 324 by the thermal transfer interface component 322.
An anode 308 is spaced apart from the pole piece 302 by one or more insulating spacers (not shown). In a typical configuration, the anode 308 is set to a positive electrical potential, and the pole piece 302, the base 306, the sidewall, the cathode 310 and the magnet are grounded, although alternative voltage relationships are contemplated.
A cooling plate 324 is positioned between the anode 308 and the magnet 304 to draw heat from the anode 308 and therefore thermally protect the magnet 304. The cooling plate 324 includes a coolant cavity 326 through which coolant (e.g., a liquid or gas) can flow. In the cooling plate 324 of
In one implementation, the cooling plate 324, the magnet 304, the base 306, and the duct 314 are combined in one subassembly (an exemplary “base subassembly”), and the pole piece 302, the anode 308, the insulator 320, the gas distributor 316, and the thermal transfer interface component 322 are combined in a second subassembly (an exemplary “anode subassembly”). During maintenance, the anode subassembly may be separated intact from the base subassembly without having to disassemble the cooling plate 324 and associated coolant lines.
Note that the cooling plate 412 is constructed to form a coolant cavity 414. As such, coolant (e.g., a liquid or gas) can flow through coolant lines 416 and the coolant cavity 414 to absorb heat from the anode 408.
Other components of the ion source include a magnet 418, a base 420, a sidewall 422, a pole piece 424, a cathode 426, a gas duct 428, a gas distributor 430, insulators 432, and insulating spacers 434. The anode 408 is set at a positive electrical potential (e.g., without limitation 75-300 volts), and the pole piece 424, magnet 418, cooling plate 412, base 420, and sidewall 422 are grounded. By virtue of the insulators 432 and the electrically insulating material on the thermal transfer interface component 402, the gas distributor 430 floats electrically. Also by virtue of the assembly, a contained gas distribution plenum 436 is produced behind the gas distributor 430 that is bounded entirely or in part by the cooling plate 412, the insulators 432, and the gas distributor 430. The arrangement is advantageous in that the gas paths 442 through the gas distributor 430 to the ionization region 440 are directed to the bottom opening 438 of the anode 408 and, thereby, improves overall gas utilization.
Note that the cooling plate 512 is constructed to form a coolant cavity 514. As such, coolant (e.g., a liquid or gas) can flow through coolant lines 516 and the coolant cavity 514 to absorb heat from the anode 508.
Other components of the ion source include a magnet 518, a base 520, a sidewall 522, a pole piece 524, a cathode 526, a gas duct 528, a gas distributor 530, insulators 532, and insulating spacers 534. The anode 508 is set at a positive electrical potential (e.g., without limitation 75-300 volts), and the pole piece 524, magnet 518, cooling plate 512, base 520, and sidewall 522 are grounded. By virtue of the insulators 532 and the electrically insulating material on the thermal transfer interface component 502, the gas distributor 530 floats electrically. Also by virtue of the assembly, a contained gas distribution plenum 536 is produced behind the gas distributor 530 that is bounded entirely or in part by the cooling plate 512, the insulators 532, and the gas distributor 530. The arrangement is advantageous in that the gas paths 542 through the gas distributor 530 to the ionization region 540 are directed to the bottom opening 538 of the anode 508 and, thereby, improves overall gas utilization.
Note that the cooling plate 612 is constructed to form the coolant cavity 614, which is sealed against the thermal control plate 604 using an O-ring 636 and one or more clamps 638. The clamps 638 are insulated to prevent an electrical short from the thermal control plate 604 to the cooling plate 612. As such, coolant can flow through coolant lines 616 and the coolant cavity 614 to absorb heat from the anode 608. Note, a seam 640 separates the plate 604 and the cooling plate 612, which together contribute to the dimensions of the coolant cavity 614 in the illustrated implementation. However, it should be understood that either the plate 604 or the cooling plate 612 could merely be a flat plate that helps form the cooling cavity 614 but contributes no additional volume to the coolant cavity 614.
Other components of the ion source include a magnet 618, a base 620, a sidewall 622, supports 623, a pole piece 624, a cathode 626, a gas duct 628, a gas distributor 630, insulators 632, and insulating spacers 634. The anode 608 and thermal control plate 604 are set at a positive electrical potential (e.g., without limitation 75-300 volts), and the pole piece 624, magnet 618, cooling plate 612, base 620, and sidewall 622 are grounded. A thermally conductive material (e.g., graphite foil or a thermally conductive elastomer sheet) may be positioned between the anode 608 and the thermal control plate 604 to enhance heat transfer to the coolant. The gas distributor 630 floats electrically. Also by virtue of the assembly, a contained gas distribution plenum 636 is produced behind the gas distributor 630 that is bounded entirely or in part by the thermal control plate 604, the insulators 632, and the gas distributor 630. The arrangement is advantageous in that the gas paths 642 through the gas distributor 630 to the ionization region 640 are directed to the bottom opening 638 of the anode 608 and, thereby, improves overall gas utilization.
Note that the cooling plate 702 forms a coolant cavity 714, such that coolant can flow through coolant lines 716 and the coolant cavity 714 to absorb heat from the anode 708. Other components of the ion source include a magnet 718, a base 720, a sidewall 722, a pole piece 724, a cathode 726, a gas duct 728, a gas distributor 730, insulators 732, and spacers 734.
Note that the cooling plate 812 is constructed to form the coolant cavity 814, which is sealed against the anode 808 using O-rings 836 and one or more clamps 838 which are insulated to prevent an electrical short from the thermal transfer interface component 802 to the cooling plate 812. As such, coolant can flow through coolant lines 816 and the coolant cavity 814 to absorb heat from the anode 808. Note: A seam 840 separates the anode 808 and the cooling plate 812, which together contribute to the dimensions of the coolant cavity 814 in the illustrated implementation. However, it should be understood that either the anode surface could merely be flat or the cooling plate 812 could merely be a flat plate, such that one component does not contribute additional volume to the coolant cavity 814 but still contribute to forming the cavity, nonetheless.
Other components of the ion source include a magnet 818, a base 820, a sidewall 822, a pole piece 824, a cathode 826, a gas duct 828, a gas distributor 830, insulators 832, supports 842, and insulating spacers 834. The anode 808 is set at a positive electrical potential (e.g., without limitation 75-300 volts), and the pole piece 824, magnet 818, cooling plate 812, base 820, and sidewall 822 are grounded. The gas distributor 830 floats electrically. Again, by virtue of the assembly, a contained gas distribution plenum 846 is produced behind the gas distributor 830 that is bounded entirely or in part by the cooling plate 812, the magnet 818, the insulators 832, and the gas distributor 830. The arrangement is advantageous in that the gas paths 850 through the gas distributor 830 to the ionization region 844 are directed to the bottom opening 848 of the anode 808 and, thereby, improves overall gas utilization.
Specifically, in the illustrated implementation, the ion source 900 includes a pole piece 903 and one or more subassembly attachments 902 (e.g., bolts) that insert into threaded holes 904 and hold an anode subassembly together with a base subassembly. In some implementations, the anode subassembly includes the anode and may also include the pole piece, the thermal transfer interface component, and the gas distributor, although other configurations are also contemplated. Likewise, in some implementations, the base subassembly includes the magnet and the cooling plate and may also include the base, coolant lines, and the gas duct, although other configurations are also contemplated. The sidewalls may be a component of either subassembly or an independent component that may be temporarily removed during disassembly.
In the illustrated implementation, one or more anode subassembly attachments 906 (e.g., bolts) hold the anode subassembly together by being screwed into the pole piece 903 through one or more insulators 908. The subassembly attachments 906 may be removed to disassemble the anode subassembly and to remove the thermal transfer interface component, thereby providing easy access for removal and insertion of the gas distributor.
In the illustrated implementation, another detaching operation 1206 unscrews one or more anode subassembly bolts that hold the thermal transfer interface component against the anode. A separation operation 1208 separates the thermal transfer interface component from the anode to provide access to the gas distributor. In alternative implementations, however, the gas distributor lies beneath the thermal transfer interface components along a central axis and is therefore exposed to access merely by the removal of the anode subassembly. As such, detaching operation 1206 and the separation operation 1208 may be omitted in some implementations. In a maintenance operation 1210, the gas distributor is removed from the anode subassembly, and the anode and insulators are disassembled for maintenance.
A combination operation 1308 combines the anode subassembly with the magnet subassembly. A magnet and a cooling plate reside in the base subassembly. An attaching operation 1310 screws one or more subassembly bolts to hold an anode subassembly together with a base subassembly. The subassembly bolts in one implementation extend from the pole piece through the anode into threaded hole in the cooling plate, although other configurations are contemplated.
Note that the cooling plate 1402 is constructed to form the coolant cavity 1414. As such, coolant can flow through coolant lines 1416 and the coolant cavity 1414 to absorb heat from the anode 1408. In an alternative implementation, the interior side of the cooling plate 1402 can be replaced with the outside surface of the anode 1408, in combination with an O-ring that seals the anode 1408 and the cooling plate 1402 to form the cooling cavity 1414 (similar to the structure in
Other components of the ion source include a magnet 1418, a base 1420, a sidewall 1422, a pole piece 1424, a cathode 1426, a gas duct 1428, a gas distributor 1430, insulators 1432, supports 1442, and insulating spacers 1434. The anode 1408 and the cooling plate 1402 are set at a positive electrical potential (e.g., without limitation 75-300 volts), and the pole piece 1424, magnet 1418, base 1420, and sidewall 1422 are grounded. The gas distributor 1430 is insulated and therefore floats electrically. By virtue of the assembly, a contained gas distribution plenum 1436 is produced behind the gas distributor 1430 that is bounded entirely or in part by the cooling plate 1412, the insulators 1432, and the gas distributor 1430 such that the input gas flowing through the gas paths 1442 in the gas distributor 1430 is injected into the center bottom opening 1438 of the anode 1408 to enter the ionization region 1440.
In the illustrated implementation, the cooling plate 1402 is in electrical contact with the anode 1408 and is therefore at the same electrical potential as the anode 1408. As such, the coolant lines 1416 are isolated from the positive electrical potential of the cooling plate 1402 by isolators 1440. In an alternative implementation, a thermally conductive thermal transfer interface component (not shown) may be placed between the cooling plate 1402 and the anode 1408 to facilitate heat transfer. If the thermal transfer interface component is an electrically conductive material (such as graphite foil or a thermally conductive elastomer sheet), the cooling plate 1402 will be at the same electrical potential as the anode 1408. Alternatively, if the thermal transfer interface component is an electrically insulating material (such as boron nitride, aluminum nitride, or a boron nitride/aluminum nitride composite material), the cooling plate 1402 is electrically insulated from the electrical potential on the anode 1408. As such, the cooling plate 1402 may be grounded and isolators 1440 are not required. In either case, whether the cooling plate 1402 and the anode 1402 are in direct physical contact or there exists a thermal transfer interface component between them (whether electrically conducting or insulating), they are still in thermally conductive contact because heat is conducted from the anode 1408 to the cooling plate 1402.
With respect to
In addition to these primary components, a series of thermal transfer sheets may be interposed between several of the components. As depicted in
As depicted in
The anode 1512 is generally a cylindrical toroid bounding a central hole 1572. An annular bottom face 1556 of the anode 1512 defines an annular recess 1558 of a diameter greater than the narrowest diameter of the central hole 1572 forming the toroid shape of the anode 1512. The diameter of the annular recess 1558 is also greater than the outer diameter of the gas distributor 1510 and deeper than the height of the gas distributor 1510. The annular recess 1558 in combination with the central hole 1572 thus provide an offset space between the anode 1512 and the gas distributor 1512 when the anode 1512 is attached to the thermal control plate 1508 as described below.
The anode 1512 is bolted to both the thermal control plate 1508 and the pole piece 1514 using a set of four inner bolts 1522. The pole piece 1514 defines a set of four threaded bores 1528 designed to receive threaded ends of the inner bolts 1522. The anode 1512 similarly defines a set of four bores 1564 (see also
The bores 1564 in the anode 1512 may be composed of two or more sections of varying diameters. In
Similarly, the bores 1528 in the pole piece 1514 may be composed of two or more sections of varying diameters. In
As noted, the diameters of the upper sections 1566 of the bores 1564 in the anode 1512 and the lower sections 1583 of the threaded bores 1528 in the pole piece 1514 may be slightly larger than the diameter of the insulation column 1526 adjacent to the interface between the pole piece 1514 and the anode 1512. This larger diameter may be used to provide a directionally shadowing shield that limits or prevents line-of-sight deposition of possibly conductive sputtered materials from depositing on the insulation columns 1526. The insulation columns 1526 may also be of a height greater than the combined depth of the upper section 1566 and the intermediate section 1565 of the bores 1564 in the anode 1512 and the intermediate section 1585 and the lower section 1583 of the bores 1528 in the pole piece 1514. In this manner, the insulation columns 1526 provide a separation distance between the anode 1512 and the pole piece 1514 to further insulate the anode 1512 from the pole piece 1514, which supports the cathode 1540.
The second thermal transfer sheet 1518 also defines a set of four apertures 1562 through which a respective one of the four inner bolts 1522 passes. The second thermal transfer sheet 1518 is sandwiched between a bottom face 1556 of the anode 1512 and the thermal control plate 1508. As noted, the anode 1512 is generally toroidal and thus the second thermal transfer sheet 1518 is shaped as a flat ring. The inner diameter of the ring of the second thermal transfer sheet 1518 is slightly larger than the outer diameter of the third thermal transfer sheet 1520 such that a separation distance is defined between the second thermal transfer sheet 1518 and the third thermal transfer sheet 1520 when the anode assembly 1550 is assembled.
The first thermal transfer sheet 1516 is generally disk-shaped and is placed on a bottom surface 1560 of the thermal control plate 1508. The first thermal transfer sheet 1516 defines a set of three apertures 1594 through which pass the bolts 1542 that attach the gas distributor 1510 to the thermal control plate 1508. The bolts 1542 attaching the gas distributor 1510 to the thermal control plate 1508 pass through apertures 1596 in the thermal control plate 1508. The apertures 1594 in the first thermal transfer sheet 1516 may be larger than the heads of the bolts 1542. The heads of the bolts 1542 are thus secured against the bottom surface 1560 of the thermal control plate 1508 through the apertures 1594 in the first thermal transfer sheet 1516.
The inner bolts 1522 also pass upward through apertures 1570 in the thermal control plate 1508. The first thermal transfer sheet 1516 also defines a set of four apertures 1563 through which a respective one of the four inner bolts 1522 passes. Washers 1530 may be provided adjacent to the heads of the inner bolts 1522. The heads of the inner bolts 1522 along with the washer 1530 interface with the first thermal transfer sheet 1516 against the bottom surface 1560 of the thermal control plate 1508. When the inner bolts 1522 are tightened within the pole piece 1514, the inner bolts 1522 thus hold the thermal control plate 1508 with the attached gas distributor 1510, the anode 1512, and the pole piece 1514, along with the intervening thermal transfer sheets 1516, 1518, 1520, together to form the anode assembly 1550.
The anode assembly 1550 is attached to the ion source base assembly 1552 by a set of four outer bolts 1524. The outer bolts 1524 extend through a set of four bores 1532 spaced equidistantly about the circumference of the pole piece 1514. The bores 1532 are formed with counterbores in an upper section 1589 (see
A set of four apertures 1538 are defined within the cooling plate 1506 and spaced equidistantly about the circumference of the cooling plate 1506. Each of the apertures 1538 is formed with a frustum-shaped countersink 1533 adjacent to the top surface of the cooling plate 1506 to aid in the guidance of the outer bolts 1524 through the apertures 1538. The anchor plate 1505 positioned underneath the cooling plate 1506 also defines a corresponding set of four threaded apertures 1545, each positioned in register with a respective aperture 1538 in the cooling plate 1506. Each outer bolt 1524 passes through a respective one of the apertures 1538 and is secured within a respective one of the threaded apertures 1545 within the anchor plate 1505, thus securing the anode assembly 1550 to the ion source base assembly 1552.
The cooling plate 1506 also defines a set of four apertures 1536 spaced equidistantly about the cooling plate 1506 adjacent to and at a slightly smaller radius than the threaded apertures 1538. The apertures 1536 are formed to accept the heads of the inner bolts 1522 on the bottom surface 1560 of the thermal control plate 1508. The apertures also define larger diameter counterbores 1551 opening to a top face 1576 of the cooling plate 1508. The counterbores 1551 in the apertures 1536 are provided to accept the diameter of the washers 1530 on the inner bolts 1522.
The cooling plate 1506 further defines a set of three cavities 1546 aligned with and sized to accept the heads of the gas distributor bolts 1542 interfacing with the bottom surface 1560 of the thermal control plate 1508. A vent hole 1578 may extend through the cooling plate 1506 from the bottom of each of the cavities 1546 to allow for gas evacuation when the ion source 1500 is placed under vacuum during operation. The apertures 1536 accepting the heads of the inner bolts 1522 and the cavities accepting the heads of the gas distributor bolts 1542 allow the thermal control plate 1508 and the first thermal transfer sheet 1516 to seat flush against the top surface 1576 of the cooling plate 1506 to provide maximum surface area contact for heat transfer between the cooling plate 1506 and the thermal control plate 1508.
Once the cathode 1540, either a filament cathode as depicted in
The cooling plate 1506 is depicted in greater detail in
The cooling plate 1506 further defines several additional apertures or cavities serving various functions. These include a set of three apertures 1592 positioned equidistantly about the perimeter of the cooling plate 1506 for accepting a corresponding set of standoff posts 1541 that support the anchor plate 1505 and the cooling plate 1506 above the base 1502 (see
The cooling plate 1506 further defines a cylindrical recess 1586 centered on the bottom side of the cooling plate 1506 that provides clearance for the magnet 1504. The depth of the recess 1586 is such that there is a small, controlled, axial clearance to prevent the cooling plate 1506 from bearing on the magnet. Thus, all support of the cooling plate 1506, and ultimately of the anode assembly 1550, is on the standoffs 1541. The cavities 1546 and corresponding vent holes 1578 are positioned at a distance radially from the center of the cooling plate 1506 beyond the diameter of the cylindrical recess 1586.
A gas port 1582 is also formed through the cooling plate 1506. The gas port 1582 is similarly positioned at a distance radially from the center of the cooling plate 1506 beyond the diameter of the cylindrical recess 1586. The gas port 1582 is also positioned between two of the cavities 1546. A gas duct 1534 that feeds a gas to the ion source 1500 for ionization interfaces with the gas port 1582. As shown in
A gas channel 1584 may further be formed in the top surface 1576 of the cooling plate 1506. The gas channel 1584 connects at a first end with the gas port 1582 and extends radially to the center of the cooling plate 1506.
The disk-shaped, first thermal transfer sheet 1516 is shown in additional detail in
The thermal control plate 1508 is shown in additional detail in
As previously noted, the thermal control plate 1508 defines several sets of apertures, namely the set of four apertures 1570 through which the inner bolts 1522 extend and the set of three apertures 1596 through which the gas distributor bolts 1542 extend. A third electrode aperture 1595 is further defined in the thermal control plate 1508 adjacent to the outer edge of the thermal control plate 1508 through which the downward extending electrode 1529 from the anode 1512 extends to interface with an anode power connector 1531 mounted on the base 1502.
A second gas duct 1598 is also defined in the center of the thermal control plate 1508 and is aligned with the first gas duct 1599 from the first thermal transfer sheet 1516. An annular groove or recess 1523 is defined in the top surface 1521 of the thermal control plate 1508 surrounding the second gas duct 1598 and centered on the thermal control plate 1508. The outer diameter of the annular recess 1523 may be slightly larger than the diameter of the gas distributor 1510 and the inner diameter of the annular recess 1523 may be slightly smaller than the diameter of the gas distributor 1510. In an alternative embodiment, the thermal control plate 1508 may not have an annular recess at all,
A set of six radial channels 1525 extend outward equiangularly from the second gas duct 1598 to intersect with the annular recess 1523, although a greater or lesser number of channels could be used. The radial channels 1525 may be the same depth as the annular recess 1523 and the exit plane of the second gas duct 1598 may be at the same level as the radial channels 1525 which intersect it. Together the radial channels 1525 and the annular recess 1523 demarcate six wedge-shaped islands 1527 of the same height as the top surface 1521 of the thermal control plate 1508. The set of three apertures 1596 extend through three of the islands 1527 separated from each other by one of the other three islands 1527 with solid surfaces. In an alternate embodiment the three apertures 1596 may be threaded to fasten the gas distributor bolts 1542 therein. In this configuration, gas exiting the second gas duct 1598 spreads out radially along the radial channels 1525 underneath the gas distributor 1510 to the annular recess 1523 where the gas ultimately flows out from under the perimeter of the gas distributor 1510.
Other arrangements for input gas conductance may be produced within the thermal control plate 1508. For example, the gas duct 1598 may communicate with a disk-shaped recess (not illustrated) within the thermal control plate 1508, rather than the gas channels and the annular recess, which would allow the gas to flow around the edge of or through holes within the gas distributor of the ion source when fully assembled. By this means, a gas distribution plenum (similar to the gas plenum 1436 in
The third thermal transfer sheet 1520 is shown in greater detail in
The gas distributor 1510 is shown in greater detail in
The top circumferential edge 1547 of the gas distributor 1510 may be rounded or beveled as shown. As noted above, three bolt holes 1548 are defined within the gas distributor 1510 and are spaced equidistantly apart about and adjacent to the circumference of the gas distributor 1510. There may be greater or fewer bolt holes as desired to secure the gas distributor 1510 to the thermal control plate 1508. A counterbore 1549 of larger diameter than the bolt holes 1548 is formed about each of the bolt holes 1548 to create a cylindrical recess sized to accept a nut 1544 that secures the gas distributor bolt 1542 to the gas distributor 1510. The depth of the counterbore 1549 is sufficiently deep to accommodate the thickness of the nut 1544 such that the nut 1544 does not extend above the top surface of the gas distributor 1510.
The diameter of the gas distributor 1510 and placement of the bolt holes 1548 and related counterbores 1549 about the perimeter may be chosen with respect to the annular recess 1558 of the anode 1512. The diameter of the gas distributor 1510 may be such that bolt holes 1548 and related counterbores 1549 are shadow-shielded by the annular recess 1558 of the anode 1512. By locating the bolt holes 1548 and counterbores 1549 under the recess 1558 of the anode 1512, the bolts may be protected from coating, sputter deposition, erosion, and contamination that may cause arcing of the plasma, degradation of the mechanical attachment of the gas distributor 1510 to the thermal control plate 1508, or other problems.
Alternatively, the depth of the counterbore 1549 may be sufficiently deep to accommodate the thickness of the head of a gas distributor bolt 1542 in an embodiment in which the gas distributor bolts 1542 are screwed into threaded apertures within the thermal control plate or fastened to nuts on the bottom side of the thermal control plate. In a further alternate implementation, the bolt holes 1548 may be threaded and the gas distributor bolts 1542 could be fastened directly to the gas distributor 1510. In such a design, the bolt holes 1548 may be blind tapped holes or tapped through-holes and no counterbore 1549 in the top surface is required.
In some implementations it may be advantageous split the gas distributor 1510′ into a system of split components comprising a consumable component and a fastening component as shown in
The central plate component 1510a′ may be formed as a circular disk of varied diameter between a top face and a bottom face. A top portion 1591a of the central plate component 1510a′ with a first thickness may have a smaller diameter than a bottom portion 1591b of a second thickness, thereby forming a first circumferential ledge 1547′ about a circumference of the central plate component 1510a′.
The clamping ring 1510b′ may be formed as an annular ring with a larger outer diameter than the diameter of the bottom portion 1591b of the central plate component 1510a′. The inner diameter of the clamping ring 1510b′ may be stepped from a smaller diameter at the top to a larger diameter at the bottom to form a second circumferential ledge 1549′. The smaller inner diameter of the clamping ring 1510b′ may be sized to accept the diameter of the top portion 1591a of the central plate component 1510a′ and the larger inner diameter of the clamping ring 1510b′ may be sized to accept the diameter of the bottom portion 1591b of the central plate component 1510a′. Thus, the first circumferential ledge 1547′ of the central plate component 1510a′ mates with the second circumferential ledge 1549′ of the clamping ring 1510b′ along a circumferential interface.
The circumferential clamping ring 1510b′ may define mounting apertures with counter bores for recessing nuts on fastening bolts and circumferential edge features similar to those discussed above with respect to the gas distributor of
The circumferential interface between the central plate component 1510a′ and the clamping ring 1510b′ may have either beveled or overlapping features and close tolerances. These features and tolerances may help manage any mechanical interference and related radial material stresses that may arise from thermal cycling of the gas distributor 1510′ components when used in the ion source assembly. The mechanical interface features may be designed to maintain clamping forces or to translate forces from any radial, mechanical interference due to thermal expansion of the parts to a downward axial force. The axial force helps to maintain good thermal contact between the central plate component 1510a′ and the outer clamping ring 1510b′ and any underlying thermal transfer sheet or thermal control plate. Such mechanical clamping features at the interface boundary help maintain a clamping force when the central plate component 1510a′ and the outer clamping ring 1510b′ are fabricated from dissimilar materials that may have different thermal expansion properties.
Such a gas distributor assembly 1510′ or system may also offer design flexibility depending upon the expense and properties of the central plate component 1510a′ being used. Cost savings may be realized by making the separable circumferential clamping ring 1510b′ a re-usable component. The circumferential clamping ring 1510b′ may be fabricated from less expensive materials, e.g., non-magnetic stainless steel, than the consumable central plate component 1510a′, which may be fabricated from relatively more expensive material, e.g. tantalum, titanium, tungsten, pyrolytic graphite, and un-common sintered ceramics.
The second thermal transfer sheet 1518 is shown in greater detail in
The surface of an intermediate section 1573 of the interior wall 1575 may be cylindrical with a diameter equal to the narrower diameter of the bottom of the frustum-shaped top section 1571. The diameter of the intermediate section 1573 may be slightly smaller than or equal to the diameter of a circle inscribed within the interior edges of cylindrical recesses 1549 in the gas distributor 1510.
The surface of a bottom section 1559 of the interior wall 1575 may be a radius or bevel that extends outward and downward from the cylindrical intermediate section 1573 to a larger diameter than the diameter of the gas distributor 1510 to form the annular recess 1558 described previously. The depth 1557 of the bottom section 1559 is greater than the thickness of the gas distributor 1510 such that there is a separation distance 1555 (see
The bottom surface 1556 of the anode 1512 is slightly recessed to form an annular disk bounded by a lip 1579 at the outer circumference of the anode 1512. The circumference of the bottom surface 1556 is generally equivalent to the circumference of the thermal control plate 1508 such that the lip 1579 of the anode 1512 extends downward adjacent to the outer wall of the thermal control plate 1508. The bottom surface 1556 of the anode 1512 thus interfaces with the top surface 1521 of the thermal control plate 1508 and the lip 1579 engages the outer wall of the thermal control plate 1508 to align the anode 1512 and the thermal control plate 1508 and prevent lateral movement therebetween.
As shown in
The lower sections 1561 of the bores 1564 are also larger in diameter than the inner bolts 1522, but the inner bolts 1522 fit snugly within the shaft of the insulation columns 1526. In this manner, the inner bolts 1522 are centered within the bores 1564 and are spaced apart from, and thus insulated from, the inner walls of the bores 1564 through the anode 1512. The inner bolts 1522 are insulated and separated from the bores 1564 in the anode 1512 in order to prevent a short between the anode 1512 and the opposing charge and polarity of the pole piece 1514 supporting the cathode 1540 to which the bolts 1522 are attached. The concentric intermediate and upper bore sections 1565, 1566 form a stepped inner annular space 1553 with a large length to separation distance aspect ratio between the outside surface of the insulation column 1526 and the upper bore section 1566 of the anode 1512. This high aspect ratio annular space 1553 serves as a shadow shield to prevent conductive coating along the length of the insulation column 1526 which may occur during normal operation and which could thereby result in an electrical conduction path between the anode 1512 and the pole piece 1514, which are at different electrical potentials.
The anode 1512 further defines an electrode receptacle 1567 open to the bottom surface 1556 of the anode 1512 and adjacent to the outer circumference of the anode 1512 and positioned between two of the bore holes 1564. The electrode receptacle 1567 is shown to good advantage in
The top surface 1574 of the pole piece extends beyond the cylindrical exterior wall 1511 of the pole piece 1514 to form a lip 1517. The lip 1517 overhangs a sidewall (not shown in the figures) of the ion source 1500 that covers the components of the anode section 1550 and the base section 1552. The outer diameter of the pole piece 1514 measured at the exterior wall 1511 is slightly larger in diameter than the cooling plate 1506 and the anchor plate 1505.
As shown in
The concentric intermediate and lower bore sections 1585, 1583 form a stepped inner annular space 1568 with a large length to separation distance aspect ratio between the outside surface of the insulation column 1526 and the lower section 1583 of the bore 1528 in the pole piece 1514. This high aspect ratio annular space 1568 serves as a shadow shield to prevent conductive coating along the length of the insulation column 1526 which may occur during normal operation and which could thereby result in an electrical conduction path between the anode 1512 and the pole piece 1514, which are at different electrical potentials.
The pole piece 1514 also defines a second set of bores 1532 spaced equidistantly about the circumference of the pole piece 1514. Each of the bores 1532 may be radially aligned with a respective one of the threaded bores 1528 as depicted in
The pole piece 1514 further defines a pair of post apertures 1513 that engage the cathode posts 1539 that support the cathode element 1540. The post apertures 1513 may be positioned symmetrically opposite each other on the pole piece 1514 and spaced apart from each other at a diameter greater than the outer diameter of the anode 1512. The post apertures 1513 may be spaced equidistantly between adjacent bores 1532 as depicted in
The pole piece 1514 may additionally define a pair of mounting holes 1519 for attaching a hollow cathode electron source (not shown) to the ion source 1500 in place of the cathode element 1540. As shown in
The anode assembly 1650 of the low power ion source 1600 is composed primarily of a thermal control plate 1608, a gas distributor 1610, an anode 1612, and a pole piece 1614. The anode assembly 1650 is supported by the thermal partition plate 1606, which is considered part of the base assembly 1652 of the ion source 1600. The thermal control plate 1608 further supports the gas distributor 1610 and the anode 1612. The pole piece 1614 is mounted above and separated from the anode 1612 to ensure electrical isolation between the anode 1612 and the pole piece 1614.
Rather than actively cooling the anode, the thermal partition plate 1606 acts as a thermal barrier to reduce the heat transfer from the anode 1612 to the magnet 1604. The thermal partition plate 1606 thereby acts to safely limit the temperature of the magnet 1604 in this lower power version of the ion source 1600 without the added cost and complexity associated with the cooling plate and thermal transfer sheets used in the higher power, actively cooled ion source 1500 of
The thermal control plate 1608, the gas distributor 1610, the anode 1612, and the pole piece 1614 of the low power ion source 1600 are of identical design to the corresponding components of the high power ion source 1500 of
Note that one function of the thermal control plate 1608 is to provide electrical isolation between the high positive potential of the anode 1612 and the thermal partition plate 1606, which is at ground potential. Another purpose of the thermal control plate 1608 is to prevent working gas from leaking between the anode 1612 and thermal control plate 1608. The thermal control plate 1608 also insures that working gas injected through the gas duct 1634 does not pass behind and around the outside of anode 1612 by completely filling the gap between the anode 1612 and the thermal partition plate 1606. These functions are similar to the functions of the analogous component, i.e., the thermal control plate 1508 in the ion source 1500 in
The thermal partition plate 1606 may be made of non-magnetic material such as stainless steel or copper and further defines a cylindrical recess 1686 centered on the bottom side of the thermal cooling plate 1606. Further, the lengths of the magnet 1604 and the standoffs 1641 are such that, when assembled, a small cavity 1688 is formed between the end of the magnet 1604 and the recess 1686. The cavity 1688 is at the top end of the magnet 1604 rather than the bottom because the base 1602 is formed of magnetic material and the magnet 1604 is therefore attracted to and remains in direct contact with the base 1602. The cylindrical recess 1686 and cavity 1688 formed thereby acts to further limit heat transfer from the thermal partition plate 1606 to the magnet 1604. (Note that this is also true in the high power ion source 1500.)
The design of the thermal partition plate 1606 and its use without mechanically compliant thermal transfer sheets as described above is only one embodiment of thermal partition configurations envisioned for the low power source 1600. Other embodiments may include, but are not limited to, the use of surface texture and/or machined patterns on the mating surfaces of the thermal partition plate 1606, the thermal control plate 1608, and/or the anode 1612 to further limit, rather than enhance, thermal conduction between these components by decreasing the surface area available for thermal conduction.
Additional embodiments may include, but are not limited to, the use of two or more multiple, stacked sheets or layers 1608′a, 1608′b of electrically insulating material to produce a thermal control plate 1608′ as a composite assembly as shown in the anode assembly 1650′ of
This alternative composite construction of the thermal control plate 1608′ works well in the low power version of the ion source (i.e., without fluid cooling). In the low power ion source, the composite assembly of the thermal control plate 1608′ can provide the necessary structure for directing gas around or through any type of electrically floating gas distributor 1610′ (e.g., through gas path apertures 1611′ in the gas distributor 1610′) so as to direct the input gas to the anode 1612′, yet limit the conductive or radiant thermal transfer of energy from the anode 1612′ and the gas distributor 1610′ to the thermal partition plate.
In another embodiment, radiation barriers may be used either independently of, together with, or integral with the thermal transfer sheets described above. Such radiation barriers may be used to limit radiation heat transfer from the anode 1612 and magnet 1604 through the various intervening components including the thermal control plate 1608, the gas distributor 1610, and the thermal partition plate 1606. Such radiation barriers may include, but are not limited to, standard radiation thermal partition techniques such as thin textured metal foil radiation shields and/or high reflectivity, low emissivity surfaces on any of the surfaces of the intervening parts.
A specific example of such a radiation shield may be in the form of a thin, reflective metal foil sheet of the size and shape of any of the thermal transfer sheets shown in any of
As depicted in
The inner bolts 1622 also pass upward through apertures 1670 in the thermal control plate 1608. The heads of the inner bolts 1622 interface with the bottom surface 1660 of the thermal control plate 1608. When the inner bolts 1622 are tightened within the pole piece 1614, the inner bolts 1622 thus hold the thermal control plate 1608 with the attached gas distributor 1610, the anode 1612, and the pole piece 1614 together to form the anode assembly 1650. The thermal control plate 1608, while thermally conductive, is also electrically insulating, thus, in conjunction with the insulating columns, insulating the anode 1612 from the pole piece 1614 that would otherwise be electrically coupled by the inner bolts 1622 connecting of all the anode assembly 1650 components. An exemplary thermal control plate 1608 may be a ceramic composed primarily of boron nitride.
The anode assembly 1650 is attached to the ion source base assembly 1652 by a set of four outer bolts 1624. The outer bolts 1624 extend through a set of four bores 1632 spaced equidistantly about the circumference of the pole piece 1614. The outer bolts 1624 extend downward adjacent to, but spaced apart from, the outer wall of the anode 1612.
A set of four apertures 1638 are defined within the thermal partition plate 1606 and spaced equidistantly about the circumference of the thermal partition plate 1606. Each of the apertures 1638 is formed with a frustum-shaped countersink 1633 adjacent to the top surface of the thermal partition plate 1606 to aid in the guidance of the outer bolts 1624 through the apertures 1638. The lower portion 1645 of each of the apertures 1638 is threaded. Each outer bolt 1624 is secured within a respective one of the threaded apertures 1645 within the thermal partition plate 1606, thus securing the anode assembly 1650 to the base assembly 1652.
Although various embodiments of this invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, front, back, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references (e.g., attached, interfaced, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.
The present application claims the benefit of priority pursuant to U.S.C. § 119(e) of U.S. provisional application No. 60/759,089 filed 13 Jan. 2006 entitled “Ion Source with Removable Anode Section,” which is hereby incorporated by reference herein in its entirety. The present application is a continuation-in-part of U.S. patent application Ser. No. 11/061,254 filed 18 Feb. 2005 entitled “Fluid-cooled Ion Source,” which is hereby incorporated by reference herein in its entirety. The present application is also related to U.S. provisional application No. 60/547,270 filed 23 Feb. 2004 entitled “Water-cooled Ion Source” and Patent Cooperation Treaty application no. PCT/US2005/005537 filed 22 Feb. 2005 entitled “Fluid-cooled Ion Source,” each of which is hereby incorporated herein by reference in its entirety. The present application is further related to U.S. patent application Ser. No. ______ entitled “Ion source with removable anode assembly,” U.S. patent application Ser. No. ______ entitled “Gas distributor for ion source,” and U.S. patent application Ser. No. ______ entitled “Thermal transfer sheet for ion source,” each of which is filed contemporaneously herewith and is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60759089 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11061254 | Feb 2005 | US |
Child | 11622966 | Jan 2007 | US |