The present invention relates generally to a machining apparatus and more particularly to a thermal mechanical apparatus for machining composite materials.
“Skiving” is a term used to describe a machining process in which small portions of material are removed from a part. A skive is the apparatus used to remove portions of the part. Laser skives or mechanical skives are currently used on products in industries including semiconductor, aerospace, and photographic and optical equipment.
Laser skives have been used to remove composite layer(s) when the composite utilizes an organic fiber (i.e., a fiber containing carbon, hydrogen, nitrogen, and/or oxygen compounds) such as graphite or an organic polymer matrix such as epoxy. Laser skiving relies on the thermal decomposition of the organic constituents of the composite in the presence of oxygen (oxidation) or the exclusion of oxygen (pyrolysis). However, laser skiving becomes ineffective for material removal when the composite being machined utilizes an inorganic fiber or filler such as fiberglass, metal or silica, or has organic constituents which thermally convert to inorganic constituents (e.g., silicone). Additionally, laser skives are not easily controllable to remove composite layers having non-uniform thickness or surface irregularities.
Mechanical skiving also has drawbacks which include the fact that it may be difficult to dimensionally control the machined cavity produced. For example, when the surface of the composite layer being exposed by machining is thin and/or is located in a position difficult to reference by traditional machining techniques, the ability to machine to the surface of the layer can result in damage to the layer or failure to adequately expose the layer. Inaccurate machining can impair desired properties of the composite such as the ability of the constituents of the composite to transfer and/or convert electrical energy into heat energy.
An apparatus for thermal mechanical machining of composite materials includes a head, a drive, and a shaft. The head has an abrasive face. The drive is coupled to the apparatus to move the head to produce abrasion of the composite material by the abrasive face. The shaft includes a passageway that communicates a heated gas to an interface between the abrasive face and the composite material.
In another aspect, a method of machining a composite material includes positioning a thermal mechanical skive with a gas conduit and a head having an abrasive face adjacent a composite material, moving the abrasive face against the composite material, and heating a gas to a temperature sufficient to either vaporize or carbonize organic constituent(s) of the composite material, and delivering the gas through a passageway in the thermal mechanical skive to an interface between the abrasive face and the composite material.
The inlet strut 16 extends radially inward from the annular outer case 14 to the annular inner case 16. The exit port 20 extends through the outer case 12 is complementary to and receives the electrical conduit 24 when the shroud fairing 18 is assembled on the inlet strut 16.
The shroud fairing 18 includes the U-shaped folded heater mat 22, which surrounds and wraps the leading edge portion of the inlet strut 16. When assembled, the electrical conduit 24 interconnects with electrical pads or contacts imbedded in the heater mat 34 through the shell 26 and is electrically connected to supply an electrical charge to heating elements 28. The shell 26 interfaces with and is integral with the heater mat 22. In one embodiment, the shell 26 is a polymer matrix composite.
A manufacturing process bonds and integrates the shell 26 and the heater mat 34. In one embodiment, this process is accomplished by resin transfer molding. Alternatively, the shell 26 can be joined to the heater mat 22 as an insert by another type of molding such as compression molding. The electrical conduit 24 can be joined to the heater mat 22 by, for example, welding, soldering, mechanical contact or electrically conducting adhesives.
The heater mat 22 may be constructed from any electrically isolating suitable composite material or composite polymer matrix. The metallic heating elements 28 are disposed on a surface of mat 22 extend along the radial length of the heating mat 22 and may be sputtered, or flame sprayed when the mat is a woven product; insert molded, or adhesively bonded to the heating mat 22 when the mat is a solid product. The heater mat 22 may have additional electrically isolating layers. In
When the shroud fairing 18 is assembled to inlet strut 16, a leading portion of the shell 26 abuts the inlet strut 16. The sides of the heater mat 22 and shell 26 extend rearward around a portion of each inlet strut 16 and may be secured thereto by fasteners or adhesive. The exit port 20 in the outer case 12 receives the electrical conduit 24 to supply power to the heating elements 28. The heating elements 28 are electrically resistive to convert electrical energy into heat energy and provide the heat along the entire length of the outer shell 26 thereby anti-icing (preventing the formation of ice on the exterior surface of the outer shell 26 and in any space between the heater mat 22 and the inlet strut 16) or de-icing (allowing the formation of ice followed by controlled release of the ice on the exterior surface of the shell 26 and in any space between the heater mat 22 and the inlet strut 16).
In
Like the heating elements 28, the electrical contacts 34 are comprised of a electrically conductive metallic material such as titanium, stainless steel, nickel alloys, copper alloys or copper. If the electrical contacts 34 are embedded within the shell 26 or are covered by additional fabric layer(s) 32 of the heater mat 22, the electrical contacts 34 must be exposed by, for example, removing the fabric layer(s) 32 or layer(s) of the shell 26 thereabove to allow for an effective electrical connection to be made between the electrical contacts 34 and the electrical conduit 24 (
The fabric layer 32 on which the heating elements 28 are disposed acts as a backing material to support the heating elements 28 extending along it. In one embodiment, the fabric layer 32 contains a densely woven organic electrically insulating (i.e., a material containing carbon, hydrogen, nitrogen, and/or oxygen compounds) and/or inorganic material such as fiberglass or a polymer film. Examples of suitable densely woven materials that may be used include a fiberglass fabric, such as Style 106, which is made commercially available by Clark Schwebel Tech-Fab Company of Anderson, S.C., and a polymer film, such as Kapton, which is made commercially available by DuPont High Performance Materials of Circleville, Ohio. In other embodiments, the fabric layer 32 contains a densely woven organic and/or inorganic material that is itself electrically insulating and is geometrically configured to electrically insulate an electrically conductive component, such as one formed of a carbon composite or a metal alloy, from the metallic heating elements 28, while at the same time, thermally conduct heat generated by heating elements 28. In situations where the fabric layer 32 also electrically insulates the heating elements 28, it is desirable for the fabric material forming the fabric layer 32 to be woven tightly enough to be electrically insulating. Electrically insulating materials that may be used to form the fabric layer 32 include fiberglass, Nextel or another suitable ceramic fiber fabric. The densely woven material of the fabric layer 32 can also be impregnated with a high-temperature resin (not shown). Examples of suitable high-temperature resins include, but are not limited to, bismaleimide, phthalonitrile, cyanate ester, polyimide adhesive, and polyimide resin. Specific examples of various embodiments of resins, the heating element 28 and the fabric layer 32, including their constituents, arrangements, volumetric ratios, and properties are disclosed in United States Patent Application Publication Number 2007/0187381 A1, which is incorporated herein by reference. In yet other embodiments, the composite can contain an organic and/or inorganic filler or fiber orientated in a random or organized pattern.
As previously indicated, in one embodiment of the heater mat 22 the heating elements 28 and electrical contacts 34 are disposed on a single fabric layer 32. In other cases, if only a single fabric layer 32 was utilized in heater mat 22 the heating elements 28 and electrical contacts 34 were used in the shroud fairing 18, subsequent steps in the manufacturing process (including the embedding within shell 26 or bonding of the heater mat 22 to other components of the turbine engine) may cover portions of the heating elements 28 and electrical contacts 34 with material(s) such as the high-temperature resin discussed previously. These materials imbed the heating elements 28 and electrical contacts 34 and do not allow for a good electrical connection to occur upon assembly. In either case, the inventive apparatus and method described herein can be used to remove the material covering the electrical contacts 34 to allow for an effective electrical connection to be made.
The conduit extends through and is bonded to the generally circular head 42. The conduit 40 directs the flow of the gas G or gas mixture to the exterior surface of the head 42 which interfaces a composite surface during the machining operation of the skive 38. In this embodiment, the gas G is heated to the desired temperature prior to entering the conduit 40. The conduit 40 includes the rigid inelastic shaft 52 which has the gas flow passageway 54 extending through therethrough from a side port (not shown). This configuration allows the shaft 52 to be clamped or otherwise affixed to the drive 39 such as a mechanical drill press or piezoelectric actuator. The shaft 52 transfers drive movement generated by the drive 39 to the head 42.
More specifically, the conduit 40 extends through the axis of symmetry of the head 42. The head 42 has an abrasive face adapted to interface with a composite material work piece. In one embodiment, the abrasive face is comprised of a hard material, for example: silica, silicon carbide or diamond. The type of material selected for the abrasive face of the head 42 is determined by a combination of criteria including the strength of the composite being machined, the desired tool life, and the desired composite surface tolerance or finish. The head 42 can be a backer for the abrasive face or can be constructed from the same material as the abrasive face. Alternatively, the conduit 40 can extend around the edge of the head 42 rather than through it along the axis of symmetry. In addition to bonding, the conduit 40 can be joined to the head 42 by, for example, welding, brazing, soldering, mechanical crimping/stapling or adhesives. The shaft 52 portion of the conduit 40 can be comprised of a metallic such as steel, or another suitable composite, polymeric, or ceramic material. The rigid shaft 52 configuration allows the conduit 40 to be clamped or otherwise affixed to the drive 39. The shaft 52 transfers drive movements generated by the drive 39 to the head 42. Alternatively, a flexible conduit may be utilized rather than a rigid shaft if the drive 39 is clamped or otherwise affixed directly to the head 42 rather than the shaft.
The conduit 40 directs the flow of a gas G to the abrasive surface of the head 42. Thus, the gas G flow is delivered to the interface between the abrasive surface of the head 42 and the composite material being machined. The quantity of gas G flow should be sufficient to remove machined particles that result from the drive movement of the head 42 against the composite. The gas G may include any gas or mixture of gases. In one embodiment, the gas G contains a suitable quantity of oxygen to support oxidation adjacent the exterior surface of the head 42. In another embodiment, the gas G or mixture of gases, contains a sufficient quantity of an inert gas to support pyrolysis adjacent the exterior surface of the head 42.
The gas G can be heated to a desired temperature prior to entering the conduit 40. The desired temperature will vary depending upon the composition of the composite being machined by the skive apparatus 38. For applications in which the composite being machined contains both organic and inorganic constituents it may be desirable to convert the organic constituents to behave like a brittle inorganic. The brittle converted constituents can then be broken up and removed by the mechanical action of the skive apparatus 38. For example, a gas G temperature upwards of about 316° C. (about 600° F.) in the presence of oxygen can be used if it is desirable to carbonize the organic constituent(s) of the composite being thermally and mechanically machined by the skive apparatus 38. In other applications, it may be desirable to thermally convert the organic constituents of the composite to gas(es) rather than mechanically removing them. For example, a gas G temperature of around 650° C. (around 1200° F.) can be used in the presence of oxygen to vaporize (chemically convert to carbon dioxide, carbon monoxide, nitrogen dioxide, nitrogen monoxide and water) any organic constituent(s) of the composite. A gas G temperature of around 540° C. (around 1000° F.) can be used in the absence of oxygen (for example by using an inert gas such as argon to blanket the composite surface being machined) to pyrolize any organic constituent(s) of the composite. The dual thermal and mechanical features of the skive apparatus 38 allow it to effectively remove both the organic and inorganic constituents of composites whether through thermal degradation, mechanical action or both.
The conduit 40 extends through the head 42. This allows gas flow from the flow passageway 54 to communicate with the abrasive face 58 of the head 42. This abrasive face 58 interfaces with the composite material being machined by the skive apparatus 38. The upward and downward drive movement of the head 42 discussed subsequently allows the gas G flow from the flow passageway 54 to transport the machined particles that result from the drive movement of the head 42 against the composite material generally outward to the edge 60 of the head 42.
The drive movement is generated by drive 39 which is secured to the shaft 52 or another portion of the skive 38 such as the head 42. The drive 39 may vary depending upon the application and the composite being machined and can include, for example, a mechanical apparatus for generating motion such as a drill press, a piezoelectric excited apparatus, a pneumatic or hydraulic actuated apparatus or a manually actuated apparatus such as an operator's hand. In
The drive movement of the head 42 against the shroud fairing 18 (along with some downward force pressing the head 42 against the shroud fairing 18) breaks up the shell 26 and the additional fabric layer(s) 32 of the heater mat 22 into particles P after thermal removal or conversion of the organic constituents. In
As the head 42 reaches the electrical contact 34, gas G flow heats the organic material 62 in the pockets and converts the organic material 62 so that it behaves like a brittle inorganic. This brittle converted material can then be broken up by the drive movement of the head 42 and removed by the gas G flow. One example of this conversion is combustion which was discussed earlier. Another example of conversion is pyrolization, which converts the organic material 62 in the pockets to gas(es). When vaporization occurs the organic material 62 does not have to be mechanically removed by the head 42.
As a result of removal of the organic material 62 and/or inorganic material by the skive apparatus 38 a more uniformly fabricated composite layering results. This more uniform layering allows a more effective electrical connection to be created between the electrical contact 34 and the electrical conduit 24 (
In
The conduit 40 extends through and is bonded to the generally circular head 42. The cylindrical guide pin 44 extends beyond the head 42 and conduit 40. The heater element 46 (in one embodiment an electrical unit) extends around the conduit 40 and abuts an upper portion of the head 42. The insulation 48 surrounds an exterior surface of the heater element 46 and abuts an upper portion of the head 42. The heater element 46 and the insulation 48 extend axially along the length of the conduit 40 to interconnect with an upper low friction pad 50. The gas flow passageway 54 extends through the length of the shaft 52 to transport gas therethrough. In one embodiment, the flow passageway 54 communicates with the channels 56 which extend into the abrasive surface of the head 42 and the bottom of the shaft 52. The channels 56 extend generally radially outward to the edge of the head 42.
As illustrated in
The conduit 40 extends through the head 42. The channels 56 extend into the abrasive face 58 of the head 42 and the shaft 52. This configuration allows the channels 56 to be in fluid communication with the flow passageway 54. In this arrangement, the channels 56 can transport the gas flow from the flow passageway 54 outward along the abrasive face 58 of to the edge 60 of the head 42. The abrasive face 58 interfaces the composite material being machined by the skive apparatus 38. The gas G flow in the channels 56 transports machined particles that result from the drive movement of the abrasive face 58 against the composite material generally outward to the edge 60 of the head 42. The channels 56 may have different geometric configurations and may interconnect with each other in patterns other than the circumferential ringed pattern illustrated.
In
The drive movement of the head 42 against the shroud fairing 18 (along with some downward force pressing the head 42 against the shroud fairing 18) breaks up the shell 26 and additional fabric layer(s) 32 of the heater mat 22 into particles P. In
As a result of removal of the organic material 62 and/or inorganic material by the skive apparatus 38 a more uniformly fabricated composite layering results. This more uniform layering allows a more effective electrical connection to be created between the electrical contact 34 and the electrical conduit 24 (
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This invention was in part produced through funding under a U.S. Government sponsored program (Contract No. N00019-02-C-3003) and the United States Government has certain rights therein.