1. Technical Field
The present invention is directed to a temperature measurement circuit, and, in particular, to a thermocouple measurement circuit employed in a control circuit for an electrosurgical generator.
2. Description of the Related Art
Electrosurgical generators are employed by surgeons in conjunction with an electrosurgical tool to cut, coagulate, desiccate and/or seal patient tissue. High frequency electrical energy, e.g., radio frequency (RF) energy, is produced by the electrosurgical generator and applied to the tissue by the electrosurgical tool. Both monopolar and bipolar configurations are commonly used during electrosurgical procedures.
Electrosurgical generators typically include power supply circuits, front panel interface circuits, and RF output stage circuits. Many electrical designs for electrosurgical generators are known in the field. In certain electrosurgical generator designs, the RF output stage can be adjusted to control the RMS (root mean square) output power. The methods of controlling the RF output stage may include changing the duty cycle, or changing the amplitude of the driving signal to the RF output stage. The method of controlling the RF output stage is described herein as changing an input to the RF output stage.
Electrosurgical techniques have been used to seal or fuse small diameter blood vessels, vascular bundles and tissue. In this application, two layers of tissue are grasped and clamped together while electrosurgical power is applied. By applying a unique combination of pressure, gap distance between opposing seal surfaces and controlling the electrosurgical energy, the two tissue layers are welded or fused together into a single mass with limited demarcation between tissue layers. Tissue fusion is similar to vessel sealing, except that a vessel or duct is not necessarily sealed in this process. For example, tissue fusion may be used instead of staples for surgical anastomosis. Electrosurgical power has a desiccating effect on tissue during tissue fusion or vessel sealing.
One of the issues associated with electrosurgical sealing or fusion of tissue is undesirable collateral damage to tissue due to the various thermal effects associated with electrosurgically energizing tissue. The tissue at the operative site is heated by electrosurgical current typically applied by the electrosurgical instrument. Healthy tissue adjacent to the operative site may become thermally damaged if too much heat is allowed to build up at the operative site or adjacent the sealing surfaces. For example, during sealing, the heat may conduct or spread to the adjacent tissue and cause a significant region of tissue necrosis. This is known as thermal spread. Thermal spread becomes important when electrosurgical instruments are used in close proximity to delicate anatomical structures. Therefore, an electrosurgical generator that reduced the possibility of thermal spread would offer a better opportunity for a successful surgical outcome.
Another issue associated with electrosurgical tissue sealing or tissue fusion is the buildup of eschar on the surgical instrument. Eschar is a deposit which is created from tissue that is charred by heat. Surgical tools often lose effectiveness when coated with eschar.
Conventional electrosurgical systems have employed temperature sensors in the surgical tool to monitor conditions at the operative site and/or the temperature of the tissue being manipulated. An exemplary temperature sensor used in such systems is a thermocouple due to its small size and low cost. However, thermocouples alone are not accurate and required compensation circuitry to achieve a desired level of accuracy.
Therefore, it would be desirable to have a temperature measurement circuit for an electrosurgical system for accurately determining a temperature of an operative site and/or tissue of a patient. Furthermore, it would be desirable to have a temperature measurement circuit for controlling an electrosurgical generator for producing a clinically effective output and, in addition, reducing the amount of heat and thermal spread at the operative site.
A thermocouple measurement circuit for sensing a temperature at a measuring point is provided. The thermocouple measurement circuit according to embodiments of the present invention employs an instrumentation amplifier for accurately summing a thermocouple voltage with a cold junction compensation offset to produce a voltage proportional to the temperature sensed. Advantageously, the use of an instrumentation amplifier allows common mode and differential filtering to be easily added for various noise conditions.
According to an aspect of the present invention, a thermocouple measurement circuit is provided including a thermocouple input for sensing a temperature at a measuring point, a compensation circuit for compensating thermocouple effects of junctions of the thermocouple, and an instrumentation amplifier for summing an output of the thermocouple and an output of the compensation circuit and outputting a voltage indicative of the temperature sensed, wherein the output of the compensation circuit is a reference voltage for the output of the instrumentation amplifier.
In another aspect of the present invention, an electrosurgical generator is provided including a radio frequency (RF) output circuit for outputting RF energy; a control circuit for controlling the output of the RF output circuit; and a thermocouple measurement circuit for determining a temperature at a measuring point, the thermocouple measuring circuit including a thermocouple input for sensing a temperature at the measuring point, a compensation circuit for compensating thermocouple effects of junctions of the thermocouple, and an instrumentation amplifier for summing an output of the thermocouple and an output of the compensation circuit and outputting a voltage indicative of the temperature sensed to the control circuit.
In a further aspect of the present invention, an electrosurgical system is provided including an electrosurgical generator for outputting radio frequency (RF) energy; an electrosurgical instrument coupled to the electrosurgical generator for applying the RF energy to an operative site; and a thermocouple measurement circuit for determining a temperature at the operative site, the thermocouple measuring circuit comprising a thermocouple input for sensing the temperature at a measuring-point of the electrosurgical instrument, a compensation circuit for compensating thermocouple effects of junctions of the thermocouple, and an instrumentation amplifier for summing an output of the thermocouple and an output of the compensation circuit and outputting a voltage indicative of the temperature sensed to the electrosurgical generator, wherein the electrosurgical generator controls the output energy based on the sensed temperature.
The above and other aspects, features, and advantages of the present invention will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
Embodiments of the present invention will be described herein below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the invention in unnecessary detail.
Referring to
A power supply circuit 31 is employed to provide a high voltage output, e.g., +15 VDC, and a low voltage output, e.g., −15 VDC, for energizing any component requiring power in the thermocouple measurement circuit 10.
Compensation circuit 14 provides the reference voltage to the instrumentation amplifier 16. The compensation circuit 14 includes a cold junction compensator 32 for compensating voltages produced at junctions of the thermocouple to the circuit 10. An exemplary cold junction compensator is Model LT1025 commercially available from Linear Technology Corporation of Milpitas, Calif. Since the reference terminal REF of the instrumentation amplifier 16 requires a high impedance input, an output of the cold junction compensator 32 is coupled to an operational amplifier 34 which in turn is coupled to the reference terminal REF of the instrumentation amplifier 16. An exemplary operational amplifier is Model LTC1151 also available from Linear Technology Corporation of Milpitas, Calif. Using the reference terminal REF of the instrumentation amplifier 16 to sum the compensation circuit 14 and thermocouple 12 voltages provides a much more accurate and reliable summing junction. The voltage output OUT from the instrumentation amplifier 16 is proportional to the temperature sensed at the measuring point 30.
It is to be appreciated any standard type of thermocouple, e.g., T, J, K, E, S and R, may be employed by the thermocouple measurement circuit of the present invention by matching the type of thermocouple to the cold junction compensator. For example, since a T type thermocouple is utilized in
Preferably, the thermocouple input 12 is filtered via filtering circuit 18 to eliminate noise from being introduced to the instrumentation amplifier 16. The filtering circuit 18 includes capacitors C3, C6 and C7 and resistors R5 and R11-R13. Capacitors C3, C6, and C7 are designed as filtering elements to reduce noise. Lead 24 of the thermocouple input 12 is connected to the instrumentation amplifier 16 via resistor R12. Capacitor C3 and resistor R5 are coupled in parallel at one end to a junction J1 of the resistor R12 and the input terminal −IN of the instrumentation amplifier 16 and at the other end to ground. Lead 28 of the thermocouple input 12 is connected to the instrumentation amplifier 16 via resistor R13. Capacitor C7 and resistor R11 are coupled in parallel at one end to a junction J2 of the resistor R13 and the input terminal +IN of the instrumentation amplifier 16 and at the other end to ground. Capacitor C6 is coupled between junction J1 and junction J2. It is to be understood that common mode chokes and/or RF chokes may be employed for filtering the thermocouple input 12.
The output voltage OUT of the instrumentation amplifier 16 may be conditioned by an offset circuit 20 and a gain circuit 22 for scaling the thermocouple measurement circuit 10 due the non-linearity of the thermocouple or for a desired voltage-to-temperature ratio. The offset circuit 20 includes resistor R2 coupled in between the output voltage OUT and junction J3. Capacitor C1 is coupled at one end to junction J3 and at the other to ground. A resistor network including resistors R2, R3, R4, R8 and R9 are coupled to junction J3. It is to be understood resistors R3 and R8 are utilized depending on the voltage offset being employed, e.g., if a positive offset is required, resistor R3 is employed, and, if a negative offset is required, resistor R8 is employed.
The gain circuit 22 includes amplifier 36, capacitor C4 and resistors R6, R7. The gain circuit 22 receives as an input a voltage from junction J3 of the offset circuit 20. This voltage is input to the non-inverting input of the amplifier 36. The gain of the amplifier 36 is set by combination of capacitor C4 and resistors R6, R7 coupled to the inverting input of the amplifier 36. The amplifier 36 outputs an analog voltage proportional to the temperature sensed at the measuring point 28 to connection point TP1.
Optionally, the output voltage at connection point TP1 will be sent to an analog-to-digital converter for converting the analog voltage to a digital signal. The digital signal will be less susceptible to noise and can be utilized in a software program, for example, to control a condition at the measuring point.
Furthermore, an additional offset circuit 39 may be coupled to the input of the instrumentation amplifier to determine if a thermocouple is connected. A small offset voltage will pull the input high or low depending on which terminal of the instrumentation amplifier (+IN or −IN) the offset circuit is connected to. For example, as shown in
When the thermocouple measurement circuit 40 is determined to be working properly, the first and second switches 42, 46 will return to their normal positions and the circuit 40 will operate as described above in relation to
An exemplary electrosurgical system 100 employing a thermocouple measurement circuit in accordance with the present invention is shown in
The member 114 is provided in the form of bipolar electrosurgical forceps using two generally opposing electrodes disposed on inner opposing surfaces of the member 114, and which are both electrically coupled to the output of the electrosurgical generator 104. During use, different electric potentials are applied to each electrode. In that tissue is an electrical conductor, when the forceps are utilized to clamp or grasp the vessel 102 therebetween, the electrical energy output from the electrosurgical generator 104 is transferred through the intervening tissue. Both open surgical procedures and endoscopic surgical procedures can be performed with suitably adapted surgical instruments 106. It should also be noted that the member 114 could be monopolar forceps that utilizes one active electrode, with the other (return) electrode or pad being attached externally to the patient, or a combination of bipolar and monopolar forceps.
A measuring point 118 of a thermocouple input is preferably located in member 114 to measure the temperature of the patient tissue or of the operative site. The thermocouple is coupled to the thermocouple measurement circuit 10 via cable 116. An output voltage indicative of the temperature at measuring point 118 is sent to the control circuit 110 for controlling the output power of the electrosurgical generator 104.
It is to be appreciated that output power from the electrosurgical generator can be adjusted in several ways. For example, the amplitude of the output power can be adjusted. In another example, the output power can be adjusted by changing the duty cycle or the crest factor.
In another embodiment, it is contemplated that the control circuit 110 controls a module for producing resistive heat for regulating heat applied to the tissue for achieving a desired tissue effect instead of or in addition to controlling the electrosurgical output circuit 108 and/or the power supply 112. The control circuit 110 responds to sensed tissue temperature indicative of tissue temperature and outputs a command signal for controlling output heat resistivity. Preferably, the module for producing resistive heat includes a current source and/or a variable resistor which are responsive to the command signal for outputting a desired current or providing a desired resistance, respectively.
A thermocouple measurement circuit for sensing a temperature at a measuring point has been described. The thermocouple measurement circuit according to embodiments of the present invention employs an instrumentation amplifier for accurately summing a thermocouple voltage with a cold junction compensation offset to produce a voltage proportional to the temperature sensed. The use of an instrumentation amplifier allows common mode and differential filtering to be easily added for various noise conditions. Various embodiments of the thermocouple measurement circuit may be employed in electrosurgical generators for controlling output power dependent on temperature conditions.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosures be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/33711 | 10/23/2003 | WO | 00 | 9/28/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/050151 | 6/2/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1787709 | Wappler | Jan 1931 | A |
1813902 | Bovie | Jul 1931 | A |
1841968 | Lowry | Jan 1932 | A |
1863118 | Liebel | Jun 1932 | A |
1945867 | Rawls | Feb 1934 | A |
2827056 | Degelman | Mar 1958 | A |
2849611 | Adams | Aug 1958 | A |
2982881 | Reich | May 1961 | A |
3058470 | Seeliger et al. | Oct 1962 | A |
3089496 | Degelman | May 1963 | A |
3163165 | Islikawa | Dec 1964 | A |
3252052 | Nash | May 1966 | A |
3391351 | Trent | Jul 1968 | A |
3402326 | Guasco et al. | Sep 1968 | A |
3413480 | Biard et al. | Nov 1968 | A |
3436563 | Regitz | Apr 1969 | A |
3439253 | Piteo | Apr 1969 | A |
3439680 | Thomas, Jr. | Apr 1969 | A |
3461874 | Martinez | Aug 1969 | A |
3471770 | Haire | Oct 1969 | A |
3478744 | Leiter | Nov 1969 | A |
3486115 | Anderson | Dec 1969 | A |
3495584 | Schwalm | Feb 1970 | A |
3513353 | Lansch | May 1970 | A |
3514689 | Giannamore | May 1970 | A |
3515943 | Warrington | Jun 1970 | A |
3551786 | Van Gulik | Dec 1970 | A |
3562623 | Farnsworth | Feb 1971 | A |
3571644 | Jakoubovitch | Mar 1971 | A |
3589363 | Banko | Jun 1971 | A |
3595221 | Blackett | Jul 1971 | A |
3601126 | Estes | Aug 1971 | A |
3611053 | Rowell | Oct 1971 | A |
3641422 | Farnsworth et al. | Feb 1972 | A |
3642008 | Bolduc | Feb 1972 | A |
3662151 | Haffey | May 1972 | A |
3675655 | Sittner | Jul 1972 | A |
3683923 | Anderson | Aug 1972 | A |
3693613 | Kelman | Sep 1972 | A |
3697808 | Lee | Oct 1972 | A |
3699967 | Anderson | Oct 1972 | A |
3720896 | Beierlein | Mar 1973 | A |
3743918 | Maitre | Jul 1973 | A |
3766434 | Sherman | Oct 1973 | A |
3768482 | Shaw | Oct 1973 | A |
3783340 | Becker | Jan 1974 | A |
3784842 | Kremer | Jan 1974 | A |
3801766 | Morrison, Jr. | Apr 1974 | A |
3801800 | Newton | Apr 1974 | A |
3812858 | Oringer | May 1974 | A |
3815015 | Swin et al. | Jun 1974 | A |
3826263 | Cage et al. | Jul 1974 | A |
3828768 | Douglas | Aug 1974 | A |
3848600 | Patrick, Jr. et al. | Nov 1974 | A |
3870047 | Gonser | Mar 1975 | A |
3875945 | Friedman | Apr 1975 | A |
3885569 | Judson | May 1975 | A |
3897787 | Ikuno et al. | Aug 1975 | A |
3897788 | Newton | Aug 1975 | A |
3898554 | Knudsen | Aug 1975 | A |
3901216 | Felger | Aug 1975 | A |
3905373 | Gonser | Sep 1975 | A |
3913583 | Bross | Oct 1975 | A |
3923063 | Andrews et al. | Dec 1975 | A |
3933157 | Bjurwill et al. | Jan 1976 | A |
3946738 | Newton et al. | Mar 1976 | A |
3952748 | Kaliher et al. | Apr 1976 | A |
3963030 | Newton | Jun 1976 | A |
3964487 | Judson | Jun 1976 | A |
3971365 | Smith | Jul 1976 | A |
3978393 | Wisner et al. | Aug 1976 | A |
3980085 | Ikuno | Sep 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4024467 | Andrews et al. | May 1977 | A |
4041952 | Morrison, Jr. et al. | Aug 1977 | A |
4051855 | Schneiderman | Oct 1977 | A |
4063557 | Wuchinich et al. | Dec 1977 | A |
4074719 | Semm | Feb 1978 | A |
4092986 | Schneiderman | Jun 1978 | A |
4094320 | Newton et al. | Jun 1978 | A |
4097773 | Lindmark | Jun 1978 | A |
4102341 | Ikuno et al. | Jul 1978 | A |
4114623 | Meinke et al. | Sep 1978 | A |
4121590 | Gonser | Oct 1978 | A |
4123673 | Gonser | Oct 1978 | A |
4126137 | Archibald | Nov 1978 | A |
4145636 | Doi | Mar 1979 | A |
4171700 | Farin | Oct 1979 | A |
4188927 | Harris | Feb 1980 | A |
4191188 | Belt et al. | Mar 1980 | A |
4196734 | Harris | Apr 1980 | A |
4200104 | Harris | Apr 1980 | A |
4200105 | Gonser | Apr 1980 | A |
4209018 | Meinke et al. | Jun 1980 | A |
4231372 | Newton | Nov 1980 | A |
4232676 | Herczog | Nov 1980 | A |
4237887 | Gonser | Dec 1980 | A |
4237891 | DuBose et al. | Dec 1980 | A |
4281373 | Mabille | Jul 1981 | A |
4287557 | Brehse | Sep 1981 | A |
4303073 | Archibald | Dec 1981 | A |
4311154 | Sterzer et al. | Jan 1982 | A |
4314559 | Allen | Feb 1982 | A |
4321926 | Roge | Mar 1982 | A |
4334539 | Childs et al. | Jun 1982 | A |
4343308 | Gross | Aug 1982 | A |
4372315 | Shapiro et al. | Feb 1983 | A |
4376263 | Pittroff et al. | Mar 1983 | A |
4378801 | Oosten | Apr 1983 | A |
4384582 | Watt | May 1983 | A |
4397314 | Vaguine | Aug 1983 | A |
4407272 | Yamaguchi | Oct 1983 | A |
4411266 | Cosman | Oct 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4416277 | Newton et al. | Nov 1983 | A |
4429694 | McGreevy | Feb 1984 | A |
4436091 | Banko | Mar 1984 | A |
4437464 | Crow | Mar 1984 | A |
4438766 | Bowers | Mar 1984 | A |
4452546 | Hiltebrandt et al. | Jun 1984 | A |
4463759 | Garito et al. | Aug 1984 | A |
4470414 | Imagawa et al. | Sep 1984 | A |
4472661 | Culver | Sep 1984 | A |
4474179 | Koch | Oct 1984 | A |
4492231 | Auth | Jan 1985 | A |
4492832 | Taylor | Jan 1985 | A |
4494541 | Archibald | Jan 1985 | A |
4514619 | Kugelman | Apr 1985 | A |
4520818 | Mickiewicz | Jun 1985 | A |
4559496 | Harnden, Jr. et al. | Dec 1985 | A |
4559943 | Bowers | Dec 1985 | A |
4565200 | Cosman | Jan 1986 | A |
4566454 | Mehl et al. | Jan 1986 | A |
4569345 | Manes | Feb 1986 | A |
4576177 | Webster, Jr. | Mar 1986 | A |
4582057 | Auth et al. | Apr 1986 | A |
4586120 | Malik et al. | Apr 1986 | A |
4590934 | Malis et al. | May 1986 | A |
4608977 | Brown | Sep 1986 | A |
4615330 | Nagasaki et al. | Oct 1986 | A |
4630218 | Hurley | Dec 1986 | A |
4632109 | Patterson | Dec 1986 | A |
4644955 | Mioduski | Feb 1987 | A |
4646222 | Okado et al. | Feb 1987 | A |
4651264 | Hu | Mar 1987 | A |
4651280 | Chang et al. | Mar 1987 | A |
4657015 | Irnich | Apr 1987 | A |
4658815 | Farin et al. | Apr 1987 | A |
4658819 | Harris et al. | Apr 1987 | A |
4658820 | Klicek | Apr 1987 | A |
4662383 | Sogawa et al. | May 1987 | A |
4691703 | Auth et al. | Sep 1987 | A |
4712559 | Turner | Dec 1987 | A |
4727874 | Bowers et al. | Mar 1988 | A |
4735204 | Sussman et al. | Apr 1988 | A |
4739759 | Rexroth et al. | Apr 1988 | A |
4741334 | Irnich | May 1988 | A |
4754757 | Feucht | Jul 1988 | A |
4788634 | Schlecht et al. | Nov 1988 | A |
4805621 | Heinze et al. | Feb 1989 | A |
4818954 | Flachenecker et al. | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4827927 | Newton | May 1989 | A |
4832024 | Boussignac et al. | May 1989 | A |
4848335 | Manes | Jul 1989 | A |
4848355 | Nakamura et al. | Jul 1989 | A |
4860745 | Farin et al. | Aug 1989 | A |
4862889 | Feucht | Sep 1989 | A |
4880719 | Murofushi et al. | Nov 1989 | A |
4887199 | Whittle | Dec 1989 | A |
4890610 | Kirwan et al. | Jan 1990 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4907589 | Cosman | Mar 1990 | A |
4922210 | Flachenecker et al. | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4931717 | Gray et al. | Jun 1990 | A |
4938761 | Ensslin | Jul 1990 | A |
4942313 | Kinzel | Jul 1990 | A |
4959606 | Forge | Sep 1990 | A |
4961047 | Carder | Oct 1990 | A |
4961435 | Kitagawa et al. | Oct 1990 | A |
4966597 | Cosman | Oct 1990 | A |
RE33420 | Sussman | Nov 1990 | E |
4969885 | Farin | Nov 1990 | A |
4992719 | Harvey | Feb 1991 | A |
4993430 | Shimoyama et al. | Feb 1991 | A |
4995877 | Ams et al. | Feb 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5019176 | Brandhorst, Jr. | May 1991 | A |
5024668 | Peters et al. | Jun 1991 | A |
5029588 | Yock et al. | Jul 1991 | A |
5057105 | Malone et al. | Oct 1991 | A |
5087257 | Farin | Feb 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5108389 | Cosmescu | Apr 1992 | A |
5108391 | Flachenecker | Apr 1992 | A |
5122137 | Lennox | Jun 1992 | A |
5133711 | Hagen | Jul 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5152762 | McElhenney | Oct 1992 | A |
5157603 | Scheller et al. | Oct 1992 | A |
5160334 | Billings et al. | Nov 1992 | A |
5161893 | Beran et al. | Nov 1992 | A |
5162217 | Hartman | Nov 1992 | A |
5167658 | Ensslin | Dec 1992 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5196008 | Kuenecke | Mar 1993 | A |
5196009 | Kirwan, Jr. | Mar 1993 | A |
5201900 | Nardella | Apr 1993 | A |
5207691 | Nardella | May 1993 | A |
5230623 | Guthrie et al. | Jul 1993 | A |
5233515 | Cosman | Aug 1993 | A |
5249121 | Baum et al. | Sep 1993 | A |
5254117 | Rigby et al. | Oct 1993 | A |
RE34432 | Bertrand | Nov 1993 | E |
5267994 | Gentelia et al. | Dec 1993 | A |
5267997 | Farin | Dec 1993 | A |
5281213 | Milder et al. | Jan 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5300070 | Gentelia | Apr 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5323778 | Kandarpa et al. | Jun 1994 | A |
5324283 | Heckele | Jun 1994 | A |
5330518 | Neilson et al. | Jul 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5342356 | Ellman | Aug 1994 | A |
5342357 | Nardella | Aug 1994 | A |
5342409 | Mullett | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5370672 | Fowler et al. | Dec 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5383874 | Jackson | Jan 1995 | A |
5383876 | Nardella | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5396062 | Eisentraut et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5409000 | Imran | Apr 1995 | A |
5409006 | Buchholtz et al. | Apr 1995 | A |
5409485 | Suda | Apr 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5414238 | Steigerwald et al. | May 1995 | A |
5417719 | Hull et al. | May 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423808 | Edwards et al. | Jun 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5425704 | Sakurai et al. | Jun 1995 | A |
5430434 | Lederer et al. | Jul 1995 | A |
5432459 | Thompson | Jul 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5434398 | Goldberg | Jul 1995 | A |
5436566 | Thompson | Jul 1995 | A |
5438302 | Goble | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445635 | Denen | Aug 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5472441 | Edwards et al. | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478303 | Folry-Nolan et al. | Dec 1995 | A |
5480399 | Hebborn | Jan 1996 | A |
5483952 | Aranyi | Jan 1996 | A |
5490850 | Ellman et al. | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496313 | Gentelia et al. | Mar 1996 | A |
5498261 | Strul | Mar 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5500616 | Ochi | Mar 1996 | A |
5514129 | Smith | May 1996 | A |
5520684 | Imran | May 1996 | A |
5531774 | Schulman et al. | Jul 1996 | A |
5534018 | Wahlstrand et al. | Jul 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5540683 | Ichikawa | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540724 | Cox | Jul 1996 | A |
5556396 | Cohen et al. | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5569242 | Lax et al. | Oct 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5594636 | Schauder | Jan 1997 | A |
5596466 | Ochi | Jan 1997 | A |
5596995 | Sherman et al. | Jan 1997 | A |
5599344 | Paterson | Feb 1997 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5599348 | Gentelia et al. | Feb 1997 | A |
5605150 | Radons et al. | Feb 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5613996 | Lindsay | Mar 1997 | A |
5625370 | D'Hont | Apr 1997 | A |
5626575 | Crenner | May 1997 | A |
5628745 | Bek | May 1997 | A |
5643330 | Holsheimer et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5658322 | Fleming | Aug 1997 | A |
5660567 | Nierlich et al. | Aug 1997 | A |
5674217 | Wahlstrom et al. | Oct 1997 | A |
5685840 | Schechter et al. | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5690692 | Fleming | Nov 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5694304 | Telefus et al. | Dec 1997 | A |
5695494 | Becker | Dec 1997 | A |
5696351 | Benn et al. | Dec 1997 | A |
5696441 | Mak et al. | Dec 1997 | A |
5702386 | Stern et al. | Dec 1997 | A |
5702429 | King | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5712772 | Telefus et al. | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5718246 | Vona | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722975 | Edwards et al. | Mar 1998 | A |
5729448 | Haynie et al. | Mar 1998 | A |
5733281 | Nardella | Mar 1998 | A |
5749869 | Lindenmeier et al. | May 1998 | A |
5749871 | Hood et al. | May 1998 | A |
5755715 | Stern | May 1998 | A |
5766165 | Gentelia et al. | Jun 1998 | A |
5769847 | Panescu | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5797802 | Nowak | Aug 1998 | A |
5797902 | Netherly | Aug 1998 | A |
5814092 | King | Sep 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5820568 | Willis | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5830212 | Cartmell | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5846236 | Lindenmeier et al. | Dec 1998 | A |
5868737 | Taylor et al. | Feb 1999 | A |
5868739 | Lindenmeier et al. | Feb 1999 | A |
5868740 | LeVeen et al. | Feb 1999 | A |
5871481 | Kannenberg et al. | Feb 1999 | A |
5897552 | Edwards et al. | Apr 1999 | A |
5908444 | Azure | Jun 1999 | A |
5913882 | King | Jun 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5925070 | King et al. | Jul 1999 | A |
5931836 | Hatta et al. | Aug 1999 | A |
5938690 | Law et al. | Aug 1999 | A |
5948007 | Starkebaum et al. | Sep 1999 | A |
5951545 | Schilling | Sep 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5954686 | Garito et al. | Sep 1999 | A |
5954717 | Behl et al. | Sep 1999 | A |
5954719 | Chen et al. | Sep 1999 | A |
5961344 | Rosales et al. | Oct 1999 | A |
5971980 | Sherman | Oct 1999 | A |
5976128 | Schilling et al. | Nov 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
6010499 | Cobb | Jan 2000 | A |
6014581 | Whayne et al. | Jan 2000 | A |
6033399 | Gines | Mar 2000 | A |
6044283 | Fein et al. | Mar 2000 | A |
6053910 | Fleenor | Apr 2000 | A |
6053912 | Panescu et al. | Apr 2000 | A |
6055458 | Cochran et al. | Apr 2000 | A |
6056745 | Panescu et al. | May 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6063075 | Mihori | May 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6074089 | Hollander et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6074388 | Tockweiler et al. | Jun 2000 | A |
6080149 | Huang et al. | Jun 2000 | A |
6093186 | Goble | Jul 2000 | A |
6102497 | Ehr et al. | Aug 2000 | A |
RE36871 | Epstein | Sep 2000 | E |
6113591 | Whayne et al. | Sep 2000 | A |
6113596 | Hooven | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
6132429 | Baker | Oct 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6155975 | Urich et al. | Dec 2000 | A |
6162217 | Kannenberg et al. | Dec 2000 | A |
6171304 | Netherly et al. | Jan 2001 | B1 |
6188211 | Rincon-Mora et al. | Feb 2001 | B1 |
6203541 | Keppel | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6222356 | Taghizadeh-Kaschani | Apr 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6231569 | Bek | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6238387 | Miller, III | May 2001 | B1 |
6238388 | Ellman | May 2001 | B1 |
6241725 | Cosman | Jun 2001 | B1 |
6245065 | Panescu | Jun 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6251106 | Becker et al. | Jun 2001 | B1 |
6258085 | Eggleston | Jul 2001 | B1 |
6261285 | Novak | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6273886 | Edwards | Aug 2001 | B1 |
6275786 | Daners | Aug 2001 | B1 |
6293941 | Strul | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6306131 | Hareyama et al. | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6309386 | Bek | Oct 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6337998 | Behl et al. | Jan 2002 | B1 |
6338657 | Harper et al. | Jan 2002 | B1 |
6350262 | Ashley | Feb 2002 | B1 |
6358245 | Edwards | Mar 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6383183 | Sekino et al. | May 2002 | B1 |
6391024 | Sun et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6398781 | Goble et al. | Jun 2002 | B1 |
6402741 | Keppel et al. | Jun 2002 | B1 |
6402743 | Orszulak et al. | Jun 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6436096 | Hareyama | Aug 2002 | B1 |
6451015 | Rittman, III et al. | Sep 2002 | B1 |
6458121 | Rosenstock | Oct 2002 | B1 |
6464689 | Qin | Oct 2002 | B1 |
6464696 | Oyama | Oct 2002 | B1 |
6494880 | Panescu et al. | Dec 2002 | B1 |
6498466 | Edwards | Dec 2002 | B1 |
6506189 | Rittman, III et al. | Jan 2003 | B1 |
6508815 | Strul | Jan 2003 | B1 |
6511476 | Hareyama | Jan 2003 | B2 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6517538 | Jacob et al. | Feb 2003 | B1 |
6524308 | Muller et al. | Feb 2003 | B1 |
6547786 | Goble | Apr 2003 | B1 |
6558376 | Bishop | May 2003 | B2 |
6560470 | Pologe | May 2003 | B1 |
6562037 | Paton | May 2003 | B2 |
6565559 | Eggleston | May 2003 | B2 |
6573248 | Ramasamy et al. | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582427 | Goble et al. | Jun 2003 | B1 |
6620157 | Dabney et al. | Sep 2003 | B1 |
6623423 | Ozaki et al. | Sep 2003 | B2 |
6629973 | Wardell et al. | Oct 2003 | B1 |
6629974 | Penny et al. | Oct 2003 | B2 |
6635057 | Harano | Oct 2003 | B2 |
6645198 | Bommannan et al. | Nov 2003 | B1 |
6648883 | Francischelli | Nov 2003 | B2 |
6652514 | Ellman | Nov 2003 | B2 |
6663623 | Oyama et al. | Dec 2003 | B1 |
6663624 | Edwards | Dec 2003 | B2 |
6666860 | Takahashi | Dec 2003 | B1 |
6679875 | Honda | Jan 2004 | B2 |
6682527 | Strul | Jan 2004 | B2 |
6685700 | Behl | Feb 2004 | B2 |
6685701 | Orszulak et al. | Feb 2004 | B2 |
6685703 | Pearson et al. | Feb 2004 | B2 |
6689131 | McClurken | Feb 2004 | B2 |
6692489 | Heim | Feb 2004 | B1 |
6693782 | Lash | Feb 2004 | B1 |
6712813 | Ellman | Mar 2004 | B2 |
6730080 | Harano | May 2004 | B2 |
6733495 | Bek | May 2004 | B1 |
6733498 | Paton | May 2004 | B2 |
6740079 | Eggers | May 2004 | B1 |
6740085 | Hareyama | May 2004 | B2 |
6755825 | Shoenman et al. | Jun 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6783523 | Qin | Aug 2004 | B2 |
6786905 | Swanson et al. | Sep 2004 | B2 |
6790206 | Panescu | Sep 2004 | B2 |
6796981 | Wham | Sep 2004 | B2 |
6824539 | Novak | Nov 2004 | B2 |
6830569 | Thompson | Dec 2004 | B2 |
6843789 | Goble | Jan 2005 | B2 |
6849073 | Hoey | Feb 2005 | B2 |
6855141 | Lovewell | Feb 2005 | B2 |
6855142 | Harano | Feb 2005 | B2 |
6860881 | Sturm | Mar 2005 | B2 |
6864686 | Novak | Mar 2005 | B2 |
6875210 | Refior | Apr 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6923804 | Eggers et al. | Aug 2005 | B2 |
6929641 | Goble et al. | Aug 2005 | B2 |
6939346 | Kannenberg et al. | Sep 2005 | B2 |
6939347 | Thompson | Sep 2005 | B2 |
6942660 | Pantera et al. | Sep 2005 | B2 |
6948503 | Refior et al. | Sep 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6994704 | Qin et al. | Feb 2006 | B2 |
6994707 | Ellman et al. | Feb 2006 | B2 |
7001381 | Harano et al. | Feb 2006 | B2 |
7004174 | Eggers et al. | Feb 2006 | B2 |
7041096 | Malis et al. | May 2006 | B2 |
7044948 | Keppel | May 2006 | B2 |
7044949 | Orszulak et al. | May 2006 | B2 |
7060063 | Marion et al. | Jun 2006 | B2 |
7062331 | Zarinetchi et al. | Jun 2006 | B2 |
7063692 | Sakurai et al. | Jun 2006 | B2 |
7066933 | Hagg | Jun 2006 | B2 |
7122031 | Edwards et al. | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7160293 | Sturm et al. | Jan 2007 | B2 |
7172591 | Harano et al. | Feb 2007 | B2 |
7175618 | Dabney et al. | Feb 2007 | B2 |
7175621 | Heim et al. | Feb 2007 | B2 |
7211081 | Goble | May 2007 | B2 |
7214224 | Goble | May 2007 | B2 |
7220260 | Fleming et al. | May 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7250746 | Oswald et al. | Jul 2007 | B2 |
7255694 | Keppel | Aug 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367972 | Francischelli et al. | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7396336 | Orszulak et al. | Jul 2008 | B2 |
20010014804 | Goble et al. | Aug 2001 | A1 |
20010029315 | Sakurai et al. | Oct 2001 | A1 |
20010031962 | Eggleston | Oct 2001 | A1 |
20020035363 | Edwards et al. | Mar 2002 | A1 |
20020035364 | Schoenman et al. | Mar 2002 | A1 |
20020052599 | Goble | May 2002 | A1 |
20020068932 | Edwards | Jun 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020111624 | Witt et al. | Aug 2002 | A1 |
20020151889 | Swanson et al. | Oct 2002 | A1 |
20020193787 | Qin | Dec 2002 | A1 |
20030004510 | Wham et al. | Jan 2003 | A1 |
20030060818 | Kannenberg | Mar 2003 | A1 |
20030078572 | Pearson et al. | Apr 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030153908 | Goble | Aug 2003 | A1 |
20030163123 | Goble | Aug 2003 | A1 |
20030163124 | Goble | Aug 2003 | A1 |
20030171745 | Francischelli | Sep 2003 | A1 |
20030181898 | Bowers | Sep 2003 | A1 |
20030199863 | Swanson | Oct 2003 | A1 |
20030225401 | Eggers et al. | Dec 2003 | A1 |
20040002745 | Flemming | Jan 2004 | A1 |
20040015159 | Slater et al. | Jan 2004 | A1 |
20040015163 | Buysse et al. | Jan 2004 | A1 |
20040015216 | DeSisto | Jan 2004 | A1 |
20040019347 | Sakurai | Jan 2004 | A1 |
20040024395 | Ellman | Feb 2004 | A1 |
20040030328 | Eggers | Feb 2004 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040044339 | Beller | Mar 2004 | A1 |
20040049179 | Francischelli | Mar 2004 | A1 |
20040054365 | Goble | Mar 2004 | A1 |
20040059323 | Sturm et al. | Mar 2004 | A1 |
20040068304 | Paton | Apr 2004 | A1 |
20040082946 | Malis | Apr 2004 | A1 |
20040095100 | Thompson | May 2004 | A1 |
20040097912 | Gonnering | May 2004 | A1 |
20040097914 | Pantera | May 2004 | A1 |
20040097915 | Refior | May 2004 | A1 |
20040116919 | Heim | Jun 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040138653 | Dabney et al. | Jul 2004 | A1 |
20040138654 | Goble | Jul 2004 | A1 |
20040143263 | Schechter et al. | Jul 2004 | A1 |
20040147918 | Keppel | Jul 2004 | A1 |
20040167508 | Wham et al. | Aug 2004 | A1 |
20040172016 | Bek | Sep 2004 | A1 |
20040193148 | Wham et al. | Sep 2004 | A1 |
20040230189 | Keppel | Nov 2004 | A1 |
20040243120 | Orszulak et al. | Dec 2004 | A1 |
20040260279 | Goble | Dec 2004 | A1 |
20050004564 | Wham | Jan 2005 | A1 |
20050004569 | Witt et al. | Jan 2005 | A1 |
20050021020 | Blaha et al. | Jan 2005 | A1 |
20050021022 | Sturm et al. | Jan 2005 | A1 |
20050101949 | Harano et al. | May 2005 | A1 |
20050101951 | Wham | May 2005 | A1 |
20050113818 | Sartor | May 2005 | A1 |
20050113819 | Wham | May 2005 | A1 |
20050149151 | Orszulak | Jul 2005 | A1 |
20050182398 | Paterson | Aug 2005 | A1 |
20050197659 | Bahney | Sep 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20060025760 | Podhajsky | Feb 2006 | A1 |
20060079871 | Plaven et al. | Apr 2006 | A1 |
20060161148 | Behnke | Jul 2006 | A1 |
20060178664 | Keppel | Aug 2006 | A1 |
20060224152 | Behnke et al. | Oct 2006 | A1 |
20060281360 | Sartor et al. | Dec 2006 | A1 |
20070038209 | Buysse et al. | Feb 2007 | A1 |
20070093800 | Wham et al. | Apr 2007 | A1 |
20070093801 | Behnke | Apr 2007 | A1 |
20070135812 | Sartor | Jun 2007 | A1 |
20070173802 | Keppel | Jul 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173804 | Wham et al. | Jul 2007 | A1 |
20070173805 | Weinberg et al. | Jul 2007 | A1 |
20070173806 | Orszulak et al. | Jul 2007 | A1 |
20070173810 | Orszulak | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070208339 | Arts et al. | Sep 2007 | A1 |
20070225698 | Orszulak et al. | Sep 2007 | A1 |
20070250052 | Wham | Oct 2007 | A1 |
20070265612 | Behnke et al. | Nov 2007 | A1 |
20070282320 | Buysse et al. | Dec 2007 | A1 |
20080015564 | Wham et al. | Jan 2008 | A1 |
20080039831 | Odom et al. | Feb 2008 | A1 |
20080039836 | Odom et al. | Feb 2008 | A1 |
20080082094 | McPherson et al. | Apr 2008 | A1 |
20080125767 | Blaha | May 2008 | A1 |
Number | Date | Country |
---|---|---|
179607 | Mar 1905 | DE |
1099658 | Feb 1961 | DE |
1139927 | Nov 1962 | DE |
1149832 | Jun 1963 | DE |
1439302 | Jan 1969 | DE |
2439587 | Feb 1975 | DE |
2455174 | May 1975 | DE |
2407559 | Aug 1975 | DE |
2602517 | Jul 1976 | DE |
2504280 | Aug 1976 | DE |
2540968 | Mar 1977 | DE |
2820908 | Nov 1978 | DE |
2803275 | Aug 1979 | DE |
2823291 | Nov 1979 | DE |
2946728 | May 1981 | DE |
3143421 | May 1982 | DE |
3045996 | Jul 1982 | DE |
3120102 | Dec 1982 | DE |
3510586 | Oct 1986 | DE |
3604823 | Aug 1987 | DE |
390937 | Apr 1989 | DE |
3904558 | Aug 1990 | DE |
3942998 | Jul 1991 | DE |
4339049 | May 1995 | DE |
19717411 | Nov 1998 | DE |
19848540 | May 2000 | DE |
246350 | Nov 1987 | EP |
310431 | Apr 1989 | EP |
325456 | Jul 1989 | EP |
336742 | Oct 1989 | EP |
390937 | Oct 1990 | EP |
556705 | Aug 1993 | EP |
0569130 | Nov 1993 | EP |
608609 | Aug 1994 | EP |
0694291 | Jan 1996 | EP |
836868 | Apr 1998 | EP |
878169 | Nov 1998 | EP |
1051948 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1151725 | Nov 2001 | EP |
1293171 | Mar 2003 | EP |
1472984 | Nov 2004 | EP |
1495712 | Jan 2005 | EP |
1500378 | Jan 2005 | EP |
1535581 | Jun 2005 | EP |
1609430 | Dec 2005 | EP |
1645235 | Apr 2006 | EP |
0880220 | Jun 2006 | EP |
1707143 | Oct 2006 | EP |
1810628 | Jul 2007 | EP |
1810630 | Jul 2007 | EP |
1810633 | Jul 2007 | EP |
1275415 | Oct 1961 | FR |
1347865 | Nov 1963 | FR |
2313708 | Dec 1976 | FR |
2502935 | Oct 1982 | FR |
2517953 | Jun 1983 | FR |
2573301 | May 1986 | FR |
607850 | Sep 1948 | GB |
702 510 | Jan 1954 | GB |
855459 | Nov 1960 | GB |
902775 | Aug 1962 | GB |
2164473 | Mar 1986 | GB |
2214430 | Sep 1989 | GB |
2358934 | Aug 2001 | GB |
166452 | Jan 1965 | SU |
727201 | Apr 1980 | SU |
WO9206642 | Apr 1992 | WO |
WO9324066 | Dec 1993 | WO |
WO9424949 | Nov 1994 | WO |
WO9428809 | Dec 1994 | WO |
WO9509577 | Apr 1995 | WO |
WO9519148 | Jul 1995 | WO |
WO9602180 | Feb 1996 | WO |
WO9604860 | Feb 1996 | WO |
WO9608794 | Mar 1996 | WO |
WO9618349 | Jun 1996 | WO |
WO9629946 | Oct 1996 | WO |
WO9639086 | Dec 1996 | WO |
WO9639914 | Dec 1996 | WO |
WO9706739 | Feb 1997 | WO |
WO9706740 | Feb 1997 | WO |
WO9706855 | Feb 1997 | WO |
WO9711648 | Apr 1997 | WO |
WO9717029 | May 1997 | WO |
WO0211634 | Feb 2002 | WO |
WO0245589 | Jun 2002 | WO |
WO0247565 | Jun 2002 | WO |
WO02053048 | Jul 2002 | WO |
WO02088128 | Jul 2002 | WO |
WO03090630 | Nov 2003 | WO |
WO03090635 | Nov 2003 | WO |
WO03092520 | Nov 2003 | WO |
WO2004028385 | Apr 2004 | WO |
WO2004098385 | Apr 2004 | WO |
WO2004103156 | Dec 2004 | WO |
WO2005046496 | May 2005 | WO |
WO2005048809 | Jun 2005 | WO |
WO2005050151 | Jun 2005 | WO |
WO2005048809 | Jun 2005 | WO |
WO2005060849 | Jul 2005 | WO |
WO2005060365 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080125767 A1 | May 2008 | US |