1. Field of the Invention
The present invention relates generally to walking beam engines and, more specifically, a free walking beam engine that generates power through the reciprocating rotary movement of at least one cylindrical housing having an interior piston that is driven therethrough by a controlled temperature differential to effect the rotation of the cylinder to alternately drive a pair of power shafts.
Walking beams have been in use since the early 1900's in oil fields, steam engines, steel fabrication plants, agriculture and other such applications requiring high torque. The walking beam concept previously relied upon the transmission of rotary movement to a linear push/pull motion due to the devices of the prior art being fixed at the power input, power output and pivot points. Conversely, the present invention has no fixed connections and is alternately supported by a pair of pivot clamps that drive their respective power shafts and relies upon the transmission of linear movement (the piston traveling within the cylinder) to rotary motion (the pivot of the revolving cylinder driving the power shaft) to achieve its objectives.
The power input of the present invention is derived from the principles of thermodynamic differential as applied to the “Stirling heat cycle” and the work of inventor Wally Minto. The key principle of a Stirling engine is that a fixed amount of gas is sealed inside a fixed volume of space within the engine. The movement of the piston in the cylinder is manipulated by selectively raising the temperature in a specific portion of the engine with an external heat source to increase the pressure therein thus forcing the piston to move. However, Stirling engines known in the art have two pistons working conjunctively with one another while the present invention has just one piston required for the operation thereof.
Wally Minto's wonder wheel utilized a combination of thermodynamic differential and gravity to generate power by using natural resources. The original wonder wheel comprised four used propane tanks connected to the ends of two lengths of aluminum angle crossed and secured centrally to one another at a pivotal axis in a pinwheel fashion. The opposing tanks are connected to one another with tubing to form a sealed connection and one tank of each connected pair is filled with a low-boiling liquid such as freon or propane. A reservoir containing solar heated water is disposed underneath the wheel in such a manner that the lowermost tank is totally submerged therein during that part of the wheels rotation. The water heats the liquid which then vaporizes and is forced through the tubing into the empty tank on top which then increases in weight as the weight in the lower tank decreases, thereby creating an imbalance with gravity forcing the heavier tank downwards. This cycle continues as long as the heat source remains at a sufficient temperature to vaporize the liquid within the tanks.
The present invention incorporates aspects of a walking beam, the Stirling engine and Wally Minto's wonder wheel to introduce an energy efficient means of generating mechanical energy for direct use or for conversion to electrical energy by utilizing natural resources such as solar-heated water or recovering waste heat as a power input.
2. Description of the Prior Art
There are other engine devices designed for operating off of power derived from natural resources or recovered waste heat. Typical of these is U.S. Pat. No. 3,400,281 issued to M. J. Malik on Sep. 3, 1968.
Another patent was issued to E. Parr as U.S. Pat. No. 3,338,798 on Aug. 29, 1967 and another patent was issued to H. J. Conrad on Aug. 25, 1970 as U.S. Pat. No. 3,525,215. Another patent was issued on Apr. 11, 1972 to C. McCling as U.S. Pat. No. 3,655,301 and another was issued to W. Hsiao as U.S. Pat. No. 3,864,932 on Feb. 11, 1975. Yet another U.S. Pat. No. 3,996,745 was issued to J. D. Davoud et al. on Dec. 14, 1976 and still yet another was issued on Nov. 15, 1977 to J. Mulder as U.S. Pat. No. 4,058,382.
Another patent was issued to J. L. Liljequist on Mar. 3, 1981 as U.S. Pat. No. 4,253,303. Yet another U.S. Pat. No. 4,397,155 was issued to Gordon Davey on Aug. 9, 1983. Another was issued to J. S. Davey on Oct. 11, 1983 as U.S. Pat. No. 4,408,456. Another patent was issued to E. Dibrell, et al. On Apr. 30, 1985 as U.S. Pat. No. 4,513,576 and still yet another was issued on Feb. 17, 1987 to G. M. Benson as U.S. Pat. No. 4,642,988.
G. M. Benson was issued U.S. Pat. No. 4,745,749 on May 24, 1988 and U.S. Pat. No. 6,195,992 was issued to A. G. Nommensen on Mar. 6, 2001. U.S. Patent Application No. US 2001/0049938 A1 was issued to H. Urasawa et al. on Dec. 13, 2001 and Provisional Specification No. 1361979 was issued to E. H. Cooke-Yarborough on 31 Jul. 1974.
A still for liquor comprising in combination:
An energy conversion system utilizing the Stirling cycle and an electrokinetic transducer to convert thermal energy to electrical energy. This is achieved by replacing in a conventional Stirling cycle engine the usual power piston 7 with a flexible diaphragm. The flexible diaphragm performs the power piston's functions of alternately compressing and expanding the working medium during the Stirling cycle and additionally the resultant pressure variations are used to drive an electrokinetic transducer. When the electrokinetic transducer is driven in this way an electrokinetic liquid is urged back and forth through a porous member so as to develop an alternating electric potential across the transducer's electrodes. This electric potential is used to drive a load and can also be used to drive a; motor which in turn drives the Stirling cycle engine's displacer piston.
In an alternate construction the power piston is not replaced but is connected to a flexible diaphragm that drives the electrokinetic transducer in the same manner as the flexible diaphragm when used as a replacement for the power piston.
A machine having two counter running pistons respectively movably connected to first and second linearly movable displacer means, in which the second linearly movable displacer means has a smaller piston area and an oppositely located larger piston area the smaller piston area of which is hydraulically connected to said first displacer means while passage means establish communication between the larger piston area of said second linearly movable displacer means and a rotary displacer means.
A fluid pump having a piston member reciprocally disposed within a hollow cylinder utilizes the oscillating action of an external walking beam as a prime mover thereof. Turnbuckle means secure the cylinder of the compressor to a stationary surface and further provide a means for adjusting the compression ratio. The piston member possesses the ability to compensate for piston ring wear thereby maintaining the piston ring in sealing engagement with the inner wall of the cylinder.
Apparatus for treating sea water to separate potable water from the saline solution and recover the potable water. The apparatus includes a treating chamber maintained under subatmospheric pressure and into which sea water under pressure is introduced so that a substantial differential of pressure exists to cause the sea water to vaporize. Apparatus within the chamber separates potable water from saline water and collects the potable water while the saline water is discharged.
An improved Stirling cycle type engine is provided wherein the working fluid is a condensable fluid such as steam and a portion of the steam is condensed prior to the introduction of the steam into the cold cylinder zone. Before and/or during compression of the steam in the cold cylinder zone, water is injected in an amount equal to, greater than or less than the amount condensed.
A hot-gas reciprocating machine having a free piston, one face of which varies the volume of a working space while its other face bounds a buffer space of constant pressure. A control mechanism maintains a constant nominal central piston position by momentarily connecting the working space and the buffer space.
An engine other than an internal combustion engine, and preferably one incorporating the underlying philosophy of the Stirling hot gas engine, is physically arranged to both significantly reduce its size and weight relative to earlier designs as well as reduce fluid leakage into or out of the engine's gas enclosure. Size and weight reduction are achieved in several ways including that of moving this disclosure's counterpart to the Stirling crankshaft from outside the working-gas enclosure to inside the working-gas enclosure, or at least closer thereto than in existing designs. In several embodiments of the invention, this rearrangement simultaneously eliminates a major source of fluid leakage. In some designs of this disclosure, the Stirling working-gas enclosure, which consists of a power piston and cylinder, are replaced by a somewhat different appearing and thoroughly sealed working-gas enclosure that includes a bellows, this also assisting in reducing weight. The Stirling displacer piston has also been modified both to improve efficiency and thus reduce weight. In one configuration it houses this invention's counterpart to the conventional Stirling crankshaft, in another embodiment it is driven by and assisted in its principal function by a rotating cam element, and in all embodiments it can be modified to direct the entrapped gas along different paths or routes depending on whether it is moving toward the hot end of the gas enclosure or toward the other end.
A Stirling cycle machine in which the compressor/expander is in driving connection with a first electromagnetic unit, and in which a second electromagnetic unit is connected to the displacer and can be operated as an externally-variable control of the movements of the displacer. In one form of the invention the second unit acts as an electromagnetic damper upon movements which the displacer makes in natural response to those of the compressor. In another form of the invention the second unit positively drives the displacer and the two units are interconnected by means including a phase-shifting device whereby movements of compressor and displacer are kept of equal frequency but variable as to phase difference. Transducers sensitive to position, velocity or acceleration may improve control of the movements of compressor and displacer, and a temperature sensor associated with the “cold finger” of the displacer may further improve control of the movements of the latter.
A power control is disclosed for a free piston Stirling engine having a hermetically sealed vessel enclosing a working space in which oscillates a displacer for circulating working gas through a heater, a regenerator and a cooler for creating a pressure wave in the working gas which acts against a power piston for a producing power stroke. The displacer includes a post mounted in a well which forms a gas spring and cooperates with the working gas pressure wave to maintain the displacer in axial reciprocating motion. The post includes a tapered portion which reciprocates opposite a proximity probe to produce a unique signal for each axial position of the displacer to provide stroke, phase and amplitude information regarding the displacer motion. A gas spring volume control is provided, controlled by the displacer sensor, for adjusting the gas spring stiffness to control the amplitude and phase of the displacer required to produce the power to meet the engine load requirements.
The disclosure provides an oscillatable body mounting a cylinder defining an elongated fluid pressure chamber having at least one end thereof remotely located with respect to the axis of oscillation. The elongated fluid pressure chamber accommodates a free piston which reciprocates along the length of the chamber according to fluid pressure applied thereto. Solenoid operated inlet and exhaust valves are provided at each end of the elongated fluid pressure chamber, and sensing devices, responsive to the passage of the free piston therethrough are disposed on opposite ends of the elongated fluid pressure chamber and adjacent the medial portions thereof to control the operation of the inlet and exhaust valves in accordance with the desired objective to either maximize the extraction of mechanical energy from a pressured gas in the form of oscillating movements of the body, or maximize the expansion of the pressured gas to derive the greatest possible cooling effect therefrom.
A Stirling engine design which is solar powered is disclosed. A solar receiver converts solar radiation to thermal energy, which is stored in a storage chamber. The engine includes a displacer chamber with a displacer piston which divides the chamber into hot and cold subchambers, the hot subchamber being heated by the storage chamber. A mechanism is provided for cooling the cold subchamber. The engine also includes an alternator chamber with an alternator piston which divides the chamber into working and bounce subchambers, the working subchamber being in fluid communication with the cold subchamber of the displacer. The working fluid circulates through the cold subchamber and the working subchamber and obtains heat from the storage chamber. The working fluid is displaced by the displacer piston to drive the alternator piston, and work output is obtained from the alternator piston.
A Stirling engine design which is solar powered is disclosed. A solar receiver converts solar radiation to thermal energy, which is stored in a storage chamber. The engine includes a displacer chamber with a displacer piston which divides the chamber into hot and cold subchambers, the hot subchamber being heated by the storage chamber. A mechanism is provided for cooling the cold subchamber. The engine also includes an alternator chamber with an alternator piston which divides the chamber into working and bounce subchambers, the working subchamber being in fluid communication with the cold subchamber of the displacer. The working fluid circulates through the cold subchamber and the working subchamber and obtains heat from the storage chamber. The working fluid is displaced by the displacer piston to drive the alternator piston, and work output is obtained from the alternator piston.
A Stirling cycle engine having two chambers (formed by 12-14, or 12, 15 and 16) containing a working fluid and rotatable rotor disks (10, 11) coupled to a common output power shaft (3). Each chamber has a hot zone and a cold zone, and a passage (23) leads from the hot zone in one chamber to the cold zone in the other chamber and a passage (24) leads from the hot zone in the other chamber to the cold zone in the one chamber. Each rotor disk (10, 11) has a displacer section (5) for displacing the working fluid and a turbine section (6) having turbine blades (7) arranged along its periphery. The disks (10, 11) rotate out of phase with each other and working fluid from the respective passages (23, 24) is directed to the blades (7) to rotate the disks (10, 11) when engine is in operation.
A stirling cycle engine whose cylinder, including a mount, can be easily fabricated and securely attached. The stirling cycle engine of the invention comprises a casing having a cylindrical portion 2; a metallic cylinder 7 coaxially inserted into the cylindrical portion 2 of the casing 1; a piston 15 inserted into the cylinder 7; a drive mechanism 16 for reciprocally driving the piston 15; and a mount 28 which is attached to an outer periphery of the cylinder 7 for fixing the cylinder 7 to the casing 1 and retaining the drive mechanism 16. The mount 28 is made of a material of low heat conductance, constructed separately from the cylinder 7. The mount 28 is attached to the outer periphery of the cylinder 7. Thus, the easier working thereof is resulted, so that the working time is shortened, to thereby improve productivity, and reduce working costs. Further, The heat from the drive mechanism 16 is less likely to transfer to the cylinder 7 via the mount 28.
A Stirling cycle heat engine comprising hot and cold variable volume chambers inter-communicating through a regenerator disposed centrally between the chambers and attached to the chambers by way of a pair of movable inner walls each of which forms an inner end part of one of the walls.
A primary object of the present invention is to provide a walking beam engine that generates mechanical power by having a pivoting cylinder alternately drive a pair of parallel power output drive shafts.
Another object of the present invention is to provide a walking beam engine that derives its power from a piston that travels from the bottom of the cylinder to the top through a thermodynamic differential applied to a working fluid contained therein.
Yet another object of the present invention is to provide a walking beam engine that receives its power input from natural means such as ambient heat, solar-heated water or recovered waste heat.
An additional object of the present invention is to provide a walking beam engine having a recovery stroke that ends and a power stroke begins less than 90° from horizontal, typically 15° from vertical.
Still yet another object of the present invention is to provide a walking beam engine that is simple and easy to use.
Another object of the present invention is to provide an infusion and encapsulation platform attachment for a walking beam engine that is inexpensive to manufacture and operate.
Another object of the present invention is to provide an infusion and encapsulation platform attachment for a walking beam engine that allows easy removal of power cylinders for maintenance and upgrading or for installation of additional power cylinders to expand engine capacity.
Additional objects of the present invention will appear as the description proceeds.
The foregoing and other objects and advantages will appear from the description to follow. In the description reference is made to the accompanying drawings, which forms a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments will be described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the invention. In the accompanying drawings, like reference characters designate the same or similar parts throughout the several views.
The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is best defined by the appended claims.
In order that the invention may be more fully understood, it will now be described, by way of example, with reference to the accompanying drawing in which:
Turning now descriptively to the drawings, in which similar reference characters denote similar elements throughout the several views, the figures illustrate the Thermodynamic Walking Beam Engine of the present invention. With regard to the reference numerals used, the following numbering is used throughout the various drawing figures.
The following discussion describes in detail one embodiment of the invention (and several variations of that embodiment). This discussion should not be construed, however, as limiting the invention to those particular embodiments, practitioners skilled in the art will recognize numerous other embodiments as well. For definition of the complete scope of the invention, the reader is directed to appended claims.
While certain novel features of this invention have been shown and described and are pointed out in the annexed claims, it is not intended to be limited to the details above, since it will be understood that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation can be made by those skilled in the art without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention.
This is a continuation-in-part of Ser. No. 10/677,517, filed 2 Oct. 2003 now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3338798 | Parr | Aug 1967 | A |
3400281 | Malik | Sep 1968 | A |
3525215 | Conrad | Aug 1970 | A |
3655301 | McClung | Apr 1972 | A |
3864932 | Hsiao | Feb 1975 | A |
3996745 | Davoud et al. | Dec 1976 | A |
4058382 | Mulder | Nov 1977 | A |
4145890 | Cruz | Mar 1979 | A |
4195486 | Rivera-Cruz | Apr 1980 | A |
4202178 | Peterman et al. | May 1980 | A |
4253303 | Liljequist | Mar 1981 | A |
4311015 | Rust | Jan 1982 | A |
4397155 | Davey | Aug 1983 | A |
4408456 | Rauch | Oct 1983 | A |
4513576 | Dibrell et al. | Apr 1985 | A |
4642988 | Benson | Feb 1987 | A |
4745749 | Benson | May 1988 | A |
6195992 | Nommensen | Mar 2001 | B1 |
6644026 | Shimshi | Nov 2003 | B2 |
20010049938 | Urasawa et al. | Dec 2001 | A1 |
Number | Date | Country |
---|---|---|
1.361.979 | Jul 1974 | GB |
1.487.151 | Sep 1977 | GB |
Number | Date | Country | |
---|---|---|---|
Parent | 10677517 | Oct 2003 | US |
Child | 11373454 | US |