Electronic thermometers are widely used in the healthcare field for measuring a patient's body temperature. A typical electronic thermometer includes a sensor probe having an elongated shaft portion and a tip portion. The tip portion contains electronic temperature sensors, such as thermistors or other temperature-sensitive elements. Often, a covering (e.g., aluminum cap) for the tip portion makes thermal contact with the temperature sensitive elements contained within the tip portion. When the tip of the probe is placed, for example, in a patient's mouth, the patient's body heats the tip and the temperature sensor components sense the temperature of the tip.
A base unit typically houses additional electronic components for the thermometer. These components may be connected to the electronic temperature sensor components in the probe shaft by wires or the like. In some instances, a handle portion of the probe shaft contains electronics in addition to or instead of the base unit. The electronic components receive input from the temperature sensor components for generating an output representative of the patient's temperature. The thermometer usually displays this output to a user. Additional features of known electronic thermometers include audible temperature level notifications such as beeps or tone alert signals. A disposable cover or sheath is typically fitted over the shaft portion and disposed after each use of the thermometer for sanitary reasons.
The construction of the probe is important for ensuring accurate temperature measurements and repeatability during manufacturing. One known probe construction mounts the electronic components (e.g., the temperature sensitive elements) on a flexible substrate that supports and provides electrical connection for the components. The combination of the components and the flexible substrate is commonly called a “flex circuit”. The substrate may be initially flat to facilitate ease of mounting the components, but can be bent into position upon assembly into the probe. For example, the flexible substrate may be bent to place a thermistor in position for contacting the probe tip covering. The components can be glued in place with a thermally conductive adhesive in the final assembly. However, before the adhesive is brought into contact with the components and/or before the adhesive sets, the components may undesirably move. The result of motion can be insufficient contact of the components with the tip and/or other parts of the probe to heat or sense temperature in the final assembly. Likewise, the components may be positioned incorrectly or with an unacceptable level of variability from one thermometer to another.
Aspects of the invention provide a molded substrate in which at least one positioning element is integrally formed. The positioning element may be a recess or the like sized and shaped for receiving a sensing element therein. As such, aspects of the invention permit reliable and consistent positioning of a sensing element within a medical device probe. Advantageously, such aspects minimize assembly failures and achieve a highly repeatable assembly process. In addition, a conductive circuit pattern formed directly on the substrate's surface electrically connects the sensing element to other electronic components of the medical device. This eliminates the need for additional wiring or the like and, thus, improves reliability and ease of assembly.
In an aspect of the invention, an electronic thermometer has a probe adapted to be heated by a subject for use in measuring the temperature of the subject. The probe includes a molded plastic substrate that has a conductive circuit pattern formed directly on its surface. The circuit pattern extends at least from a first end margin of the molded plastic substrate to a second end margin opposite the first. The thermometer also includes a temperature sensor mounted on the molded plastic substrate for detecting the temperature of the probe. The temperature sensor is positioned on the molded plastic substrate at the first end margin by at least one positioning element integrally formed in the substrate. The conductive circuit pattern provides an electrical connection between the temperature sensor and a processor.
A method of making a sensor probe for an electronic thermometer embodying aspects of the invention includes injecting thermoplastic resin into one or more cavities to form a plastic substrate. At least one of the cavities defines a positioning element integrally formed in the plastic substrate at a first end margin. The method also includes forming a conductive circuit pattern directly on a surface of the plastic substrate from one end margin to the other, positioning a temperature sensor relative to the positioning element, and mounting the positioned temperature sensor on the plastic substrate. The conductive circuit pattern provides an electrical connection between the temperature sensor and a processor of the electronic thermometer for generating a temperature measurement as a function of a temperature detected by the temperature sensor.
A sensor probe for an electronic thermometer embodying aspects of the invention includes a molded interconnect device having an electrically conductive circuit pattern formed on at least one surface of the device and a temperature sensing element attached to the molded interconnect device and electrically connected to the electrically conductive circuit pattern.
In yet another aspect of the invention, a medical measurement device includes a sensor support having opposite first and second end margins and a sensing element attached to the support at the first end margin for sensing a physiological parameter. The support includes a plastic substrate having at least one positioning element integrally formed therein for positioning the sensing element on the plastic substrate at the first end margin of the support. The sensor probe also includes an electrically conductive circuit pattern formed directly on a surface of the support for electrically connecting the sensing element to a controller of the medical measurement device.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Other features will be in part apparent and in part pointed out hereinafter.
Aspects of the invention relate to a medical measurement device (e.g., electronic thermometer) for sensing a physiological parameter (e.g., temperature, flow rate, concentration, magnetic field force, pressure, weight, density, and other parameters associated with a physiological system). In particular, an embodiment of the invention includes a molded plastic substrate having opposite first and second ends. A sensing element for measuring the physiological parameter is mounted on the plastic substrate at a first end margin and conductive traces are applied to one or more surfaces of the substrate to electrically connect the sensing element to a controller of the medical measurement device.
Referring first to
Referring still to
Although illustrated as having generally rectangular surfaces, the MID is not limited to any particular shape. For instance, molded substrate 37 may have a generally cylindrical, prismatic, and/or other three dimensional shape. The scope of the invention contemplates embodiments in which the MID has a shape which includes one or more functional design features. For example, the tip portion 33 may be shaped for effectively measuring a particular object, cavity, and/or medium. More specifically, the tip portion 33 of probe 17 may have a first shape when used for measuring the body temperature of adults and may have a second shape which is smaller than the first shape when used for measuring the body temperature of children. Similarly, the tip portion 33 of probe 17 may have an elongated cone shape for measuring the temperature of an ear cavity while the tip portion 33 of probe 17 may have a rectangular prismatic shape for measuring the temperature of a mouth cavity. Several examples are discussed herein.
Referring generally to
In an embodiment illustrated by
Still referring to
Because a protrusion or recess forming the positioning element 53, 55 is part of the shape of the plastic substrate 37, the protrusion or recess is included in a mold used to manufacture the plastic substrate 37. Advantageously, the positioning element 53, 55 is consistently configured and requires no additional parts. It is to be understood that the positioning element 53, 55 does not have to structurally support the electronic component. For example the positioning element 53, 55 may be a marking on the surface of the MID which is optically indicative of the position of the electronic component.
In an embodiment of the invention illustrated by
In one embodiment, the shaft covering 59 is shaped to include one or more elements for use in securing the probe shaft 29 inside the handle 27. In an alternative embodiment, an element bonded to shaft 29 or integrally formed as part of shaft 29 helps secure the shaft to handle 27. The handle 27 is placed on or around the probe 17 and an adhesive secures the handle 27 to the probe 17. In another example, the covering 59 includes a pair of diametrical wings (not shown) extending radially outward from the proximal end of the probe shaft 29 for securing it within the handle 27. In yet another embodiment, the shaft covering 59 is shaped to provide the handle 27 at the proximal end of the probe shaft 29.
Referring to
Referring further to
In the embodiment illustrated by
The present invention further contemplates a method of making the sensor probe 17 described above. The method includes injecting thermoplastic resin into one or more cavities to form a plastic substrate 37. The thermoplastic resin may include plateable resin and or non-plateable resin. Exemplary plateable resins include one or more of the following: polypropylene, acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polysulphone (PSF), polyethersulphone (PES), polyetherimide (PEI), polyphthalamide (PPA), polyetheretherketone (PEEK), liquid crystal polymers (LCP), syndiotactic polystyrene (SPS) etc. Exemplary non-plateable resins include one or more of the following: polyphenylene sulfide (PPS), polyethylene terephthelate (PET), polybutylene terephthalate (PBT), etc. A portion of the plastic substrate 37 including a front surface of the plastic substrate 37 is referred to as a first end margin of the plastic substrate 37. A remaining portion of the plastic substrate 37 including a rear surface of the plastic surface is referred to as the second end margin of the plastic substrate 37. The method also includes applying a conductive circuit pattern 39 to a plurality of surfaces of the plastic substrate 37, thereby forming an MID. Exemplary techniques for applying the conductive circuit pattern 39 include one or more of the following techniques: electroplating, hot-stamping, capture process, transfer process, laser-direct structuring, laser subtractive structuring, and photoimaging, etc. The method further includes attaching (e.g., soldering, adhering, bonding, etc.) the temperature sensor 43 (or another electronic component) to the first end of the plastic substrate 37 such that the temperature sensor 43 is electrically connected to the circuit pattern. The circuit pattern electrically connects the temperature sensor 43 with base unit 13 (e.g., processor) of the electronic thermometer 11.
According to an embodiment, injecting the thermoplastic resin into one or more cavities to form a plastic substrate 37 includes a two-shot process for making an MID. The two-shot process creates a plastic substrate 37 having surfaces comprising plateable and non-plateable plastic, as further discussed below. The areas of the surface comprising the plateable plastic define the circuit pattern 39. According to the embodiment, the conductive circuit pattern 39 is applied by plating the areas of the surface comprising the plateable plastic with one or more conductive materials. Exemplary conductive materials forming the circuit pattern include or more of the following: electroplated copper, tin, lead, nickel, and/or gold; electroless copper and/or nickel; immersion gold and/or tin; silver ink; carbon ink, etc. According to one embodiment, applying the conductive circuit pattern 39 also includes applying a protective overcoat (e.g., nickel, gold, etc.) to the conductive material. According to another embodiment, applying the conductive circuit pattern 39 also includes attaching a receiving mechanism (mounting pads, plug-in contacts, sliding contacts, fastener elements, etc.) to the plastic substrate 37 for receiving electronic components. According to one embodiment, the first end of the plastic substrate 37 includes a recess, pocket, protrusion or other indicator (i.e., positioning element 53, 55) for positioning the temperature sensor 43 (or another electronic component), attaching the component includes locating attaching it according to the indicator.
According to one embodiment utilizing the two-shot process for making an MID, injecting the thermoplastic resin into one or more cavities to form a plastic substrate 37 includes injecting a first shot of plateable resin into a first cavity to form a preliminary plastic substrate 37. The preliminary plastic substrate 37 (or portion thereof) is then introduced into a second cavity. A second shot of non-plateable thermoplastic resin is injected into the second cavity to form the plastic substrate 37. The circuit pattern is defined by areas of the surface of the plastic substrate 37 which are plateable (e.g., not covered by the non-plateable thermoplastic resin). Accordingly, incongruence between the first and second cavities corresponds to the circuit pattern 39. More specifically, when the preliminary plastic substrate 37 having a shape defined by the first cavity is introduced into the second cavity, void(s) are formed between the surface(s) of preliminary plastic substrate 37 and the second cavity. When the second shot of non-plateable thermoplastic resin is injected into the second mold, it bonds only to areas of the surfaces of the preliminary plastic substrate 37 which define the void(s). Thus, the particular circuit pattern 39 is formed from the plateable plastic of the preliminary plastic substrate 37 remaining exposed by the plastic substrate 37.
According to another embodiment utilizing the two-shot process for making an MID, injecting the thermoplastic resin into one or more cavities to form a plastic substrate 37 includes injecting a first shot of non-plateable resin into a first cavity to form a preliminary plastic substrate 37. The preliminary plastic substrate 37 (or portion thereof) is then introduced into a second cavity. A second shot of plateable thermoplastic resin is injected into the second cavity to form the plastic substrate 37. The circuit pattern is defined by areas of the surface of the plastic substrate 37 which are plateable (e.g., formed on the surface of the preliminary plastic substrate 37). Accordingly, incongruence between the first and second cavities corresponds to the circuit pattern 39. More specifically, when the preliminary plastic substrate 37 having a shape defined by the first cavity is introduced into the second cavity, void(s) are formed between the surface(s) of preliminary plastic substrate 37 and the second cavity. When the second shot of plateable thermoplastic resin is injected into the second mold, it bonds only to areas of the surface(s) of the preliminary plastic substrate 37 which define the void(s). Thus, the particular circuit pattern 39 is formed from the plateable plastic bonded to the surface(s) of the preliminary plastic substrate 37.
In one embodiment, the first and second cavities are two separate molds. In another embodiment, the first cavity is a mold having a first shape and the second cavity is the same mold reconfigured to have a second shape. For example, the mold may include a sliding mechanism which is used to change the geometry of the mold cavity between shots. Although not illustrated, those skilled in the art will recognize that the molds defining the first and second cavities will have a reverse construction with respect to the desired shape of molded plastic substrate 37.
According to an embodiment, injecting the thermoplastic resin into one or more cavities to form a plastic substrate 37 includes a one-shot process for making the MID. In particular, plateable thermoplastic resin is injected into a cavity to form the plastic substrate 37. According to the embodiment, the conductive circuit pattern 39 is applied to a plurality of surfaces according to photo-imaging or laser-imaging techniques. For example, the conductive circuit pattern 39 may be applied using a subtractive photo-imaging technique. In particular, an electroless material (e.g., electroless copper) is applied to the plurality of surfaces of the plastic substrate 37. A photosensitive polymer resist is then applied to the plastic substrate 37. The plastic substrate 37 is thereafter exposed to ultra-violet light to selectively harden the resist on areas of the surfaces of the plastic substrate 37 to define the circuit pattern 39. The resist is hardened on areas of the surface which are not included in the circuit pattern 39. The unexposed resist is removed, exposing the circuit pattern comprised of the electroless material. The electroless material is then electroplated with a conductive material (e.g., tin/led, nickel/gold). The hardened resist and electroless material underlying the hardened resist are removed. It will be appreciated that alternative or additional techniques (e.g., additive photo-imaging) may be used to apply the conductive circuit pattern 39 without departing from the scope of the present invention.
According to an embodiment, the described method for making probe 17 further includes introducing at least a portion of the plastic substrate 37 shaft with the conductive circuit pattern 39 applied thereto (e.g., the MID shaft) into an overmold cavity and injecting thermoplastic resin into the overmold cavity. The injected thermoplastic resin bonds to the MID shaft to form casing 59 for the at least portion of the MID shaft. According to one embodiment, the temperature sensor 43 (or another electronic component) is attached to the end/portion of the MID after the formation of the casing 59. Because the temperature sensor 43 is attached to the MID after the formation of the casing 59, the temperature sensor 43 can be accurately located within the probe 17. In particular, the temperature sensor 43 will not be dislocated during the formation of the casing 59. Accordingly, the probe 17 can be consistently constructed to have the temperature sensor 43 accurately located. The first step in constructing this shaft assembly is to mold a base part, namely, substrate 37. Then substrate circuitry, including circuit patterns 39, is applied to shaft substrate 37 and the flex connecting pins are pressed into it. Overmolding substrate 37 forms the outside shape of the shaft 29 in all areas except its distal end margin, namely tip 33.
Although described primarily in the context of an electronic thermometer having a probe in which electronic sensor components are located, it is to be understood that aspects of the invention are useful in constructing various medical devices in which consistent and repeatable component placement are desirable.
The order of execution or performance of the operations in embodiments of the invention illustrated and described herein is not essential, unless otherwise specified. That is, the operations may be performed in any order, unless otherwise specified, and embodiments of the invention may include additional or fewer operations than those disclosed herein. For example, it is contemplated that executing or performing a particular operation before, contemporaneously with, or after another operation is within the scope of aspects of the invention.
When introducing elements of aspects of the invention or the embodiments thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
Having described aspects of the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of aspects of the invention as defined in the appended claims. As various changes could be made in the above constructions, products, and methods without departing from the scope of aspects of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
3283580 | Nanigian et al. | Nov 1966 | A |
3702076 | Georgi | Nov 1972 | A |
3729998 | Mueller et al. | May 1973 | A |
3832669 | Mueller et al. | Aug 1974 | A |
3893058 | Keith | Jul 1975 | A |
3915003 | Adams | Oct 1975 | A |
4008614 | Turner et al. | Feb 1977 | A |
4036211 | Veth et al. | Jul 1977 | A |
4054057 | Kluge | Oct 1977 | A |
4112762 | Turner et al. | Sep 1978 | A |
4143348 | Hoge | Mar 1979 | A |
4159766 | Kluge | Jul 1979 | A |
4161880 | Prosky | Jul 1979 | A |
4183248 | West | Jan 1980 | A |
4282507 | Tindall et al. | Aug 1981 | A |
4307373 | Johnston | Dec 1981 | A |
4317367 | Schonberger | Mar 1982 | A |
4411266 | Cosman | Oct 1983 | A |
4411535 | Schwarzschild | Oct 1983 | A |
4420738 | Rehmann et al. | Dec 1983 | A |
4437084 | Clayton, Jr. | Mar 1984 | A |
4447884 | Wada | May 1984 | A |
4464067 | Hanaoka | Aug 1984 | A |
4487208 | Kamens | Dec 1984 | A |
4531842 | Schonberger | Jul 1985 | A |
4536851 | Germanton et al. | Aug 1985 | A |
4572365 | Bruno et al. | Feb 1986 | A |
4574359 | Ishizaka et al. | Mar 1986 | A |
4592000 | Ishizaka et al. | May 1986 | A |
4602871 | Hanaoka | Jul 1986 | A |
4629336 | Ishizaka | Dec 1986 | A |
4642785 | Packard et al. | Feb 1987 | A |
4727500 | Jackson et al. | Feb 1988 | A |
4728199 | Murai et al. | Mar 1988 | A |
4729672 | Takagi | Mar 1988 | A |
4733974 | Hagerman | Mar 1988 | A |
4735512 | Suzuki | Apr 1988 | A |
4762429 | Fujikawa | Aug 1988 | A |
4771791 | Kubouchi | Sep 1988 | A |
4811198 | Ota et al. | Mar 1989 | A |
4843577 | Muramoto | Jun 1989 | A |
4866621 | Ono | Sep 1989 | A |
4878184 | Okada et al. | Oct 1989 | A |
D309866 | Fukuda et al. | Aug 1990 | S |
4986669 | Yamaguchi | Jan 1991 | A |
4988212 | Sun et al. | Jan 1991 | A |
5011294 | Yamaguchi | Apr 1991 | A |
5013161 | Zaragoza et al. | May 1991 | A |
5037488 | Wienand | Aug 1991 | A |
5066141 | Ikeda et al. | Nov 1991 | A |
5116136 | Newman et al. | May 1992 | A |
5133606 | Zaragoza et al. | Jul 1992 | A |
5142266 | Friese et al. | Aug 1992 | A |
5149200 | Shiokawa et al. | Sep 1992 | A |
5165798 | Watanabe | Nov 1992 | A |
5178468 | Shiokawa et al. | Jan 1993 | A |
5193912 | Saunders | Mar 1993 | A |
5207765 | Eiermann et al. | May 1993 | A |
5259389 | Muramoto et al. | Nov 1993 | A |
5305381 | Wang et al. | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5370459 | Culbertson et al. | Dec 1994 | A |
5388134 | Douglass et al. | Feb 1995 | A |
5392031 | Toriumi et al. | Feb 1995 | A |
5417207 | Young et al. | May 1995 | A |
5438322 | Martin et al. | Aug 1995 | A |
5445154 | Larson et al. | Aug 1995 | A |
5458121 | Harada | Oct 1995 | A |
5473629 | Muramoto | Dec 1995 | A |
5473937 | McCluskey et al. | Dec 1995 | A |
5497139 | Takahashi et al. | Mar 1996 | A |
5513235 | Douglass et al. | Apr 1996 | A |
5575563 | Chiu | Nov 1996 | A |
5632555 | Gregory et al. | May 1997 | A |
5700416 | Masui et al. | Dec 1997 | A |
5725308 | Smith et al. | Mar 1998 | A |
5738441 | Cambridge et al. | Apr 1998 | A |
5749656 | Boehm et al. | May 1998 | A |
D395609 | Knieriem et al. | Jun 1998 | S |
5789920 | Gass | Aug 1998 | A |
5820263 | Ciobanu | Oct 1998 | A |
5883646 | Beauchamp | Mar 1999 | A |
5887338 | Wildgen | Mar 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
6000846 | Gregory et al. | Dec 1999 | A |
6006120 | Levin | Dec 1999 | A |
6068399 | Tseng | May 2000 | A |
6091317 | Lyle et al. | Jul 2000 | A |
6147335 | Von Arx et al. | Nov 2000 | A |
6236880 | Raylman | May 2001 | B1 |
6241146 | Wienand et al. | Jun 2001 | B1 |
6251107 | Schaer | Jun 2001 | B1 |
6286995 | Takahashi et al. | Sep 2001 | B1 |
6293700 | Lund et al. | Sep 2001 | B1 |
6297723 | Shoji et al. | Oct 2001 | B1 |
6319448 | Kirchdoerffer et al. | Nov 2001 | B1 |
6337470 | Von Arx et al. | Jan 2002 | B1 |
6383144 | Mooney et al. | May 2002 | B1 |
6418359 | Wolf et al. | Jul 2002 | B1 |
6494830 | Wessel | Dec 2002 | B1 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6534994 | Doderer et al. | Mar 2003 | B1 |
6568849 | Chen et al. | May 2003 | B1 |
6588931 | Betzner et al. | Jul 2003 | B2 |
6591703 | Gass et al. | Jul 2003 | B2 |
6637935 | Chen | Oct 2003 | B2 |
6639505 | Murata et al. | Oct 2003 | B2 |
6686828 | Bernitz et al. | Feb 2004 | B2 |
6698922 | Adachi et al. | Mar 2004 | B2 |
6699188 | Wessel | Mar 2004 | B2 |
6730025 | Platt | May 2004 | B1 |
6746150 | Wienand et al. | Jun 2004 | B2 |
6756585 | Damaschke | Jun 2004 | B2 |
6782744 | Tashiro et al. | Aug 2004 | B1 |
6789936 | Kraus et al. | Sep 2004 | B1 |
6827487 | Baumbach | Dec 2004 | B2 |
6827488 | Knieriem et al. | Dec 2004 | B2 |
6836651 | Segal et al. | Dec 2004 | B2 |
6839651 | Lantz et al. | Jan 2005 | B2 |
6854880 | Hsieh | Feb 2005 | B2 |
6899457 | Kurano | May 2005 | B2 |
6918696 | Hoshisashi et al. | Jul 2005 | B2 |
6938474 | Melvas | Sep 2005 | B2 |
6939039 | Brunvoll | Sep 2005 | B2 |
6957911 | Wong | Oct 2005 | B2 |
6969354 | Marian | Nov 2005 | B1 |
6976783 | Chen | Dec 2005 | B2 |
6979329 | Burnside et al. | Dec 2005 | B2 |
6981796 | Hsieh | Jan 2006 | B2 |
7004622 | Hardwicke et al. | Feb 2006 | B2 |
7021824 | Wawro et al. | Apr 2006 | B2 |
7028568 | Tokunaga et al. | Apr 2006 | B2 |
7036984 | Penney et al. | May 2006 | B2 |
7115850 | Niemann et al. | Oct 2006 | B2 |
7255475 | Quinn et al. | Aug 2007 | B2 |
7267547 | Schmid et al. | Sep 2007 | B2 |
7303332 | Yu | Dec 2007 | B2 |
7314310 | Medero | Jan 2008 | B2 |
7374336 | Fraden | May 2008 | B2 |
7395173 | Kautz et al. | Jul 2008 | B2 |
7494274 | Sisk et al. | Feb 2009 | B2 |
7549792 | Bisch et al. | Jun 2009 | B2 |
7613590 | Brown | Nov 2009 | B2 |
7722247 | Yerlikaya | May 2010 | B2 |
20020090020 | Yu | Jul 2002 | A1 |
20020109577 | Loose et al. | Aug 2002 | A1 |
20020135454 | Ichida et al. | Sep 2002 | A1 |
20020172258 | Adachi et al. | Nov 2002 | A1 |
20030002562 | Yerlikaya et al. | Jan 2003 | A1 |
20030058920 | Lyle | Mar 2003 | A1 |
20030065322 | Panescu et al. | Apr 2003 | A1 |
20030149349 | Jensen | Aug 2003 | A1 |
20030176810 | Maahs et al. | Sep 2003 | A1 |
20030212438 | Nova et al. | Nov 2003 | A1 |
20040071182 | Quinn et al. | Apr 2004 | A1 |
20040071188 | Knieriem et al. | Apr 2004 | A1 |
20040081225 | Janicek | Apr 2004 | A1 |
20040151229 | Ruettiger | Aug 2004 | A1 |
20050187487 | Azizkhan et al. | Aug 2005 | A1 |
20060061451 | Chen | Mar 2006 | A1 |
20060075815 | Tanaka et al. | Apr 2006 | A1 |
20060139037 | Hughes | Jun 2006 | A1 |
20060152238 | Beaman et al. | Jul 2006 | A1 |
20060239332 | Harr et al. | Oct 2006 | A1 |
20070098040 | Sisk et al. | May 2007 | A1 |
20070100253 | Sisk et al. | May 2007 | A1 |
20070189358 | Lane et al. | Aug 2007 | A1 |
20080294065 | Waldhoff et al. | Nov 2008 | A1 |
20090118618 | Harhen | May 2009 | A1 |
20100006327 | Yu et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
1039281 | Sep 2000 | EP |
2580806 | Oct 1986 | FR |
2266771 | Nov 1993 | GB |
2284566 | Jun 1995 | GB |
01312432 | Dec 1989 | JP |
02049129 | Feb 1990 | JP |
6241914 | Sep 1994 | JP |
09089680 | Apr 1997 | JP |
11030553 | Feb 1999 | JP |
11-173922 | Jul 1999 | JP |
2006186357 | Jul 2006 | JP |
0131305 | May 2001 | WO |
03002966 | Jan 2003 | WO |
2004107989 | Dec 2004 | WO |
Entry |
---|
European Search Report regarding related application serial No. EP 08169983.7 dated Sep. 5, 2011, 6 pgs. |
Number | Date | Country | |
---|---|---|---|
20090168838 A1 | Jul 2009 | US |