Thin film battery on an integrated circuit or circuit board and method thereof

Information

  • Patent Grant
  • 9634296
  • Patent Number
    9,634,296
  • Date Filed
    Wednesday, February 26, 2014
    10 years ago
  • Date Issued
    Tuesday, April 25, 2017
    7 years ago
Abstract
The present invention relates to flexible thin film batteries on semiconducting surface or the conductive or insulating packaging surface of a semiconductor device and methods of constructing such batteries. Electrochemical devices may be glued to a semiconducting surface or the conductive or insulating packaging surface of a semiconductor device or deposited directly thereon. The invention also relates to flexible thin film batteries on flexible printed circuit board where the electrochemical devices may also be glued or deposited on the flexible printed circuit board.
Description
FIELD OF THE INVENTION

The field of this invention is the device, composition, method of depositing and fabrication of flexible solid-state, thin-film, secondary and primary electrochemical devices, including batteries, onto a semiconducting surface, onto a conductive or insulating surface of a semiconductor device, such as integrated circuit chips, or onto a circuit board, such as printed circuit board.


BACKGROUND

Typical electrochemical devices comprise multiple electrically active layers such as an anode, cathode, electrolyte, substrate, current collectors, etc. Some layers, such as, for example, an anode layer comprising lithium, are comprised of materials that are very environmentally sensitive. The substrate may, for example, not be a separate battery element but instead be provided by a semiconducting surface or onto a conductive or insulating packaging surface of a semiconductor device to which the battery is attached. Such batteries require an encapsulation to protect such environmentally sensitive material. Some schemes encapsulate the sensitive layers of electrochemical devices, such as encapsulation with gold foil. Other schemes encapsulate the device with pouch, for example, made of metal and plastic, that seals around the perimeter of the device.


SUMMARY

An exemplary embodiment of the present invention includes a battery fabricated on a semiconductor chip or fabricated on a flexible printed circuit board. The battery may, for example, include a first electrical contact, a bonding layer coupled with the first electrical contact and having a first embedded conductor, at least one battery cell structure in selective electrical contact with said first electrical contact via the first embedded conductor, a semiconducting surface or a conductive or insulating packaging surface of a semiconductor device.


The bonding layer coupled with the semiconducting surface or a conductive or insulating packaging surface of a semiconductor device may have more than one conductor, such an optional, second embedded conductor, which in turn creates an optional, selective electrical contact of the semiconducting surface or a conductive or insulating packaging surface of a semiconductor device with said first electrical contact. In any case, the bonding layer and the at least one battery cell structure may be sandwiched between the first contact layer and the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device.


The first electrical contact may, for example, include an encapsulate metal. The bonding layer may be an adhesive material, an insulating material, a plastic, a polymeric material, glass, and/or fiberglass. An insulative reinforcement layer may be embedded within the bonding layer. Such a reinforcement layer may be selectively conductive. The conductor may be, for example, a tab, a wire, a metal strip, a metal ribbon, multiple wires, multiple metal strips, multiple metal ribbons, a wire mesh, perforated metal, a metal coating applied to the adhesive layer, or a disk. The conductor may be woven within the bonding layer and the bonding layer may include a slit within which the embedded conductor is woven.


The battery cell structure may include an anode, an electrolyte, a cathode, and a barrier layer. The cathode may, for example, not be annealed at all, annealed at lower temperatures, or annealed at higher temperatures, by using convection furnaces, rapid thermal anneal methods, or by a laser annealing and/or crystallization process.


Another exemplary embodiment of the present invention includes a method of manufacturing a thin film battery comprising, in no particular order, the steps of creating a selectively conductive bonding layer, coupling the bonding layer with a first contact layer, coupling a first side of a battery cell structure with a semiconducting surface or a conductive or insulating surface of a semiconductor device or flexible printed circuit board, and coupling a second side of the battery cell structure with the bonding layer. Optionally, the bonding layer may be made selectively conductive at an additional location at which the selectively conductive bonding layer creates an electrical contact between the first contact layer and the semiconducting surface or a conductive or insulating surface of a semiconductor device or flexible printed circuit board. Yet another exemplary embodiment of the present invention includes a method of manufacturing a thin film battery comprising, in no particular order, the steps of creating a selectively conductive bonding layer, coupling the bonding layer with a first contact layer, coupling a first side of a battery cell with the first contact layer as well, coupling the bonding layer with the a semiconducting surface or a conductive or insulating surface of a semiconductor device or flexible printed circuit board, and coupling a second side of the battery cell structure with the bonding layer.


Examples of this embodiment may include creating a battery cell structure with an anode, cathode, and electrolyte layers, embedding at least one conductor within the bonding layer, weaving at least one conductive wire through the bonding layer wherein selective portions of the conductive wire are exposed, heating the bonding layer and compressing the conductor within the bonding layer, and insulating the battery with an insulating material. This exemplary embodiment may include providing an insulative reinforcement layer embedded within the bonding layer. The reinforcement layer may be selectively conductive.


Yet another exemplary embodiment of the present invention involves a battery on a flexible printed circuit board wherein the first side of the battery cell structure is at least in direct mechanical contact with the flexible printed circuit board. The battery includes a first electrical contact, a bonding layer coupled with the first electrical contact and comprising an first embedded conductor, at least one battery cell structure in selective electrical contact with the first electrical contact via the first embedded conductor, the bonding layer coupled with the first electrical contact and comprising a second embedded conductor that is in selective electrical contact with the first electrical contact and the flexible printed circuit board. The bonding layer and the at least one battery cell structure are sandwiched between the first contact layer and a flexible printed circuit board.


Another exemplary embodiment of the present invention involves a battery on a flexible printed circuit board wherein the battery cell structure is not in direct mechanical contact with the flexible printed circuit board but mechanically separated by at least the bonding layer. The battery includes a first electrical contact, a bonding layer coupled with the first electrical contact and comprising a first embedded conductor, at least one battery cell structure in selective electrical contact with the first electrical contact via said first embedded conductor, the bonding layer coupled with the flexible printed circuit board and having an optional, second embedded conductor in the bonding layer, which in turn creates an optional, selective electrical contact of the flexible printed circuit board with said first electrical contact. The bonding layer and the at least one battery cell structure are sandwiched between the first contact layer and a flexible printed circuit board.


In another exemplary embodiment, a method of manufacturing a thin film battery includes creating a selectively conductive bonding layer, coupling the bonding layer with a first contact layer, coupling a first side of a battery cell structure with a flexible printed circuit board; and coupling a second side of the battery cell structure with the bonding layer.


In yet another exemplary embodiment, a method of manufacturing a thin film battery includes creating a selectively conductive bonding layer, coupling the bonding layer with a first contact layer, coupling a first side of a battery cell structure with the first contact layer; and coupling a second side of the battery cell structure with the selectively conductive bonding layer, and coupling the bonding layer with the flexible printed circuit board.


Another exemplary embodiment of the present invention includes the electrical connection between the battery cell and the semiconducting surface or the conductive packaging surface of a semiconductor device. The electrical connection between the battery cell and the semiconducting surface or the conductive packaging surface of a semiconductor device can be made by direct physical contact or by wire bonding.


In another aspect, prior to its integration onto the semiconducting surface or a conductive or insulating packaging surface of a semiconductor device or into or onto a flexible printed circuit board, the battery may be fabricated as a discrete device and then integrated as a whole together with its substrate and its encapsulation.


Another embodiment of the present invention includes the electrical connection between a multi-battery cell stack and the semiconducting surface or the conductive packaging surface of a semiconductor device.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A shows a side view of an example of a thin film battery with a semiconducting surface or the conductive or insulating surface of a semiconductor device or a flexible printed circuit board according to an exemplary embodiment of the present invention.



FIG. 1B shows a side view of another example of a thin film battery with a semiconducting surface or the conductive or insulating packaging surface of a semiconductor device or a flexible printed circuit board according to an exemplary embodiment of the present invention.



FIG. 2 shows a side view of an example of a thin film battery with a semiconducting surface or the conductive or insulating surface of a semiconductor device according to another exemplary embodiment of the present invention.



FIG. 3A shows a side view of an exemplary thin film battery on a semiconducting surface or the conductive or insulating packaging surface of a semiconductor device or a flexible printed circuit board according to another exemplary embodiment of the present invention.



FIG. 3B shows a side view of an exemplary thin film battery on a semiconducting surface or the conductive or insulating surface of a semiconductor device or flexible printed circuit board according to another exemplary embodiment of the present invention.



FIG. 3C shows a top view of an exemplary thin film battery on a semiconducting surface or the conductive or insulating surface of a semiconductor device or flexible printed circuit board according to another exemplary embodiment of the present invention.



FIG. 4A shows a side view of an exemplary thin film battery on a semiconducting surface or the conductive or insulating surface of a semiconductor device according to another exemplary embodiment of the present invention.



FIG. 4B shows a side view of an exemplary thin film battery on a flexible printed circuit board according to another exemplary embodiment of the present invention.





DETAILED DESCRIPTION


FIG. 1A shows a side view of an electrochemical device according to one exemplary embodiment of the present invention. In this embodiment, a first contact 101 is coupled with bonding layer 110 with a portion of the first contact 101 extending past the bonding layer 110. The bonding layer 110 may, for example, be bonded with the cell structure 115. A semiconducting surface or the conductive or insulating surface of a semiconductor device 105 is placed under the battery cell structure 115. An insulating surface of the semiconductor device 105 may be, for example, an insulating packaging surface of a semiconductor device or an upper insulating surface the semiconductor device. A conductive surface may include, for example, a conductive contact pad, a conductive line, conductive via or other conductive layer formed on or at the device surface. A conductive surface also may be formed together with an insulating surface, such as a conductive surface formed on a packaging surface of a semiconductor device. Shown embedded within the bonding layer 110 is a first embedded conductor 120. This first embedded conductor 120, for example, creates a selectively conductive bonding layer. A selectively conductive bonding layer 110 permits conduction from the cell structure 115 through the bonding layer 110 to the first contact 101 at specific points, and yet provides insulation between the first contact 101 and the semiconducting surface or the conductive or insulating surface of a semiconductor device 105. Other types of battery cell structures may be also be included.


The electrochemical device may have a second embedded conductor 121 that selectively creates an electrical contact between the first contact 101 and the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105. In this case, the semiconducting surface or the conductive or insulating surface of a semiconductor device 105 must be selectively insulating between the contacts points at which the first embedded conductor 120 and the second embedded conductor 121 meet the semiconducting surface or the conductive or insulating (e.g., packaging) surface of a semiconductor device 105.



FIG. 1B shows a side view of an electrochemical device according to an exemplary embodiment of the present invention. In this embodiment, a first contact 101 is coupled with the battery cell structure 115. A bonding layer 110 is coupled to the battery cell structure 115 and a portion of the first contact 101, which extends past the bonding layer 110. A semiconducting surface or the conductive or insulating surface of a semiconductor device 105 is coupled with the bonding layer 110. Shown embedded within the bonding layer 110 is the first embedded conductor 120. This first embedded conductor 120, for example, creates a selectively conductive bonding layer. A selectively conductive bonding layer 110 permits conduction from the cell structure 115 through the bonding layer 110 to the semiconducting surface or the conductive or insulating (e.g., packaging) surface of a semiconductor device 105 at specific points, and yet provides insulation between the first contact 101 and the semiconducting surface or the conductive or insulating surface of a semiconductor device 105. The electrochemical device may have a second embedded conductor 121 that selectively creates an electrical contact between the first contact 101 and the semiconducting surface or the conductive or insulating surface of a semiconductor device 105. In this case the semiconducting surface or the conductive or insulating surface of a semiconductor device 105 must be selectively insulating between the contact points at which the first embedded conductor 120 and the second embedded conductor 121 meet the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105. The first embedded conductor 120 and the second embedded conductor 121 may be placed within the bonding layer 110 in many different ways. For example, a metal tab, a metal wire, a metal strip, a metal ribbon, multiple metal wires, multiple metal strips, multiple metal ribbons, a metal wire mesh, perforated metal foil, perforated metal, a metal coating applied to the adhesive layer, a metallic disk, a metallically coated fiberglass or combinations thereof may be used. In each of these examples, the first embedded conductor 120 and the second embedded conductor 121 can provide electrical conduction between the cell structure 115 and the first contact 101 and the bonding layer 110 provides insulation between the first contact 101 and the semiconducting surface or the conductive or insulating surface of a semiconductor device 105. In some embodiments, the embedded conductors 120 and 121 may be woven within the bonding layer 110. The embedded conductors 120 and 121 may be, for example, disks embedded within the bonding layer 110. In some embodiments slits within the bonding layer 110 may be made in order to weave or place the embedded conductors 120 and 121 through the bonding layer 110. Also, for example, holes or other means may be used to place the embedded conductors 120 and 121 through the bonding layer 110.


In another exemplary embodiment of the present invention, a reinforcement layer may be placed within the bonding layer. For example, a fiberglass material may cover half of one surface of the bonding layer, woven through the layer and then cover the other half of the bonding layer. Such a layer of fiberglass without a conductive coating would insulate the materials placed between. The fiberglass may be coated in a localized area with a conductive material. Such conductive coatings can coat the fiberglass area in the top and bottom surface of the bonding layer. In such an embodiment, for example, the fiberglass may conduct between the upper contact and the cell. Conductive material may be disposed on the fiberglass using ink jet, silk screen, plasma deposition, e-beam deposition, spray and/or brush methods. Other materials may be used rather than fiberglass, such as, for example, Kevlar®, plastic, glass or other insulating materials.


Another exemplary embodiment of the present invention may provide for selective contact between the first contact and the battery cell structure through holes in the bonding layer. In such an embodiment, holes in the bonding layer may allow the first contact and battery cell structure to remain in contact. The layers may be, for example, pressed together to create a contact. Alternatively, conductive glues or inks may be applied in or near the hole area in the bonding layer to make the contact between the layers. Lithium may also be used.


The embedded conductors 120 and 121 and/or first contact, for example, may be made of gold, platinum, stainless steel, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper zirconium, niobium, molybdenum, hafnium, tantalum, tungsten, aluminum, indium, tin, silver, carbon, bronze, brass, beryllium, or oxides, nitrides, carbides, and alloys thereof. The first contact may be a metal foil, for example, may be made of stainless steel or any other metallic substance having the necessary or suitable characteristics and properties such as a requisite amount of conductivity. The metal foil may preferably comprise a solderable alloy, for instance, alloys of copper, nickel, or tin. The first contact may be, for example, less than 100 microns thick, less than 50 microns thick, or less than 25 microns thick.


The cell structure 115 may include a cathode, anode and electrolyte. For example, the cathode may comprise LiCoO2, the anode may comprise lithium and the electrolyte may comprise LIPON. Other electrochemical devices may be used as needed.


The cell structure 115 may be coupled with the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105 in a number of ways. In one embodiment, the electrochemical device, for example, may be coupled with the semiconducting surface or the conducting or insulating surface of a semiconductor device 105 using glue. Glue, as used in this application, extends to any material that may adhere the cell structure 115 to the semiconducting surface or the conducting or insulating surface of a semiconductor device 105. The glue may create either a mechanical or chemical bond between the two layers. Glue may also include chemically bonding the two layers without introducing another material or layer. Glue, for example, may include but is not limited to cement glue and resin glue. The glue may be electrically conducting, semi-conducting, or insulating.


In another exemplary embodiment, the semiconducting surface or the conductive or insulating (e.g., packaging) surface of a semiconductor device 105 acts as a substrate for the battery. The semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105 is provided and the cell structure 115 may be deposited thereon. The cell structure 115 may also be glued to the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105.


In an exemplary embodiment, a LiCoO2 cathode layer is deposited on the semiconducting surface or the conducting or insulating surface of a semiconductor device 105. A number of deposition techniques are known in the art, these include, but are not limited to reactive or non-reactive RF magnetron sputtering, reactive or non-reactive pulsed DC magnetron sputtering, reactive or non-reactive DC diode sputtering, reactive or non-reactive thermal (resistive) evaporation, reactive or non-reactive electron beam evaporation, ion-beam assisted deposition, plasma enhanced chemical vapor deposition, or deposition methods, which may include, for example, spin coating, ink-jetting, thermal spray deposition, dip coating or the like. As part of the fabrication process, for example, the cathode may be annealed using a thermal anneal such as anneal at lower temperatures, anneal at higher temperatures, or by using convection furnaces or rapid thermal anneal methods. Another or an alternative post-deposition anneal may include laser annealing to improve the crystallization of the LiCoO2 layer so as to fine-tune and optimize its chemical properties, such as its electrochemical potential, its energy, its power performance, and its reversible lattice parameters on electrochemical and thermal cycling.


Following deposition of the cathode layer, an electrolyte may be deposited on the cathode, followed by an anode. Again, these layers may be deposited by any of a number of processes common in the art. In one specific embodiment, once the cell structure 115 has been deposited on the semiconducting surface or the conducting or insulating surface of a semiconductor device 105, a bonding layer 110 may be placed between the electrochemical device and a first electrical contact 101. In this specific embodiment shown in FIG. 1A, a metal encapsulate layer 101 may also be the first contact. In another specific embodiment, once the cell structure 115 has been deposited on the first electrical contact 101, a bonding layer 110 may be placed between the cell structure 115 and the semiconducting surface or the conducting or insulating surface of a semiconductor device 105. In this specific embodiment shown in FIG. 1B, a metal encapsulate layer 101 may also be the first contact. As described above, the first contact may be a metal foil, for example, may be made of stainless steel or any other metallic substance having the necessary characteristics and properties such as a requisite amount of conductivity. The metal foil may preferably comprise a solderable alloy, for instance, alloys of copper, nickel, or tin. The first contact may be, for example, less than 100 microns thick, less than 50 microns thick, or less than 25 microns thick.


The bonding layer 110 may include, for example, an adhesive material, an insulating material, polymeric material, glass, Kevlar®, reinforcement materials, and fiberglass. The embedded conductors 120 and 121 may include, for example, a tab, a wire, a metal strip, a metal ribbon, multiple wires, multiple metal strips, multiple metal ribbons, a wire mesh, perforated metal, a metal coating applied to the adhesive layer, and a disk.



FIG. 2 shows a second embodiment of a thin film battery on a chip. In this embodiment the battery may include a semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105, a cathode layer 145 deposited on the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105, an electrolyte 150, an anode 165, a modulating layer 160, an encapsulate 155, an anode current collector 170 and an insulator 175. For example, the cathode 145 may comprise LiCoO2, the anode 165 may comprise lithium and the electrolyte 150 may comprise LIPON. Other electrochemical devices may be used as needed. The encapsulate 155 may comprise a ceramic-metal composite laminate of a multiple of alternating layers of zirconium nitride and zirconium or titanium nitride and titanium.


The electrochemical device which may include the cathode 145, electrolyte 150 and anode 165, may be semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105 in a number of ways. In one embodiment, the electrochemical device, for example, may be coupled with the substantially conductive, semiconducting surface or the conductive packaging surface of a semiconductor device 105 using glue. Glue, as used in this application, extends to any material that may adhere parts of the electrochemical device to the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105. The glue may create either a mechanical or chemical bond between the two layers. Glue may also include chemically bonding the two layers without introducing another material or layer. The glue may be electrically conductive in order to use the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105 as current collector. Glue, for example, may include but is not limited to electrically conductive cement glue and resin glue.


The cathode 145 may also be deposited directly on the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105. In a specific embodiment, a LiCoO2 cathode layer is deposited on semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105. A number of deposition techniques are known in the art, these include, but are not limited to reactive or non-reactive RF magnetron sputtering, reactive or non-reactive pulsed DC magnetron sputtering, reactive or non-reactive DC diode sputtering, reactive or non-reactive thermal (resistive) evaporation, reactive or non-reactive electron beam evaporation, ion-beam assisted deposition, plasma enhanced chemical vapor deposition, deposition methods, which may include, for example, spin coating, ink-jetting, thermal spray deposition, dip coating or the like. As part of the fabrication process for example, a post-deposition laser anneal may be used to improve the crystallization of the cathode layer 145 in order to fine-tune and optimize its chemical properties, such as its electrochemical potential, its energy, its power performance, and its reversible lattice parameters on electrochemical and thermal cycling. Examples of methods used to deposit LiCoO2 are disclosed in U.S. patent application Ser. No. 11/557,383, filed on Nov. 7, 2006, which is incorporated herein by reference in its entirety.


The semiconducting surface or the conductive or insulating packaging surface of a semiconductor device in the above embodiments may be part of any integrated circuit and may include, memory devices, processors or other logic circuits.


Another embodiment of the present invention includes a battery deposited on a flexible printed circuit board including, for example, a first electrical contact; a bonding layer coupled with the first electrical contact and having an embedded conductor; at least one battery cell structure; and a flexible printed circuit board. A bonding layer and the at least one battery cell structure may be sandwiched between the first contact layer and the flexible printed circuit board. The bonding layer may be selectively conductive through the embedded conductor. The battery cell structure may further be in selective electrical contact with the first electrical contact via the embedded conductor.



FIG. 3A shows a side view of an electrochemical device according to another embodiment of the present invention. In this embodiment, a first contact 301 is coupled with bonding layer 310 with a portion of the first contact 301 extending past the bonding layer 310. The bonding layer 310 may, for example, be bonded with the cell structure 315. A flexible printed circuit board 305 is placed under the battery cell structure 315. Shown embedded within the bonding layer 310 is a first embedded conductor 320. This first embedded conductor 320, for example, creates a selectively conductive bonding layer. A selectively conductive bonding layer 310 permits conduction from the cell structure 315 through the bonding layer 310 to the first contact 301 at specific points, and yet provides insulation between the first contact 301 and the flexible circuit board 305. Also shown embedded within the bonding layer 310 is the second embedded conductor 321. This second conductor, for example, further creates a selectively conductive bonding layer. The further selectively conductive bonding layer 310 permits conduction from the flexible printed circuit board 305 through the bonding layer 310 to the first contact 301 at specific points, and yet provides insulation between the first contact 301 and the flexible printed circuit board 305. Other types of battery cell structures may be also be included.



FIG. 3B shows a side view of an electrochemical device according to one exemplary embodiment of the present invention. In this embodiment, a first contact 301 is coupled with the battery cell structure 315. A bonding layer 310 is coupled to the battery cell structure 315 and a portion of the first contact 301, which extends past the bonding layer 310. A flexible printed circuit board 305 is coupled with the bonding layer 310. Shown embedded within the bonding layer 310 is the first embedded conductor 320. This first embedded conductor 320, for example, creates a selectively conductive bonding layer. A selectively conductive bonding layer 310 permits conduction from the cell structure 315 through the bonding layer 310 to the flexible printed circuit board 305 at specific points, and yet provides insulation between the first contact 301 and the flexible printed circuit board 305. The electrochemical device may have a second embedded conductor 321 that selectively creates an electrical contact between the first contact 301 and the flexible printed circuit board 305. In this case, the flexible printed circuit board 305 must be selectively insulating between the contacts points at which the first embedded conductor 320 and the second embedded conductor 321 meet the flexible printed circuit board 305.



FIG. 3C is a top view of an exemplary electrochemical device integrated with a flexible circuit board 305, such as the exemplary devices described above with respect to FIGS. 3A and 3B. As shown in FIG. 3C, conductive traces 330, 331 are formed on a surface of the circuit board 305. Other types of conductive surfaces, such as contact pads, wiring, exposed conductive vias etc., or combinations thereof may be provided on the circuit board surface to receive the electrochemical device. In the plan view, the first embedded conductor 320 is shown passing through bonding layer 310 to make electrical contact with conductive trace 330, and the second embedded conductor 321 is shown passing through bonding layer 310 to make electrical contact with conductive trace 331. It should be appreciated that an analogous arrangement can be achieved with respect to the examples including a semiconducting surface or the conductive or insulating packaging surface of a semiconductor device, as described above with respect to FIGS. 1A and 1B.


The flexible circuit board 305 may comprise, for example, multiple circuit board layers with and without traces, single or double sided, semi-rigid, a film, and/or a polyimide film.


The embedded conductors 320 and 321 may be placed within the bonding layer 310 in many different ways. For example, a metal tab, a metal wire, a metal strip, a metal ribbon, multiple metal wires, multiple metal strips, multiple metal ribbons, a metal wire mesh, perforated metal foil, perforated metal, a metal coating applied to the adhesive layer, a metallic disk, a metallically coated fiberglass or combinations thereof may be used. In each of these examples, the first embedded conductor 320 can provide selective electrical conduction between the cell structure 315 and the first contact 301 or the flexible printed circuit board 305, and yet provide insulation between the battery cell structure 315 and the first contact 301 or the flexible printed circuit board 305. Also in each of these examples, the second embedded conductor 321 can provide selective electrical conduction between the first contact 301 and the flexible printed circuit board 305 and yet provide insulation between the first contact 301 and the flexible printed circuit board 305. In some embodiments the first embedded conductor 320 may be woven within the bonding layer 310. The first embedded conductor 320 may be, for example, disks embedded within the bonding layer 310. In some embodiments slits within the bonding layer 310 may be made in order to weave or place the first embedded conductor 320 through the bonding layer 310. Also, for example, holes or other means may be used to place the first embedded conductor 320 through the bonding layer 310. In some embodiments the second embedded conductor 321 may be woven within the bonding layer 310. The second embedded conductor 321 may be, for example, disks embedded within the bonding layer 310. In some embodiments slits within the bonding layer 310 may be made in order to weave or place the second embedded conductor 321 through the bonding layer 310. Also, for example, holes or other means may be used to place the second embedded conductor 321 through the bonding layer 310.


The cell structure 315 may include a cathode, anode and electrolyte. For example, the cathode may comprise LiCoO2, the anode may comprise lithium and the electrolyte may comprise LIPON. Other electrochemical devices may be used as needed.


The cell structure 315 may be coupled with the flexible printed circuit board 305 in a number of ways. In one embodiment, the cell structure 315, for example, may be coupled with the flexible printed circuit board 305 using glue. Glue, as used in this application, extends to any material that may adhere the cell structure 315 to the flexible printed circuit board 305. The glue may create either a mechanical or chemical bond between the two layers. Glue may also include chemically bonding the two layers without introducing another material or layer. Glue, for example, may include but is not limited to cement glue and resin glue. The glue may be electrically conducting, semi-conducting, or insulating.


The cell structure 315 may be coupled with the first electrical contact 301 in a number of ways. In one embodiment, the cell structure 315, for example, may be coupled with the first electrical contact 301 using glue. Glue, as used in this application, extends to any material that may adhere the cell structure 315 to the first electrical contact 301. The glue may create either a mechanical or chemical bond between the two layers. Glue may also include chemically bonding the two layers without introducing another material or layer. Glue, for example, may include but is not limited to cement glue and resin glue. The glue may be electrically conducting, semi-conducting, or insulating.


In another embodiment the flexible printed circuit board 305 acts as a substrate for the battery, which may be deposited thereon.


In another embodiment the first electrical contact 301 acts as a substrate for the battery, which may be deposited thereon.


In another embodiment the flexible printed circuit board 305 acts as an encapsulate for the battery.


In another embodiment the first electrical contact 301 acts as an encapsulate for the battery.


In another exemplary embodiment shown in FIG. 4A, a thin film battery is provided on a semiconducting surface or the conductive or insulating surface of a semiconductor device with a barrier layer therebetween. Elements depicted in FIG. 4A like those above in FIG. 1A are shown having the same reference numbers. In this embodiment, a first contact 101 is coupled with bonding layer 110 with a portion of the first contact 101 extending past the bonding layer 110. The bonding layer 110 may, for example, be bonded with the cell structure 115. A semiconducting surface or the conductive or insulating (e.g., packaging) surface of a semiconductor device 105 with a barrier layer 107 is placed under the battery cell structure 115.


In this embodiment, barrier layer 107 may include, for example, titanium nitride. The barrier layer 107 may also comprise a semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105. A conductive surface may include, for example, a conductive contact pad, a conductive line, conductive via or other conductive layer formed on or at the device surface. A conductive surface also may be formed together with an insulating surface, such as a conductive surface formed on a packaging surface of a semiconductor device. An insulating surface of the semiconductor device 105 may be, for example, an insulating packaging surface of a semiconductor device or an upper insulating surface the semiconductor device. Shown embedded within the bonding layer 110 is the first embedded conductor 120. This first embedded conductor 120, for example, creates a selectively conductive bonding layer. A selectively conductive bonding layer 110 permits conduction from the cell structure 115 through the bonding layer 110 to the first contact 101 at specific points, and yet provides insulation between the first contact 101 and the barrier layer 107. Other types of battery cell structures may be also be included.


The cell structure 115 may be coupled with the semiconducting surface or the conductive or insulating (e.g., packaging) surface of a semiconductor device 105 and barrier layer 107 in a number of ways. In one embodiment, the electrochemical device, for example, may be coupled with the barrier layer using glue. Glue, as used in this application, extends to any material that may adhere the cell structure 115 to the barrier layer 107. The glue may create either a mechanical or chemical bond between the two layers. Glue may also include chemically bonding the two layers without introducing another material or layer. Glue, for example, may include but is not limited to cement glue and resin glue. The glue may be electrically conducting, semi-conducting, or insulating.


In another exemplary embodiment the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105 acts as a substrate for the battery. The semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105 is provided and the barrier layer 107 may be deposited thereon. The barrier layer 107 may also be glued to the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105. Once the barrier layer 107 and the semiconductor device 105 have been prepared, the cell structure 115 may be deposited directly on the barrier layer 107.


In an exemplary embodiment, a LiCoO2 cathode layer is deposited on the barrier layer 107 by way of methods described above.


In yet another exemplary embodiment shown in FIG. 4B, a thin film battery is provided on a flexible circuit board. Elements depicted in FIG. 4B like those above in FIG. 3A are shown having the same reference numbers. In this embodiment, a first contact 301 is coupled with bonding layer 310 with a portion of the first contact 301 extending past the bonding layer 310. The bonding layer 310 may, for example, be bonded with the cell structure 315. A flexible printed circuit board 305, such as described above, and a barrier layer 307 is placed under the battery cell structure 315. In this embodiment, the barrier layer 307 may, for example, include titanium nitride. Shown embedded within the bonding layer 310 is first embedded conductor 320. This first embedded conductor 320, for example, creates a selectively conductive bonding layer. A selectively conductive bonding layer 310 permits conduction from the cell structure 315 through the bonding layer 310 to the first contact 301 at specific points, and yet provides insulation between the first contact 301 and the barrier layer 307. The first embedded conductor 320 may be provided within the bonding layer 310 as described above. In each of these examples, the first embedded conductor 320 can provide electrical conduction between the cell structure 315 and the first contact 301 and yet provide insulation between the first contact 301 and the barrier layer 307.


The cell structure 315 may be coupled with the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 305 and barrier layer 307 in a number of ways. In one embodiment, the electrochemical device, for example, may be coupled with the barrier layer using glue. Glue, as used in this application, extends to any material that may adhere the cell structure 315 to the barrier layer 307. The glue may create either a mechanical or chemical bond between the two layers. Glue may also include chemically bonding the two layers without introducing another material or layer. Glue, for example, may include but is not limited to cement glue and resin glue. The glue may be electrically conducting, semi-conducting, or insulating.


In another embodiment the flexible printed circuit board 305 acts as a substrate for the battery and the barrier layer 307 may be deposited thereon. The barrier layer 307 may also be glued to the flexible printed circuit board 305. Once the barrier layer 307 and the printed circuit board 305 have been prepared, the cell structure 315 may be deposited directly on the barrier layer 307.


While FIGS. 4A and 4B show only one first embedded conductor 120, 320, respectively, it is to be understood that exemplary embodiments also may include at least one second conductor, such as second embedded conductors 121, 321, respectively described above in connection with FIGS. 1A and 3A. Further, electrical connection between the first contact 101, 301 and the underlying semiconducting surface, conductive or insulating surface of a semiconductor device, or a flexible circuit board can be made by second embedded conductors 121, 321 through the bonding and/or barrier layers.


The above-discussed exemplary embodiments may also include multiple electrochemical devices stacked upon a semiconducting surface or the conductive or insulating (e.g., packaging) surface of a semiconductor device.


The above-discussed exemplary embodiments may also include multiple electrochemical devices stacked upon the first electrical contact 301.


The present exemplary embodiments provide alternative schemes to encapsulate the chemically and mechanically sensitive layers of electrochemical devices, which are less expensive than prior encapsulation schemes using gold foil. The above exemplary embodiments also avoid problems of other prior schemes relating to blow out of the seals of a metal and plastic pouch encapsulating an electrochemical device resulting from temperature changes, which cause the gas within the metal and plastic pouch to expand and/or contract.


The exemplary embodiments described herein also provide a rechargeable secondary battery directly fabricated on a semiconductor device such as an integrated circuit. Such batteries provide power during times when the circuit is powered off and are quickly and easily recharged when power resumes. Critical circuitry may benefit from localized power provided by such batteries. The exemplary embodiments also provide for less expensive and more reliable encapsulating approaches, and better approaches to providing electrically conductive contacts, including encapsulation that is substantially thinner than known encapsulation methods. The exemplary embodiments also provide flexible integrated circuits and/or flexible printed circuit boards with thin film flexible batteries coupled thereon.


Although the above examples describe a conductive material provided in an opening in the bonding layer, such as the slit, it should be appreciated that electrical contact between the battery cell structure 115, 315 and first electrical contact 101, 301 may be provided by a number of other ways. For example, embedding a conductive powder within an adhesive forming the bonding layer 110, 310 may provide electrical conduction between the cell structure 115, 315 and the first contact 101, 301. For example, a conductive powder such as a metallic powder (e.g., nickel powder) can be embedded in an adhesive bonding layer 110, 310 at one or more selected areas within an adhesive bonding layer 110, 310 and between the first contact 101, 301 and the battery cell structure 115, 315. Those skilled in the art will appreciate other conductive materials that may be provided for the selective conduction, such as conductive balls, slugs, wiring mesh etc. selectively provided within an adhesive. The ways to achieve electrical conduction between the battery cell structure 115, 315 and the first contact 101, 301 and yet provide insulation between the contacts and battery cell structure, should not be considered as limited to the examples explained herein.


The same holds true for the electrical contact between the battery cell structure 115, 315 and the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105 or the flexible printed circuit board 305. The same also holds true for the electrical contact between the first contact 101, 301 and the semiconducting surface or the conductive or insulating packaging surface of a semiconductor device 105 or the flexible printed circuit board 305.


Additionally, it should be appreciated that the electrochemical device may comprise a discrete device (e.g., fully packaged with its own substrate and own encapsulation) on a semiconductor surface, a conducting or insulating surface of a semiconductor device or a flexible printed circuit board. For example, prior to its integration onto the semiconducting surface or a conductive or insulating surface of a semiconductor device or into or onto a flexible printed circuit board, the electrochemical device may be fabricated as a discrete device, and then integrated as a whole together with its substrate and its encapsulation.


The embodiments described above are exemplary only. One skilled in the art may recognize variations from the embodiments specifically described here, which are intended to be within the scope of this disclosure. As such, the invention is limited only by the following claims. Thus, it is intended that the present invention cover the modifications of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. An integrated circuit including a battery, comprising: a semiconductor device having a surface;a bonding layer coupled with the surface of the semiconductor device, the bonding layer comprising a first embedded conductor and a second embedded conductor;a battery cell structure in selective electrical contact with the surface of the semiconductor device via the first embedded conductor; anda first electrical contact having a lower surface to which the battery cell structure is directly attached, wherein the bonding layer and the battery cell structure are sandwiched between the surface of the semiconductor device and the lower surface of the first electrical contact, wherein the surface of the semiconductor device is in selective electrical contact with the first electrical contact via the second embedded conductor being in direct contact with the lower surface of the first electrical contact to which the battery cell structure is directly attached.
  • 2. The integrated circuit of claim 1, wherein both the first embedded conductor and the second embedded conductor directly contact the surface of the semiconductor device.
  • 3. The integrated circuit of claim 1, wherein the first electrical contact comprises an encapsulate metal.
  • 4. The integrated circuit of claim 1, wherein the bonding layer comprises a material selected from a group consisting of an adhesive material, an insulating material, plastic, glass, reinforcement materials, and fiberglass.
  • 5. The integrated circuit of claim 1, wherein each of the first embedded conductor and the second embedded conductor is selected from a group consisting of a tab, a wire, a metal strip, a metal ribbon, multiple wires, multiple metal strips, multiple metal ribbons, a wire mesh, a perforated metal, a metal coating applied to an adhesive layer, and a disk.
  • 6. The integrated circuit of claim 1, wherein the battery cell structure is deposited on the first electrical contact.
  • 7. The integrated circuit of claim 1, wherein the surface of the semiconductor device is selected from a group consisting of a semiconducting surface, a conductive surface, and an insulating packaging surface.
  • 8. The integrated circuit of claim 7, wherein the surface of the semiconductor device acts as an encapsulate of the battery cell structure.
  • 9. The integrated circuit of claim 1, wherein the first embedded conductor and the second embedded conductor are woven within the bonding layer.
  • 10. The integrated circuit of claim 9, wherein the bonding layer comprises a slit within which the first embedded conductor is woven.
  • 11. A method of manufacturing a battery on a first electrical contact comprising: creating a selectively conductive bonding layer, the bonding layer comprising a first embedded conductor and a second embedded conductor;coupling the bonding layer with an upper horizontal surface of a semiconductor device, wherein both the first embedded conductor and the second embedded conductor directly contact the upper horizontal surface of the semiconductor device;directly attaching a first side of a battery cell structure to a lower surface of the first electrical contact; andcoupling a second side of the battery cell structure with the bonding layer, wherein the second side of the battery cell structure is in direct contact with the first embedded conductor; and wherein the upper horizontal surface of the semiconductor device is in selective electrical contact with the first electrical contact via the second embedded conductor being in direct contact with the lower surface of the first electrical contact to which the first side of the battery cell structure is directly attached.
  • 12. The method of claim 11, wherein the upper horizontal surface of the semiconductor device, with which the bonding layer is coupled, is one of a semiconducting surface, a conductive surface or an insulating surface.
  • 13. The method of claim 11, wherein directly attaching the first side of the battery cell structure to the lower surface of the first electrical contact comprises depositing the battery cell structure on the first electrical contact.
RELATED APPLICATIONS

This application is a divisional of Ser. No. 11/748,471 filed on May 14, 2007, which claims priority under 35 U.S.C. §119(e) to U.S. provisional patent application Ser. No. 60/799,904, filed on May 12, 2006, which is incorporated herein in its entirety by reference; and is a continuation in part, and claims benefit under 35 U.S.C. §120, of U.S. patent application Ser. No. 11/687,032 filed Mar. 16, 2007, now U.S. Pat. No. 8,236,443 issued Aug. 7, 2012, entitled Metal Film Encapsulation, filed 16 Mar. 2007, which claims benefit under 35 U.S.C. §119 of U.S. provisional patent application Ser. No. 60/782,792, filed 16 Mar. 2006, both of which are incorporated herein in their entirety by reference. U.S. patent application Ser. No. 11/687,032 is also a continuation in part of U.S. patent application Ser. No. 11/561,277 filed Nov. 17, 2006, now U.S. Pat. No. 8,445,130 issued May 21, 2013, which claims the benefit of U.S. provisional patent application Ser. No. 60/782,792 filed Mar. 16, 2006, U.S. provisional patent application Ser. No. 60/759,479 filed Jan. 17, 2006, and U.S. provisional patent application Ser. No. 60/737,613 filed Nov. 17, 2005.

US Referenced Citations (817)
Number Name Date Kind
712316 Loppe et al. Oct 1902 A
1712316 Loppe et al. Oct 1902 A
2970180 Urry Jan 1961 A
3309302 Heil Mar 1967 A
3616403 Collins et al. Oct 1971 A
3790432 Fletcher et al. Feb 1974 A
3797091 Gavin Mar 1974 A
3850604 Klein Nov 1974 A
3939008 Longo et al. Feb 1976 A
4082569 Evans, Jr. Apr 1978 A
4111523 Kaminow et al. Sep 1978 A
4127424 Ullery, Jr. Nov 1978 A
4226924 Kimura et al. Oct 1980 A
4283216 Brereton Aug 1981 A
4318938 Barnett et al. Mar 1982 A
4328297 Bilhorn May 1982 A
4395713 Nelson et al. Jul 1983 A
4437966 Hope et al. Mar 1984 A
4442144 Pipkin Apr 1984 A
4467236 Kolm et al. Aug 1984 A
4481265 Ezawa et al. Nov 1984 A
4518661 Rippere May 1985 A
4555456 Kanehori et al. Nov 1985 A
4572873 Kanehori et al. Feb 1986 A
4587225 Tsukuma et al. May 1986 A
4619680 Nourshargh et al. Oct 1986 A
4645726 Hiratani et al. Feb 1987 A
4664993 Sturgis et al. May 1987 A
4668593 Sammells May 1987 A
RE32449 Claussen Jun 1987 E
4672586 Shimohigashi et al. Jun 1987 A
4710940 Sipes, Jr. Dec 1987 A
4728588 Noding et al. Mar 1988 A
4740431 Little Apr 1988 A
4756717 Sturgis et al. Jul 1988 A
4785459 Baer Nov 1988 A
4826743 Nazri May 1989 A
4865428 Corrigan Sep 1989 A
4878094 Balkanski Oct 1989 A
4903326 Zakman et al. Feb 1990 A
4915810 Kestigian et al. Apr 1990 A
4964877 Keister et al. Oct 1990 A
4977007 Kondo et al. Dec 1990 A
4978437 Wirz Dec 1990 A
5006737 Fay Apr 1991 A
5019467 Fujiwara May 1991 A
5030331 Sato Jul 1991 A
5035965 Sangyoji et al. Jul 1991 A
5055704 Link et al. Oct 1991 A
5057385 Hope et al. Oct 1991 A
5085904 Deak et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5100821 Fay Mar 1992 A
5107538 Benton et al. Apr 1992 A
5110694 Nagasubramanian et al. May 1992 A
5110696 Shokoohi et al. May 1992 A
5119269 Nakayama Jun 1992 A
5119460 Bruce et al. Jun 1992 A
5124782 Hundt et al. Jun 1992 A
5147985 DuBrucq Sep 1992 A
5153710 McCain Oct 1992 A
5169408 Biggerstaff et al. Dec 1992 A
5171413 Arntz et al. Dec 1992 A
5173271 Chen et al. Dec 1992 A
5174876 Buchal et al. Dec 1992 A
5180645 Moré Jan 1993 A
5187564 McCain Feb 1993 A
5196041 Tumminelli et al. Mar 1993 A
5196374 Hundt et al. Mar 1993 A
5200029 Bruce et al. Apr 1993 A
5202201 Meunier et al. Apr 1993 A
5206925 Nakazawa et al. Apr 1993 A
5208121 Yahnke et al. May 1993 A
5217828 Sangyoji et al. Jun 1993 A
5221891 Janda et al. Jun 1993 A
5225288 Beeson et al. Jul 1993 A
5227264 Duval et al. Jul 1993 A
5237439 Misono et al. Aug 1993 A
5252194 Demaray et al. Oct 1993 A
5262254 Koksbang et al. Nov 1993 A
5273608 Nath Dec 1993 A
5287427 Atkins et al. Feb 1994 A
5296089 Chen et al. Mar 1994 A
5300461 Ting Apr 1994 A
5302474 Shackle et al. Apr 1994 A
5303319 Ford et al. Apr 1994 A
5306569 Hiraki Apr 1994 A
5307240 McMahon Apr 1994 A
5309302 Vollmann May 1994 A
5314765 Bates May 1994 A
5326652 Lake Jul 1994 A
5326653 Chang Jul 1994 A
5338624 Gruenstern et al. Aug 1994 A
5338625 Bates et al. Aug 1994 A
5342709 Yahnke et al. Aug 1994 A
5355089 Treger et al. Oct 1994 A
5360686 Peled et al. Nov 1994 A
5362579 Rossoll et al. Nov 1994 A
5381262 Arima et al. Jan 1995 A
5387482 Anani Feb 1995 A
5401595 Kagawa et al. Mar 1995 A
5403680 Otagawa et al. Apr 1995 A
5411537 Munshi et al. May 1995 A
5411592 Ovshinsky et al. May 1995 A
5419982 Tura et al. May 1995 A
5427669 Drummond Jun 1995 A
5435826 Sakakibara et al. Jul 1995 A
5437692 Dasgupta et al. Aug 1995 A
5445856 Chaloner-Gill Aug 1995 A
5445906 Hobson et al. Aug 1995 A
5448110 Tuttle et al. Sep 1995 A
5449576 Anani Sep 1995 A
5455126 Bates et al. Oct 1995 A
5457569 Liou et al. Oct 1995 A
5458995 Behl et al. Oct 1995 A
5464692 Huber Nov 1995 A
5464706 Dasgupta et al. Nov 1995 A
5470396 Mongon et al. Nov 1995 A
5472795 Atita Dec 1995 A
5475528 LaBorde Dec 1995 A
5478456 Humpal et al. Dec 1995 A
5483613 Bruce et al. Jan 1996 A
5493177 Muller et al. Feb 1996 A
5498489 Dasgupta et al. Mar 1996 A
5499207 Miki et al. Mar 1996 A
5501918 Gruenstern et al. Mar 1996 A
5504041 Summerfelt Apr 1996 A
5512147 Bates et al. Apr 1996 A
5512387 Ovshinsky Apr 1996 A
5512389 Dasgupta et al. Apr 1996 A
5538796 Schaffer et al. Jul 1996 A
5540742 Sangyoji et al. Jul 1996 A
5547780 Kagawa et al. Aug 1996 A
5547781 Blonsky et al. Aug 1996 A
5547782 Dasgupta et al. Aug 1996 A
5552242 Ovshinsky et al. Sep 1996 A
5555127 Abdelkader et al. Sep 1996 A
5561004 Bates et al. Oct 1996 A
5563979 Bruce et al. Oct 1996 A
5565071 Demaray et al. Oct 1996 A
5567210 Bates et al. Oct 1996 A
5569520 Bates Oct 1996 A
5582935 Dasgupta et al. Dec 1996 A
5591520 Migliorini et al. Jan 1997 A
5597660 Bates et al. Jan 1997 A
5597661 Takeuchi et al. Jan 1997 A
5599355 Nagasubramanian et al. Feb 1997 A
5601952 Dasgupta et al. Feb 1997 A
5603816 Demaray et al. Feb 1997 A
5607560 Hirabayashi et al. Mar 1997 A
5607789 Treger et al. Mar 1997 A
5612152 Bates et al. Mar 1997 A
5612153 Moulton et al. Mar 1997 A
5613995 Bhandarkar et al. Mar 1997 A
5616933 Li Apr 1997 A
5618382 Mintz et al. Apr 1997 A
5625202 Chai Apr 1997 A
5637418 Brown et al. Jun 1997 A
5643480 Gustavsson et al. Jul 1997 A
5644207 Lew et al. Jul 1997 A
5645626 Edlund et al. Jul 1997 A
5645960 Scrosati et al. Jul 1997 A
5654054 Tropsha et al. Aug 1997 A
5654984 Hershbarger et al. Aug 1997 A
5658652 Sellergren Aug 1997 A
5660700 Shimizu et al. Aug 1997 A
5665490 Takeuchi et al. Sep 1997 A
5667538 Bailey Sep 1997 A
5677784 Harris Oct 1997 A
5679980 Summerfelt Oct 1997 A
5681666 Treger et al. Oct 1997 A
5686360 Harvey, III et al. Nov 1997 A
5689522 Beach Nov 1997 A
5693956 Shi et al. Dec 1997 A
5702829 Paidassi et al. Dec 1997 A
5705293 Hobson Jan 1998 A
5716728 Smesko Feb 1998 A
5718813 Drummond et al. Feb 1998 A
5719976 Henry et al. Feb 1998 A
5721067 Jacobs et al. Feb 1998 A
RE35746 Lake Mar 1998 E
5731661 So et al. Mar 1998 A
5738731 Shindo et al. Apr 1998 A
5742094 Ting Apr 1998 A
5755938 Fukui et al. May 1998 A
5755940 Shindo May 1998 A
5757126 Harvey, III et al. May 1998 A
5762768 Goy et al. Jun 1998 A
5763058 Isen et al. Jun 1998 A
5771562 Harvey, III et al. Jun 1998 A
5776278 Tuttle et al. Jul 1998 A
5779839 Tuttle et al. Jul 1998 A
5790489 O'Connor Aug 1998 A
5792550 Phillips et al. Aug 1998 A
5805223 Shikakura et al. Sep 1998 A
5811177 Shi et al. Sep 1998 A
5814195 Lehan et al. Sep 1998 A
5830330 Lantsman Nov 1998 A
5831262 Greywall et al. Nov 1998 A
5834137 Zhang et al. Nov 1998 A
5841931 Foresi et al. Nov 1998 A
5842118 Wood, Jr. Nov 1998 A
5845990 Hymer Dec 1998 A
5847865 Gopinath et al. Dec 1998 A
5849163 Ichikawa et al. Dec 1998 A
5851896 Summerfelt Dec 1998 A
5853830 McCaulley et al. Dec 1998 A
5855744 Halsey et al. Jan 1999 A
5856705 Ting Jan 1999 A
5864182 Matsuzaki Jan 1999 A
5865860 Delnick Feb 1999 A
5870273 Sogabe et al. Feb 1999 A
5874184 Takeuchi et al. Feb 1999 A
5882721 Delnick Mar 1999 A
5882946 Otani Mar 1999 A
5889383 Teich Mar 1999 A
5895731 Clingempeel Apr 1999 A
5897522 Nitzan Apr 1999 A
5900057 Buchal et al. May 1999 A
5909346 Malhotra et al. Jun 1999 A
5916704 Lewin et al. Jun 1999 A
5923964 Li Jul 1999 A
5930046 Solberg et al. Jul 1999 A
5930584 Sun et al. Jul 1999 A
5942089 Sproul et al. Aug 1999 A
5948215 Lantsmann Sep 1999 A
5948464 Delnick Sep 1999 A
5948562 Fulcher et al. Sep 1999 A
5952778 Haskal et al. Sep 1999 A
5955217 Lerberghe Sep 1999 A
5961672 Skotheim et al. Oct 1999 A
5961682 Lee et al. Oct 1999 A
5966491 DiGiovanni Oct 1999 A
5970393 Khorrami et al. Oct 1999 A
5973913 McEwen et al. Oct 1999 A
5977582 Flemming et al. Nov 1999 A
5982144 Johnson et al. Nov 1999 A
5985484 Young et al. Nov 1999 A
5985485 Ovshinsky et al. Nov 1999 A
6000603 Koskenmaki et al. Dec 1999 A
6001224 Drummond et al. Dec 1999 A
6004660 Topolski et al. Dec 1999 A
6007945 Jacobs et al. Dec 1999 A
6013949 Tuttle Jan 2000 A
6019284 Freeman et al. Feb 2000 A
6023610 Wood, Jr. Feb 2000 A
6024844 Drummond et al. Feb 2000 A
6025094 Visco et al. Feb 2000 A
6028990 Shahani et al. Feb 2000 A
6030421 Gauthier et al. Feb 2000 A
6033768 Muenz et al. Mar 2000 A
6042965 Nestler et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6045652 Tuttle et al. Apr 2000 A
6045942 Miekka et al. Apr 2000 A
6046081 Kuo Apr 2000 A
6046514 Rouillard et al. Apr 2000 A
6048372 Mangahara et al. Apr 2000 A
6051114 Yao et al. Apr 2000 A
6051296 McCaulley et al. Apr 2000 A
6052397 Jeon et al. Apr 2000 A
6057557 Ichikawa May 2000 A
6058233 Dragone May 2000 A
6071323 Kawaguchi Jun 2000 A
6075973 Greeff et al. Jun 2000 A
6077106 Mish Jun 2000 A
6077642 Ogata et al. Jun 2000 A
6078791 Tuttle et al. Jun 2000 A
6080508 Dasgupta et al. Jun 2000 A
6080643 Noguchi et al. Jun 2000 A
6093944 VanDover Jul 2000 A
6094292 Goldner et al. Jul 2000 A
6096569 Matsuno et al. Aug 2000 A
6100108 Mizuno et al. Aug 2000 A
6106933 Nagai et al. Aug 2000 A
6110531 Paz De Araujo Aug 2000 A
6115616 Halperin et al. Sep 2000 A
6117279 Smolanoff et al. Sep 2000 A
6118426 Albert et al. Sep 2000 A
6120890 Chen et al. Sep 2000 A
6129277 Grant et al. Oct 2000 A
6133670 Rodgers et al. Oct 2000 A
6137671 Staffiere Oct 2000 A
6144916 Wood, Jr. et al. Nov 2000 A
6146225 Sheats et al. Nov 2000 A
6148503 Delnick et al. Nov 2000 A
6156452 Kozuki et al. Dec 2000 A
6157765 Bruce et al. Dec 2000 A
6159635 Dasgupta et al. Dec 2000 A
6160373 Dunn et al. Dec 2000 A
6162709 Raoux et al. Dec 2000 A
6165566 Tropsha Dec 2000 A
6168884 Neudecker et al. Jan 2001 B1
6169474 Greeff et al. Jan 2001 B1
6175075 Shiotsuka et al. Jan 2001 B1
6176986 Watanabe et al. Jan 2001 B1
6181283 Johnson et al. Jan 2001 B1
6192222 Greeff et al. Feb 2001 B1
6197167 Tanaka Mar 2001 B1
6198217 Suzuki et al. Mar 2001 B1
6204111 Uemoto et al. Mar 2001 B1
6210544 Sasaki Apr 2001 B1
6210832 Visco et al. Apr 2001 B1
6214061 Visco et al. Apr 2001 B1
6214660 Uemoto et al. Apr 2001 B1
6218049 Bates et al. Apr 2001 B1
6220516 Tuttle et al. Apr 2001 B1
6223317 Pax et al. Apr 2001 B1
6228532 Tsuji et al. May 2001 B1
6229987 Greeff et al. May 2001 B1
6232242 Hata et al. May 2001 B1
6235432 Kono et al. May 2001 B1
6236793 Lawrence et al. May 2001 B1
6242128 Tura et al. Jun 2001 B1
6242129 Johnson Jun 2001 B1
6242132 Neudecker et al. Jun 2001 B1
6248291 Nakagama et al. Jun 2001 B1
6248481 Visco et al. Jun 2001 B1
6248640 Nam Jun 2001 B1
6249222 Gehlot Jun 2001 B1
6252564 Albert et al. Jun 2001 B1
6258252 Miyasaka et al. Jul 2001 B1
6261917 Quek et al. Jul 2001 B1
6264709 Yoon et al. Jul 2001 B1
6265652 Kurata et al. Jul 2001 B1
6268695 Affinito Jul 2001 B1
6271053 Kondo Aug 2001 B1
6271793 Brady et al. Aug 2001 B1
6271801 Tuttle et al. Aug 2001 B2
6280585 Obinata Aug 2001 B1
6280875 Kwak et al. Aug 2001 B1
6281142 Basceri Aug 2001 B1
6284406 Xing et al. Sep 2001 B1
6287986 Mihara Sep 2001 B1
6289209 Wood, Jr. Sep 2001 B1
6290821 McLeod Sep 2001 B1
6290822 Fleming et al. Sep 2001 B1
6291098 Shibuya et al. Sep 2001 B1
6294722 Kondo et al. Sep 2001 B1
6296949 Bergstresser et al. Oct 2001 B1
6296967 Jacobs et al. Oct 2001 B1
6296971 Hara Oct 2001 B1
6300215 Shin Oct 2001 B1
6302939 Rabin Oct 2001 B1
6306265 Fu et al. Oct 2001 B1
6316563 Naijo et al. Nov 2001 B2
6323416 Komori et al. Nov 2001 B1
6324211 Ovard et al. Nov 2001 B1
6325294 Tuttle et al. Dec 2001 B2
6329213 Tuttle et al. Dec 2001 B1
6339236 Tomii et al. Jan 2002 B1
6340880 Higashijima et al. Jan 2002 B1
6344366 Bates Feb 2002 B1
6344419 Forster et al. Feb 2002 B1
6344795 Gehlot Feb 2002 B1
6350353 Gopalraja et al. Feb 2002 B2
6351630 Wood, Jr. Feb 2002 B2
6356230 Greeff et al. Mar 2002 B1
6356694 Weber Mar 2002 B1
6356764 Ovard et al. Mar 2002 B1
6358810 Dornfest et al. Mar 2002 B1
6360954 Barnardo Mar 2002 B1
6361662 Chiba et al. Mar 2002 B1
6365300 Ota et al. Apr 2002 B1
6365319 Heath et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6369316 Plessing et al. Apr 2002 B1
6372383 Lee et al. Apr 2002 B1
6372386 Cho et al. Apr 2002 B1
6373224 Goto et al. Apr 2002 B1
6375780 Tuttle et al. Apr 2002 B1
6376027 Lee et al. Apr 2002 B1
6379835 Kucherovsky et al. Apr 2002 B1
6379842 Mayer Apr 2002 B1
6379846 Terahara et al. Apr 2002 B1
6380477 Curtin Apr 2002 B1
6384573 Dunn May 2002 B1
6387563 Bates May 2002 B1
6391166 Wang May 2002 B1
6392565 Brown May 2002 B1
6394598 Kaiser May 2002 B1
6395430 Cho et al. May 2002 B1
6396001 Nakamura May 2002 B1
6398824 Johnson Jun 2002 B1
6399241 Hara et al. Jun 2002 B1
6402039 Freeman et al. Jun 2002 B1
6402795 Chu et al. Jun 2002 B1
6402796 Johnson Jun 2002 B1
6409965 Nagata et al. Jun 2002 B1
6413284 Chu et al. Jul 2002 B1
6413285 Chu et al. Jul 2002 B1
6413382 Wang et al. Jul 2002 B1
6413645 Graff et al. Jul 2002 B1
6413676 Munshi Jul 2002 B1
6414626 Greeff et al. Jul 2002 B1
6416598 Sircar Jul 2002 B1
6420961 Bates et al. Jul 2002 B1
6422698 Kaiser Jul 2002 B2
6423106 Bates Jul 2002 B1
6423776 Akkapeddi et al. Jul 2002 B1
6426163 Pasquier et al. Jul 2002 B1
6432577 Shul et al. Aug 2002 B1
6432584 Visco et al. Aug 2002 B1
6433380 Shin Aug 2002 B2
6433465 McKnight et al. Aug 2002 B1
6436156 Wandeloski et al. Aug 2002 B1
6437231 Kurata et al. Aug 2002 B2
6444336 Jia et al. Sep 2002 B1
6444355 Murai et al. Sep 2002 B1
6444368 Hikmet et al. Sep 2002 B1
6444750 Touhsaent Sep 2002 B1
6459418 Comiskey et al. Oct 2002 B1
6459726 Ovard et al. Oct 2002 B1
6466771 Wood, Jr. Oct 2002 B2
6475668 Hosokawa et al. Nov 2002 B1
6480699 Lovoi Nov 2002 B1
6481623 Grant et al. Nov 2002 B1
6488822 Moslehi Dec 2002 B1
6494999 Herrera et al. Dec 2002 B1
6495283 Yoon et al. Dec 2002 B1
6497598 Affinito Dec 2002 B2
6500287 Azens et al. Dec 2002 B1
6503661 Park et al. Jan 2003 B1
6503831 Speakman Jan 2003 B2
6506289 Demaray et al. Jan 2003 B2
6511516 Johnson et al. Jan 2003 B1
6511615 Dawes et al. Jan 2003 B1
6517968 Johnson et al. Feb 2003 B2
6522067 Graff et al. Feb 2003 B1
6524466 Bonaventura et al. Feb 2003 B1
6524750 Mansuetto Feb 2003 B1
6525976 Johnson Feb 2003 B1
6528212 Kusumoto et al. Mar 2003 B1
6529827 Beason et al. Mar 2003 B1
6533907 Demaray et al. Mar 2003 B2
6537428 Xiong et al. Mar 2003 B1
6538211 St. Lawrence et al. Mar 2003 B2
6541147 McLean et al. Apr 2003 B1
6548912 Graff et al. Apr 2003 B1
6551745 Moutsios et al. Apr 2003 B2
6558836 Whitacre et al. May 2003 B1
6562513 Takeuchi et al. May 2003 B1
6563998 Farah et al. May 2003 B1
6569564 Lane May 2003 B1
6569570 Sonobe et al. May 2003 B2
6570325 Graff et al. May 2003 B2
6572173 Muller Jun 2003 B2
6573652 Graff et al. Jun 2003 B1
6576546 Gilbert et al. Jun 2003 B2
6579728 Grant et al. Jun 2003 B2
6582480 Pasquier et al. Jun 2003 B2
6582481 Erbil Jun 2003 B1
6582852 Gao et al. Jun 2003 B1
6589299 Missling et al. Jul 2003 B2
6593150 Ramberg et al. Jul 2003 B2
6599662 Chiang et al. Jul 2003 B1
6600905 Greeff et al. Jul 2003 B2
6602338 Chen et al. Aug 2003 B2
6603139 Tessler et al. Aug 2003 B1
6603391 Greeff et al. Aug 2003 B1
6605228 Kawaguchi et al. Aug 2003 B1
6608464 Lew et al. Aug 2003 B1
6608470 Oglesbee et al. Aug 2003 B1
6610440 LaFollette et al. Aug 2003 B1
6615614 Makikawa et al. Sep 2003 B1
6616035 Ehrensvard et al. Sep 2003 B2
6618829 Pax et al. Sep 2003 B2
6620545 Goenka et al. Sep 2003 B2
6622049 Penner et al. Sep 2003 B2
6632563 Krasnov et al. Oct 2003 B1
6637906 Knoerzer et al. Oct 2003 B2
6637916 Mullner Oct 2003 B2
6639578 Comiskey et al. Oct 2003 B1
6642895 Zurcher et al. Nov 2003 B2
6645675 Munshi Nov 2003 B1
6650000 Ballantine et al. Nov 2003 B2
6650942 Howard et al. Nov 2003 B2
6662430 Brady et al. Dec 2003 B2
6664006 Munshi Dec 2003 B1
6673484 Matsuura Jan 2004 B2
6673716 D'Couto et al. Jan 2004 B1
6674159 Peterson et al. Jan 2004 B1
6677070 Kearl Jan 2004 B2
6683244 Fujimori et al. Jan 2004 B2
6683749 Daby et al. Jan 2004 B2
6686096 Chung Feb 2004 B1
6693840 Shimada et al. Feb 2004 B2
6700491 Shafer Mar 2004 B2
6706449 Mikhaylik et al. Mar 2004 B2
6709778 Johnson Mar 2004 B2
6713216 Kugai et al. Mar 2004 B2
6713389 Speakman Mar 2004 B2
6713987 Krasnov et al. Mar 2004 B2
6723140 Chu et al. Apr 2004 B2
6730423 Einhart et al. May 2004 B2
6733924 Skotheim et al. May 2004 B1
6737197 Chu et al. May 2004 B2
6737789 Radziemski et al. May 2004 B2
6741178 Tuttle May 2004 B1
6750156 Le et al. Jun 2004 B2
6752842 Luski et al. Jun 2004 B2
6753108 Hampden-Smith et al. Jun 2004 B1
6753114 Jacobs et al. Jun 2004 B2
6760520 Medin et al. Jul 2004 B1
6764525 Whitacre et al. Jul 2004 B1
6768246 Pelrine et al. Jul 2004 B2
6768855 Bakke et al. Jul 2004 B1
6770176 Benson et al. Aug 2004 B2
6773848 Nortoft et al. Aug 2004 B1
6780208 Hopkins et al. Aug 2004 B2
6797428 Skotheim et al. Sep 2004 B1
6797429 Komatsu Sep 2004 B1
6805998 Jensen et al. Oct 2004 B2
6805999 Lee et al. Oct 2004 B2
6818356 Bates Nov 2004 B1
6822157 Fujioka Nov 2004 B2
6824922 Park et al. Nov 2004 B2
6827826 Demaray et al. Dec 2004 B2
6828063 Park et al. Dec 2004 B2
6828065 Munshi Dec 2004 B2
6830846 Kramlich et al. Dec 2004 B2
6835493 Zhang et al. Dec 2004 B2
6838209 Langan et al. Jan 2005 B2
6846765 Imamura et al. Jan 2005 B2
6852139 Zhang et al. Feb 2005 B2
6855441 Levanon Feb 2005 B1
6861821 Masumoto et al. Mar 2005 B2
6863699 Krasnov et al. Mar 2005 B1
6866901 Burrows et al. Mar 2005 B2
6866963 Seung et al. Mar 2005 B2
6869722 Kearl Mar 2005 B2
6884327 Pan et al. Apr 2005 B2
6886240 Zhang et al. May 2005 B2
6890385 Tsuchiya et al. May 2005 B2
6896992 Kearl May 2005 B2
6899975 Watanabe et al. May 2005 B2
6902660 Lee et al. Jun 2005 B2
6905578 Moslehi et al. Jun 2005 B1
6906436 Jensen et al. Jun 2005 B2
6911667 Pichler et al. Jun 2005 B2
6916679 Snyder et al. Jul 2005 B2
6921464 Krasnov et al. Jul 2005 B2
6923702 Graff et al. Aug 2005 B2
6924164 Jensen Aug 2005 B2
6929879 Yamazaki Aug 2005 B2
6936377 Wensley et al. Aug 2005 B2
6936381 Skotheim et al. Aug 2005 B2
6936407 Pichler Aug 2005 B2
6949389 Pichler et al. Sep 2005 B2
6955986 Li Oct 2005 B2
6962613 Jenson Nov 2005 B2
6962671 Martin et al. Nov 2005 B2
6964829 Utsugi et al. Nov 2005 B2
6982132 Goldner et al. Jan 2006 B1
6986965 Jenson et al. Jan 2006 B2
6994933 Bates Feb 2006 B1
7022431 Shchori et al. Apr 2006 B2
7033406 Weir et al. Apr 2006 B2
7045246 Simburger et al. May 2006 B2
7045372 Ballantine et al. May 2006 B2
7056620 Krasnov et al. Jun 2006 B2
7073723 Fürst et al. Jul 2006 B2
7095372 Soler Castany et al. Aug 2006 B2
7129166 Speakman Oct 2006 B2
7131189 Jenson Nov 2006 B2
7144654 LaFollette et al. Dec 2006 B2
7144655 Jenson et al. Dec 2006 B2
7157187 Jenson Jan 2007 B2
7158031 Tuttle Jan 2007 B2
7162392 Vock et al. Jan 2007 B2
7183693 Brantner et al. Feb 2007 B2
7186479 Krasnov et al. Mar 2007 B2
7194801 Jenson et al. Mar 2007 B2
7198832 Burrows et al. Apr 2007 B2
7202825 Leizerovich et al. Apr 2007 B2
7220517 Park et al. May 2007 B2
7230321 McCain Jun 2007 B2
7247408 Skotheim et al. Jul 2007 B2
7253494 Mino et al. Aug 2007 B2
7265674 Tuttle Sep 2007 B2
7267904 Komatsu et al. Sep 2007 B2
7267906 Mizuta et al. Sep 2007 B2
7273682 Park et al. Sep 2007 B2
7274118 Jenson et al. Sep 2007 B2
7288340 Iwamoto Oct 2007 B2
7316867 Park et al. Jan 2008 B2
7323634 Speakman Jan 2008 B2
7332363 Edwards Feb 2008 B2
7335441 Luski et al. Feb 2008 B2
RE40137 Tuttle et al. Mar 2008 E
7345647 Rodenbeck Mar 2008 B1
7348099 Mukai et al. Mar 2008 B2
7389580 Jenson et al. Jun 2008 B2
7400253 Cohen Jul 2008 B2
7410730 Bates Aug 2008 B2
RE40531 Graff et al. Oct 2008 E
7466274 Lin et al. Dec 2008 B2
7468221 LaFollette et al. Dec 2008 B2
7494742 Tarnowski et al. Feb 2009 B2
7670724 Chan et al. Mar 2010 B1
7848715 Boos Dec 2010 B2
7858223 Visco et al. Dec 2010 B2
7993773 Snyder et al. Aug 2011 B2
8010048 Brommer et al. Aug 2011 B2
8021778 Snyder et al. Sep 2011 B2
8056814 Martin et al. Nov 2011 B2
8236443 Snyder et al. Aug 2012 B2
8518581 Neudecker et al. Aug 2013 B2
9029012 Neudecker et al. May 2015 B2
20010005561 Yamada et al. Jun 2001 A1
20010027159 Kaneyoshi Oct 2001 A1
20010031122 Lackritz et al. Oct 2001 A1
20010032666 Jenson et al. Oct 2001 A1
20010033952 Jenson et al. Oct 2001 A1
20010034106 Moise et al. Oct 2001 A1
20010041294 Chu et al. Nov 2001 A1
20010041460 Wiggins Nov 2001 A1
20010052752 Ghosh et al. Dec 2001 A1
20010054437 Komori et al. Dec 2001 A1
20010055719 Akashi et al. Dec 2001 A1
20020000034 Jenson Jan 2002 A1
20020001746 Jenson Jan 2002 A1
20020001747 Jenson Jan 2002 A1
20020004167 Jenson et al. Jan 2002 A1
20020009630 Gao et al. Jan 2002 A1
20020019296 Freeman et al. Feb 2002 A1
20020028377 Gross Mar 2002 A1
20020033330 Demaray et al. Mar 2002 A1
20020037756 Jacobs et al. Mar 2002 A1
20020066539 Muller Jun 2002 A1
20020067615 Muller Jun 2002 A1
20020071989 Verma et al. Jun 2002 A1
20020076133 Li et al. Jun 2002 A1
20020090758 Henley et al. Jul 2002 A1
20020091929 Ehrensvard Jul 2002 A1
20020093029 Ballantine et al. Jul 2002 A1
20020106297 Ueno et al. Aug 2002 A1
20020110733 Johnson Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020134671 Demaray et al. Sep 2002 A1
20020139662 Lee Oct 2002 A1
20020140103 Kloster et al. Oct 2002 A1
20020159245 Murasko et al. Oct 2002 A1
20020161404 Schmidt Oct 2002 A1
20020164441 Amine et al. Nov 2002 A1
20020170821 Sandlin et al. Nov 2002 A1
20020170960 Ehrensvard et al. Nov 2002 A1
20030019326 Han et al. Jan 2003 A1
20030022487 Yoon et al. Jan 2003 A1
20030024994 Ladyansky Feb 2003 A1
20030029493 Plessing Feb 2003 A1
20030030589 Zurcher et al. Feb 2003 A1
20030035906 Memarian et al. Feb 2003 A1
20030036003 Shchori et al. Feb 2003 A1
20030042131 Johnson Mar 2003 A1
20030044665 Rastegar et al. Mar 2003 A1
20030048635 Knoerzer et al. Mar 2003 A1
20030057423 Shimoda et al. Mar 2003 A1
20030063883 Demaray et al. Apr 2003 A1
20030064292 Neudecker et al. Apr 2003 A1
20030068559 Armstrong et al. Apr 2003 A1
20030076642 Shiner et al. Apr 2003 A1
20030077914 Le et al. Apr 2003 A1
20030079838 Brcka May 2003 A1
20030091904 Munshi May 2003 A1
20030095463 Shimada et al. May 2003 A1
20030097858 Strohhofer et al. May 2003 A1
20030109903 Berrang et al. Jun 2003 A1
20030127319 Demaray et al. Jul 2003 A1
20030134054 Demaray et al. Jul 2003 A1
20030141186 Wang et al. Jul 2003 A1
20030143853 Celii et al. Jul 2003 A1
20030146877 Mueller Aug 2003 A1
20030152829 Zhang et al. Aug 2003 A1
20030162094 Lee et al. Aug 2003 A1
20030173207 Zhang et al. Sep 2003 A1
20030173208 Pan et al. Sep 2003 A1
20030174391 Pan et al. Sep 2003 A1
20030175142 Milonopoulou et al. Sep 2003 A1
20030178623 Nishiki et al. Sep 2003 A1
20030178637 Chen et al. Sep 2003 A1
20030180610 Felde et al. Sep 2003 A1
20030185266 Henrichs Oct 2003 A1
20030231106 Shafer Dec 2003 A1
20030232248 Iwamoto et al. Dec 2003 A1
20040008587 Siebott et al. Jan 2004 A1
20040015735 Norman Jan 2004 A1
20040023106 Benson et al. Feb 2004 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040029311 Snyder et al. Feb 2004 A1
20040038050 Saijo et al. Feb 2004 A1
20040043288 Nishijima et al. Mar 2004 A1
20040043557 Haukka et al. Mar 2004 A1
20040048157 Neudecker et al. Mar 2004 A1
20040053124 LaFollette et al. Mar 2004 A1
20040058237 Higuchi et al. Mar 2004 A1
20040072067 Minami et al. Apr 2004 A1
20040077161 Chen et al. Apr 2004 A1
20040078662 Hamel et al. Apr 2004 A1
20040081415 Demaray et al. Apr 2004 A1
20040081860 Hundt et al. Apr 2004 A1
20040085002 Pearce May 2004 A1
20040101761 Park et al. May 2004 A1
20040105644 Dawes Jun 2004 A1
20040106038 Shimamura et al. Jun 2004 A1
20040106045 Ugaji Jun 2004 A1
20040106046 Inda Jun 2004 A1
20040118700 Schierle-Arndt et al. Jun 2004 A1
20040126305 Chen et al. Jul 2004 A1
20040151986 Park et al. Aug 2004 A1
20040161640 Salot Aug 2004 A1
20040175624 Luski et al. Sep 2004 A1
20040188239 Robison et al. Sep 2004 A1
20040209159 Lee et al. Oct 2004 A1
20040212276 Brantner et al. Oct 2004 A1
20040214079 Simburger et al. Oct 2004 A1
20040219434 Benson et al. Nov 2004 A1
20040245561 Sakashita et al. Dec 2004 A1
20040258984 Ariel et al. Dec 2004 A1
20040259305 Demaray et al. Dec 2004 A1
20050000794 Demaray et al. Jan 2005 A1
20050006768 Narasimhan et al. Jan 2005 A1
20050048802 Zhang et al. Mar 2005 A1
20050070097 Barmak et al. Mar 2005 A1
20050072458 Goldstein Apr 2005 A1
20050079418 Kelley et al. Apr 2005 A1
20050095506 Klaassen May 2005 A1
20050105231 Hamel et al. May 2005 A1
20050110457 LaFollette et al. May 2005 A1
20050112461 Amine et al. May 2005 A1
20050118464 Levanon Jun 2005 A1
20050130032 Krasnov et al. Jun 2005 A1
20050133361 Ding et al. Jun 2005 A1
20050141170 Honda et al. Jun 2005 A1
20050142447 Nakai et al. Jun 2005 A1
20050147877 Tarnowski et al. Jul 2005 A1
20050158622 Mizuta et al. Jul 2005 A1
20050170736 Cok Aug 2005 A1
20050175891 Kameyama et al. Aug 2005 A1
20050176181 Burrows et al. Aug 2005 A1
20050181280 Ceder et al. Aug 2005 A1
20050183946 Pan et al. Aug 2005 A1
20050186469 De Jonghe et al. Aug 2005 A1
20050189139 Stole Sep 2005 A1
20050208371 Kim et al. Sep 2005 A1
20050221066 Brist et al. Oct 2005 A1
20050239917 Nelson et al. Oct 2005 A1
20050255828 Fisher Nov 2005 A1
20050266161 Medeiros et al. Dec 2005 A1
20060019504 Taussig Jan 2006 A1
20060021214 Jenson et al. Feb 2006 A1
20060021261 Face Feb 2006 A1
20060040177 Onodera et al. Feb 2006 A1
20060046907 Rastegar et al. Mar 2006 A1
20060054496 Zhang et al. Mar 2006 A1
20060057283 Zhang et al. Mar 2006 A1
20060057304 Zhang et al. Mar 2006 A1
20060063074 Jenson et al. Mar 2006 A1
20060071592 Narasimhan et al. Apr 2006 A1
20060134522 Zhang et al. Jun 2006 A1
20060155545 Janye Jul 2006 A1
20060201583 Michaluk et al. Sep 2006 A1
20060210779 Weir et al. Sep 2006 A1
20060222954 Skotheim et al. Oct 2006 A1
20060234130 Inda Oct 2006 A1
20060237543 Goto et al. Oct 2006 A1
20060255435 Fuergut et al. Nov 2006 A1
20060286448 Snyder et al. Dec 2006 A1
20070009802 Lee et al. Jan 2007 A1
20070021156 Hoong et al. Jan 2007 A1
20070023275 Tanase et al. Feb 2007 A1
20070037058 Visco et al. Feb 2007 A1
20070053139 Zhang et al. Mar 2007 A1
20070064396 Oman Mar 2007 A1
20070087230 Jenson et al. Apr 2007 A1
20070091543 Gasse et al. Apr 2007 A1
20070125638 Zhang et al. Jun 2007 A1
20070141468 Barker Jun 2007 A1
20070148065 Weir et al. Jun 2007 A1
20070148553 Weppner Jun 2007 A1
20070151661 Mao et al. Jul 2007 A1
20070164376 Burrows et al. Jul 2007 A1
20070166612 Krasnov et al. Jul 2007 A1
20070184345 Neudecker et al. Aug 2007 A1
20070196682 Visser et al. Aug 2007 A1
20070202395 Snyder et al. Aug 2007 A1
20070205513 Brunnbauer et al. Sep 2007 A1
20070210459 Burrows et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070224951 Gilb et al. Sep 2007 A1
20070229228 Yamazaki et al. Oct 2007 A1
20070235320 White et al. Oct 2007 A1
20070264564 Johnson et al. Nov 2007 A1
20070278653 Brunnbauer et al. Dec 2007 A1
20070298326 Angell et al. Dec 2007 A1
20080003496 Neudecker et al. Jan 2008 A1
20080008936 Mizuta et al. Jan 2008 A1
20080014501 Skotheim et al. Jan 2008 A1
20080057397 Skotheim et al. Mar 2008 A1
20080150829 Lin et al. Jun 2008 A1
20080213672 Skotheim et al. Sep 2008 A1
20080233708 Hisamatsu Sep 2008 A1
20080254575 Fuergut et al. Oct 2008 A1
20080261107 Snyder et al. Oct 2008 A1
20080263855 Li et al. Oct 2008 A1
20080286651 Neudecker et al. Nov 2008 A1
20090092903 Johnson et al. Apr 2009 A1
20090124201 Meskens May 2009 A1
20090181303 Neudecker et al. Jul 2009 A1
20090302226 Schieber et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20090312069 Peng et al. Dec 2009 A1
20100001079 Martin et al. Jan 2010 A1
20100032001 Brantner Feb 2010 A1
20100086853 Venkatachalam et al. Apr 2010 A1
20110267235 Brommer et al. Nov 2011 A1
20110304430 Brommer et al. Dec 2011 A1
Foreign Referenced Citations (136)
Number Date Country
1415124 Apr 2003 CN
1532984 Sep 2004 CN
19824145 Dec 1999 DE
10 2005 014 427 Sep 2006 DE
10 2006 054 309 Nov 2006 DE
10 2008 016 665 Oct 2008 DE
102007030604 Jan 2009 DE
0 510 883 Oct 1992 EP
0 639 655 Feb 1995 EP
0 652 308 May 1995 EP
0 820 088 Jan 1998 EP
1 068 899 Jan 2001 EP
0 867 985 Feb 2001 EP
1 092 689 Apr 2001 EP
1 189 080 Mar 2002 EP
1 713 024 Oct 2006 EP
2806198 Sep 2001 FR
2 861 218 Apr 2005 FR
55009305 Jan 1980 JP
56-076060 Jun 1981 JP
56156675 Dec 1981 JP
60058558 Apr 1985 JP
61-269072 Nov 1986 JP
62267944 Nov 1987 JP
63-290922 Nov 1988 JP
2000-162234 Nov 1988 JP
2-054764 Feb 1990 JP
2230662 Sep 1990 JP
03-036962 Feb 1991 JP
4058456 Feb 1992 JP
4072049 Mar 1992 JP
6-010127 Jan 1994 JP
6-100333 Apr 1994 JP
7-233469 May 1995 JP
7-224379 Aug 1995 JP
08-114408 May 1996 JP
09-259932 Oct 1997 JP
10-026571 Jan 1998 JP
10-239187 Sep 1998 JP
11204088 Jul 1999 JP
11-251518 Sep 1999 JP
2000144435 May 2000 JP
2000188099 Jul 2000 JP
2000268867 Sep 2000 JP
2001-171812 Jun 2001 JP
2001259494 Sep 2001 JP
2001297764 Oct 2001 JP
2001308537 Nov 2001 JP
2001328198 Nov 2001 JP
2002-140776 May 2002 JP
2002-344115 Nov 2002 JP
2003-17040 Jan 2003 JP
2003-133420 May 2003 JP
2003347045 Dec 2003 JP
2004071305 Mar 2004 JP
2004 146297 May 2004 JP
2004149849 May 2004 JP
2004-158268 Jun 2004 JP
2004273436 Sep 2004 JP
2005-256101 Sep 2005 JP
2005-286011 Oct 2005 JP
2002-026412 Feb 2007 JP
7-107752 Apr 2007 JP
20020007881 Jan 2002 KR
20020017790 Mar 2002 KR
20020029813 Apr 2002 KR
20020038917 May 2002 KR
20030033913 May 2003 KR
20030042288 May 2003 KR
20030085252 Nov 2003 KR
2241281 Nov 2004 RU
WO 9513629 May 1995 WO
WO 9623085 Aug 1996 WO
WO 9623217 Aug 1996 WO
WO 9727344 Jul 1997 WO
WO 9735044 Sep 1997 WO
WO 9847196 Oct 1998 WO
WO 9943034 Aug 1999 WO
WO 9957770 Nov 1999 WO
WO 0021898 Apr 2000 WO
WO 0022742 Apr 2000 WO
WO 0028607 May 2000 WO
WO 0036665 Jun 2000 WO
WO 0060682 Oct 2000 WO
WO 0060689 Oct 2000 WO
WO 0062365 Oct 2000 WO
WO 0101507 Jan 2001 WO
WO 0117052 Mar 2001 WO
WO 0124303 Apr 2001 WO
WO 0133651 May 2001 WO
WO 0139305 May 2001 WO
WO 0173864 Oct 2001 WO
WO 0173865 Oct 2001 WO
WO 0173866 Oct 2001 WO
WO 0173868 Oct 2001 WO
WO 0173870 Oct 2001 WO
WO 0173883 Oct 2001 WO
WO 0173957 Oct 2001 WO
WO 0182390 Nov 2001 WO
02 15301 Feb 2002 WO
WO 0212932 Feb 2002 WO
WO 0242516 May 2002 WO
WO 0247187 Jun 2002 WO
WO 02071506 Sep 2002 WO
WO 02101857 Dec 2002 WO
WO 03003485 Jan 2003 WO
WO 03005477 Jan 2003 WO
WO 03026039 Mar 2003 WO
WO 03036670 May 2003 WO
WO 03069714 Aug 2003 WO
WO 03080325 Oct 2003 WO
WO 03083166 Oct 2003 WO
WO 2004012283 Feb 2004 WO
WO 2004021532 Mar 2004 WO
WO 2004061887 Jul 2004 WO
WO 2004077519 Sep 2004 WO
2004093223 Oct 2004 WO
WO 2004086550 Oct 2004 WO
WO 2004093223 Oct 2004 WO
WO-2004093223 Oct 2004 WO
WO 2004106581 Dec 2004 WO
WO 2004106582 Dec 2004 WO
WO 2005008828 Jan 2005 WO
WO 2005013394 Feb 2005 WO
WO 2005038957 Apr 2005 WO
WO 2005067645 Jul 2005 WO
WO-2005067645 Jul 2005 WO
WO 2005085138 Sep 2005 WO
WO 2005091405 Sep 2005 WO
WO 2006063308 Jun 2006 WO
WO 2006085307 Aug 2006 WO
WO 2007016781 Feb 2007 WO
WO 2007019853 Feb 2007 WO
WO 2007027535 Mar 2007 WO
WO 2007095604 Aug 2007 WO
WO 2008036731 Mar 2008 WO
Non-Patent Literature Citations (159)
Entry
Laurikaitis et al. “Physical properties of zirconium oxynitride films deposited by reactive magnetron sputtering.” Journal of Physics: Conference Series 100, 062051. (2008).
Adachi et al., Thermal and Electrical Properties of Zirconium Nitride, 2005, Journal of Alloys and Compounds, 399, pp. 242-244.
Pichon et al., Zirconium Nitrides Deposited by Dual Ion Beam Sputtering: Physical Properties and Growth Modeling, 1999, Applied Surface Science, 150, pp. 115-124.
Amatucci, G. et al., “Lithium scandium phosphate-based electrolytes for solid state lithium rechargeable microbatteries.” 60 Solid State Ionics 357-65 (1993).
Stamer, “Human-powered wearable computing” 35 (3 & 4) IBM Sys. J. 618-29 (1996).
Tarniowy et al., The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films, Thin Solid Films. vol. 311, (1997), pp. 93-100.
Celgard products description. retrieved from http://celgard.com/pdf/library/Celgard—Product—Comparison—10002.pdf on Jun. 17, 2011.
Jones and Akridge, “A thin film solid state microbattery,” Solid State Ionics 53-56 (1992). pp. 628-634.
Inaguma, Yoshiyuki, “High Ionic Conductivity in Lithium Lanthanum Titanate,” Solid State Communications, vol. 86, No. 10, pp. 689-693 (1993).
Guy, D., “Novel Architecture of Composite Electrode for Optimization of Lithium Battery Performance,” Journal of Power Sources 157, pp. 438-442 (2006).
Wolfenstine, J., “Electrical Conductivity and Charge Compensation in Ta Doped Li4Ti5O12,” Journal of Power Sources 180, pp. 582-585 (2008).
Balanis, Constantine A., “Antenna Theory: Analysis and Design,” 3rd Ed., pp. 811-820 (2005).
Hill, R. et al., “Large Area Deposition by Mid-Frequency AC Sputtering,” Society of Vacuum Coaters, 41st Annual Tech. Conference Proceedings, 197-202 (1998).
Mamik, Karol et al. “Ionized Sputter Deposition Using an Extremely High Plasma Density Pulsed Magnetron Discharge,” J. Vac. Sci. Technol. A 18(4):1533-37 (2000).
Balanis, Constantine A., “Antenna Theory: Analysis and Design,” 3rd Ed., pp. 817-820 (John Wiley & Sons, Inc. Publication, 2005).
Dobkin, D.M., “Silicon Dioxide: Properties and Applications”.
Hwang et al., “Characterization of Sputter-Deposited LiMn2O4 Thin Films for Rechargeable Microbatteries,” 141(12) J. Electrochem. Soc. 3296-99 (1994).
Jones et al., 53-56 Solid State Ionics 628 (1992).
Mattox “Handbook of Physical Vapor Deposition (PVD) Processing, Society of Vacuum Coaters,” Albuquerque, New Mexico 660f and 692ff, Noyes Publications (1998).
Sarro, P., “Silicon Carbide as a New MEMS Technology,” Sensors and Actuators 82, 210-218 (2000).
Abraham, K.M. et al., “Inorganic-organic composite solid polymer electrolytes,” 147(4) J. Electrochem. Soc. 1251-56 (2000).
Abrahams, I., “Li6Zr2O7, a new anion vacancy ccp based structure, determined by ab initio powder diffraction methods,” 104 J. Solid State Chem. 397-403 (1993).
Amatucci, G. et al., “Lithium scandium phosphate-based electrolytes for solid state lithium rechargeable microbatteries,” 60 Solid State Ionics 357-65 (1993).
Appetecchi, G.B. et al., “Composite polymer electrolytes with improved lithium metal electrode interfacial properties,” 145(12) J. Electrochem. Soc. 4126-32 (1998).
Bates, J.B. et al., “Electrical properties of amorphous lithium electrolyte thin films,” 53-56 Solid State Ionics 647-54 (1992).
Delmas, C. et al., “Des conducteurs ioniques pseudo-bidimensionnels Li8MO6 (M=Zr, Sn), Li7LO6 (L=Nb, Ta) et Li6In2O6,” 14 Mat. Res. Bull. 619-25 (1979).
Hu, Y-W. et al., “Ionic Conductivity of lithium phosphate-doped lithium orthosilicate,” 11 Mat. Res. Bull. 1227-30 (1976).
Neudecker, B. et al., “Li9SiAlO8: a lithium ion electrolyte for voltages above 5.4 V,” 143(7) J. Electrochem. Soc. 2198-203 (1996).
Ohno, H. et al., “Electrical conductivity of a sintered pellet of octalithium zarconate,” 132 J. Nucl. Mat. 222-30 (1985).
Scholder, V. et al., “Über Zirkonate, Hafnate und Thorate von Barium, Strontium, Lithium und Natrium,” Zeitschrift für Anorganische und Allgemeine Chemie, Band 362, pp. 149-168 (1968).
Yu, X. et al., “A stable thin-film lithium electrolyte: lithium phosphorus oxynitride,” 144(2) J. Electrochem. Soc. 524-532 (1997).
Affinito, J.D. et al., “PML/oxide/PML barrier layer performance differences arising from use of UV or electron beam polymerization of the PML layers,” Thin Solid Films 308-309: 19-25 (1997).
Affinito, J.D. et al., “Polymer-oxide transparent barrier layers,” Society of Vacuum Coaters, 39th Ann. Technical Conference Proceedings, May 5-10, 1996, Philadelphia, PA, pp. 392-397 (1996).
Alder, T. et al., “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photonics Tech. Lett. 12(8): 1016-1018 (2000).
Almeida, V.R. et al., “Nanotaper for compact mode conversion,” Optics Letters 28(15): 1302-13204 (2003).
Anh et al., “Significant Suppression of Leakage Current in (Ba,Sr)TiO3 Thin Films by Ni or Mn Doping,” J. Appl. Phys.,92(5):2651-2654 (Sep. 2002).
Asghari, M. and Dawnay, E., “ASOC™—a manufacturing integrated optics technology,” SPIE 3620: 252-262 (Jan. 1999).
Barbier, D. et al., “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Tech. Lett. 9:315-317 (1997).
Barbier, D., “Performances and potential applications of erbium doped planar waveguide amplifiers and lasers,” Proc. OAA, Victoria, BC, Canada, pp. 58-63 (Jul. 21-23, 1997).
Beach R.J., “Theory and optimization of lens ducts,” Applied Optics 35(12): 2005-2015 (1996).
Belkind, A. et al., “Pulsed-DC Reactive Sputtering of Dielectrics: Pulsing Parameter Effects,” 43rd Annual Technical Conference Proceedings (2000).
Belkind, A. et al., “Using pulsed direct current power for reactive sputtering of Al2O3,” J. Vac. Sci. Technol, A 17(4): 1934-1940 (1999).
Bestwick, T., “ASOC™ silicon integrated optics technology,” SPIE 3631: 182-190 (1999).
Borsella, E. et al., “Structural incorporation of silver in soda-lime glass by the ion-exchange process: a photoluminescence spectroscopy study,” Applied Physics A 71: 125-132 (2000).
Byer, R.L., “Nonlinear optics and solid-state lasers: 2000,” IEEE J. Selected Topics in Quantum Electronics 6(6): 911-930 (2000).
Campbell, S.A. et al., “Titanium dioxide (TiO2)-based gate insulators,” IBM J. Res. Develop. 43(3): 383-392 (1999).
Chang, C.Y. and Sze, S.M. (eds.), in ULSI Technology, The McGraw-Hill Companies, Inc., Nyew York, Chapter 4, pp. 169-170 and 226-231 (1996).
Chen, G. et al., “Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells,” J. Electrochemical Society 149(8): A1092-A1099 (2002).
Choi, Y.B. et al., “Er-Al-codoped silicate planar light waveguide-type amplifier fabricated by radio-frequency sputtering,” Optics Letters 25(4): 263-265 (2000).
Choy et al., “Eu-Doped Y2O3 Phosphor Films Produced by Electrostatic-Assisted Chemical Vapor Deposition,” J. Mater. Res. 14(7): 3111-3114 (Jul. 1999).
Cocorullo, G. et al., “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Optics Lett. 21(24): 2002-2004 (1996).
Cooksey, K. et al., “Predicting permeability & Transmission rate for multilayer materials,” Food Technology 53(9): 60-63 (1999).
Crowder, M.A. et al., “Low-temperature single-crystal Si TFT's fabricated on Si films processed via sequential lateral solidification,” IEEE Electron Device Lett. 19(8): 306-308 (1998).
Delavaux, J-M. et al., “Integrated optics erbium ytterbium amplifier system in 10Gb/s fiber transmission experiment,” 22nd European Conference on Optical Communication, Osla, I.123-I.126 (1996).
Distributed Energy Resources: Fuel Cells, Projects, 4 pages http://www.eere.energy.gov/der/fuel—cells/projects.html (2003).
Dorey, R.A., “Low temperature micromoulding of functional ceramic devices,” Grant summary for GR/S84156/01 for the UK Engineering and Physical Sciences Research Council, 2 pages (2004).
DuPont Teijin Films, Mylar 200 SBL 300, Product Information, 4 pages (2000).
Electrometals Technologies Limited, Financial Report for 2002, Corporate Directory, Chairman's review, Review of Operations, 10 pages (2002).
E-Tek website: FAQ, Inside E-Tek, E-TEk News, Products; http://www.etek-inc.com/, 10 pages (2003).
Flytzanis, C. et al., “Nonlinear optics in composite materials,” in Progress in Optics XXIX, Elsevier Science Publishers B.V., pp. 323-425 (1991).
Frazao, O. et al., “EDFA gain flattening using long-period fibre gratings based on the electric arc technique,” Proc. London Comm. Symp. 2001, London, England, 3 pages (2001).
Fujii, M. et al., “1.54 μm photoluminesecne of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals for Er3+,” Appl. Phys. Lett. 71(9): 1198-1200 (1997).
Garcia, C. et al., “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10): 1595-1597 (2003).
Goossens, A. et al., “Sensitization of TiO2 with p-type semiconductor polymers,” Chem. Phys. Lett. 287: 148(1998).
Greene, J.E. et al., “Morphological and electrical properties of rf sputtered Y2O3-doped ZrO2 thin films,” J. Vac. Sci. Tech. 13(1): 72-75 (1976).
Han, H.-S. et al., “Optical gain at 1.54 μm in Erbium-doped Silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79(27): 4568-4570 (2001).
Hayakawa, T. et al., “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Crystalline Solids 259: 16-22 (1999).
Hayakawa, T. et al., “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11): 1513-1515 (1999).
Hayfield, P.C.S., I Developmemt of a New Material-Monolithic Ti4O7 Ebonix® Ceramic, Royal Society of Chemistry, Cambridge, Table of Contens, 4 pages (2002).
Hehlen, M.P. et al., “Spectroscopic properties of Er3+-and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Physical Review B 56(15): 9302-9318 (1997).
Hehlen, M.P. et al., “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Optics Letters 22(11); 772-774 (1997).
Horst, F. et al., “Compact, tunable optical devices in silicon-oxynitride waveguide technology,” Top. Meeting Integrated Photonics Res. '00, Quebec, Canada, p. IThF1, 3 pages (2000).
Howson, R.P., “The reactive sputtering of oxides and nitrides,” Pure & Appl. Chem. 66(6): 1311-1318 (1994).
Hubner, J. and Guldberg-Kjaer, S., “Planar Er- and Yb-doped amplifiers and lasers,” COM Technical Univerity of Denmark, 10th European Conf. on Integrated Optics, Session WeB2, pp. 71-74 (2001).
Hwang et al., “Characterization of sputter-deposited LiMn2O4 thin films for rechargeable microbatteries,” 141(12) J. Electrochem. Soc. 3296-99 (1994).
Hwang, M-S. et al., “The effect of pulsed magnetron sputtering on the properties of iridium tin oxide thin films,” Surface and Coatings Tech. 171: 29-33 (2003).
Im, J.S. and Sposili, R.S., “Crystalline Si films for integrated active-matrix liquid crystal displays,” MRS Bulletin, pp. 39-48 (1996).
Im, J.S. et al., “Controlled super-lateral growth of Si-films for microstructural manipulation and optimization,” Physica Status Solidi (A) 166(2): 603-617 (1998).
Im, J.S. et al., “Single-crystal Si films for thin-film transistor devices,” Appl. Physics Lett. 70(25): 3434-3436 (1997).
Itoh, M. et al., “Large reduction of singlemode-fibre coupling loss in 1.5% Δ planar lightwave circuits using spot-size converters,” Electronics Letters 38(2): 72-74 (2002).
Jackson, M.K. and Movassaghi, M., “An accurate compact EFA model,” Eur. Conf. Optical Comm., Munich, Germany, 2 pages (2000).
Janssen, R. et al., “Photoinduced electron transfer from conjugated polymers onto nanocrystalline TiO2,” Synthet. Metal, 1 page (1999).
Johnson, J.E. et al., “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input,” IEEE J. Selected topics in Quantum Electronics 6(1): 19-25 (2000).
Jonsson, L.B. et al., “Frequency response in pulsed DC reactive sputtering processes,” Thin Solid Films 365: 43-48 (2000).
Kato, K. and Inoue, Y., “Recent progress on PLC hybrid integration,” SPIE 3631: 28-36 (1999).
Kato, K. and Tohmori, Y., “PLC hybrid integration technology and its application to photonic components,” IEEE J. Selected Topics in Quantum Electronics 6(1): 4-13 (2000).
Kelly, P.J. and Arnell, R.D., “Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering,” J. Vac. Sci. Technol. A 17(3): 945-953 (1999).
Kelly, P.J. et al., “A novel technique for the deposition of aluminum-doped zinc oxide films,” Thin Solid Films 426(1-2): 111-116 (2003).
Kelly, P.J. et al., “Reactive pulsed magnetron sputtering process for alumina films,” J. Vac. Sci. Technol. A 18(6): 2890-2896 (2000).
Kik, P.G. and Polman, A., “Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2,” J. Appl. Phys. 91(2): 536-536 (2002).
Kim et al., “Correlation Between the Microstructures and the Cycling Performance of RuO2 Electrodes for Thin-Film Microsupercapacitros,” J. Vac. Sci. Technol. B20(5): 1827-1832 (Sep. 2002).
Kim, D-W. et al. “Mixture Behavior and Microwave Dielectric Properties in the Low-fired TiO2-CuO System,” Jpn. J. Appl. Phys. 39:2696-2700 (2000).
Kim, H-K. et al., “Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-sate thin film microbattery,” J. Vac. Sci. Technol. A 22(4): 1182-1187 (2004).
Kim, J-Y. et al. “Frequency-dependent pulsed direct current magnetron sputtering of titanium oxide films,” J. Vac. Sci. Technol. A 19(2):429-434 (2001).
Ladouceur, F. and Love, J.D., in: Silica-based Buried Channel Waveguides and Devices, Chapman & Hall, London, Table of Contents, 6 pages (1996).
Ladouceur, F. et al., “Effect of side wall roughness in buried channel waveguides,” IEEE Proc. Optoelectron. 141(4):242-248 (1994).
Lamb, W. and Zeiler, R., Designing Non-Foil Containing Skins for Vacuum Insulation Panel (VIP) Application, Vuoto XXVIII(1-2):55-58 (1999).
Lamb, W.B., “Designing Nonfoil Containing Skins for VIP Applications,” DuPont VIA Symposium Presentation, 35 Pages (1999).
Lange, M.R. et al, “High Gain Ultra-Short Length Phosphate glass Erbium-Doped Fiber Amplifier Material,” OSA Optical Fiber Communications (OFC), 3 Pages (2002).
Laporta, P. et al, “Diode-pumped cw bulk Er: Yb: glass laser,” Optics Letters 16(24):1952-1954 (1991).
Laurent-Lund, C. et al., “PECVD Grown Multiple Core Planar Waveguides with Extremely Low Interface Reflections and Losses,” IEEE Photonics Tech. Lett. 10(10):1431-1433 (1998).
Lee, B.H. et al., “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silion,” Appl. Phys. Lett. 74(21):3143-3145 (1999).
Lee, K.K. et al., “Effect of size and roughness on light transmission in a Si/SiO2waveguide: Experiments and model,” Appl. Phys. Lett. 77(11):1617-1619 (2000).
Love, J.D. et al., “Quantifying Loss Minimisation in Single-Mode Fibre Tapers,” Electronics Letters 22(17):912-914 (1986).
Mardare, D. and Rusu, G.I., “On the structure of Titanium Oxide Thin Films,” Andalele Stiintifice Ale Universitatti IASI, Romania, pp. 201-208 (1999).
Marques, P.V.S. et al., “Planar Silica-on-Silicon Waveguide Lasers Based in Two Layers Core Devices,” 10th European Conference on Integrated Optics, Session WeB2, pp. 79-82 (2001).
Meijerink, A. et al, “Luminescence of Ag+ in Crystalline and Glassy Srb4O7,” J. Physics Chem. Solids 54(8):901-906 (1993).
Mesnaoui, M. et al, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3—AgPO3system,” Eur. J. Solid State Inorg. Chem. 29:1001-1013 (1992).
Mitomi, O. et al., “Design of a Single-Mode Tapered Waveguide for Low-Loss Chip-to-Fiber Coupling,” IEEE J. Quantum Electronics 30(8): 1787-1793 (1994).
Mizuno, Y. et al “Temperature dependence of oxide decomposition on titanium surfaces in UHV,” J. Vac. Sci & Tech. A. 20(5): 1716-1721 (2002).
Ohkubo, H. et al., Polarization-Insensitive Arrayed-Waveguide Grating Using Pure SiO2 Cladding, Fifth Optoelectronics and Communication Conference (OECC 2000) Technical Digest, pp. 366-367 (2000).
Ohmi, S. et al., “Rare earth mental oxides for high-K fate insulator,” VLSI Design 2004, 1 Page (2004).
Ohtsuki, T., et al., “Gain Characteristics of high concentration Er3+-doped phosphate glass waveguide,” J. Appl. Phys. 78(6):3617-3621 (1995).
Ono, H. et al., “Design of a Low-loss Y-branch Optical Waveguide,” Fifth Optoelectronic and Communications Conference (OECC 2000) Technical Digest, pp. 502-503 (2000).
Padmini, P. et al. “Realization of High Tunability Barium Strontium Titanate Thin Films by rf Megnetron Sputtering,” Appl. Phys. Lett. 75(20):3186-3188 (1999).
Pan, T. et al., “Planar Er3+-doped aluminosilicate waveguide amplifier with more than 10 dB gain across C-band,” Optical Society of America, 3 pages (2000).
Park et al., “Characteristics of Pt Thin Film on the Conducting Ceramics TiO and Ebonex (Ti4O7) as Electrode Materials,” Thin Solid Films 258: 5-9 (1995).
Peters, D.P. et al., “Formation mechanism of silver nanocrystals made by ion irradiation of Na+—Ag+ ion-exchanged sodalime silicate glass,” Nuclear Instruments and Methods in Physics Research B 168:237-244 (2000).
Rajarajan, M. et al., “Numerical Study of Spot-Size Expanders fro an Efficient OEIC to SMF Coupling,” IEEE Photonics Technology Letters 10(8): 1082-1084 (1998).
Ramaswamy, R.V. et al., “Ion-Exchange Glass Waveguides: A Review,” J. Lightwave Technology 6(6); 984-1002 (1988).
Roberts, S.W. et al., “The Photoluminescence of Erbium-doped Silicon Monoxide,” University of Southampton , Department of Electronics and Computer Science Research Journal, 7 pages (1996).
Saha et al., “Large Reduction of Leakage Current by Graced-Layer La Doping in (Ba0.5,Sr0.5)TiO3 Thin Films,” Appl. Phys. Lett. 79(1): 111-113 (Jul. 2001).
Sanyo Vacuum Industries Co., Ltd. Products Infor, TiO2, (2003, 1 page, http://www.sanyovac.co.jp/Englishweb/products?EtiO2.htm.
Schermer, R. et al., “Investigation of Mesa Dielectric Waveguides,” Proceedings of the OSA Integrated Photonics Research Topical Meeting and Exhibit, Paper No. IWB3, 3 pages (2001).
Schiller, S. et al., “PVD Coating of Plastic Webs and Sheets with High Rates on Large Areas,” European Materials Research Society 1999 Spring Meeting, Jun. 1-4, 1999, Strasbourg, France, 13 pages (1999).
Scholl, R., “Power Supplies for Pulsed Plasma Technologies: State-of-the-Art and Outlook,” Advances Energy Industries, Inc. 1-8 (1999).
Scholl, R., “Power Systems for Reactive Sputtering of Insulating Films,” Advances Energy Industries, Inc., 1-8 (Aug. 2001).
Second International Symposium of Polymer Surface Modification: Relevance to Adhesion, Preliminary Program, 13 pages (1999).
Seventh International Conference on TiO2 Photocatalysis: Fundamentals & Applications, Toronto, Ontario, Canada, Final Program, 7 pages (Nov. 17-21, 2002).
Sewell, P. et al., “Rib Waveguide Spot-Size Tranformers: Modal Properties,” J Lightwave Technology 17(5):848-856 (1999).
Shaw, D.G. et al., “Use of Vapor Deposited Acrylate Coatings to Improve the Barrier Properties of Metallized Film,” Society of Vacuum Coaters, 37th Annual Technical Conference Proceedings, pp. 240-244 (1994).
Shin, J.C. et al. “Dielectric and Electrical Properties of Sputter Grown (Ba,Se)TiO3 Thin Films,” J. Appl. Phys. 86(1):506-513 (1999).
Shmulovich, J. et al., “Recent progress in Erbium-doped waveguide amplifiers.” Bell Laboratories, pp. 35-37 (1999).
Slooff, L.H. et al., “Optical properties of Erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83(1):497-503 (1998).
Smith, R.E. et al., “Reduced Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler.” IEEE Photonics Technology Lett. 8(8):1052-1054 (1996).
Snoeks, E. et al., “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12(8): 1468-1474 (1995).
Strohhofer, C. and Polman, A. “Energy tranfer to Er3 + in Ag ion-exchanged glass,” FOM Institute for Atomic and Molecular Physics, 10 pages (2001).
Sugiyama, A. et al., “Gas Permeation Through the Pinholes of Plastic Film Laminated with Aluminum Foil,” Vuoto XXVIII(1-2):51-54 (1999).
Tervonen, A. “Challenges and opportunities for integrated optics in optical networks,” SPIE 3620:2-11 (1999).
Ting, C.Y. et al., “Study of planarized sputter-deposited SiO2” J. Vac. Sci Technol, 15(3):1105-1112 (1978).
Tomaszewski, H. et al., “Yttria-stabilized zirconia thin films grown by reactive r.f. magnetron sputtering,” Thin Solid Films 287: 104-109 (1996).
Triechel, O. and Kirchhoff, V., “The influences of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass,” Surface and Coating Technology 112:268-272 (2000).
Tukamoto, H. and West, A.R., “Electronic Conductivity of LiCoOs and Its Enhancement by Magnesium Doping,” J. Electrochem. Soc 144(9):3164-3168 (1997).
Van Dover, R.B., “Amorphous Lanthanide-Doped TiOx Dielectric Films,” Appl. Phys. Lett. 74(20):3041-3043 (1999).
Viljanen, J. and Leppihalme, M., “Planner Optical Coupling Elements for Multimode Fibers with Two-Step Ion Migration Process,” Applied Physics 24(1):61-63 (1981).
Villegas, M.A. et al., “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37(6):248-253 (1996).
Von Rottkay, K. et al., “Influences of stoichiometry on electrochromic cerium-titanium oxide compounds,” Presented at the 11th Int'l Conference of Solid State Ionics, Honolulu, Hawaii, Nov. 19, 1997, Published in Solid State Ionics 113-115:425-430. (1998).
Westlinder, J. et al., “Simulations and Dielectric Characterization of Reactive dc Magnetron Cosputtered (Ta2O5)1-x(TiO2)x Thin Films,” J Vac. Sci. Technol. B 20(3):855-861 (May/Jun. 2002).
Wilkes, K.E., “Gas Permeation Through Vacuum Barrier Films and its Effect on VIP Thermal Performance,” presented at the Vacuum Insulation Panel Symp., Baltimore, Maryland, 21 pages (May 3, 1999).
Yanagawa, H. et al., “Index-and-Dimensional Taper and Its Application to Photonic Devices,” J. Lightwave Technology 10(5):587-591 (1992).
Yoshikawa, K. et al., “Spray formed aluminum alloys for sputtering targets,” Powder Metallurgy 43(3): 198-199 (2000).
Zhang, H. et al., “High Dielectric Strength, High k TiO2 Films by Pulsed DC, Reactive Sputter Deposition,” 5 pages (2001).
Bates et al., “Thin-Film Lithium Batteries,” in New Trends in Electrochemical Technology: Energy Storage Systems for Electronics (T. Osaka & M. Datta eds. Gordon and Bresch 2000).
Wang et al., “Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes,” 143 J. Electrochem. Soc. 3203-13 (1996).
European Examination Report (dated Apr. 16, 2015), Application No. EP14164006.0, Date Filed—May 14, 2007, (6 pages).
European Search Report (dated May 15, 2014), Application No. EP14164006.0, Date Filed—May 14, 2007, (11 pages).
Sapurast Research LLC, Notice of preliminary rejection for Korean Application No. 10-2014-7029445, (Jul. 31, 2015).
Sapurast Research LLC, Non final office action for U.S. Appl. No. 14/041,575, (Jul. 10, 2015).
KIPO Preliminary Rejection (dated Dec. 29, 2014), Korean Application No. 10-2014-7029445, Date Filed Oct. 21, 2014, (7 pages).
Related Publications (1)
Number Date Country
20140295246 A1 Oct 2014 US
Provisional Applications (4)
Number Date Country
60799904 May 2006 US
60782792 Mar 2006 US
60737613 Nov 2005 US
60759479 Jan 2006 US
Divisions (1)
Number Date Country
Parent 11748471 May 2007 US
Child 14191069 US
Continuations (1)
Number Date Country
Parent 11374282 Jun 2005 US
Child 11209536 US
Continuation in Parts (4)
Number Date Country
Parent 11687032 Mar 2007 US
Child 11748471 US
Parent 11561277 Nov 2006 US
Child 11687032 US
Parent 11209536 Aug 2005 US
Child 11561277 US
Parent 10215190 Aug 2002 US
Child 11374282 US