Thin film metal oxide bearing semiconductor material for single junction solar cell devices

Information

  • Patent Grant
  • 8759671
  • Patent Number
    8,759,671
  • Date Filed
    Wednesday, September 24, 2008
    16 years ago
  • Date Issued
    Tuesday, June 24, 2014
    10 years ago
Abstract
A structure for a single junction solar cell. The structure includes a substrate member having a surface region. The structure includes a first electrode structure overlying the surface region of the substrate member. A P absorber layer is formed overlying the first electrode structure. In a specific embodiment, the P absorber layer has a P− type impurity characteristics and a first optical absorption coefficient greater than 104 cm−1 in a wavelength range comprising 400 nm to 800 nm. An N+ layer is provided overlying the P absorber layer and an interface region formed within a vicinity of the P layer and the N+ layer. The structure also includes a high resistivity buffer layer overlying the N+ layer and a second electrode structure overlying the buffer layer.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to provisional patent application Ser. No. 60/976,391; filed on Sep. 28, 2007; commonly assigned, and of which is hereby incorporated by reference for all purposes.


STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

NOT APPLICABLE


REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK

NOT APPLICABLE


BACKGROUND OF THE INVENTION

The present invention relates generally to photovoltaic materials. More particularly, the present invention provides a method and structure for manufacture of photovoltaic materials using a thin film process including Group IV materials (e.g., silicon, germanium) and metal oxides, such as copper oxide and the like. Merely by way of example, the present method and structure have been implemented using a single junction configuration, but it would be recognized that the invention may have other configurations.


From the beginning of time, human beings have been challenged to find way of harnessing energy. Energy comes in the forms such as petrochemical, hydroelectric, nuclear, wind, biomass, solar, and more primitive forms such as wood and coal. Over the past century, modern civilization has relied upon petrochemical energy as an important source. Petrochemical energy includes gas and oil. Gas includes lighter forms such as butane and propane, commonly used to heat homes and serve as fuel for cooking. Gas also includes gasoline, diesel, and jet fuel, commonly used for transportation purposes. Heavier forms of petrochemicals can also be used to heat homes in some places. Unfortunately, petrochemical energy is limited and essentially fixed based upon the amount available on the planet Earth. Additionally, as more human beings begin to drive and use petrochemicals, it is becoming a rather scarce resource, which will eventually run out over time.


More recently, clean sources of energy have been desired. An example of a clean source of energy is hydroelectric power. Hydroelectric power is derived from electric generators driven by the force of water that has been held back by large dams such as the Hoover Dam in Nevada. The electric power generated is used to power up a large portion of Los Angeles Calif. Other types of clean energy include solar energy. Specific details of solar energy can be found throughout the present background and more particularly below.


Solar energy generally converts electromagnetic radiation from our sun to other useful forms of energy. These other forms of energy include thermal energy and electrical power. For electrical power applications, solar cells are often used. Although solar energy is clean and has been successful to a point, there are still many limitations before it becomes widely used throughout the world. As an example, one type of solar cell uses crystalline materials, which form from semiconductor material ingots. These crystalline materials include photo-diode devices that convert electromagnetic radiation into electrical current. Crystalline materials are often costly and difficult to make on a wide scale. Additionally, devices made from such crystalline materials have low energy conversion efficiencies. Other types of solar cells use “thin film” technology to form a thin film of photosensitive material to be used to convert electromagnetic radiation into electrical current. Similar limitations exist with the use of thin film technology in making solar cells. That is, efficiencies are often poor. Additionally, film reliability is often poor and cannot be used for extensive periods of time in conventional environmental applications. These and other limitations of these conventional technologies can be found throughout the present specification and more particularly below.


From the above, it is seen that improved techniques for manufacturing photovoltaic materials and resulting devices are desired.


BRIEF SUMMARY OF THE INVENTION

According to the present invention, techniques including a structure and method for a single junction solar cell are provided. More particularly, embodiments according to the present invention provide a structure for a single junction solar cell using thin film metal oxide semiconductor material. But it should be recognized that the present invention has a broader range of applicability.


In a specific embodiment, a structure for a single junction solar cell is provided. The structure includes a substrate member having a surface region. The structure includes a first conductor layer overlying the surface region of the substrate member. The structure includes a P absorber layer overlying the conductor layer. In a specific embodiment, the P absorber layer has a Ptype impurity characteristics and a first optical absorption coefficient greater than 104 cm−1 in a wavelength range comprising 400 nm to 800 nm. The P absorber layer comprises a metal oxide semiconductor material in a specific embodiment. The structure also includes a N+ layer overlying the first absorber layer. The N+ layer is characterized by an N type impurity characteristics. The structure also include an interface region formed from the first absorber layer and the N+ layer. A buffer layer having a suitable resistance is provided overlying the N+ layer. The structure also includes a second conductor layer overlying the buffer layer.


In an alternative embodiment, a method for forming a single junction solar cell is provided. The method includes providing a substrate member having a surface region. A first conductor layer is formed overlying the surface region of the substrate member and a P absorber layer is formed overlying the conductor layer. In a specific embodiment, the P absorber layer has a Ptype impurity characteristics and a first optical absorption coefficient greater than 104 cm−1 in a wavelength range comprising 400 nm to 800 nm. The method forms a N+ layer overlying the P absorber layer and an interface region is formed from the P absorber layer and the N+ layer in a specific embodiment. The method includes forming a high resistivity buffer layer overlying the N+ layer and forming a second conductor layer overlying the buffer layer.


Depending on the embodiment, one or more of these features may be included. Embodiments according to the present invention provide a single junction solar cell structure using metal oxide semiconductor materials. The present structure can be provided using easy to use processes using convention equipment without further modifications. The metal oxide semiconductor materials may be nanostructured or in bulk depending on the embodiment. In a specific embodiment, the present solar cell structure provides a higher conversion efficiency in converting sunlight into electric energy. Depending on the embodiment, the conversion efficiency may be 15 percent to 20 percent or greater for the resulting single junction solar cell. Additionally, the present single junction solar cell structure can be provided using large scale manufacturing processes, which reduce cost in manufacturing of the photovoltaic devices. Depending on the embodiments, one or more of these benefits may be achieved. These benefits will be described more fully throughout the present specification, and particularly below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified diagram illustrating a single junction solar cell structure according to an embodiment of the present invention.



FIG. 2 is a simplified diagram illustrating a junction region for the single junction solar cell structure according to an embodiment of the present invention.



FIGS. 3-8 are simplified diagrams illustrating a method for fabricating the single junction solar cell using thin metal oxide semiconductor material in a specific embodiment





DETAILED DESCRIPTION OF THE INVENTION

According to embodiments of the present invention, techniques directed to photovoltaic cell structure are provided. More particularly, embodiments according to the present invention provide a single junction photovoltaic cell structure and resulting photovoltaic cell having a high conversion efficiency. But it would be recognize that embodiments according to the present invention have a much broader range of applicability.



FIG. 1 is a simplified diagram illustrating a single junction solar cell structure 100 according to an embodiment of the present invention. As shown, the single junction solar cell structure includes a substrate member 102 having a surface region. The substrate member can be made of an insulator material, a conductor material, or a semiconductor material, depending on the application. In a specific embodiment, the conductor material can be nickel, molybdenum, aluminum, or a metal alloy such as stainless steel and the likes. In a embodiment, the semiconductor material may include silicon, germanium, silicon germanium, compound semiconductor material such as III-V materials, II-VI materials, and others. In a specific embodiment, the insulator material can be a transparent material such as glass, quartz, fused silica. Alternatively, the insulator material can be a polymer material, a ceramic material, or a layer or a composite material depending on the application. The polymer material may include acrylic material, polycarbonate material, and others, depending on the embodiment. Of course, there can be other variations, modifications, and alternatives.


As shown in FIG. 1, the single junction solar cell structure includes a first conductor layer 104 overlying the surface region of the substrate member to form a first electrode structure. In a specific embodiment, the first electrode structure can be made of a suitable material or a combination of materials. The first electrode structure can be made from a transparent conductive electrode or materials that are light reflecting or light blocking depending on the embodiment. Examples of the optically transparent material can include indium tin oxide (ITO), aluminum doped zinc oxide, fluorine doped tin oxide and can be others. In a specific embodiment, the first electrode may be made from a metal material. The metal material can include gold, silver, nickel, platinum, aluminum, tungsten, molybdenum, a combination of these, or an alloy, among others. In a specific embodiment, the metal material may be deposited using techniques such as sputtering, electroplating, electrochemical deposition and others. Alternatively, the first electrode structure may be made of a carbon based material such as carbon or graphite. Yet alternatively, the first electrode structure may be made of a conductive polymer material, depending on the application. Of course there can be other variations, modifications, and alternatives.


Referring again to FIG. 1, the single junction solar cell structure includes an absorber layer 106 overlying the first electrode layer 104. In a specific embodiment, the absorber layer 106 is characterized by a P characteristics. That is, the absorber layer 106 absorbs electromagnetic radiation forming positively charged carriers within a thickness of the absorber layer 106. In a specific embodiment, the absorber layer 106 can comprise a first metal oxide semiconductor material. The first metal oxide semiconductor material may be provided in various spatial morphologies of different shapes and sizes. For example, the first metal oxide semiconductor material may be nanostructured, such as nanotubes, nanocolumns, nanocrystals, and the like. In other embodiments, the first metal oxide semiconductor material can be provided as bulk material. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, the first metal oxide semiconductor material has an optical absorption coefficient greater than about 104 cm−1 for electromagnetic radiation in a wavelength range of about 400 nm to about 800 nm. In an alternative embodiment, the first metal oxide semiconductor material can have an optical absorption coefficient greater than about 104 cm−1 for electromagnetic radiation in a wavelength range of about 450 nm to about 700 nm. Of course there can be other variations, modifications, and alternatives.


The first metal oxide semiconductor material is characterized by a carrier mobility. The carrier mobility of the first metal oxide semiconductor material can range from about 10−6 cm2/V−s to about 106 cm2/V−s in a specific embodiment. In another embodiment, the carrier mobility of the first metal oxide semiconductor material can range from about 10−3 cm2/V−s to about 103 cm2/V−s. In certain embodiments, the carrier mobility of the first metal oxide semiconductor material can range from about 10−3 cm2/V−s to about 103 cm2/V−s. Of course there can be other variations, modifications, and alternatives.


The first metal oxide semiconductor material is characterized by a bandgap. In a specific embodiment, the first absorber layer has a bandgap of about 1.0 eV to about 2.2 eV. In an alternative embodiment, the first metal oxide semiconductor material can have a bandgap of about 1.0 eV to about 2.0 eV. In a preferred embodiment, the first metal oxide semiconductor material can have a bandgap of about 1.2 eV to about 1.8 eV. Of course there can be other variations, modifications, and alternatives depending on the application.


Referring to FIG. 1, a N+ layer 108 is formed overlying the absorber layer 106, which has a Pcharacteristics. In a specific embodiment, the N+ layer 108 comprises a second metal oxide semiconductor material. Alternatively, the N+ layer 108 can comprise a metal sulfide material. Examples of the second metal oxide material can include one or more oxides of copper, zinc oxide, and the like. Examples of metal sulfide material can include zinc sulfide, iron sulfides and others. The N+ layer 108 may be provided in various spatial morphologies of different shapes and sizes. In a specific embodiment, the N+ layer 108 may comprise of suitable materials that are nanostructured, such as nanocolumn, nanotubes, nanorods, nanocrystals, and others. In an alternative embodiment, the N+ layer 108 may also be provided as other morphologies, such as bulk materials depending on the application. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, an interface region 120 is caused by the P absorber layer and the N+ layer as shown in FIG. 1. In a preferred embodiment, the interface layer 120 allows for the formation of a pn junction from the positively charged carriers and the negatively charged carriers. In a specific embodiment, the pn junction is characterized by a pn+ junction and a depletion region substantially in the absorber layer in the vicinity of the interface region. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, the single junction solar cell structure includes a buffer layer 110 overlying the second absorber layer. The buffer layer is a suitable material having desired characteristics. Of course there can be other variations, modifications, and alternatives.


Referring again to FIG. 1, a second conductor layer 112 is formed overlying the buffer layer to form a second electrode structure. In a specific embodiment, the second electrode structure can be made of a suitable material or a combination of materials. The second electrode structure can be made from a transparent conductive electrode or materials that are light reflecting or light blocking depending on the embodiment. Preferably the second electrode structure comprises an optically transparent material such as indium tin oxide (ITO), aluminum doped zinc oxide, fluorine doped tin oxide and others. In a specific embodiment, the second electrode structure may be made from a metal material. The metal material can include gold, silver, nickel, platinum, aluminum, tungsten, molybdenum, a combination of these, or an alloy, among others. In a specific embodiment, the metal material may be deposited using techniques such as sputtering, electroplating, electrochemical deposition and others. Alternatively, the second electrode structure may be made of a carbon based material such as carbon or graphite. Yet alternatively, the second electrode structure may be made of a conductive polymer material, depending on the application. Of course there can be other variations, modifications, and alternatives.



FIG. 2 is a more detailed diagram illustrating the interface region according to an embodiment of the present invention. As shown, a N+ layer 202 is formed overlying absorber layer 204 to form a pn junction. In a specific embodiment, the absorber layer is characterized by a P type impurity characteristic, and has optical absorption coefficient greater than about 104 cm−1 for electromagnetic radiation in the wavelength range of about 400 nm to 750 nm. Electron-hole pairs are generated in the absorber layer upon exposing to the electromagnetic radiation and a depletion region 206 is formed substantially in the absorber layer in a vicinity of an interface region. As merely an example, the absorber layer can be a first metal oxide semiconductor material having a bandgap of about 1.0 eV to about 2.0 eV. In a specific embodiment, the first metal oxide semiconductor material can include oxides of copper such as cupric oxide or cuprous oxide, oxides of iron such as ferrous oxide, ferric oxide, tungsten oxide and other suitable materials. The first metal oxide semiconductor material may be provided in various spatial configuration, for example, as nanostructure such as nanocolumn, nanotubes, nanorods, nanocrystals, and others. In an alternative embodiment, the first metal oxide semiconductor material may be provided as a bulk material depending on the application. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, the N+ layer may comprise a second metal oxide material, a metal sulfide material, a combination, or other suitable materials. In a specific embodiment, the N+ layer is characterized by a second bandgap ranging from 2.8 eV to 4.5 eV. Examples of the second metal oxide material may include zinc oxide or the like. The second metal oxide material may be provided in various spatial configuration, for example, as nanostructure, such as nanocolumn, nanotubes, nanocrystals, and others. The second metal oxide material may be provided as a bulk material depending on the application. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, the P layer is characterized by a first bandgap ranging from about 1.0 eV to about 2.0 eV. The N+ layer is characterized by a second bandgap ranging from about 2.8 eV to about 5.0 eV. In a specific embodiment, the second bandgap is greater than the first bandgap. As an example, the N+ layer may comprise of zinc oxide material having a bandgap of about 3.4 eV, the absorber layer can comprise of copper oxide having a bandgap of about 1.2 eV. Of course there can be other variations, modifications, and alternatives.



FIGS. 3-8 are simplified diagrams illustrating a method for fabricating a single junction solar cell using thin metal oxide semiconductor material in a specific embodiment. These diagrams are merely examples, which should not unduly limit the claims herein. One skilled in the art would recognize other variations, modifications, and alternatives. As shown in FIG. 3, a substrate member 302 is provided. The substrate member includes a surface region 304. The substrate member can be made of an insulator material, a conductor material, or a semiconductor material, depending on the application. In a specific embodiment, the conductor material can be nickel, molybdenum, aluminum, or a metal alloy such as stainless steel and the likes. In an embodiment, the semiconductor material may include silicon, germanium, silicon germanium, compound semiconductor material such as III-V materials, II-VI materials, and others. In a specific embodiment, the insulator material can be a transparent material such as glass, quartz, fused silica. Alternatively, the insulator material can be a polymer material, a ceramic material, or a layer or a composite material depending on the application. The polymer material may include acrylic material, polycarbonate material, and others, depending on the embodiment.


Referring to FIG. 4, the method includes forming a first electrode structure 402 overlying the surface region of the substrate member. In a specific embodiment, the first electrode structure can be made of a suitable material or a combination of materials. The first electrode structure can be made from a transparent conductive electrode or materials that are light reflecting or light blocking depending on the embodiment. Examples of the optically transparent conductive material can include indium tin oxide (ITO), aluminum doped zinc oxide, fluorine doped tin oxide and others. The transparent conductive material may be deposited using techniques such as sputtering, or chemical vapor deposition. In a specific embodiment, the first electrode may be made from a metal material. The metal material can include gold, silver, nickel, platinum, aluminum, tungsten, molybdenum, a combination of these, or an alloy, among others. In a specific embodiment, the metal material may be deposited using techniques such as sputtering, electroplating, electrochemical deposition and others. Alternatively, the first electrode structure may be made of a carbon based material such as carbon or graphite. Yet alternatively, the first electrode structure may be made of a conductive polymer material, depending on the application. Of course there can be other variations, modifications, and alternatives.


Referring to FIG. 5, the method includes forming an absorber layer 502 overlying the first electrode structure. The absorber layer has a Ptype impurity characteristics in a specific embodiment. Preferably, the absorber layer is characterized by an optical absorption coefficient greater than about 104 cm−1 in the wavelength ranging from about 400 nm to about 750 nm in a specific embodiment. In a specific embodiment, the absorber layer can be made of a first metal oxide semiconductor material having a bandgap ranging from about 1.0 eV to about 2.0 eV. As merely an example, the metal oxide semiconductor material can be oxides of copper (that is cupric oxide or cuprous oxide, or a combination) deposited by an electrochemical method or by chemical vapor deposition technique. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, the method includes forming a N+ layer 602 overlying the absorber layer, which has a Ptype impurity characteristics, as shown in FIG. 6. The N+ layer can comprise a second metal oxide semiconductor material in a specific embodiment. Alternatively, the N+ layer can comprise a metal sulfide material. Examples of the second metal oxide material can include one or more oxides of copper, zinc oxide, and the like. Examples of metal sulfide material can include zinc sulfide, iron sulfides and others. The N+ layer may be provided in various spatial morphologies of different shapes and sizes. In a specific embodiment, the N+ layer may comprise of suitable materials that are nanostructured, such as nanocolumn, nanotubes, nanorods, nanocrystals, and others. In an alternative embodiment, the N+ layer may also be provided as other morphologies, such as bulk materials depending on the application. Of course there can be other variations, modifications, and alternatives. Of course there can be other modifications, variations, and alternatives.


Referring to FIG. 7, the method for fabricating a single junction solar cell using thin metal oxide semiconductor material includes providing a buffer layer 702 overlying a surface region of the N+ layer. In a specific embodiment, the buffer layer comprises of a high resistivity material. Of course there can be other modifications, variations, and alternatives.


As shown in FIG. 8, the method includes forming a second conductor layer to form a second electrode structure 802 overlying the buffer layer. In a specific embodiment, the second electrode structure can be made of a suitable material or a combination of materials. The second electrode structure can be made from a transparent conductive electrode or materials that are light reflecting or light blocking depending on the embodiment. Examples of the optically transparent conductive material can include indium tin oxide (ITO), aluminum doped zinc oxide, fluorine doped tin oxide and others. The transparent conductive material may be deposited using techniques such as sputtering, or chemical vapor deposition. In a specific embodiment, the first electrode may be made from a metal material. The metal material can include gold, silver, nickel, platinum, aluminum, tungsten, molybdenum, a combination of these, or an alloy, among others. In a specific embodiment, the metal material may be deposited using techniques such as sputtering, electroplating, electrochemical deposition and others. Alternatively, the second electrode structure may be made of a carbon based material such as carbon or graphite. Yet alternatively, the second electrode structure may be made of a conductive polymer material, depending on the application. Of course there can be other variations, modifications, and alternatives.


It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.

Claims
  • 1. A structure for a single junction solar cell, the structure comprising, a substrate member having a surface region, wherein the substrate comprises germanium;a first conductor layer overlying the surface region of the substrate member, the first conductor layer comprising a carbon-based material;a P absorber layer overlying the conductor layer, the P absorber layer having a P− type impurity characteristics and a first optical absorption coefficient greater than 104 cm−1 in a wavelength range comprising 400 nm to 800 nm, wherein the P absorber layer comprises a first metal oxide semiconductor material;a N+ layer overlying the P absorber layer;an interface region formed between the P absorber layer and of the N+ layer;a resistive buffer layer overlying the N+ layer; anda second conductor layer overlying the buffer layer,wherein the buffer layer is separate from the second conductor layer.
  • 2. The structure of claim 1 wherein the P absorber layer comprises a nanostructured material.
  • 3. The structure of claim 1 wherein the P absorber layer comprises a bulk material.
  • 4. The structure of claim 1 wherein the P absorber layer is chosen from copper oxides (for example, CuO, Cu2O).
  • 5. The structure of claim 4 wherein the P absorber layer has a first bandgap ranging from about 1.0 eV to about 2.0 eV.
  • 6. The structure of claim 1 wherein the N+ layer comprises a second metal oxide material or a metal sulfide material.
  • 7. The structure of claim 1 wherein the N+ layer has a bandgap ranging from about 2.5 eV to about 5.0 eV.
  • 8. The structure of claim 6 wherein the second metal oxide material is provided in a nanostructured configuration.
  • 9. The structure of claim 6 wherein the second metal oxide material is provided as a bulk material.
  • 10. The structure of claim 6 wherein the metal sulfide material is chosen from zinc sulfide, iron sulfide, or others.
  • 11. The structure of claim 6 wherein the metal sulfide material is provided as a nanostructured material.
  • 12. The structure of claim 6 wherein the metal sulfide material is provided as a bulk material.
  • 13. The structure of claim 1 wherein the interface region formed from the P absorber layer and the N+ layer comprises a pn junction.
  • 14. The structure of claim 13 wherein the pn junction is a pn+ junction.
  • 15. The structure of claim 1 wherein the first conductor layer comprises a transparent conducting material, for example, indium tin oxide, (ITO), aluminum doped zinc oxide, fluorine doped tin oxide and others.
  • 16. The structure of claim 1 wherein the second conductor layer comprises a transparent conducting material, for example, indium tin oxide (ITO), aluminum doped zinc oxide, fluorine doped tin oxide and others.
  • 17. The structure of claim 1 wherein the second conductor layer comprises a conductive polymer material or a carbon based conductor material.
  • 18. A method for forming a single junction solar cell, the method comprising; providing a substrate member having a surface region, wherein the substrate member comprises quartz;forming a first conductor layer overlying the surface region of the substrate member;forming a P absorber layer overlying the conductor layer, the P absorber layer having a P− type impurity characteristics and a first optical absorption coefficient greater than 104 cm−1 in a wavelength range comprising 400 nm to 800 nm, wherein the P absorber layer comprises a first metal oxide semiconductor material;forming a N+ layer overlying the P absorber layer;forming an interface region between the P absorber layer and the N+ layer;forming a resistive buffer layer overlying the N+ layer; andforming a second conductor layer overlying the buffer layer, wherein the second conductor layer comprises a carbon-based material;wherein the buffer layer is separate from the second conductor layer.
  • 19. A single junction solar cell comprising, a substrate member having a surface region, wherein the substrate member comprises fused silica;a first conductor layer overlying the surface region of the substrate member, wherein the first conductor layer comprises a conductive polymer material;an absorber layer overlying the conductor layer comprising a metal oxide semiconductor material;a nanostructured metal oxide layer overlying the absorber layer;a resistive buffer layer overlying the nanostructured metal oxide layer; anda second conductor layer overlying the buffer layer,wherein the buffer layer is separate from the second conductor layer and the nanostructured metal oxide layer.
  • 20. The single junction solar cell of claim 19 wherein the nanostructured metal oxide layer comprises nanocolumns, nanotubes, nanorods, or nanocrystals.
  • 21. The single junction solar cell of claim 19 wherein the second conductor layer comprises a carbon-based material.
US Referenced Citations (260)
Number Name Date Kind
3520732 Nakayama et al. Jul 1970 A
3828722 Reuter et al. Aug 1974 A
3975211 Shirland Aug 1976 A
4062038 Cuomo et al. Dec 1977 A
4263336 Thompson et al. Apr 1981 A
4332974 Fraas Jun 1982 A
4335266 Mickelsen et al. Jun 1982 A
4441113 Madan Apr 1984 A
4442310 Carlson et al. Apr 1984 A
4461922 Gay et al. Jul 1984 A
4465575 Love et al. Aug 1984 A
4471155 Mohr et al. Sep 1984 A
4499658 Lewis Feb 1985 A
4507181 Nath et al. Mar 1985 A
4517403 Morel et al. May 1985 A
4518855 Malak May 1985 A
4532372 Nath et al. Jul 1985 A
4542255 Tanner et al. Sep 1985 A
4581108 Kapur et al. Apr 1986 A
4589194 Roy May 1986 A
4598306 Nath et al. Jul 1986 A
4599154 Bender et al. Jul 1986 A
4611091 Choudary et al. Sep 1986 A
4623601 Lewis et al. Nov 1986 A
4625070 Berman et al. Nov 1986 A
4638111 Gay Jan 1987 A
4661370 Tarrant Apr 1987 A
4663495 Berman et al. May 1987 A
4705912 Nakashima et al. Nov 1987 A
4724011 Turner et al. Feb 1988 A
4727047 Bozler et al. Feb 1988 A
4751149 Vijayakumar et al. Jun 1988 A
4775425 Guha et al. Oct 1988 A
4793283 Sarkozy Dec 1988 A
4798660 Ermer et al. Jan 1989 A
4816082 Guha et al. Mar 1989 A
4816420 Bozler et al. Mar 1989 A
4837182 Bozler et al. Jun 1989 A
4865999 Xi et al. Sep 1989 A
4873118 Elias et al. Oct 1989 A
4915745 Pollock et al. Apr 1990 A
4950615 Basol et al. Aug 1990 A
4968354 Nishiura et al. Nov 1990 A
4996108 Divigalpitiya et al. Feb 1991 A
5008062 Anderson et al. Apr 1991 A
5011565 Dube et al. Apr 1991 A
5028274 Basol et al. Jul 1991 A
5039353 Schmitt Aug 1991 A
5045409 Eberspacher et al. Sep 1991 A
5069727 Kouzuma et al. Dec 1991 A
5078803 Pier et al. Jan 1992 A
5125984 Kruehler et al. Jun 1992 A
5133809 Sichanugrist et al. Jul 1992 A
5137835 Karg Aug 1992 A
5154777 Blackmon et al. Oct 1992 A
5180686 Banerjee et al. Jan 1993 A
5211824 Knapp May 1993 A
5217564 Bozler et al. Jun 1993 A
5231047 Ovshinsky et al. Jul 1993 A
5248345 Sichanugrist et al. Sep 1993 A
5259883 Yamabe et al. Nov 1993 A
5261968 Jordan Nov 1993 A
5298086 Guha et al. Mar 1994 A
5336623 Sichanugrist et al. Aug 1994 A
5346853 Guha et al. Sep 1994 A
5397401 Toma et al. Mar 1995 A
5399504 Ohsawa Mar 1995 A
5436204 Albin et al. Jul 1995 A
5445847 Wada Aug 1995 A
5474939 Pollock et al. Dec 1995 A
5501744 Albright et al. Mar 1996 A
5512107 Van den Berg Apr 1996 A
5528397 Zavracky et al. Jun 1996 A
5536333 Foote et al. Jul 1996 A
5578103 Araujo et al. Nov 1996 A
5578503 Karg et al. Nov 1996 A
5622634 Noma et al. Apr 1997 A
5626688 Probst et al. May 1997 A
5665175 Safir Sep 1997 A
5676766 Probst et al. Oct 1997 A
5726065 Szlufcik et al. Mar 1998 A
5738731 Shindo et al. Apr 1998 A
5858819 Miyasaka Jan 1999 A
5868869 Albright et al. Feb 1999 A
5977476 Guha et al. Nov 1999 A
5981868 Kushiya et al. Nov 1999 A
5985691 Basol et al. Nov 1999 A
6040521 Kushiya et al. Mar 2000 A
6048442 Kushiya et al. Apr 2000 A
6092669 Kushiya et al. Jul 2000 A
6107562 Hashimoto et al. Aug 2000 A
6127202 Kapur et al. Oct 2000 A
6160215 Curtin Dec 2000 A
6166319 Matsuyama Dec 2000 A
6172297 Hezel et al. Jan 2001 B1
6258620 Morel et al. Jul 2001 B1
6294274 Kawazoe et al. Sep 2001 B1
6307148 Takeuchi et al. Oct 2001 B1
6310281 Wendt et al. Oct 2001 B1
6323417 Gillespie et al. Nov 2001 B1
6328871 Ding et al. Dec 2001 B1
RE37512 Szlufcik et al. Jan 2002 E
6361718 Shinmo et al. Mar 2002 B1
6372538 Wendt et al. Apr 2002 B1
6423565 Barth et al. Jul 2002 B1
6632113 Noma et al. Oct 2003 B1
6635307 Huang et al. Oct 2003 B2
6653701 Yamazaki et al. Nov 2003 B1
6667492 Kendall Dec 2003 B1
6690041 Armstrong et al. Feb 2004 B2
6692820 Forrest et al. Feb 2004 B2
6784492 Morishita Aug 2004 B1
6852920 Sager et al. Feb 2005 B2
6878871 Scher et al. Apr 2005 B2
6974976 Hollars Dec 2005 B2
7122398 Pichler Oct 2006 B1
7179677 Ramanathan et al. Feb 2007 B2
7194197 Wendt et al. Mar 2007 B1
7220321 Barth et al. May 2007 B2
7235736 Buller et al. Jun 2007 B1
7252923 Kobayashi Aug 2007 B2
7265037 Yang et al. Sep 2007 B2
7319190 Tuttle Jan 2008 B2
7364808 Sato et al. Apr 2008 B2
7442413 Zwaap et al. Oct 2008 B2
7544884 Hollars Jun 2009 B2
7736755 Igarashi et al. Jun 2010 B2
7741560 Yonezawa Jun 2010 B2
7855089 Farris, III et al. Dec 2010 B2
7863074 Wieting Jan 2011 B2
7910399 Wieting Mar 2011 B1
7955891 Wieting Jun 2011 B2
7960204 Lee Jun 2011 B2
7993954 Wieting Aug 2011 B2
7993955 Wieting Aug 2011 B2
7998762 Lee et al. Aug 2011 B1
8003430 Lee Aug 2011 B1
8008110 Lee Aug 2011 B1
8008111 Lee Aug 2011 B1
8008112 Lee Aug 2011 B1
8017860 Lee Sep 2011 B2
8142521 Wieting Mar 2012 B2
8168463 Wieting May 2012 B2
8178370 Lee et al. May 2012 B2
8183066 Lee et al. May 2012 B2
8217261 Wieting Jul 2012 B2
20020002992 Kariya et al. Jan 2002 A1
20020004302 Fukumoto Jan 2002 A1
20020061361 Nakahara May 2002 A1
20020063065 Sonoda et al. May 2002 A1
20030075717 Kondo et al. Apr 2003 A1
20030089899 Lieber et al. May 2003 A1
20030188777 Gaudiana et al. Oct 2003 A1
20030230338 Menezes Dec 2003 A1
20040063320 Hollars Apr 2004 A1
20040084080 Sager et al. May 2004 A1
20040095658 Buretea et al. May 2004 A1
20040110393 Munzer et al. Jun 2004 A1
20040187917 Pichler Sep 2004 A1
20040245912 Thurk et al. Dec 2004 A1
20040252488 Thurk Dec 2004 A1
20040256001 Mitra et al. Dec 2004 A1
20050074915 Tuttle et al. Apr 2005 A1
20050098205 Roscheisen et al. May 2005 A1
20050109392 Hollars May 2005 A1
20050164432 Lieber et al. Jul 2005 A1
20050194036 Basol Sep 2005 A1
20050287717 Heald et al. Dec 2005 A1
20060034065 Thurk Feb 2006 A1
20060040103 Whiteford et al. Feb 2006 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060096536 Tuttle May 2006 A1
20060096537 Tuttle May 2006 A1
20060096635 Tuttle May 2006 A1
20060102230 Tuttle May 2006 A1
20060112983 Parce et al. Jun 2006 A1
20060130890 Hantschel et al. Jun 2006 A1
20060160261 Sheats et al. Jul 2006 A1
20060173113 Yabuta et al. Aug 2006 A1
20060174932 Usui et al. Aug 2006 A1
20060219288 Tuttle Oct 2006 A1
20060219547 Tuttle Oct 2006 A1
20060220059 Satoh et al. Oct 2006 A1
20060249202 Yoo et al. Nov 2006 A1
20060267054 Martin et al. Nov 2006 A1
20070006914 Lee Jan 2007 A1
20070089782 Scheuten et al. Apr 2007 A1
20070116892 Zwaap May 2007 A1
20070116893 Zwaap May 2007 A1
20070151596 Nasuno et al. Jul 2007 A1
20070163643 Van Duren et al. Jul 2007 A1
20070169810 Van Duren et al. Jul 2007 A1
20070193623 Krasnov Aug 2007 A1
20070209700 Yonezawa et al. Sep 2007 A1
20070264488 Lee Nov 2007 A1
20070283998 Kuriyagawa et al. Dec 2007 A1
20070289624 Kuriyagawa et al. Dec 2007 A1
20080029154 Milshtein et al. Feb 2008 A1
20080032044 Kuriyagawa et al. Feb 2008 A1
20080041446 Wu et al. Feb 2008 A1
20080057616 Robinson et al. Mar 2008 A1
20080092945 Munteanu et al. Apr 2008 A1
20080092953 Lee Apr 2008 A1
20080092954 Choi Apr 2008 A1
20080105294 Kushiya et al. May 2008 A1
20080110491 Buller et al. May 2008 A1
20080110495 Onodera et al. May 2008 A1
20080121264 Chen et al. May 2008 A1
20080121277 Robinson et al. May 2008 A1
20080204696 Kamijima Aug 2008 A1
20080210303 Lu et al. Sep 2008 A1
20080280030 Van Duren et al. Nov 2008 A1
20080283389 Aoki Nov 2008 A1
20090021157 Kim et al. Jan 2009 A1
20090058295 Auday et al. Mar 2009 A1
20090087940 Kushiya Apr 2009 A1
20090087942 Meyers Apr 2009 A1
20090145746 Hollars Jun 2009 A1
20090217969 Matsushima et al. Sep 2009 A1
20090234987 Lee et al. Sep 2009 A1
20090235983 Girt et al. Sep 2009 A1
20090235987 Akhtar et al. Sep 2009 A1
20090293945 Peter Dec 2009 A1
20100081230 Lee Apr 2010 A1
20100087016 Britt et al. Apr 2010 A1
20100087026 Winkeler et al. Apr 2010 A1
20100096007 Mattmann et al. Apr 2010 A1
20100101648 Morooka et al. Apr 2010 A1
20100101649 Huignard et al. Apr 2010 A1
20100122726 Lee May 2010 A1
20100197051 Schlezinger et al. Aug 2010 A1
20100210064 Hakuma et al. Aug 2010 A1
20100233386 Krause et al. Sep 2010 A1
20100258179 Wieting Oct 2010 A1
20100267190 Hakuma et al. Oct 2010 A1
20110018103 Wieting Jan 2011 A1
20110020980 Wieting Jan 2011 A1
20110070682 Wieting Mar 2011 A1
20110070683 Wieting Mar 2011 A1
20110070684 Wieting Mar 2011 A1
20110070685 Wieting Mar 2011 A1
20110070686 Wieting Mar 2011 A1
20110070687 Wieting Mar 2011 A1
20110070688 Wieting Mar 2011 A1
20110070689 Wieting Mar 2011 A1
20110070690 Wieting Mar 2011 A1
20110071659 Farris, III et al. Mar 2011 A1
20110073181 Wieting Mar 2011 A1
20110203634 Wieting Aug 2011 A1
20110212565 Wieting Sep 2011 A1
20110259395 Wieting et al. Oct 2011 A1
20110259413 Wieting et al. Oct 2011 A1
20110269260 Buquing Nov 2011 A1
20110277836 Lee Nov 2011 A1
20120003789 Doering et al. Jan 2012 A1
20120018828 Shao Jan 2012 A1
20120021552 Alexander et al. Jan 2012 A1
20120094432 Wieting Apr 2012 A1
20120122304 Wieting May 2012 A1
20120186975 Lee et al. Jul 2012 A1
Foreign Referenced Citations (15)
Number Date Country
7865198 Feb 1999 AU
3314197 Nov 1983 DE
10104726 Aug 2002 DE
2646560 Nov 1990 FR
2124826 Feb 1984 GB
2000173969 Jun 2000 JP
2000219512 Aug 2000 JP
2002167695 Jun 2002 JP
2002270871 Sep 2002 JP
2002299670 Oct 2002 JP
2004332043 Nov 2004 JP
2005311292 Nov 2005 JP
WO 2005011002 Feb 2005 WO
WO 2006126598 Nov 2006 WO
WO 2007022221 Feb 2007 WO
Non-Patent Literature Citations (65)
Entry
Baumann et al., “Photovoltaic Technology Review” presentation, Dec. 6, 2004.
International Search Report and Written Opinion of PCT Application No. PCT/US08/77965, date of mailing Dec. 9, 2008, 8 pages total.
Examination Report for PCT patent application PCT/US2008/077965 (Apr. 8, 2010).
International Solar Electric Technology, Inc. (ISET) “Thin Film CIGS”, http://www.isetinc.com/cigs.html, Oct. 1, 2008.
Kapur et al., “Fabrication of Light Weight Flexible CIGS Solar Cells for Space Power Applications”, Mat. Res. Soc. Proc. vol. 668, (2001) pp. H3.5.1-H3.5.6, Materials Research Society, Warrendale, PA 15086.
Kapur et al., Non-Vacuum Printing Process for CIGS Solar Cells on Rigid and Flexible Substrates 29th IEEE Photovoltaic Specialists Conf., New Orleans, LA, IEEE, (2002) p. 688-691.
Kapur et al., “Non-Vacuum Processing of CIGS Solar Cells on Flexible Polymer Substrates”, Proceedings of the Third World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2P-D3-43 (2003).
Kapur et al., “Non-Vacuum Processing of CuIn1-xGaxSe2 Solar Cells on Rigid and Flexible Substrates using Nanoparticle Inks”, Thin Solid Films, vol. 431-432 (2003) pp. 53-57 Proceedings of Symposium B, European Materials Research Society, Strasbourg, France.
Kapur et al., “Fabrication of CIGS Solar Cells via Printing of Nanoparticle Precursor Inks”, DOE Solar Program Review Meeting 2004, DOE/GO-102005-2067, p. 135-136.
Kapur et al., “Nanoparticle Oxides Precursor Inks for Thin Film Copper Indium Gallium Selenide (CIGS) Solar Cells”, Mat. Res. Soc. Proc. vol. 668, (2001) pp. H2.6.1-H2.6.7, Materials Research Society, Warrendale, PA 15086.
Huang et al., Photoluminescence and Electroluminescence of ZnS:Cu Nanocrystals in Polymeric Networks, Applied Physics, Lett. 70 (18), May 5, 1997, pp. 2335-2337.
Huang et al., Preparation of ZnxCd1—xS Nanocomposites in Polymer Matrices and their Photophysical Properties, Langmuir 1998, 14, pp. 4342-4344.
Yang et al., Fabrication and Characteristics of ZnS Nanocrystals/Polymer Composite Doped with Tetraphenylbenzidine Single Layer Structure Light-emitting Diode, Applied Physics Lett. vol. 69 (3), Jul. 15, 1996, pp. 377-379.
Yang et al., Preparation, Characterization and Electroluminescence of ZnS Nanocrystals in a Polymer Matrix, J. Mater. Chem., 1997, 7(1), pp. 131-133.
Yang et al., Electroluminescence from ZnS/CdS Nanocrystals/Polymer Composite, Synthetic Metals 91, (1997) 347-349.
Ellmer et al., Copper Indium Disulfide Solar Cell Absorbers Prepared in a One-Step Process by Reactive Magnetron Sputtering from Copper and Indium Targets; Elsevier Science B.V; Thin Solid Films 413 (2002) pp. 92-97.
International Search Report & Written Opinion of PCT Application No. PCT/US 09/46161, date of mailing Jul. 27, 2009, 14 pages total.
International Search Report & Written Opinion of PCT Application No. PCT/US 09/46802, mailed on Jul. 31, 2009, 11 pages total.
Onuma et al., Preparation and Characterization of CuInS Thin Films Solar Cells with Large Grain, Elsevier Science B.V; Solar Energy Materials & Solar Cells 69 (2001) pp. 261-269.
Final Office Action of May 31, 2011for U.S. Appl. No. 12/621,489, 13 pages.
Notice of Allowance of May 25, 2011 for U.S. Appl. No. 12/566,651, 8 pages.
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,729, 9 pages.
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,725, 9 pages.
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,721, 9 pages.
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,716, 9 pages.
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,708, 9 pages.
Non-Final Office Action of May 2, 2011 for U.S. Appl. No. 12/953,701, 9 pages.
Notice of Allowance of Apr. 27, 2011 for U.S. Appl. No. 12/564,886, 11 pages.
Notice of Allowance of Apr. 26, 2011 for U.S. Appl. No. 12/564,046, 11 pages.
Notice of Allowance of Apr. 25, 2011 for U.S. Appl. No. 12/563,065, 11 pages.
Notice of Allowance of Apr. 19, 2011 for U.S. Appl. No. 12/567,715, 11 pages.
Notice of Allowance of Apr. 8, 2011 for U.S. Appl. No. 12/953,697, 11 pages.
Notice of Allowance of Apr. 5, 2011 for U.S. Appl. No. 12/953,679, 11 pages.
Notice of Allowance of Apr. 5, 2011 for U.S. Appl. No. 12/953,674, 11 pages.
Chopra et al., “Thin-Film Solar Cells: An Overview”, 2004, Progress in Photovoltaics: Research and Applications, 2004, vol. 12, pp. 69-92.
Guillen C., “CuInS2 Thin Films Grown Sequentially from Binary Sulfides as Compared to Layers Evaporated Directly from the Elements”, Semiconductor Science and Technology, vol. 21, No. 5, May 2006, pp. 709-712.
Metha et al., “A graded diameter and oriented nanorod-thin film structure for solar cell application: a device proposal”, Solar Energy Materials & Solar Cells, 2005, vol. 85, pp. 107-113.
Srikant V., et al., “On the Optical Band Gap of Zinc Oxide”, Journal of Applied Physics, vol. 83, No. 10, May 15, 1998, pp. 5447-5451.
International Search Report and Written Opinion for PCT Application No. PCT/US2009/065351, mailed on Jan. 26, 2010, 13 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US09/59097, mailed on Dec. 23, 2009, 12 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US09/59095, mailed on Dec. 4, 2009, 12 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US08/78019 mailed on Dec. 8, 2008, 9 pages.
Non-Final Office Action of Sep. 15, 2011 for U.S. Appl. No. 12/237,377, 18 pages.
Notice of Allowance of Sep. 2, 2011 for U.S. Appl. No. 12/953,721, 20 pages.
Notice of Allowance of Aug. 26, 2011 for U.S. Appl. No. 12/953,725, 20 pages.
Notice of Allowance of Aug. 25, 2011 for U.S. Appl. No. 12/953,729, 19 pages.
Non-Final Office Action of Aug. 4, 2011 for U.S. Appl. No. 12/479,409, 39 pages.
Notice of Allowance of Aug. 2, 2011 for U.S. Appl. No. 12/953,716, 18 pages.
Notice of Allowance of Aug. 1, 2011 for U.S. Appl. No. 12/577,132, 34 pages.
Notice of Allowance of Aug. 1, 2011 for U.S. Appl. No. 12/953,701,18 pages.
Notice of Allowance of Aug. 1, 2011 for U.S. Appl. No. 12/953,708, 17 pages.
Final Office Action of Dec. 27, 2010 for U.S. Appl. No. 12/479,409, 26 pages.
Non-Final Office Action of Dec. 17, 2010 for U.S. Appl. No. 12/577,132, 11 pages.
Notice of Allowance of Dec. 14, 2010 for U.S. Appl. No. 12/558,117, 8 pages.
Supplemental Notice of Allowability of Dec. 10, 2010 for U.S. Appl. No. 12/568,641, 3 pages.
Notice of Allowance of Nov. 19, 2010 for U.S. Appl. No. 12/568,641, 6 pages.
Notice of Allowance of Oct. 21, 2010 for U.S. Appl. No. 12/565,735, 4 pages.
Restriction Requirement of Oct. 18, 2010 for U.S. Appl. No. 12/568,641, 4 pages.
Non-Final Office Action of Sep. 28, 2010 for U.S. Appl. No. 12/237,371, 15 pages.
Non-Final Office Action of Sep. 22, 2010 for U.S. Appl. No. 12/621,489, 23 pages.
Notice of Allowance of Aug. 27, 2010 for U.S. Appl. No. 12/509,136, 8 pages.
Non-Final Office Action of Aug. 5, 2010 for U.S. Appl. No. 12/565,735, 14 pages.
Non-Final Office Action of Jul. 22, 2010 for U.S. Appl. No. 12/479,409, 21 pages.
Non-Final Office Action of May 27, 2010 for U.S. Appl. No. 12/568,641, 10 pages.
Salvador, “Hole diffusion length in n-TiO2 single crystals and sintered electrodes: photoelectrochemical determination and comparative analysis,” Journal of Applied Physics, vol. 55, No. 8, pp. 2977-2985, Apr. 15, 1984.
Related Publications (1)
Number Date Country
20090250105 A1 Oct 2009 US
Provisional Applications (1)
Number Date Country
60976391 Sep 2007 US