1. Field of the Invention
This invention relates in general to the electrical switching of signals and power in microelectronics circuits.
2. Description of the Related Art
Relays generally use a relatively small electrical current to switch a larger one. Relays usually are operated by electromagnetic solenoids: these are difficult to manufacture in very small size.
Relays are of several kinds. AC, DC, latching and non-latching, multiple or single pole.
Solid state relays exist. In these a voltage controls whether a circuit is conductive or not. These are made as microelectronic components. The disadvantage is that a voltage drop occurs across the component such that it consumes power even when inactive. It works only when electrical voltage is applied.
A relay has two circuits, one that operates the actuator and another that acts as a conductive path for power to be used elsewhere.
A relay requires an actuator, making it different from a switch that may be manually operated. Conventional macroscopic relays use solenoids. Miniature relays use electrostatic, piezoelectric, and thermal actuators. Two types of thermal actuators exist: those based on differential thermal expansion, and those utilizing shape memory alloys. It is known that shape memory alloy actuators have higher work output per unit mass than other actuators.
It is a general object of the invention to provide new and improved devices and methods for switching electrical signals in microelectronics applications.
Other objects of the invention are to make a microrelay that can be microfabricated in arrays, which latches so that power is not consumed most of the time, has near zero insertion loss, conducts relatively large current, and can be manufactured inexpensively in large volume.
Another object is to fill the great demand which exists to switch high currents in excess of 1 ampere.
Another object is to provide MEMS microrelays which can give engineers and designers a new cost-effective option for use in telecommunications, aerospace automated test equipment, and other applications in various emerging markets.
Another object is to provide MEMS microrelays which can be batch fabricated on a silicon wafer using MEMS technology, thus making them mass producible and inexpensive.
In the invention microfabrication techniques used for the fabrication of micro-electro-mechanical systems (MEMS) coupled with sputter deposited thin film shape memory alloy (SMA) actuation technology provide novel means of mass producing arrays of high current carrying microrelays.
FIG. 1(a) is a top view of a thin film microrelay of the invention shown in a bistable open position.
FIG. 1(b) is a top view of the microrelay of FIG. 1(a) shown in a bistable closed position.
In its general concept, the invention comprises a thin film device 20 in which microrelay 22 of FIGS. 1(a) and 1(b) is in combination with shape memory alloy (SMA) actuators 24 and 26 of FIG. 2. The microrelay/actuator device 20 achieves the advantages of high work output per unit mass, small size, rapid actuation, higher efficiency than differential thermal expansion, good impedance match (operates at TTL level voltages), purely resistive impedance (no magnetic coil), and which can be fabricated using MEMS technology.
In the invention microfabrication techniques used for the fabrication of microelectro-mechanical systems (MEMS) coupled with sputter deposited thin film SMA actuation technology enable the mass production of device arrays with high current carrying microrelays. The SMA material can be made in thin film configurations in accordance with the teachings of U.S. Pat. No. 5,061,914 to Busch et. al. for Shape Memory Alloy Microactuator, the disclosure of which is incorporated by this reference.
The microrelay/actuator device of the invention provides a bi-stable latching function so that power is required only during change of state, and the relay remains unchanged if power is temporarily disrupted. Microrelay/actuator devices in accordance with the invention may be fabricated in arrays, and may be of single pole or multiple pole configuration. This leads to practical applications for protection of microelectronics components, re-direction of signals as in computer networks, and remote operation of circuits.
Microrelay 22 comprises two latching beams 28, 30 which can be of a suitable metal such as nickel. The proximal ends of the beams are secured by anchor pads 32, 34 to a substrate, not shown, such as silicon in a wafer on which the device is formed by the method steps described below under the heading Fabrication of SMA Actuated High Current Carrying Microrelays. The beams are aligned with their distal ends 36, 38 in substantial end-to-end relationship. One end 38 is forked and the other end 36 is pointed so that the two can releasably fit together in the manner shown in FIG. 1(b).
In the first stable position shown in FIG. 1(a), the two beam distal ends 36, 38 do not touch and are separated by a distance of tens of mm (typically 25 mm-50 mm). This first stable position is that of open contact. In the second stable position of FIG. 1(b) both of the beams are in contact and the pointed end is releasably engaged in the forked end. The beams are sized and proportioned so that they are forced against one another to slightly bent elastically, i.e. buckled together, in the second stable position. The resulting longitudinal compression force helps in producing a low ohmic resistance contact equal to a fraction of one ohm. The second stable position is that of closed contact. When it contact is closed, anchor pads 32 and 34 provide terminals for passing current through the relay beams to and from the desired external circuit, not shown.
Actuators 24 and 26 shown in
For actuation, one of the bands is heated through the material's phase change transformation temperature, causing it to contract to the memory shape. Heating of the band produces a crystalline phase change transformation from martensite to austenite in the SMA material. During the phase transformation the band forcefully reverts to its memory shape to perform work in applying bending stresses to the relay beams, as described below. When cooled below the transformation temperature to a “cold state,” the material of the SMA bands can be plastically deformed by elongating responsive to stress. This stress is applied from the elastic memory of the beams as they bend back toward their unstressed configurations. The high forces (relative to the small sizes in microrelays) applied by the SMA bands upon actuation enable the device to obviate problems such as stiction and other failure modes that can arise with conventional micro relays.
Anchor pads 48, 49 secure the proximal ends of the bands 40, 42 to the substrate of the device, while anchor pads 50, 51 secure the proximal ends of bands 44, 48 to the substrate. A typical substrate is shown for the embodiment of
Actuation is accomplished by operation of a suitable controller circuit, which can be a part of a computer system, to pass electric current selectively through the actuator bands. The anchor pads for the bands serve as terminals for the current flow. Current density would be modulated sufficient to heat the SMA material of the selected bands through the phase change transition temperature. This effects a phase change of the material from martensite to austenite, causing the actuator bands to contract as explained above. The contraction of actuator 24 creates a force couple on beam 28 which bends its end 36 up in the direction of arrow 55 (FIG. 2), while contraction of actuator 26 creates a force couple on beam 30 which bends its end 38 up in the direction of arrow 57.
Starting from the open contact position of in
Starting from the closed contact position shown in FIG. 1(b), the open contact position is effected by the controller simultaneously actuating the pair of bands 44 and 46 of actuator 24 so that both contract and bend right beam 30 up sufficient to move end 38 out of engagement from end 36. During this actuation, bands bands 40 and 42 of actuator 24 are deactivated. After the ends are disengaged, the control circuit shuts off current flow so that both actuators are deactivated.
Alternatively, the closed contact position could be effected by positioning pointed end 36 above forked end 38 and then energizing actuator 20 to bend right beam 30 up. The open contact position can then be effected by energizing actuator 24 to move left beam 28 up.
It will be seen that the actuation current is supplied only during the change of state, i.e. during engaging or disengaging of the actuator beams. Low TTL compatible voltages less then 5V and currents of a few mA are used for actuation. The power requirement is in the range of one hundred milliwatts.
A modification possible in the above set of processes is the use of a thick resist other then SU-8 in STEP VI. A resist that can be spun or pressed on top of a wafer and lithographically patterned or ion-milled can be used. Resists like PMMA can also be used and patterned to create deep cavities for plating in nickel beams.
Alternatively another material like nickel-iron alloy or some other metal instead of nickel can be electroplated in STEP VII. The material should have a high spring constant, low wear rate and high hardness characteristics, low resistivity, and it should be easy to plate.
Another modification that can be made is to eliminate STEP I altogether. Free standing silicon poppets can be created using Deep Reactive Ion Etching (DRIE) in STEP VIII after the SU-8 resist has been removed.
The invention contemplates a microrelay in which each of the nickel beams can be actuated in two different directions. Depending on which SMA band has been actuated, the beams can be engaged or disengaged.
The actuation circuit of the SMA bands and high current carrying nickel beam circuit should be separated to avoid failure of the microrelays. The two circuits can be separated using a layer of silicon nitride between the nickel beams and SMA bands. This layer of silicon nitride can be sputter deposited or chemically vapor deposited right after STEP III. Following deposition this layer of silicon nitride can be patterned using a mask, resist and SF6 plasma in a barrel etcher. The layer is patterned such that it is present only on top of the beams component of the microrelay, where nickel is to be plated.
In another contemplated form of the invention, the nickel beams are totally separated from the SMA bands. Both the parts of the nickel beams and the SMA bands are anchored on top of the free-standing silicon poppet islands as shown in FIG. 4. This island of silicon is fabricated by creating windows in the silicon oxide layer on the back side of silicon substrate. Wet etching techniques like a KOH bath can be used for back etching or alternatively DRIE can also be used to create free-standing islands of silicon. Actuation of SMA bands causes the island to deflect and it passes on the actuation force to the nickel beams that engage or disengage with the complementary nickel beam.
Alternatively, SU-8 resist can be used as a structural material after hard baking it above a temperature of 150° C. as shown in FIG. 5. SU-8 can be spun on top of a wafer and lithographically patterned to create features that provide an insulating link between nickel beams and TiNi micro-ribbon actuators to pass on the actuation force.
The following mechanism is appropriate for the pre-straining described in connection with the embodiments of
The poppets can also be simply bonded to a second substrate below (that is separated from the first substrate with a thin spacer) during assembly and in the process it pre-strains the SMA bands as is shown in FIG. 6. In some cases, as shown in
While the foregoing embodiments are at present considered to be preferred, it is understood that numerous variations and modifications may be made therein by those skilled in the art and it is intended that the invention includes all such variations and modifications that fall within the true spirit and scope of the invention as set forth in the appended claims.
This application claims the benefit under 35 USC §119(e) of U.S. provisional application Ser. No. 60/192,766 filed Mar. 28, 2000 and is a divisional of application Ser. No. 09/821,840 filed Mar. 28, 2001, now U.S. Pat. No. 6,624,730.
This invention was made under contract with an agency of the United States Government: Department of the Air Force, Contract No. F29601-98-C-0049, Phase 2.
Number | Name | Date | Kind |
---|---|---|---|
4243963 | Jameel et al. | Jan 1981 | A |
5072288 | MacDonald et al. | Dec 1991 | A |
5796152 | Carr et al. | Aug 1998 | A |
6407478 | Wood et al. | Jun 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040080239 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
60192766 | Mar 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09821840 | Mar 2001 | US |
Child | 10661035 | US |