Thin film shape memory alloy actuated microrelay

Information

  • Patent Grant
  • 6624730
  • Patent Number
    6,624,730
  • Date Filed
    Wednesday, March 28, 2001
    23 years ago
  • Date Issued
    Tuesday, September 23, 2003
    21 years ago
Abstract
A microrelay device formed on a silicon substrate wafer for use in opening and closing a current path in a circuit. A pair of electrically conducting latching beams are attached at their proximal ends to terminals on the substrate. Proximal ends of the beams have complementary shapes which releasably fit together to latch the beams and close the circuit. A pair of shape memory alloy actuators are selectively operated to change shapes which bend one of the beams in a direction which latches the distal ends, or bend the other beam to release the distal ends and open the circuit. The microrelay is bistable in its two positions, and power to the actuators is applied only for switching it open or closed.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates in general to the electrical switching of signals and power in microelectronics circuits.




2. Description of the Related Art




Relays generally use a relatively small electrical current to switch a larger one. Relays usually are operated by electromagnetic solenoids: these are difficult to manufacture in very small size.




Relays are of several kinds. AC, DC, latching and non-latching, multiple or single pole.




Solid state relays exist. In these a voltage controls whether a circuit is conductive or not. These are made as microelectronic components. The disadvantage is that a voltage drop occurs across the component such that it consumes power even when inactive. It works only when electrical voltage is applied.




A relay has two circuits, one that operates the actuator and another that acts as a conductive path for power to be used elsewhere.




A relay requires an actuator, making it different from a switch that may be manually operated. Conventional macroscopic relays use solenoids. Miniature relays use electrostatic, piezoelectric, and thermal actuators. Two types of thermal actuators exist: those based on differential thermal expansion, and those utilizing shape memory alloys. It is known that shape memory alloy actuators have higher work output per unit mass than other actuators.




OBJECTS AND SUMMARY OF THE INVENTION




It is a general object of the invention to provide new and improved devices and methods for switching electrical signals in microelectronics applications. Other objects of the invention are to make a microrelay that can be microfabricated in arrays, which latches so that power is not consumed most of the time, has near zero insertion loss, conducts relatively large current, and can be manufactured inexpensively in large volume.




Another object is to fill the great demand which exists to switch high currents in excess of 1 ampere.




Another object is to provide MEMS microrelays which can give engineers and designers a new cost-effective option for use in telecommunications, aerospace automated test equipment, and other applications in various emerging markets.




Another object is to provide MEMS microrelays which can be batch fabricated on a silicon wafer using MEMS technology, thus making them mass producible and inexpensive.




In the invention microfabrication techniques used for the fabrication of microelectro-mechanical systems (MEMS) coupled with sputter deposited thin film shape memory alloy (SMA) actuation technology provide novel means of mass producing arrays of high current carrying microrelays.











BRIEF DESCRIPTION OF THE DRAWINGS




FIG.


1


(


a


) is a top view of a thin film microrelay of the invention shown in a bistable open position.




FIG.


1


(


b


) is a top view of the microrelay of FIG.


1


(


a


) shown in a bistable closed position.





FIG. 2

is a top view of a thin film device comprising the microrelay of FIGS.


1


(


a


) and (


b


) in combination with a thin film shape memory alloy actuator.





FIG. 3

is a top view of the microrelay of FIGS.


1


(


a


) and (


b


) in combination with another embodiment of an actuator.





FIG. 4

is a top view of the microrelay of FIGS.


1


(


a


) and (


b


) in combination with another embodiment of an actuator.





FIG. 5

is a top view of the microrelay of FIGS.


1


(


a


) and (


b


) in combination with another embodiment of an actuator.





FIG. 6

is a top view of the microrelay of FIGS.


1


(


a


) and (


b


) in combination with an actuator in accordance with another embodiment.





FIG. 7

is a cross-sectional view taken along the line


7





7


of FIG.


6


.





FIG. 8

is a top view of an array of multiple microrelays and actuators in accordance with another embodiment of the invention.





FIG. 9

is a top view of a single pole double throw bi-stable microrelay and actuator in accordance with the invention.





FIG. 10

is a top view of an array of multiple single pole double throw bi-stable microrelays and actuators in accordance with another embodiment.





FIG. 11

is a cross-sectional view taken along the line


11





11


of FIG.


10


.





FIG. 12

is a top view of the microrelay

FIG. 6

showing prestressing of the SMA bands.





FIG. 13

is a cross-sectional view taken along the line


13


-


3


of FIG.


12


.





FIG. 14

is a flow chart showing the method steps in the fabrication of the microrelay and actuator combinations of the invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




In its general concept, the invention comprises a thin film device


20


in which microrelay


22


of FIGS.


1


(


a


) and


1


(


b


) is in combination with shape memory alloy (SMA) actuators


24


and


26


of FIG.


2


. The microrelay/actuator device


20


achieves the advantages of high work output per unit mass, small size, rapid actuation, higher efficiency than differential thermal expansion, good impedance match (operates at TTL level voltages), purely resistive impedance (no magnetic coil), and which can be fabricated using MEMS technology.




In the invention microfabrication techniques used for the fabrication of microelectro-mechanical systems (MEMS) coupled with sputter deposited thin film SMA actuation technology enable the mass production of device arrays with high current carrying microrelays. The SMA material can be made in thin film configurations in accordance the teachings of U.S. Pat. No. 5,061,914 to Busch et. al. for Shape Memory Alloy Micro-actuator the disclosure of which is incorporated by this reference.




The microrelay/actuator device of the invention provides a bi-stable latching function so that power is required only during change of state, and the relay remains unchanged if power is temporarily disrupted. Microrelay/actuator devices in accordance with the invention may be fabricated in arrays, and may be of single pole or multiple pole configuration. This leads to practical applications for protection of microelectronics components, re-direction of signals as in computer networks, and remote operation of circuits.




Microrelay


22


comprises two latching beams


28


,


30


which can be of a suitable metal such as nickel. The proximal ends of the beams are secured by anchor pads


32


,


34


to a substrate, not shown, such as silicon in a wafer on which the device is formed by the method steps described below under the heading Fabrication of SMA Actuated High Current Carrying Microrelays. The beams are aligned with their distal ends


36


,


38


in substantial end-to-end relationship. One end


38


is forked and the other end


36


is pointed so that the two can releasably fit together in the manner shown in FIG.


1


(


b


).




In the first stable position shown in FIG.


1


(


a


), the two beam distal ends


36


,


38


do not touch and are separated by a distance of tens of mm (typically 25 mm-50 mm). This first stable position is that of open contact. In the second stable position of FIG.


1


(


b


) both of the beams are in contact and the pointed end is releasably engaged in the forked end. The beams are sized and proportioned so that they are forced against one another to slightly bent elastically, i.e. buckled together, in the second stable position. The resulting longitudinal compression force helps in producing a low ohmic resistance contact equal to a fraction of one ohm. The second stable position is that of closed contact. When it contact is closed, anchor pads


32


and


34


provide terminals for passing current through the relay beams to and from the desired external circuit, not shown.




Actuators


24


and


26


shown in

FIG. 2

move respective beams ends


36


and


38


to switch the relay between its two bistable positions. The actuators are comprised of pairs of parallel bands


40


,


42


and


44


,


46


, respectively. Each of the bands is formed of a suitable SMA material, preferably an alloy of nearly equal atomic weights of titanium and nickel, in sputter deposited thin film form. During formation, the SMA material is deposited in a naive state and is then “trained” to give it a shape memory property by annealing and prestraining. As described below in connection with the embodiment of

FIGS. 6 and 7

, the prestraining stretches or elongates the band from its memory shape.




For actuation, one of the bands is heated through the material's phase change transformation temperature, causing it to contract to the memory shape. Heating of the band produces a crystalline phase change transformation from martensite to austenite in the SMA material. During the phase transformation the band forcefully reverts to its memory shape to perform work in applying bending stresses to the relay beams, as described below. When cooled below the transformation temperature to a “cold state,” the material of the SMA bands can be plastically deformed by elongating responsive to stress. This stress is applied from the elastic memory of the beams as they bend back toward their unstressed configurations. The high forces (relative to the small sizes in microrelays) applied by the SMA bands upon actuation enable the device to obviate problems such as stiction and other failure modes that can arise with conventional microrelays.




Anchor pads


48


,


49


secure the proximal ends of the bands


40


,


42


to the substrate of the device, while anchor pads


50


,


51


secure the proximal ends of bands


44


,


48


to the substrate. A typical substrate is shown for the embodiment of

FIGS. 6 and 7

. The distal ends of the bands carry strips


52


,


54


, respectively, of a suitable electrical conductive material which hold the ends apart while also completing the path of current flow between the bands during actuation. Pads


53


,


54


of a suitable current insulating material, such as SU-8 resist material as explained for the embodiment of

FIG. 5

, connect the band ends to mid-portions of respective beams


28


,


30


.




Actuation is accomplished by operation of a suitable controller circuit, which can be a part of a computer system, to pass electric current selectively through the actuator bands. The anchor pads for the bands serve as terminals for the current flow. Current density would be modulated sufficient to heat the SMA material of the selected bands through the phase change transition temperature. This effects a phase change of the material from martensite to austenite, causing the actuator bands to contract as explained above. The contraction of actuator


24


creates a force couple on beam


28


which bends its end


36


up in the direction of arrow


55


(FIG.


2


), while contraction of actuator


26


creates a force couple on beam


30


which bends its end


38


up in the direction of arrow


57


.




Starting from the open contact position of in

FIG. 2

, the closed contact position is effected by the controller simultaneously heating and actuating the pair of bands


40


and


42


of actuator


22


. As both bands contract, left beam


28


bends up until pointed end


36


slips into engagement with forked end


38


of right beam


30


. During this actuation, the opposing pair of bands


44


and


46


for actuator


26


are in their cold states and thus deactivated. The control circuit then shuts off current flow so that both actuators are deactivated. Deactivation of SMA bands


40


and


42


enables them to be cooled by conduction and convection to below the transition temperature so that the beams can bend by their elastic memory back toward their initial configurations. Because their ends are engaged, this causes the two beams to slightly curve into a buckling mode. An important feature of the invention is that in the buckling mode, when there is no applied current, the force holding the beam ends together is greater than the force required to engage them. This enables the ends to hold themselves together in a stable position without the need to apply any external forces.




Starting from the closed contact position shown in FIG.


1


(


b


), the open contact position is effected by the controller simultaneously actuating the pair of bands


44


and


46


of actuator


24


so that both contract and bend right beam


30


up sufficient to move end


38


out of engagement from end


36


. During this actuation, bands bands


40


and


42


of actuator


24


are deactivated. After the ends are disengaged, the control circuit shuts off current flow so that both actuators are deactivated.




Alternatively, the closed contact position could be effected by positioning pointed end


36


above forked end


38


and then energizing actuator


20


to bend right beam


30


up. The open contact position can then be effected by energizing actuator


24


to move left beam


28


up.




It will be seen that the actuation current is supplied only during the change of state, i.e. during engaging or disengaging of the actuator beams. Low TTL compatible voltages less then 5V and currents of a few mA are used for actuation. The power requirement is in the range of one hundred milliwatts.





FIG. 3

shows an embodiment providing a shape memory alloy actuated microrelay device


60


in which each relay beam


62


,


64


is operated by pairs of SMA actuators


66


,


68


and


70


,


72


to engage and disengage the beam ends.





FIG. 4

shows an embodiment providing a shape memory alloy actuated microrelay device


74


which comprises silicon islands


75


and


77


to separate the actuation circuit for the SMA bands of actuators


76


,


78


from the high current switching circuit for the microrelay beams


80


,


82


. At the same time, connection is maintained between the beams and the SMA actuators so that when the SMA bands contract, the force of actuation is passed on via the silicon island to the nickel beams (anchored to the island) to engage them or disengage them.





FIG. 5

shows an embodiment providing microrelay device


84


comprising strips


86


,


88


of SU-8 resist material positioned between the relay beams


90


and SMA bands


100


. The strips are electric insulators and act as circuit separators between the beams and SMA bands, while at the same time transmitting actuation forces from the bands to the beams.





FIGS. 6 and 7

show an embodiment providing microrelay device


102


comprising silicon poppets


104


with SMA bands


106


anchored onto them. The poppets are centered in space-apart relationship within cavities


108


formed in silicon substrate


110


, which in turn is mounted above a ceramic substrate


112


. These poppets are depressed down in the cavities


109


to pre-strain the SMA bands. SU-8 resist material


114


(or silicon islands) is used for the separation of circuits as shown in

FIGS. 4

to


5


.





FIG. 8

shows an embodiment providing microrelay device


116


comprising a silicon die with an array of microrelays


118


,


120


. The SMA bands


122


are anchored to silicon poppets


124


and pre-strained as described for

FIG. 6

by depressing the poppets down by adhering them to a ceramic package underneath (not shown) separated from the substrate with a spacer.





FIG. 9

shows an embodiment providing microrelay device


126


comprising a pair of forked-end beams


128


,


130


and a single pointed-end beam


132


which are


15


operated by SMA actuator


134


to provide a single pole double throw bi-stable shape memory alloy actuated microrelay.





FIGS. 10 and 11

show an embodiment providing microrelay device


136


comprising a plurality of the single pole double throw microrelay as described for

FIG. 9

with SMA actuators


138


having pre-strained bands


140


. The bands are pre-strained by depressing the free-standing silicon poppets


142


(attached to the SMA bands as shown) in the cavity


144


below them.





FIGS. 12 and 13

show an embodiment providing microrelay device


146


comprising actuators


148


having SMA bands


150


which are pre-strained by means of a glass plate


152


. The plate is patterned with SU-8 resist pads


154


,


156


between the plate and top of the bands.




Fabrication of SMA Actuated High Current Carrying Microrelays





FIG. 14

illustrates the steps in the method of forming the SMA actuated microrelays in the invention. Substrates with sizes varying from the smallest diameter commercially available to the largest diameter can be used.




STEP I: The wafer is back etched partially using a conventional potassium hydroxide wet etching bath or deep reactive ion etching (DRIE) to create silicon poppets.




STEP II: A thin sacrificial layer of aluminum is evaporated on the front side of the wafer. A sacrificial layer of other metals like copper can also be used if they can be etched without damaging the SMA, which is TINI, and Ni. The sacrificial layer is patterned to create anchors.




STEP III: A thin film of chrome (0.03 mm thick) followed by a film of TiNi 3-5 mm thick is sputter deposited onto the wafer in a Perkin-Elmer 4400 machine. The whole assembly is placed in a vacuum chamber for annealing at 500° C.




STEPS IV(a) and IV(b): A layer of chrome (200 Å thick) followed by 0.1 mm thick layer of gold is evaporated on top of the above assembly. This layer of chrome acts as an adhesion layer between gold and TiNi. The films of gold, chromium, TiNi, chromium, and aluminum (in that order) are lithographically patterned using a chemical etch process to create microrelays. The two top layers of gold and chrome are etched away with chemical etchants.




STEP V: Chromium and nickel are sputtered onto the wafer and lithographically patterned using a chemical etch process.




STEP VI: Thick resist SU-8 is spun on the wafer and patterned lithographically to create cavities.




STEP VII: Nickel is electroplated in these cavities to fabricate thick nickel beams. The thickness of these beams is in excess of 60 mm. SU-8 resist is removed.




STEP VIII: The wafer is back etched all the way to fabricate free standing poppets attached only to TiNi micro-ribbons.




STEP IX: The wafer is put in a chemical etchant to etch the sacrificial layer of aluminum.




STEP X: The wafer is taken out of the chamber and diced. At this point it is ready for testing, assembly, and packaging.




In STEP III a thin layer (sub-micron thick) of chrome (or another metal with a high melting point and low diffusivity that can be etched sacrificially to TiNi) is sputtered on top of aluminum before sputtering TiNi. This layer of chromium acts as a barrier for aluminum atoms to prevent them from diffusing in TiNi when annealing at temperature of 500° C. is carried out. In the absence of a chrome layer, the aluminum will diffuse in TiNi and severely damage the SMA property of TiNi.




A modification possible in the above set of processes is the use of a thick resist other then SU-8 in STEP VI. A resist that can be spun or pressed on top of a wafer and lithographically patterned or ion-milled can be used. Resists like PMMA can also be used and patterned to create deep cavities for plating in nickel beams.




Alternatively another material like nickel-iron alloy or some other metal instead of nickel can be electroplated in STEP VII. The material should have a high spring constant, low wear rate and high hardness characteristics, low resistivity, and it should be easy to plate.




Another modification that can be made is to eliminate STEP I altogether. Free standing silicon poppets can be created using Deep Reactive Ion Etching (DRIE) in STEP VIII after the SU-8 resist has been removed.




The invention contemplates a microrelay in which each of the nickel beams can be actuated in two different directions. Depending on which SMA band has been actuated, the beams can be engaged or disengaged.




Circuit Separation




The actuation circuit of the SMA bands and high current carrying nickel beam circuit should be separated to avoid failure of the microrelays. The two circuits can be separated using a layer of silicon nitride between the nickel beams and SMA bands. This layer of silicon nitride can be sputter deposited or chemically vapor deposited right after STEP III. Following deposition this layer of silicon nitride can be patterned using a mask, resist and SF


6


plasma in a barrel etcher. The layer is patterned such that it is present only on top of the beams component of the microrelay, where nickel is to be plated.




In another contemplated form of the invention, the nickel beams are totally separated from the SMA bands. Both the parts of the nickel beams and the SMA bands are anchored on top of the free-standing silicon poppet islands as shown in FIG.


4


. This island of silicon is fabricated by creating windows in the silicon oxide layer on the back side of silicon substrate. Wet etching techniques like a KOH bath can be used for back etching or alternatively DRIE can also be used to create free-standing islands of silicon. Actuation of SMA bands causes the island to deflect and it passes on the actuation force to the nickel beams that engage or disengage with the complementary nickel beam.




Alternatively, SU-8 resist can be used as a structural material after hard baking it above a temperature of 150° C. as shown in FIG.


5


. SU-8 can be spun on top of a wafer and lithographically patterned to create features that provide an insulating link between nickel beams and TiNi micro-ribbon actuators to pass on the actuation force.




Pre-straining Mechanism for SMA Bands




The following mechanism is appropriate for the pre-straining described in connection with the embodiments of

FIGS. 6-7

,

FIGS. 8-9

, and

FIGS. 12-13

. The SMA bands are attached to the free-standing silicon poppet. The poppet is depressed into the cavities from the top using a substrate with protruded features like thick SU-8 resist features on a glass substrate as shown in

FIGS. 12-13

.




The poppets can also be simply bonded to a second substrate below (that is separated from the first substrate with a thin spacer) during assembly and in the process it pre-strains the SMA bands as is shown in FIG.


6


. In some cases, as shown in

FIGS. 10-11

, the free-standing poppet is attached to SMA bands of multiple relays. During assembly, this poppet is depressed and stuck to a another substrate like a ceramic substrate separated by a spacer from the silicon substrate, to pre-strain multiple SMA bands.




While the foregoing embodiments are at present considered to be preferred, it is understood that numerous variations and modifications may be made therein by those skilled in the art and it is intended that the invention includes all such variations and modifications that fall within the true spirit and scope of the invention as set forth in the appended claims.



Claims
  • 1. A method for closing a current path between first and second terminals of a microrelay device, the method comprising the steps of attaching proximal ends of a pair of electrically conducting latching beams to terminals on a substrate of the device, positioning distal ends of the beams in end-to-end engagement while elastically bending the beams into a configuration which is curved sufficient to create a force vectored axially along the beams for stably latching the beams together, and closing the current path responsive to said engagement.
  • 2. A method for closing and opening a current path between first and second terminals of a microrelay device, the method composing the steps of attaching proximal ends of a pair of electrically conducting latching beams to terminals on a substrate of the device, elastically bending one of the beams into a curve configuration, engaging a distal end of the one beam with a distal end of the other beam, closing the current path responsive to said engagement, elastically bending the other beam into an other curved configuration sufficient to cause the distal ends to disengage, and opening the current path responsive to said disengagement.
  • 3. A method as in claim 2 in which the steps of bending the beams comprises applying a closing force axially along the beams sufficient for releasably holding the distal ends together.
  • 4. A method as in claim 1 in which the step of elastically bending the one beam is carried out by applying a pulling force on the one beam in a direction which creates a force couple on the one beam.
  • 5. A method as in claim 1 in which the steps of bending the one beam comprises providing a band of shape memory alloy material which undergoes crystalline phase change when heated through the material's phase change transition temperature sufficient to cause the band to contract from a first shape to a memory shape, coupling the band between the distal end of the one beam and the substrate, heating the band through the transition temperature sufficient for causing the band to contract to the memory shape, and causing contraction of the band to create a force couple on the one beam.
CROSS-REFERENCE TO PRIOR APPLICATION

This application claims the benefit under 35 USC §119(e) of U.S. provisional application Ser. No. 60/192,766 filed Mar. 28, 2000.

STATEMENT OF GOVERNMENT RIGHTS

This invention was made under contract with an agency of the United States Government: Department of the Air Force, Contract No. F29601-98-C-0049, Phase 2.

US Referenced Citations (4)
Number Name Date Kind
4243963 Jameel et al. Jan 1981 A
5072288 MacDonald et al. Dec 1991 A
5796152 Carr et al. Aug 1998 A
6407478 Wood et al. Jun 2002 B1