The invention relates to apparatuses and methods for the measurement of thin films properties, such as the thickness and basis weight.
Thin films are layers of material(s) deposited on a surface of another material, such as paper. Thin films are an essential component in many products. Common examples include thin film coatings of silicone on paper for use as a release coating for adhesive labels and silicone films that line diapers and other hygiene products to repel moisture as a method of keeping skin dry. Films used in these products typically range from less than a nanometer (10 Å) to several hundred micrometers in thickness. They can be formed by many different processes, including spin coating, vacuum evaporation, sputtering, vapor deposition, and dip coating. To perform their desired functions, thin films must have the appropriate thickness, composition, and other important characteristics. These properties must be precisely monitored both during and after fabrication.
The thickness of thin films is typically measured by stylus based or optical techniques. Stylus techniques measure thickness by monitoring the deflections of a fine-tipped stylus as it is dragged along the surface of the film. Stylus instruments, which may actually damage the films being measured, are limited in speed and accuracy. Optical techniques, which measure film thickness by measuring film interaction with light, are nondestructive and more accurate. Optical techniques are also usually preferred because they require little or no sample preparation.
One optical technique works by measuring the relative amount of light absorbed by a sample in two or more wavelength bands of the infrared (IR) spectrum. In the simplest case, two bands are used, a measure band and a reference band. The measure band is selected to coincide with a strong absorption in the target material (film to be measured), and the reference band is selected to match a weakly absorbing region of the target material. In more complicated cases, the measure band for one target may be the reference band for another target.
The transmission measurement is based on Beer's Law, which states I=I0e−μw, where I0 is the signal with no sample, I is the signal with sample, μ is the absorption coefficient, and w is the weight of the sample. Equivalently, this may be written as w=(1/μ) ln(I0/I). Thus for a given wavelength of IR radiation, the weight, or thickness of the film, is proportional to the logarithm of the attenuation.
In practice the accuracy of such transmission techniques is limited when measuring in the thin film regime due to an interference fringing effect. Fringes in the transmission spectrum of the measured film appear due to interference of the light reflected from the film surfaces with light transmitted through the film. An example is illustrated in
To understand the fringing effect, consider a thin film with thickness d and index of refraction n, deposited on another material as shown in
The qualitative aspects of these reflections may be combined in a single equation:
R=A+B cos(2πnd/λ).
From this we see that the reflectance will vary periodically with wave number 1/λ Furthermore, at a given wavelength (index of refraction n is wavelength dependent) the frequency of oscillations is proportional to film thickness d. The light that is not reflected, that is, the transmitted light, can be detected by sensors located on the opposite side of the film. It will have a similar periodic component superposed on a non-oscillatory signal.
Because the spectral position and intensity of the fringes depend on the film thickness, it is possible to extend current transmission sensors into the thin film regime by measuring the shape of the fringes and extracting the film thickness from the fringe parameters.
The present invention is based in part on the development of a novel technique for extending the capabilities of transmission sensors for measuring thin films, by measuring the shape of the interference fringes in the transmission spectra.
In one aspect, the invention is directed to a method of measuring film thickness that includes the steps of:
In another aspect, the invention is directed to a system for measuring film thickness that includes:
In accordance with the invention, a novel infrared (IR) film thickness measurement system is provided. Specifically, the invention provides a novel method of extending the capability of IR sensors to measure thin films through configuring multiple detection channels with appropriately chosen filters. With the invention, the characteristic signature of interference fringes can be detected simultaneously with or instead of absorption-based measurements.
The system comprises three main sections: (i) a source of modulated IR energy, (ii) a sample cell in which the IR energy interacts with the sample to be measured, and (iii) a receiver/analyzer in which the transmitted energy on all of the selected channels is simultaneously read.
The IR energy is modulated with chopper 43, a lightweight rotating stainless steel disc with preferably eight evenly spaced holes. It is driven by a brushless DC motor 44 that modulates the radiation at 620±25 Hz. Modulating the IR energy will prevent the signal received by the detectors in the receiver from being obscured by ambient light or by low frequency noise generated in the detector.
The sample cell is the located in the space between the IR source and receiver windows. The sample film to be measured is placed here to interact with the IR energy. It is very important that the IR energy transmitted be determined only by the properties of the sample and not by extraneous effects, such as dirt and head misalignment or separation.
The receiver assembly 50 is shown in
The receiver assembly 50 has capacity to support up to preferably twelve channels, and can load additional channels as needed. A central aluminum 51 column has sockets 55 that can support up to twelve channels. The central column 51 is mounted to a water-cooled plate in the ceiling (not shown) for cooling the sensors.
A thin film sample 69 is loaded and secured in the sample cell, and the IR source 40 operated to transmit pulses of wideband IR through the sample. The receiver reads the transmitted energy in all of the selected bands simultaneously, and the output of each of the detectors is transmitted to the signal processing circuitry 45 (
In an embodiment of the invention, narrow bandpass optical filters will be used. These filters are typically interference filters that have a spectral transmission band surrounded by two blocking bands that allow only a portion of the spectrum to pass. This results in high transmission centered around the chosen wavelength. Optical filters available from Spectrogon US Inc., Parsippany, N.J. are suitable.
Several conditions need to be taken into account before the appropriate filters could be selected. These conditions are dictated by the limited number of available channels and the limited choice of commercially-available filters.
First, the channels of the IR sensor need to be calibrated for the spectral region where the chosen photoconductive detectors are sensitive to the incident light. By switching the type of photo-sensitive element (PbS, PbSe or Si) for the photoconductive detectors, it is possible to detect spectrum in the mid IR (using PbSe) or visible (using Si) range. Using PbS and Si detectors, the total working spectral range of the IRPlus sensor is from 400 nm to 5000 nm. However, many plastic films exhibit strong surface scattering and strong fundamental absorption lines for this spectral range, and it becomes difficult to accurately examine the interference fringes. For these reasons, PbS detector cells are preferred. PbS dedector cells have a spectral sensitivity range from 1000 nm to 3000 nm. For the spectral region between 1600 nm and 1800 nm, most plastic films do not exhibit absorption lines, or only exhibit weak ones. This is important for the generation of measurable interference fringes.
Second, the filters for each channel should transmit as narrow band as possible in order to attribute the signal from the IR detector to a single wavelength. This wavelength will be used in the sine wave recovery algorithm discussed below.
The third requirement arises from the fact that at least half a period (P) is required in order to recover the shape of the interference fringe. The thinner the film, the wider the period of the spectral fringes. (Refer to
Conversely, thicker films require at least three measurement points for each half period of a fringe in order to find an unique solution in the fitting algorithm. To extend the measurement range of the sensor to thicker films, where fringes have higher frequency of spectral oscillations, it is advantageous to choose filters with CWLs as close to each other as possible, without spectral overlapping. This necessitates a trade off during filter selection in order to cover both thin and thick films.
According to an embodiment of the invention, the twelve filters chosen have CWLs that range from 1620 nm to 1840 nm. The filters' characteristics are shown in Table 1. The halfwidth (HW) of the filters' transmission bands are shown on
The following table lists chosen filters from Spectrogon Inc.
Utilizing the FTIR measurement of
Next, a fitting algorithm, such as the Levenberg-Marquardt nonlinear fitting algorithm, is applied to fit the measured data to a sine curve.
The calculations are as follows:
Vd(x)=b+A sin(2πf(x−c))
where:
Fit results are presented in the following table.
Chi{circumflex over ( )}2 represents goodness of the fit. Parameters obtained from the fit can be compared if the parameters of the fringes measured using FTIR spectrometer. The simulations confirm the first possibility of using pre fitting procedure to completely recover the full shape of the spectral fringes using the signal amplitude at just twelve spectral positions.
The above fitting algorithm yields f the frequency of fringe oscillations in wave number space. From the recovered spectral fringing curve, the film thickness d can be extracted by examining the spectral position of the first and last recovered interference fringe, using the formula:
Where:
An IR sensor commercially available by Honeywell International Inc. (Morristown, N.J.) under the name IR-Plus Infrared Transmission Sensor can be modified for use in the IR film thickness measurement system describe above. In accordance with one embodiment of the invention, the IR-Plus sensor can be adapted to use up to twelve receiver channels at once. The twelve channels may require calibration before taking measurements, depending on whether the refraction index of the measured film is known. During this procedure a number of film samples should be measured in order to determine the correct refraction index to be used in the formula above.
In another embodiment of the invention, the multichannel sensor can be employed to measure film characteristics in a traditional absoprtive mode to obtain preliminary approximate values before proceeding with employing the technique described above of measuring the shape of the interference fringes in the transmission spectra. For example, fewer than twelve channels, e.g., two channels, of the multichannel infrared sensor can be dedicated to absorptive measurements and the remaining channels can be employed for interference measurements.
In a further embodiment of the invention, the thin thickness measurement system described above can be adapted for use in paper or other flat-sheet production processes. The IR sensor can be adapted to scan across a moving web to detect defects and to measure basis weight and thickness parameters.
In paper production, thickness is a difficult property to measure because the distribution of mass in paper and cardboard is uneven. As a result the paper surface has small nooks and crannies at scales varying from a few μm up to a few cm. The “thickness” of newsprint may vary by 30% over a short distance at the microscopic scale. An accurate measurement of thickness is needed to calculate the density and basis weight of the paper, which is important because of their effect on strength and optical properties. Basis weight, also called grammage and ream weight, describes the weight in pounds of a ream (500 sheets) of paper that has been cut to a given standard size for that grade of paper. In countries using ISO paper sizes, the basis weight is given in grams of one square meter of paper.
To overcome the difficulties in measuring and recording the thickness of a single web of paper, the effective thickness can be measured instead. Using the methods described above, the thickness profiles of the web is taken at two chosen spots along the web. The effective thickness is the mean of the difference between the two measured values. The basis weight can then be calculated from the known weight of the sample ream and the measured effective thickness of the paper.
The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalence.