The present invention relates to thin-film transistors and methods for manufacturing the thin-film transistors, and particularly to a thin-film transistor including an etch-stopper layer comprising organic application materials, and a method for manufacturing the thin-film transistor.
In recent years, organic EL displays using electroluminescence (EL) of an organic material have been attracting attention as a type of next-generation flat panel display replacing liquid crystal displays. In an active-matrix display device such as the organic EL display, a thin-film semiconductor device referred to as a thin-film transistor (TFT) is used.
Unlike the voltage-driven liquid crystal display, the organic EL display is a current-driven display device. Accordingly, there is an urgent need for development of a thin-film transistor having excellent turn-on/off characteristics as a driving circuit for the active-matrix display device. The thin-film transistor includes a gate electrode, an insulating layer, a semiconductor layer (channel layer), a source electrode, and a drain electrode formed above a substrate. Generally, a silicon thin-film is used as the channel layer.
Increased size and reduced cost are also required for the display device, and a bottom-gate thin-film transistor in which a gate electrode is formed on a side close to the substrate with respect to the channel layer is generally used as a thin-film transistor which allows cost reduction easily.
The bottom-gate thin-film transistor is generally divided into two types; namely, a channel etching thin-film transistor which includes an etched channel layer, and an etch-stopper (channel protective) thin-film transistor in which the channel layer is protected from etching.
Compared to the etch-stopper thin-film transistor, the channel etching thin-film transistor has advantages in the reduced number of photolithography process and a lower manufacturing cost.
In contrast, with the etch-stopper thin-film transistor, it is possible to prevent the damage on the channel layer by etching, suppressing an increase in the variation of characteristics within a surface of the substrate. Furthermore, the channel layer of the etch-stopper thin-film transistor can be thinner than the channel layer of the channel etching thin-film transistor. Accordingly, parasitic resistance component can be reduced and the turn-on characteristics can be improved, which are advantageous for increasing definition.
Therefore, the etch-stopper thin-film transistor is suitable for a driving transistor in the current-driven organic EL display device using an organic EL element, for example, and there are attempts to use the etch-stopper thin-film transistor in a pixel circuit in the organic EL display device even if the manufacturing cost is higher than the manufacturing cost when the channel-etching thin-film transistor is used.
For example, patent literature 1 discloses an etch-stopper TFT in which a microcrystalline semiconductor film is used as a channel layer, and an etch-stopper layer is formed above a channel layer with a buffer layer provided in between.
[PTL 1]
Japanese Unexamined Patent Application Publication No. 2009-76894
However, use of organic materials for the etch-stopper layer in the etch-stopper thin-film transistor causes a marked hump referred to as hump phenomenon in the transistor characteristics (I-V characteristics).
In particular, such marked hump phenomenon appears in a region in which current of the transistor characteristics rapidly increases. The region in which current rapidly increases corresponds to a low gray scale region, that is, a black display region in a display device. Unlike the liquid crystal display, the characteristics in the black display region are important for the organic EL display.
The present invention has been conceived to solve the above problem, and has an object to provide (i) an etch-stopper thin-film transistor, including an etch-stopper layer comprising organic materials, with reduced hump phenomenon and (ii) a method for manufacturing the thin-film transistor.
In order to achieve the object, the thin-film transistor according to an aspect of the present invention includes: a gate electrode above a substrate; a gate insulating layer above the gate electrode; a semiconductor layer that is opposed to the gate electrode with the gate insulating layer therebetween; an etch-stopper layer above the semiconductor layer and comprising an organic material; and a source electrode and a drain electrode that are opposed to each other, each of the source electrode and the drain electrode having at least a portion located above the etch-stopper layer. In the etch-stopper layer includes an altered layer having at least a portion contacting the semiconductor layer, the altered layer being generated by alteration of a surface layer of the etch-stopper layer in a region exposed from the source electrode and the drain electrode, and a relational expression of Log10 Nt≦0.0556θ+16.86 is satisfied where Nt (cm−3) represents a defect density of the semiconductor layer and θ (°) represents a taper angle of an edge portion of the region of the etch-stopper layer exposed from the source electrode and the drain electrode.
According to an aspect of the present invention, it is possible to provide a thin-film transistor with excellent transistor characteristics, in particular, where hump phenomenon is reduced in a region in which current rapidly increases.
The thin-film transistor according to an aspect of the present invention includes: a gate electrode above a substrate; a gate insulating layer above the gate electrode; a semiconductor layer that is opposed to the gate electrode with the gate insulating layer therebetween; an etch-stopper layer above the semiconductor layer and comprising an organic material; and a source electrode and a drain electrode that are opposed to each other, each of the source electrode and the drain electrode having at least a portion located above the etch-stopper layer. The etch-stopper layer includes an altered layer having at least a portion contacting the semiconductor layer, the altered layer being generated by alteration of a surface layer of the etch-stopper layer in a region exposed from the source electrode and the drain electrode, and a relational expression of Log10 Nt≦0.0556θ+16.86 is satisfied where Nt (cm−3) represents a defect density of the semiconductor layer and θ (°) represents a taper angle of an edge portion of the region of the etch-stopper layer exposed from the source electrode and the drain electrode.
According to the aspect, the defect density (Nt) of the semiconductor layer and the taper angle (θ) at the edge portion of the etch-stopper layer including the altered layer satisfy the relational expression of Log10 Nt≦0.0556θ+16.86. This reduces occurrence of the hump phenomenon.
Furthermore, it may be that in the thin-film transistor according to an aspect of the present invention, the altered layer is a layer generated by dry etching performed to pattern the semiconductor layer.
The altered layer generated by dry etching performed to pattern the semiconductor layer includes a large amount of fixed charges, which causes the hump phenomenon. By satisfying the above relational expression, occurrence of the hump phenomenon can be reduced.
Furthermore, in the thin-film transistor according to an aspect of the present invention, it may be that the altered layer has a thickness of at least 30 nm. Furthermore, in the thin-film transistor according to an aspect of the present invention, it may be that the altered layer has a density higher than a density of a non-altered layer which is a portion of the etch-stopper layer that is not altered by the dry etching. Furthermore, in the thin-film transistor according to an aspect of the present invention, it may be that the altered layer has a chlorine concentration which is at least ten times higher than a chlorine concentration of the non-altered layer. Furthermore, in the thin-film transistor according to an aspect of the present invention, it may be that the altered layer has a carbon concentration which is at most one hundredth of a carbon concentration of the non-altered layer. However, the carbon concentration significantly varies depending on materials. Hence, the carbon concentration in the altered layer may exceed 1/100 of the carbon concentration in the etch-stopper layer.
Such configurations allow the altered layer in the etch-stopper layer to be identified. The altered layer includes a large amount of fixed charges, which causes the hump phenomenon. By satisfying the relational expression, occurrence of the hump phenomenon can be reduced.
Furthermore, the method for manufacturing the thin-film transistor according to an aspect of the present invention includes: preparing a substrate; forming a gate electrode above the substrate; forming a gate insulating layer above the gate electrode; forming a semiconductor film above the gate insulating layer; forming, above the semiconductor film, an etch-stopper layer comprising an organic material; forming a source electrode and a drain electrode that are opposed to each other, each of the source electrode and the drain electrode having at least a portion located above the etch-stopper layer; and forming a semiconductor layer patterned, by performing dry etching on the semiconductor film. In the forming of a semiconductor layer, the dry etching (i) alters, into an altered layer, a surface layer of the etch-stopper layer in a region exposed from the source electrode and the drain electrode and (ii) etches the etch-stopper layer to have a taper angle at an edge portion of the exposed region, and a relational expression of Log10 Nt≦0.0556θ+16.86 is satisfied where Nt (cm−3) represents a defect density of the semiconductor layer and θ (°) represents the taper angle.
According to the aspect, the semiconductor layer and the etch-stopper layer are formed such that the defect density (Nt) of the semiconductor layer and the taper angle (θ) at the edge portion of the etch-stopper layer including the altered layer satisfy the relational expression of Log10 Nt≦0.0556θ+16.86. With this, it is possible to achieve a thin-film transistor with reduced hump phenomenon.
Furthermore, in the thin-film transistor according to an aspect of the present invention, it may be that the altered layer has a thickness of at least 30 nm. Furthermore, in the method for manufacturing the thin-film transistor according to an aspect of the present invention, it may be that the altered layer has a density higher than a density of a portion of the etch-stopper layer that is not altered by the dry etching. Furthermore, in the method for manufacturing the thin-film transistor according to an aspect of the present invention, it may be that the altered layer has a chlorine concentration which is at least ten times higher than a chlorine concentration of the non-altered layer. Furthermore, in the method for manufacturing the thin-film transistor according to an aspect of the present invention, it may be that the altered layer has a carbon concentration which is at most one hundredth of a carbon concentration of the non-altered layer.
Such configurations allow the altered layer in the etch-stopper layer to be identified. The altered layer includes a large amount of fixed charges, which causes the hump phenomenon. By satisfying the relational expression, occurrence of the hump phenomenon can be reduced.
(Embodiment)
The following shall describe a thin-film transistor and a method for manufacturing the thin-film transistor according to an embodiment of the present invention, with reference to the drawings. The exemplary embodiment described below shows a preferred specific example. The numerical values, shapes, materials, structural elements, the arrangement and connection of the structural elements, steps, the processing order of the steps etc. shown in the following exemplary embodiment are mere examples, and therefore do not limit the scope of the present invention. Therefore, among the structural elements in the following exemplary embodiment, structural elements not recited in any one of the independent claims are not necessarily required to achieve the object of the present invention, but are described as more preferable implementations.
Furthermore, in each of the drawings, substantially same structural elements are assigned with the same referential numerals. Note that each figure is a schematic diagram, and is not necessarily accurate.
As shown in
The thin-film transistor 10 according to this embodiment further includes a pair of contact layers 7 and a passivation layer 9. Each of the contact layers 7 has at least a portion located on the protective layer 6, and is formed between (i) the semiconductor layer 40 and (ii) the source electrode 8S or the drain electrode 8D.
The semiconductor layer 40 is patterned into an island shape above the substrate 1, and includes stacked films of: a crystalline silicon semiconductor layer 4 serving as a first semiconductor layer that is a lower layer; and an amorphous silicon semiconductor layer 5 serving as a second semiconductor layer that is an upper layer. The semiconductor layer 40 is opposed to the gate electrode 2 with the gate insulating layer 3 therebetween.
The thin-film transistor 10 satisfies the relational expression of Log10 Nt≦0.0556θ+16.86 where Nt (cm−3) represents the defect density of the semiconductor layer 40 and θ (°) represents the taper angle at the edge portion of the protective layer 6. The thin-film transistor 10 according to this embodiment is an n-channel TFT.
The following shall specifically describe elements of the thin-film transistor 10 according to this embodiment.
The substrate 1 is a glass substrate comprising, for example, a glass material such as silica glass, alkali-free glass, or highly heat-resistant glass. An undercoat layer comprising silicon nitride (SiNx), silicon oxide (SiOy), silicon oxynitride (SiOyNx), or others may be formed on the substrate 1 in order to prevent impurities such as sodium and phosphorus in the glass substrate from entering the semiconductor layer 40. In addition, the undercoat layer also functions as a layer for buffering the heat on the substrate 1 in a high-temperature thermal treatment process such as laser annealing. The thickness of the undercoat layer is, for example, approximately 100 nm to 2000 nm.
The gate electrode 2 is formed on the substrate 1 in a predetermined shape. The gate electrode 2 has a single-layer structure or a multi-layer structure that comprises a conductive material which withstands melting-point temperature of silicon, an alloy including the materials, or the like. Examples of the materials of the gate electrode 2 include molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W), tantalum (Ta), niobium (Nb), nickel (Ni), titanium (Ti), chromium (Cr), or molybdenum-tungsten (MoW). The thickness of the gate electrode 2 is, for example, approximately 20 nm to 500 nm.
The gate insulating layer 3 (gate insulating film) is formed above the substrate 1. In this embodiment, the gate insulating layer 3 is formed on the entire surface of the substrate 1 covering the gate electrode 2. The gate insulating layer 3 may comprise, for example, silicon oxide (SiOy), silicon nitride (SiNx), silicon oxynitride (SiOyNx), aluminum oxide (AlOz), or tantalum oxide (TaOw), or may be made of a stacked film of the materials. The thickness of the gate electrode 3 is, for example, approximately 50 nm to 300 nm.
In this embodiment, the crystalline silicon semiconductor layer 4 serves as the semiconductor layer 40. Accordingly, at least silicon oxide is used for the gate insulating layer 3, for example. The reason is that it is preferable to have good interface state between the semiconductor layer 40 and the gate insulating layer 3 for maintaining excellent threshold voltage characteristics of the TFT, and silicon oxide is suitable for this purpose.
The crystalline silicon semiconductor layer 4 is a semiconductor thin film formed on the gate insulating layer 3, and is a channel layer having a predetermined channel region in which movement of carriers is controlled by the voltage applied to the gate electrode 2. The channel region refers to a region above the gate electrode 2. The length of the channel region in the charge movement direction corresponds to the gate length. The crystalline silicon semiconductor layer 4 may be formed by crystallizing amorphous silicon, for example.
The grain size of the crystalline silicon in the crystalline silicon semiconductor layer 4 is, for example, approximately 5 nm to 1000 nm. In this case, the crystalline silicon semiconductor layer 4 may comprise only polycrystalline silicon having an average grain size of 100 nm or more. Other than this, the crystalline silicon semiconductor layer 4 may have a mixed crystal structure of the polycrystalline silicon and microcrystalline silicon referred to as microcrystal having an average grain size of at least 20 nm and less than 40 nm, or a mixed crystal structure of amorphous silicon and crystalline silicon. In order to achieve excellent turn-on characteristics, at least the channel region of the crystalline silicon semiconductor layer 4 is formed of a film having a high ratio of crystalline silicon, for example. Note that, the thickness of the crystalline silicon semiconductor layer 4 is, for example, approximately 10 nm to 90 nm.
The amorphous silicon semiconductor layer 5 is a semiconductor thin film formed on the crystalline silicon semiconductor layer 4, and is, for example, an intrinsic amorphous silicon film. Note that, the thickness of the amorphous silicon semiconductor layer 5 is, for example, approximately 10 nm to 60 nm.
The semiconductor layer 40 according to this embodiment has a stacked structure of the crystalline silicon semiconductor layer 4 and the amorphous silicon semiconductor layer 5, but the present invention is not limited to the example. The semiconductor layer 40 may include only a silicon semiconductor layer made of the crystalline silicon semiconductor layer or the amorphous silicon semiconductor layer. Furthermore, examples of the semiconductor layer 40 include a metal oxide semiconductor layer and an organic semiconductor layer, other than the silicon semiconductor layer.
The protective layer 6 is an etch-stopper layer formed on the semiconductor layer 40, and is a channel protective film for protecting the semiconductor layer 40 that is to be a channel layer. More specifically, the protective layer 6 functions as a channel etch-stopper (CES) layer for preventing the channel region of the semiconductor layer 40 from being etched during the etching process for patterning the pair of contact layers 7 and the semiconductor layer 40. The protective layer 6 according to this embodiment is formed on the amorphous silicon semiconductor layer 5. In this embodiment, the thickness of the protective layer 6 in the region overlapping with the source electrode 8S or the drain electrode 8D is, for example, 300 nm to 1 μm. Furthermore, the thickness of the protective layer 6 is at least 500 nm and at most 1 μm, for example.
The lower limit of the thickness of the protective layer 6 is determined in consideration for margin due to etching and reduction in effect of fixed charges in the protective layer 6. The upper limit of the thickness of the protective layer 6 is determined in consideration for suppressing a decrease in process reliability due to discontinuity of the contact layer 7 or the like caused by an increase in the level difference between the protective layer 6 and the amorphous silicon semiconductor layer 5.
The protective layer 6 comprises silicon (Si) and oxygen (O) as major components. The protective layer 6 according to this embodiment is an organic material film mainly comprising organic materials including silicon, oxygen, and carbon (C). In this case, the protective layer 6 may comprise, for example, polysiloxane. Polysiloxane has silica bonding as a main chain to which organic components having carbon such as methyl are combined. The protective layer 6 may be formed by applying an organic application material by the spin coating or others. Other than the application method such as the spin coating, the protective layer 6 may be formed by a droplet discharging method or a printing method, such as the screen printing or the offset printing, which allows formation of a predetermined pattern.
The protective layer 6 having such a configuration includes a non-altered layer 61 and an altered layer 62. The non-altered layer 61 is a portion of the protective layer 6 not altered by dry etching performed to pattern the semiconductor layer 40. The non-altered layer 61 is the protective layer 6 excluding the altered layer 62. On the other hand, the altered layer 62 is a layer generated by the surface layer of the protective layer 6 being altered by dry etching performed to pattern the semiconductor layer 40. The altered layer 62 is a surface region of the protective layer 6 exposed from the source electrode 8S and the drain electrode 8D. The altered layer is generated in a region having at least a portion contacting the surface of the semiconductor layer 40. In (b) in
As shown in (c) in
The protective layer 6 has insulation properties. The pair of contact layers 7 is not electrically connected to each other.
The pair of contact layers 7 is formed of amorphous semiconductor layers having a high concentration of impurities or polycrystalline semiconductor layers having a high concentration of impurities. The pair of contact layers 7 may be, for example, n-type semiconductor layers formed by doping phosphorous (P) in the amorphous silicon as n-type impurity, and n+ layers including a high concentration of impurities of at least 1×1019 [atm/cm3].
The pair of contact layers 7 is opposed to each other at a predetermined distance on the protective layer 6. Each of the contact layers 7 is formed from the upper surface of the protective layer 6 covering the amorphous silicon semiconductor layer 5. The thickness of each of the contact layers 7 may be 5 nm to 100 nm, for example.
The pair of contact layers 7 according to this embodiment is formed between (i) the amorphous silicon semiconductor layer 5 and (ii) the source electrode 8S and the drain electrode 8D, but is not formed on the lateral side of the semiconductor layer 40 (the lateral side of the amorphous silicon semiconductor layer 5 and the lateral side of the crystalline silicon semiconductor layer 4). More specifically, the pair of contact layers 7 is flush with the semiconductor layer 40 (the amorphous silicon semiconductor layer 5 and the crystalline silicon semiconductor layer 4).
The pair of contact layers 7 has a single layer structure, but may include two layers of a low-concentration field relief layer (n− layer) serving as the lower layer and a high-concentration contact layer (n+ layer) serving as the upper layer. In this case, for example, the low-concentration field relief layer is formed by doping phosphorous (P) of approximately 1×1017 [atm/cm3].
A pair of the source electrode 8S and the drain electrode 8D are opposed to each other at a predetermined distance, and is formed on the pair of contact layers 7, flush with the contact layers 7.
The source electrode 8S covers one of the end portions of the protective layer 6 and the semiconductor layer 40 (the amorphous silicon semiconductor layer 5) via one of the contact layers 7. On the other hand, the drain electrode 8D covers the other end portion of the protective layer 6 and the semiconductor layer 40 (the amorphous silicon semiconductor layer 5) via the other contact layer 7.
In this embodiment, each of the source electrode 8S and the drain electrode 8D may has a single-layer structure or multilayer structure comprising a conductive material, an alloy including the materials, or the like. Example of the materials of the source electrode 8S and the drain electrode 8D include aluminum (Al), molybdenum (Mo), tungsten (W), copper (Cu), titanium (Ti), and chromium (Cr). In this embodiment, the source electrode 8S and the drain electrode 8D may have a try-layer structure of MoW/Al/MoW. The thickness of the source electrode 8S and the drain electrode 8D may be, for example, approximately 100 nm to 500 nm.
The passivation layer 9 is formed to cover the source electrode 8S, the drain electrode 8D, and the protective layer 6 exposed between the source electrode 8S and the drain electrode 8D. The thickness of the passivation layer 9 may be, for example, at least 20 nm and at most 1000 nm.
The passivation layer 9 comprises major components identical to those of the protective layer 6. In this embodiment, since the protective layer 6 comprises silicon and oxygen as major components, the passivation layer 9 also comprises silicon and oxygen as major components. While the protective layer 6 comprises organic materials, the passivation layer 9 comprises inorganic materials. For example, the passivation layer 9 may comprise silicon oxide. Instead, the passivation layer 9 may comprise silicon nitride. The passivation layer 9 is used, for example, in order to prevent impurities such as oxygen and water outside from entering the semiconductor layer materials composing the thin-film transistor 10.
Next, the following shall describe a method for manufacturing the thin-film transistor 10 according to the embodiment of the present invention, with reference to
As shown in
First, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Note that, in this embodiment, the amorphous silicon thin film is crystallized by the laser annealing, which involves irradiating the amorphous silicon thin-film with a laser beam. Examples of the laser annealing include laser annealing using an excimer laser (ELA) with wavelength of 190 nm to 350 nm approximately, laser annealing using a pulse laser with wavelength of 370 nm to 900 nm approximately, and laser annealing using a continuous wave laser (CW laser) with wavelength of 370 nm to 900 nm approximately. Other than the laser annealing, the amorphous silicon thin film may be crystallized using the rapid thermal processing (RTP) or rapid thermal annealing (RTA). Instead of forming the crystalline silicon semiconductor film by crystallizing the amorphous silicon thin film, the crystalline silicon semiconductor film 4F may be formed by directly growing crystals by the CVD.
Next, as shown in
With this, the semiconductor film 40F, which is stacked films of the crystalline silicon semiconductor layer 4F and the amorphous silicon semiconductor film 5F, is formed on the gate insulating layer 3.
After forming the semiconductor film 40F, hydrotreatment process may be performed on silicon atoms in the crystalline silicon semiconductor film 4F by performing hydrogen plasma treatment on the semiconductor film 40F. The hydrogen plasma treatment is performed, for example, by generating hydrogen plasma by radio-frequency (RF) power from gas including hydrogen gas such as H2 or H2/Argon (Ar), and irradiating the semiconductor film 40F with the hydrogen plasma. The hydrogen plasma treatment generates, in the plasma atmosphere, hydrogen plasma including hydrogen ion (H+) and hydrogen radical (H*). Entry of the generated hydrogen ion and hydrogen radical into the crystalline silicon semiconductor film 4F causes hydrogen termination of dangling-bond of silicon atoms included in the crystalline silicon semiconductor film 4F. More specifically, dangling-bond of silicon atoms is combined with hydrogen. This reduces crystallinity defect density of the crystalline silicon semiconductor film 4F, thereby improving crystallinity of the crystalline silicon semiconductor film 4F. The defect density of the semiconductor film 40F can be adjusted by adjusting the conditions of the hydrogen plasma treatment. The hydrogen plasma treatment need not be necessarily performed when the semiconductor film 40F is formed of a material other than silicon semiconductor, such as oxide semiconductor, or organic semiconductor.
Next, as shown in
In this embodiment, an organic material comprising polysiloxane is applied to the amorphous silicon semiconductor film 5F first, and the spin coating is applied. With this, the protective layer 6 is formed on the entire surface of the amorphous silicon semiconductor film 5F. Subsequently, the protective layer 6 is pre-baked. After that, the protective layer 6 in the predetermined shape is formed by exposure and development using a photo mask. After that, post-baking on the protective layer 6 is performed. With this, the protective layer 6 in the predetermined shape is formed.
Next, as shown in
Next, as shown in
Next, as shown in
Subsequently, the resist on the source electrode 8S and the drain electrode 8D is removed, and etching, such as dry etching, is performed using the source electrode 8S and the drain electrode 8D as masks so as to pattern the contract layer film 7F. At the same time, the semiconductor film 40F (the amorphous silicon semiconductor film 5F and the crystalline silicon semiconductor film 4F) is patterned into an island shape (semiconductor film patterning). Accordingly, as shown in
In this embodiment, the semiconductor film 40F is patterned by a dry etching apparatus in the etching conditions that the etching gas is Cl2 gas, the pressure is 2 Pa, and inductive coupled plasma (ICP) power is 300 W. In this embodiment, dry etching is performed on the semiconductor film 40F after removing the resist on the source electrode 8S and the drain electrode 8D; however, dry etching may be performed without removing the resist.
In such a case, as shown in (b) in
Furthermore, the dry etching performed to pattern the semiconductor film 40F etches the edge portion of the region of the protective layer 6 exposed from the source electrode 8S and the drain electrode 8D to have a taper angle.
As described above, dry etching performed to pattern the semiconductor film 40F alters the surface layer of the protective layer 6 in the region exposed form the source electrode 8S and the drain electrode 8D, into an altered layer, and also etches the edge portion of the exposed region into a tapered shape having a taper angle, making the lateral side of the edge portion sloped.
Lastly, as shown in
For example, the passivation layer 9 comprises a material including the major component identical to that of the protective layer 6. In this embodiment, the passivation layer 9 comprising silicon oxide (SiOx) is formed by the plasma CVD.
The thin-film transistor 10 according to this embodiment is manufactured as described above.
Next, detailed descriptions are given of the functions and effects of the thin-film transistor 10 according to this embodiment, including how the present invention was achieved.
The thin-film transistor including an etch-stopper layer (protective layer) comprising organic application materials has a problem in that it is difficult to obtain desired transistor characteristics (current-voltage characteristics). The current-voltage characteristics of the thin-film transistor were measured. The results are, as shown in
Here, referring to
After diligent analysis and consideration on the cause of the hump phenomenon, the inventors found out the following cause. In the case where an organic application material is used for the etch-stopper layer (protective layer), the exposed etch-stopper layer is damaged when patterning the semiconductor film into a predetermined shape (an island shape). This generates, near the surface of the etch-stopper layer, an altered layer which is generated by alteration of the organic application material that is a base material of the etch-stopper layer. The inventors also found out that the thickness of the etch-stopper layer decreases at the exposed outer peripheral edge portion of the etch-stopper layer due to etching. The above finding shows that the parasitic transistor is formed by the newly generated altered layer contacting the semiconductor layer, which causes the hump phenomenon.
Referring to
As shown in
Now, referring back to (c) in
Normally, the entire surface of the semiconductor layer 40 at the back channel side is covered with the protective layer 6 which has uniform composition of elements and a uniform concentration of the composition of the elements, and the amount of fixed charges at the back channel side is uniform within a surface of the substrate. More specifically, in such a case, hump phenomenon does not occur in the current-voltage characteristics of the thin-film transistor.
However, as described above, in the case where the organic application material is used as the material for the protective layer 6, dry etching performed to pattern the semiconductor layer 40 alters the organic application material in the protective layer 6, thereby forming the altered layer 62. In addition, since etching is performed while the lateral side of the semiconductor layer 40 recedes, the semiconductor 40 contacts the altered layer 62 at the outer peripheral edge portion of the protective layer 6. Hence, the back channel side of the semiconductor layer 40 contacts the altered layer 62 that is a layer generated by the protective layer 6 being altered by dry etching, and also contacts the non-altered layer (bulk layer) 61 that is the protective layer 6 not altered by the dry etching. In this case, the altered layer 62 and the non-altered layer 61 have different amount of fixed charges. A larger amount of fixed charges is generated in the altered layer 62 which has been damaged. In such a manner, the parasitic transistor is caused because the semiconductor layer 40 contacts the altered layer 62 which includes a larger amount of fixed charges. It is considered that such a parasitic transistor causes the hump phenomenon in the current-voltage characteristics.
The thin-film transistor 10 was actually manufactured, and cross-section observation was performed on the portion corresponding to (c) in
The cross-sectional TEM image shown in
Here, referring to
Furthermore, since the altered layer 62 has a lower carbon concentration than that of the non-altered layer 61, it is considered that the altered layer 62 is generated by alteration of carbon in the protective layer 6. As described above, based on the results shown in
After further diligent analysis and consideration, the inventors further found out that the hump phenomenon is related with the taper angle θ of the protective layer 6 and the defect density of the semiconductor layer 40.
First, referring to
As described above, dry etching performed to pattern the semiconductor film 40F into an island shape alters the region of the protective layer 6 exposed from the source electrode 8S and the drain electrode 8D, and also tapers the edge portion of the exposed region, making the edge portion recede. Here, as shown in
As shown in (a) and (b) in
In this case, as described above, the altered layer 62 is considered to include a larger amount of fixed charges than the non-altered layer 61. Hence, as the contact area between the altered layer 62 and the semiconductor layer 40 increases, the threshold value (threshold voltage) of the parasitic transistor caused due to the altered layer 62 further departs from the threshold value (threshold voltage) of the main transistor. This increases the hump phenomenon. More specifically, the protective layer 6 having a smaller taper angle θ as shown in (b) in
Next, a description is given of the relationship between the defect density of the semiconductor layer 40 and the hump phenomenon.
The threshold value Vth of the thin-film transistor 10 can be expressed by the following equations in consideration with the influences of the fixed charges at the back channel side (protective layer side) of the semiconductor layer 40 (the amorphous silicon semiconductor layer 5).
Here, VFB represents flat band voltage, φB represents Fermi potential, Qbk represents the amount of fixed charges at the back channel side of the semiconductor layer 40, γ represents body effect coefficient, NA represents impurity concentration of the semiconductor layer 40, COX represents capacitance of the gate insulating layer 3, εSi represents permittivity of the semiconductor layer 40 (Si), and q represents elementary charge.
According to the γ in the above equation, influences of the fixed charges at the back channel side is stronger in a thin-film transistor which includes the semiconductor layer 40 with a higher impurity concentration (NA). Here, the semiconductor layer 40 with a high defect density also has a high impurity concentration. Hence, it can be said that the effect at the back channel side is stronger in a thin-film transistor which includes the semiconductor layer 40 with a high defect density.
On the other hand, a thin-film transistor, which includes the semiconductor layer 40 having a low defect density, is not likely to be influenced by the back channel side. Hence, even when the non-altered layer 61 and the altered layer 62 in the protective layer 6 have different amount of fixed charges in the thin-film transistor which includes the semiconductor layer 40 having a low defect density, influence on the threshold value Vth is small, which is not likely to cause the hump phenomenon. As described, since the degree of the hump phenomenon varies depending on the defect density of the semiconductor layer 40, occurrence of the hump phenomenon can be reduced by adjusting the defect density of the semiconductor layer 40 as desired.
In such a manner, the inventors found out that the hump phenomenon can be reduced by adjusting the taper angle of the protective layer 6 and the defect density of the semiconductor layer 40 as desired. The present invention is conceived based on the above finding. Hereinafter, a specific description is given of the relationship between the taper angle of the protective layer 6 and the defect density of the semiconductor layer 40 which can reduce the hump phenomenon.
Here, in this embodiment, the hump phenomenon is quantified and the degree of the hump phenomenon is evaluated as the amount of hump. First, referring to
For example, in the case where the thin-film transistor has Id−Vd characteristics as shown in (a) in
With the calculating method, the hump amounts of three thin-film transistors having different degrees of hump were calculated.
First, as shown in (a) in
The hump amounts were calculated in the similar manner to the method shown in
The results show that the thin-film transistor with a higher degree of hump (large hump) has a hump amount of 1.03 when the inflection point is 1. The results also show that the thin-film transistor with a lower degree of hump) (small hump) has a hump amount of 0.52 when the inflection point is 0.8.
Next, twelve thin-film transistors, which include the protective layers 6 with different taper angles θ and the semiconductor layers 40 with different defect densities, were actually manufactured and the hump amount of each thin-film transistor was calculated by the calculating method as a measured value.
In this embodiment, the region where no hump phenomenon occurs (non-hump region) in
In order to determine the boundary between the hump region and the non-hump region, the boundary line between the hump region and non-hump region was calculated based on (i) the measured values obtained when the protective layer 6 has a taper angle θ of 25 degrees and the semiconductor layer 40 has a defect density of 1×1018.25 cm−3 and (ii) the calculated values obtained as described below (when the protective layer 6 has a taper angle θ of 55 degrees and the semiconductor layer 40 has a defect density of 1×1020 cm−3). Here, referring to
As in
Next, the boundary line between the hump region and non-hump region is calculated, with the defect density of the semiconductor layer 40 being Nt (cm−3), based on the measured values (obtained when the protective layer 6 has a taper angle θ of 25 degrees and the semiconductor layer 40 has a defect density of 1×1018.25 cm−3) and the calculated values (obtained when the protective layer 6 has a taper angle θ of 55 degrees and the semiconductor layer 40 has a defect density of 1×1020 cm−3). The boundary line thus calculated is Log10 Nt=0.0556θ+16.86. From the above, in
The followings will describe the reasons why occurrence of the hump phenomenon can be reduced by defining the defect density (Nt) of the semiconductor layer 40 and the taper angle (θ) of the protective layer 6 in the above manner.
As described above, the hump phenomenon is considered to occur due to the presence of the parasitic transistor caused by the altered layer 62. However, by making the defect density (Nt) of the semiconductor layer 40 and the taper angle (θ) of the protective layer 6 satisfy the above relationship, threshold voltage shift of the parasitic transistor to a higher value is performed. With this, the influence of the parasitic transistor can be hidden in the main transistor, thereby preventing the hump phenomenon from occurring in the Id-Vg characteristics.
As described above, in the thin-film transistor 10 according to the embodiment of the present invention, the defect density (Nt) of the semiconductor layer 40 and the taper angle (θ) of the edge portion of the protective layer 6 satisfy the relational expression of Log10 Nt≦0.0556θ+16.86. This leads to a thin-film transistor with no hump phenomenon.
In particular, in this embodiment, it is possible to resolve hump phenomenon that occurs in the region where current rapidly increases in the current-voltage characteristics of the conventional technique. With this, use of the thin-film transistor 10 according to this embodiment as a driving transistor of the organic EL display improves characteristics in a low gray scale region (black display region) in a display device.
(Variation)
Next, referring to
As shown in
The thin-film transistor 10A according to Variation produces the advantageous effects similar to those of the thin-film transistor 10 according to the above embodiment.
(Others)
Although the thin-film transistor and the method for manufacturing the thin-film transistor according to the present invention have been described based on the above embodiment and variation, the present invention is not limited to the embodiment and variation.
Those skilled in the art will readily appreciate that many modifications and combinations are possible in the exemplary embodiment and variation without materially departing from the novel teachings and advantages of the present invention. Accordingly, all such modifications and combinations are intended to be included within the scope of the present invention.
Furthermore, the thin-film transistor according to this embodiment may be used as a display device, such as an organic EL display device, or a liquid crystal display device. For example, referring to
As shown in
The thin-film transistor 10 according to this embodiment is provided as a switching transistor for selecting one of the pixels 22, but may be used as a driving transistor.
Next, referring to
As shown in
In the driving transistor 31, a gate electrode 31G is connected to a drain electrode 32D of the switching transistor 32, a source electrode 31S is connected to the anode of the organic EL device 23 via a relay electrode (not illustrated), and a drain electrode 31D is connected to the power line 29.
In addition, in the switching transistor 32, the gate electrode 32G is connected to the gate line 27, the source electrode 32S is connected to the source line 28, and the drain electrode 32D is connected to the capacitor 33 and the gate electrode 31G of the driving transistor 31.
In this configuration, when a gate signal is input into the gate line 27 to turn on the switching transistor 32, the video signal voltage supplied via the source line 28 is written into the capacitor 33. The video signal voltage written into the capacitor 33 is held for a period of one frame. The held video signal voltage causes analog change in conductance of the driving transistor 31 and causes the driving current corresponding to luminescence gradation to flow from the anode to the cathode of the organic EL device 23. This causes the organic EL device 23 to emit light. As a result, a predetermined image is displayed.
In addition, the display device such as the organic EL display device according to this embodiment can be used as a flat-panel display, and is applicable to electronic devices such as television sets, personal computers, or mobile phones.
The thin-film transistor according to an aspect of the present invention is widely applicable to display devices such as television sets, personal computers, and mobile phones, or various electronic devices having thin-film transistors.
Number | Date | Country | Kind |
---|---|---|---|
2012-130813 | Jun 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/003403 | 5/29/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/183255 | 12/12/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5286659 | Mitani et al. | Feb 1994 | A |
5474941 | Mitani et al. | Dec 1995 | A |
7768009 | Kobayashi et al. | Aug 2010 | B2 |
7791075 | Kobayashi et al. | Sep 2010 | B2 |
8133771 | Kobayashi et al. | Mar 2012 | B2 |
8389993 | Kobayashi et al. | Mar 2013 | B2 |
8420462 | Kobayashi et al. | Apr 2013 | B2 |
8513661 | Takahashi et al. | Aug 2013 | B2 |
20050230686 | Kojima et al. | Oct 2005 | A1 |
20090057672 | Kobayashi et al. | Mar 2009 | A1 |
20090065784 | Kobayashi et al. | Mar 2009 | A1 |
20100244022 | Takahashi et al. | Sep 2010 | A1 |
20100285624 | Kobayashi et al. | Nov 2010 | A1 |
20100304515 | Kobayashi et al. | Dec 2010 | A1 |
20120129288 | Kobayashi et al. | May 2012 | A1 |
20120262642 | Ikeda et al. | Oct 2012 | A1 |
20130001559 | Kishida et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
10-189499 | Jul 1998 | JP |
10-209458 | Aug 1998 | JP |
2002-261287 | Sep 2002 | JP |
2004-038047 | Feb 2004 | JP |
2009-076894 | Apr 2009 | JP |
2009-081425 | Apr 2009 | JP |
2009-176865 | Aug 2009 | JP |
2011037102 | Mar 2011 | WO |
Entry |
---|
U.S. Appl. No. 14/130,941 to Yuji Kishida et al., filed Jan. 6, 2014. |
U.S. Appl. No. 14/130,939 to Yuji Kishida et al., filed Jan. 6, 2014. |
International Search Report (ISR) in International Patent Application No. PCT/JP2013/003403, dated Jul. 2, 2013. |
Number | Date | Country | |
---|---|---|---|
20140167165 A1 | Jun 2014 | US |