1. Field of the Invention
The present invention is directed in general to integrated circuit devices and methods for manufacturing same. In one aspect, the present invention relates to nonvolatile memory devices, such as NAND flash memory and other types of flash memory.
2. Description of the Related Art
With the increasing demand for nonvolatile data storage in consumer electronics having mass storage, such as video or audio players, digital cameras, and other computerized devices, there continues to be interest in having nonvolatile memory devices progress over time towards having smaller sizes, larger memory capacity, and improved performance. Flash memory is a commonly used type of nonvolatile memory which can take the form of memory cards or USB type memory sticks, each having at least one memory device and a memory controller formed therein. For example, the need to reduce manufacturing costs per data bit is driving the NAND flash industry to continuously reduce the size of the cell transistors. But as fabrication process limitations (for example, limitations imposed by photolithography tools) limit the ability to reduce physical transistor sizes, there have been structural and/or design schemes proposed to increase memory density, such as, for example, stacking NAND cells in a direction perpendicular to the chip surface, thereby reducing the effective chip area per data bit without requiring shrinkage of the physical cell transistor size. However, there continue to be challenges associated with designing, fabricating, and operating vertical NAND flash memory devices.
The present invention may be understood, and its numerous objects, features and advantages obtained, when the following detailed description is considered in conjunction with the following drawings, in which:
a illustrates a 1st selected partial cross-section and plan view of the vertical gate NAND flash memory structure during an initial step in an example fabrication sequence when a memory stack is formed;
b illustrates a 2nd selected partial cross-section and plan view of the vertical gate NAND flash memory structure during an initial step in an example fabrication sequence when a memory stack is formed;
c illustrates a 3rd selected partial cross-section and plan view of the vertical gate NAND flash memory structure during an initial step in an example fabrication sequence when a memory stack is formed;
d illustrates a 4th selected partial cross-section and plan view of the vertical gate NAND flash memory structure during an initial step in an example fabrication sequence when a memory stack is formed;
a illustrates processing subsequent to the corresponding
b illustrates processing subsequent to the corresponding
c illustrates processing subsequent to the corresponding
d illustrates processing subsequent to the corresponding
a illustrates processing subsequent to the corresponding
b illustrates processing subsequent to the corresponding
c illustrates processing subsequent to the corresponding
d illustrates processing subsequent to the corresponding
a illustrates processing subsequent to the corresponding
b illustrates processing subsequent to the corresponding
c illustrates processing subsequent to the corresponding
d illustrates processing subsequent to the corresponding
a illustrates processing subsequent to the corresponding
b illustrates processing subsequent to the corresponding
c illustrates processing subsequent to the corresponding
d illustrates processing subsequent to the corresponding
a illustrates processing subsequent to the corresponding
b illustrates processing subsequent to the corresponding
c illustrates processing subsequent to the corresponding
d illustrates processing subsequent to the corresponding
a illustrates processing subsequent to the corresponding
b illustrates processing subsequent to the corresponding
c illustrates processing subsequent to the corresponding
d illustrates processing subsequent to the corresponding
a illustrates processing subsequent to the corresponding
b illustrates processing subsequent to the corresponding
c illustrates processing subsequent to the corresponding
d illustrates processing subsequent to the corresponding
It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to other elements for purposes of promoting and improving clarity and understanding. Further, where considered appropriate, reference numerals have been repeated among the drawings to represent corresponding or analogous elements.
In a three-dimensional vertical gate NAND flash memory device, a stacked memory architecture and cell array structure includes isolated charge trap nodes, such as floating gates or other charge trap devices, formed on opposite sides of stacked NAND strings without extending across multiple word lines to provide electrically isolated charge trap nodes at each cell that are structurally separated from neighboring cells. In selected embodiments, stacked VG NAND devices include self-aligned charge trap devices in each word line that are electrically and structurally isolated from charge trap devices in adjacent word lines by patterned fin-shaped dielectric structures formed between word line gates. To achieve the isolated storage nodes, there is disclosed herein a manufacturable device and fabrication sequence for vertical and lateral charge storage node isolation of VG NAND floating gates or charge trapping devices. In selected example embodiments, the fabrication sequence forms vertically stacked NAND flash strings with self-aligned float gates which are separated from floating gates in laterally adjacent string stacks by one or more patterned dielectric layers formed between laterally adjacent string stacks. As a result, storage node separation is achieved in not only the vertical direction, but also both horizontal (x and y) directions without increasing the processing cost or complexity of having additional photolithographic patterning steps.
In this disclosure, an improved system, apparatus, and fabrication method are described for fabricating vertical gate NAND flash memory devices with charge trap nodes that are electrically isolated from charge trap node in vertically and horizontally adjacent NAND strings to address various problems in the art where various limitations and disadvantages of conventional solutions and technologies will become apparent to one of skill in the art after reviewing the remainder of the present application with reference to the drawings and detailed description provided herein. For example, there are manufacturing challenges with isolating charge storage nodes imposed by the additional costs and complexity of photolithographic patterning used to achieve storage node separation between vertically and horizontally adjacent memory cells. While there have been attempts to isolate charge storage nodes by using charge trap technology, such as Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) gate structures, to trap electrons in dielectric films, any electrical isolation depends solely on the natural insulating nature of the dielectric layer(s) to inhibit charge leakage between adjacent cells, and does not typically require the charge trap layers to be actively patterned into isolated island-shaped patterns where each cell is electrically isolated from all of its neighboring cells. To address these problems and others known to those skilled in the art, various illustrative embodiments of the present invention will now be described in detail with reference to the accompanying figures. While various details are set forth in the following description, it will be appreciated that the present invention may be practiced without these specific details, and that numerous implementation-specific modifications may be made to the invention described herein to achieve the device designer's specific goals, such as compliance with process technology or design-related constraints, which will vary from one implementation to another. While such a development effort might be complex and time-consuming, it would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. For example, selected aspects are depicted with reference to simplified drawings and representations of a flash memory device without including every device feature, geometry, or circuit detail in order to avoid limiting or obscuring the present invention. Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art. In addition, although specific example materials are described herein, those skilled in the art will recognize that other materials with similar properties can be substituted without loss of function. It is also noted that, throughout this detailed description, certain materials will be formed and removed to fabricate the semiconductor structure. Where the specific procedures for forming or removing such materials are not detailed below, conventional techniques to one skilled in the art for growing, depositing, removing or otherwise forming such layers at appropriate thicknesses shall be intended. Such details are well known and not considered necessary to teach one skilled in the art how to make or use the present invention.
To provide a contextual framework for selected embodiments of the present disclosure, reference is now made to
Turning now to
In addition to the separate word line gate structures 108A, 108B defining multiple memory cells, each string also includes additional gate structures on each end of the string to define ground and string select line transistors. As shown, the ground select line transistors may be formed with a poly gate structure 109 which connects the source node of each stacked string 102A-F to a shared or common source line 140, while string select transistors may be formed with separate poly gate structures 110A, 110B, each of which connects the drain nodes of vertically stacked strings 102A-F to a corresponding bit line pad 131A-C under control of a string select signal applied via metal line conductors 180A, 180B and contacts 150, 151. In this way, the source node of each string is shared with adjacent strings that are located above or below it in a vertical direction via a source contact using the common source line 140, but the drain node of each string (e.g., 102C) is shared only horizontally with other strings (e.g., 102F) via a bit line pad (e.g., 131C), but not vertically. If desired, the ground and string select transistors may be formed as dual gate devices substantially as described above. For example, the string select transistor at the drain node of each string may be formed with a poly gate structure (for example, 110A, 110B) formed around a multi-layered memory film structure, while the ground select transistor at the source node of each string may be formed with a poly gate structure 109 formed around a multi-layered memory film structure.
By forming each word line gate structure 108A-B around the multi-layered memory film structures to extend horizontally across separate vertical stacks of silicon strips (for example, 102A-C and 102D-F), separate word line (WLi) signals may be connected to each poly gate node 108A-B of the cell transistors in a horizontal or lateral direction. In addition, each cell transistor shares its poly gate node 108A-B (and applied word line WLi signal) with all cell transistors that are stacked vertically above it. Bit lines can also be shared by one or more strings formed in the same layer (for example, 102A, 102D) by connecting the strings to a shared bit line pad (for example, 131A) which is used to establish electrical connection from the connected strings to the common bit line (for example, 170A) through one or more via contacts or conductors 152. In similar fashion, strings formed in another layer (for example, 102B, 102E) may be connected to a shared bit line pad (for example, 131B) which is electrically connected to a second common bit line (for example, 170B) through one or more via contacts or conductors 153, while strings formed in another layer (for example, 102C, 102F) may be connected to a shared bit line pad (for example, 131C) which is electrically connected to another common bit line (for example, 170C) through one or more via contacts or conductors 154.
Extending across all stacked cell strings 102A-C and 102D-F, the poly gate structure 109 for the shared ground select transistor connects the source nodes of stacked strings 102A-C and 102D-F to the common source line contact 140. In contrast, each poly gate structure 110A, 110B for a given string select transistor does not extend across multiple strings in the same plane, but is instead formed as an island SSL gate (e.g., 110A), so that each string (for example 102A) shares a common SSL gate (for example, 110A) with the vertically stacked strings (for example, 102B, 102C), but not any strings (for example, 102D) in the same plane.
The depicted vertical gate NAND flash memory 100 illustrates selected example embodiments for a three-dimensional array architecture of a vertical gate NAND flash memory which allows individual pages to be selected for read and program operations and which may erase selected blocks in a VG NAND structure. However, it will be appreciated that a vertical gate NAND flash memory may be implemented with different features and structures. For example, the common source line contact 140 may be formed with a different shape or structure, such as a using a plate-shaped layer and/or a conductive line that runs in a horizontal direction and connects vertically to an additional metal line which runs in a horizontal direction. In addition, the arrangement and connection of stacked cell strings 102A-F may be oriented to all run in the same direction, to run alternating strings in opposite directions, or with any desired orientation of different strings. In addition, any desired alignment, shape, and positioning of the island-type string select poly gate structures (for example, 110A, 110B) and/or bit line pads (for example, 131A-C) may be used to establish electrical connection to the metal layers 170A-C through respective via contacts 152-154. It will also be appreciated that the vertical gate NAND flash memory 100 shown in
To provide additional details for a better understanding of the multi-layered memory film structure formed around each string, reference is now made to
In accordance with selected embodiments disclosed herein, an improved vertical gate NAND flash memory array architecture and associated method of fabrication are disclosed which form isolated charge trap nodes, such as floating gates or other charge trap devices, on opposite sides of stacked NAND strings without extending across multiple word lines to provide electrically isolated charge trap nodes at each cell that are structurally separated from neighboring cells. Selected example embodiments of a vertical gate NAND flash memory cell array are illustrated in
As shown in the close-up view 200A, each NAND string (e.g., 206B) may be formed with a semiconductor strip which runs in a horizontal direction (e.g., y direction) that is parallel to the chip surface, with additional parallel NAND strings (patterned semiconductor layers 210B, 214B) stacked above and/or below each other to be electrically isolated and separated from one another by alternating dielectric layers 204B, 208B, 212B, 216B. In addition, the cell transistors formed along a vertical stack of strings (e.g., 206B, 210B, 214B) are formed as dual gate devices by forming a word line gate structure (e.g., 264) with multi-layered memory film structure 222, 247-249, 260 to surround at least the sides of the vertical stack of strings with opposing gates where each cell channel is formed. As described more fully hereinbelow, the multi-layered memory film structure formed around a first level string (e.g., 206B) for a memory cell transistor may include a tunnel dielectric layer 222 formed on at least the opposed channel regions of the string, a charge storage layer formed on the tunnel dielectric layer 222 as opposing self-aligned floating gates (e.g., 247B1, 247B2), and a coupling dielectric layer 260 formed around the charge storage layer. In similar fashion, the adjacent vertically stacked string (e.g., 210B) is also surrounded on opposing sides by the tunnel dielectric layer 222, a charge storage layer (e.g., 248B1, 248B2), and coupling dielectric layer 260, while the topmost vertically stacked string (e.g., 214B) is surrounded on opposing sides by the tunnel dielectric layer 222, a charge storage layer (e.g., 249B1, 249B2), and coupling dielectric layer 260. Without belaboring the details, additional cell transistors may be formed along the stacked strings (e.g., 206A/B, 210A/B, 214A/B) by forming one or more additional word line gate structures (e.g., 265) with multi-layered memory film structure 222, 257-259, 260 to surround at least the sides of the vertical stack of strings with opposing gates where each cell channel is formed.
Around each multi-layered memory film structure, a word line gate structure 264 may be formed with one or more patterned polysilicon layers to extend across multiple strings in a word line direction (e.g., x direction). In addition, the transistors formed in each silicon strip may include implanted and/or diffused source/drain regions (for example, n+regions) on at least the string select transistor and ground select transistor, if not also the memory cell transistors. In other embodiments, the memory cell transistors may be formed as junction-free cells with virtual source/drain regions formed to have conductivity that depends on the existence of electric fringe fields between gates adjacent to the source/drain regions and the source/drain silicon itself.
To provide additional details for better understanding selected embodiments of the present disclosure, reference is now made to
To provide a better understanding of the structure of the isolated floating gates, reference is now made to
Formed around the combined string and dielectric stacks and covering the recessed floating gates is a second dielectric film 360 which acts as a coupling dielectric. As shown in
The structure of the word lines (e.g., 363-365) and inter-word line dielectric fin patterns (e.g., 324B-C) may each be formed as elongated narrow fin-type structures running in the x-direction to wrap around the string stacks. As shown in
To provide a more detailed understanding of selected embodiments of the present disclosure, reference is now made to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Referring back to
As disclosed herein, the formation of isolated charge trap nodes, such as floating gates or other charge trap devices, in a vertically stacked NAND flash memory device, is efficiently provided with a manufacturing process which forms alternating recessed sidewall structures of the string stacks and the patterned fin-shaped dielectric layers with uniform sidewall structures prior to formation of the charge trap devices in the recessed sidewall structures. By forming the patterned fin-shaped dielectric layers around the string stacks between word line locations prior to deposition and etching of floating gate material, the floating gate material is not deposited around the string stacks in adjacent regions between word line locations because they are masked by the patterned fin-shaped dielectric layers, thereby providing floating gate node isolation in the horizontal (e.g., y-direction) direction. Due to the combined effect of recessed sidewall structure of the string stacks running in the y-direction on the one hand and the dielectric fin pattern with uniform sidewall structure running in the x-direction on the other hand, it is ensured that simultaneous node isolation in the y-direction and z-direction occurs at the step where the floating gate material is etched.
By now it should be appreciated that there is provided herein a three-dimensional integrated circuit non-volatile memory device with charge storage node isolation. The disclosed memory device includes a plurality of string stacks laterally disposed over a substrate to extend in parallel over the surface of the substrate and to intersect with a plurality of parallel conductive gate structures separated from one another by intervening fin-shaped dielectric structures. In selected embodiments, each string stack may be a plurality of vertically stacked NAND memory cell strings, each NAND memory cell string comprising a plurality of transistors which are connected in series between a bit line contact and a source line contact. In other embodiments, each string stack is formed with conductive strips and insulating strips vertically stacked alternately together with the conductive strips separated from each other by the insulating strips. In addition, a charge storage node is positioned between each conductive strip and each intersecting conductive gate structure, where each charge storage node is isolated from neighboring charge storage nodes in two perpendicular lateral directions and a vertical direction. As formed, each charge storage node is separated from the conductive strip by a first tunneling dielectric layer and is separated from the intersecting conductive gate structure by a second coupling dielectric layer. In selected embodiments, each charge storage node is confined in recessed sidewall portions of the string stacks. In addition, each charge storage node may be implemented as a floating gate that is positioned between a conductive strip and a first intersecting conductive gate structure that is isolated by an adjacent fin-shaped dielectric structure from a neighboring charge storage node positioned between said conductive strip and a second intersecting conductive gate structure located on an opposite side of the adjacent fin-shaped dielectric structure. To provide such isolation, the floating gates are formed around the string stacks after the intervening fin-shaped dielectric structures are formed around the string stacks. As a result, each floating gate may be formed as a self-aligned floating gate that is isolated from neighboring floating gates in x, y and z directions.
In another form, there is provided a semiconductor device and method for forming same. In the disclosed methodology, a plurality of string stacks are formed to extend in parallel over a substrate, where each string stack includes vertically stacked semiconductor layers having recessed sidewalls that are isolated from one another by interlevel dielectric layers. In selected embodiments, the string stacks may be formed by selectively etching a memory stack having semiconductor layers formed over a substrate and isolated from one another by isolating interlevel dielectric layers, such as by forming a patterned etch mask over the memory stack to define etch openings and applying one or more anisotropic etch processes with the patterned etch mask in place to selectively remove portions of the memory stack under the etch openings, thereby forming a plurality of vertically stacked patterned semiconductor layers and interlevel dielectric layers having substantially coplanar sidewalls. To recess the sidewalls of the plurality of vertically stacked semiconductor layers relative to the sidewalls of the patterned interlevel dielectric layers, one or more isotropic etch processes may also be applied. On the string stacks, a first dielectric layer is formed to conformally coat the string stacks while leaving a recess opening adjacent to the recessed sidewalls of the vertically stacked semiconductor layers. For example, the first dielectric layer may be deposited as a conformal silicon oxide layer to form a thin continuous tunnel dielectric layer covering the recessed sidewalls of the vertically stacked semiconductor layers as well as protruding sidewalls of the interlevel dielectric layers. In addition, a plurality of dielectric structures are formed to define a word line openings extending in a word line direction and to cover the string stacks outside of the word line openings. In selected embodiments, the dielectric structures may be formed by depositing one or more dielectric layers to completely cover the string stacks and the first dielectric layer, forming a patterned etch mask over the one or more dielectric layers to define etch openings, and applying one or more anisotropic etch processes with the patterned etch mask in place to selectively remove portions of one or more dielectric layers under the etch openings, thereby forming the plurality of dielectric structures to define the word line openings extending in the word line direction. In each of the word line openings, charge storage nodes are selectively formed to fit within each recess opening adjacent to the recessed sidewalls of the vertically stacked semiconductor layers. In selected embodiments, the charge storage nodes may be formed by depositing one or more conductive layers in the word line openings to cover the string stacks and first dielectric layer formed therein, thereby filling each recess opening adjacent to the recessed sidewalls of the vertically stacked semiconductor layers. After depositing the conductive layer(s), one or more anisotropic etch processes are applied to remove the conductive layer(s) except for any portions thereof located in the recess openings, thereby forming a charge storage node to fit within each recess opening adjacent to the recessed sidewalls of the vertically stacked semiconductor layers. In other embodiments, the charge storage nodes may be formed by depositing one or more conductive polysilicon layers in the word line openings to conformally coat the string stacks and first dielectric layer formed therein, thereby filling each recess opening adjacent to the recessed sidewalls of the vertically stacked semiconductor layers, where the plurality of dielectric structures prevents the one or more conductive polysilicon layers from conformally coating the plurality of string stacks and first dielectric layer covered by the plurality of dielectric structures. After depositing the conductive polysilicon layer(s), one or anisotropic etch processes are applied using protruding sidewalls of the interlevel dielectric layers as a self-aligned etch mask to remove the conductive polysilicon layer(s) except for any portions thereof located in the recess openings, thereby forming a charge storage node to fit within each recess opening adjacent to the recessed sidewalls of the vertically stacked semiconductor layers. After forming the charge storage nodes, a second dielectric layer is formed to conformally coat the string stacks and any exposed charge storage node surface in the word line openings. For example, the second dielectric layer may be deposited as a conformal silicon oxide layer to form a thin continuous coupling dielectric layer covering the string stacks and any exposed charge storage node surface in the word line openings. On the second dielectric layer, a conductive word line structure is formed in each of the word line openings to surround the string stacks and each charge storage node, where each charge storage node is isolated from neighboring charge storage nodes in two perpendicular lateral directions and a vertical direction. In selected embodiments, the conductive word line structure may be formed by depositing one or more conductive polysilicon layers to completely fill the plurality of word line openings and to cover the plurality of dielectric structures, and then planarizing the conductive polysilicon layer(s) with an etch or polish step until substantially coplanar with the plurality of dielectric structures, thereby forming a conductive word line structure in each of the plurality of word line openings. In selected embodiments, each charge storage node is formed as a floating gate that is separated from an adjacent recessed sidewall of stacked semiconductor layer by the first dielectric layer and is separated from the surrounding conductive word line structure by the second dielectric layer. In this way, each floating gate is formed as a self-aligned floating gate that is isolated from neighboring floating gate in x, y and z directions.
In yet another form, there is provided a semiconductor device and method for forming same. In the disclosed methodology, a plurality of string stacks is formed to extend in a bit line direction over a substrate. As formed, each string stack includes alternating layers of vertically stacked semiconductor strips and dielectric strips with a topmost dielectric strip, where the semiconducting strips have sidewalls which are recessed in a word line direction relative to sidewalls of the dielectric strips to define a recessed profile adjacent to each semiconductor strip. On the string stacks, a tunnel dielectric layer is formed to conformally cover the string stacks without filling the recessed profiles. In addition, a plurality of separate dielectric fin structures extending in a word line direction are patterned over the plurality of string stacks to define a plurality of word line openings which expose the plurality of string stacks and tunnel dielectric layer inside the plurality of word line openings and to cover the plurality of string stacks and tunnel dielectric layer outside of the plurality of word line openings. In the word line openings, a conductive polysilicon layer may be deposited to cover the plurality of separate dielectric fin structures and the plurality of string stacks, thereby filling the recessed profiles. By etching the conductive polysilicon layer, charge storage nodes are formed in the recessed profiles that are isolated from charge storage nodes in laterally adjacent string stacks by one or more of the separate dielectric fin structures. In selected embodiments, the conductive polysilicon layer is etched with a directional etch of the conductive polysilicon layer to form floating gates that are isolated vertically and in the word line direction by using the topmost dielectric strip and the plurality of separate dielectric fin structures as an etch mask to protect the conductive polysilicon layer formed in the recessed profiles of the plurality of string stacks, but to otherwise remove the conductive polysilicon layer, thereby forming the floating gates in the recessed profiles of the plurality of string stacks.
Although the described exemplary embodiments disclosed herein are directed to various nonvolatile memory device structures and methods for making and operating same by providing interleaved NAND string stacks having charge trap nodes that are isolated in both lateral and vertical directions, the present invention is not necessarily limited to the example embodiments which illustrate inventive aspects of the present invention that are applicable to a wide variety of fabrication processes and/or structures. Thus, the particular embodiments disclosed above are illustrative only and should not be taken as limitations upon the present invention, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. For example, while the NAND cell transistors are described as n-channel transistors on p-type (or undoped) substrate, this is merely for illustration purposes, and it will be appreciated that n and p-type impurities may be interchanged so as to form p-channel transistors on n-type substrate, or the substrate may consist of undoped silicon. In addition, the flash memory cells are illustrated herein as being embodied as vertical gate NAND memory cell strings, but this is merely for convenience of explanation and not intended to be limiting and persons of skill in the art will understand that the principles taught herein apply to other suitable kinds of cell structures and the resulting different bias conditions. It will also be appreciated that the disclosed technique for providing an isolated charge trap node is not tied to any specific cell technology. For example, the disclosed techniques for isolating floating gate devices may also be used to form isolated charge trap devices or any other type of isolated charge storage nodes, even in the case of charge trapping devices such as SONOS. Moreover, the figures illustrate examples in which there are two or three stacked layers of strings, but other embodiments are not restricted to any specific number of layers, and even work for single layer cell arrays. In addition, the terms of relative position used in the description and the claims, if any, are interchangeable under appropriate circumstances such that embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein. The term “coupled,” as used herein, is defined as directly or indirectly connected in an electrical or non-electrical manner. Accordingly, the foregoing description is not intended to limit the invention to the particular form set forth, but on the contrary, is intended to cover such alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims so that those skilled in the art should understand that they can make various changes, substitutions and alterations without departing from the spirit and scope of the invention in its broadest form.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/912,273, filed Dec. 5, 2013, entitled “A Three Dimensional Non-Volatile Memory with Charge Storage Node Isolation”, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61912273 | Dec 2013 | US |