The technical field relates to a three-dimensional printer and, in particular, to a three-dimensional printer having a door lock structure.
Three-dimensional (3D) printing is one of rapid formation techniques, which utilizes a movable platform to drive a platform to move, and then dispenses a powdered material such as metal powder or plastic powder, so that successive layers of the powdered material are joined to form a 3D object. At present, toys, mechanical parts or replacement human bones can be made by 3D printing, which makes 3D printing become increasingly popular.
However, 3D printing also involves a coloring printing mode in which a coloring nozzle is used to color a laminated object constituted by the powdered material, and a large amount of powder is generated during the coloring printing period. Powder is discharged to ambient environment and causes pollution if a door of the 3D printer is opened, during the printing period or shortly after printing stops, before the powder is reduced to an acceptable small amount. Therefore, there is a need for a 3D printer which prevents powder from polluting the environment by confining the powder in the 3D printer.
Accordingly, in order to solve the above disadvantage, the inventor studied related technology and provided a reasonable and effective solution in the present disclosure.
The present disclosure is directed to a three-dimensional printer having a door lock structure. By using the door lock structure, a door panel stays at a closed position. The door panel is not released until powder in a housing is drawn away after the coloring nozzle set stops operating, thereby preventing the powder from being discharged to the outside of a housing and thus maintaining good ambient air quality.
According to one embodiment of the present disclosure, a three-dimensional printer having a door lock structure is provided, comprising a housing, a door panel, a door lock structure, an actuator, a formation nozzle member, a coloring nozzle set, an exhaust fan structure, and a controller. The housing includes a chamber inside and an opening communicating with the chamber. The door panel is pivotally connected to the housing and is movable between a closed position which closes the opening and an open position which exposes the opening. The door lock structure is disposed corresponding to the door panel, and the door lock structure includes a locking position and an unlocking position. The actuator is connected to the door lock structure and drives the door lock structure to lock or unlock the door panel. The formation nozzle member is installed in the chamber and is movable therein, and the formation nozzle member is used to print a laminated object. The coloring nozzle set is installed in the chamber and is movable therein, and the coloring nozzle set is used to color the laminated object. The exhaust fan structure is assembled to the housing and communicates with the chamber, and the exhaust fan structure is used to draw air from the housing and discharge the air to the outside of the housing. The controller is electrically connected the actuator, the formation nozzle member, the coloring nozzle set, and the exhaust fan structure, wherein the control controls the actuator to drive the door lock structure to the locking position. When the door panel is at the closed position, the door lock structure locks the door panel, and the controller is allowed to activate a printing mode. The printing mode includes, by using the controller, controlling the formation nozzle member and the coloring nozzle set to perform three-dimensional printing and controlling the exhaust fan structure to keep operating. The controller activates an unlocking mode after a predetermined time after operation of the coloring nozzle set is stopped. In the unlocking mode, the controller controls the actuator to drive the door lock structure to the unlocking position to release the door panel.
A large amount of powder is generated during the printing mode, but the door lock structure locks the door panel to keep it at the closed position, thus preventing the door panel from being opened during the printing mode or shortly after the printing mode is ended, thereby preventing the powder from being discharged to the outside of the housing and maintaining good ambient air quality.
The door lock structure does not release the door panel until the powder inside the housing is discharged to the outside of the housing after the predetermined time after operation of the coloring nozzle set is stopped. Accordingly, the powder is prevented from being discharged to the outside of the housing, and good ambient air quality is maintained.
The disclosure will become more fully understood from the detailed description, and the drawings given herein below is for illustration only, and thus does not limit the disclosure, wherein:
Detailed descriptions and technical contents of the present disclosed example are illustrated below in conjunction with the accompanying drawings. However, it is to be understood that the descriptions and the accompanying drawings disclosed herein are merely illustrative and exemplary and not intended to limit the scope of the present disclosed example.
Referring to
Referring to
As shown in
As shown in
Referring to
Referring to
As shown in
As shown in
As shown in
As shown in
As shown in
After the controller 8 receives the response signal, the controller 8 controls the actuator 5 to drive the door lock structure 4 to the locking position. When the door panel 2 is at the closed position, the controller 8 activates a printing mode. The printing mode can be carried out via two embodiments.
Please refer to
After the predetermined time after the coloring nozzle set 62 stops operating, the controller 8 controls the exhaust fan structure 7 to stop operating. Alternatively, the exhaust fan structure 7 is kept in operation after the three-dimensional printer 10 is powered on, which means, before or after the printing mode, the exhaust fan structure 7 keeps drawing the air inside the housing 1 and discharge the air to the outside of the housing 1.
According to the first embodiment for carrying out the printing mode, the predetermined time is calculated as follows. A fixed time is calculated after operation of the coloring nozzle set 62 is stopped. If the fixed time is later than the time when the printing mode is ended, the predetermined time is the fixed time. If the fixed time is earlier than the time when the printing mode is ended, the predetermined time is the time when the printing mode is ended. For example, the fixed time is 10 seconds after the coloring nozzle set 62 stops operating, if it takes 10 seconds for the exhaust fan structure 7 to draw the excess powder generated by the coloring nozzle set 62 to the outside of the housing 1 after operation of the coloring nozzle set 62 is stopped. But the printing mode is ended after 9 seconds after the coloring nozzle set 62 finishes printing. Since the fixed time is later than the time when the printing mode is ended, the predetermined time is the fixed time, i.e. 10 seconds after the coloring nozzle set 62 stops operating. In contrast, if the printing mode is ended after 11 seconds after the coloring set 62 finishes printing, in that case, because the fixed time is earlier than the time when the printing mode is ended, the predetermined time is the time when the printing mode is ended, i.e. 11 seconds after the coloring nozzle set 62 finishes printing. Please be noted that, the description mentioned above is only an example describing how to calculate the determined time, but the fixed time and the predetermined time are not limited to any specified amount of time.
A description about the second embodiment for carrying out the printing mode is provided below. The printing mode includes, by using the controller 8, controlling the formation nozzle member 61 and the coloring nozzle set 62 to perform three-dimensional printing, keeping the exhaust fan structure 7 in operation, and activating the formation platform 9. However, ending of the printing mode does not include activating or stopping the formation nozzle member 61 and does not include making the formation platform 9 return. It is because the target of the present disclosure is to prevent the powder from being discharged to the outside of the housing, and therefore, in the second embodiment, ending of the printing mode does not need to consider whether to activate the formation nozzle member 61 or not, and also does not need to consider whether to make the formation platform 9 return or not.
To be specific, in the second embodiment, when the printing mode is ended, the controller 8 only controls the coloring nozzle set 62 to stop operation, but the formation nozzle member 61 and the formation platform 9 can keep operating. From when the coloring nozzle set 62 stops operating to the predetermined time, the controller 8 controls the exhaust fan structure 7 to keep operative, so that the powder inside the housing 1 is continuously discharged to the outside of the housing 1 by the exhaust fan structure 7. At last, the unlocking mode is activated after the predetermined time after the coloring nozzle set 62 stops operating. In the unlocking mode, the controller 8 controls the actuator 5 to drive the door lock structure 4 to release the door panel 2, so that the door panel 2 can be moved to the open position. Compared to the printing mode of the first embodiment, the printing mode of the second embodiment is different in that, the door lock structure 4 releases the door panel 2 when the coloring nozzle set 62 stops operating, although the formation nozzle member 61 and the formation platform 9 still keep operating. As a result, when the door panel 2 is opened, the formation nozzle member 61 and the formation platform 9 keep operating.
Furthermore, compared to the printing mode of the first embodiment, the printing mode of the second embodiment is also different in that, the predetermined time is calculated differently. In the second embodiment, the time when the printing mode is ended is the time when the coloring nozzle set stops operating. Therefore, the predetermined time is the fixed time calculated after the coloring nozzle set 62 stops operating. For example, the fixed time is 10 seconds if it takes 10 seconds, after the coloring nozzle set 62 stops operating, for the exhaust fan structure 7 to draw and discharge the powder generated by the coloring nozzle set 62 during printing to the outside of the housing 1. In that case, the predetermined time is the fixed time, i.e. 10 seconds after the coloring nozzle set 62 stops operating. Please be noted that, the description mentioned above is only an example describing how to calculate the determined time, but the fixed time and the predetermined time are not limited to any specified amount of time.
In summary, the three-dimensional printer having the door lock structure is neither disclosed by similar products nor used in public. The present disclosed example also has industrial applicability, novelty and non-obviousness, so the present disclosed example completely complies with the requirements of patentability. Therefore, a request to patent the present disclosed example is filed pursuant to patent law. Examination is kindly requested, and allowance of the present application is solicited to protect the rights of the inventor.
Number | Date | Country | Kind |
---|---|---|---|
201710770677.7 | Aug 2017 | CN | national |