This invention relates to thermal imaging and more particularly to three-dimensional (3-D) infrared (IR) imaging.
As is known in the industry, there are a number of ways to achieve three dimensional (3-D) infrared (IR) imaging. One way uses a 3-D scanner and camera using IR light-emitting diodes (LEDs). It uses an image sensor with pixels sensitive in the visual band to acquire a conventional image and pixels sensitive in the IR band to acquire the depth of what is imaged.
Another way relates a 3-D interface using IR light and IR detectors to interact with spatial-temporal data. The apparatus allows a user to model and analyze three-dimensional surfaces by manipulation of glass beads. An array of LEDs under the beads emits IR light through the beads and a camera captures the data.
Another way uses a 3-D thermal imaging system. The apparatus uses two thermal imaging cameras. It uses a master camera and a subservient camera which corrects gain and offset of the master camera. It combines temperature data with 3-D thermal imaging data to provide a 3-D thermal image.
An improved way, however, is still necessary to achieve high-quality 3-D IR images for use in medical applications. Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.
The present invention is an apparatus for three-dimensional thermal imaging in medical applications. This apparatus includes an imaging device or FPA sensitive to thermal radiation, a power supply, control switches and/or user interface controls, electronics, an image display, objective optics and display optics. It provides two real-time viewable IR channels for binocular vision with a variable focus distance which can be optimized at any distance from six inches to infinity. The present invention enables 3-D vision in the thermal band for greater awareness of everything within the field of view (FOV) from very close to distant objects and scenes.
The present disclosure can also be viewed as providing a method of presenting anatomical features to medical personnel performing a medical procedure on a patient. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: stereographically imaging the anatomical feature so as to provide two stereo infrared channels of images; and displaying the images carried by the infrared channels on a 3-D monitor, such that the 3-D representation of said anatomical feature is accentuated both as to identity and as to depth by the 3-D representation.
The present disclosure can also be viewed as providing a medical imaging system for providing 3-D representations of thermal images of a subsurface anatomical feature of a patient. Briefly described, in architecture, one embodiment of the system, among others, can be implemented as follows. A 3-D monitor presents a three-dimensional image on a screen thereof. A pair of co-located infrared cameras each has an optical axis, each of said infrared cameras, having an output. A housing for said infrared cameras includes a subassembly for skewing the optical axes of said cameras to impinge on a point spaced from said cameras and adapted to detect one of said anatomical features thereat. A pair of optical image transmission channels is each coupled to a different one of said infrared cameras at one end and said 3-D monitor at the other end for inputting to said 3-D monitor a pair of stereoscopic images such that a stereoscopic image is presented on said 3-D monitor of said anatomical feature to show said anatomical feature and the depth of said anatomical feature in a three-dimensional representation of said anatomical feature.
These and other features of the subject invention will be better understood in connection with the Detailed Description in conjunction with the Drawings of which:
In the illustrated system, subsurface anatomical features, for instance, in the arm 16 of a patient 18 are detected through a binocular infrared camera system 10 which is focused on the subsurface region of the patient's arm as illustrated at 16. Here, the output of camera 10, is coupled to a 3-D monitor 20 which produces a three-dimensional image 22 of the patient's arm, and more particularly, a subsurface vein, such as vein 24 which is shown in three dimensions to be a certain distance from the surface of the patient's arm. This representation of subsurface anatomical features is an improvement over the presentation of a two-dimensional image in that by viewing the monitor a physician can obtain a sense of the depth of the anatomical feature. Note that any conventional 3-D monitoring system which has stereoscopic channels as inputs is within the scope of the subject invention. The system is useful not only in the phlebotomy example shown, but also is useful in surgical procedures to give the surgeon a three-dimensional view of the subsurface anatomical feature to be operated on.
The objective optics focuses the thermal scene onto the FPA. The lens focus is adjustable from a near object distance of 6 inches to a far object distance of infinity.
In operation, and referring now to the system level block diagram of
It will be appreciated that by providing stereoscopic information to a 3-D monitor, the result is a three-dimensional image portrayed on the monitor which is useful for the medical community to be able to visualize the position of subsurface features and to be able to conduct either diagnosis or treatment, including surgery, in a manner in which two-dimensional displays are incapable.
The subject system may be utilized for intravenous vessel detection, bone ablation and deburring, bleed detection during surgery and dental health procedures, including detection of tooth health by direct IR imagery. This may also include the use of reflective technology, including, an IR dental mirror.
While the present invention has been described in connection with the preferred embodiments of the various Figures, it is to be understood that other similar embodiments may be used or modifications or additions may be made to the described embodiment for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended Claims.
This Application Claims rights under 35 USC §119(e) from U.S. Application Ser. No. 62/072,554 filed Oct. 30, 2014, the contents of which are incorporated herein by reference. This application is related to U.S. application Ser. No. 13/948,526 filed Jul. 23, 2013, the contents of which are incorporated by reference.
The invention was made with United States Government assistance under Contract No. H94003-04-D-0002/0076 awarded by the Department of the Navy. The United States Government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/043992 | 8/6/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62072554 | Oct 2014 | US |