The present invention relates to the field of integrated circuit, and more particularly to one-time-programmable memory (OTP).
Three-dimensional one-time-programmable memory (3D-OTP) is a monolithic semiconductor memory. It comprises a plurality of vertically stacked OTP cells. In a conventional OTP, the OTP cells are formed on a two-dimensional (2-D) plane (i.e. on a semiconductor substrate). In contrast, the OTP cells of the 3D-OTP are formed in a three-dimensional (3-D) space. The 3D-OPT has a large storage density and a low storage cost. Because the 3D-OTP has a long data retention, it is suitable for long-term data storage.
U.S. patent application Ser. No. 15/360,895 filed by Hsu on Nov. 23, 2016 discloses a 3-D vertical memory. It comprises a plurality of horizontal address lines vertically stacked above each other, a plurality of memory holes penetrating the horizontal address lines, a programmable layer (e.g. an antifuse layer) and a selector layer covering the sidewall of each memory hole, and a plurality of vertical address lines formed in the memory holes. It should be noted that the selector (or, selector layer) is also referred to as diode (or, diode layer), steering element, quasi-conduction layer, or other names in other patents and patent applications. All of them refer to a broad class of diode-like devices whose resistance at the read voltage (i.e. the read resistance) is substantially lower than when the applied voltage has a magnitude smaller than or a polarity opposite to that of the read voltage. Throughout this specification, the term “diode” is used for this class of devices.
The 3-D vertical memory of Hsu uses a cross-point array. In order to minimize cross-talk between memory cells, the memory cell of Hsu comprises a separate diode layer (i.e. selector). A good-quality diode layer is generally thick. For example, a P-N thin-film diode with a good rectifying ratio is at least 100 nm thick. When a diode layer with such a thickness is formed in the memory hole, the diameter of the memory hole becomes large (>200 nm). This leads to a lower storage density.
It is a principle object of the present invention to provide a 3D-OTP with a large storage capacity.
It is a further object of the present invention to simplify the manufacturing process inside the memory holes.
It is a further object of the present invention to minimize the size of the memory holes.
It is a further object of the present invention to provide a properly working 3D-OTP even with leaky OTP cells.
In accordance with these and other objects of the present invention, the present invention discloses a three-dimensional vertical one-time-programmable memory (3D-OTPV) comprising no separate diode layer.
The present invention discloses three-dimensional vertical one-time-programmable memory (3D-OTPV) comprising no separate diode layer. It comprises a plurality of vertical OTP strings formed side-by-side on the substrate circuit. Each OTP string is vertical to the substrate and comprises a plurality of vertically stacked OTP cells. To be more specific, the 3D-OTPV comprises a plurality of vertically stacked horizontal address lines (word lines). After the memory holes penetrating these horizontal address lines are formed, the sidewall of each memory hole is covered with an antifuse layer before the memory hole is filled with at least a conductive material, which comprises a metallic material or a doped semiconductor material. The conductive material in each memory hole forms a vertical address line (bit line). The OTP cells are formed at the intersections of the word lines and the bit lines.
To minimize the size of the memory holes, the OTP cell of the present invention comprises no diode layer. Without diode layer, fewer layers (two instead of three) are formed inside the memory holes. As a result, the manufacturing process inside the memory holes becomes simpler. In addition, smaller memory holes will improve the storage density of the 3D-OTPV.
In the OTP cell of the present invention, a diode is formed naturally between the horizontal and vertical address lines. This naturally formed diode, referred to a built-in diode, generally has a poor quality and is leaky. To address this issue, the present invention discloses a full-read mode. For the full-read mode, all OTP cells on a selected word line are read out during a read cycle. The read cycle includes two read phases: a pre-charge phase and a read-out phase. During the pre-charge phase, all address lines (including all word and all bit lines) in an OTP array are charged to a pre-determined voltage. During the read-out phase, after its voltage is raised to the read voltage VR, a selected word line starts to charge all bit lines through the associated OTP cells. By measuring the voltage change on the bit lines, the states of the associated OTP cells can be determined.
Accordingly, the present invention discloses a three-dimensional vertical read-only memory (3D-OTPV), comprising: a semiconductor substrate comprising a substrate circuit; a plurality of vertically stacked horizontal address lines above said semiconductor circuit, said horizontal address lines comprising a first metallic material; at least a memory hole through said plurality of horizontal address lines; an antifuse layer formed on the sidewall of said memory hole, wherein said antifuse layer is irreversibly switched from a high-resistance state to a low-resistance state during programming; a vertical address line formed by filling at least a conductive material in said memory hole, said vertical address lines comprising a second metallic material; a plurality of OTP cells formed at the intersections of said horizontal address lines and said vertical address line; said first and second metallic materials are different metallic materials.
It should be noted that all the drawings are schematic and not drawn to scale. Relative dimensions and proportions of parts of the device structures in the figures have been shown exaggerated or reduced in size for the sake of clarity and convenience in the drawings. The same reference symbols are generally used to refer to corresponding or similar features in the different embodiments. The symbol “/” means a relationship of “and” or “or”.
Throughout the present invention, the phrase “on the substrate” means the active elements of a circuit are formed on the surface of the substrate, although the interconnects between these active elements are formed above the substrate and do not touch the substrate; the phrase “above the substrate” means the active elements are formed above the substrate and do not touch the substrate.
Those of ordinary skills in the art will realize that the following description of the present invention is illustrative only and is not intended to be in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons from an examination of the within disclosure.
Referring now to
The preferred embodiment shown in this figure is an OTP array 10, which is a collection of all OT cells sharing at least an address line. It comprises a plurality of vertically stacked horizontal address lines (word lines) 8a-8h. After the memory holes 2a-2d penetrating these horizontal address lines 8a-8h are formed, the sidewalls of the memory holes 2a-2d are covered with an antifuse layer 6a-6d before the memory holes 2a-2d are filled with at least a conductive material, which comprise a metallic material or a doped semiconductor material. The conductive material in the memory holes 2a-2d form vertical address lines (bit lines) 4a-4d.
The OTP cells 1aa-1ha on the OTP string 1A are formed at the intersections of the word lines 8a-8h and the bit line 4a. In the OTP cell 1aa, the antifuse layer 6a is a thin layer of insulating dielectric. During programming, a conductive filament 11, which has a low resistance, is irreversibly formed therein. As an example, the antifuse layer 6a comprises silicon oxide or silicon nitride. The thickness of the antifuse layer 6a is small, typically in the range of several nanometers to tens of nanometers. For reason of simplicity, except for the OTP cell 1aa, the conductive filaments in other OTP cells are not drawn.
To minimize the size of the memory holes, the OTP cell of the present invention does not comprise a separate diode layer. As shown in
In the present invention, diode is formed naturally between the horizontal address line 8a and the vertical address line 4a. This diode is referred to as built-in diode. In a first preferred embodiment, the horizontal address line 8a comprises a P-type semiconductor material, while the vertical address line 4a comprises an N-type semiconductor material. The built-in diode is a semiconductor diode. In a second preferred embodiment, the horizontal address line 8a comprises a metallic material, while the vertical address line 4a comprises a semiconductor material. The built-in diode is a Schottky diode. In a third preferred embodiment, the horizontal address line 8a comprises a semiconductor material, while the vertical address line 4a comprises a metallic material. The built-in diode is a Schottky diode.
Alternatively, in a fourth preferred embodiment, the horizontal address line 8a comprises a first metallic material, while the vertical address line 4a comprises a second metallic material. The first and second metallic materials are different metallic materials. For example, the first and second metallic materials have different work functions. During programming, when the antifuse layer 6a breaks down at location 11, the metallic material from one of the address lines (e.g. the second metallic material from the vertical address line 4a) reacts with the antifuse material (e.g. silicon oxide) to form a metallic compound (e.g. metal oxide of the second metallic material). As a result, a diode comprising the first metallic material, the metallic compound, and the second metallic material will be formed between the horizontal address line 8a and the vertical address line 4a.
Referring now to
A first etching step is performed through all horizontal address-line layers 12a-12h to form a stack of horizontal address lines 8a-8h in (
The diode 14 is formed naturally between the word line 8 and the bit lines 4. This naturally formed diode 14, referred to a built-in diode, generally has a poor quality and is leaky. To address this issue, the present invention discloses a full-read mode. For the full-read mode, all OTP cells on a selected word line are read out during a read cycle.
To facilitate address decoding, vertical transistors are formed on the sidewalls of the memory holes.
While illustrative embodiments have been shown and described, it would be apparent to those skilled in the art that many more modifications than that have been mentioned above are possible without departing from the inventive concepts set forth therein. The invention, therefore, is not to be limited except in the spirit of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201610234999.5 | Apr 2016 | CN | national |
201810022003.3 | Jan 2018 | CN | national |
201810024499.8 | Jan 2018 | CN | national |
This application is a continuation-in-part of “Three-Dimensional Vertical One-Time-Programmable Memory”, application Ser. No. 15/488,489, filed on Apr. 16, 2017, which claims priority from Chinese Patent Application 201610234999.5, filed on Apr. 16, 2016, in the State Intellectual Property Office of the People's Republic of China (CN), the disclosure of which is incorporated herein by reference in its entirety. This application also claims priority from Chinese Patent Application 201810022003.3, filed on Jan. 10, 2018; Chinese Patent Application 201810024499.8, filed on Jan. 10, 2018; in the State Intellectual Property Office of the People's Republic of China (CN), the disclosure of which are incorporated herein by references in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 15488489 | Apr 2017 | US |
Child | 15870855 | US |