This application claims priority to Japanese patent application serial number 2002-361477, the contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to throttle bodies that have throttle valves actuated by motors for controlling the rotational speed of internal combustion engines.
2. Description of the Related Art
There are known throttle bodies that have motor actuated throttle valves. For example, Japanese Laid-Open Patent Publication No. 2001-132495 teaches a throttle body in which a throttle valve, a throttle shaft, a motor, a gear mechanism, and a throttle sensor, are disposed. The throttle valve is secured to the throttle shaft and the motor rotatably drives the throttle shaft. The gear mechanism serves to transmit the driving force of the motor to the throttle shaft. The throttle sensor serves to detect a degree of opening of the throttle valve.
Additionally, in recent years in order to reduce the weight and the manufacturing costs of an automobile, there has been a tendency to use materials such as resin in the fabrication of automobiles parts, possibly including such parts as throttle bodies.
However, in the case of throttle bodies made of resin, there is a possibility that some problems may be caused by this material selection. These problems will be explained with reference to
A conventional throttle body 61 is shown in
It is accordingly an object of the present invention to teach improved techniques for ensuring the substantial circularity of an intake air channel when a lightweight and/or low cost material, such as resin for example, is used in the fabrication of a throttle body.
According to one aspect of the present teachings, throttle bodies are taught which include a throttle casing. The throttle casing includes a first main body in which a throttle valve is disposed. The first main body is made of a synthetic resin, e.g., ABS resin, by using an appropriate molding process, such as an injection molding process for example. The first main body may be formed as an individual component. Another component, a motor casing, includes a second main body, may accommodate a motor and/or a gear mechanism and/or a throttle sensor, within the second main body. The first main body is connected to the second main body via a joint device, e.g., screws, rivets, spring clips, snap connections, etc.
The first main body has a relatively simple structure and the freedom of design unencumbered by the constraints of additional functions. The first main body can be individually designed in order to reduce or minimize the residual molding stresses and strains that may be caused by substantial variations in molded wall thickness. In addition, because the first main body of the throttle casing is a component separate from the second main body of the motor casing, the unwanted conduction of heat from the motor to the bore wall portion during throttle valve operation can be reduced. Interposing an appropriate heat insulation material between the first main body and the second main body can further minimize the unwanted conduction of heat.
An additional aspect of the present invention has a throttle body wherein the first main body includes a substantially cylindrical bore portion that defines a flow channel. Disposed within the flow channel is the throttle valve. The cylindrical bore portion has a substantially uniform thickness in the circumferential direction.
The potential deformation of the throttle casing due to either residual molding stress and/or strain, or due to the conduction of heat from the motor, can be reduced or minimized. This allows the substantial circularity of the inner wall of the bore portion to be more easily maintained and controlled, resulting in a reduction in unwanted interference with the throttle valve during normal operating conditions.
According to another aspect of the present teachings, the motor casing can be made of a high thermal conductivity material, e.g., such as metal for example. Preferably, the metal may be lightweight metal, e.g., examples such as aluminum or aluminum alloy. Therefore, the heat of the motor may be effectively dissipated directly to the outside of the motor casing, causing a further reduction in the conduction of motor generated heat to the throttle casing.
In another aspect of the present teachings, the throttle bodies further include a coupling device for coupling the throttle valve to the motor. Therefore, the rotation of the motor can be transmitted to the throttle valve via the coupling device. Preferably, the coupling device couples the throttle valve to the motor at the same time that the first main body and the second main body are connected to each other via the joint device.
In still another aspect of the present teachings, the throttle casing further includes a throttle shaft that is rotatably disposed within the first main body and the throttle valve is mounted on the throttle shaft. The motor casing further includes a gear mechanism for transmitting rotation of the motor to the throttle shaft. Thus, the motor casing also serves as a gear casing. The coupling device serves to couple the throttle shaft to the gear mechanism.
In a further aspect of the present teachings, the gear mechanism includes a drive shaft that extends from the second main body. The coupling device includes a recess and a projection that is formed on one and the other of the drive shaft and the throttle shaft and is engageable with each other for transmitting rotation of the drive shaft to the throttle shaft.
In another aspect of the present teachings, the throttle body further includes a cover that has a third main body that is formed separately from the first main body and the second main body. The third main body is mounted on the second main body in order to cover the motor and associated elements, e.g., the gear mechanism, from the outside of the motor casing. Therefore, the motor casing and the cover can be assembled into a subassembly that has the motor and the gear mechanism disposed therein. The throttle casing may then be connected to the motor casing of the subassembly. Preferably, the third main body is made of metal, in particular a lightweight metal, such as for example, aluminum or aluminum alloy among others, so that the heat of the motor can also be efficiently dissipated from the cover.
In still another aspect of the present teachings, a seal device, e.g., possibly an O-ring, is interposed between the first main body and the second main body in order to provide a seal there between. Therefore, any dust or unwanted foreign particles are inhibited from entering and possibly damaging the internal elements of the throttle body (e.g., the throttle valve, the motor, the gear mechanism, a throttle sensor, etc.). As a result, the internal elements are protected in order to operate reliably in the performance of their individual functions.
Each of the additional features and teachings disclosed above and below may be utilized separately or in conjunction with other features and teachings to provide improved throttle bodies and methods of using such throttle bodies. Representative examples of the present invention, which examples utilize many of these additional features and teachings both separately and in conjunction, will now be described in detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed in the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the invention. Moreover, various features of the representative examples and the dependent claims may be combined in ways that are not specifically enumerated in order to provide additional useful embodiments of the present teachings.
A representative embodiment will now be described with reference to
Referring to
A first flange 3b extends in an outward radial direction from the tubular sleeve 3a2, i.e., perpendicular to the axis of the throttle shaft 4. The first flange 3b is adapted to secure the motor/gear casing 8 to the throttle casing 2. A second flange 3c is disposed at one axial end of the bore portion 3a and extends in an outward radial direction from bore portion 3a. The second flange 3c is adapted to secure the throttle casing 2 to an intake manifold of an internal combustion engine (not shown).
The bore portion 3a has a substantially uniform thickness along a circumferential direction. In addition, each of the first and second flanges 3b and 3c also have a substantially uniform thickness. Therefore, any residual stress and/or strain created by the molding process can be minimized.
Referring to
A gear shaft 14 is press-fitted into a corresponding fitting hole formed in the second main body 9. An intermediate gear 15 is rotatably mounted on the gear shaft 14. The intermediate gear 15 can be fixed along the axial direction relative to the gear shaft 14 by a third main body 21 of the cover 20 that is mounted to the second main body 9 of the motor/gear casing 8, as will be explained later.
A drive shaft 16 is rotatably supported within the second main body 9. A throttle gear 17 is mounted on the drive shaft 16, such that the drive shaft 16 rotates in the same direction and at the same rotational speed as the throttle gear 17. The throttle gear 17 is configured as a sector gear.
A projection 16a extends from one end (left end as viewed in
A biasing device, shown as a torsion coil spring 18, is disposed within the second main body 9 and serves to bias the throttle valve 5 in the closing direction. To achieve this result, one end of the torsion coil spring 18 is attached to the throttle gear 17. The other end of the torsion coil spring 18 is attached to the second main body 9. The torsion coil spring 18 biases the throttle valve 5 via the throttle gear 17 towards a fully closed position of the throttle valve 5.
Magnets 19 are fitted into the throttle gear 17 in positions facing a throttle sensor 22, throttle sensor 22 will be explained later. The intermediate gear 15 has a large gear portion 15a and a small gear portion 15b that respectively engage the drive gear 13 and the throttle gear 17. The engagement of the gears causes the rotational speed of the motor 11 to be transmitted at a reduced level to the throttle gear 17. The rotation of the throttle gear 17 is then directly transmitted to the throttle valve 5 via the drive shaft 16. As a result, the throttle valve 5 is opened and closed as the motor 11 rotates in one direction and a direction opposite thereto, respectively.
Referring to
A boss portion 21b is formed on the third main body 21 in a position facing the gear shaft 14. The boss portion 21b has a bottomed axial cavity 21a that rotatably receives the right end (as viewed in
Terminals 23a and 23b (only one terminal 23a is shown in the drawings) are attached to the third main body 21 in positions opposite to the motor 11 in an axial direction substantially parallel to the motor 11 axis. The terminals 23a are electrically connected to a power source, e.g., a battery, via electric wires (not shown). The motor 11 has terminals 24a and 24b (see
The third main body 21 may be fixed in position relative to the second main body 9 by means of a fixing device, preferably screws (not shown), so that a subassembly 25 can be created which includes the motor/gear casing 8 and the cover 20. Any other appropriate coupling or tightening devices, examples such as a snap-fit mechanism, spring clips, or rivets, may be used in place of screws. In addition, a sealing device, preferably an O-ring (not shown) or any other seal member, may be provided between the motor/gear casing 8 and the cover 20 in order to ensure a hermetic seal for the internal elements, which includes the sensor 22, the magnets 19, the gears 13, 15, and 17, and the motor 11, among others.
The subassembly 25 may be fixed in position relative to the first flange 3b of the first main body 3 via fixing devices, preferably screws 27. A sealing device, preferably an O-ring 26, may be interposed between the flange 3b and the second main body 9 in order to ensure a hermetic seal for the intake air channel and also to provide protection for the internal elements of the subassembly 25, inhibiting dust or other unwanted foreign particles from entering the interior of subassembly 25.
Referring to
As described previously, in the representative embodiment the throttle body 1 includes three separate main parts; the throttle casing 2, the motor/gear casing 8, and the cover 20. After associated elements are mounted onto each of the separate parts, the parts may be assembled together to form the throttle body 1. For example, in regards to the throttle casing 2, the associated elements may include the throttle shaft 4 and the throttle valve 5, among others. In case of the motor/gear casing 8, the associated elements may include the motor 11, the gears 13, 15, and 17, among others. In case of the cover 20, the associated elements may include the throttle sensor 22, among others
Because the throttle casing 2 is a separate member apart from the motor/gear casing 8 and the cover 20, the design of a mold that is used in the molding process of the throttle casing 2 can be optimized to provide such parameters as substantially uniform thickness of the wall of bore portion 3a, as well as a uniform thickness of the flanges 3a and 3b. Therefore, the unwanted potential deformation of the bore portion 3a, and the flanges 3a and 3b, due to residual molding strain and/or stress, or potential deformation due to heat conducted from the motor 11, can be reduced or minimized.
In addition, because the second main body 9 of the motor/gear casing 8 may be made of a material having a high thermal conductivity, the heat of the motor 11 may be effectively dissipated to the outside of the motor/gear casing 8. Therefore, overheating of motor 11 and any possible resultant damage due to the over beating thereof, can be avoided.
The present invention is not restricted to the embodiments described above. Various modifications and variations of the above embodiments are possible without departing from the scope of the present invention. For example, while in the above embodiments the throttle casing 2 is formed of resin, the throttle casing 2 may also be formed of some other material, for example metal. Additionally, the construction of the throttle sensor 22 is not limited to the constructions depicted in the above-described embodiment; it is possible to adopt various types of construction.
Number | Date | Country | Kind |
---|---|---|---|
2002-361477 | Nov 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4763874 | Ogawa | Aug 1988 | A |
5615861 | Pollmann et al. | Apr 1997 | A |
5992378 | Parkinson | Nov 1999 | A |
6119652 | Waples et al. | Sep 2000 | A |
6244565 | McDonnell et al. | Jun 2001 | B1 |
6267352 | Semeyn et al. | Jul 2001 | B1 |
6557523 | Bos et al. | May 2003 | B1 |
6626421 | Torii et al. | Sep 2003 | B2 |
Number | Date | Country |
---|---|---|
199 03 490 | Aug 2000 | DE |
100 48 937 | Apr 2002 | DE |
2 303 405 | Feb 1997 | GB |
09-049443 | Feb 1997 | JP |
2001132495 | May 2001 | JP |
WO 0136799 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040119041 A1 | Jun 2004 | US |