1. Field of the Invention
This invention relates to a throttle device for a multipurpose engine, particularly to a throttle device for a multipurpose engine having an electric motor to open and close a throttle valve.
2. Description of the Related Art
The multipurpose engines used as prime movers in generators, agriculture machinery and various other applications have generally used a throttle device constituted as a mechanical governor. Specifically, engine speed is regulated by using a mechanical governor composed of weights and a spring to open and close a throttle valve housed in a throttle body.
While not relating to a multipurpose engine, Japanese Laid-Open Patent Application No. Hei 5(1993)-231894 (paragraphs 0012, 0013 and elsewhere), teaches a throttle device for an automobile engine, which improves the device in terms of structural simplicity, compactness and mountability by attaching an airflow sensor, throttle position sensor and control unit directly to the throttle body and enclosing them with a cover.
Attempts to improve fuel efficiency and reduce emissions have extended to the multipurpose engine in recent years. This led to the development of technologies for improving the accuracy of air intake regulation by using an electronically controlled throttle device (i.e., electronic governor) for opening and closing the throttle valve using an electric motor.
When a throttle valve is driven by an electric motor, the drive torque applied to the throttle valve needs to be increased and the step angle (minimum a rotation angle) needs to be decreased. This requires use of a speed reducer for gearing down the output of the motor before transmitting it to the throttle valve. A circuit board having an electronic control unit for controlling the operation of the motor, a harness for interconnecting the circuit board and the motor, and the like also become necessary.
As pointed out above, multipurpose engines are used to drive various kinds of equipment and when the engine is built into a machine it is subject to numerous layout restrictions, making it essential to avoid increase in the size of the incorporated components. Use of an electric motor for driving the throttle valve has therefore been disadvantageous because the large number of components required and the relatively large size thereof has tended to increase the overall size of the throttle device.
An object of this invention is therefore to overcome this drawback by providing a throttle device for a multipurpose engine reduced in overall size by efficient layout of the plurality of components required for opening and closing the throttle valve, such as an electric motor, reduction gearing and electronic circuit board.
In order to achieve the object, this invention provides a throttle device for a multipurpose engine, comprising: a throttle body disposed at an intake pipe of the engine and housing a throttle valve that regulates air drawn in the intake pipe; and a case integrally attached to the throttle body and housing an electric motor moving the throttle valve, a speed reducer connecting an output shaft of the motor with a throttle shaft of the throttle valve, an electronic circuit board having an electronic control unit that controls operation of the motor and a connector mounted thereon, and a harness connecting the motor with the connector.
The above and other objects and advantages of the invention will be more apparent from the following description and drawings in which:
An Embodiment of a throttle device for a multipurpose engine according to the present invention will now be explained with reference to the attached drawings.
Reference numeral 10 in
The piston 14 is connected to a crankshaft 28, and the crankshaft 28 is connected to a camshaft 30 via a gear. A flywheel 32 is attached to the crankshaft 28, and a recoil starter 34 for allowing an operator to manually start the engine 10 is also attached at the leading end of the flywheel 32. A generating coil (i.e., alternator) 36 is disposed on the inside of the flywheel 32 and generates an alternating electrical current. The alternating current generated by the generating coil 36 is converted to a direct current via a processing circuit (not shown), and is then supplied as the source of operating power to an ignition circuit (not shown), an electronic circuit board described hereinafter and other components.
A throttle body 40 is disposed at the intake pipe 22. Although not illustrated in
A carburetor assembly (not shown in
Thus, the multipurpose engine 10 according to this embodiment has the throttle device (electronic governor) that is electronically controlled to open and close, i.e., to move the throttle valve using the electric motor 42, and its engine speed is therefore regulated by the throttle device.
The throttle body 40 will now be explained in detail with reference to
As shown in
As shown in
As shown in
Specifically, the case 52 is formed in an L-like shape so as to cover a plurality of (two in this embodiment) outer faces of the throttle body 40 and carburetor assembly 50, namely, the face from which the throttle shaft 48 projects (face lying perpendicular to the axial direction of the throttle shaft 48; designated 40A) and the face corresponding to the side surface of the throttle body 40 and carburetor assembly 50 when the face 40A is defined as the upper face (face lying parallel to the axial direction of the throttle shaft 48; designated 40B). In the following, the space inside the case 52 enclosing the face 40A will sometimes be called the first space (designated 52A). The space enclosing the face 40B (space lying perpendicular to the first space 52A) will sometimes be called the second space (designated 52B).
The wall of the case body 54 confronting the face 40A of the throttle body is intimately attached to the face 40A, thereby integrating the case 52 and throttle body 40. The face of the case body 54 confronting the wall attached to the throttle body 40 is opened and the cover 56 is attached to close it. The case body 54 and cover 56 are fastened together by three bolts 60 (shown in
The case 52 houses the electric motor (stepper motor) 42, a speed reducer (specifically reduction gearing) 64 that connects an output shaft 42o of the motor 42 with the throttle shaft 48, an electronic circuit board 66 on which an electronic control unit that controls the operation of the motor 42 is mounted, and a harness 70 (shown partially) that connects the motor 42 with a connector 68 provided on the electronic circuit board 66.
The layout of the components housed in the case 52 will be explained in further detail.
As shown in
The speed reducer 64 is installed in the first space 52A of the case 52. As shown in
As clearly illustrated in
The explanation with reference to
A manually operable idle speed regulator 88 that regulates the idle speed of the engine 10 is provided on the outer surface of the cover 56 near the lever 86. The idle speed regulator 88 is composed of a female screw member 90 that projects from the outer surface of the cover 56 and is centrally formed with an internal (female) screw and a bolt 92 screwed into the female screw.
As shown in
When the throttle shaft 48 is rotated in the direction of closing the throttle valve 46, the lever 86 attached to the throttle shaft 48 rotates toward the tip of the bolt 92. In other words, the lever 86 is brought into contact with the tip of the bolt 92 by the force of the throttle return spring 94, thereby retaining the throttle shaft 48 at a rotated position or angle. The opening of the throttle valve 46 at this time is that when the engine 10 is idling. The idle speed of the engine 10 can therefore be regulated by turning the bolt 92 to change the location of its tip and thereby change the throttle opening during idling.
The electronic circuit board 66 is installed in the second space 52B of the case 52. The electronic circuit board 66 has the electronic control unit comprising a CPU, drive circuit and other electronic components (none of which are shown) mounted thereon and is supplied with operating power from the generating (magneto) coil 36. The electronic circuit board 66 is also equipped with the connector 68 for connection with the motor 42. The motor 42 and the connector 68 are electrically connected through the harness 70. The outputs of a throttle position sensor and other sensors (none of which are shown) installed inside and/or outside the case 52 are supplied to the electronic control unit mounted on the electronic circuit board 66.
Based on the outputs of the throttle position sensor and other sensors, the electronic control unit calculates a current command value for the motor 42 and supplies current as indicated by the calculated current command value to the motor 42 through the drive circuit, connector 68 and harness 70, thereby controlling the operation of the motor 42.
The installation of the electronic circuit board 66 will be explained in greater detail.
As shown in
As explained in the foregoing, the multipurpose engine throttle device according to this embodiment is equipped with the case 52 that is integrally attached to the throttle body 40 and houses the motor 42 that moves the throttle valve 46, the. speed reducer 64 that connects the output shaft 42o of the motor 42 with the throttle shaft 48, the electronic circuit board 66 on which the electronic control unit that controls the operation of the motor 42 is mounted and the harness 70 that connects the motor 42 with the connector 68 provided on the electronic circuit board 66. The plurality of components required for opening and closing the throttle valve 46 can therefore be efficiently laid out around the throttle body 40 (more exactly, around the throttle body 40 and carburetor assembly 50), thereby reducing the overall size of the throttle device.
Moreover, the case 52 is configured to bend along the shape of the throttle body 40 (and carburetor assembly 50), so that the plurality of components required for opening and closing the throttle valve 46 can be still more efficiently laid out around the throttle body 40 (and carburetor assembly 50), thereby further reducing the overall size of the throttle device.
Of particular note is that the case 52 is configured in an L-like shape to form the perpendicularly intersecting first and second spaces 52A, 52B, and the speed reducer 64 to be connected with the motor 42 is installed in the first space 52A, the electronic circuit board 66 to be connected with the motor 42 is installed in the second space 52B, and the motor 42 is installed at the region where the two spaces meet at right angles (at the region where the case 52 bends) to be situated at an intermediate location between the speed reducer 64 and electronic circuit board 66. The motor 42, speed reducer 64 and electronic circuit board 66 can therefore be laid out around the throttle body 40 (and carburetor assembly 50) very efficiently so as to effectively achieve the aforesaid effects.
Moreover, the case 52 is imparted with waterproofing and dustproofing capability. As this makes it unnecessary to waterproof or dustproof the individual components housed in the case 52, the throttle device can be made still more compact in overall size.
This embodiment is thus configured to have a throttle device for a multipurpose engine (10), comprising: a throttle body (40) disposed at an intake pipe (22) of the engine and housing a throttle valve (46) that regulates air drawn in the intake pipe; and a case (52) integrally attached to the throttle body and housing an electric motor (42) moving the throttle valve, a speed reducer (64) connecting an output shaft (42o) of the motor with a throttle shaft (48) of the throttle valve, an electronic circuit board (66) having an electronic control unit that controls operation of the motor and a connector (68) mounted thereon, and a harness (70) connecting the motor with the connector.
In the throttle device, the case (52) is configured to bend along a shape of the throttle body (40), specifically, the case (52) is configured in an L-like shape to form a first space (52A) in which the speed reducer (64) is installed and a second space (52B) in which the electronic circuit board (66) is installed.
In the throttle device, the motor (42) is installed at a region where the two spaces meet at right angles to be situated at an intermediate location between the speed reducer (64) and the electronic circuit board (66).
In the throttle device, the case (52) is imparted with waterproofing and dustproofing capability.
It should be noted that, although the motor 42 is described as a stepper motor in the foregoing, it can instead be another type of electric motor, such as a DC motor.
It should also be noted that the case 52 is described as having an L-like shape that covers the two faces 40A, 40B of the throttle body 40. However, it can instead be given a shape that covers only one face or a shape that covers three faces.
It should further be noted that, additional components including, for example, the throttle position sensor detecting rotation angle of the throttle shaft 48 (i.e., opening of the throttle valve 46) may be housed in the case 52.
Japanese Patent Application No. 2004-282371 filed on Sep. 28, 2004, is incorporated herein in its entirety.
While the invention has thus been shown and described with reference to specific embodiments, it should be noted that the invention is in no way limited to the details of the described arrangements; changes and modifications may be made without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-282371 | Sep 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6725833 | Irihune et al. | Apr 2004 | B1 |
6854443 | Keefover et al. | Feb 2005 | B2 |
6892699 | Urushiwara | May 2005 | B2 |
7007666 | Kamimura et al. | Mar 2006 | B2 |
7032569 | Ikeda et al. | Apr 2006 | B2 |
Number | Date | Country |
---|---|---|
004129844 | Mar 1993 | DE |
000596392 | May 1994 | EP |
05-231894 | Sep 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20060112930 A1 | Jun 2006 | US |