Throttle valve controller for internal combustion engine

Information

  • Patent Grant
  • 6247447
  • Patent Number
    6,247,447
  • Date Filed
    Wednesday, December 15, 1999
    24 years ago
  • Date Issued
    Tuesday, June 19, 2001
    23 years ago
Abstract
To actuate a throttle valve, a first driving device is provided to drive the throttle valve only in a small throttle opening range, and a second driving device is provided to drive the throttle valve in a throttle opening range other than the small throttle opening range against a spring by using a throttle wire. The first driving device has a rotor and a magnetomotive force source. A magnet is provided on the rotor. Three pole pieces are provided on a peripheral edge facing the rotor. Pole pieces opposite to each other in polarity produced by the magnetomotive force source are connected by connecting magnetic paths.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a throttle valve controller and, more particularly, to a throttle valve controller for an internal combustion engine that is used to finely control the intake air quantity when the internal combustion engine is in an idling state.




2. Description of the Prior Art




When an internal combustion engine for an automobile is in an idling state in particular, the intake air quantity is affected considerably by environmental or equipment temperature or other conditions. Therefore, it is necessary to finely control the intake air quantity. Various techniques of finely controlling the intake air quantity have already been proposed.




Examples of the proposed techniques are as follows:




{circle around (1)} Japanese Patent Application Post-Examination Publication No. 5-34518 is an example of a bypass air valve system that controls a bypass air passage provided in parallel to the throttle valve. The publication discloses a system that uses a rotary solenoid valve.




{circle around (2)} Japanese Patent Application Unexamined Publication (KOKAI) No. 3-107544 is an example of a direct-acting system that directly drives the throttle valve only in a small throttle opening range. The publication discloses a system in which the throttle valve is driven by a DC motor.




{circle around (3)} Japanese Patent Application No. 10-69410 is an example of a DBW (Drive By Wire) system in which the throttle valve is driven in the entire throttle opening range by using various actuators. Japanese Patent Application No. 10-69410 employs a torque motor as an actuator.




In the above-described various systems, the bypass air valve system stated in {circle around (1)} generally adopts open-loop control and hence suffers from problems in terms of accuracy. To adopt closed-loop control, a position sensor is additionally needed, resulting in an increase in cost.




The direct-acting system stated in {circle around (2)} drives the throttle valve by a DC motor and therefore requires speed reduction through a gear mechanism to obtain appropriate control resolution owing to the transmission structure thereof. Accordingly, this system suffers from problems in terms of response due to speed reduction as well as an increase in cost.




In the DBW system stated in {circle around (1)}, no matter which actuator is used, i.e. a torque motor, a DC motor, or a stepper motor, the cost of the actuator unavoidably increases to obtain satisfactory driving force and driving range. In addition, higher levels of fail-safe and limp-home capabilities are demanded. Accordingly, the system becomes unfavorably costly.




SUMMARY OF THE INVENTION




In view of the above-described problems associated with the prior art, an object of the present invention is to provide a throttle valve controller for an internal combustion engine that exhibits superior control resolution with a simple structure and is free from runaway due to a circuit failure and obtainable at reduced cost.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a plan view showing an embodiment of a throttle valve controller for an internal combustion engine according to the present invention.





FIG. 2

is a side view of the embodiment as viewed from the right-hand side in FIG.


1


.





FIG. 3

is a sectional view taken along the line X—X in FIG.


1


.





FIG. 4

is a fragmentary sectional view taken along the line Y—Y in FIG.


1


.





FIG. 5

is a diagram showing a linkage between a throttle valve and a throttle lever.





FIG. 6

is a diagram showing another embodiment of the present invention.











DETAILED DESCRIPTION OF THE EMBODIMENTS





FIG. 1

is a plan view showing the general structure of an embodiment of a throttle valve controller according to the present invention. Referring to

FIG. 1

, a throttle valve body


1


has an intake pipe


2


. A throttle valve


21


is provided in the intake pipe


2


. A shaft


22


extends through the throttle valve


21


. The throttle valve


21


opens or closes the passage in the intake pipe


2


in response to the rotation of the shaft


22


.

FIG. 2

is a side view of the throttle valve controller as viewed from the right-hand side thereof.

FIG. 3

is a sectional view taken along the line X—X in FIG.


1


.

FIG. 4

is a sectional view taken along the line Y—Y in

FIG. 1

, showing the central portion of the throttle valve controller. The embodiment will be described below with reference to these figures.




First, as shown in

FIG. 1

, a throttle lever


3


is engaged with the right-hand end of the shaft


22


as viewed in FIG.


1


. The throttle lever


3


causes the shaft


22


to rotate against a return spring


4


by an operating force applied through a throttle wire (not shown) and thus opens or closes the throttle valve


21


. It should be noted that when the engine is at rest, the throttle valve


21


is placed in substantially a fully-closed position by a return spring incorporated in a TPS (Throttle Position Sensor)


56


. This will be described later in detail.




A torque motor


5


is provided on the left-hand end of the shaft


22


. As shown in

FIG. 3

, a rotor


51


in the center of the torque motor


5


is integrally secured to the shaft


22


. A permanent magnet


52


is mounted on the peripheral edge of the rotor


51


. A yoke


53


has a circular portion


53


-


1


centered at the shaft


22


. The circular portion


53


-


1


is integrally formed with the yoke


53


to form a connecting magnetic path. A core


54


is wound with a coil


55


as a magnetomotive force source. Reference numeral


56


denotes a connector.





FIG. 5

is a diagram showing a linkage between the throttle valve


21


and the throttle lever


3


. The link structure will be described below with reference to FIG.


5


. As has already been stated above, the shaft


22


is connected to the throttle valve


21


. The rotor


51


, which has the permanent magnet


52


mounted on the peripheral edge thereof, is provided on one end of the shaft


22


. The throttle lever


3


is engaged with the other end of the shaft


22


.




First, the way in which the throttle valve


21


is driven by the throttle lever (herein referred to as “second driving device”)


3


will be described below. Part (b) of

FIG. 5

shows the way in which the throttle lever


3


and the shaft


22


are engaged with each other. The shaft


22


is not secured to the throttle lever


3


but rotatably inserted in a hole


31


provided in the throttle lever


3


.




An actuator lever


32


is secured to a portion (end portion) of the shaft


22


projecting from the other side of the throttle lever


3


. The actuator lever


32


has a bent portion


33


at the distal end thereof. The throttle lever


3


is provided with a cut portion


34


. The bent portion


33


of the actuator lever


32


is engaged in the cut portion


34


. Accordingly, when the throttle lever


3


is rotated by a throttle wire (not shown), the throttle valve


21


is opened or closed through the bent portion


33


.




Next, the way in which the throttle valve


21


is driven by the torque motor (herein referred to as “first driving device”)


5


. In an idling state, an accelerator lever (not shown) is in a stop position. Therefore, the throttle lever


3


does not rotate but remains at rest. In this state, the throttle valve


21


is opened or closed by the torque motor


5


, which is the first driving device, within the range defined by the cut portion


34


in the throttle lever


3


. The torque motor


5


is controlled by an ECU (not shown) in conformity to the warming-up condition and electrical loading of the internal combustion engine, the outside air temperature, etc.




Next, the operation of the torque motor


5


will be described in detail with reference to FIG.


3


. In the foregoing description, reference numeral


52


denotes merely a permanent magnet (hereinafter referred to as “magnet”). In the following description, the permanent magnet


52


is assumed to be a magnet having a north pole


52


-


1


magnetized at the left-hand end thereof and a south pole


52


-


2


at the right-hand end thereof, for example. It should be noted that part (a) of

FIG. 3

is a diagram for describing the arrangement of the torque motor


5


, and parts (b) and (c) of

FIG. 3

are diagrams for describing the operation of the torque motor


5


.




In part (b) of

FIG. 3

, when the coil


55


is energized so that a pole piece


59


becomes a south pole, pole pieces


57


and


58


that are provided on both sides of the pole piece


59


become north poles. At this time, attracting force acts between the south pole of the pole piece


59


and the north pole of the magnet


52


-


1


. Attracting force also acts between the north pole of the pole piece


58


and the south pole of the magnet


52


-


2


. Repelling force acts between the north pole of the pole piece


57


and the north pole of the magnet


52


-


1


. Consequently, the shaft


22


rotates in the direction B.




Conversely, when the coil


55


is energized so that the pole piece


59


becomes a north pole, the shaft


22


rotates in the direction A in opposite relation to the above. Accordingly, the throttle valve


21


can be opened or closed by the torque motor


5


in the range of from the opening position shown in part (a) of

FIG. 3

to the opening position shown in part (c) of FIG.


3


. It should be noted that when the throttle opening is increased in excess of the opening position in part (c) of

FIG. 3

[i.e. when the shaft


22


is further rotated in the direction A from the position in part (c) of FIG.


3


] by the throttle wire, there is no or not enough portion of the magnet that faces opposite to the pole piece


59


, and the throttle valve


21


comes out of the control range of the torque motor


5


. Then, the throttle valve


21


is united with the throttle lever


3


and opened or closed only by the throttle wire. In this case, the torque motor


5


offers no resistance. Therefore, there is no undesired load imposed on the throttle wire.




This embodiment has the advantage that magnetic saturation is unlikely to occur. This will be described below. In general, magnetic flux produced in an actuator comprising a magnet and a coil passes through a magnetic path from the north pole of the magnet to the south pole of the magnet. At this time, the amount of magnetic flux passing through the magnetic path depends on the position of the rotor


51


and the coil current. Moreover, in order to ensure a necessary torque when the amount of magnetic flux is the largest, it is necessary to ensure a sufficiently large sectional area of the magnetic path to avoid influence of magnetic saturation.




The position shown in part (a) or (c) of

FIG. 3

is where the largest magnetic flux is produced. Referring to part (c) of

FIG. 3

, the magnetic flux coming out of the magnet


52


-


1


is distributed to two magnetic paths, i.e. one magnetic path in which the magnetic flux from the magnet


52


-


1


passes through the pole piece


57


and enters the magnet


52


-


2


via the yoke


53


, which is a connecting magnetic path, and the pole piece


59


, and another magnetic path in which the magnetic flux from the magnet


52


-


1


passes through the pole piece


57


and enters the magnet


52


-


2


via the connecting magnetic path


53


-


1


, the connecting magnetic path


53


and the pole piece


59


. Therefore, magnetic saturation is unlikely to occur.




Supposing that there is no connecting magnetic path


53


-


1


, all the magnetic flux from the magnet


52


-


1


passes through the pole piece


57


and enters the magnet


52


-


2


via the connecting magnetic path


53


. Accordingly, the connecting magnetic path


53


needs a magnetic path having a sectional area approximately twice as large as the sectional area in a case where the connecting magnetic path


53


-


1


is provided. However, the present invention is not necessarily limited to this embodiment. If use conditions are set such that magnetic saturation will not occur, it is not always necessary to provide the circular portion


53


-


1


, which forms a connecting magnetic path.




According to this embodiment, the actuator directly controls the throttle valve in a small throttle opening range. Therefore, a complicated arrangement such as a bypass valve is not needed. Moreover, the valve control resolution is superior. In addition, a TPS signal, which is indispensable to the throttle valve body, can be used for position feedback. Therefore, the control accuracy can be increased without an increase in cost. Furthermore, because the driving range of the actuator is limited by a magnetic circuit, there is no likelihood of runaway due to a failure in the control circuit.





FIG. 6

shows another embodiment of the present invention. In

FIG. 6

, reference numeral


60


denotes a magnetic circuit body, and


61


denotes a TPS (Throttle Position Sensor) body. The magnetic circuit body


60


, which has a coil, a core and a yoke molded when a magnetic circuit is formed, and the TPS body


61


are integrally formed. Therefore, one and the same connector can be used for input/output signals related to the TPS and an input o the coil. Accordingly, it is possible to reduce the cost and the number of man-hours needed for assembly.




As has been stated above, the present invention provides advantages as set forth in the following:




(1) Because the throttle valve is directly driven, no bypass valve is needed, and it is also unnecessary to provide a gear mechanism for transmitting driving force or a stopper mechanism.




(2) Because the driving range of the actuator is limited by a magnetic circuit, there is no likelihood of runaway due to a failure in the control circuit.




(3) Because the throttle valve is driven directly by the actuator without using a gear mechanism, the control resolution is superior.




(4) Because a TPS signal, which is indispensable to the throttle valve body, can be used for position feedback of the torque motor, the control accuracy can be increased without an increase in cost.



Claims
  • 1. In a throttle valve controller for an internal combustion engine comprising first driving means for driving a throttle valve only in a predetermined throttle opening range, and second driving means for driving said throttle valve against a spring by using a throttle wire,the improvement wherein said first driving means is an electromagnetic actuator wherein a rotatable rotor and at least one magnetomotive force source are integrally incorporated through a magnetic path, said rotor being provided on a peripheral edge thereof with an integral magnet magnetized with a north pole and a south pole or separate magnets magnetized in opposite directions to have a north pole and a south pole, respectively, wherein three pole pieces are provided on a peripheral edge of an opening in which said rotor is provided, and two connecting magnetic paths are provided to connect pole pieces opposite to each other in polarity produced by said at least one magnetomotive force source, and said second driving means limits said predetermined throttle opening range, in which said throttle valve is driven by said first driving means, to a small throttle opening range in which idle speed control can be effected.
  • 2. A throttle valve controller for an internal combustion engine according to claim 1, wherein a connecting magnetic path is provided to connect two pole pieces equal to each other in polarity produced by said magnetomotive force source.
  • 3. A throttle valve controller for an internal combustion engine according to claim 1, wherein when molding is carried out to form a magnetic circuit of said first driving means, a body of a throttle position sensor is integrally formed with said magnetic circuit, and one connector is used for both an input/output signal related to said throttle position sensor and an input to said magnetomotive force source.
Priority Claims (1)
Number Date Country Kind
11-046140 Feb 1999 JP
US Referenced Citations (4)
Number Name Date Kind
4976237 Bollinger Dec 1990
5490487 Kato et al. Feb 1996
5517966 Kanazawa et al. May 1996
5624100 Bolte et al. Apr 1997
Foreign Referenced Citations (1)
Number Date Country
2000-240474 May 2000 JP