Tile which can be modelled in a cold state and a process for manufacturing the tile

Abstract
The modellable tile has an upper surface and a bottom surface and comprises a thin and flexible support element associated to the bottom surface, and at least one recess which involves a whole width of the tile but not the thin and flexible support element. The recess separates the tile into at least two parts which are totally separated one from another, which parts exhibit upper edges which are located side-by-side and which are destined to be brought into reciprocal contact in order to give the tile a predetermined non-flat conformation.
Description


BACKGROUND OF THE INVENTION

[0001] The invention relates to a tile which can be shaped when cold in order to take on a non-flat configuration, and also to a process which produces the tile.


[0002] The invention is usefully applied in tiles or slabs of all types of materials. In particular the invention is applicable to ceramic tiles, for slabs or tiles made of marble, natural stone and stone materials in general.


[0003] In the realization of tiled floors using tiles or slabs, skirting is frequently laid using the same tiles or slabs which have been used for the floor itself. It is therefore common to use (for the skirting) portions of the tiles or slabs cut to a desired size. The portions are then laid or glued to the wall one next to another along the perimeter of the floor or floor covering, with a perpendicular lie plane to the tiles or slabs forming the floor or floor covering.


[0004] This process is rather long and laborious due to the tile-cutting operations and the laying thereof, neither of which is immune to imprecision. Cutting same-size pieces of tile is problematic, and since the resulting pieces tend to be small, laying operations are often fraught with difficulty.


[0005] The prior art includes other processes for realizing corner finishing involving floor/covering couplings with ceramic tiles, one of which processes consists in realizing special products formed by pressing or drawing and subsequently firing them.


[0006] The main aim of the present invention is to obviate the drawbacks in the prior art by providing a tile which can be modelled while in the cold state, in order to take on a non-flat configuration which is constructionally simple and easy to apply.


[0007] The invention also provides a process for modelling tiles into predetermined non-flat shapes which is particularly simple and economical.



SUMMARY OF THE INVENTION

[0008] The modellable tile has an upper surface and a bottom surface and comprises a thin and flexible support element associated to the bottom surface, and at least one recess which involves a whole width of the tile but not the thin and flexible support element. The recess separates the tile into at least two parts which are totally separated one from another, which parts exhibit upper edges which are located side-by-side and which are destined to be brought into reciprocal contact in order to give the tile a predetermined non-flat conformation.







BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Further characteristics and advantages will better emerge from the detailed description that follows, of a tile which can be modelled while in the cold state and a process for modelling tiles into predetermined non-flat conformations, here represented by way of non-limiting example in the figures of the drawings, in which:


[0010]
FIG. 1 is a plan view of a tile according to the invention;


[0011]
FIG. 2 is a transversal section of the tile of FIG. 1 according to line A-A;


[0012]
FIG. 3 is a view of the tile of FIG. 2 once laid.







DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0013] With reference to the figures of the drawings, 1 denotes in its entirety a tile (or slab) according to the invention. The tile exhibits an upper surface 1a, which is the surface in view, and a bottom surface 1b, which the tile is laid on, and further comprises a thin and flexible support element 2 which is associated to the bottom surface 1b, for example by gluing.


[0014] At least one recess 3 is cut into the tile 1, throughout the thickness of the body of the tile 1 but not involving the support element 2. In the illustrated embodiment each recess 3 separates the body of the tile into two totally-disconnected parts, and is delimited at the upper surface of the tile 1 by upper edges 3a, which are predisposed to be brought into reciprocal contact in order to bring the tile 1 into a non-flat predetermined configuration.


[0015] The support element 2 comprises a support structure which is glued to the laying surface i.e. the bottom surface 1b of the tile 1.


[0016] Thanks to the presence of the recesses 3 and the support element 2, which keeps the separated parts of the tile 1 together, the separated parts can then be brought to meet each other by bending the portion of support element 2 which keeps the two or more parts of tile separate when in a flat configuration, so that the upper edges 3a of the parts of tile come into reciprocal contact and give the tile a predetermined non-flat conformation.


[0017] Obviously the tile 1 can be “bent” along each single recess 3 to a determined angle which depends on the shape and size of the transversal section of the recess to assume and maintain a predetermined non-flat conformation.


[0018] Recesses can be made with straight transversal sections of various shapes and sizes. Thus, apart from the usual recesses 3 with constant straight transversal section (in the shape of a straight rectangular parallelogram) recesses with walls inclined by 45° with respect to the upper surface of the tile 1 can be made. This makes possible, for example, “bending” the tile to any angle, especially a right angle.


[0019] Making the recesses is easily achieved, in known ways and using cutting machines already widely used in the prior art, especially for cutting ceramic tiles.


[0020] By cutting a plurality of parallel recesses 3 of predetermined widths and at predetermined distances one from another, as in the embodiment of FIG. 3, a tile 1 can be produced with a non-flat conformation characterised by a “bend” therein, or rather a continuous profile composed originally of a broken line. By reducing the distance between the transversal recesses 3, i.e. the lengths of the sides of the broken profile, and increasing the number of recesses, the continuous profile of above can be approximated ever more closely to a curve.


[0021] Tiles 1 having an upper surface 1a and a bottom surface 1b are modelled in the cold state in a process which is characterised in that it comprises the following stages:


[0022] fixing a thin and flexible support element 2 to the bottom surface 1b of a tile;


[0023] realizing at least one recess 3 which passes entirely through the width of the tile 1 body, but does not pass through the thin and flexible support element 2;


[0024] the at least one recess 3 separating the tile 1 body into at least two parts, which two parts are entirely separated one from another and which are delimited by reciprocally-facing upper edges 3a destined to be brought into reciprocal contact in order to assume the non-flat predetermined conformation;


[0025] a reciprocal nearing, by a bending of a portion of the thin and flexible support 2 keeping the two parts of the tile separated by the recess 3, of the two parts so that the upper edges 3a of the two parts are brought into reciprocal contact in order to create the non-flat conformation of the tile 1.


[0026] Most frequently the process includes, after a first fixture stage (for example by gluing) of the thin and flexible element 2 to the bottom surface 1b of a tile, the following stages:


[0027] realization of a plurality of parallel recesses 3 of predetermined width and located at predetermined distances one from another; the plurality of recesses involving a whole width of the tile 1 body but not the thin and flexible support 2, and dividing the tile 1 body into a number of reciprocally-separate parts; each recess 3 being delimited by upper edges 3a of tile sections, reciprocally facing one another, which upper edges 3a are destined to be brought into reciprocal contact in order to bring the tile 1 into the predetermined non-flat conformation;


[0028] a nearing of the two parts of the tile 1 divided by the recess 3 by means of bending a portion of the thin and flexible support 2 which keeps the two parts of tile 1 united, so that the upper edges 3a of the two parts of tile 1 are brought into reciprocal contact in order to bring the tile 1 into the predetermined non-flat conformation.


[0029] In a further embodiment of the invention, the first two stages as described above can be inverted, giving the following order:


[0030] realization of at least one recess 3 involving a whole width of the tile 1 body;


[0031] the at least one recess 3 separating the tile 1 body into at least two parts, which two parts are entirely separated one from another and which are delimited by reciprocally-facing upper edges 3a destined to be brought into reciprocal contact in order to assume the non-flat predetermined conformation;


[0032] fixing of a thin and flexible support element 2 to the bottom surface 1b of a tile 1;


[0033] a nearing of the two parts of tile 1 by bending a portion of the thin and flexible support element 2 supporting the two parts of tile 1, so that reciprocally-facing upper edges 3a of the two parts of tile are brought into contact with one another in order to give the tile 1 the predetermined non-flat conformation. The invention provides important advantages.


[0034] The recesses 3 are made using usual tile cutting machines, and can be cut on a standard continuous production line.


[0035] The whole operation, gluing and cutting, can be carried out in-line as can the packaging of the finished product (the cut tile), which needs no special packaging with respect to an uncut tile.


[0036] The tile obtained provides a homogeneous skirting effect, differently to tiles normally used for flooring and/or covering.


[0037] The original perimeter dimensions of the tile (in its normal flat configuration) are not changed.


[0038] Laying the “bent” tiles is quite easy and enables precise and regular realization of other angled finishings.


Claims
  • 1). A tile which can be modelled in a cold state to obtain a predetermined non-flat conformation, having an upper surface and a bottom surface, characterised in that it comprises a thin and flexible support element which is associated to the bottom surface and at least one recess involving a whole width of a body of the tile but not involving the thin and flexible support element; the recess entirely separating the body of the tile into at least two parts, each of which two parts exhibits an upper edge facing onto the recess; the upper edge of one of the at least two parts facing the upper edge of another of the at least two parts; the upper edge of each of the at least two parts being destined to be brought together to give the tile the predetermined non-flat conformation.
  • 2). The tile of claim 1, characterised in that the thin and flexible support element comprises a support structure glued to the bottom surface of the tile.
  • 3). The tile of claim 2, characterised in that it comprises a plurality of recesses having predetermined widths and being located at predetermined distances one from another.
  • 4). A process for modelling tiles which tiles have an upper surface and a bottom surface, which process models the tiles into predetermined non-flat conformations, characterised in that it comprises following stages: fixing a thin and flexible support element to the bottom surface of a tile; realizing at least one recess which passes entirely through the width of the tile, but does not pass through the thin and flexible support element; the at least one recess separating the tile into at least two parts, which two parts are entirely separated one from another and which are delimited by reciprocally-facing upper edges destined to be brought into reciprocal contact in order for the tile to assume the non-flat predetermined conformation; a reciprocal nearing, by a bending of a portion of the thin and flexible support keeping the two parts of the tile separated by the recess, of the two parts so that the upper edges of the two parts are brought into reciprocal contact in order to give the tile the non-flat conformation.
  • 5). The process of claim 4, characterised in that it comprises following stages: fixing a thin and flexible support element to the bottom surface of a tile; realization of a plurality of parallel recesses of predetermined width and located at predetermined distances one from another; the plurality of recesses involving a whole width of the tile but not the thin and flexible support, and dividing the file into a number of reciprocally-separate parts; each recess being delimited by upper edges of tile sections, reciprocally facing one another, which upper edges are destined to be brought into reciprocal contact in order to bring the tile into the predetermined non-flat conformation; a nearing of the two parts of the tile divided by the recess by means of bending a portion of the thin and flexible support which keeps the two parts of tile united, so that the upper edges of the two parts of tile are brought into reciprocal contact in order to bring the tile into the predetermined non-flat conformation.
  • 6). A process for modelling tiles which tiles have an upper surface and a bottom surface, which process models the tiles into predetermined non-flat conformations, characterised in that it comprises following stages: realization of at least one recess involving a whole width of the tile; the at least one recess separating the tile into at least two parts, which two parts are entirely separated one from another and which are delimited by reciprocally-facing upper edges destined to be brought into reciprocal contact in order to assume the non-flat predetermined conformation; fixing of a thin and flexible support element to the bottom surface of a tile; a nearing of the two parts of tile by bending a portion of the thin and flexible support element supporting the two parts of tile, so that reciprocally-facing upper edges of the two parts of tile are brought into contact with one another in order to give the tile the predetermined non-flat conformation.
  • 7). The process of claim 5, characterised in that the transversal recesses are obtained by cutting.
Priority Claims (1)
Number Date Country Kind
MO2003A000039 Feb 2003 IT