There is a need for an efficient device for accepting or rejecting, by weight, similar articles that are delivered to a weighing device. In particular, there is a need for a system for checkweighing similar articles and containers which are to meet specified weight criteria, and separating, at the point of weighing, those that meet the criteria from those which do not.
A 1914 patent to Sloan and Barnes, U.S. Pat. No. 1,089,680, describes a weighing system for quality control of cigarettes based on weight, wherein the rate of manufacture is regulated according to whether the cigarettes are within specification. Drums are rotated for filling and discharge according to the weight of their contents, in Vogel-Jorgensen's U.S. Pat. No. 2,055,131.
A simple platform on a load cell is proposed by Lumby et al for weighing fowl, in U.S. Pat. No. 3,780,818. Mims, in U.S. Pat. No. 4,155,549, sorts heavier and lighter balls by combining a diverting plate with a pivotable weighing plate. A hopper is actuated by Okada for releasing objects heavier than a preset value, in U.S. Pat. No. 5,611,437. And, Shaanan et al, in U.S. Pat. No. 5,708,236, describe a cantilever beam for transmitting force, i.e. weight, to a strain gauge.
It is not uncommon to employ a weigh station in a production conveying line for determining whether the produced items are too heavy or too light, wherein the system automatically diverts an out-of-specification item from the conveying line at a point downstream from the weigh station. The actual weighing can take place as the item is moving or in a static condition, but in either case the diversion or separation typically is conducted at a point further removed from the weigh station. See, for example, Kvisgaard et al U.S. Pat. No. 5,998,740, Tokutu U.S. Pat. No. 5,383,561, Beauchemin et al U.S. Pat. No. 5,006,225, Rice et al U.S. Pat. No. 3,139,184, and Altenpohl et al U.S. Pat. No. 3,596,749.
I am not aware, however, of a system of the type described below, wherein an object is weighed on a weigh platform which itself is tilted immediately to divert the object when it is too heavy or too light.
My invention is useful in production lines, particularly those having a conveying system and wherein weight specifications are important. It is a checkweighing system wherein a newly produced or other item is placed, as by a robot arm, on a weigh platform, the item is weighed, and, if it is outside a desired weight range, the platform is tilted to cause the item to slide or fall into a bin or onto a diverting conveyor. My invention is quite versatile, in that the weigh interval or time, the speed of the tilt, and the degree of the tilt can be readily adjusted. My system will not only accept or reject the production items one at a time, but can discern trends and be used otherwise to adjust production practices.
In
The load cell beam is of a type readily available commercially. The strain gauges within the load cell are positioned and calibrated to detect stress in the beam caused by the leverage of the weight at the platform and through the point of attachment to shaft 6. The load cell beam 3 is capable of weighing an item on the platform 1 and generating a signal representing the weight of the item. My invention utilizes this signal for comparison to a standard or set point to cause the platform 1 to be tilted in a predetermined direction when the item exceeds a predetermined weight or is under a predetermined minimum weight. If the item is within the acceptable limits the platform 1 is tilted in the other direction. When the platform 1 is tilted in either direction, the item descends into a bin or onto a conveyor for further handling.
Probably the most common load cell beam 3 of the type described has a capacity from 10 grams to 4000 grams, although other ranges are available—for example having maximum capacity of 1000 g, 3000 g, and 5000 g and being reliably accurate within varying tolerances such as 0.05 g, 0.1 g, and 0.2 g. I do not intend to be limited to such ranges and accuracies, as the principle of my invention is clearly applicable to other ranges and accuracies.
The load cell beam 3 (
It should be noted that the preferred constructions shown in
My invention also contemplates adjustable tilting angles and adjustable speed of tilting. These parameters may be preset in controller 10 or controlled more elaborately by microprocessor 32. Microprocessor 32 may also be programmed to detect trends in the production process such as, for example, an increase in the number of rejections over a predetermined period of time or a predetermined number of items weighed. As an example, the microprocessor or other memory device may be programmed to generate a warning signal or a control signal if more than two of the last previous 40 items were out of specification. Corrective action may then be taken manually or automatically.
Thus it is seen that my invention contemplates apparatus for accepting or rejecting items by weight comprising a substantially horizontal platform for holding items to be weighed, a beam supporting the platform at a first end, the beam including a single point load cell and being mounted on a pivot at a second end, the load cell being capable of generating a signal as a function of weight of an item on the platform, and means responsive to the signal for tilting the platform and the beam on the pivot when the item is outside of a desired weight range and returning the platform to its original substantially horizontal orientation.
My invention also includes a method of controlling quality by weight of similar items comprising placing an item in a substantially horizontal weigh area of a weigh station, weighing the item by a load cell in the weigh station and generating a signal representing the weight of the item, comparing the signal representing the weight to at least one predetermined standard therefor, generating a control signal ACCEPT or REJECT therefor, tilting the weigh area to permit gravity to remove the produced item therefrom in one direction or another according to the ACCEPT or REJECT signal, and returning the weigh area to a substantially horizontal orientation. Persons skilled in the art will recognize that the labels ACCEPT and REJECT need not be taken literally—that is, they may simply represent two different weight categories for sorting.
In addition, my invention includes apparatus for accepting or rejecting items by weight comprising a weigh station including a platform having an area for holding an item to be weighed, a load cell under the platform, the load cell being capable of generating a signal as a function of weight of an item on the platform, and a controller responsive to the signal for tilting the platform and the load cell when the item is outside of a desired weight range and returning the platform to its original orientation.
This is a continuation of application Ser. No. 09/832,565 filed Apr. 11, 2001 now U.S. Pat. No. 6,651,821, which claims the full benefit of Provisional Application Ser. No. 60/197,465 filed Apr. 17, 2000, having the same title.
Number | Name | Date | Kind |
---|---|---|---|
1089680 | Sloan et al. | Mar 1914 | A |
2055131 | Vogel-Jorgensen | Sep 1936 | A |
3326309 | Swearengen | Jun 1967 | A |
3780818 | Lumby et al. | Dec 1973 | A |
3930995 | Paddock et al. | Jan 1976 | A |
4031998 | Suzuki et al. | Jun 1977 | A |
4155549 | Mims | May 1979 | A |
4426006 | Horii et al. | Jan 1984 | A |
4450073 | Burnett | May 1984 | A |
4586613 | Horii | May 1986 | A |
4660665 | Powell, Jr. | Apr 1987 | A |
4817744 | Power, Jr. | Apr 1989 | A |
5101982 | Gentili | Apr 1992 | A |
5244100 | Regier et al. | Sep 1993 | A |
5294004 | Leverett | Mar 1994 | A |
5306877 | Tas | Apr 1994 | A |
5611437 | Okada | Mar 1997 | A |
5708236 | Shaanan et al. | Jan 1998 | A |
6696649 | Suzuki et al. | Feb 2004 | B2 |
20010032807 | Powell, Jr. | Oct 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20040045878 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60197465 | Apr 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09832565 | Apr 2001 | US |
Child | 10637766 | US |