Tire

Information

  • Patent Grant
  • 10632791
  • Patent Number
    10,632,791
  • Date Filed
    Thursday, October 13, 2016
    8 years ago
  • Date Issued
    Tuesday, April 28, 2020
    4 years ago
Abstract
A tire having a rubber body in which a steel cord is embedded, wherein a layer composed of ZnxCoyO is formed at the interface between the steel cord and the rubber body and x+y is 5/6 or more and 1 or less.
Description
TECHNICAL FIELD

The present invention relates to a tire.


BACKGROUND ART

In Patent Document 1 and the like, there is known a tire for automobiles in which a steel cord is embedded in a rubber boy. Patent Document 1 proposes a technique of improving initial adhesiveness by incorporating Co into a surface layer region of the steel cord.


BACKGROUND ART DOCUMENTS
Patent Documents



  • Patent Document 1: JP-A-2002-13085



Non-Patent Documents



  • Non-Patent Document 1: “ZnO, ZnMnO and ZnCoO films grown by atomic layer deposition” Semicond. Sci. Technol. 27 (2012) 074009 (14 pp), TOP PUBLISHING, M I Lukasiewicz et al.



SUMMARY OF THE INVENTION
Problems that the Invention is to Solve

For such a steel cord, in addition to the initial adhesiveness to rubber, moist heat resistance is required. When high temperature repeatedly acts on a tire, moisture, the rubber, and the steel cord react to lower adhesive strength between the rubber and the steel cord. Durability against aged deterioration caused by the repeatedly acting moisture and heat is called moist heat resistance.


An object of the present invention is to provide a tire excellent in the initial adhesiveness and the moist heat resistance.


Means for Solving the Problems

According to the present invention,


there is provided a tire having a rubber body in which a steel cord is embedded, wherein


a layer composed of ZnxCoyO is formed at the interface between the steel cord and the rubber body and x+y is 5/6 or more and 1 or less


Advantage of the Invention

According to the present invention, there is provided a tire excellent in both of initial adhesiveness and moist heat resistance.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a tire according to an embodiment of the present invention.



FIG. 2 is a schematic cross-sectional view showing a state of the interface between a steel cord and a rubber body of a tire according to a reference example.



FIG. 3 is a schematic cross-sectional view showing a state of the interface between a steel cord and a rubber body of a tire according to a reference example.



FIG. 4 is a schematic cross-sectional view showing a state of the interface between a steel cord and a rubber body of a tire according to an embodiment of the present invention.



FIG. 5 shows spectra obtained by XAFS in the case where ZnxCoyO is present on the surface of a sample.





SUMMARY OF EMBODIMENTS OF THE INVENTION

First, summary of the embodiments of the present invention will be described.


One embodiment of the tire according to the invention


(1) is a tire having a rubber body in which a steel cord is embedded, wherein


a layer composed of ZnxCoyO is formed at the interface between the steel cord and the rubber body and x+y is 5/6 or more and 1 or less.


(2) In the tire according to the above embodiment,


the steel cord may have a steel wire and a plating layer containing Cu and Zn provided on the steel wire and


Co may be contained in the plating layer.


(3) In the tire according to the above embodiment,


Co may be exposed on the surface of the plating layer of the steel cord.


(4) In the tire according to the above embodiment,


Co may be contained in the rubber body.


Details of Embodiments of the Invention

The following will describe examples of embodiments of the tire according to the present invention, with reference to drawings. Incidentally, it is intended that the invention should not be construed as being limited to these examples and includes all changes shown by Claims or falling within meanings and scopes equivalent to Claims.



FIG. 1 is a cross-sectional view of a tire 1 according to an embodiment of the invention. As shown in FIG. 1, the tire 1 comprises a tread part 2, a sidewall part 3, and a bead part 4.


The tread part 2 is a part that comes into contact with a road surface. The bead part 4 is disposed on an inner diameter side relative to the tread part 2. The bead part 4 is a part that comes into contact with a rim of a wheel W of a vehicle. The sidewall part 3 connects the tread part 2 and the bead part 4. When the tread part 2 receives impact from a road surface, the sidewall part 3 elastically deforms to absorb the impact.


Moreover, the tire 1 comprises an inner liner 5, a carcass 6, a belt 7, and a bead wire 8.


The inner liner 5 is composed of rubber and tightly closes a space between the tire 1 and the wheel W.


The carcass 6 forms a skeleton of the tire 1. The carcass is composed of an organic fiber such as polyester, nylon, or rayon and rubber.


The belt 7 fastens the carcass 6 to increase rigidity of the tread part 2. The belt 7 is composed of a steel cord and rubber. In the example shown in the figure, the tire 1 has four layers of the belt 7.


The bead wire 8 is disposed in the bead part 4. The bead wire 8 is one obtained by twisting steel wires together and covering them with rubber. The bead wire 8 receives a tensile force that acts on the carcass 6.


For the steel cord 10 constituting the belt 7, initial adhesiveness to rubber such as butadiene rubber and moist heat resistance are required. Incidentally, in the following explanation, rubbery parts constituting the tire 1 are collectively called a rubber body. In the rubber body, a steel cord 10 is embedded.


When rubber is topped on the steel cord 10 and subjected to a crosslinking reaction, the rubber closely adhered to the steel cord 10. The adhesive strength between the rubber body and the steel cord 10 when the crosslinking reaction is accomplished is called initial adhesiveness.


At the time of using the tire 1, the moisture that has entered into the tire 1 acts on the steel cord 10 and the rubber body to gradually lower the adhesive strength between the steel cord 10 and the rubber body. Particularly, in the case where the tire 1 is used in a high-temperature and high-humidity area, there is a concern that the high temperature and the high humidity repeatedly act on the tire 1 to promote the lowering of the adhesive strength between the steel cord 10 and the rubber body. Such deterioration of the adhesive strength increases with time and is promoted under a high-temperature and high-humidity environment.


Durability against the lowering of the adhesive strength caused by the repeatedly acting heat and moisture is called moist heat resistance.


As for the tire according to the present embodiment, as mentioned above, the steel cord 10 is embedded in the rubber body at the belt 7 and the bead wire 8. In the steel cord 10 according to the present embodiment, a layer composed of ZnxCoyO is formed at the interface between the steel cord 10 and the rubber body.



FIG. 2 is a schematic cross-sectional view showing a state of the interface between a steel cord 10 and a rubber body 20 of a tire 1 according to a reference example. As shown in FIG. 2, the steel cord 10 comprises a steel wire 11 and a plating layer 12 provided on the surface of the steel wire 11. In the plating layer 12, Cu, Zn, and Co are contained. In the rubber body 20, S is contained besides a carbon unsaturated bond.


Incidentally, an extremely thin ZnO film 13 is formed between the rubber body 20 and the plating layer 12. The ZnO film 13 functions as a sacrificial oxide film of Cu and Fe and does not inhibit electron conduction of e and diffusive migration of Cu etc. (CuxS)n represented by a sign 14 is formed between the rubber body 20 and the ZnO film 13 and it is considered that (CuxS)n holds carbon and Cu in the rubber body 20 to contribute adhesiveness.


As shown in FIG. 3, moisture (H2O) penetrates though the rubber body 20, and Zn contained in the plating layer 12 and H2O react with each other to form ZnO represented by a sign 15. The ZnO 15 is formed between the ZnO film 13 and (CuxS)n 14. The ZnO 15 is brittle and it is not expected to hold the plating layer 12 and the rubber body 20. That is, since thick ZnO 15 is formed between (CuxS)n 14, which has held the plating layer 12 and the rubber body 20, and Cu of the plating layer 12, the adhesiveness between the rubber body 20 and the plating layer 12 decreases. Under a high-temperature and high-humidity environment, it is considered that such a reaction is promoted and thus the adhesiveness decreases.



FIG. 4 is a schematic cross-sectional view showing a state of the interface between the steel cord and the rubber body of the tire according to the present embodiment. In the present embodiment, it is devised that, by incorporating Co into the plating layer 12 or the rubber body 20, a composition 16 where a part of Zn of the ZnO film 13 is replaced with Co is formed between the ZnO film 13 and (CuxS)n 14.


A Co component contained in plating is oxidized in part under an environment of moist heat deterioration to form Co2+ or Co3+ but the composition 16 is formed through the replacement with Zn2+ in the ZnO film 13 so as to balance the valency. When the composition 16 is represented as ZnxCoyO, x+y becomes 5/6 or more and 1.00 or less.


According to the tire 1 of the present embodiment, by the presence of ZnxCoyO formed at the interface between the steel cord 10 and the rubber body 20, the formation of ZnO caused by H2O is inhibited and thus the adhesiveness between the plating layer 12 and the rubber body 20 by the action of (CuxS)n 14 is satisfactorily maintained.


Here, Co takes the form of Co2+ or Co3+. When Co3+ is replaced with a part of Zn of ZnO, Zn3Co2O6 is formed. When Co2+ is replaced with a part of Zn of ZnO, ZnCoO2 is formed. Therefore, it is considered that ZnxCoyO formed at the interface between the steel cord 10 and the rubber body 20 has intermediate composition between Zn(3/6)Co(2/6)O and Zn(1/2)Co(1/2)O when O (oxygen) is thought to be 1. Accordingly, it is considered that x+y becomes a value between 5/6 (=3/6+2/6) and 1 (=1/2+1/2).


Incidentally, Co may be contained in the plating layer 12 of the steel cord or may be contained in the rubber body 20. Co may be exposed on the surface of the plating layer 12 of the steel cord 10. In this case, as compared with the case where Co is buried in the inside of the plating layer 12, the adhesiveness between the plating layer 12 and the rubber body 20 can be satisfactorily maintained by a small amount of Co. In the case where Co is contained in the rubber body 20, the tire 1 can be manufactured using an inexpensive steel cord containing no Co.


The presence of ZnxCoyO can be confirmed by using an absorption-type XAFS (X-ray Absorption Fine Structure). The XAFS is known in Non-Patent Document 1 etc.



FIG. 5 shows spectra obtained by the XAFS in the case where ZnxCoyO is present on the surface of a sample. In FIG. 5, the solid line represents a spectrum resulting from ZnxCoyO and a broken line represents a spectrum resulting from Co. The shape of the spectrum obtained by the XAFS is different depending on composition.


When a spectrum is observed on the composition 16 having ZnxCoyO of the tire 1 according to the present embodiment using the XAFS, as shown in FIG. 5, peaks are observed at around 7724 eV, around 7738 eV, and around 7770 eV.


The present application is based on Japanese Patent Application No. 2015-204895 filed on Oct. 16, 2015, and the contents are incorporated herein by reference.


DESCRIPTION OF REFERENCE NUMERALS AND SIGNS




  • 1 Tire


  • 2 Tread part


  • 3 Sidewall part


  • 4 Bead part


  • 5 Inner liner


  • 6 Carcass


  • 7 Belt


  • 8 Bead wire


  • 10 Steel cord


  • 11 Steel wire


  • 12 Plating layer


  • 13 ZnO film


  • 14 (CuxS)n


  • 15 ZnO


  • 16 Composition


  • 20 Rubber body


Claims
  • 1. A tire having a rubber body in which a steel cord is embedded, wherein a layer composed of ZnxCoyO is formed at the interface between the steel cord and the rubber body and x+y is 5/6 or more and 1 or less.
  • 2. The tire according to claim 1, wherein the steel cord has a steel wire and a plating layer containing Cu and Zn provided on the steel wire and Co is contained in the plating layer.
  • 3. The tire according to claim 2, wherein Co is exposed on the surface of the plating layer of the steel cord.
  • 4. The tire according to claim 1, wherein Co is contained in the rubber body.
  • 5. The tire according to claim 1, wherein the layer composed of ZnxCoyO is at least partially in between a ZnO film and a copper sulfide layer.
  • 6. A tire having a rubber body in which a steel cord is embedded, wherein the steel cord has a steel wire and a plating layer containing Cu and Zn provided on the steel wire,wherein Co is contained in the plating layer,wherein a layer of composition which is composed of ZnxCoyO is formed at the interface between the steel cord and the rubber body,wherein a ZnO film is formed between the rubber body and the plating layer,wherein a Co component contained in plating layer is oxidized in part under an environment of moist heat deterioration to form Co2+ or Co3+ and the composition is formed through the replacement with Zn2+ in the ZnO film so as to balance the valency, andwherein x+y is 5/6 or more and 1 or less.
Priority Claims (1)
Number Date Country Kind
2015-204895 Oct 2015 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2016/080449 10/13/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2017/065243 4/20/2017 WO A
US Referenced Citations (1)
Number Name Date Kind
20120067485 Imhoff Mar 2012 A1
Foreign Referenced Citations (8)
Number Date Country
103814159 May 2014 CN
1205315 May 2002 EP
2002-013085 Jan 2002 JP
2002-205506 Jul 2002 JP
2011-168713 Sep 2011 JP
2014-019974 Feb 2014 JP
2011076746 Jun 2011 WO
2013-035805 Mar 2013 WO
Non-Patent Literature Citations (4)
Entry
Fulton, W.S. Tire Cord Adhesion—Interface Morphology and the Influence of Cobalt, Tire Technology International, 2004.
Lukasiewicz, et. al., “ZnO, ZnMnO and ZnCoO films grown by atomic layer deposition” Semicond, Sci. Technol. 27 (2012) 074009 (14pp), IOP Publishing [Cited in Spec].
Guy Buytaert et al.: “Study of Cu—Zn—Co ternary alloy-coated steel cord in cobalt-free skim compound”, Journal of Adhesion Science and Technology, vol. 28, No. 16, Apr. 9, 2014 (Apr. 9, 2014), pp. 1545-1555 [Cited in EESR issued May 9, 2019 in the corresponding EP Application].
W.J. Van Ooij et al.: “Application of XPS to the Study of Polymer-Metal Interface Phenomena”, Applications of Surface Science, vol. 4, Jan. 1, 1980 (Jan. 1, 1980), XP055558786, p. 334, paragraph 2—p. 336, last paragraph [Cited in EESR issued May 9, 2019 in the corresponding EP Application].
Related Publications (1)
Number Date Country
20180304689 A1 Oct 2018 US