The present disclosure is directed to scaffold and fibers, systems and methods for making scaffold and fibers, and methods of forming materials or organisms by using scaffold and fibers. Specifically, the present disclosure is directed to scaffold and fibers for growing non-Euclidian materials and organisms.
Natural structures that are strictly Euclidean (i.e., having smooth geometric structural forms integrated into the natural systems) are rare or non-existent. Generally, natural structures are fractal in form thus providing increased surface area for the same volume structure.
Engineering non-Euclidian structures can be inconsistent, lack reproducibility, and/or are otherwise difficult to perform, in part, due to rough, irregular, inconsistent, complex, and/or amorphous features. Non-Euclidian structures can include complex shapes having specific small geometric features that are expensive to produce and have been extremely difficult (or even impossible) to produce on a large scale.
Tissue is one such non-Euclidian structure. Thus, tissue engineering can be extremely expensive. Tissue engineering is the application of engineering disciplines to either maintain existing tissue structures or to enable tissue growth. Tissue is a cellular composite representing multiphase systems. The cellular composite can include cells organized into functional units, an extracellular matrix, and a scaffold. The scaffold can include pores, fibers, or membranes. The scaffold can be periodic (i.e. repeating and/or symmetric), fractal, or stochastic (i.e., irregular and/or amorphous).
What is needed is a scaffold or fiber for forming non-Euclidian materials or organisms.
One aspect of the disclosure includes a manufactured fiber. The manufactured fiber includes an engineered geometric feature forming a non-Euclidian geometry.
Another aspect of the disclosure includes a method for forming a fiber. The method includes extruding a fiber including an engineered geometric feature forming a non-Euclidian geometry.
Another aspect of the disclosure includes a system. The system includes a die arranged and disposed for extruding a fiber including an engineered geometric feature forming a non-Euclidian geometry.
Another aspect of the disclosure includes a method of engineering tissue. The method includes providing a fiber comprising an engineered geometric feature forming a non-Euclidian geometry, applying tissue to the fiber, and incubating the tissue.
An advantage of the disclosure includes mimicking of biological structures that are non-Euclidian, thereby providing the ability to reproduce biological structures that are less likely to be rejected by the host.
Another advantage of the disclosure includes forming tissue fibers having a surface area greater than a surface area of similar volume Euclidian fibers.
Other advantages that may be realized through the present disclosure include that the use of a fibers having a longitudinal architecture containing engineered features can enhance interlocking of individual fibers, creating greater collective strength, and that micro-texturing of the fiber surface can be provided for alignment response depending on the depth and width of the features as a consequence of the fractal or other design. Exemplary embodiments also present an ability to integrate biomaterials that contain chemistry consistent with natural cell materials with a physical, morphological fabricated topography that signals its ability to act as a host.
Other advantages will be apparent from the following description of exemplary embodiments of the disclosure.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
A scaffold 102 for engineering periodic, fractal and/or stochastic material and/or organisms is disclosed. The scaffold 102 can be formed by the microfiber extrusion system 200 disclosed herein. The scaffold 102 can be used for engineering tissue or other suitable materials or organisms.
Referring generally to
The external geometric features 106 and/or internal geometric features 108 can be nano-sized (i.e., about 1 to 1000 nanometers, typically about 50 to about 500 nanometers and in some embodiments about 50 to about 100 nanometers) or micron-sized (i.e., about 1 to 1000 microns). Thus, the scaffold 102 and/or the fiber 100 can include many design configurations with varying feature sizes. The design configuration can be predetermined to accommodate any suitable growth process (for example, growth of stem cells, nerve cells, tissue, crystal, fungus, bacteria, viruses, etc.). The scaffold 102, the fiber 100, and/or tissue formed may mimic a microstructure favorable for establishing differentiation and resident growth. In one embodiment, the scaffold 102, the fiber 100, and/or tissue formed may include external geometric features 106 and/or internal geometric features 108 having a continuous fractal architecture (or other non-Euclidian forms).
The continuous fractal architecture may mimic microstructural topology of a predetermined structure. Exemplary structures include tissue fractal, neural fractal, bone fractal, tendons, fungus, bacteria, viruses, plants, crystals, other suitable materials and/or organisms, and combinations thereof. The external geometric features 106 and/or internal geometric features 108 may facilitate guided channeling of growth, external troughing of nutrient chemistries, physical unrestricted template support of propagating cells, and/or feed forward orientation for stimulated potentials. Additionally, grooves and ridges and other non-Euclidian features provide for contact guidance and more specifically contact guidance in three dimensions. In contrast to Euclidian surfaces, such features can facilitate tissue growth in the axial direction (or otherwise in opposition to gravity).
As a result, exemplary embodiments provide fibers having a defined structural design for use as a scaffolding material for the promotion of tissue or other growth, the features having defined structural requirements that promote bio-functionalization. The external architecture of such fibers can influence macromolecular organization contributing to a specific biological structure desired to be achieved; the fiber architecture drives organization both in the scaffold structure as well as in the establishment and propagation of cell to tissue organization.
The external architecture of the fibers establishes “contact guidance,” topological control and surface bio-mimetic resemblance. Biological surfaces are rarely flat or smooth and exemplary embodiments can provide a fractal topology and associated topography, which can lead to alignment responses from such cells as neural or vascular progenitor cells.
Referring to
Referring to
The domains 110 may include trophic agents or other materials for promoting or controlling growth of a material or organism on the fiber 100. For example, the domains 110 may include a substance that stimulates growth in the presence of an external stimulus such as an exogenously excitable material. The domains 110 may include material that further mimics a biological architecture. The domains may provide additional strength by including a material stronger than the remaining material of the fiber 100.
Referring to
The fibers 100 can be formed by any suitable melt spinning or extrusion process that can achieve applicable dimensions. One suitable process is a High Definition Micro Extrusion (“HDME”) process, such as is described by WO 2007/134192. Preferably, the fiber spinning involves a high definition micro-extrusion process as described in WO 2007/134192. This process is a modification of fiber melt-flow spin extrusion adapted to produce a plurality of high definition geometric microstructures that are spatially resolved in cross-section. Spatial resolution may be obtained even in fibers having a diameter as low as 20 to 40 microns. According to an exemplary embodiment, the HDME process is a melt-spin fiber process with a pixel-like die used for the formation of highly resolved and reproducible fractal patterns in the fiber 100. The pixel-like nature can permit flexibility to control fiber geometry for a particular use.
Referring to
The highly resolved and reproducible nature of the melt-spin extrusion process permits growth of the scaffold 102 and/or the fiber 100, doping of scaffold 102 and/or the fiber 100, and coating of the scaffold 102 and/or the fiber 100 thereby guiding the growth and/or development process. In one embodiment, a base fiber component derived from biopolymer and another material (for example, a water dissolvable polymer) acting as a suitable subtractive polymer (in an islands-in-the-sea arrangement) may form the scaffold 102 and/or the fiber 100. Extrusion processing the biopolymer and suitable subtractive polymer can arrange growth factors or promoting agents within the scaffold 102 and/or fiber 100. Additionally or alternatively, extrusion processing can arrange a plurality of identical or different scaffold 102 and/or fiber(s) 100. The scaffold 102 and/or the fiber(s) 100 may be incubated with tissue for growing the tissue along a predetermined path defined by the scaffold 102 and/or the fiber(s) 100. Additionally, sodium hydroxide may be used to micro-etch the polymer surface. Thus, the fiber may include regions formed of a polymer containing for example, carboxy-functionality, thereby rendering those regions subject to alkaline aqueous dissolution, while at the same time micro-etching the remaining polymer structure with micro-features consistent with promoting cell differentiation as a result of the nano-topography desired to be achieved.
The scaffold 102, the fiber 100, and/or the tissue formed from the scaffold 102 and/or the fiber 100 can be used in an in vivo tissue generation and engineering process. In one embodiment, doing so may include the scaffold 102, the fiber 100, and/or the tissue being formed to receive energetic stimuli to control tissue differentiation or growth. Such tissue differentiation or growth may be enhanced by the arrangement of the scaffold 102 or the fiber 100. For example, channels 104, external geometric features 106, internal geometric features 108, and/or domains 110 may include different properties. The different properties may be based upon the geometry or the contents of the channels 104, external geometric features 106, internal geometric features 108, and/or domains 110. In one embodiment, the depth of grooves and/or channels of internal geometric features 106 and/or external geometric features 108 can control the growth pattern of cells or other biological materials. The fractal fiber architecture described herein provides contact guidance which can provide the environmental cues needed by cells to organize growth into tissue. The templates used to create the fibers introduce engineered features in the fiber architecture that can provide cells with appropriately designed surface features that support the proliferation and differentiation of cell growth.
In a further embodiment, micro-cross-section portions of the scaffold 102, the fiber 100, the tissue, or other suitable particles similarly formed having predetermined aspect ratios can be used as micro-fractal energy reception tissue hyperthermia or ablation particles for cancer therapy and/or for disease management including image diagnostics. In yet another further embodiment, the scaffold 102, the fiber 100, the tissue, or other suitable particles similarly formed can form a fractal antennae. In yet another embodiment, varying levels of exogenously excitable material can permit control of tissue differentiation or growth by permitting certain components of the material to be excited in response to predetermined energetic stimuli.
The extrusion process can incorporate information concerning in situ tissue topology and topography of a known structure to computer generate an arrangement of the scaffold 102 and/or the fiber(s) 100 corresponding to a natural architecture. For example, the scaffold 102 and/or the fiber 100 may be used for growing tissue fractal, neural fractal, and/or bone fractal. In other embodiments, the scaffold 102 and/or the fiber 100 may form tendons, fungus, bacteria, viruses, plants, crystals, or other suitable materials and/or organisms based upon computer generated images associated with the structures. The fibers 100 and/or scaffold 102 may be performed by translating image and other information regarding cells and tissue for which grown is to be fostered into computer-aided-design (CAD) drawings, engineering designs or other suitable design systems. It will be appreciated that the scaffold 102 and/or the fiber 100 formed are not limited to biological materials or bio-medical applications.
Although certain features are described in the context of certain embodiments, it will be appreciated that the various features and aspects are equally applicable with respect to other embodiments and that the teachings may be combined in any manner desired to achieve the fibers described herein.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. For example, ranges, relationships, quantities, and comparisons between aspects of the disclosure (including the Figures) are included within the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
61245914 | Sep 2009 | US |