Tissue resecting instrument

Information

  • Patent Grant
  • 11980382
  • Patent Number
    11,980,382
  • Date Filed
    Monday, November 8, 2021
    2 years ago
  • Date Issued
    Tuesday, May 14, 2024
    23 days ago
Abstract
A tissue-resecting end effector includes an outer shaft having a hub housing, an inner shaft including a sun gear, and a drive assembly disposed within the hub housing. The drive assembly includes a first and second drivers disposed about the inner shaft distally and proximally of the sun gear, respectively. The drive assembly further includes a plurality of planetary gears radially disposed about and in meshed engagement with the sun gear between the drivers, and a locking clip proximal of the planetary gears and the sun gear, rotationally keyed to the second driver, and engaged with the first driver via at least one snap-fit engagement. The locking clip retains the drivers and the planetary gears in operable engagement with one another and the sun gear such that a rotational input provided to the second driver drives rotation of the inner shaft.
Description
BACKGROUND
1. Technical Field

The present disclosure relates generally to the field of tissue resection. In particular, the present disclosure relates to a tissue resecting instrument configured to facilitate resection and removal of tissue from an internal surgical


2. Background of Related Art

Tissue resection may be performed endoscopically within an organ, such as a uterus, by inserting an endoscope (or hysteroscope) into the uterus and passing a tissue resection instrument through the endoscope (or hysteroscope) and into the uterus. With respect to such endoscopic tissue resection procedures, it often is desirable to distend the uterus with a fluid, for example, saline, sorbitol, or glycine. The inflow and outflow of the fluid during the procedure maintains the uterus in a distended state and flushes tissue and other debris from within the uterus to maintain a visible working space.


SUMMARY

As used herein, the term “distal” refers to the portion that is described which is further from a user, while the term “proximal” refers to the portion that is described which is closer to a user. Further, to the extent consistent, any or all of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.


Provided in accordance with aspects of the present disclosure is an end effector assembly of a tissue-resecting device. The end effector assembly includes an outer shaft including a hub housing disposed about a proximal end portion thereof, an inner shaft disposed within and rotatable relative to the outer shaft and including a sun gear disposed about a proximal end portion thereof, and a drive assembly rotatably disposed within the hub housing.


The drive assembly includes a first driver rotatably disposed about the inner shaft distally of the sun gear, a second driver rotatably disposed about the inner shaft proximally of the sun gear, a plurality of planetary gears, and a locking clip. The plurality of planetary gears is radially disposed about the sun gear in meshed engagement therewith. Each planetary gear of the plurality of planetary gears is rotatably mounted on a post extending between the first and second drivers. The locking clip is positioned proximally of the plurality of planetary gears and the sun gear, rotationally keyed to the second driver, and engaged with the first driver via at least one snap-fit engagement to thereby retain the first and second drivers and the plurality of planetary gears in operable engagement with one another and the sun gear. As such, a rotational input provided to the second driver drives rotation of the first driver, the plurality of planetary gears, and the sun gear to thereby drive rotation of the inner shaft.


In an aspect of the present disclosure, the hub housing including a ring gear disposed on an interior surface thereof and each of the planetary gears of the plurality of planetary gears is disposed in meshed engagement with the ring gear.


In another aspect of the present disclosure, the rotational input provided to the second driver drives rotation of the inner shaft at an output speed different from an input speed of the rotational input.


In still another aspect of the present disclosure, a third driver or a portion thereof is slidably disposed about a portion of the second driver in fixed rotational orientation relative thereto such that rotation of the third driver provides the rotational input to the second driver.


In yet another aspect of the present disclosure, the first driver includes a helical channel defined therein and the hub housing includes a cam follower engaged within the helical channel such that the rotational input provided to the second driver drives rotation and reciprocation of the inner shaft.


In still yet another aspect of the present disclosure, the third driver is slidably disposed about the second driver in fixed rotational orientation relative thereto such that rotation of the third driver provides the rotational input to the second driver and such that the first and second drivers reciprocate relative to the third driver.


In another aspect of the present disclosure, the inner shaft includes a seal disposed about the proximal end thereof and configured to selectively contact the third driver to seal off the proximal end of the inner shaft as the second driver is reciprocated within the third driver.


In another aspect of the present disclosure, the outer shaft defines a window towards a closed distal end thereof and the inner shaft defines an open distal end. In such aspects, at least one of the windows of the outer shaft or the open distal end of the inner shaft may be surrounded by a cutting edge.


In another aspect of the present disclosure, a cap is engaged with the hub housing. Engagement of the cap with the hub housing retains an RFID chip within a pocket defined within the cap.


A method of assembling an end effector assembly of a tissue resecting instrument in accordance with aspects of the present disclosure includes obtaining an inner shaft including a sun gear disposed about a proximal end portion thereof, inserting a first driver about the inner shaft in a distal-to-proximal direction to a position distally of the sun gear, and coupling a plurality of planetary gears to the sun gear such that the plurality of planetary gears is radially disposed about and in meshed engagement with the sun gear proximally of the first driver. The method further includes inserting a second driver about the inner shaft in a proximal-to-distal direction to a position proximally of the sun gear and the plurality of planetary gears, and positioning a locking clip proximally adjacent the sun gear and the plurality of planetary gears and engaging the locking clip with the first driver such that a portion of the second driver is disposed therebetween, thereby retaining the first and second drivers and the plurality of planetary gears in operable engagement with one another and the sun gear.


In an aspect of the present disclosure, the method further includes obtaining an outer shaft including at least a portion of a hub housing disposed about a proximal end portion thereof, and inserting the inner shaft, including the first and second drivers, the plurality of planetary gears, and the locking clip disposed thereon in operable engagement with one another and the sun gear, in a proximal-to-distal direction into the at least a portion of a hub housing and such that the inner shaft extends through the outer shaft.


In another aspect of the present disclosure, inserting the inner shaft further includes coupling the plurality of planetary gears in meshed engagement with a ring gear disposed within the hub housing.


In still another aspect of the present disclosure, the method further includes engaging a cam follower with the hub housing such that the cam follower extends into the hub housing to engage a helical channel defined within the first driver therein.


In yet another aspect of the present disclosure, the method further includes coupling a third driver to the second driver in slidable, rotationally fixed engagement.


In still yet another aspect of the present disclosure, the method further includes positioning a lockout cap about the third driver and engaging the lockout cap with the hub housing. In such aspects, positioning the lockout cap about the third driver and engaging the lockout cap with the hub housing may releasably lock the inner shaft in position relative to the outer shaft. Additionally or alternatively, positioning the lockout cap about the third driver and engaging the lockout cap with the hub housing may capture an RFID chip within a pocked defined within the lockout cap.


In another aspect of the present disclosure, engaging the locking clip with the first driver includes at least one snap-fit engagement.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views.



FIG. 1 is a side, perspective view of an end effector assembly of a tissue resecting instrument provided in accordance with aspects of the present disclosure wherein an inner shaft of the end effector assembly is disposed in a first position;



FIG. 2 is an enlarged, perspective view of the area of detail indicated as “2” in FIG. 1;



FIG. 3 is an enlarged, perspective view of a distal end portion of the end effector assembly of FIG. 1, wherein the inner shaft of the end effector assembly is disposed in a second position;



FIG. 4 is a side, perspective, exploded view of the end effector assembly of FIG. 1;



FIG. 5 is an enlarged, side, perspective view of the area of detail indicated as “5” in FIG. 4;



FIG. 6 is an enlarged, side, perspective view of an outer shaft of the end effector assembly of FIG. 1, including a distal body portion of a hub housing of a hub assembly assembled thereon and a follower assembly of the hub assembly shown exploded from the distal body portion;



FIG. 7 is a longitudinal, cross-sectional view of the distal body portion of the hub housing of FIG. 6 including the outer shaft engaged thereto;



FIG. 8 is a rear, perspective view of a proximal end portion of the inner shaft of the end effector assembly of FIG. 1 including a portion of a gear assembly of a drive assembly assembled thereon;



FIG. 9 is a rear, perspective view of the proximal end portion of the inner shaft including the gear assembly fully assembled thereon;



FIG. 10 is a rear, perspective view of the portion of the end effector assembly of FIG. 1 as illustrated in FIG. 6 further including the inner shaft, having the gear assembly assembled thereon, disposed therein and a proximal extension of the hub housing and an O-ring shown exploded therefrom;



FIG. 11 is a rear, perspective view of the portion of the end effector assembly of FIG. 1 as illustrated in FIG. 10 with the proximal extension of the hub housing and the O-ring assembled thereon;



FIG. 12 is a rear, perspective view of the portion of the end effector assembly of FIG. 1 as illustrated in FIG. 11 with a proximal driver of the drive assembly shown exploded therefrom;



FIG. 13 is a rear, perspective view of the portion of the end effector assembly of FIG. 1 as illustrated in FIG. 12 with the proximal driver assembled thereon and a lockout cap shown exploded therefrom;



FIG. 14 is a perspective view of the lockout cap of FIG. 13;



FIG. 15 is a rear, perspective view of the portion of the end effector assembly of FIG. 1 as illustrated in FIG. 13 with the lockout cap assembled thereon;



FIG. 16 is a rear, perspective view of a proximal end portion of the end effector assembly of FIG. 1 in an assembled condition;



FIG. 17 is a side, perspective view of the proximal end portion of the end effector assembly of FIG. 1 in the assembled condition;



FIG. 18 is a perspective, longitudinal, cross-sectional view taken across section line “18-18” of FIG. 17;



FIG. 19 is a side, longitudinal, cross-sectional view of a proximal end portion of the end effector assembly of FIG. 1 in the assembled condition, wherein the inner shaft is disposed in the first position;



FIG. 20 is a side, longitudinal, cross-sectional view of the proximal end portion of the end effector assembly illustrated as in FIG. 19, wherein the inner shaft is disposed in the second position;



FIG. 21 is a side, perspective view of a proximal end portion of the end effector assembly of FIG. 1, wherein the lockout cap is disposed in an initial condition locking the inner shaft in position;



FIG. 22 is a side, perspective view of the proximal end portion of the end effector assembly as illustrated in FIG. 21, wherein the lockout cap is disposed in a compressed condition unlocking the inner shaft to permit movement thereof relative to the outer shaft;



FIG. 23 is a side, perspective view of a tissue resecting instrument including the end effector assembly of FIG. 1 engaged with a handpiece; and



FIG. 24 is a longitudinal, cross-sectional view taken across section line “24-24” of FIG. 23.





DETAILED DESCRIPTION

Referring generally to FIGS. 1 and 23, a tissue resecting instrument 10 provided in accordance with the present disclosure and configured to resect tissue includes an end effector assembly 100 and a handpiece assembly 200. Tissue resecting instrument 10 is adapted to connect to a control unit (not shown) via a cable 300 to provide power and control functionality to tissue resecting instrument 10, although tissue resecting instrument 10 may alternatively or additionally include a power source, e.g., battery, and/or a control unit disposed within handpiece assembly 200. Tissue resecting instrument 10 is further adapted to connect to a fluid management system (not shown) via outflow tubing (not shown) connected to outflow port 400 for applying suction to remove fluid, tissue, and debris from a surgical site via tissue resecting instrument 10. The control unit and fluid management system may be integral with one another, coupled to one another, or separate from one another.


Tissue resecting instrument 10 may be configured as a single-use device that is discarded after use or sent to a manufacturer for reprocessing, a reusable device capable of being cleaned and/or sterilized for repeated use by the end-user, or a partially-single-use, partially-reusable device. With respect to partially-single-use, partially-reusable configurations, handpiece assembly 200 may be configured as a cleanable/sterilizable, reusable component, while end effector assembly 100 is configured as a single-use, disposable/reprocessable component. In any of the above configurations, end effector assembly 100 is configured to releasably engage handpiece assembly 200 to facilitate disposal/reprocessing of any single-use components and cleaning and/or sterilization of any reusable components. Further, enabling releasable engagement of end effector assembly 100 with handpiece assembly 200 allows for interchangable use of different end effector assemblies, e.g., different length, configuration, etc., end effector assemblies, with handpiece assembly 200.


Continuing with reference to FIG. 1, end effector assembly 100 includes an outer shaft 120, an inner shaft 140, a hub assembly 160, a drive assembly 180 (FIG. 4), and an RFID chip 190 (FIG. 4). Referring also to FIGS. 2 and 3, outer shaft 120 includes a proximal end portion 122 (FIG. 4) and a distal end portion 124 defining an at least partially closed distal end 126 and a transverse window 128 disposed adjacent the at least partially closed distal end 126. Window 128 provides access to the interior of outer shaft 120 transversely through a sidewall thereof and may be surrounded by a cutting edge 129 about the outer perimeter of window 128 so as to facilitate cutting of tissue passing through window 128 and into outer shaft 120.


Inner shaft 140 is translationally and rotatably disposed within outer shaft 120 and includes a proximal end portion 142 (FIG. 4) and a distal end portion 144 defining an open distal end 146. A cutting edge 149 may surround the outer perimeter of open distal end 146 so as to facilitate cutting of tissue passing through open distal end 146 and into inner shaft 140.


Referring still to FIGS. 1-3, inner shaft 140 is configured for translation and rotation within and relative to outer shaft 120 to thereby rotate and translate open distal end 146 relative to window 128. More specifically, inner shaft 140 is configured to rotate and translate between a first position (FIG. 2), wherein open distal end 146 is disposed at or proximally of a proximal end of window 128, through a second position (FIG. 3), wherein open distal end 146 is disposed within window 128, to a third position (not shown), wherein open distal end 146 is disposed at or distally of a distal end of window 128. The rotation of inner shaft 140 and, thus, cutting edge 149 thereof, facilitates the cutting of tissue as inner shaft 140 is translated between the first, second, and third positions. Suction is applied trough inner shaft 140, as detailed below, to facilitate removal of the cut tissue, fluids, and debris through inner shaft 140.


Inner shaft 140 is configured to continuously rotate and translate from the first position (FIG. 2) through the second position (FIG. 3) to the third position and back from the third position to the first position (FIG. 2) though the second position (FIG. 3). Other suitable configurations of outer shaft 120 and/or inner shaft 140 that cooperate to facilitate tissue cutting are also contemplated, such as those employing reciprocation, rotation, and/or oscillation of inner shaft 140 relative to outer shaft 120.


With reference to FIGS. 1 and 4, as noted above, end effector assembly 100 includes outer shaft 120, inner shaft 140, a hub assembly 160, and a drive assembly 180. End effector assembly 100 further includes an RFID chip 190 captured between a lockout cap 170 of hub assembly 160 and a proximal extension portion 164 of a hub housing 161 of hub assembly 160, as detailed below.


Hub assembly 160 includes a hub housing 161 having a distal body portion 162 and a proximal extension portion 164 that are configured for engagement with one another, e.g., via snap-fitting or other suitable engagement. Referring momentarily to FIGS. 23 and 24, with end effector assembly 100 engaged with handpiece assembly 200, proximal extension portion 164 of hub housing 161 extends into handpiece assembly 200 while distal body portion 162 substantially abuts and extends distally from handpiece assembly 200. Proximal extension portion 164 of hub housing 161 further defines an outflow opening 165 through a sidewall thereof that is configured to fluidly communicate with an internal bore 214 of handle housing 210 of handpiece assembly 200 when end effector assembly 100 is engaged therewith.


Returning to FIGS. 1 and 4, and with additional reference to FIGS. 6 and 7, distal body portion 162 of hub housing 161 is fixedly disposed about proximal end portion 122 of outer shaft 120 with outer shaft 120 extending distally therefrom. Inner shaft 140 extends through outer shaft 120, as noted above, and extends proximally through distal body portion 162 of hub housing 161 into proximal extension portion 164 of hub housing 161 wherein drive assembly 180 is operably coupled to proximal end portion 142 of inner shaft 140. Distal body portion 162 of hub housing 161 further defines an elongated ring gear 181 on an interior cylindrical surface thereof.


A follower assembly 163a of hub assembly 160 is seated within a transverse aperture 163b defined through distal body portion 162 of hub housing 161. Follower assembly 163a includes a cam follower 163c and a cap 163d configured to retain cam follower 163c within transverse aperture 163b such that cam follower 163c extends into the interior of distal body portion 162 of hub housing 161.


As illustrated in FIGS. 10 and 11, hub assembly 160 further includes an O-ring 166 configured for engagement about proximal extension portion 164 of hub housing 161 distally of outflow opening 165. O-ring 166, as illustrated in FIG. 24, is configured to establish a fluid-tight seal against the interior of handle housing 210 of handpiece assembly 200 when end effector assembly 100 is engaged therewith to inhibit fluid from travelling distally after exiting outflow opening 165.


With reference to FIGS. 4 and 16-18, hub assembly 160 additionally includes an outer shell 168 configured for positioning about distal body portion 162 of hub housing 161 and for engagement therewith, e.g., via snap-fit engagement or in any other suitable manner. A cantilever engagement finger 169a extends proximally from a lower surface of outer shell 168 of hub housing 161 and proximally from distal body portion 162 of hub housing 161 when outer shell 168 is engaged thereabout. Engagement finger 169a includes an engagement tooth 169b extending therefrom that is configured for engagement within a corresponding aperture 218 defined within handle housing 210 of handpiece assembly 200 (see FIG. 24) to enable releasable engagement of end effector assembly 100 with handpiece assembly 200 (FIG. 24). Grasping ribs 169c are defined on side surfaces of outer shell 168 to facilitate engagement and disengagement of end effector assembly 100 to and from handpiece assembly 200 (FIG. 24).


Referring to FIGS. 4, 13-15, 21, and 22, lockout cap 170 of hub assembly 160 is configured for snap-fit or other suitable engagement with a proximal end portion of proximal extension portion 164 of hub housing 161. Lockout cap 170 defines a longitudinal lumen 171 extending therethrough and includes a proximal stop ring 172, a distal stop ring 174 rotationally fixed relative to proximal stop ring 172, and a biasing member 176 disposed between proximal and distal stop rings 172, 174, respectively. Proximal stop ring 172 defines a recess 173 oriented radially inwardly towards longitudinal lumen 171.


Distal stop ring 174 is fixed relative to proximal extension portion 164 of hub housing 161, e.g., via snap-fit engagement between distal stop ring 174 and proximal extension portion 164. Distal stop ring 174 further includes an external collar 179a defining a pocket 179b. Pocket 179b is configured to receive RFID chip 190 therein. When lockout cap 170 is engaged with proximal extension portion 164, e.g., via snap-fitting, the open end of pocket 179b is blocked by a proximal face of proximal extension portion 164, thereby capturing RFID chip 190 therein.


Biasing member 176 may be a living hinge formed integrally with proximal and distal stop rings 172, 174, respectively, e.g., formed as a single molded component, although biasing member 176 may alternatively be formed separately from either or both of proximal and distal stop rings 172, 174, respectively, and/or may be any other suitable biasing member such as, for example, a compression spring. Biasing member 176 is configured to bias proximal stop ring 172 proximally away from distal stop ring 174, corresponding to an at-rest position of lockout cap 170.


Referring to FIGS. 4, 5, 8, 9, and 18, drive assembly 180 is configured to operably couple drive rotor 260 of handpiece assembly 200 (see FIG. 24) with inner shaft 140 such that rotation of drive rotor 260 (FIG. 24) drives rotation and reciprocation of inner shaft 140 within and relative to outer shaft 120. Drive assembly 180, more specifically, includes a proximal driver 182, a distal driver 184, and a gear assembly 186 disposed between and operably coupling proximal and distal drivers 182, 184, respectively, with one another. Proximal driver 182 is configured to receive a rotational input from drive rotor 260 (FIG. 24), gear assembly 186 is configured to amplify or attenuate the output rotation of inner shaft 140 relative to the input rotation from drive rotor 260 (FIG. 24), and distal driver 184 is configured to impart the amplified or attenuated output rotation to inner shaft 140 as well as to reciprocate inner shaft 140.


With additional reference to FIGS. 12 and 13, proximal driver 182 of drive assembly 180 includes a generally cylindrical body 183a defining a lumen 183b extending longitudinally therethrough. Body 183a includes an external collar 183c disposed annularly thereabout at a proximal end portion thereof. External collar 183c includes a radially-outwardly extending tab 183d. Body 183a further includes a proximally-facing cavity 183e at least a portion of which has a non-circular cross-sectional configuration, e.g., an 8-point star or other polygonal configuration, that is configured to at least partially receive drive rotor 260 of handpiece assembly 200 in fixed rotational orientation (see FIG. 24). Body 183a additionally defines a distally-facing cavity 183f including a longitudinally-extending channel 183g defined within an inwardly-facing surface of body 183a. A longitudinally-extending slot 183h defined through a side wall of body 183a communicates with distally-facing cavity 183f to define a flow path therethrough, e.g., from within distally-facing cavity 183f to externally of body 183a.


Turning to FIGS. 4, 8, 9, and 18, distal driver 184 of drive assembly 180 includes a proximal plate 185a and a distal cylindrical body 185b extending distally from proximal plate 185a. Proximal plate 185a includes a plurality, e.g., three, posts 185c extending proximally therefrom and arranged radially about a longitudinal axis defined through distal driver 184. Proximal plate 185a further includes a plurality of engagement arms 185d arranged radially about the longitudinal axis of distal driver 184 and extending proximally from outer peripheral edges of proximal plate 185a.


Distal cylindrical body 185b of distal driver 184 defines a helical channel 185e about the outer annular periphery thereof. Helical channel 185e includes forward and reverse channel portions (defining similar or different pitches) blended at their ends to define a continuous helical channel 185e. Helical channel 185e is configured to receive cam follower 163c of cam assembly 163a therein such that as distal driver 184 is driven to rotate, the engagement of cam follower 163c within helical channel 185e reciprocates distal driver 184, e.g., distally while cam follower 163c is disposed within the forward channel portion of helical channel 185e, proximally while cam follower 163c is disposed within the reverse channel portion of helical channel 185e, and changing directions when cam follower 163c is disposed at the blended ends of helical channel 185e. Distal driver 184 further includes a longitudinally-extending lumen 185f defined therethrough.


Continuing with reference to FIGS. 4, 8, 9, and 18, and with additional reference to FIG. 5, gear assembly 186 includes a sun gear 187a fixedly engaged about proximal end portion 142 of inner shaft 140, a plurality of, e.g., three, planetary gears 187b, an intermediate driver 188a, and a locking clip 189a.


Planetary gears 187b are rotatably mounted on posts 185c of proximal plate 185a of distal driver 184 and disposed in meshed engagement about sun gear 187a. More specifically, proximal end portion 142 of inner shaft 140 extends through longitudinally-extending lumen 185f of distal driver 184 with sun gear 187a disposed proximally of distal driver 184 to enable sun gear 187a to mesh with planetary gears 187b. Planetary gears 187b are configured for slidable, meshed engagement with elongated ring gear 181 of distal body portion 162 of hub housing 161 (see FIGS. 7, 10 and 18).


Intermediate driver 188a includes a distal plate 188b and a proximal cylindrical body 188c extending proximally from distal plate 188b. Distal plate 188b defines a plurality of apertures 188d arranged radially about a longitudinal axis defined therethrough. Each apertures 188d is configured to receive one of the posts 185c of distal driver 184 to rotatably mount and retain planetary gears 187b between intermediate driver 188a and distal driver 184. Distal plate 188b further includes a plurality of, e.g., three, slots 188e at outer peripheral edges thereof that are each configured to receive one of the engagement arms 185d of distal driver 184 therethrough.


Proximal cylindrical body 188c of intermediate driver 188a defines a longitudinally-extending rail 188f protruding from and extending along an outer peripheral surface thereof. Proximal cylindrical body 188c is configured for receipt within distally-facing cavity 183f of body 183a of proximal driver 182, with longitudinally-extending rail 188f slidably received within longitudinally-extending channel 183g of proximal driver 182 to rotationally lock proximal driver 182 and intermediate driver 188a with one another. Intermediate driver 188a further includes a longitudinally-extending lumen 188g defined therethrough that communicates with longitudinally-extending lumen 185f of distal driver 184. Further, an elastomeric seal 188h is engaged about a proximal end of proximal cylindrical body 188c of intermediate driver 188a, extending about lumen 188g. Seal 188h may be resiliently retained about the proximal end of proximal cylindrical body 188c, e.g., via the elastomeric material forming seal 188h, or may be secured thereto in any other suitable manner.


Locking clip 189a, as illustrated in FIGS. 4 and 9, is configured for positioning about proximal cylindrical body 188c of intermediate driver 188a, proximally adjacent distal plate 188b of intermediate driver 188a. Locking clip 189a, more specifically, defines central opening 189b configured to receive proximal cylindrical body 188c of intermediate driver 188a and a notch 189c defined within the annular interior edge of locking clip 189a that defines central opening 189b for receipt of longitudinally-extending rail 188f therein. Locking clip 189a further includes a plurality of, e.g., three, lock tabs 189d each configured to engage one of the engagement arm 185d of distal driver 184 to thereby engage locking clip 189a with distal driver 184, retaining planetary gears 187b and intermediate driver 188a therebetween.


With reference to FIGS. 5-17, the assembly of end effector assembly 100 is detailed. As illustrated in respective FIGS. 5 and 6, pre-assembly of sun gear 187a about proximal end portion 142 of inner shaft 140 in fixed relation relative thereto and pre-assembly of distal body portion 162 of hub housing 161 about proximal end portion 122 of outer shaft 120 in fixed relation relative thereto, is accomplished.


Referring to FIGS. 8 and 9, once the above-detailed pre-assembly of sun gear 187a about proximal end portion 142 of inner shaft 140 is complete, distal driver 184 and gear assembly 186 are installed about inner shaft 140. More specifically, distal driver 184 is slid proximally over inner shaft 140 until posts 185c surround sun gear 187a. Thereafter, planetary gears 187b are disposed on posts 185c in mesh engagement with sun gear 187a. Next, intermediate driver 188a is slid distally over inner shaft 140 until the free ends of posts 185 are received within apertures 188d of distal plate 188b of intermediate driver 188a and engagement arms 185d extend proximally through slots 188e.


With gear assembly 186 assembled as noted above, locking clip 189a is slid distally about intermediate driver 188a, in fixed rotational engagement therewith (via the receipt of longitudinally-extending rail 188f within notch 189c), into abutment with distal plate 188b of intermediate driver 188a wherein engagement arms 185d of distal driver 184 engage, e.g., in snap-fit engagement, lock tabs 189d of locking clip 189a to thereby operably couple drive assembly 180 (with the exception of proximal driver 182) about inner shaft 140. At this point or prior thereto, seal 188h is engaged, e.g., resiliently retained, about the proximal end of intermediate driver 188a.


Referring to FIG. 10, inner shaft 140, including drive assembly 180 (with the exception of proximal driver 182) operably engaged thereabout, is inserted, in a proximal-to-distal direction, through distal body portion 162 of hub hosing 161 and outer shaft 120 such that planetary gears 187b are disposed in slidable, meshed engagement with elongated ring gear 181. Thereafter, follower assembly 163a is installed within distal body portion 162 of hub housing 161 via first inserting cam follower 163c through transverse aperture 163b of distal body portion 162 of hub housing 161 and thereafter installing cap 163d within transverse aperture 163b to retain cam follower 163c within transverse aperture 163b and in engagement within helical channel 185e.


With additional reference to FIG. 11, proximal extension portion 164 of hub housing 161 is slid, in a proximal-to-distal direction, about intermediate driver 188a, and into engagement, e.g., via snap-fitting, with distal body portion 162 of hub housing 161. Prior to or after the engagement of proximal extension portion 164 with distal body portion 162, O-ring 166 is slid in a proximal-to-distal direction about proximal extension portion 164 of hub housing 161 to be seated within an annular recess 167 defined about proximal extension portion 164 of hub housing 161 distally of outflow opening 165. Next, proximal driver 182 is inserted through distal body portion 162 of hub housing 161 and about intermediate driver 188a in rotationally-fixed orientation relative to intermediate driver 188a, e.g., via receipt of longitudinally-extending rail 188f within longitudinally-extending channel 183g.


Referring to FIGS. 13-15, RFID chip 190 is loaded into pocket 179b of lockout cap 170 and, thereafter, lockout cap 170 is slid in a proximal-to-distal direction about proximal driver 182 into engagement, e.g., via snap-fitting, with proximal extension portion 164 of hub housing 161. Lockout cap 170, when engaged with proximal extension portion 164 of hub housing 161, inhibits proximal driver 182 from passing proximally therethrough. Further, radially-outwardly extending tab 183d of proximal driver 182 is received within recess 173 of proximal stop ring 172 of lockout cap 170 upon engagement of lockout cap 170 with proximal extension portion 164 of hub housing 161 and, while proximal stop ring 172 remains in the initial position under the bias of biasing member 176, lockout cap 170 retains proximal driver 182 in rotationally-fixed orientation relative to hub housing 161, thus retaining inner shaft 140 in fixed position relative to outer shaft 120.


Turning to FIGS. 17 and 18, outer shell 168 is slid in a distal-to-proximal direction about outer shaft 120 and distal body portion 162 of hub housing 161 into engagement, e.g., via snap-fitting, with distal body portion 162 of hub housing 161 to complete the assembly of end effector assembly 100 (FIG. 1). In the fully assembled condition of end effector assembly 100 (FIG. 1), as noted above, biasing member 176 biases proximal stop ring 172 proximally such that proximal driver 182 is engaged with lockout cap 170 in rotationally fixed orientation. End effector assembly 100, e.g., drive assembly 180 and lockout cap 170, may be configured such that, in this rotationally locked position, inner shaft 140 is disposed in the third position relative to outer shaft 120, wherein open distal end 146 of inner shaft 140 is disposed at or distally of the distal end of window 128 of inner shaft 120 (See FIGS. 1-3). Other configurations are also contemplated.


Referring to FIGS. 1, 23, and 24, handpiece assembly 200 generally includes handle housing 210, an outflow path 220 defined through handle housing 210 and communicating with an outflow port 400, a motor 250 disposed within handle housing 210, and drive rotor 260 disposed within handle housing 210 and operably coupled to motor 250. Handpiece assembly 200 may further include one or more controls 270, e.g., buttons, disposed on handle housing 210 to facilitate activation of tissue resecting instrument 10, toggle between various modes, and/or to vary the speed of motor 250. Further, outflow tubing (not shown) is configured to connect to outflow port 400 to thereby connect outflow port 400 to a fluid management system (not shown). The fluid management system includes a vacuum source to establish suction through tissue resecting instrument 10 and the outflow tubing to facilitate removal of fluid, tissue, and debris from the surgical site and may also include a collection reservoir, e.g., a collection canister, for collecting the removed fluid, tissue, and debris. As an alternative or in addition to a vacuum source establishing suction through tissue resecting instrument 10 and the outflow tubing, vacuum may be created therethrough via a pressure differential between the surgical site and the outflow path.


Handle housing 210 defines a pencil-grip configuration, although other configurations are also contemplated, e.g., pistol-grip configurations, and includes an open distal end portion 212 communicating with an internal bore 214. Open distal end portion 212 of handle housing 210 provides access to drive rotor 260 and internal bore 214 within handle housing 210 such that, upon engagement of end effector assembly 100 with handpiece assembly 200, as detailed below, a portion of end effector assembly 100 extends through open distal end portion 212 and into internal bore 214 to operably couple with drive rotor 260 and fluidly couple end effector assembly 100 with internal bore 214 and, thus, outflow path 220.


Cable 300 extends proximally from handle housing 210 and is configured to connect to the control unit (not shown) to provide power and control functionality to tissue resecting instrument 10. Cable 300, more specifically, houses one or more wires (not shown) that extend into handle housing 210 and electrically couple controls 270 and motor 250 with the control unit to power motor 250 and control operation of tissue resecting instrument 10 in accordance with controls 270, the control unit, and/or other remote control devices, e.g., a footswitch (not shown). Cable 300 further includes one or more wires 310 that connect to an RFID transceiver 290 disposed within handle housing 210 towards the distal end thereof.


Drive rotor 260 is operably coupled with and extends distally from motor 250 such that, upon activation of motor 250, motor 250 drives rotation of drive rotor 260. Drive rotor 260 defines a base 262 and rotor body 264 extending distally from base 262. Base 262 is stationary and surrounds body 264. Rotor body 264 defines a non-circular cross-sectional configuration, e.g., a square or other polygonal configuration, and is configured for at least partial receipt within proximally-facing cavity 183e of proximal driver 182 of end effector assembly 100 in fixed rotational orientation relative thereto upon engagement of end effector assembly 100 with handpiece assembly 200 such that activation of motor 250 drives rotation of body 264 of drive rotor 260 to, in turn, drive rotation of proximal driver 182 of end effector assembly 100.


With reference to FIGS. 1 and 21-24, engagement of end effector assembly 100 with handpiece assembly 200 in preparation for use of tissue resecting instrument 10 is detailed. In order to engage end effector assembly 100 with handpiece assembly 200, end effector assembly 100 is approximated relative to handpiece assembly 200 such that lockout cap 170 and proximal extension 164 of hub housing 161 are inserted into internal bore 214 of handle housing 210 of handpiece assembly 200. As end effector assembly 100 is approximated in this manner, grasping ribs 169c of outer shell 168 of hub assembly 160 of end effector assembly 100 are grasped and squeezed inwardly towards one another, thereby causing the upper and lower surfaces of outer shell 168 to flex outwardly. As the lower surface of outer shell 168 is flexed outwardly, engagement finger 169a and engagement tooth 169b are likewise flexed outwardly. This enables end effector assembly 100 to be approximated further towards handpiece assembly 200 such that engagement tooth 169b is disposed in alignment with and below an engagement aperture 218 defined within handle housing 210 of handpiece assembly 200


Upon release of grasping ribs 169c of outer shell 168, the upper and lower surfaces as well as engagement finger 169a and engagement tooth 169b are returned inwardly towards their initial positions. In this manner, engagement tooth 169b is received within engagement aperture 218 to thereby engage end effector assembly 100 with handpiece assembly 200. Disengagement and release of end effector assembly 100 from handpiece assembly 200 is affected in the opposite manner.


As end effector assembly 100 is approximated relative to handpiece assembly 200 to affect the above-detailed engagement, body 264 of drive rotor 260 of handpiece assembly 200 is received within proximally-facing cavity 183e of proximal body portion 183a of proximal driver 182 in fixed rotational orientation therewith, e.g., due to the at least partially complementary configurations thereof, while base 262 of drive rotor 260 contacts a proximally-facing surface of proximal stop ring 172 of lockout cap 170 to urge proximal stop ring 172 distally against the bias of biasing member 176 (thereby compression biasing member 176). In this manner, tab 183d of proximal driver 182 is disposed relative to and removed from within recess 173 of proximal stop ring 172, thereby rotationally unlocking proximal driver 182 from lockout cap 170 and hub housing 161 and, thus, unlocking inner shaft 140 from fixed position relative to outer shaft 120 (see FIGS. 1-3).


With end effector assembly 100 engaged with handpiece assembly 200 as detailed above, RFID chip 190 of end effector assembly 100 is disposed in vertical registration with RFID transceiver 290 of handpiece assembly 200, e.g., wherein RFID transceiver 290 is radially aligned with and disposed radially-outwardly of RFID chip 190 relative to a longitudinal axis defined through end effector assembly 100 and handpiece assembly 200, due to the required orientation of end effector assembly 100 to enable engagement with handpiece assembly 200, e.g., such that engagement tooth 169b is received within engagement aperture 218. Thus, with end effector assembly 100 engaged with handpiece assembly 200, RFID transceiver 290 may read/write data to/from RFID chip 190 and/or communicate read/write data to/from the control unit, e.g., via cable 300.


The data stored on RFID chip 190 of end effector assembly 100 may include item number, e.g., SKU number; date of manufacture; manufacture location, e.g., location code; serial number; use count (which may be updated by writing data from RFID transceiver 290 to RFID chip 190); the home/initial position of inner blade 140; the rotation type (rotation versus oscillation); RPM settings (default, high, medium, low); max RPM; pressure setting information; vacuum setting information; outflow setting information; calibration information (e.g., amplification/attenuation information of gear assembly 186; and/or encryption key(s). Additional or alternative data is also contemplated.


Referring to FIGS. 1, 19, 20, and 23-24, with end effector assembly 100 engaged with handpiece assembly 200 as detailed above, tissue resecting instrument 10 is ready for use. In use, motor 250 of handpiece assembly 200 is activated to drive rotation of drive rotor 260. Upon activation of motor 250, with a head-start or delay relative to activation of motor 250, or independently thereof, suction is established through tissue resecting instrument 10, e.g., via activating the vacuum source of the fluid management system.


Activation of motor 250 drives rotation of drive rotor 260 which, in turn, drives rotation of proximal driver 182 to driver rotation of intermediate driver 188a to, in turn, drive rotation of distal driver 184. Rotation of intermediate driver 188a and distal driver 184 collectively rotates planetary gears 187b about the longitudinal axis of drive assembly 180 and within and relative to elongated ring gear 181 of hub housing 161. Rotation of planetary gears 187b within and relative to elongated ring gear 181 effects rotation of each planetary gear 187b about its axis due to its meshed engagement with elongated ring gear 181. The rotation of the planetary gears 187b about their axes, in turn, drives rotation of sun gear 187a due to the meshed engagement of planetary gears 187b with sun gear 187a. Sun gear 187a, in turn, drives rotation of inner shaft 140 relative to outer shaft 120 due to the fixed engagement of sun gear 187a about proximal end portion 142 of inner shaft 140.


The rotation of inner shaft 140 relative to outer shaft 120 and hub housing 161 also results in reciprocation of inner shaft 140 relative to outer shaft 120 due to the engagement of cam follower 163c within helical channel 185e. As inner shaft 140 is reciprocated relative to outer shaft 120, drive assembly 180 is similarly reciprocated relative to hub housing 161 and maintained operably coupled therewith as planetary gears 187b slide along and maintain meshed engagement within elongated ring gear 181. In this manner, the rotational input provided by motor 250 and rotor 260 results in reciprocation and rotation of inner shaft 140 relative to outer shaft 120, e.g., between the first, second, and third positions (see FIGS. 1-3).


Referring also to FIGS. 2 and 3, the reciprocation and rotation inner shaft 140 relative to outer shaft 120, together with the suction applied through inner shaft 140, enables tissue to be drawn through window 128 of outer shaft 120, cut by cutting edge 129 and/or cutting edge 149, and withdrawn proximally through inner shaft 140 via open distal end 146 thereof. The cut tissue, along with fluids and debris, are suctioned proximally through inner shaft 140 and out the open proximal end thereof, through intermediate driver 188a and out the open proximal end thereof, through proximal driver 182 exiting longitudinally-extending slot 183h thereof, through proximal extension portion 164 of hub housing 161 and exiting output opening 165 thereof, and ultimately through outflow path 220 of handpiece assembly 200 to outflow port 400 for output to the collection reservoir of the fluid management system.


With additional reference to FIGS. 19 and 20, as inner shaft 140 is reciprocated and rotated, seal 188h, engaged on the proximal end of intermediate driver 188a, is reciprocated (and, in embodiments, rotated at a different speed) through and relative to proximal driver 182. More specifically, seal 188h is reciprocated between a proximal-most position, e.g., the first position of inner shaft (FIG. 2), and a distal-most position, e.g., the closed position of inner shaft 140.


When seal 188h is disposed in or in close proximity to the proximal-most position, seal 188h establishes a fluid-tight seal against an interior surface of proximal driver 182 to thereby seals off the flow path of tissue, fluid, and debris out of the open proximal end of inner shaft 140. Thus, when seal 188h is disposed in or in close proximity to the proximal-most position, no suction is applied through inner shaft 140. When seal 188h is sufficiently displaced from the proximal-most position, the flow path is re-established, enabling tissue, fluid, and debris to be suctioned proximally through tissue resecting instruments 10 (FIG. 23), as detailed above.


Upon engagement of end effector assembly 100 with handpiece assembly 200, a control program (not shown) associated with motor 250 may record the rotational position of drive rotor 260 as a home position and, after activation, ensure that drive rotor 260 stops at a rotational position corresponding to the home position, e.g., the closed position of inner shaft 140 relative to outer shaft 120. The control program may utilize correlation information, e.g., from RFID chip 190, correlating, for example, rotation of drive rotor 260 with rotation of inner shaft 140 to ensure that inner shaft 140 is returned to the closed position relative to outer shaft 120 after each activation. Returning to the home position, corresponding to the closed position of inner shaft 140, also returns proximal driver 182 to its initial rotational position whereby tab 183d of external collar 183c thereof is rotationally aligned with recess 173 of proximal stop ring 172 of lockout cap 170 such that, upon disengagement and withdrawal of end effector assembly 100 from handpiece assembly 200, biasing member 176 returns proximal stop ring 172 proximally to thereby bias tab 183d into engagement within recess 173 and re-engage the lock fixing inner shaft 140 in the closed position relative to outer shaft 120.


Referring generally to FIGS. 1 and 23, as an alternative to handpiece assembly 200 configured for manual grasping and manipulation during use, tissue resecting instrument 10 may alternatively be configured for use with a robotic surgical system wherein handle housing 210 is configured to engage a robotic arm of the robotic surgical system. The robotic surgical system may employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation). More specifically, various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with the robotic surgical system to assist the surgeon during the course of an operation or treatment. The robotic surgical system may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.


The robotic surgical system may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with the surgical device disclosed herein while another surgeon (or group of surgeons) remotely controls the surgical device via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.


The robotic arms of the robotic surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, cameras, fluid delivery devices, etc.) which may complement the use of the tissue resecting devices described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as examples of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.


Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Claims
  • 1. A method of assembling an end effector assembly of a tissue resecting instrument, the method comprising: obtaining an inner shaft including a sun gear disposed about a proximal end portion thereof;inserting a first driver about the inner shaft in a distal-to-proximal direction to a position distally of the sun gear;coupling a plurality of planetary gears to the sun gear such that the plurality of planetary gears is radially disposed about and in meshed engagement with the sun gear proximally of the first driver;inserting a second driver about the inner shaft in a proximal-to-distal direction to a position proximally of the sun gear and the plurality of planetary gears; andpositioning a locking clip proximally adjacent the sun gear and the plurality of planetary gears and engaging the locking clip with the first driver such that a portion of the second driver is disposed therebetween, thereby retaining the first and second drivers and the plurality of planetary gears in operable engagement with one another and the sun gear.
  • 2. The method according to claim 1, further including: obtaining an outer shaft including at least a portion of a hub housing disposed about a proximal end portion thereof; andinserting the inner shaft, including the first and second drivers, the plurality of planetary gears, and the locking clip disposed thereon in operable engagement with one another and the sun gear, in a proximal-to-distal direction into the at least a portion of a hub housing and such that the inner shaft extends through the outer shaft.
  • 3. The method according to claim 2, wherein inserting the inner shaft further includes coupling the plurality of planetary gears in meshed engagement with a ring gear disposed within the hub housing.
  • 4. The method according to claim 2, further including engaging a cam follower with the hub housing such that the cam follower extending into the hub housing to engage a helical channel defined within the first driver therein.
  • 5. The method according to claim 1, further including coupling a third driver to the second driver in slidable, rotationally fixed engagement.
  • 6. The method according to claim 5, further including positioning a lockout cap about the third driver and engaging the lockout cap with the hub housing.
  • 7. The method according to claim 6, wherein positioning the lockout cap about the third driver and engaging the lockout cap with the hub housing releasably locks the inner shaft in position relative to the outer shaft.
  • 8. The method according to claim 6, wherein positioning the lockout cap about the third driver and engaging the lockout cap with the hub housing captures an RFID chip within a pocked defined within the lockout cap.
  • 9. The method according to claim 1, wherein engaging the locking clip with the first driver includes at least one snap-fit engagement.
  • 10. A method of assembling an end effector assembly of a tissue resecting instrument, the method comprising: sliding a first driver in a first direction about a shaft to a position adjacent a first end of a sun gear supported on the shaft, the first driver including a plurality of posts extending in the first direction;rotatably supporting a plurality of planetary gears on the plurality of posts of the first driver;sliding a second driver in a second, opposite direction about the shaft to a position adjacent a second, opposite end of the sun gear such that the second driver supports a free end of each post of the plurality of posts with the plurality of planetary gears disposed between the first and second drivers;engaging the first and second drivers with one another to retain the plurality of planetary gears in meshed engagement with the sun gear, andwherein engaging the first and second drivers includes sliding a locking clip in the second direction about the shaft to a position adjacent the second driver and engaging the first drive and the locking clip with one another to thereby retain the second driver in engagement with the first driver.
  • 11. The method according to claim 10, wherein engaging the locking clip with the first driver includes establishing at least one snap-fit engagement.
  • 12. The method according to claim 10, further including: inserting the inner shaft in the second direction into a hub housing such that at least a portion of the inner shaft extends through the hub housing and into an outer shaft extending from the hub housing and such that the sun gear, the first and second drivers, and the plurality of planetary gears are disposed within the hub housing.
  • 13. The method according to claim 12, wherein inserting the inner shaft further includes coupling the plurality of planetary gears in meshed engagement with a ring gear disposed within the hub housing.
  • 14. The method according to claim 12, further including engaging a cam follower with the hub housing such that the cam follower extends into the hub housing to engage the first driver.
  • 15. The method according to claim 10, wherein sliding the first driver includes rotatably positioning the first driver about the shaft, and wherein sliding the second driver includes rotatably positioning the second driver about the shaft.
  • 16. The method according to claim 10, further including sliding a third driver about the shaft in the second direction into slidable, rotationally fixed engagement about the second driver.
  • 17. The method according to claim 16, wherein sliding the third driver into slidable, rotationally fixed engagement about the second driver includes slidably engaging the second and third drivers via a rail-channel engagement.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 16/704,066, filed on Dec. 5, 2019, the entire contents of which are hereby incorporated herein by reference.

US Referenced Citations (275)
Number Name Date Kind
1585934 Muir May 1926 A
1666332 Hirsch Apr 1928 A
1831786 Duncan Nov 1931 A
2708437 Hutchins May 1955 A
3297022 Wallace Jan 1967 A
3686706 Finley Aug 1972 A
3734099 Bender et al. May 1973 A
3791379 Storz Feb 1974 A
3812855 Banko May 1974 A
3835842 Iglesias Sep 1974 A
3850162 Iglesias Nov 1974 A
3945375 Banko Mar 1976 A
3980252 Tae Sep 1976 A
3995619 Glatzer Dec 1976 A
3996921 Neuwirth Dec 1976 A
4011869 Seiler, Jr. Mar 1977 A
4108182 Hartman et al. Aug 1978 A
4146405 Timmer et al. Mar 1979 A
4198958 Utsugi Apr 1980 A
4203444 Bonnell et al. May 1980 A
4210146 Banko Jul 1980 A
4246902 Martinez Jan 1981 A
4247180 Norris Jan 1981 A
4258721 Parent et al. Mar 1981 A
4261346 Wettermann Apr 1981 A
4294234 Matsuo Oct 1981 A
4316465 Dotson, Jr. Feb 1982 A
4369768 Vukovic Jan 1983 A
4392485 Hiltebrandt Jul 1983 A
4414962 Carson Nov 1983 A
4449538 Corbitt et al. May 1984 A
4493698 Wang et al. Jan 1985 A
4517977 Frost May 1985 A
4543965 Pack et al. Oct 1985 A
4567880 Goodman Feb 1986 A
4589414 Yoshida et al. May 1986 A
4601284 Arakawa et al. Jul 1986 A
4601290 Effron et al. Jul 1986 A
4606330 Bonnet Aug 1986 A
4644952 Patipa et al. Feb 1987 A
4649919 Thimsen et al. Mar 1987 A
4700694 Shishido Oct 1987 A
4706656 Kuboto Nov 1987 A
4718291 Wood et al. Jan 1988 A
4737142 Heckele Apr 1988 A
4749376 Kensey et al. Jun 1988 A
4756309 Sachse et al. Jul 1988 A
4819635 Shapiro Apr 1989 A
4844064 Thimsen et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4856919 Takeuchi et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
1924851 Ognier et al. May 1990 A
4940061 Terwilliger et al. Jul 1990 A
4950278 Sachse et al. Aug 1990 A
4955882 Hakky Sep 1990 A
4971034 Doi et al. Nov 1990 A
4986827 Akkas et al. Jan 1991 A
4998527 Meyer Mar 1991 A
4998914 Wiest et al. Mar 1991 A
5007917 Evans Apr 1991 A
5027792 Meyer Jul 1991 A
5037386 Marcus et al. Aug 1991 A
5105800 Takahashi et al. Apr 1992 A
5106364 Hayafuji et al. Apr 1992 A
5112299 Pascaloff May 1992 A
5116868 Chen et al. May 1992 A
5125910 Freitas Jun 1992 A
5133713 Huang et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5158553 Berry et al. Oct 1992 A
5163433 Kagawa et al. Nov 1992 A
5169397 Sakashita et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5195541 Obenchain Mar 1993 A
5226910 Kajiyama et al. Jul 1993 A
5244459 Hill Sep 1993 A
5254117 Rigby et al. Oct 1993 A
5269785 Bonutti Dec 1993 A
5270622 Krause Dec 1993 A
5275609 Pingleton et al. Jan 1994 A
5288290 Brody Feb 1994 A
5304118 Trese et al. Apr 1994 A
5312399 Hakky et al. May 1994 A
5312425 Evans et al. May 1994 A
5312430 Rosenbluth et al. May 1994 A
5320091 Grossi et al. Jun 1994 A
5347992 Pearlman et al. Sep 1994 A
5350390 Sher Sep 1994 A
5364395 West, Jr. Nov 1994 A
5374253 Burns, Sr. et al. Dec 1994 A
5390585 Ryuh Feb 1995 A
5392765 Muller Feb 1995 A
5395313 Naves et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5409013 Clement Apr 1995 A
5409453 Lundquist et al. Apr 1995 A
5411513 Ireland et al. May 1995 A
5421819 Edwards et al. Jun 1995 A
5425376 Banys et al. Jun 1995 A
5429601 Conley et al. Jul 1995 A
5435805 Edwards et al. Jul 1995 A
5443476 Shapiro Aug 1995 A
5449356 Walbrink et al. Sep 1995 A
5456673 Ziegler et al. Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5483951 Frassica et al. Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5490860 Middle et al. Feb 1996 A
5492537 Vancaillie Feb 1996 A
5498258 Hakky et al. Mar 1996 A
5527331 Kresch et al. Jun 1996 A
5549541 Muller Aug 1996 A
5556378 Storz et al. Sep 1996 A
5563481 Krause Oct 1996 A
5569164 Lurz Oct 1996 A
5569254 Carlson et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575756 Karasawa et al. Nov 1996 A
5586973 Lemaire et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601603 Illi Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603332 O'Connor Feb 1997 A
5630798 Beiser et al. May 1997 A
5649547 Ritchart et al. Jul 1997 A
5669927 Boebel et al. Sep 1997 A
5672945 Krause Sep 1997 A
5674179 Bonnet et al. Oct 1997 A
5676497 Kim Oct 1997 A
5695448 Kimura et al. Dec 1997 A
5702420 Sterling et al. Dec 1997 A
5709698 Adams et al. Jan 1998 A
5730752 Alden et al. Mar 1998 A
5733298 Berman et al. Mar 1998 A
5741286 Recuset Apr 1998 A
5741287 Alden et al. Apr 1998 A
5749885 Sjostrom et al. May 1998 A
5749889 Bacich et al. May 1998 A
5759185 Grinberg Jun 1998 A
5772634 Atkinson Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5782849 Miller Jul 1998 A
5807240 Muller et al. Sep 1998 A
5807282 Fowler Sep 1998 A
5810770 Chin et al. Sep 1998 A
5810861 Gaber Sep 1998 A
5814009 Wheatman Sep 1998 A
5833643 Ross et al. Nov 1998 A
5840060 Beiser et al. Nov 1998 A
5857995 Thomas et al. Jan 1999 A
5873886 Larsen et al. Feb 1999 A
5899915 Saadat May 1999 A
5911699 Anis et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5913867 Dion Jun 1999 A
5916229 Evans Jun 1999 A
5925055 Adrian et al. Jul 1999 A
5928163 Roberts et al. Jul 1999 A
5944668 Vancaillie et al. Aug 1999 A
5947990 Smith Sep 1999 A
5951490 Fowler Sep 1999 A
5956130 Vancaillie et al. Sep 1999 A
5957832 Taylor et al. Sep 1999 A
6001116 Heisler et al. Dec 1999 A
6004320 Casscells et al. Dec 1999 A
6007513 Anis et al. Dec 1999 A
6024751 Lovato et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6039748 Savage et al. Mar 2000 A
6042552 Cornier Mar 2000 A
6068641 Varsseveld May 2000 A
6086542 Glowa et al. Jul 2000 A
6090094 Clifford, Jr. et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6113594 Savage Sep 2000 A
6119973 Galloway Sep 2000 A
6120147 Vijfvinkel et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6132448 Perez et al. Oct 2000 A
6149633 Maaskamp Nov 2000 A
6156049 Lovato et al. Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159209 Hakky Dec 2000 A
6203518 Anis et al. Mar 2001 B1
6217543 Anis et al. Apr 2001 B1
6224603 Marino May 2001 B1
6244228 Kuhn et al. Jun 2001 B1
6258111 Ross et al. Jul 2001 B1
6277096 Cortella et al. Aug 2001 B1
6315714 Akiba Nov 2001 B1
6358200 Grossi Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6359200 Day Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6471639 Rudischhauser et al. Oct 2002 B2
6494892 Ireland et al. Dec 2002 B1
6585708 Maaskamp Jul 2003 B1
6610066 Dinger et al. Aug 2003 B2
6626827 Felix et al. Sep 2003 B1
6632182 Treat Oct 2003 B1
6656132 Ouchi Dec 2003 B1
6712773 Viola Mar 2004 B1
6824544 Boebel et al. Nov 2004 B2
6837847 Ewers et al. Jan 2005 B2
7025720 Boebel et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7150713 Shener et al. Dec 2006 B2
7226459 Cesarini et al. Jun 2007 B2
7249602 Emanuel Jul 2007 B1
7510563 Cesarini et al. Mar 2009 B2
7763033 Gruber et al. Jul 2010 B2
7922737 Cesarini et al. Apr 2011 B1
8025656 Gruber et al. Sep 2011 B2
8061359 Emanuel Nov 2011 B2
8062214 Shener et al. Nov 2011 B2
8419626 Shener-Irmakoglu et al. Apr 2013 B2
8465421 Finkman et al. Jun 2013 B2
8528563 Gruber Sep 2013 B2
8574253 Gruber et al. Nov 2013 B2
8647349 Gruber et al. Feb 2014 B2
8663264 Cesarini et al. Mar 2014 B2
8678999 Isaacson Mar 2014 B2
8834487 Gruber et al. Sep 2014 B2
8840625 Adams et al. Sep 2014 B2
8840626 Adams et al. Sep 2014 B2
8852085 Shener-Irmakoglu et al. Oct 2014 B2
8893722 Emanuel Nov 2014 B2
8932208 Kendale et al. Jan 2015 B2
8951274 Adams et al. Feb 2015 B2
9060760 Sullivan et al. Jun 2015 B2
9060800 Cesarini et al. Jun 2015 B1
9060801 Cesarini et al. Jun 2015 B1
9066745 Cesarini et al. Jun 2015 B2
9072431 Adams et al. Jul 2015 B2
9089358 Emanuel Jul 2015 B2
9095366 Sullivan et al. Aug 2015 B2
9125550 Shener-Irmakoglu et al. Sep 2015 B2
9155454 Sahney et al. Oct 2015 B2
9259233 Gruber et al. Feb 2016 B2
11179172 Wood et al. Nov 2021 B2
20080058842 Emanuel Mar 2008 A1
20080097468 Adams et al. Apr 2008 A1
20080097469 Gruber et al. Apr 2008 A1
20080097470 Gruber Apr 2008 A1
20080097471 Adams et al. Apr 2008 A1
20080135053 Gruber et al. Jun 2008 A1
20080146872 Gruber et al. Jun 2008 A1
20080146873 Adams et al. Jun 2008 A1
20080245371 Gruber Oct 2008 A1
20080249366 Gruber et al. Oct 2008 A1
20080249534 Gruber et al. Oct 2008 A1
20080249553 Gruber et al. Oct 2008 A1
20080262308 Prestezog et al. Oct 2008 A1
20090082628 Kucklick et al. Mar 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270895 Churchill Oct 2009 A1
20090270896 Sullivan et al. Oct 2009 A1
20090270897 Adams et al. Oct 2009 A1
20090270898 Chin et al. Oct 2009 A1
20100087798 Adams et al. Apr 2010 A1
20100152647 Shener et al. Jun 2010 A1
20110034943 Churchill et al. Feb 2011 A1
20110077674 Sullivan et al. Mar 2011 A1
20110118544 Adams et al. May 2011 A1
20110166419 Reif et al. Jul 2011 A1
20120067352 Gruber et al. Mar 2012 A1
20120078038 Sahney et al. Mar 2012 A1
20130131452 Kuroda et al. May 2013 A1
20140003183 Song Jan 2014 A1
20180028212 Akilian Feb 2018 A1
20180214170 Algawi Aug 2018 A1
20190105071 Magno, Jr. Apr 2019 A1
Foreign Referenced Citations (71)
Number Date Country
3206381 Sep 1983 DE
3339322 May 1984 DE
3601453 Sep 1986 DE
3615694 Nov 1987 DE
4038398 Jun 1992 DE
4440035 May 1996 DE
19633124 May 1997 DE
19751632 Sep 1999 DE
102006022827 Dec 2006 DE
0310285 Apr 1989 EP
0327410 Aug 1989 EP
0557044 Aug 1993 EP
0582295 Feb 1994 EP
0606531 Jul 1994 EP
0621008 Oct 1994 EP
0806183 Nov 1997 EP
1681022 Jul 2006 EP
2093353 Sep 1982 GB
2311468 Oct 1997 GB
2001075416 Mar 2001 JP
2002529185 Sep 2002 JP
2002538889 Nov 2002 JP
2003245247 Sep 2003 JP
1006944 Mar 1999 NL
8101648 Jun 1981 WO
9211816 Jul 1992 WO
9307821 Apr 1993 WO
9315665 Aug 1993 WO
9426181 Nov 1994 WO
9505777 Mar 1995 WO
9510981 Apr 1995 WO
9510982 Apr 1995 WO
9522935 Aug 1995 WO
9530377 Nov 1995 WO
9611638 Apr 1996 WO
9626676 Sep 1996 WO
9709922 Mar 1997 WO
9717027 May 1997 WO
9719642 Jun 1997 WO
9724071 Jul 1997 WO
9734534 Sep 1997 WO
9735522 Oct 1997 WO
9809569 Mar 1998 WO
9810707 Mar 1998 WO
9846147 Oct 1998 WO
9903407 Jan 1999 WO
9903409 Jan 1999 WO
9907295 Feb 1999 WO
9911184 Mar 1999 WO
9939648 Aug 1999 WO
9944506 Sep 1999 WO
9960935 Dec 1999 WO
0012010 Mar 2000 WO
0028890 May 2000 WO
0033743 Jun 2000 WO
0044295 Aug 2000 WO
0047116 Aug 2000 WO
0057797 Oct 2000 WO
0135831 May 2001 WO
0158368 Aug 2001 WO
0195810 Dec 2001 WO
02069808 Sep 2002 WO
03022164 Mar 2003 WO
03077767 Sep 2003 WO
2005060842 Jul 2005 WO
2005096963 Oct 2005 WO
2006105283 Oct 2006 WO
2006121968 Nov 2006 WO
2006121970 Nov 2006 WO
2007044833 Apr 2007 WO
2012044705 Apr 2012 WO
Related Publications (1)
Number Date Country
20220061875 A1 Mar 2022 US
Divisions (1)
Number Date Country
Parent 16704066 Dec 2019 US
Child 17521642 US