The present invention concerns the use of proteases expressed in tobacco to alter the characteristics of cured tobacco products. In particular, the invention provides processes for altering the curing of tobacco leaf and modulating tobacco leaf composition by modulating the expression of one or more tobacco protease genes.
Tobacco curing is a process of physical and biochemical changes that bring out the aroma and flavor of each variety of tobacco. After tobacco has been harvested, it is necessary to cure it and then age it before consumption, to improve its flavour. There are four common methods of curing, and the method used depends on the type of tobacco and its intended use.
Air-cured tobacco is sheltered from wind and sun in a well-ventilated chamber, where it air-dries for six to eight weeks. Air-cured tobacco is low in sugar, which gives the tobacco smoke a light, sweet flavor, and high in nicotine. Cigar and burley tobaccos are air cured. In fire curing, smoke from a low-burning fire permeates the leaves. This gives the leaves a distinctive smokey aroma and flavour. Fire curing takes three to ten weeks and produces a tobacco low in sugar and high in nicotine. Pipe tobacco, chewing tobacco, and snuff are fire cured.
Flue-cured tobacco is kept in an enclosed heated area, but it is not directly exposed to smoke. This method produces cigarette tobacco that is high in sugar and has medium to high levels of nicotine. It is the fastest method of curing, requiring about a week. Virginia tobacco that has been flue cured is also called bright tobacco, because flue curing turns its leaves gold, orange, or yellow.
Sun-cured tobacco dries uncovered in the sun. This method is used in Turkey, Greece and other Mediterranean countries to produce oriental tobacco. Sun-cured tobacco is low in sugar and nicotine and is used in cigarettes.
Curing produces various compounds in the tobacco leaves that give cured tobacco its specific flavour and taste, such as for example a sweet hay, tea, rose oil, or fruity aromatic flavor.
During the first phase of curing, corresponding to the so-called yellowing phase and also known as color curing, the chlorophyll content is reduced. This phase takes between 2 and 8 days depending on the tobacco type. During this phase leaf metabolic activities are drastically changed. Not only is chlorophyll degraded but also, for example, starch and proteins.
To date, the only methods for altering the curing process which have been proposed are base on altering the actual conditions to which the tobacco is exposed in the chosen curing procedure. Very little is known about gene expression in tobacco during curing, and moreover few data have been reported on the activities of proteases in tobacco leaf and their resulting products.
We have identified 80 protease genes that are activated during leaf curing in the three main tobacco types, Burley, Virginia and Oriental. We have found that specific protease expression is associated with particular flavour profiles in tobacco.
80 protease genes (SEQ ID NO: 1-80) were identified that are up-regulated in Burley tobacco upon air curing, Virginia tobacco upon flue-curing and Oriental tobacco upon sun curing. Details on such up-regulation in one or more of the different tobacco types are summarised in
Such gene sequences and their regulatory sequences can be used to modulate or modify protease activity during curing. The polynucleotide sequences SEQ ID NO: 1-80 include exon and intron sequences. The protein sequences relating to the coding sequence part of the polynucleotide sequences SEQ ID NO: 1-80, are depicted in SEQ ID NO: 81-160.
Accordingly, there is provided a mutant, non-naturally occurring or transgenic tobacco plant cell comprising:
and wherein the expression or activity of said protease is modulated as compared to a control tobacco plant cell in which the expression or activity of said protease has not been altered.
Alteration of protease expression in tobacco cells during the curing process imparts different flavours to the cured tobacco and products manufactured therefrom. The effects of different genes on different tobacco flavour profiles are further discussed below.
In embodiments, the expression or activity of said protease is upregulated compared to the control tobacco plant cell. However, in certain embodiments, the expression or activity of said protease is downregulated compared to the control tobacco plant cell. In still further embodiments, at least one protease can be upregulated at the same time as at least one protease is downregulated in the same cell.
In an exemplary embodiment, therefore, there is provided a mutant, non-naturally occurring or transgenic tobacco plant cell according to any preceding claim, wherein the expression or activity is modulated of a protease selected from:
at least one of SEQ ID NO: 1 to 16; or
at least one of SEQ ID NO: 30 to 41; or
at least one of SEQ ID NO: 17 to 22; or
at least one of SEQ ID NO: 42 to 44; or
at least one of SEQ ID NO: 45 to 61; or
at least one of SEQ ID NO: 62 to 80 or
at least one of SEQ ID NO: 23 to 29.
In a specific embodiment, there is provided a mutant, non-naturally occurring or transgenic tobacco plant cell according to claim 4, wherein the expression or activity of a protease selected from at least one of SEQ ID NO: 30 to 41 is modulated in an Oriental type tobacco.
In a specific embodiment, there is provided a mutant, non-naturally occurring or transgenic tobacco plant cell according to claim 4, wherein the expression or activity of a protease selected from SEQ ID NO: 17 to 22 is modulated in a Virginia type tobacco.
In a specific embodiment, there is provided a mutant, non-naturally occurring or transgenic tobacco plant cell according to claim 4, wherein the expression or activity of a protease selected from at least one of SEQ ID NO: 42 to 44 is modulated in a Burley type tobacco.
In a specific embodiment, there is provided a mutant, non-naturally occurring or transgenic tobacco plant cell according to claim 4, wherein the expression or activity of a protease selected from at least one of SEQ ID NO: 45 to 61 is modulated in a Virginia or Oriental type tobacco.
In a specific embodiment, there is provided a non-naturally occurring or transgenic tobacco plant cell according to claim 4, wherein the expression or activity of a protease selected from at least one of SEQ ID NO: 62 to 80 is modulated in a Burley or Oriental type tobacco.
In a specific embodiment, there is provided a mutant, non-naturally occurring or transgenic tobacco plant cell according to claim 4, wherein the expression or activity of a protease selected from at least one of SEQ ID NO: 23 to 29 is modulated in a Burley or Virginia type tobacco.
The mutant, non-naturally occurring or transgenic tobacco plant cell can be a tobacco plant cell wherein said mutation(s) is a heterozygous or homozygous mutation.
In embodiments of the invention, the expression of the one or more proteases is increased by about 10% to about 1000%, for example by at least 10%, at least 20%, at least 25%, at least 50%, at least 100%, at least 200%, at least 500%, at least 750% or up to 1000%.
In a second aspect, there is provided a mutant, non-naturally occurring or transgenic plant or component or part thereof comprising the plant cell according to the preceding aspect of the invention.
In a third aspect, there is provided plant material including biomass, seed, stem, flowers or leaves from the plant of the second aspect of the invention.
In a fourth aspect, there is provided a method for preparing a tobacco plant with modulated levels of protease, said method comprising the steps of:
(a) providing a plant comprising (i) a polynucleotide comprising, consisting or consisting essentially of a sequence encoding a functional protease and having at least 95% sequence identity to at least one of SEQ ID NO:1 to SEQ ID No: 80;
(b) inserting one or more mutations into said polynucleotide of said tobacco plant to create a mutant tobacco plant; and
(c) curing the tobacco plant material.
In some embodiments, the tobacco plant in step (b) is a mutant tobacco plant, preferably, wherein said mutant tobacco plant comprises one or more mutations in one or more further sequence encoding a functional protease and having at least 95% sequence identity to at least one of SEQ ID NO:1 to SEQ ID No: 80. Thus, a plant can be constructed in which one or more cells comprise multiple mutated proteases.
The mutated cells comprising modulated protease expression or activity are impart a different flavour profile to tobacco leaf during the curing process. By replicating a leaf chemistry of one tobacco type in another, it is possible to transfer flavour characteristics to a tobacco type which does not normally possess those characteristics.
In embodiments, the genome of a cell of a tobacco plant is modified by a genome editing technology or by genome engineering techniques selected from CRISPR/Cas technology, zinc finger nuclease-mediated mutagenesis, chemical or radiation mutagenesis, homologous recombination, oligonucleotide-directed mutagenesis and meganuclease-mediated mutagenesis.
In a further aspect, therefore, there is provided a method for producing cured plant material, preferably cured leaves, or flowers with an altered flavour profile as compared to control plant material comprising the steps of:
(a) providing a plant or the plant material according to the foregoing aspects of the invention;
(b) optionally harvesting the plant material therefrom; and
(c) curing the plant material for a period of time such that the levels of at least one protease are modulated compared to control cured plant material.
In a still further aspect, there is provided use of
The curing procedure in according to this aspect of the invention can be selected from the group consisting of air curing, fire curing, smoke curing and flue curing.
Modification or modulation of protease activity during curing can be through (further) up-regulation or down-regulation. Modification or modulation can be through genetic engineering using for example certain promoter sequences that are (at least) active during such curing. Modulation can also be through for example mutagenesis as claimed above, of such sequences and/or their regulatory region resulting in either up- or down-regulation, or complete knock-out, of the protease activity encoded thereby under the respective curing conditions.
In another embodiment there is provided the use of at least one of the 16 gene sequences SEQ ID NO: 1 to 16 (see Table 2), and sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to one or more of said 16 sequences that are up-regulated in all three types of tobacco during curing for modifying the flavour of cured tobacco.
In another embodiment there is provided the use of at least one of the 12 gene sequences SEQ ID NO: 30 to 41, and sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to one or more of said 12 sequences that are up-regulated both in air-cured Burley and flue-cured Virginia, in an Oriental type tobacco to modify the flavour of said tobacco during curing.
In another embodiment there is provided the use of at least one of the 6 gene sequences SEQ ID NO: 17 to 22, and sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to one or more of said 6 sequences, that are up-regulated both in air-cured Burley and sun-cured Oriental, in a Virginia type tobacco to modify the flavour of said tobacco during curing.
In another embodiment there is provided the use of at least one of the 3 gene sequences SEQ ID NO: 42 to 44, and sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to one or more of said 3 sequences that are up-regulated in both flue-cured Virginia and sun-cured Oriental tobacco, to modify the flavour of a Burley type tobacco during curing.
In another embodiment there is provided the use of at least one of the 17 gene sequences SEQ ID NO: 45 to 61, and sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to one or more of said 17 sequences, that are uniquely up-regulated in air-cured Burley, to modify the flavour in a Virginia or Oriental type tobacco during curing.
In another embodiment there is provided the use of at least one of the 19 gene sequences SEQ ID NO: 62 to 80, and sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to one or more of said 19 sequences, that are uniquely up-regulated in flue-cured Virginia, to modify the flavour in a Burley or Oriental type tobacco during curing.
In another embodiment there is provided the use of at least one of the 7 gene sequences SEQ ID NO: 23 to 29, and sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to one or more of said 7 sequences, that are uniquely up-regulated in sun-cured Oriental, to modify the flavour of a Burley or Virginia type tobacco during curing.
As certain gene sequences are only up-regulated in one or two of the three tobacco types (as defined according to tobacco type and curing method), certain gene sequences can potentially be used to modify or modulate protease activity during curing such that the outcome with respect to leaf chemistry (for example the metabolite content of cell) and properties of the obtained tobacco leaf cell, are changed such that for example an air-cured Burley tobacco acquires certain characteristics of a flue-cured Virginia-type tobacco or sun-cured Oriental tobacco upon curing. This for example can be done by modulating the expression of one or more of the gene sequences that are up-regulated in one or two of tobacco types and not in the other tobacco. For example, 17 gene sequences are uniquely up-regulated in air-cured Burley, 19 in flue-cured Virginia, and 12 in both types of tobacco during curing. By selectively modulating one or more of the 19 gene sequences that are only up-regulated in air-cured Burley now in flue-cured Virginia, the leaf cell composition of the sun-cured Virginia tobacco upon curing can be altered towards a more Burley type. Using a genetic engineering approach this can be achieved using for example a promoter sequence that is active under the curing conditions of the targeted tobacco type. Promoter sequences of use therefore are for example the regulatory sequences driving the expression of the gene sequences listed here. Using a mutagenesis, genome editing or engineering approach, the mutated gene sequence can be active under the curing conditions of the targeted tobacco type.
In one example, a regulatory sequence is mutated such that the gene sequence downstream is active under the desired curing conditions. For example, by selectively modifying or modulating the expression of one or more of the 19 sequences that are uniquely up-regulated in flue-cured Virginia in an air-cured Burley type of tobacco, the leaf cell composition of the Burley type tobacco upon curing can be altered towards a more Virginia type. Also, by selectively modulating the expression of one or more of the 12 sequences that are up-regulated both in air-cured Burley and flue-cured Virginia, in a sun-cured Oriental tobacco, the leaf cell composition of the sun-cured Oriental tobacco upon curing can be altered such that it acquires Burley and Virginia characteristics.
In one embodiment, one of the gene sequences listed in SEQ ID Nos: 1-80 or sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to one or more of the listed sequences, is up-regulated. In another embodiment more than one of the gene sequences listed in SEQ ID Nos: 1-80 or sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to such sequences, are up-regulated. In another embodiment, one or more of the gene sequences listed in SEQ ID Nos: 1-80 or sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to such listed sequences, are down-regulated. In another embodiment one or more of sequences listed in SEQ ID Nos: 1-80 or sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to such listed sequences are up-regulated, and one or more sequences listed in SEQ ID Nos: 1-80 or sequences comprising, consisting or consisting essentially of a sequence having at least 95% sequence identity to such listed sequences are down-regulated.
As curing conditions determine the ultimate leaf cell chemistry, such modification or modulation affects the way a consumer experiences a product made from such leaf material. Hence, the invention also provides tobacco leaves and products comprising such leaves, obtained according to the methods claimed above. Such products include but are not limited to chewing tobacco, tobacco sticks, extracts obtained therefrom and other smoking articles comprising such leaf material or a material derived therefrom.
The technical terms and expressions used within the scope of this application are generally to be given the meaning commonly applied to them in the pertinent art of plant and molecular biology. All of the following term definitions apply to the complete content of this application. The word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single step may fulfil the functions of several features recited in the claims. The terms “about”, “essentially” and “approximately” in the context of a given numerate value or range refers to a value or range that is within 20%, within 10%, or within 5%, 4%, 3%, 2% or 1% of the given value or range.
The term “isolated” refers to any entity that is taken from its natural milieu, but the term does not connote any degree of purification.
An “expression vector” is a nucleic acid vehicle that comprises a combination of nucleic acid components for enabling the expression of nucleic acid. Suitable expression vectors include episomes capable of extra-chromosomal replication such as circular, double-stranded nucleic acid plasmids; linearized double-stranded nucleic acid plasmids; and other functionally equivalent expression vectors of any origin. An expression vector comprises at least a promoter positioned upstream and operably-linked to a nucleic acid, nucleic acid constructs or nucleic acid conjugate, as defined below.
The term “construct” refers to a double-stranded, recombinant nucleic acid fragment comprising one or more polynucleotides. The construct comprises a “template strand” base-paired with a complementary “sense or coding strand.” A given construct can be inserted into a vector in two possible orientations, either in the same (or sense) orientation or in the reverse (or anti-sense) orientation with respect to the orientation of a promoter positioned within a vector—such as an expression vector.
A “vector” refers to a nucleic acid vehicle that comprises a combination of nucleic acid components for enabling the transport of nucleic acid, nucleic acid constructs and nucleic acid conjugates and the like. Suitable vectors include episomes capable of extra-chromosomal replication such as circular, double-stranded nucleic acid plasmids; linearized double-stranded nucleic acid plasmids; and other vectors of any origin.
A “promoter” refers to a nucleic acid element/sequence, typically positioned upstream and operably-linked to a double-stranded DNA fragment. Promoters can be derived entirely from regions proximate to a native gene of interest, or can be composed of different elements derived from different native promoters or synthetic DNA segments.
The terms “homology, identity or similarity” refer to the degree of sequence similarity between two polypeptides or between two nucleic acid molecules compared by sequence alignment. The degree of homology between two discrete nucleic acid sequences being compared is a function of the number of identical, or matching, nucleotides at comparable positions. The percent identity may be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two nucleic acid sequences may be determined by comparing sequence information using a computer program such as—ClustalW, BLAST, FASTA or Smith-Waterman.
A “variant” means a substantially similar sequence. A variant can have a similar function or substantially similar function as a wild-type sequence. For a protease, a similar function is at least about 50%, 60%, 70%, 80% or 90% of wild-type enzyme function under the same conditions. For a protease, a substantially similar function is at least about 90%, 95%, 96%, 97%, 98% or 99% of wild-type enzyme function under the same conditions. For example, wild-type protease sequences are set forth in SEQ ID Nos: 81-160. The variants can have one or more mutations that result in the enzyme having a reduced level of protease activity as compared to the wild-type protease. The variants can have one or more mutations that result in their protease activity being knocked out (i.e. a 100% inhibition, and thus a non-functional polypeptide). Variants can also have increased activity, leading to a more active protease enzyme function.
The term “plant” refers to any plant or part of a plant at any stage of its life cycle or development, and its progenies. In one embodiment, the plant is a “tobacco plant”, which refers to a plant belonging to the genus Nicotiana. Preferred species of tobacco plant are described herein.
“Plant parts” include plant cells, plant protoplasts, plant cell tissue cultures from which a whole plant can be regenerated, plant calli, plant clumps and plant cells that are intact in plants or parts of plants such as embryos, pollen, anthers, ovules, seeds, leaves, flowers, stems, branches, fruit, roots, root tips and the like. Progeny, variants and mutants of regenerated plants are also included within the scope of the disclosure, provided that they comprise the introduced polynucleotides described herein.
A “plant cell” refers to a structural and physiological unit of a plant. The plant cell may be in the form of a protoplast without a cell wall, an isolated single cell or a cultured cell, or as a part of higher organized unit such as but not limited to, plant tissue, a plant organ, or a whole plant.
The term “plant material” refers to any solid, liquid or gaseous composition, or a combination thereof, obtainable from a plant, including biomass, leaves, stems, roots, flowers or flower parts, fruits, pollen, egg cells, zygotes, seeds, cuttings, secretions, extracts, cell or tissue cultures, or any other parts or products of a plant. In one embodiment, the plant material comprises or consists of biomass, stem, seed or leaves. In another embodiment, the plant material comprises or consists of leaves.
The term “variety” refers to a population of plants that share constant characteristics which separate them from other plants of the same species. While possessing one or more distinctive traits, a variety is further characterized by a very small overall variation between individuals within that variety. A variety is often sold commercially.
A “type” of tobacco is defined by origin and curing method. Flue-cured tobacco, which accounts for 40% of global production, is also known as “Bright” and “Virginia” tobacco. It is used almost entirely in cigarette blends. Some of the heavier leaves may be used in mixtures for pipe smoking. Some English cigarettes are 100% flue-cured. Flue-cured leaf is characterized by a high sugar:nitrogen ratio. This ratio is enhanced by the picking of the leaf in an advanced stage of ripeness, and by the unique curing process which allows certain chemical changes to occur in the leaf. Cured leaves vary from lemon to orange to mahogany in colour.
Burley is light air-cured type derived from the White Burley which arose as a mutant on a farm in Ohio in 1864. Burley is used primarily in cigarette blends. Some of the heavier leaf is sued in pipe blends and also for chewing.
Cured burley leaf is characterized by low sugar content and a very low sugar to nitrogen ratio (high nicotine). This is enhanced by high Nitrogen fertilizer, harvesting at an early stage of senescence, and the air curing process which allows oxidation of any sugars which may have occurred.
Maryland is another light air-cured type. It is used to some extent in American blended cigarettes and to a greater extent in certain Swiss cigarette blends.
Maryland tobacco is extremely fluffy, has good burning properties, low nicotine, and neutral aroma.
Dark air-cured tobacco encompasses a number of types used mainly for chewing, snuff, cigar, and pipe blends. Most of the world production is confined to the tropics.
Oriental tobacco gives a mild smoke with very characteristic aroma. Resins, waxes and gum exuded by glandular hairs (trichomes) furnish the aroma. Nicotine is low averaging around 1.0%.
Dark-fired tobacco is used in the production of snuff, chewing tobacco, and pipe blends. Dark-fired leaves are subjected to smoke from smoldering wood during the early stage of curing. The type of wood used is very important in determining taste and grown. Cured leaves are very dark in color and are long and heavy bodied.
The term “modulating” may refer to reducing, inhibiting, increasing or otherwise affecting the expression or activity of a polypeptide. The term may also refer to reducing, inhibiting, increasing or otherwise affecting the activity of a gene encoding a polypeptide which can include, but is not limited to, modulating transcriptional activity.
The term “reduce” or “reduced” as used herein, refers to a reduction of from about 10% to about 99%, or a reduction of at least 10%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, at least 98%, at least 99%, or at least 100% or more of a quantity or an activity, such as but not limited to polypeptide activity, transcriptional activity and protein expression. The term “inhibit” or “inhibited” as used herein, refers to a reduction of from about 98% to about 100%, or a reduction of at least 98%, at least 99%, but particularly of 100%, of a quantity or an activity, such as but not limited to polypeptide activity, transcriptional activity and protein expression.
The term “increase” or “increased” as used herein, refers to an increase of from about 5% to about 99%, or an increase of at least 5%, at least 10%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, at least 98%, at least 99%, at least 100%, at least 500% or at least 1000% or more of a quantity or an activity, such as but not limited to polypeptide activity, transcriptional activity and protein expression.
The term “control” in the context of a control plant means a plant or plant cell in which the expression or activity of an enzyme has not been modified (for example, increased or reduced) and so it can provide a comparison with a plant in which the expression or activity of the enzyme has been modified. The control plant may comprise an empty vector. The control plant or plant cell may correspond to a wild-type plant or wild-type plant cell. For example, the control plant or plant cell can be the same genotype as the starting material for the genetic alteration that resulted in the subject plant. In all such cases, the subject plant and the control plant are cultured and harvested using the same protocols for comparative purposes. Changes in levels, ratios, activity, or distribution of the genes or polypeptides described herein, or changes in tobacco plant phenotype, particularly reduced production of proteases, can be measured by comparing a subject plant to the control plant, where the subject plant and the control plant have been cultured, harvested and cured using the same protocols. The control plant can provide a reference point for measuring changes in phenotype of the subject plant. The measurement of changes in phenotype can be measured at any time in a plant, including during plant development, senescence, or preferably after curing. Measurement of changes in phenotype can be measured in plants grown under any conditions, including from plants grown in growth chamber, greenhouse, or in a field. Changes in phenotype can be measured by determining the expression or activity of proteases identified herein in SEQ ID Nos 81-160.
In one embodiment, there is provided an isolated polynucleotide comprising, consisting or consisting essentially of a polynucleotide sequence having at least 95% sequence identity to any of the sequences described herein, including any of polynucleotides shown in the sequence listing. Suitably, the isolated polynucleotide comprises, consists or consists essentially of a sequence having at least 95%, 96%, 97%, 98%, 99% or 100% sequence identity thereto.
Suitably, the polynucleotide(s) described herein encode a protein with protease activity that is at least about 50%, 60%, 70%, 80%, 90% 95%, 96%, 97%, 98%, 99% 100% or more of the activity of the protein set forth in SEQ ID NOs: 81-160.
A polynucleotide as described herein can include a polymer of nucleotides, which may be unmodified or modified deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). Accordingly, a polynucleotide can be, without limitation, a genomic DNA, complementary DNA (cDNA), mRNA, or antisense RNA or a fragment(s) thereof. Moreover, a polynucleotide can be single-stranded or double-stranded DNA, DNA that is a mixture of single-stranded and double-stranded regions, a hybrid molecule comprising DNA and RNA, or a hybrid molecule with a mixture of single-stranded and double-stranded regions or a fragment(s) thereof. In addition, the polynucleotide can be composed of triple-stranded regions comprising DNA, RNA, or both or a fragment(s) thereof. A polynucleotide can contain one or more modified bases, such as phosphothioates, and can be a peptide nucleic acid. Generally, polynucleotides can be assembled from isolated or cloned fragments of cDNA, genomic DNA, oligonucleotides, or individual nucleotides, or a combination of the foregoing. Although the polynucleotide sequences described herein are shown as DNA sequences, the sequences include their corresponding RNA sequences, and their complementary (for example, completely complementary) DNA or RNA sequences, including the reverse complements thereof.
A polynucleotide as described herein will generally contain phosphodiester bonds, although in some cases, polynucleotide analogues are included that may have alternate backbones, comprising, for example, phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphophoroamidite linkages; and peptide polynucleotide backbones and linkages. Other analogue polynucleotides include those with positive backbones; non-ionic backbones, and non-ribose backbones. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, for example, to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring polynucleotides and analogues can be made; alternatively, mixtures of different polynucleotide analogues, and mixtures of naturally occurring polynucleotides and analogues may be made.
A variety of polynucleotide analogues are known, including, for example, phosphoramidate, phosphorothioate, phosphorodithioate, O-methylphophoroamidite linkages and peptide polynucleotide backbones and linkages. Other analogue polynucleotides include those with positive backbones, non-ionic backbones and non-ribose backbones. Polynucleotides containing one or more carbocyclic sugars are also included.
Other analogues include peptide polynucleotides which are peptide polynucleotide analogues. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring polynucleotides. This may result in advantages. First, the peptide polynucleotide backbone may exhibit improved hybridization kinetics. Peptide polynucleotides have larger changes in the melting temperature for mismatched versus perfectly matched base pairs. DNA and RNA typically exhibit a 2-4° C. drop in melting temperature for an internal mismatch. With the non-ionic peptide polynucleotide backbone, the drop is closer to 7-9° C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, peptide polynucleotides may not be degraded or degraded to a lesser extent by cellular enzymes, and thus may be more stable.
Among the uses of the disclosed polynucleotides, and fragments thereof, is the use of fragments as probes in nucleic acid hybridisation assays or primers for use in nucleic acid amplification assays. Such fragments generally comprise at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 or more contiguous nucleotides of a DNA sequence. In other embodiments, a DNA fragment comprises at least about 10, 15, 20, 30, 40, 50 or 60 or more contiguous nucleotides of a DNA sequence. Thus, in one aspect, there is also provided a method for detecting a polynucleotide encoding a protein with nicotine N-demethylase activity member or encoding a nicotine N-demethylase enzyme comprising the use of the probes or primers or both.
The basic parameters affecting the choice of hybridization conditions and guidance for devising suitable conditions are described by Sambrook, J., E. F. Fritsch, and T. Maniatis (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). Using knowledge of the genetic code in combination with the amino acid sequences described herein, sets of degenerate oligonucleotides can be prepared. Such oligonucleotides are useful as primers, for example, in polymerase chain reactions (PCR), whereby DNA fragments are isolated and amplified. In certain embodiments, degenerate primers can be used as probes for genetic libraries. Such libraries would include but are not limited to cDNA libraries, genomic libraries, and even electronic express sequence tag or DNA libraries. Homologous sequences identified by this method would then be used as probes to identify homologues of the sequences identified herein.
Also of potential use are polynucleotides and oligonucleotides (for example, primers or probes) that hybridize under reduced stringency conditions, typically moderately stringent conditions, and commonly highly stringent conditions to the polynucleotide(s) as described herein. The basic parameters affecting the choice of hybridization conditions and guidance for devising suitable conditions are set forth by Sambrook, J., E. F. Fritsch, and T. Maniatis (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and can be readily determined by those having ordinary skill in the art based on, for example, the length or base composition of the polynucleotide. One way of achieving moderately stringent conditions involves the use of a prewashing solution containing 5× Standard Sodium Citrate, 0.5% Sodium Dodecyl Sulphate, 1.0 mM Ethylenediaminetetraacetic acid (pH 8.0), hybridization buffer of about 50% formamide, 6× Standard Sodium Citrate, and a hybridization temperature of about 55° C. (or other similar hybridization solutions, such as one containing about 50% formamide, with a hybridization temperature of about 42° C.), and washing conditions of about 60° C., in 0.5× Standard Sodium Citrate, 0.1% Sodium Dodecyl Sulphate. Generally, highly stringent conditions are defined as hybridization conditions as above, but with washing at approximately 68° C., 0.2× Standard Sodium Citrate, 0.1% Sodium Dodecyl Sulphate. SSPE (1×SSPE is 0.15 M sodium chloride, 10 mM sodium phosphate, and 1.25 mM Ethylenediaminetetraacetic acid, pH 7.4) can be substituted for Standard Sodium Citrate (1× Standard Sodium Citrate is 0.15 M sodium chloride and 15 mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete. It should be understood that the wash temperature and wash salt concentration can be adjusted as necessary to achieve a desired degree of stringency by applying the basic principles that govern hybridization reactions and duplex stability, as known to those skilled in the art and described further below (see, for example, Sambrook, J., E. F. Fritsch, and T. Maniatis (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity. The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5 to 10° C. less than the melting temperature of the hybrid, where melting temperature is determined according to the following equations. For hybrids less than 18 base pairs in length, melting temperature (° C.)=2(number of A+T bases)+4(number of G+C bases). For hybrids above 18 base pairs in length, melting temperature (° C.)=81.5+16.6(log 10 [Na+])+0.41(% G+C)−(600/N), where N is the number of bases in the hybrid, and [Na+] is the concentration of sodium ions in the hybridization buffer ([Na+] for 1× Standard Sodium Citrate=0.165M). Typically, each such hybridizing polynucleotide has a length that is at least 25% (commonly at least 50%, 60%, or 70%, and most commonly at least 80%) of the length of a polynucleotide to which it hybridizes, and has at least 60% sequence identity (for example, at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%) with a polynucleotide to which it hybridizes.
As will be understood by the person skilled in the art, a linear DNA has two possible orientations: the 5′-to-3′ direction and the 3′-to-5′ direction. For example, if a reference sequence is positioned in the 5′-to-3′ direction, and if a second sequence is positioned in the 5′-to-3′ direction within the same polynucleotide molecule/strand, then the reference sequence and the second sequence are orientated in the same direction, or have the same orientation. Typically, a promoter sequence and a gene of interest under the regulation of the given promoter are positioned in the same orientation. However, with respect to the reference sequence positioned in the 5′-to-3′ direction, if a second sequence is positioned in the 3′-to-5′ direction within the same polynucleotide molecule/strand, then the reference sequence and the second sequence are orientated in anti-sense direction, or have anti-sense orientation. Two sequences having anti-sense orientations with respect to each other can be alternatively described as having the same orientation, if the reference sequence (5′-to-3′ direction) and the reverse complementary sequence of the reference sequence (reference sequence positioned in the 5′-to-3′) are positioned within the same polynucleotide molecule/strand. The sequences set forth herein are shown in the 5′-to-3′ direction.
Recombinant constructs provided herein can be used to transform plants or plant cells in order to modulate protein expression and/or activity levels. A recombinant polynucleotide construct can comprise a polynucleotide encoding one or more polynucleotides as described herein, operably linked to a regulatory region suitable for expressing the polypeptide. Thus, a polynucleotide can comprise a coding sequence that encodes the polypeptide as described herein. Plants or plant cells in which protein expression and/or activity levels are modulated can include mutant, non-naturally occurring, transgenic, man-made or genetically engineered plants or plant cells. Suitably, the transgenic plant or plant cell comprises a genome that has been altered by the stable integration of recombinant DNA. Recombinant DNA includes DNA which has been genetically engineered and constructed outside of a cell and includes DNA containing naturally occurring DNA or cDNA or synthetic DNA. A transgenic plant can include a plant regenerated from an originally-transformed plant cell and progeny transgenic plants from later generations or crosses of a transformed plant.
Suitably, the transgenic modification alters the expression or activity of the polynucleotide or the polypeptide described herein as compared to a control plant.
The polypeptide encoded by a recombinant polynucleotide can be a native polypeptide, or can be heterologous to the cell. In some cases, the recombinant construct contains a polynucleotide that modulates expression, operably linked to a regulatory region. Examples of suitable regulatory regions are described herein.
Vectors containing recombinant polynucleotide constructs such as those described herein are also provided. Suitable vector backbones include, for example, those routinely used in the art such as plasmids, viruses, artificial chromosomes, bacterial artificial chromosomes, yeast artificial chromosomes, or bacteriophage artificial chromosomes. Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, and retroviruses. Numerous vectors and expression systems are commercially available. The vectors can include, for example, origins of replication, scaffold attachment regions or markers. A marker gene can confer a selectable phenotype on a plant cell. For example, a marker can confer biocide resistance, such as resistance to an antibiotic (for example, kanamycin, G418, bleomycin, or hygromycin), or an herbicide (for example, glyphosate, chlorsulfuron or phosphinothricin). In addition, an expression vector can include a tag sequence designed to facilitate manipulation or detection (for example, purification or localization) of the expressed polypeptide. Tag sequences, such as luciferase, beta-glucuronidase, green fluorescent protein, glutathione S-transferase, polyhistidine, c-myc or hemagglutinin sequences typically are expressed as a fusion with the encoded polypeptide. Such tags can be inserted anywhere within the polypeptide, including at either the carboxyl or amino terminus.
A plant or plant cell can be transformed by having the recombinant polynucleotide integrated into its genome to become stably transformed. The plant or plant cell described herein can be stably transformed. Stably transformed cells typically retain the introduced polynucleotide with each cell division. A plant or plant cell can be transiently transformed such that the recombinant polynucleotide is not integrated into its genome. Transiently transformed cells typically lose all or some portion of the introduced recombinant polynucleotide with each cell division such that the introduced recombinant polynucleotide cannot be detected in daughter cells after a sufficient number of cell divisions.
A number of methods are available in the art for transforming a plant cell which are all encompassed herein, including biolistics, gene gun techniques, Agrobacterium-mediated transformation, viral vector-mediated transformation and electroporation. The Agrobacterium system for integration of foreign DNA into plant chromosomes has been extensively studied, modified, and exploited for plant genetic engineering. Naked recombinant DNA molecules comprising DNA sequences corresponding to the subject purified tobacco protein operably linked, in the sense or antisense orientation, to regulatory sequences are joined to appropriate T-DNA sequences by conventional methods. These are introduced into tobacco protoplasts by polyethylene glycol techniques or by electroporation techniques, both of which are standard. Alternatively, such vectors comprising recombinant DNA molecules encoding the subject purified tobacco protein are introduced into live Agrobacterium cells, which then transfer the DNA into the tobacco plant cells. Transformation by naked DNA without accompanying T-DNA vector sequences can be accomplished via fusion of tobacco protoplasts with DNA-containing liposomes or via electroporation. Naked DNA unaccompanied by T-DNA vector sequences can also be used to transform tobacco cells via inert, high velocity microprojectiles.
If a cell or cultured tissue is used as the recipient tissue for transformation, plants can be regenerated from transformed cultures if desired, by techniques known to those skilled in the art.
The choice of regulatory regions to be included in a recombinant construct depends upon several factors, including, but not limited to, efficiency, selectability, inducibility, desired expression level, and cell- or tissue-preferential expression. It is a routine matter for one of skill in the art to modulate the expression of a coding sequence by appropriately selecting and positioning regulatory regions relative to the coding sequence. Transcription of a polynucleotide can be modulated in a similar manner. Some suitable regulatory regions initiate transcription only, or predominantly, in certain cell types. Methods for identifying and characterizing regulatory regions in plant genomic DNA are known in the art.
Suitable promoters include tissue-specific promoters recognized by tissue-specific factors present in different tissues or cell types (for example, root-specific promoters, shoot-specific promoters, xylem-specific promoters), or present during different developmental stages, or present in response to different environmental conditions. Suitable promoters include constitutive promoters that can be activated in most cell types without requiring specific inducers. Examples of suitable promoters for controlling RNAi polypeptide production include the cauliflower mosaic virus 35S (CaMV/35S), SSU, OCS, lib4, usp, STLS1, B33, nos or ubiquitin- or phaseolin-promoters. Persons skilled in the art are capable of generating multiple variations of recombinant promoters.
Tissue-specific promoters are transcriptional control elements that are only active in particular cells or tissues at specific times during plant development, such as in vegetative tissues or reproductive tissues. Tissue-specific expression can be advantageous, for example, when the expression of polynucleotides in certain tissues is preferred. Examples of tissue-specific promoters under developmental control include promoters that can initiate transcription only (or primarily only) in certain tissues, such as vegetative tissues, for example, roots or leaves, or reproductive tissues, such as fruit, ovules, seeds, pollen, pistols, flowers, or any embryonic tissue. Reproductive tissue-specific promoters may be, for example, anther-specific, ovule-specific, embryo-specific, endosperm-specific, integument-specific, seed and seed coat-specific, pollen-specific, petal-specific, sepal-specific, or combinations thereof.
Suitable leaf-specific promoters include pyruvate, orthophosphate dikinase (PPDK) promoter from C4 plant (maize), cab-m1Ca+2 promoter from maize, the Arabidopsis thaliana myb-related gene promoter (Atmyb5), the ribulose biphosphate carboxylase (RBCS) promoters (for example, the tomato RBCS 1, RBCS2 and RBCS3A genes expressed in leaves and light-grown seedlings, RBCS1 and RBCS2 expressed in developing tomato fruits or ribulose bisphosphate carboxylase promoter expressed almost exclusively in mesophyll cells in leaf blades and leaf sheaths at high levels).
Suitable senescence-specific promoters include a tomato promoter active during fruit ripening, senescence and abscission of leaves, a maize promoter of gene encoding a cysteine protease, the promoter of 82E4 and the promoter of SAG genes. Suitable anther-specific promoters can be used. Suitable root-preferred promoters known to persons skilled in the art may be selected. Suitable seed-preferred promoters include both seed-specific promoters (those promoters active during seed development such as promoters of seed storage proteins) and seed-germinating promoters (those promoters active during seed germination). Such seed-preferred promoters include, but are not limited to, Cim1 (cytokinin-induced message); cZ19B1 (maize 19 kDa zein); milps (myo-inositol-1-phosphate synthase); mZE40-2, also known as Zm-40; nucic; and celA (cellulose synthase). Gama-zein is an endosperm-specific promoter. Glob-1 is an embryo-specific promoter. For dicots, seed-specific promoters include, but are not limited to, bean beta-phaseolin, napin, β-conglycinin, soybean lectin, cruciferin, and the like. For monocots, seed-specific promoters include, but are not limited to, a maize 15 kDa zein promoter, a 22 kDa zein promoter, a 27 kDa zein promoter, a g-zein promoter, a 27 kDa gamma-zein promoter (such as gzw64A promoter, see Genbank Accession number S78780), a waxy promoter, a shrunken 1 promoter, a shrunken 2 promoter, a globulin 1 promoter (see Genbank Accession number L22344), an Itp2 promoter, cim1 promoter, maize end1 and end2 promoters, nuc1 promoter, Zm40 promoter, eep1 and eep2; led, thioredoxin H promoter; mlip15 promoter, PCNA2 promoter; and the shrunken-2 promoter.
Examples of inducible promoters include promoters responsive to pathogen attack, anaerobic conditions, elevated temperature, light, drought, cold temperature, or high salt concentration. Pathogen-inducible promoters include those from pathogenesis-related proteins (PR proteins), which are induced following infection by a pathogen (for example, PR proteins, SAR proteins, beta-1,3-glucanase, chitinase).
In addition to plant promoters, other suitable promoters may be derived from bacterial origin for example, the octopine synthase promoter, the nopaline synthase promoter and other promoters derived from Ti plasmids, or may be derived from viral promoters (for example, 35S and 19S RNA promoters of cauliflower mosaic virus (CaMV), constitutive promoters of tobacco mosaic virus, cauliflower mosaic virus (CaMV) 19S and 35S promoters, or figwort mosaic virus 35S promoter).
Preferred promoters include the control elements provided herein, as part of SEQ ID Nos. 1-80, which demonstrate desirable expression during curing procedures in tobacco leaf.
In another aspect, there is provided an isolated polypeptide comprising, consisting or consisting essentially of a polypeptide sequence having at least 95% sequence identity to any of the polypeptide sequences described herein, including any of the polypeptides shown in the sequence listing. Suitably, the isolated polypeptide comprises, consists or consists essentially of a sequence having at least 95% 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9% or 100% sequence identity thereto.
The polypeptide can include sequences comprising a sufficient or substantial degree of identity or similarity to SEQ ID NOs: 81-160 to function as proteases. Fragments of the polypeptide(s) typically retain some or all of the activity of the full length sequence.
As discussed herein, the polypeptides also include mutants produced by introducing any type of alterations (for example, insertions, deletions, or substitutions of amino acids; changes in glycosylation states; changes that affect refolding or isomerizations, three-dimensional structures, or self-association states), which can be deliberately engineered or isolated naturally provided that they still have some or all of their function or activity as a protease. Suitably, the function or activity as a protease is modulated, increased or reduced. Polypeptides include variants produced by introducing any type of alterations (for example, insertions, deletions, or substitutions of amino acids; changes in glycosylation states; changes that affect refolding or isomerizations, three-dimensional structures, or self-association states), which can be deliberately engineered or isolated naturally. The variant may have alterations which produce a silent change and result in a functionally equivalent protein. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine. Conservative substitutions may be made, for example according to the Table below. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:
The polypeptide may be a mature protein or an immature protein or a protein derived from an immature protein. Polypeptides may be in linear form or cyclized using known methods. Polypeptides typically comprise at least 10, at least 20, at least 30, or at least 40 contiguous amino acids.
A tobacco plant or plant cell comprising a mutation in a gene encoding a protease as described herein is disclosed, wherein said mutation results in modulated expression or modulated function of said protease. The expression or function of the protease(s) may be enhanced. Aside from one or more mutations in said protease, the mutant plants or plant cells can have one or more further mutations in one or more other genes or polypeptides. In certain embodiments, aside from the one or more mutations in a protease gene, the mutants can have one or more further mutations in one or more other genes or polypeptides—such as one or more other protease genes or polypeptides as described in the Sequence Listing. Suitably, a protease is expressed in the leaves of the mutant plant during the curing procedure.
There is also provided a method for modulating the level of a protease in a (cured) tobacco plant or in (cured) tobacco plant material said method comprising introducing into the genome of said plant one or more mutations that modulate expression of at least one protease gene, wherein said at least one protease gene is selected from SEQ ID Nos: 1-80. There is also provided a method for identifying a tobacco plant with increased levels of protease, said method comprising screening a nucleic acid sample from a tobacco plant of interest for the presence of one or more mutations in SEQ ID NOs:1-80, and optionally correlating the identified mutation(s) with mutation(s) that are known to modulate levels of protease.
There is also disclosed a tobacco plant or plant cell that is heterozygous or homozygous for mutations in a gene encoding a protease, wherein said mutation results in modulated (enhanced or reduced) expression or function of said protease.
A number of approaches can be used to combine mutations in one plant including sexual crossing. A plant having one or more favourable heterozygous or homozygous mutations in a protease gene that enhances or reduces protease expression or activity can be crossed with a plant having one or more favourable heterozygous or homozygous mutations in one or more other protease genes that enhance or reduce protease activity. In one embodiment, crosses are made in order to introduce one or more favourable heterozygous or homozygous mutations within a protease gene within the same plant.
The activity of one or more protease polypeptides in a tobacco plant is reduced or enhanced according to the present disclosure if the protease activity is statistically lower or higher than the protease activity of the same protease(s) in a tobacco plant that has not been modified to inhibit the activity of that protease polypeptide and which has been cultured, harvested and cured using the same protocols.
In some embodiments, the mutation(s) is introduced into a tobacco plant or plant cell using a mutagenesis approach, and the introduced mutation is identified or selected using methods known to those of skill in the art—such as Southern blot analysis, DNA sequencing, PCR analysis, or phenotypic analysis. Mutations that impact gene expression or that interfere with the function of the encoded protein can be determined using methods that are well known in the art. Insertional mutations in gene exons usually result in null-mutants. Mutations in conserved residues can be particularly effective in inhibiting the metabolic function of the encoded protein.
Methods for obtaining mutant polynucleotides and polypeptides are also disclosed. Any plant of interest, including a plant cell or plant material can be genetically modified by various methods known to induce mutagenesis, including site-directed mutagenesis, oligonucleotide-directed mutagenesis, chemically-induced mutagenesis, irradiation-induced mutagenesis, mutagenesis utilizing modified bases, mutagenesis utilizing gapped duplex DNA, double-strand break mutagenesis, mutagenesis utilizing repair-deficient host strains, mutagenesis by total gene synthesis, DNA shuffling and other equivalent methods.
Fragments of protease polynucleotides and polypeptides encoded thereby are also disclosed. Fragments of a polynucleotide may encode protein fragments that retain the biological activity of the native protein and hence are involved in the metabolic conversion of nicotine to nornicotine. Alternatively, fragments of a polynucleotide that are useful as hybridization probes or PCR primers generally do not encode fragment proteins retaining biological activity. Furthermore, fragments of the disclosed nucleotide sequences include those that can be assembled within recombinant constructs as discussed herein. Fragments of a polynucleotide sequence may range from at least about 25 nucleotides, about 50 nucleotides, about 75 nucleotides, about 100 nucleotides about 150 nucleotides, about 200 nucleotides, about 250 nucleotides, about 300 nucleotides, about 400 nucleotides, about 500 nucleotides, about 600 nucleotides, about 700 nucleotides, about 800 nucleotides, about 900 nucleotides, about 1000 nucleotides, about 1100 nucleotides, about 1200 nucleotides, about 1300 nucleotides or about 1400 nucleotides and up to the full-length polynucleotide encoding the polypeptides described herein. Fragments of a polypeptide sequence may range from at least about 25 amino acids, about 50 amino acids, about 75 amino acids, about 100 amino acids about 150 amino acids, about 200 amino acids, about 250 amino acids, about 300 amino acids, about 400 amino acids, about 500 amino acids, and up to the full-length polypeptide described herein.
Mutant polypeptide variants can be used to create mutant, non-naturally occurring or transgenic plants (for example, mutant, non-naturally occurring, transgenic, man-made or genetically engineered plants) or plant cells comprising one or more mutant polypeptide variants. Suitably, mutant polypeptide variants retain the activity of the unmutated polypeptide. The activity of the mutant polypeptide variant may be higher, lower or about the same as the unmutated polypeptide.
Mutations in the nucleotide sequences and polypeptides described herein can include man-made mutations or synthetic mutations or genetically engineered mutations. Mutations in the nucleotide sequences and polypeptides described herein can be mutations that are obtained or obtainable via a process which includes an in vitro or an in vivo manipulation step. Mutations in the nucleotide sequences and polypeptides described herein can be mutations that are obtained or obtainable via a process which includes intervention by man. By way of example, the process may include mutagenesis using exogenously added chemicals—such as mutagenic, teratogenic, or carcinogenic organic compounds, for example ethyl methanesulfonate (EMS), that produce random mutations in genetic material. By way of further example, the process may include one or more genetic engineering steps—such as one or more of the genetic engineering steps that are described herein or combinations thereof. By way of further example, the process may include one or more plant crossing steps.
A polypeptide may be prepared by culturing transformed or recombinant host cells under culture conditions suitable to express a polypeptide. The resulting expressed polypeptide may then be purified from such culture using known purification processes. The purification of the polypeptide may include an affinity column containing agents which will bind to the polypeptide; one or more column steps over such affinity resins; one or more steps involving hydrophobic interaction chromatography; or immunoaffinity chromatography. Alternatively, the polypeptide may also be expressed in a form that will facilitate purification. For example, it may be expressed as a fusion polypeptide, such as those of maltose binding polypeptide, glutathione-5-transferase, his-tag or thioredoxin. Kits for expression and purification of fusion polypeptides are commercially available. The polypeptide may be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One or more liquid chromatography steps—such as reverse-phase high performance liquid chromatography can be employed to further purify the polypeptide. Some or all of the foregoing purification steps, in various combinations, can be employed to provide a substantially homogeneous recombinant polypeptide. The polypeptide thus purified may be substantially free of other polypeptides and is defined herein as a “substantially purified polypeptide”; such purified polypeptides include polypeptides, fragments, variants, and the like. Expression, isolation, and purification of the polypeptides and fragments can be accomplished by any suitable technique, including but not limited to the methods described herein.
It is also possible to utilise an affinity column such as a monoclonal antibody generated against polypeptides, to affinity-purify expressed polypeptides. These polypeptides can be removed from an affinity column using conventional techniques, for example, in a high salt elution buffer and then dialyzed into a lower salt buffer for use or by changing pH or other components depending on the affinity matrix utilized, or be competitively removed using the naturally occurring substrate of the affinity moiety.
Isolated or substantially purified polynucleotides or protein compositions are disclosed. An “isolated” or “purified” polynucleotide or protein, or biologically active portion thereof, is substantially or essentially free from components that normally accompany or interact with the polynucleotide or protein as found in its naturally occurring environment. Thus, an isolated or purified polynucleotide or protein is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Optimally, an “isolated” polynucleotide is free of sequences (optimally protein encoding sequences) that naturally flank the polynucleotide (for example, sequences located at the 5′ and 3′ ends of the polynucleotide) in the genomic DNA of the organism from which the polynucleotide is derived. For example, in various embodiments, the isolated polynucleotide can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequence that naturally flank the polynucleotide in genomic DNA of the cell from which the polynucleotide is derived. A protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, 5%, or 1% (by dry weight) of contaminating protein.
A polypeptide may also be produced by known conventional chemical synthesis. Methods for constructing the polypeptides or fragments thereof by synthetic means are known to those skilled in the art. The synthetically-constructed polypeptide sequences, by virtue of sharing primary, secondary or tertiary structural or conformational characteristics with native polypeptides may possess biological properties in common therewith, including biological activity.
The term ‘non-naturally occurring’ as used herein describes an entity (for example, a polynucleotide, a genetic mutation, a polypeptide, a plant, a plant cell and plant material) that is not formed by nature or that does not exist in nature. Such non-naturally occurring entities or artificial entities may be made, synthesized, initiated, modified, intervened, or manipulated by methods described herein or that are known in the art. Such non-naturally occurring entities or artificial entities may be made, synthesized, initiated, modified, intervened, or manipulated by man. Thus, by way of example, a non-naturally occurring plant, a non-naturally occurring plant cell or non-naturally occurring plant material may be made using traditional plant breeding techniques—such as backcrossing—or by genetic manipulation technologies—such as antisense RNA, interfering RNA, meganuclease and the like. By way of further example, a non-naturally occurring plant, a non-naturally occurring plant cell or non-naturally occurring plant material may be made by introgression of or by transferring one or more genetic mutations (for example one or more polymorphisms) from a first plant or plant cell into a second plant or plant cell (which may itself be naturally occurring), such that the resulting plant, plant cell or plant material or the progeny thereof comprises a genetic constitution (for example, a genome, a chromosome or a segment thereof) that is not formed by nature or that does not exist in nature. The resulting plant, plant cell or plant material is thus artificial or non-naturally occurring. Accordingly, an artificial or non-naturally occurring plant or plant cell may be made by modifying a genetic sequence in a first naturally occurring plant or plant cell, even if the resulting genetic sequence occurs naturally in a second plant or plant cell that comprises a different genetic background from the first plant or plant cell. In certain embodiments, a mutation is not a naturally occurring mutation that exists naturally in a nucleotide sequence or a polypeptide—such as a gene or a protein.
Differences in genetic background can be detected by phenotypic differences or by molecular biology techniques known in the art—such as nucleic acid sequencing, presence or absence of genetic markers (for example, microsatellite RNA markers).
Antibodies that are immunoreactive with the polypeptides described herein are also provided. The polypeptides, fragments, variants, fusion polypeptides, and the like, as set forth herein, can be employed as “immunogens” in producing antibodies immunoreactive therewith. Such antibodies may specifically bind to the polypeptide via the antigen-binding sites of the antibody. Specifically binding antibodies are those that will specifically recognize and bind with a polypeptide, homologues, and variants, but not with other molecules. In one embodiment, the antibodies are specific for polypeptides having an amino acid sequence as set forth herein and do not cross-react with other polypeptides.
More specifically, the polypeptides, fragment, variants, fusion polypeptides, and the like contain antigenic determinants or epitopes that elicit the formation of antibodies. These antigenic determinants or epitopes can be either linear or conformational (discontinuous). Linear epitopes are composed of a single section of amino acids of the polypeptide, while conformational or discontinuous epitopes are composed of amino acids sections from different regions of the polypeptide chain that are brought into close proximity upon polypeptide folding. Epitopes can be identified by any of the methods known in the art. Additionally, epitopes from the polypeptides can be used as research reagents, in assays, and to purify specific binding antibodies from substances such as polyclonal sera or supernatants from cultured hybridomas. Such epitopes or variants thereof can be produced using techniques known in the art such as solid-phase synthesis, chemical or enzymatic cleavage of a polypeptide, or using recombinant DNA technology.
Both polyclonal and monoclonal antibodies to the polypeptides can be prepared by conventional techniques. Hybridoma cell lines that produce monoclonal antibodies specific for the polypeptides are also contemplated herein. Such hybridomas can be produced and identified by conventional techniques. For the production of antibodies, various host animals may be immunized by injection with a polypeptide, fragment, variant, or mutants thereof. Such host animals may include, but are not limited to, rabbits, mice, and rats, to name a few. Various adjutants may be used to increase the immunological response. Depending on the host species, such adjuvants include, but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminium hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. The monoclonal antibodies can be recovered by conventional techniques. Such monoclonal antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD, and any subclass thereof.
The antibodies can also be used in assays to detect the presence of the polypeptides or fragments, either in vitro or in vivo. The antibodies also can be employed in purifying polypeptides or fragments by immunoaffinity chromatography.
Other than mutagenesis, compositions that can modulate the expression or the activity of one or more of the proteases described herein include, but are not limited to, sequence-specific polynucleotides that can interfere with the transcription of one or more endogenous gene(s); sequence-specific polynucleotides that can interfere with the translation of RNA transcripts (for example, double-stranded RNAs, siRNAs, ribozymes); sequence-specific polypeptides that can interfere with the stability of one or more proteins; sequence-specific polynucleotides that can interfere with the enzymatic activity of one or more proteins or the binding activity of one or more proteins with respect to substrates or regulatory proteins; antibodies that exhibit specificity for one or more proteins; small molecule compounds that can interfere with the stability of one or more proteins or the enzymatic activity of one or more proteins or the binding activity of one or more proteins; zinc finger proteins that bind one or more polynucleotides; and meganucleases that have activity towards one or more polynucleotides. Gene editing technologies, genetic editing technologies and genome editing technologies are well known in the art.
One method of gene editing involves the use of transcription activator-like effector nucleases (TALENs) which induce double-strand breaks which cells can respond to with repair mechanisms. Non-homologous end joining reconnects DNA from either side of a double-strand break where there is very little or no sequence overlap for annealing. This repair mechanism induces errors in the genome via insertion or deletion, or chromosomal rearrangement. Any such errors may render the gene products coded at that location non-functional. Another method of gene editing involves the use of the bacterial CRISPR/Cas system. Bacteria and archaea exhibit chromosomal elements called clustered regularly interspaced short palindromic repeats (CRISPR) that are part of an adaptive immune system that protects against invading viral and plasmid DNA. In Type II CRISPR systems, CRISPR RNAs (crRNAs) function with trans-activating crRNA (tracrRNA) and CRISPR-associated (Cas) proteins to introduce double-stranded breaks in target DNA. Target cleavage by Cas9 requires base-pairing between the crRNA and tracrRNA as well as base pairing between the crRNA and the target DNA. Target recognition is facilitated by the presence of a short motif called a protospacer-adjacent motif (PAM) that conforms to the sequence NGG. This system can be harnessed for genome editing. Cas9 is normally programmed by a dual RNA consisting of the crRNA and tracrRNA. However, the core components of these RNAs can be combined into a single hybrid ‘guide RNA’ for Cas9 targeting. The use of a noncoding RNA guide to target DNA for site-specific cleavage promises to be significantly more straightforward than existing technologies—such as TALENs. Using the CRISPR/Cas strategy, retargeting the nuclease complex only requires introduction of a new RNA sequence and there is no need to reengineer the specificity of protein transcription factors. Antisense technology is another well-known method that can be used to modulate the expression of a polypeptide. A polynucleotide of the gene to be repressed is cloned and operably linked to a regulatory region and a transcription termination sequence so that the antisense strand of RNA is transcribed. The recombinant construct is then transformed into a plant cell and the antisense strand of RNA is produced. The polynucleotide need not be the entire sequence of the gene to be repressed, but typically will be substantially complementary to at least a portion of the sense strand of the gene to be repressed.
A polynucleotide may be transcribed into a ribozyme, or catalytic RNA, that affects expression of an mRNA. Ribozymes can be designed to specifically pair with virtually any target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. Heterologous polynucleotides can encode ribozymes designed to cleave particular mRNA transcripts, thus preventing expression of a polypeptide. Hammerhead ribozymes are useful for destroying particular mRNAs, although various ribozymes that cleave mRNA at site-specific recognition sequences can be used. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target RNA contains a 5′-UG-3′ nucleotide sequence. The construction and production of hammerhead ribozymes is known in the art. Hammerhead ribozyme sequences can be embedded in a stable RNA such as a transfer RNA (tRNA) to increase cleavage efficiency in vivo.
In one embodiment, the sequence-specific polynucleotide that can interfere with the translation of RNA transcript(s) is interfering RNA. RNA interference or RNA silencing is an evolutionarily conserved process by which specific mRNAs can be targeted for enzymatic degradation. A double-stranded RNA (double-stranded RNA) is introduced or produced by a cell (for example, double-stranded RNA virus, or interfering RNA polynucleotides) to initiate the interfering RNA pathway. The double-stranded RNA can be converted into multiple small interfering RNA duplexes of 21-24 bp length by RNases III, which are double-stranded RNA-specific endonucleases. The small interfering RNAs can be subsequently recognized by RNA-induced silencing complexes that promote the unwinding of small interfering RNA through an ATP-dependent process. The unwound antisense strand of the small interfering RNA guides the activated RNA-induced silencing complexes to the targeted mRNA comprising a sequence complementary to the small interfering RNA anti-sense strand. The targeted mRNA and the anti-sense strand can form an A-form helix, and the major groove of the A-form helix can be recognized by the activated RNA-induced silencing complexes. The target mRNA can be cleaved by activated RNA-induced silencing complexes at a single site defined by the binding site of the 5′-end of the small interfering RNA strand. The activated RNA-induced silencing complexes can be recycled to catalyze another cleavage event. Interfering RNA expression vectors may comprise interfering RNA constructs encoding interfering RNA polynucleotides that exhibit RNA interference activity by reducing the expression level of mRNAs, pre-mRNAs, or related RNA variants. The expression vectors may comprise a promoter positioned upstream and operably-linked to an Interfering RNA construct, as further described herein. Interfering RNA expression vectors may comprise a suitable minimal core promoter, a Interfering RNA construct of interest, an upstream (5′) regulatory region, a downstream (3′) regulatory region, including transcription termination and polyadenylation signals, and other sequences known to persons skilled in the art, such as various selection markers.
Various embodiments are directed to methods for modulating the expression level of one or more of the polynucleotide(s) described herein (or any combination thereof as described herein) by integrating multiple copies of the polynucleotide(s) into a (tobacco) plant genome, comprising: transforming a plant cell host with an expression vector that comprises a promoter operably-linked to a polynucleotide.
Various compositions and methods are provided for modulating the endogenous gene expression level by modulating the translation of mRNA. A host (tobacco) plant cell can be transformed with an expression vector comprising: a promoter operably-linked to a polynucleotide, positioned in anti-sense orientation with respect to the promoter to enable the expression of RNA polynucleotides having a sequence complementary to a portion of mRNA.
Various expression vectors for modulating the translation of mRNA may comprise: a promoter operably-linked to a polynucleotide in which the sequence is positioned in anti-sense orientation with respect to the promoter. The lengths of anti-sense RNA polynucleotides can vary, and may be from about 15-20 nucleotides, about 20-30 nucleotides, about 30-50 nucleotides, about 50-75 nucleotides, about 75-100 nucleotides, about 100-150 nucleotides, about 150-200 nucleotides, and about 200-300 nucleotides.
As discussed herein, the expression of one or more polypeptides can be modulated by non-transgenic means—such as creating one or more mutations in one or more genes, as discussed herein. Methods that introduce a mutation randomly in a gene sequence can include chemical mutagenesis, EMS mutagenesis and radiation mutagenesis. Methods that introduce one or more targeted mutations into a cell include but are not limited to genome editing technology, particularly zinc finger nuclease-mediated mutagenesis and targeting induced local lesions in genomes (TILLING), homologous recombination, oligonucleotide-directed mutagenesis, and meganuclease-mediated mutagenesis. In one embodiment, TILLING is used. This is a mutagenesis technology that can be used to generate and/or identify polynucleotides encoding polypeptides with modified expression and/or activity. TILLING also allows selection of plants carrying such mutants. TILLING combines high-density mutagenesis with high-throughput screening methods. Methods for TILLING are well known in the art (see McCallum et al., (2000) Nat Biotechnol 18: 455-457 and Stemple (2004) Nat Rev Genet 5(2): 145-50).
Specific mutations in polynucleotides can be created that can result in modulated gene expression, modulated stability of mRNA, or modulated stability of protein. Such plants are referred to herein as “non-naturally occurring” or “mutant” plants. Typically, the mutant or non-naturally occurring plants will include at least a portion of foreign or synthetic or man-made nucleic acid (for example, DNA or RNA) that was not present in the plant before it was manipulated. The foreign nucleic acid may be a single nucleotide, two or more nucleotides, two or more contiguous nucleotides or two or more non-contiguous nucleotides—such as at least 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400 or 1500 or more contiguous or non-contiguous nucleotides.
The mutant or non-naturally occurring plants or plant cells can have any combination of one or more mutations in one or more genes which results in modulated protein levels. For example, the mutant or non-naturally occurring plants or plant cells may have a single mutation in a single gene; multiple mutations in a single gene; a single mutation in two or more or three or more or four or more genes; or multiple mutations in two or more or three or more or four or more genes. Examples of such mutations are described herein. By way of further example, the mutant or non-naturally occurring plants or plant cells may have one or more mutations in a specific portion of the gene(s)—such as in a region of the gene that encodes an active site of the protein or a portion thereof. By way of further example, the mutant or non-naturally occurring plants or plant cells may have one or more mutations in a region outside of one or more gene(s)—such as in a region upstream or downstream of the gene it regulates provided that they modulate the activity or expression of the gene(s). Upstream elements can include promoters, enhancers or transription factors. Some elements—such as enhancers—can be positioned upstream or downstream of the gene it regulates. The element(s) need not be located near to the gene that it regulates since some elements have been found located several hundred thousand base pairs upstream or downstream of the gene that it regulates. The mutant or non-naturally occurring plants or plant cells may have one or more mutations located within the first 100 nucleotides of the gene(s), within the first 200 nucleotides of the gene(s), within the first 300 nucleotides of the gene(s), within the first 400 nucleotides of the gene(s), within the first 500 nucleotides of the gene(s), within the first 600 nucleotides of the gene(s), within the first 700 nucleotides of the gene(s), within the first 800 nucleotides of the gene(s), within the first 900 nucleotides of the gene(s), within the first 1000 nucleotides of the gene(s), within the first 1100 nucleotides of the gene(s), within the first 1200 nucleotides of the gene(s), within the first 1300 nucleotides of the gene(s), within the first 1400 nucleotides of the gene(s) or within the first 1500 nucleotides of the gene(s). The mutant or non-naturally occurring plants or plant cells may have one or more mutations located within the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, thirteenth, fourteenth or fifteenth set of 100 nucleotides of the gene(s) or combinations thereof. Mutant or non-naturally occurring plants or plant cells (for example, mutant, non-naturally occurring or transgenic plants or plant cells and the like, as described herein) comprising the mutant polypeptide variants are disclosed.
In one embodiment, seeds from plants are mutagenised and then grown into first generation mutant plants. The first generation plants are then allowed to self-pollinate and seeds from the first generation plant are grown into second generation plants, which are then screened for mutations in their loci. Though the mutagenized plant material can be screened for mutations, an advantage of screening the second generation plants is that all somatic mutations correspond to germline mutations. One of skill in the art would understand that a variety of plant materials, including but not limited to, seeds, pollen, plant tissue or plant cells, may be mutagenised in order to create the mutant plants. However, the type of plant material mutagenised may affect when the plant nucleic acid is screened for mutations. For example, when pollen is subjected to mutagenesis prior to pollination of a non-mutagenized plant the seeds resulting from that pollination are grown into first generation plants. Every cell of the first generation plants will contain mutations created in the pollen; thus these first generation plants may then be screened for mutations instead of waiting until the second generation.
Mutagens that create primarily point mutations and short deletions, insertions, transversions, and or transitions, including chemical mutagens or radiation, may be used to create the mutations. Mutagens include, but are not limited to, ethyl methanesulfonate, methylmethane sulfonate, N-ethyl-N-nitrosurea, triethylmelamine, N-methyl-N-nitrosourea, procarbazine, chlorambucil, cyclophosphamide, diethyl sulfate, acrylamide monomer, melphalan, nitrogen mustard, vincristine, dimethylnitrosamine, N-methyl-N′-nitro-Nitrosoguanidine, nitrosoguanidine, 2-aminopurine, 7,12 dimethyl-benz(a)anthracene, ethylene oxide, hexamethylphosphoramide, bisulfan, diepoxyalkanes (diepoxyoctane, diepoxybutane, and the like), 2-methoxy-6-chloro-9[3-(ethyl-2-chloro-ethyl)aminopropylamino]acridine dihydrochloride and formaldehyde.
Spontaneous mutations in the locus that may not have been directly caused by the mutagen are also contemplated provided that they result in the desired phenotype. Suitable mutagenic agents can also include, for example, ionising radiation—such as X-rays, gamma rays, fast neutron irradiation and UV radiation. Any method of plant nucleic acid preparation known to those of skill in the art may be used to prepare the plant nucleic acid for mutation screening.
Prepared nucleic acid from individual plants, plant cells, or plant material can optionally be pooled in order to expedite screening for mutations in the population of plants originating from the mutagenized plant tissue, cells or material. One or more subsequent generations of plants, plant cells or plant material can be screened. The size of the optionally pooled group is dependent upon the sensitivity of the screening method used.
After the nucleic acid samples are optionally pooled, they can be subjected to polynucleotide-specific amplification techniques, such as Polymerase Chain Reaction. Any one or more primers or probes specific to the gene or the sequences immediately adjacent to the gene may be utilized to amplify the sequences within the optionally pooled nucleic acid sample. Suitably, the one or more primers or probes are designed to amplify the regions of the locus where useful mutations are most likely to arise. Most preferably, the primer is designed to detect mutations within regions of the polynucleotide. Additionally, it is preferable for the primer(s) and probe(s) to avoid known polymorphic sites in order to ease screening for point mutations. To facilitate detection of amplification products, the one or more primers or probes may be labelled using any conventional labelling method. Primer(s) or probe(s) can be designed based upon the sequences described herein using methods that are well understood in the art.
To facilitate detection of amplification products, the primer(s) or probe(s) may be labelled using any conventional labelling method. These can be designed based upon the sequences described herein using methods that are well understood in the art. Polymorphisms may be identified by means known in the art and some have been described in the literature.
In a further aspect there is provided a method of preparing a mutant plant. The method involves providing at least one cell of a plant comprising a gene encoding a functional polynucleotide described herein (or any combination thereof as described herein). Next, the at least one cell of the plant is treated under conditions effective to modulate the activity of the polynucleotide(s) described herein. The at least one mutant plant cell is then propagated into a mutant plant, where the mutant plant has a modulated level of polypeptide(s) described (or any combination thereof as described herein) as compared to that of a control plant. In one embodiment of this method of making a mutant plant, the treating step involves subjecting the at least one cell to a chemical mutagenising agent as described above and under conditions effective to yield at least one mutant plant cell. In another embodiment of this method, the treating step involves subjecting the at least one cell to a radiation source under conditions effective to yield at least one mutant plant cell. The term “mutant plant” includes mutants plants in which the genotype is modified as compared to a control plant, suitably by means other than genetic engineering or genetic modification.
In certain embodiments, the mutant plant, mutant plant cell or mutant plant material may comprise one or more mutations that have occurred naturally in another plant, plant cell or plant material and confer a desired trait. This mutation can be incorporated (for example, introgressed) into another plant, plant cell or plant material (for example, a plant, plant cell or plant material with a different genetic background to the plant from which the mutation was derived) to confer the trait thereto. Thus by way of example, a mutation that occurred naturally in a first plant may be introduced into a second plant—such as a second plant with a different genetic background to the first plant. The skilled person is therefore able to search for and identify a plant carrying naturally in its genome one or more mutant alleles of the genes described herein which confer a desired trait. The mutant allele(s) that occurs naturally can be transferred to the second plant by various methods including breeding, backcrossing and introgression to produce a lines, varieties or hybrids that have one or more mutations in the genes described herein. Plants showing a desired trait may be screened out of a pool of mutant plants. Suitably, the selection is carried out utilising the knowledge of the nucleotide sequences as described herein. Consequently, it is possible to screen for a genetic trait as compared to a control. Such a screening approach may involve the application of conventional nucleic acid amplification and/or hybridization techniques as discussed herein. Thus, a further aspect of the present invention relates to a method for identifying a mutant plant comprising the steps of: (a) providing a sample comprising nucleic acid from a plant; and (b) determining the nucleic acid sequence of the polynucleotide, wherein a difference in the sequence of the polynucleotide as compared to the polynucleotide sequence of a control plant is indicative that said plant is a mutant plant. In another aspect there is provided a method for identifying a mutant plant which accumulates increased or reduced levels of protease as compared to a control plant comprising the steps of: (a) providing a sample from a plant to be screened; (b) determining if said sample comprises one or more mutations in one or more of the polynucleotides described herein; and (c) determining at least the protease content of said plant during or after a curing procedure.
In another aspect there is provided a method for preparing a mutant plant which has increased or reduced levels of protease as compared to a control plant comprising the steps of: (a) providing a sample from a first plant; (b) determining if said sample comprises one or more mutations in one or more the polynucleotides described herein that result in modulated levels of a protease; and (c) transferring the one or more mutations into a second plant. Suitably at least the protease content is determined in cured leaf material. The mutation(s) can be transferred into the second plant using various methods that are known in the art—such as by genetic engineering, genetic manipulation, introgression, plant breeding, backcrossing and the like. In one embodiment, the first plant is a naturally occurring plant. In one embodiment, the second plant has a different genetic background to the first plant.
In another aspect there is provided a method for preparing a mutant plant which has increased or reduced levels of a protease as compared to a control plant comprising the steps of: (a) providing a sample from a first plant; (b) determining if said sample comprises one or more mutations in one or more of the polynucleotides described herein that results in modulated levels of the protease; and (c) introgressing the one or more mutations from the first plant into a second plant. Suitably at least the protease content is determined in cured leaf material. In one embodiment, the step of introgressing comprises plant breeding, optionally including backcrossing and the like. In one embodiment, the first plant is a naturally occurring plant. In one embodiment, the second plant has a different genetic background to the first plant. In one embodiment, the first plant is not a cultivar or an elite cultivar. In one embodiment, the second plant is a cultivar or an elite cultivar. A further aspect relates to a mutant plant (including a cultivar or elite cultivar mutant plant) obtained or obtainable by the methods described herein. In certain embodiments, the “mutant plants” may have one or more mutations localised only to a specific region of the plant—such as within the sequence of the one or more polynucleotide(s) described herein. According to this embodiment, the remaining genomic sequence of the mutant plant will be the same or substantially the same as the plant prior to the mutagenesis.
In certain embodiments, the mutant plants may have one or more mutations localised in more than one region of the plant—such as within the sequence of one or more of the polynucleotides described herein and in one or more further regions of the genome. According to this embodiment, the remaining genomic sequence of the mutant plant will not be the same or will not be substantially the same as the plant prior to the mutagenesis. In certain embodiments, the mutant plants may not have one or more mutations in one or more, two or more, three or more, four or more or five or more exons of the polynucleotide(s) described herein; or may not have one or more mutations in one or more, two or more, three or more, four or more or five or more introns of the polynucleotide(s) described herein; or may not have one or more mutations in a promoter of the polynucleotide(s) described herein; or may not have one or more mutations in the 3′ untranslated region of the polynucleotide(s) described herein; or may not have one or more mutations in the 5′ untranslated region of the polynucleotide(s) described herein; or may not have one or more mutations in the coding region of the polynucleotide(s) described herein; or may not have one or more mutations in the non-coding region of the polynucleotide(s) described herein; or any combination of two or more, three or more, four or more, five or more; or six or more thereof parts thereof.
In a further aspect there is provided a method of identifying a plant, a plant cell or plant material comprising a mutation in a gene encoding a polynucleotide described herein comprising: (a) subjecting a plant, a plant cell or plant material to mutagenesis; (b) obtaining a nucleic acid sample from said plant, plant cell or plant material or descendants thereof; and (c) determining the nucleic acid sequence of the gene encoding a polynucleotide described herein or a variant or a fragment thereof, wherein a difference in said sequence is indicative of one or more mutations therein.
Zinc finger proteins can be used to modulate the expression or the activity of one or more of the polynucleotides described herein. In various embodiments, a genomic DNA sequence comprising a part of or all of the coding sequence of the polynucleotide is modified by zinc finger nuclease-mediated mutagenesis. The genomic DNA sequence is searched for a unique site for zinc finger protein binding. Alternatively, the genomic DNA sequence is searched for two unique sites for zinc finger protein binding wherein both sites are on opposite strands and close together, for example, 1, 2, 3, 4, 5, 6 or more basepairs apart. Accordingly, zinc finger proteins that bind to polynucleotides are provided.
A zinc finger protein may be engineered to recognize a selected target site in a gene. A zinc finger protein can comprise any combination of motifs derived from natural zinc finger DNA-binding domains and non-natural zinc finger DNA-binding domains by truncation or expansion or a process of site-directed mutagenesis coupled to a selection method such as, but not limited to, phage display selection, bacterial two-hybrid selection or bacterial one-hybrid selection. The term “non-natural zinc finger DNA-binding domain” refers to a zinc finger DNA-binding domain that binds a three-base pair sequence within the target nucleic acid and that does not occur in the cell or organism comprising the nucleic acid which is to be modified. Methods for the design of zinc finger protein which binds specific nucleotide sequences which are unique to a target gene are known in the art.
In other embodiments, a zinc finger protein may be selected to bind to a regulatory sequence of a polynucleotide. More specifically, the regulatory sequence may comprise a transcription initiation site, a start codon, a region of an exon, a boundary of an exon-intron, a terminator, or a stop codon. Accordingly, the invention provides a mutant, non-naturally occurring or transgenic plant or plant cells, produced by zinc finger nuclease-mediated mutagenesis in the vicinity of or within one or more polynucleotides described herein, and methods for making such a plant or plant cell by zinc finger nuclease-mediated mutagenesis. Methods for delivering zinc finger protein and zinc finger nuclease to a tobacco plant are similar to those described below for delivery of meganuclease.
Plants suitable for use in genetic modification include, but are not limited to, monocotyledonous and dicotyledonous plants and plant cell systems, including species from one of the following families: Acanthaceae, Alliaceae, Alstroemeriaceae, Amaryllidaceae, Apocynaceae, Arecaceae, Asteraceae, Berberidaceae, Bixaceae, Brassicaceae, Bromeliaceae, Cannabaceae, Caryophyllaceae, Cephalotaxaceae, Chenopodiaceae, Colchicaceae, Cucurbitaceae, Dioscoreaceae, Ephedraceae, Erythroxylaceae, Euphorbiaceae, Fabaceae, Lamiaceae, Linaceae, Lycopodiaceae, Malvaceae, Melanthiaceae, Musaceae, Myrtaceae, Nyssaceae, Papaveraceae, Pinaceae, Plantaginaceae, Poaceae, Rosaceae, Rubiaceae, Salicaceae, Sapindaceae, Solanaceae, Taxaceae, Theaceae, or Vitaceae.
Suitable species may include members of the genera Abelmoschus, Abies, Acer, Agrostis, Allium, Alstroemeria, Ananas, Andrographis, Andropogon, Artemisia, Arundo, Atropa, Berberis, Beta, Bixa, Brassica, Calendula, Camellia, Camptotheca, Cannabis, Capsicum, Carthamus, Catharanthus, Cephalotaxus, Chrysanthemum, Cinchona, Citrullus, Coffea, Colchicum, Coleus, Cucumis, Cucurbita, Cynodon, Datura, Dianthus, Digitalis, Dioscorea, Elaeis, Ephedra, Erianthus, Erythroxylum, Eucalyptus, Festuca, Fragaria, Galanthus, Glycine, Gossypium, Helianthus, Hevea, Hordeum, Hyoscyamus, Jatropha, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Lycopodium, Manihot, Medicago, Mentha, Miscanthus, Musa, Nicotiana, Oryza, Panicum, Papaver, Parthenium, Pennisetum, Petunia, Phalaris, Phleum, Pinus, Poa, Poinsettia, Populus, Rauwolfia, Ricinus, Rosa, Saccharum, Salix, Sanguinaria, Scopolia, Secale, Solanum, Sorghum, Spartina, Spinacea, Tanacetum, Taxus, Theobroma, Triticosecale, Triticum, Uniola, Veratrum, Vinca, Vitis, and Zea.
Suitable species may include Panicum spp., Sorghum spp., Miscanthus spp., Saccharum spp., Erianthus spp., Populus spp., Andropogon gerardii (big bluestem), Pennisetum purpureum (elephant grass), Phalaris arundinacea (reed canarygrass), Cynodon dactylon (bermudagrass), Festuca arundinacea (tall fescue), Spartina pectinata (prairie cord-grass), Medicago sativa (alfalfa), Arundo donax (giant reed), Secale cereale (rye), Salix spp. (willow), Eucalyptus spp. (eucalyptus), Triticosecale (tritic wheat times rye), bamboo, Helianthus annuus (sunflower), Carthamus tinctorius (safflower), Jatropha curcas (jatropha), Ricinus communis (castor), Elaeis guineensis (palm), Linum usitatissimum (flax), Brassica juncea, Beta vulgaris (sugarbeet), Manihot esculenta (cassaya), Lycopersicon esculentum (tomato), Lactuca sativa (lettuce), Musyclise alca (banana), Solanum tuberosum (potato), Brassica oleracea (broccoli, cauliflower, Brussels sprouts), Camellia sinensis (tea), Fragaria ananassa (strawberry), Theobroma cacao (cocoa), Coffe35ycliseca (coffee), Vitis vinifera (grape), Ananas comosus (pineapple), Capsicum annum (hot & sweet pepper), Allium cepa (onion), Cucumis melo (melon), Cucumis sativus (cucumber), Cucurbita maxima (squash), Cucurbita moschata (squash), Spinacea oleracea (spinach), Citrullus lanatus (watermelon), Abelmoschus esculentus (okra), Solanum melongena (eggplant), Rosa spp. (rose), Dianthus caryophyllus (carnation), Petunia spp. (petunia), Poinsettia pulcherrima (poinsettia), Lupinus albus (lupin), Uniola paniculata (oats), bentgrass (Agrostis spp.), Populus tremuloides (aspen), Pinus spp. (pine), Abies spp. (fir), Acer spp. (maple), Hordeum vulgare (barley), Poa pratensis (bluegrass), Lolium spp. (ryegrass) and Phleum pratense (timothy), Panicum virgatum (switchgrass), Sorghu35yclise35or (sorghum, sudangrass), Miscanthus giganteus (miscanthus), Saccharum sp. (energycane), Populus balsamifera (poplar), Zea mays (corn), Glycine max (soybean), Brassica napus (canola), Triticum aestivum (wheat), Gossypium hirsutum (cotton), Oryza sativa (rice), Helianthus annuus (sunflower), Medicago sativa (alfalfa), Beta vulgaris (sugarbeet), or Pennisetum glaucum (pearl millet).
Various embodiments are directed to mutant tobacco, non-naturally occurring tobacco or transgenic tobacco plants or plant cells modified to modulate gene expression levels thereby producing a plant or plant cell—such as a tobacco plant or plant cell—in which the expression level of a polypeptide is modulated within tissues of interest as compared to a control. The disclosed compositions and methods can be applied to any species of the genus Nicotiana, including N. rustica and N. tabacum (for example, LA B21, LN KY171, TI 1406, Basma, Galpao, Perique, Beinhart 1000-1, and Petico). Other species include N. acaulis, N. acuminata, N. africana, N. alata, N. ameghinoi, N. amplexicaulis, N. arentsii, N. attenuata, N. azambujae, N. benavidesii, N. benthamiana, N. bigelovii, N. bonariensis, N. cavicola, N. clevelandii, N. cordifolia, N. corymbosa, N. debneyi, N. excelsior, N. forgetiana, N. fragrans, N. glauca, N. glutinosa, N. goodspeedii, N. gossei, N. hybrid, N. ingulba, N. kawakamii, N. knightiana, N. langsdorffii, N. linearis, N. longiflora, N. maritima, N. megalosiphon, N. miersii, N. noctiflora, N. nudicaulis, N. obtusifolia, N. occidentalis, N. occidentalis subsp. hesperis, N. otophora, N. paniculata, N. pauciflora, N. petunioides, N. plumbaginifolia, N. quadrivalvis, N. raimondii, N. repanda, N. rosulata, N. rosulata subsp. ingulba, N. rotundifolia, N. setcheffii, N. simulans, N. solanifolia, N. spegazzinii, N. stocktonii, N. suaveolens, N. sylvestris, N. thyrsiflora, N. tomentosa, N. tomentosiformis, N. trigonophylla, N. umbratica, N. undulata, N. velutina, N. wigandioides, and N. x sanderae.
The use of tobacco cultivars and elite tobacco cultivars is also contemplated herein. The transgenic, non-naturally occurring or mutant plant may therefore be a tobacco variety or elite tobacco cultivar that comprises one or more transgenes, or one or more genetic mutations or a combination thereof. The genetic mutation(s) (for example, one or more polymorphisms) can be mutations that do not exist naturally in the individual tobacco variety or tobacco cultivar (for example, elite tobacco cultivar) or can be genetic mutation(s) that do occur naturally provided that the mutation does not occur naturally in the individual tobacco variety or tobacco cultivar (for example, elite tobacco cultivar).
Particularly useful Nicotiana tabacum varieties include Burley type, dark type, flue-cured type, and Oriental type tobaccos. Non-limiting examples of varieties or cultivars are: BD 64, CC 101, CC 200, CC 27, CC 301, CC 400, CC 500, CC 600, CC 700, CC 800, CC 900, Coker 176, Coker 319, Coker 371 Gold, Coker 48, CD 263, DF911, DT 538 LC Galpao tobacco, GL 26H, GL 350, GL 600, GL 737, GL 939, GL 973, HB 04P, HB 04P LC, HB3307PLC, Hybrid 403LC, Hybrid 404LC, Hybrid 501 LC, K 149, K 326, K 346, K 358, K394, K 399, K 730, KDH 959, KT 200, KT204LC, KY10, KY14, KY 160, KY 17, KY 171, KY 907, KY907LC, KY14xL8 LC, Little Crittenden, McNair 373, McNair 944, msKY 14xL8, Narrow Leaf Madole, Narrow Leaf Madole LC, NBH 98, N-126, N-777LC, N-7371LC, NC 100, NC 102, NC 2000, NC 291, NC 297, NC 299, NC 3, NC 4, NC 5, NC 6, NC7, NC 606, NC 71, NC 72, NC 810, NC BH 129, NC 2002, Neal Smith Madole, OXFORD 207, PD 7302 LC, PD 7309 LC, PD 7312 LC, ‘Perique’ tobacco, PVH03, PVH09, PVH19, PVH50, PVH51, R 610, R 630, R 7-11, R 7-12, RG 17, RG 81, RG H51, RGH 4, RGH 51, RS 1410, Speight 168, Speight 172, Speight 179, Speight 210, Speight 220, Speight 225, Speight 227, Speight 234, Speight G-28, Speight G-70, Speight H-6, Speight H20, Speight NF3, TI 1406, TI 1269, TN 86, TN86LC, TN 90, TN 97, TN97LC, TN D94, TN D950, TR (Tom Rosson) Madole, VA 309, VA359, AA 37-1, B13P, Xanthi (Mitchell-Mor), Bel-W3, 79-615, Samsun Holmes NN, KTRDC number 2 Hybrid 49, Burley 21, KY8959, KY9, MD 609, PG01, PG04, P01, P02, P03, RG11, RG 8, VA509, AS44, Banket A1, Basma Drama B84/31, Basma I Zichna ZP4/B, Basma Xanthi BX 2A, Batek, Besuki Jember, 0104, Coker 347, Criollo Misionero, Delcrest, Djebel 81, DVH 405, Galpão Comum, HBO4P, Hicks Broadleaf, Kabakulak Elassona, Kutsage E1, LA BU 21, NC 2326, NC 297, PVH 2110, Red Russian, Samsun, Saplak, Simmaba, Talgar 28, Wislica, Yayaldag, Prilep HC-72, Prilep P23, Prilep PB 156/1, Prilep P12-2/1, Yaka JK-48, Yaka JB 125/3, TI-1068, KDH-960, TI-1070, TW136, Basma, TKF 4028, L8, TKF 2002, GR141, Basma xanthi, GR149, GR153, Petit Havana. Low converter subvarieties of the above, even if not specifically identified herein, are also contemplated.
Embodiments are also directed to compositions and methods for producing mutant plants, non-naturally occurring plants, hybrid plants, or transgenic plants that have been modified to modulate the expression or activity of a polynucleotide(s) described herein (or any combination thereof as described herein). Advantageously, the mutant plants, non-naturally occurring plants, hybrid plants, or transgenic plants that are obtained may be similar or substantially the same in overall appearance to control plants. Various phenotypic characteristics such as degree of maturity, number of leaves per plant, stalk height, leaf insertion angle, leaf size (width and length), internode distance, and lamina-midrib ratio can be assessed by field observations.
One aspect relates to a seed of a mutant plant, a non-naturally occurring plant, a hybrid plant or a transgenic plant described herein. Preferably, the seed is a tobacco seed. A further aspect relates to pollen or an ovule of a mutant plant, a non-naturally occurring plant, a hybrid plant or a transgenic plant that is described herein. In addition, there is provided a mutant plant, a non-naturally occurring plant, a hybrid plant or a transgenic plant as described herein which further comprises a nucleic acid conferring male sterility.
Also provided is a tissue culture of regenerable cells of the mutant plant, non-naturally occurring plant, hybrid plant, or transgenic plant or a part thereof as described herein, which culture regenerates plants capable of expressing all the morphological and physiological characteristics of the parent. The regenerable cells include but are not limited to cells from leaves, pollen, embryos, cotyledons, hypocotyls, roots, root tips, anthers, flowers and a part thereof, ovules, shoots, stems, stalks, pith and capsules or callus or protoplasts derived therefrom.
A still further aspect, relates to a cured plant material—such as cured leaf or cured tobacco—derived or derivable from a mutant, non-naturally occurring or transgenic plant or cell, wherein expression of one or more of the polynucleotides described herein or the activity of the protein encoded thereby is modulated.
Suitably the visual appearance of said plant (for example, leaf) is substantially the same as the control plant. Suitably, the plant is a tobacco plant.
Embodiments are also directed to compositions and methods for producing mutant, non-naturally occurring or transgenic plants or plant cells that have been modified to modulate the expression or activity of the one or more of the polynucleotides or polypeptides described herein which can result in plants or plant components (for example, leaves—such as green leaves or cured leaves—or tobacco) or plant cells with modulated levels of proteases.
In another aspect, there is provided a method for modulating (eg. increasing) the amount of protease in at least a part of a plant (for example, the leaves—such as cured leaves—or in tobacco), comprising the steps of: (i) modulating (eg. increasing) the expression or activity of an one or more of the polypeptides described herein (or any combination thereof as described herein), suitably, wherein the polypeptide(s) is encoded by the corresponding polynucleotide sequence described herein; (ii) measuring the protease content in at least a part (for example, the leaves—such as cured leaves—or tobacco or in smoke) of the mutant, non-naturally occurring or transgenic plant obtained in step (i); and (iii) identifying a mutant, non-naturally occurring or transgenic plant in which the protease content therein has been modulated (eg. increased) in comparison to a control plant. Suitably, the visual appearance of said mutant, non-naturally occurring or transgenic plant is substantially the same as the control plant. Suitably, the plant is a tobacco plant.
In another aspect, there is provided a method for modulating (eg. increasing) the amount of protease in at least a part of cured plant material—such as cured leaf—comprising the steps of: (i) modulating (eg. increasing) the expression or activity of an one or more of the polypeptides (or any combination thereof as described herein), suitably, wherein the polypeptide(s) is encoded by the corresponding polynucleotide sequence described herein; (ii) harvesting plant material—such as one or more of the leaves—and curing for a period of time; (iii) measuring the protease content in at least a part of the cured plant material obtained in step (ii) or during step (ii); and (iv) identifying cured plant material in which the protease content therein has been modulated (eg. increased) in comparison to a control plant.
An increase in expression as compared to the control may be from about 5% to about 100%, or an increase of at least 10%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, at least 98%, or 100% or more—such as 200%, 300%, 500%, 1000% or more, which includes an increase in transcriptional activity or polynucleotide expression or polypeptide expression or a combination thereof.
An increase in activity as compared to a control may be from about 5% to about 100%, or an increase of at least 10%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, at least 98%, or 100% or more—such as 200%, 300%, 500%, 1000% or more.
A reduction in expression as compared to a control may be from about 5% to about 100%, or a reduction of at least 10%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, at least 98%, or 100%, which includes a reduction in transcriptional activity or polynucleotide expression or polypeptide expression or a combination thereof.
A reduction in activity as compared to a control may be from about 5% to about 100%, or a reduction of at least 10%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, at least 98%, or 100%.
Polynucleotides and recombinant constructs described herein can be used to modulate the expression of the proteases described herein in a plant species of interest, suitably tobacco. A number of polynucleotide based methods can be used to increase gene expression in plants and plant cells. By way of example, a construct, vector or expression vector that is compatible with the plant to be transformed can be prepared which comprises the gene of interest together with an upstream promoter that is capable of overexpressing the gene in the plant or plant cell. Exemplary promoters are described herein. Following transformation and when grown under suitable conditions, the promoter can drive expression in order to modulate (for example, reduce) the levels of this enzyme in the plant, or in a specific tissue thereof. In one exemplary embodiment, a vector carrying one or more polynucleotides described herein (or any combination thereof as described herein) is generated to overexpress the gene in a plant or plant cell. The vector carries a suitable promoter—such as the cauliflower mosaic virus CaMV 35S promoter—upstream of the transgene driving its constitutive expression in all tissues of the plant. The vector also carries an antibiotic resistance gene in order to confer selection of the transformed calli and cell lines.
In a preferred embodiment, a promoter and regulatory sequences are derived from one or more of SEQ ID Nos: 1-80. These regulatory sequences can be used in conjunction with cognate or non-cognate expression sequences to increase expression of said sequences in a tobacco plant during the curing procedure.
The expression of sequences from promoters can be enhanced by including expression control sequences, including enhancers, chromatin activating elements, transcription factor responsive elements and the like. Such control sequences may be constitutive, and upregulate transcription in a universal manner; or they may be facultative, and upregulate transcription in response to specific signals. Signals associated with senescence and signals which are active during the curing procedure are specifically indicated.
Various embodiments are therefore directed to methods for modulating (for example, increasing) the expression level of one or more polynucleotides described herein (or any combination thereof as described herein) by integrating multiple copies of the polynucleotide into a plant genome, comprising: transforming a plant cell host with an expression vector that comprises a promoter operably-linked to one or more polynucleotides described herein. The polypeptide encoded by a recombinant polynucleotide can be a native polypeptide, or can be heterologous to the cell.
A tobacco plant carrying a mutant allele of one or more polynucleotides described herein (or any combination thereof as described herein) can be used in a plant breeding program to create useful lines, varieties and hybrids. In particular, the mutant allele is introgressed into the commercially important varieties described above. Thus, methods for breeding plants are provided, that comprise crossing a mutant plant, a non-naturally occurring plant or a transgenic plant as described herein with a plant comprising a different genetic identity. The method may further comprise crossing the progeny plant with another plant, and optionally repeating the crossing until a progeny with the desirable genetic traits or genetic background is obtained. One purpose served by such breeding methods is to introduce a desirable genetic trait into other varieties, breeding lines, hybrids or cultivars, particularly those that are of commercial interest. Another purpose is to facilitate stacking of genetic modifications of different genes in a single plant variety, lines, hybrids or cultivars. Intraspecific as well as interspecific matings are contemplated. The progeny plants that arise from such crosses, also referred to as breeding lines, are examples of non-naturally occurring plants of the invention.
In one embodiment, a method is provided for producing a non-naturally occurring tobacco plant comprising: (a) crossing a mutant or transgenic tobacco plant with a second tobacco plant to yield progeny tobacco seed; (b) growing the progeny tobacco seed, under plant growth conditions, to yield the non-naturally occurring tobacco plant. The method may further comprises: (c) crossing the previous generation of non-naturally occurring tobacco plant with itself or another tobacco plant to yield progeny tobacco seed; (d) growing the progeny tobacco seed of step (c) under plant growth conditions, to yield additional non-naturally occurring tobacco plants; and (e) repeating the crossing and growing steps of (c) and (d) multiple times to generate further generations of non-naturally occurring tobacco plants. The method may optionally comprises prior to step (a), a step of providing a parent plant which comprises a genetic identity that is characterized and that is not identical to the mutant or transgenic plant. In some embodiments, depending on the breeding program, the crossing and growing steps are repeated from 0 to 2 times, from 0 to 3 times, from 0 to 4 times, 0 to 5 times, from 0 to 6 times, from 0 to 7 times, from 0 to 8 times, from 0 to 9 times or from 0 to 10 times, in order to generate generations of non-naturally occurring tobacco plants. Backcrossing is an example of such a method wherein a progeny is crossed with one of its parents or another plant genetically similar to its parent, in order to obtain a progeny plant in the next generation that has a genetic identity which is closer to that of one of the parents. Techniques for plant breeding, particularly tobacco plant breeding, are well known and can be used in the methods of the invention. The invention further provides non-naturally occurring tobacco plants produced by these methods. Certain embodiments exclude the step of selecting a plant.
In some embodiments of the methods described herein, lines resulting from breeding and screening for variant genes are evaluated in the field using standard field procedures. Control genotypes including the original unmutagenized parent are included and entries are arranged in the field in a randomized complete block design or other appropriate field design. For tobacco, standard agronomic practices are used, for example, the tobacco is harvested, weighed, and sampled for chemical and other common testing before and during curing. Statistical analyses of the data are performed to confirm the similarity of the selected lines to the parental line. Cytogenetic analyses of the selected plants are optionally performed to confirm the chromosome complement and chromosome pairing relationships. DNA fingerprinting, single nucleotide polymorphism, microsatellite markers, or similar technologies may be used in a marker-assisted selection (MAS) breeding program to transfer or breed mutant alleles of a gene into other tobaccos, as described herein. For example, a breeder can create segregating populations from hybridizations of a genotype containing a mutant allele with an agronomically desirable genotype. Plants in the F2 or backcross generations can be screened using a marker developed from a genomic sequence or a fragment thereof, using one of the techniques listed herein. Plants identified as possessing the mutant allele can be backcrossed or self-pollinated to create a second population to be screened. Depending on the expected inheritance pattern or the MAS technology used, it may be necessary to self-pollinate the selected plants before each cycle of backcrossing to aid identification of the desired individual plants. Backcrossing or other breeding procedure can be repeated until the desired phenotype of the recurrent parent is recovered.
In a breeding program, successful crosses yield F1 plants that are fertile. Selected F1 plants can be crossed with one of the parents, and the first backcross generation plants are self-pollinated to produce a population that is again screened for variant gene expression (for example, the null version of the gene). The process of backcrossing, self-pollination, and screening is repeated, for example, at least 4 times until the final screening produces a plant that is fertile and reasonably similar to the recurrent parent. This plant, if desired, is self-pollinated and the progeny are subsequently screened again to confirm that the plant exhibits variant gene expression. In some embodiments, a plant population in the F2 generation is screened for variant gene expression, for example, a plant is identified that fails to express a polypeptide due to the absence of the gene according to standard methods, for example, by using a PCR method with primers based upon the nucleotide sequence information for the polynucleotide(s) described herein (or any combination thereof as described herein).
Hybrid tobacco varieties can be produced by preventing self-pollination of female parent plants (that is, seed parents) of a first variety, permitting pollen from male parent plants of a second variety to fertilize the female parent plants, and allowing F1 hybrid seeds to form on the female plants. Self-pollination of female plants can be prevented by emasculating the flowers at an early stage of flower development. Alternatively, pollen formation can be prevented on the female parent plants using a form of male sterility. For example, male sterility can be produced by cytoplasmic male sterility (CMS), or transgenic male sterility wherein a transgene inhibits microsporogenesis and/or pollen formation, or self-incompatibility. Female parent plants containing CMS are particularly useful. In embodiments in which the female parent plants are CMS, pollen is harvested from male fertile plants and applied manually to the stigmas of CMS female parent plants, and the resulting F1 seed is harvested.
Varieties and lines described herein can be used to form single-cross tobacco F1 hybrids. In such embodiments, the plants of the parent varieties can be grown as substantially homogeneous adjoining populations to facilitate natural cross-pollination from the male parent plants to the female parent plants. The F1 seed formed on the female parent plants is selectively harvested by conventional means. One also can grow the two parent plant varieties in bulk and harvest a blend of F1 hybrid seed formed on the female parent and seed formed upon the male parent as the result of self-pollination. Alternatively, three-way crosses can be carried out wherein a single-cross F1 hybrid is used as a female parent and is crossed with a different male parent. As another alternative, double-cross hybrids can be created wherein the F1 progeny of two different single-crosses are themselves crossed.
A population of mutant, non-naturally occurring or transgenic plants can be screened or selected for those members of the population that have a desired trait or phenotype. For example, a population of progeny of a single transformation event can be screened for those plants having a desired level of expression or activity of the polypeptide(s) encoded thereby. Physical and biochemical methods can be used to identify expression or activity levels. These include Southern analysis or PCR amplification for detection of a polynucleotide; Northern blots, S1 RNase protection, primer-extension, or RT-PCR amplification for detecting RNA transcripts; enzymatic assays for detecting enzyme or ribozyme activity of polypeptides and polynucleotides; and protein gel electrophoresis, Western blots, immunoprecipitation, and enzyme-linked immunoassays to detect polypeptides. Other techniques such as in situ hybridization, enzyme staining, and immunostaining and enzyme assays also can be used to detect the presence or expression or activity of polypeptides or polynucleotides.
Mutant, non-naturally occurring or transgenic plant cells and plants are described herein comprising one or more recombinant polynucleotides, one or more polynucleotide constructs, one or more double-stranded RNAs, one or more conjugates or one or more vectors/expression vectors.
Without limitation, the plants described herein may be modified for other purposes either before or after the expression or activity has been modulated according to the present invention. One or more of the following genetic modifications can be present in the mutant, non-naturally occurring or transgenic plants. In one embodiment, one or more genes that are involved in the conversion of nitrogenous metabolic intermediates is modified resulting in plants (such as leaves) that when cured, produces lower levels of at least one tobacco-specific nitrosamine than control plants. Non-limiting examples of genes that can be modified includegenes encoding a nicotine demethylase, such as CYP82E4, CYP82E5 and CYP82E10 which participate in the conversion of nicotine to nornicotine and are described in WO2006091194, WO2008070274, WO2009064771 and PCT/US2011/021088 and as described in detail herein. In another embodiment, one or more genes that are involved in heavy metal uptake or heavy metal transport are modified resulting in plants or parts of plants (such as leaves) having a lower heavy metal content than control plants or parts thereof without the modification(s). Non-limiting examples include genes in the family of multidrug resistance associated proteins, the family of cation diffusion facilitators (CDF), the family of Zrt-, Irt-like proteins (ZIP), the family of cation exchangers (CAX), the family of copper transporters (COPT), the family of heavy-metal P-type ATPases (for example, HMAs, as described in WO2009074325), the family of homologs of natural resistance-associated macrophage proteins (NRAMP), and the family of ATP-binding cassette (ABC) transporters (for example, MRPs, as described in WO2012/028309, which participate in transport of heavy metals, such as cadmium. The term heavy metal as used herein includes transition metals. Examples of other modifications include herbicide tolerance, for example, glyphosate is an active ingredient of many broad spectrum herbicides. Glyphosate resistant transgenic plants have been developed by transferring the aroA gene (a glyphosate EPSP synthetase from Salmonella typhimurium and E. coli). Sulphonylurea resistant plants have been produced by transforming the mutant ALS (acetolactate synthetase) gene from Arabidopsis. OB protein of photosystem II from mutant Amaranthus hybridus has been transferred in to plants to produce atrazine resistant transgenic plants; and bromoxynil resistant transgenic plants have been produced by incorporating the bxn gene from the bacterium Klebsiella pneumoniae. Another exemplary modification results in plants that are resistant to insects. Bacillus thuringiensis (Bt) toxins can provide an effective way of delaying the emergence of Bt-resistant pests, as recently illustrated in broccoli where pyramided cry1Ac and cry1C Bt genes controlled diamondback moths resistant to either single protein and significantly delayed the evolution of resistant insects. Another exemplary modification results in plants that are resistant to diseases caused by pathogens (for example, viruses, bacteria, fungi). Plants expressing the Xa21 gene (resistance to bacterial blight) with plants expressing both a Bt fusion gene and a chitinase gene (resistance to yellow stem borer and tolerance to sheath) have been engineered. Another exemplary modification results in altered reproductive capability, such as male sterility. Another exemplary modification results in plants that are tolerant to abiotic stress (for example, drought, temperature, salinity), and tolerant transgenic plants have been produced by transferring acyl glycerol phosphate enzyme from Arabidopsis; genes coding mannitol dehydrogenase and sorbitol dehydrogenase which are involved in synthesis of mannitol and sorbitol improve drought resistance. Other exemplary modifications can result in plants with improved storage proteins and oils, plants with enhanced photosynthetic efficiency, plants with prolonged shelf life, plants with enhanced carbohydrate content, and plants resistant to fungi; plants encoding an enzyme involved in the biosynthesis of alkaloids. Transgenic plants in which the expression of S-adenosyl-L-methionine (SAM) and/or cystathionine gamma-synthase (CGS) has been modulated are also contemplated.
One or more such traits may be introgressed into the mutant, non-naturally occuring or transgenic tobacco plants from another tobacco cultivar or may be directly transformed into it. The introgression of the trait(s) into the mutant, non-naturally occuring or transgenic tobacco plants of the invention maybe achieved by any method of plant breeding known in the art, for example, pedigree breeding, backcrossing, doubled-haploid breeding, and the like (see, Wernsman, E. A, and Rufty, R. C. 1987. Chapter Seventeen. Tobacco. Pages 669-698 In: Cultivar Development. Crop Species. W. H. Fehr (ed.), MacMillan Publishing Co, Inc., New York, N.Y. 761 pp.). Molecular biology-based techniques described above, in particular RFLP and microsatelite markers, can be used in such backcrosses to identify the progenies having the highest degree of genetic identity with the recurrent parent. This permits one to accelerate the production of tobacco varieties having at least 90%, preferably at least 95%, more preferably at least 99% genetic identity with the recurrent parent, yet more preferably genetically identical to the recurrent parent, and further comprising the trait(s) introgressed from the donor parent. Such determination of genetic identity can be based on molecular markers known in the art.
The last backcross generation can be selfed to give pure breeding progeny for the nucleic acid(s) being transferred. The resulting plants generally have essentially all of the morphological and physiological characteristics of the mutant, non-naturally occuring or transgenic tobacco plants of the invention, in addition to the transferred trait(s) (for example, one or more single gene traits). The exact backcrossing protocol will depend on the trait being altered to determine an appropriate testing protocol. Although backcrossing methods are simplified when the trait being transferred is a dominant allele, a recessive allele may also be transferred. In this instance, it may be necessary to introduce a test of the progeny to determine if the desired trait has been successfully transferred.
Various embodiments provide mutant plants, non-naturally occurring plants or transgenic plants, as well as biomass in which the expression level of a polynucleotide (or any combination thereof as described herein) is modulated to modulate the protease activity therein.
Parts of such plants, particularly tobacco plants, and more particularly the leaf lamina and midrib of tobacco plants, can be incorporated into or used in making various consumable products including but not limited to aerosol forming materials, aerosol forming devices, smoking articles, smokable articles, smokeless products, and tobacco products. Examples of aerosol forming materials include but are not limited to tobacco compositions, tobaccos, tobacco extract, cut tobacco, cut filler, cured tobacco, expanded tobacco, homogenized tobacco, reconstituted tobacco, and pipe tobaccos. Smoking articles and smokable articles are types of aerosol forming devices. Examples of smoking articles or smokable articles include but are not limited to cigarettes, cigarillos, and cigars. Examples of smokeless products comprise chewing tobaccos, and snuffs. In certain aerosol forming devices, rather than combustion, a tobacco composition or another aerosol forming material is heated by one or more electrical heating elements to produce an aerosol. In another type of heated aerosol forming device, an aerosol is produced by the transfer of heat from a combustible fuel element or heat source to a physically separate aerosol forming material, which may be located within, around or downstream of the heat source. Smokeless tobacco products and various tobacco-containing aerosol forming materials may contain tobacco in any form, including as dried particles, shreds, granules, powders, or a slurry, deposited on, mixed in, surrounded by, or otherwise combined with other ingredients in any format, such as flakes, films, tabs, foams, or beads. As used herein, the term ‘smoke’ is used to describe a type of aerosol that is produced by smoking articles, such as cigarettes, or by combusting an aerosol forming material.
In one embodiment, there is also provided cured plant material from the mutant, transgenic and non-naturally occurring tobacco plants described herein. Processes of curing green tobacco leaves are known by those having skills in the art and include without limitation air-curing, fire-curing, flue-curing and sun-curing as described herein.
In another embodiment, there is described tobacco products including tobacco-containing aerosol forming materials comprising plant material—such as leaves, preferably cured leaves—from the mutant tobacco plants, transgenic tobacco plants or non-naturally occurring tobacco plants described herein. The tobacco products described herein can be a blended tobacco product which may further comprise unmodified tobacco.
The mutant, non-naturally occurring or transgenic plants may have other uses in, for example, agriculture. For example, mutant, non-naturally occurring or transgenic plants described herein can be used to make animal feed and human food products.
The invention also provides methods for producing seeds comprising cultivating the mutant plant, non-naturally occurring plant, or transgenic plant described herein, and collecting seeds from the cultivated plants. Seeds from plants described herein can be conditioned and bagged in packaging material by means known in the art to form an article of manufacture. Packaging material such as paper and cloth are well known in the art. A package of seed can have a label, for example, a tag or label secured to the packaging material, a label printed on the package that describes the nature of the seeds therein.
Compositions, methods and kits for genotyping plants for identification, selection, or breeding can comprise a means of detecting the presence of a polynucleotide (or any combination thereof as described herein) in a sample of polynucleotide. Accordingly, a composition is described comprising one of more primers for specifically amplifying at least a portion of one or more of the polynucleotides and optionally one or more probes and optionally one or more reagents for conducting the amplification or detection.
Accordingly, gene specific oligonucleotide primers or probes comprising about 10 or more contiguous polynucleotides corresponding to the polynucleotide(s) described herein are disclosed. Said primers or probes may comprise or consist of about 15, 20, 25, 30, 40, 45 or 50 more contiguous polynucleotides that hybridise (for example, specifically hybridise) to the polynucleotide(s) described herein. In some embodiments, the primers or probes may comprise or consist of about 10 to 50 contiguous nucleotides, about 10 to 40 contiguous nucleotides, about 10 to 30 contiguous nucleotides or about 15 to 30 contiguous nucleotides that may be used in sequence-dependent methods of gene identification (for example, Southern hybridization) or isolation (for example, in situ hybridization of bacterial colonies or bacteriophage plaques) or gene detection (for example, as one or more amplification primers in nucleic acid amplification or detection). The one or more specific primers or probes can be designed and used to amplify or detect a part or all of the polynucleotide(s). By way of specific example, two primers may be used in a polymerase chain reaction protocol to amplify a nucleic acid fragment encoding a nucleic acid—such as DNA or RNA. The polymerase chain reaction may also be performed using one primer that is derived from a nucleic acid sequence and a second primer that hybridises to the sequence upstream or downstream of the nucleic acid sequence—such as a promoter sequence, the 3′ end of the mRNA precursor or a sequence derived from a vector. Examples of thermal and isothermal techniques useful for in vitro amplification of polynucleotides are well known in the art. The sample may be or may be derived from a plant, a plant cell or plant material or a tobacco product made or derived from the plant, the plant cell or the plant material as described herein.
In a further aspect, there is also provided a method of detecting a polynucleotide(s) described herein (or any combination thereof as described herein) in a sample comprising the step of: (a) providing a sample comprising, or suspected of comprising, a polynucleotide; (b) contacting said sample with one of more primers or one or more probes for specifically detecting at least a portion of the polynucleotide(s); and (c) detecting the presence of an amplification product, wherein the presence of an amplification product is indicative of the presence of the polynucleotide(s) in the sample. In a further aspect, there is also provided the use of one of more primers or probes for specifically detecting at least a portion of the polynucleotide(s). Kits for detecting at least a portion of the polynucleotide(s) are also provided which comprise one of more primers or probes for specifically detecting at least a portion of the polynucleotide(s). The kit may comprise reagents for polynucleotide amplification—such as PCR—or reagents for probe hybridization-detection technology—such as Southern Blots, Northern Blots, in-situ hybridization, or microarray. The kit may comprise reagents for antibody binding-detection technology such as Western Blots, ELISAs, SELDI mass spectrometry or test strips. The kit may comprise reagents for DNA sequencing. The kit may comprise reagents and instructions for determining at least the proteasae content. Suitably, the kit comprises reagents and instructions for determining at least protease content in plant material, cured plant material or cured leaves.
In some embodiments, a kit may comprise instructions for one or more of the methods described. The kits described may be useful for genetic identity determination, phylogenetic studies, genotyping, haplotyping, pedigree analysis or plant breeding particularly with co-dominant scoring.
The present invention also provides a method of genotyping a plant, a plant cell or plant material comprising a polynucleotide as described herein. Genotyping provides a means of distinguishing homologs of a chromosome pair and can be used to differentiate segregants in a plant population. Molecular marker methods can be used for phylogenetic studies, characterizing genetic relationships among crop varieties, identifying crosses or somatic hybrids, localizing chromosomal segments affecting monogenic traits, map based cloning, and the study of quantitative inheritance. The specific method of genotyping may employ any number of molecular marker analytic techniques including amplification fragment length polymorphisms (AFLPs). AFLPs are the product of allelic differences between amplification fragments caused by nucleotide sequence variability. Thus, the present invention further provides a means to follow segregation of one or more genes or nucleic acids as well as chromosomal sequences genetically linked to these genes or nucleic acids using such techniques as AFLP analysis.
In one embodiment, there is also provided cured plant material from the mutant, transgenic and non-naturally occurring plants described herein. For example, processes of curing tobacco leaves are known by those having skills in the field and include without limitation air-curing, fire-curing, flue-curing and sun-curing.
In another embodiment, there is described tobacco products including tobacco products comprising plant material—such as leaves, suitably cured plant material—such as cured leaves—from the mutant, transgenic and non-naturally occurring plants described herein or which are produced by the methods described herein. The tobacco products described herein may further comprise unmodified tobacco.
In another embodiment, there is described tobacco products comprising plant material, preferably leaves—such as cured leaves, from the mutant, transgenic and non-naturally occurring plants described herein. For example, the plant material may be added to the inside or outside of the tobacco product and so upon burning a desirable aroma is released.
The tobacco product according to this embodiment may even be an unmodified tobacco or a modified tobacco. The tobacco product according to this embodiment may even be derived from a mutant, transgenic or non-naturally occurring plant which has modifications in one or more genes other than the genes disclosed herein.
The invention is further described in the Examples below, which are provided to describe the invention in further detail. These examples, which set forth a preferred mode presently contemplated for carrying out the invention, are intended to illustrate and not to limit the invention.
The following examples are provided as an illustration and not as a limitation. Unless otherwise indicated, the present invention employs conventional techniques and methods of molecular biology, plant biology, bioinformatics, and plant breeding.
A 48 h time-point following the curing start was selected to screen for curing-activated genes based on Affymetrix data essentially as described by Martin et al. (2012) BMC Genomics, 13:674).
In brief, exon candidates from genomic DNA and from EST contigs were joined and the genomic candidates were cleaned for redundancies (98% threshold). This resulted in a set of 312,053 exon candidates, 12,925 of which were represented by ESTs, but were not included in the genome assembly. Data sets were verified as described by the manufacturer (Affymetrix). In addition, quality checks included probe-level models, Normalized Unscaled Standard Error (NUSE) and Relative Log Expression (RLE) plots, and the analysis of DABG results as described by the manufacturer.
As the exon array design had no mismatch probes, summarization was performed using Robust Multi-array Average (RMA) method. A total of 272,342 probeset expression values were generated, and DABG P-values were computed to assess the significance of the signal obtained for each probeset. This involved the background probes that are spread over the chip. These random probes have a varying GC content. Quality checks involved a combination of Affymetrix Power Tools (APT) and Bioconductor packages, for which the Tobacco Exon Array (TobArray520623F) cdf environment was created. Once the expression values were available, differential gene expression analysis was performed using moderated t-statistics in linear model LIMMA.
Differential expression. The tissue samples were sequenced using RNA-seq; reads were mapped to the genomes of the 3 varieties using Tophat2. Previously published gene models were used as the basis for the differential gene expression analysis. Expression changes during curing were calculated using the Cuffdiff2 software based on the mapped reads. Genes were considered up-regulated if their expression levels increased significantly during the first 48 h of curing, and not if the change was insignificant or decreased. Tobacco proteins were identified by a BLAST search against a database of transcripts for the 3 varieties and equivalent genes in the 3 varieties were identified by a mutual best BLAST hit search of the transcripts of the 3 varieties Burley, Virginia and Oriental (e-value cutoff 1e-80).
The data (
The proteasae genes identified in Example 2 were analysed for membership of known protease families. The results are set forth in table 1.
The 80 curing-activated protease genes were found to belong to 21 different protease families.
In the table, AC, air-cured; FC, flue-cured; SC, sun-cured. AC+FC+SC, up-regulated in all three types of tobacco; AC+FC, up-regulated in air-cured and flue-cured tobacco; AC+SC, up-regulated in air-cured and sun-cured tobacco; FC+SC, up-regulated in flue-cured and sun-cured tobacco; AC, FC and SC, up-regulated only in the respective tobacco type.
APA1 is encoded by a single gene in Arabidopsis thaliana and 4 in Tomato. The APA1 gene activated in flue-cured Virginia tobacco (see Table 1) is close to APA1-Tomato-1. Two gene copies from both ancestors N. sylvestris (S) and N. tomentosiformis (T) exist in N. tabacum. Affymetrix data confirmed the activation of the S form (upper panel) and apparently not the T form during Virginia flue-curing (lower panel).
Table 2 illustrates the differential up-regulation of SEQ ID NO:1 to 80 in the three tobacco types air-cured Burley (AC), flue-cured Virginia (FC) and sun-cured Oriental (SC).
Number | Date | Country | Kind |
---|---|---|---|
14177715.1 | Jul 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/066341 | 7/16/2015 | WO | 00 |