Claims
- 1. A toner comprising particles of a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process.
- 2. A toner according to claim 1 wherein the toner particles have an average particle diameter of no more than about 13 microns.
- 3. A toner according to claim 1 wherein the toner particles comprise a core comprising the polyester resin and optional colorant and, coated on the core, a coating comprising the polypyrrole.
- 4. A toner according to claim 1 wherein the polyester resin is polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polypentylene terephthalate, polyhexalene terephthalate, polyheptadene terephthalate, polyoctalene-terephthalate, poly(propylene-diethylene terephthalate), poly(bisphenol A-fumarate), poly(bisphenol A-terephthalate), copoly(bisphenol A-terephthalate-copoly(bisphenol A-fumarate), poly(neopentyl-terephthalate), or mixtures thereof.
- 5. A toner according to claim 1 wherein the polyester resin is a sulfonated polyester.
- 6. A toner according to claim 1 wherein the polyester resin is a poly(1,2-propylene-5-sulfoisophthalate), a poly(neopentylene-5-sulfoisophthalate), a poly(diethylene-5-sulfoisophthalate), a copoly(1,2-propylene-5-sulfoisophthalate)-copoly-(1,2-propylene-terephthalate phthalate), a copoly(1,2-propylene-diethylene-5-sulfoisophthalate)-copoly-(1,2-propylene-diethylene-terephthalate phthalate), a copoly(ethylene-neopentylene-5-sulfoisophthalate)-copoly-(ethylene-neopentylene-terephthalate-phthalate), a copoly(propoxylated bisphenol A)-copoly-(propoxylated bisphenol A-5-sulfoisophthalate), a copoly(ethylene-terephthalate)-copoly-(ethylene-5-sulfo-isophthalate), a copoly(propylene-terephthalate)-copoly-(propylene-5-sulfo-isophthalate), a copoly(diethylene-terephthalate)-copoly-(diethylene-5-sulfo-isophthalate), a copoly(propylene-diethylene-terephthalate)-copoly-(propylene-diethylene-5-sulfoisophthalate), a copoly(propylene-butylene-terephthalate)-copoly(propylene-butylene-5-sulfo-isophthalate), a copoly(propoxylated bisphenol-A-fumarate)-copoly(propoxylated bisphenol A-5-sulfo-isophthalate), a copoly(ethoxylated bisphenol-A-fumarate)-copoly(ethoxylated bisphenol-A-5-sulfo-isophthalate), a copoly(ethoxylated bisphenol-A-maleate)-copoly(ethoxylated bisphenol-A-5-sulfo-isophthalate), a copoly(propylene-diethylene terephthalate)-copoly(propylene-5-sulfoisophthalate), a copoly(neopentyl-terephthalate)-copoly-(neopentyl-5-sulfoisophthalate), or a mixture thereof.
- 7. A toner according to claim 1 wherein the resin is present in the toner particles in an amount of at least about 75 percent by weight of the toner particles and wherein the resin is present in the toner particles in an amount of no more than about 99 percent by weight of the toner particles.
- 8. A toner according to claim 1 wherein the toner particles further comprise a pigment colorant.
- 9. A toner according to claim 1 wherein the toner particles contain a colorant, said colorant being present in an amount of at least about 1 percent by weight of the toner particles, and said colorant being present in an amount of no more than about 25 percent by weight of the toner particles.
- 10. A toner according to claim 1 wherein the emulsion aggregation process comprises (1) shearing a first ionic surfactant with a latex mixture comprising (a) a counterionic surfactant with a charge polarity of opposite sign to that of said first ionic surfactant, (b) a nonionic surfactant, and (c) a polyester resin, thereby causing flocculation or heterocoagulation of formed particles of resin to form electrostatically bound aggregates; and (2) heating the electrostatically bound aggregates to form aggregates of at least about 1 micron in average particle diameter.
- 11. A toner according to claim 1 wherein the emulsion aggregation process comprises (1) preparing a colorant dispersion in a solvent, which dispersion comprises a colorant and a first ionic surfactant; (2) shearing the colorant dispersion with a latex mixture comprising (a) a counterionic surfactant with a charge polarity of opposite sign to that of said first ionic surfactant, (b) a nonionic surfactant, and (c) a polyester resin, thereby causing flocculation or heterocoagulation of formed particles of colorant and resin to form electrostatically bound aggregates; and (3) heating the electrostatically bound aggregates to form aggregates of at least about 1 micron in average particle diameter.
- 12. A toner according to claim 1 wherein the emulsion aggregation process comprises (1) shearing an ionic surfactant with a latex mixture comprising (a) a flocculating agent, (b) a nonionic surfactant, and (c) a polyester resin, thereby causing flocculation or heterocoagulation of formed particles of colorant and resin to form electrostatically bound aggregates; and (2) heating the electrostatically bound aggregates to form aggregates of at least about 1 micron in average particle diameter.
- 13. A toner according to claim 1 wherein the emulsion aggregation process comprises (1) preparing a colorant dispersion in a solvent, which dispersion comprises a colorant and an ionic surfactant; (2) shearing the colorant dispersion with a latex mixture comprising (a) a flocculating agent, (b) a nonionic surfactant, and (c) a polyester resin, thereby causing flocculation or heterocoagulation of formed particles of colorant and resin to form electrostatically bound aggregates; and (3) heating the electrostatically bound aggregates to form aggregates of at least about 1 micron in average particle diameter.
- 14. A toner according to claim 1 wherein the emulsion aggregation process comprises (1) preparing a colloidal solution comprising a polyester resin and an optional colorant, and (2) adding to the colloidal solution an aqueous solution containing a coalescence agent comprising an ionic metal salt to form toner particles.
- 15. A toner according to claim 1 wherein the polypyrrole is of the formula
- 16. A toner according to claim 1 wherein the polypyrrole has at least about 3 repeat monomer units.
- 17. A toner according to claim 1 wherein the polypyrrole has at least about 6 repeat monomer units and wherein the polypyrrole has no more than about 100 repeat monomer units.
- 18. A toner according to claim 1 wherein the polypyrrole is doped with iodine, molecules containing sulfonate groups, molecules containing phosphate groups, molecules containing phosphonate groups, or mixtures thereof.
- 19. A toner according to claim 1 wherein the polypyrrole is doped with sulfonate containing anions of the formula RSO3— wherein R is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an alkylaryl group, an arylalkyloxy group, an alkylaryloxy group, or mixtures thereof.
- 20. A toner according to claim 1 wherein the polypyrrole is doped with anions selected from p-toluene sulfonate, camphor sulfonate, benzene sulfonate, naphthalene sulfonate, dodecyl sulfonate, dodecylbenzene sulfonate, dialkyl benzenealkyl sulfonates, para-ethylbenzene sulfonate, alkyl naphthalene sulfonates, poly(styrene sulfonate), or mixtures thereof.
- 21. A toner according to claim 1 wherein the polypyrrole is doped with anions selected from p-toluene sulfonate, camphor sulfonate, benzene sulfonate, naphthalene sulfonate, dodecyl sulfonate, dodecylbenzene sulfonate, 1,3-benzene disulfonate, para-ethylbenzene sulfonate, 1,5-naphthalene disulfonate, 2-naphthalene disulfonate, poly(styrene sulfonate), or mixtures thereof.
- 22. A toner according to claim 1 wherein the polypyrrole is doped with a dopant present in an amount of at least about 0.1 molar equivalent of dopant per molar equivalent of pyrrole monomer and present in an amount of no more than about 5 molar equivalents of dopant per molar equivalent of pyrrole monomer.
- 23. A toner according to claim 1 wherein the polypyrrole is doped with a dopant present in an amount of at least about 0.25 molar equivalent of dopant per molar equivalent of pyrrole monomer and present in an amount of no more than about 4 molar equivalents of dopant per molar equivalent of pyrrole monomer.
- 24. A toner according to claim 1 wherein the polypyrrole is doped with a dopant present in an amount of at least about 0.5 molar equivalent of dopant per molar equivalent of pyrrole monomer and present in an amount of no more than about 3 molar equivalents of dopant per molar equivalent of pyrrole monomer.
- 25. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no more than about 10−12 Siemens per centimeter.
- 26. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no more than about 10−13 Siemens per centimeter, and wherein the toner particles have an average bulk conductivity of no less than about 10−16 Siemens per centimeter.
- 27. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no less than about 10−11 Siemens per centimeter.
- 28. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no less than about 10−7 Siemens per centimeter, and wherein the toner particles have an average bulk conductivity of no more than about 10 Siemens per centimeter.
- 29. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no more than about 10 Siemens per centimeter.
- 30. A toner according to claim 1 wherein the toner particles have an average bulk conductivity of no more than about 10−7 Siemens per centimeter.
- 31. A toner according to claim 1 wherein the polypyrrole is present in an amount of at least about 5 weight percent of the toner particle mass and wherein the polypyrrole is present in an amount of no more than about 20 weight percent of the toner particle mass.
- 32. A process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process.
- 33. A process according to claim 32 wherein the toner particles are charged triboelectrically.
- 34. A process according to claim 33 wherein the toner particles are charged triboelectrically by admixing them with carrier particles.
- 35. A process according to claim 32 wherein the toner particles are charged inductively.
- 36. A process according to claim 35 wherein the toner particles are charged in a developing apparatus which comprises a housing defining a reservoir storing a supply of developer material comprising the toner particles; a donor member for transporting toner particles on an outer surface of said donor member to a development zone; means for loading a layer of toner particles onto said outer surface of said donor member; and means for inductive charging said toner layer onto said outer surface of said donor member prior to the development zone to a predefined charge level.
- 37. A process according to claim 36 wherein said inductive charging means comprises means for biasing said toner reservoir relative to the bias on the donor member.
- 38. A process according to claim 36 wherein the developing apparatus further comprises means for moving the donor member into synchronous contact with the imaging member to detach toner in the development zone from the donor member, thereby developing the latent image.
- 39. A process according to claim 36 wherein the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude.
- 40. A process for developing a latent image recorded on a surface of an image receiving member to form a developed image, said process comprising (a) moving the surface of the image receiving member at a predetermined process speed; (b) storing in a reservoir a supply of toner particles comprising a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process; (c) transporting the toner particles on an outer surface of a donor member to a development zone adjacent the image receiving member; and (d) inductive charging said toner particles on said outer surface of said donor member prior to the development zone to a predefined charge level.
- 41. A process according to claim 40 wherein the inductive charging step includes the step of biasing the toner reservoir relative to the bias on the donor member.
- 42. A process according to claim 40 wherein the donor member is brought into synchronous contact with the imaging member to detach toner in the development zone from the donor member, thereby developing the latent image.
- 43. A process according to claim 40 wherein the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude.
- 44. A process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a polyester resin, an optional colorant, and polypyrrole, said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10−11 Siemens per centimeter.
- 45. A process according to claim 44 wherein each said channel has a converging region and a diverging region, and wherein said propellant is introduced in said converging region and flows into said diverging region, whereby said propellant is at a first velocity and first pressure in said converging region and a second velocity and a second pressure in said diverging region, said first pressure greater than said second pressure and said first velocity less than said second velocity.
CROSS REFERENCES TO RELATED APPLICATIONS
[0001] This is a divisional of application Ser. No. 09/723,911, filed on Nov. 28, 2000.
Divisions (1)
|
Number |
Date |
Country |
Parent |
09723911 |
Nov 2000 |
US |
Child |
10350534 |
Jan 2003 |
US |