Toner compositions

Abstract
Toner particles are provided which may, in embodiments, include a core possessing at least one polyester resin in combination with a colorant, optional wax, and optional other additives, and a shell over the core including a high molecular weight amorphous polyester resin. The high molecular weight amorphous polyester resin in the shell may prevent any crystalline polyester resin in the core from migrating to the toner surface.
Description
BACKGROUND

The present disclosure relates to toners suitable for electrophotographic apparatuses.


Numerous processes are within the purview of those skilled in the art for the preparation of toners. Emulsion aggregation (EA) is one such method. These toners may be formed by aggregating a colorant with a latex polymer formed by emulsion polymerization. For example, U.S. Pat. No. 5,853,943, the disclosure of which is hereby incorporated by reference in its entirety, is directed to a semi-continuous emulsion polymerization process for preparing a latex by first forming a seed polymer. Other examples of emulsion/aggregation/coalescing processes for the preparation of toners are illustrated in U.S. Pat. Nos. 5,403,693, 5,418,108, 5,364.729, and 5,346,797, the disclosures of each of which are hereby incorporated by reference in their entirety. Other processes are disclosed in U.S. Pat. Nos. 5,527,658, 5,585,215, 5,650,255, 5,650,256 and 5,501,935, the disclosures of each of which are hereby incorporated by reference in their entirety.


Polyester EA ultra low melt (ULM) toners have been prepared utilizing amorphous and crystalline polyester resins. Some of these toners have poor charging characteristics, which may be due to the crystalline resin component migrating to the surface during coalescence. The amorphous resin may also be plasticized by the crystalline resin, which may result in poor blocking. A core-shell approach, wherein a shell including a linear amorphous resin may be added to encapsulate the crystalline-amorphous composite has been attempted; however, charging and blocking still needs to be improved.


SUMMARY

The present disclosure provides toner particles having a core-shell configuration, with a shell including a high molecular weight amorphous polyester resin. In embodiments, a toner composition of the present disclosure may include toner particles including a core including at least one crystalline resin, and one or more optional ingredients such as colorants, optional waxes, and combinations thereof and a shell over said core including a high molecular weight amorphous polyester resin having a weight average molecular weight of from about 10,000 to about 5,000,000.


In other embodiments, a toner composition of the present disclosure may include toner particles including a core including at least one amorphous resin, at least one polyester crystalline resin, and one or more optional ingredients such as colorants, optional waxes, and combinations thereof, and a shell over the core including a high molecular weight amorphous polyester resin having a weight average molecular weight of from about 10,000 to about 1,000,000.


In yet other embodiments, a toner composition of the present disclosure may include toner particles including a core including at least one amorphous resin, at least one crystalline resin, and one or more optional ingredients such as colorants, optional waxes, and combinations thereof; and a shell resin including a high molecular weight amorphous polyester resin including a poly(propoxylated bisphenol A co-fumarate) having a weight average molecular weight of from about 10,000 to about 5,000.000 of the following formula:




embedded image



wherein m may be from about 10 to about 5000, in combination with a second polyester resin




embedded image



wherein b may be from about 5 to about 2000, and d may be from about 5 to about 2000, and wherein the high molecular weight amorphous polyester resin is present in an amount of from about 30 percent by weight to about 90 percent by weight of the shell, and the second resin is present in an amount of from about 10 percent by weight to about 70 percent by weight of the shell.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure will be described herein below with reference to the FIGURE wherein:


The FIGURE is a graph depicting the differences in the rheological properties of a toner produced with a resin of the present disclosure compared with a toner produced with a control resin.





DETAILED DESCRIPTION

The present disclosure provides toner particles having excellent charging properties. The toner particles possess a core-shell configuration, with a high molecular weight amorphous polyester resin in the shell. The glass transition temperature (Tg) of toner particles of the present disclosure is higher than toner particles possessing low molecular weight amorphous resins in the shell. As used herein, a high molecular weight amorphous polyester resin may have a weight average molecular weight greater than about 10,000, and a low molecular weight amorphous polyester resin may have a weight average molecular weight about 20% less than that of the high molecular weight amorphous resin. Toner particles of the present disclosure may thus have improved toner blocking.


Core Resins


Any latex resin may be utilized in forming a toner core of the present disclosure. Such resins, in turn, may be made of any suitable monomer. Suitable monomers useful in forming the resin include, but are not limited to, styrenes, acrylates, methacrylates, butadienes, isoprenes, acrylic acids, methacrylic acids, acrylonitriles, diol, diacid, diamine, diester, mixtures thereof, and the like. Any monomer employed may be selected depending upon the particular polymer to be utilized.


In embodiments, the polymer utilized to form the resin core may be a polyester resin, including the resins described in U.S. Pat. Nos. 6,593,049 and 6,756,176, the disclosures of each of which are hereby incorporated by reference in their entirety. Suitable resins may also include a mixture of an amorphous polyester resin and a crystalline polyester resin as described in U.S. Pat. No. 6,830,860, the disclosure of which is hereby incorporated by reference in its entirety. In embodiments, the resin may be formed by emulsion polymerization methods.


In embodiments, the resin may be a polyester resin formed by reacting a diol with a diacid in the presence of an optional catalyst. For forming a crystalline polyester, suitable organic diols include aliphatic diols with from about 2 to about 36 carbon atoms, such as 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, pentylene glycol, 1,6-hexanediol, hexylene glycol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, neopentyl glycol, ethylene glycol, diethylene glycol, dipropylene glycol and combinations thereof; alkali sulfo-aliphatic diols such as sodio 2-sulfo-1,2-ethanediol, lithio 2-sulfo-1,2-ethanediol, potassio 2-sulfo-1,2-ethanediol, sodio 2-sulfo-1,3-propanediol, lithio 2-sulfo-1,3-propanediol, potassio 2-sulfo-1,3-propanediol, mixture thereof, and the like. The aliphatic and or aromatic diol may be, for example, selected in an amount of from about 40 to about 60 mole percent, in embodiments from about 42 to about 55 mole percent, in embodiments from about 45 to about 53 mole percent, and the alkali sulfo-aliphatic diol can be selected in an amount of from about 0 to about 10 mole percent, in embodiments from about 1 to about 4 mole percent of the resin.


Examples of organic diacids or diesters selected for the preparation of the crystalline resins include oxalic acid, succinic acid, glutaric acid, adipic acid, succinic acid, suberic acid, 2-ethyl succinic acid, fumaric acid, maleic acid, maleic anhydride, dodecanedioic acid, dodecylsuccinic acid, 2-methyladipic acid, pimelic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, cyclohexane dicarboxylic acid, malonic acid and mesaconic acid, itaconic acid, 2-methylitaconic acid a diester or anhydride thereof, and combinations thereof; and an alkali sulfo-organic diacid such as the sodio, lithio or potassio salt of dimethyl-5-sulfo-isophthalate, dialkyl-5-sulfo-isophthalate-4-sulfo-1,8-naphthalic anhydride, 4-sulfo-phthalic acid, dimethyl-4-sulfo-phthalate, dialkyl-4-sulfo-phthalate, 4-sulfophenyl-3,5-dicarbomethoxybenzene, 6-sulfo-2-naphthyl-3,5-dicarbomethoxybenzene, sulfo-terephthalic acid, dimethyl-sulfo-terephthalate, 5-sulfo-isophthalic acid, dialkyl-sulfo-terephthalate, sulfoethanediol, 2-sulfopropanediol, 2-sulfobutanediol, 3-sulfopentanediol, 2-sulfohexanediol, 3-sulfo-2-methylpentanediol, 2-sulfo-3,3-dimethylpentanediol, sulfo-p-hydroxybenzoic acid, N,N-bis(2-hydroxyethyl)-2-amino ethane sulfonate, or mixtures thereof. The organic diacid may be selected in an amount of, for example, in embodiments from about 40 to about 60 mole percent, in embodiments from about 42 to about 52 mole percent, in embodiments from about 45 to about 50 mole percent, and the alkali sulfo-aliphatic diacid can be selected in an amount of from about 1 to about 10 mole percent of the resin.


Examples of crystalline resins include polyesters, polyamides, polyimides, polyolefins, polyethylene, polybutylene, polyisobutyrate, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, polypropylene, mixtures thereof, and the like. Specific crystalline resins may be polyester based, such as poly(ethylene-adipate), poly(propylene-adipate), poly(butylene-adipate), poly(pentylene-adipate), poly(hexylene-adipate), poly(octylene-adipate), poly(ethylene-succinate), poly(propylene-succinate), poly(butylene-succinate), poly(pentylene-succinate), poly(hexylene-succinate), poly(octylene-succinate), poly(ethylene-sebacate), poly(propylene-sebacate), poly(butylene-sebacate), poly(pentylene-sebacate), poly(hexylene-sebacate), poly(octylene-sebacate), alkali copoly(5-sulfoisophthaloyl)-copoly(ethylene-adipate), alkali copoly(5-sulfoisophthaloyl)-copoly(propylene-adipate), alkali copoly(5-sulfoisophthaloyl)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(octylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(ethylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly (propylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(octylene-adipate), alkali copoly(5-sulfoisophthaloyl)-copoly(ethylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(propylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(butylenes-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(pentylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(hexylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(octylene-succinate), alkali copoly(5-sulfo-isophthaloyl)-copoly(ethylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(propylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(butylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(octylene-sebacate), alkali copoly(5-sulfo)-isophthaloyl)-copoly(ethylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(propylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-adipate), poly(octylene-adipate), wherein alkali is a metal like sodium, lithium or potassium. Examples of polyamides include poly(ethylene-adipamide), poly(propylene-adipamide), poly(butylenes-adipamide), poly(pentylene-adipamide), poly(hexylene-adipamide), poly(octylene-adipamide) poly(ethylene-succinamide), and poly(propylene-sebecamide). Examples of polyimides include poly(ethylene-adipimide), poly(propylene-adipimide), poly(butylene-adipimide), poly(pentylene-adipimide), poly(hexylene-adipimide), poly(octylene-adipimide), poly(ethylene-succinimide), poly(propylene-succinimide), and poly(butylene-succinimide).


The crystalline resin may be present, for example, in an amount of from about 5 to about 50 percent by weight of the toner components, in embodiments from about 5 to about 35 percent by weight of the toner components. The crystalline resin can possess various melting points of, for example, from about 30° C. to about 120° C. in embodiments from about 50° C. to about 90° C. The crystalline resin may have a number average molecular weight (Mn), as measured by gel permeation chromatography (GPC) of, for example, from about 1,000 to about 50,000, in embodiments from about 2,000 to about 25,000, and a weight average molecular weight (Mw) of, for example, from about 2,000 to about 100,000, in embodiments from about 3,000 to about 80,000, as determined by Gel Permeation Chromatography using polystyrene standards. The molecular weight distribution (Mw/Mn) of the crystalline resin may be, for example, from about 2 to about 6, in embodiments from about 2 to about 4.


Examples of diacid or diesters selected for the preparation of amorphous polyesters include dicarboxylic acids or diesters such as terephthalic acid, phthalic acid, isophthalic acid, fumaric acid, maleic acid, maleic anhydride, succinic acid, malonic acid, itaconic acid, 2-methylitaconic acid, 2-ethyl succinic acid, succinic anhydride, dodecylsuccinic acid, 2-methyladipic acid, dodecylsuccinic anhydride, glutaric acid, glutaric anhydride, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimethyl terephthalate, diethyl terephthalate, dimethylisophthalate, diethylisoplithalate, dimethylphthalate, phthalic anhydride, diethylphthalate, dimethylsuccinate, dimethylfumarate, dimethylmaleate, dimethylglutarate, dimethyladipate, dimethyl dodecylsuccinate, and combinations thereof. The organic diacid or diester may be present, for example, in an amount from about 40 to about 60 mole percent of the resin, in embodiments from about 42 to about 55 mole percent of the resin, in embodiments from about 45 to about 53 mole percent of the resin.


Examples of diols utilized in generating the amorphous polyester include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, 2,2-dimethylpropanediol, 2,2,3-trimethylhexanediol, heptanediol, dodecanediol, bis(hydroxyethyl)-bisphenol A, bis(2-hydroxypropyl)-bisphenol A, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, xylenedimethanol, cyclohexanediol, diethylene glycol, bis(2-hydroxyethyl) oxide, dipropylene glycol, dibutylene, and combinations thereof. The amount of organic diol selected can vary, and may be present, for example, in an amount from about 40 to about 60 mole percent of the resin, in embodiments from about 42 to about 55 mole percent of the resin, in embodiments from about 45 to about 53 mole percent of the resin.


Polycondensation catalysts which may be utilized for either the crystalline or amorphous polyesters include tetraalkyl titanates, dialkyltin oxides such as dibutyltin oxide, tetraalkyltins such as dibutyltin dilaurate, and dialkyltin oxide hydroxides such as butyltin oxide hydroxide, aluminum alkoxides, alkyl zinc, dialkyl zinc, zinc oxide, stannous oxide, or combinations thereof. Such catalysts may be utilized in amounts of, for example, from about 0.01 mole percent to about 5 mole percent based on the starting diacid or diester used to generate the polyester resin.


In embodiments, suitable amorphous resins include polyesters, polyamides, polyimides, polyolefins, polyethylene, polybutylene, polyisobutyrate, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, polypropylene, combinations thereof, and the like. Examples of amorphous resins which may be utilized include poly(styrene-acrylate) resins, crosslinked, for example, from about 10 percent to about 70 percent, poly(styrene-acrylate) resins, poly(styrene-methacrylate) resins, crosslinked poly(styrene-methacrylate) resins, poly(styrene-butadiene) resins, crosslinked poly(styrene-butadiene) resins, alkali sulfonated-polyester resins, branched alkali sulfonated-polyester resins, alkali sulfonated-polyimide resins, branched alkali sulfonated-polyimide resins, alkali sulfonated poly(styrene-acrylate) resins, crosslinked alkali sulfonated poly(styrene-acrylate) resins, poly(styrene-methacrylate) resins, crosslinked alkali sulfonated-poly(styrene-methacrylate) resins, alkali sulfonated-poly(styrene-butadiene) resins, and crosslinked alkali sulfonated poly(styrene-butadiene) resins. Alkali sulfonated polyester resins may be useful in embodiments, such as the metal or alkali salts of copoly(ethylene-terephthalate)-copoly(ethylene-5-sulfo-isophthalate), copoly(propylene-terephthalate)-copoly(propylene-5-sulfo-isophthalate), copoly(diethylene-terephthalate)-copoly(diethylene-5-sulfo-isophthalate), copoly(propylene-diethylene-terephthalate)-copoly(propylene-diethylene-5-sulfoisophthalate), copoly(propylene-butylene-terephthalate)-copoly(propylene-butylene-5-sulfo-isophthalate), copoly(propoxylated bisphenol-A-fumarate)-copoly(propoxylated bisphenol A-5-sulfo-isophthalate), copoly(ethoxylated bisphenol-A-fumarate)-copoly(ethoxylated bisphenol-A-5-sulfo-isophthalate), and copoly(ethoxylated bisphenol-A-maleate)-copoly(ethoxylated bisphenol-A-5-sulfo-isophthalate), and wherein the alkali metal is, for example, a sodium, lithium or potassium ion.


Examples of other suitable latex resins or polymers which may be utilized include, but are not limited to, poly(styrene-butadiene), poly(methylstyrene-butadiene), poly(methyl methacrylate-butadiene), poly(ethyl methacrylate-butadiene), poly(propyl methacrylate-butadiene), poly(butyl methacrylate-butadiene), poly(methyl acrylate-butadiene), poly(ethyl acrylate-butadiene), poly(propyl acrylate-butadiene), poly(butyl acrylate-butadiene), poly(styrene-isoprene), poly(methylstyrene-isoprene), poly(methyl methacrylate-isoprene), poly(ethyl methacrylate-isoprene), poly(propyl methacrylate-isoprene), poly(butyl methacrylate-isoprene), poly(methyl acrylate-isoprene), poly(ethyl acrylate-isoprene), poly(propyl acrylate-isoprene), poly(butyl acrylate-isoprene); poly(styrene-propyl acrylate), poly(styrene-butyl acrylate), poly(styrene-butadiene-acrylic acid), poly(styrene-butadiene-methacrylic acid), poly(styrene-butadiene-acrylonitrile-acrylic acid), poly(styrene-butyl acrylate-acrylic acid), poly(styrene-butyl acrylate-methacrylic acid), poly(styrene-butyl acrylate-acrylonitrile), and poly(styrene-butyl acrylate-acrylonitrile-acrylic acid), and combinations thereof. The polymers may be block, random, or alternating copolymers.


In embodiments, an unsaturated polyester resin may be utilized as a latex resin. Examples of such resins include those disclosed in U.S. Pat. No. 6,063,827, the disclosure of which is hereby incorporated by reference in its entirety. Exemplary unsaturated polyester resins include, but are not limited to, poly(propoxylated bisphenol co-fumarate), poly(ethoxylated bisphenol co-fumarate), poly(butyloxylated bisphenol co-fumarate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-fumarate), poly(1,2-propylene fumarate), poly(propoxylated bisphenol co-maleate), poly)ethoxylated bisphenol co-maleate), poly(butyloxylated bisphenol co-maleate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-maleate), poly(1,2-propylene maleate), poly(propoxylated bisphenol co-itaconate), poly(ethoxylated bisphenol co-itaconate), poly(butyloxylated bisphenol co-itaconate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-itaconate), poly(1,2-propylene itaconate), and combinations thereof.


In embodiments, a suitable amorphous polyester resin may be a poly(propoxylated bisphenol A co-fumarate) resin having the following formula (I):




embedded image



wherein m may be from about 5 to about 1000.


An example of a linear propoxylated bisphenol A fumarate resin which may be utilized as a latex resin is available under the trade name SPARII from Resana S/A Industrias Quimicas, Sao Paulo Brazil. Other propoxylated bisphenol A fumarate resins that may be utilized and are commercially available include GTUF and FPESL-2 from Kao Corporation, Japan, and EM181635 from Reichhold, Research Triangle Park, N.C. and the like.


Suitable crystalline resins include those disclosed in U.S. Patent Application Publication No. 2006/0222991, the disclosure of which is hereby incorporated by reference in its entirety. In embodiments, a suitable crystalline resin may include a resin composed of ethylene glycol and a mixture of dodecanedioic acid and fumaric acid co-monomers with the following formula:




embedded image



wherein b is from 5 to 2000 and d is from 5 to 2000.


The resins utilized to form the core may have a number average molecular weight (Mn) from about 1000 to about 1,000,000, in embodiments from about 2000 to about 500,000, and a weight average molecular weight (Mw) of, from about 2000 to about 3,000,000, in embodiments from about 4,000 to about 1,500,000, as determined by Gel Permeation Chromatography (GPC) using polystyrene standards. For example, in embodiments, a poly(propoxylated bisphenol A co-fumarate) resin as described above may be utilized in the core. Such a polyester resin may have a weight average molecular weight (Mw) of from about 2000 to about 3,000,000, in embodiments from about 4,000 to about 1,500,000, and a number average molecular weight of from about 1000 to about 1,000,000, in embodiments from about 2000 to about 500,000, as determined by gel permeation chromatography (GPC).


In embodiments, the resin utilized in the core may have a glass transition temperature of from about 35° C. to about 100° C., in embodiments from about 40° C. to about 80° C. In further embodiments, the resin utilized in the core may have a melt viscosity of from about 10 to about 1,000,000 Pa*S at about 130° C., in embodiments from about 20 to about 100,000 Pa*S.


One, two, or more toner resins may be used. In embodiments where two or more toner resins are used, the toner resins may be in any suitable ratio (e.g., weight ratio) such as for instance about 10% (first resin)/90% (second resin) to about 90% (first resin)/0% (second resin).


Toner


The resin described above may be utilized to form toner compositions. Such toner compositions may include optional colorants, waxes, and other additives. Toners may be formed utilizing any method within the purview of those skilled in the art.


Surfactants


In embodiments, colorants, waxes, and other additives utilized to form toner compositions may be in dispersions including surfactants. Moreover, toner particles may be formed by emulsion aggregation methods where the resin and other components of the toner are placed in one or more surfactants, an emulsion is formed, toner particles are aggregated, coalesced, optionally washed and dried, and recovered.


One, two, or more surfactants may be utilized. The surfactants may be selected from ionic surfactants and nonionic surfactants. Anionic surfactants and cationic surfactants are encompassed by the term “ionic surfactants.” In embodiments, the surfactant may be utilized so that it is present in an amount of from about 0.01% to about 5% by weight of the toner composition, for example from about 0.75% to about 4% by weight of the toner composition, in embodiments from about 1% to about 3% by weight of the toner composition.


Examples of nonionic surfactants that can be utilized include, for example, polyacrylic acid, methalose, methyl cellulose, ethyl cellulose, propyl cellulose, hydroxy ethyl cellulose, carboxy methyl cellulose, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethylene octyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, dialkylphenoxy poly(ethyleneoxy)ethanol, available from Rhone-Poulenac as IGEPAL CA-210™, IGEPAL CA-520™, IGEPAL CA-720™, IGEPAL CO-890™, IGEPAL CO-720™, IGEPAL CO-290™, IGEPAL CA-210™, ANTAROX 890™ and ANTAROX 897™. Other examples of suitable nonionic surfactants include a block copolymer of polyethylene oxide and polypropylene oxide, including those commercially available as SYNPERONIC PE/F, in embodiments SYNPERONIC PE/F 108.


Anionic surfactants which may be utilized include sulfates and sulfonates, sodium dodecylsulfate (SDS), sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfate, dialkyl benzenealkyl sulfates and sulfonates, acids such as abitic acid available from Aldrich, NEOGEN R™, NEOGEN SC™ obtained from Daiichi Kogyo Seiyaku, combinations thereof, and the like. Other suitable anionic surfactants include, in embodiments, DOWFAX™ 2Al, an alkyldiphenyloxide disulfonate from The Dow Chemical Company, and/or TAYCA POWER BN2060 from Tayca Corporation (Japan), which are branched sodium dodecyl benzene sulfonates. Combinations of these surfactants and any of the foregoing anionic surfactants may be utilized in embodiments.


Examples of the cationic surfactants, which are usually positively charged, include, for example, alkylbenzyl dimethyl ammonium chloride, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, benzalkonium chloride, cetyl pyridinium bromide, C12, C15, C17 trimethyl ammonium bromides, halide salts of quaternized polyoxyethylalkylamines, dodecylbenzyl triethyl ammonium chloride, MIRAPOL™ and ALKAQUA™, available from Alkaril Chemical Company, SANIZOL™ (benzalkonium chloride), available from Kao Chemicals, and the like, and mixtures thereof.


Colorants


As the colorant to be added, various known suitable colorants, such as dyes, pigments, mixtures of dyes, mixtures of pigments, mixtures of dyes and pigments, and the like, may be included in the toner. The colorant may be included in the toner in an amount of, for example, about 0.1 to about 35 percent by weight of the toner, or from about 1 to about 15 weight percent of the toner, or from about 3 to about 10 percent by weight of the toner.


As examples of suitable colorants, mention may be made of carbon black like REGAL 330®; magnetites, such as Mobay magnetites MO8029™, MO8060™; Columbian magnetites; MAPICO BLACKS™ and surface treated magnetites; Pfizer magnetites CB4799™, CB5300™, CB5600™, MCX6369™; Bayer magnetites, BAYFERROX 8600™, 8610™; Northern Pigments magnetites, NP-604™, NP608™; Magnox magnetites TMB-100™, or TMB-104™; and the like. As colored pigments, there can be selected cyan, magenta, yellow, red, green, brown, blue or mixtures thereof. Generally, cyan, magenta, or yellow pigments or dyes, or mixtures thereof, are used. The pigment or pigments are generally used as water based pigment dispersions.


Specific examples of pigments include SUNSPERSE 6000, FLEXIVERSE and AQUATONE water based pigment dispersions from SUN Chemicals, HELIOGEN BLUE L6900™, D6840™, D7080™, D7020™, PYLAM OIL BLUE™, PYLAM OIL YELLOW™, PIGMENT BLUE 1™ available from Paul Uhlich & Company, Inc., PIGMENT VIOLET 1™, PIGMENT RED 48™, LEMON CHROME YELLOW DCC 1026™, E.D. TOLUIDINE RED™ and BON RED C™ available from Dominion Color Corporation, Ltd., Toronto, Ontario, NOVAPERM YELLOW FGL™, HOSTAPERM PINK E™ from Hoechst, and CINQUASIA MAGENTA™ available from E.I. DuPont de Nemours & Company, and the like. Generally, colorants that can be selected are black, cyan, magenta, or yellow, and mixtures thereof. Examples of magentas are 2,9-dimethyl-substituted quinacridone and anthraquinone dye identified in the Color Index as CI 60710, CI Dispersed Red 15, diazo dye identified in the Color Index as CI 26050, CI Solvent Red 19, and the like. Illustrative examples of cyans include copper tetra(octadecyl sulfonamido) phthalocyanine, x-copper phthalocyanine pigment listed in the Color Index as CI 74160, CI Pigment Blue, Pigment Blue 15:3, and Anthrathrene Blue, identified in the Color Index as CI 69810, Special Blue X-2137, and the like. Illustrative examples of yellows are diarylide yellow 3,3-dichlorobenzidene acetoacetanilides, a monoazo pigment identified in the Color Index as CI 12700, CI Solvent Yellow 16, a nitrophenyl amine sulfonamide identified in the Color Index as Foron Yellow SE/GLN, CI Dispersed Yellow 33 2,5-dimethoxy-4-sulfonanilide phenylazo-4′-chloro-2,5-dimethoxy acetoacetanilide, and Permanent Yellow FGL. Colored magnetites, such as mixtures of MAPICO BLACK™, and cyan components may also be selected as colorants. Other known colorants can be selected, such as Levanyl Black A-SF (Miles, Bayer) and Sunsperse Carbon Black LHD 9303 (Sun Chemicals), and colored dyes such as Neopen Blue (BASF), Sudan Blue OS (BASF), PV Fast Blue B2G01 (American Hoechst), Sunsperse Blue BHD 6000 (Sun Chemicals), Irgalite Blue BCA (Ciba-Geigy), Paliogen Blue 6470 (BASF), Sudan III (Matheson, Coleman, Bell), Sudan II (Matheson, Coleman, Bell), Sudan IV (Matheson, Coleman, Bell), Sudan Orange G (Aldrich), Sudan Orange 220 (BASF), Paliogen Orange 3040 (BASF), Ortho Orange OR 2673 (Paul Uhlich), Paliogen Yellow 152, 1560 (BASF), Lithol Fast Yellow 0991 K (BASF), Paliotol Yellow 1840 (BASF), Neopen Yellow (BASF), Novoperm Yellow FG 1 (Hoechst), Permanent Yellow YE 0305 (Paul Uhlich), Lumogen Yellow D0790 (BASF), Sunsperse Yellow YHD 6001 (Sun Chemicals), Suco-Gelb L1250 (BASF), Suco-Yellow D1355 (BASF), Hostaperm Pink E (American Hoechst), Fanal Pink D4830 (BASF), Cinquasia Magenta (DuPont), Lithol Scarlet D3700 (BASF), Toluidine Red (Aldrich), Scarlet for Thermoplast NSD PS PA (Ugine Kuhlmann of Canada), E.D. Toluidine Red (Aldrich), Lithol Rubine Toner (Paul Uhlich), Lithol Scarlet 4440 (BASF), Bon Red C (Dominion Color Company), Royal Brilliant Red RD-8192 (Paul Uhlich), Oracet Pink RF (Ciba-Geigy), Paliogen Red 3871K (BASF), Paliogen Red 3340 (BASF), Lithol Fast Scarlet L4300 (BASF), combinations of the foregoing, and the like.


Wax


Optionally, a wax may also be combined with the resin and a colorant in forming toner particles. When included, the wax may be present in an amount of, for example, from about 1 weight percent to about 25 weight percent of the toner particles, in embodiments from about 5 weight percent to about 20 weight percent of the toner particles.


Waxes that may be selected include waxes having, for example, a weight average molecular weight of from about 500 to about 20,000, in embodiments from about 1,000 to about 10,000. Waxes that may be used include, for example, polyolefins such as polyethylene, polypropylene, and polybutene waxes such as commercially available from Allied Chemical and Petrolite Corporation, for example POLYWAX™ polyethylene waxes from Baker Petrolite, wax emulsions available from Michaelman, Inc. and the Daniels Products Company, EPOLENE N-15™ commercially available from Eastman Chemical Products, Inc., and VISCOL 550-P™, a low weight average molecular weight polypropylene available from Sanyo Kasei K. K.; plant-based waxes, such as carnauba wax, rice wax, candelilla wax, sumacs wax, and jojoba oil; animal-based waxes, such as beeswax; mineral-based waxes and petroleum-based waxes, such as montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, and Fischer-Tropsch wax; ester waxes obtained from higher fatty acid and higher alcohol, such as stearyl stearate and behenyl behenate; ester waxes obtained from higher fatty acid and monovalent or multivalent lower alcohol, such as butyl stearate, propyl oleate, glyceride monostearate, glyceride distearate, and pentaerythritol tetra behenate; ester waxes obtained from higher fatty acid and multivalent alcohol multimers, such as diethyleneglycol monostearate, dipropyleneglycol distearate, diglyceryl distearate, and triglyceryl tetrastearate; sorbitan higher fatty acid ester waxes, such as sorbitan monostearate, and cholesterol higher fatty acid ester waxes, such as cholesteryl stearate. Examples of functionalized waxes that may be used include, for example, amines, amides, for example AQUA SUPERSLIP 6550™, SUPERSLIP 6530™ available from Micro Powder Inc., fluorinated waxes, for example POLYFLUO 190™, POLYFLUO 200™, POLYSILK 19™, POLYSILK 14™ available from Micro Powder Inc., mixed fluorinated, amide waxes, for example MICROSPERSION 19™ also available from Micro Powder Inc., imides, esters, quaternary amines, carboxylic acids or acrylic polymer emulsion, for example JONCRYL 74™, 89™, 130™, 537™, and 538™, all available from SC Johnson Wax, and chlorinated polypropylenes and polyethylenes available from Allied Chemical and Petrolite Corporation and SC Johnson wax. Mixtures and combinations of the foregoing waxes may also be used in embodiments. Waxes may be included as, for example, fuser roll release agents.


Toner Preparation


The toner particles may be prepared by any method within the purview of one skilled in the art. Although embodiments relating to toner particle production are described below with respect to emulsion-aggregation processes, any suitable method of preparing toner particles may be used, including chemical processes, such as suspension and encapsulation processes disclosed in U.S. Pat. Nos. 5,290,654 and 5,302,486, the disclosures of each of which are hereby incorporated by reference in their entirety. In embodiments, toner compositions and toner particles may be prepared by aggregation and coalescence processes in which small-size resin particles are aggregated to the appropriate toner particle size and then coalesced to achieve the final toner particle shape and morphology.


In embodiments, toner compositions may be prepared by emulsion-aggregation processes, such as a process that includes aggregating a mixture of an optional colorant, an optional wax and any other desired or required additives, and emulsions including the resins described above, optionally in surfactants as described above, and then coalescing the aggregate mixture. A mixture may be prepared by adding a colorant and optionally a wax or other materials, which may also be optionally in a dispersion(s) including a surfactant, to the emulsion, which may be a mixture of two or more emulsions containing the resin. The pH of the resulting mixture may be adjusted by an acid such as, for example, acetic acid, nitric acid or the like. In embodiments, the pH of the mixture may be adjusted to from about 4 to about 5. Additionally, in embodiments, the mixture may be homogenized. If the mixture is homogenized, homogenization may be accomplished by mixing at about 600 to about 4,000 revolutions per minute. Homogenization may be accomplished by any suitable means, including, for example, an IKA ULTRA TURRAX T50 probe homogenizer.


Following the preparation of the above mixture, an aggregating agent may be added to the mixture. Any suitable aggregating agent may be utilized to form a toner. Suitable aggregating agents include, for example, aqueous solutions of a divalent cation or a multivalent cation material. The aggregating agent may be, for example, polyaluminum halides such as polyaluminum chloride (PAC), or the corresponding bromide, fluoride, or iodide, polyaluminum silicates such as polyaluminum sulfosilicate (PASS), and water soluble metal salts including aluminum chloride, aluminum nitrite, aluminum sulfate, potassium aluminum sulfate, calcium acetate, calcium chloride, calcium nitrite, calcium oxylate, calcium sulfate, magnesium acetate, magnesium nitrate, magnesium sulfate, zinc acetate, zinc nitrate, zinc sulfate, zinc chloride, zinc bromide, magnesium bromide, copper chloride, copper sulfate, and combinations thereof. In embodiments, the aggregating agent may be added to the mixture at a temperature that is below the glass transition temperature (Tg) of the resin.


The aggregating agent may be added to the mixture utilized to form a toner in an amount of, for example, from about 0.1% to about 8% by weight, in embodiments from about 0.2% to about 5% by weight, in other embodiments from about 0.5% to about 5% by weight, of the resin in the mixture. This provides a sufficient amount of agent for aggregation.


In order to control aggregation and coalescence of the particles, in embodiments the aggregating agent may be metered into the mixture over time. For example, the agent may be metered into the mixture over a period of from about 5 to about 240 minutes, in embodiments from about 30 to about 200 minutes, although more or less time may be used as desired or required. The addition of the agent may also be done while the mixture is maintained under stirred conditions, in embodiments from about 50 rpm to about 1,000 rpm, in other embodiments from about 100 rpm to about 500 rpm, and at a temperature that is below the glass transition temperature of the resin as discussed above, in embodiments from about 30° C. to about 90° C., in embodiments from about 35° C. to about 70° C.


The particles may be permitted to aggregate and/or coalesce until a predetermined desired particle size is obtained. A predetermined desired size refers to the desired particle size to be obtained as determined prior to formation, and the particle size being monitored during the growth process until such particle size is reached. Samples may be taken during the growth process and analyzed, for example with a Coulter Counter, for average particle size. The aggregation/coalescence thus may proceed by maintaining the elevated temperature, or slowly raising the temperature to for example, from about 40° C. to about 100° C., and holding the mixture at this temperature for a time from about 0.5 hours to about 6 hours, in embodiments from about hour 1 to about 5 hours, while maintaining stirring, to provide the aggregated particles. Once the predetermined desired particle size is reached, then the growth process is halted. In embodiments, the predetermined desired particle size is within the toner particle size ranges mentioned above.


The growth and shaping of the particles following addition of the aggregation agent may be accomplished under any suitable conditions. For example, the growth and shaping may be conducted under conditions in which aggregation occurs separate from coalescence. For separate aggregation and coalescence stages, the aggregation process may be conducted under shearing conditions at an elevated temperature, for example of from about 40° C. to about 90° C., in embodiments from about 45° C. to about 80° C., which may be below the glass transition temperature of the resin as discussed above.


Following aggregation to the desired particle size, the particles may then be coalesced to the desired final shape, the coalescence being achieved by, for example, heating the mixture to a temperature of from about 65° C. to about 105° C., in embodiments from about 70° C. to about 95° C., which may be at or above the glass transition temperature of the resin, and/or increasing the stirring, for example to from about 400 rpm to about 1,000 rpm, in embodiments from about 500 rpm to about 800 rpm. Higher or lower temperatures may be used, it being understood that the temperature is a function of the resins used for the binder. Coalescence may be accomplished over a period of from about 0.1 to about 9 hours, in embodiments from about 0.5 to about 4 hours.


After aggregation and/or coalescence, the mixture may be cooled to room temperature, such as from about 20° C. to about 25° C. The cooling may be rapid or slow, as desired. A suitable cooling method may include introducing cold water to a jacket around the reactor. After cooling, the toner particles may be optionally washed with water, and then dried. Drying may be accomplished by any suitable method for drying including, for example, freeze-drying.


Shell Resin


In embodiments, after aggregation, but prior to coalescence, a shell may be applied to the aggregated particles. As noted above, in embodiments, a resin utilized for forming the shell may be a high molecular weight amorphous polyester resin. Such resins may include any of the amorphous resins described above for use as the core, so long as the resin has a number average molecular weight (Mn) of from about 5,000 to about 1,000,000, in embodiments from about 15,000 to about 500,000, and a weight average molecular weight (Mw) of from about 10,000 to about 5,000,000, in embodiments from about 10,000 to about 1,000,000, in other embodiments from about 20,000 to about 1,000,000, as determined by Gel Permeation Chromatography (GPC) using polystyrene standards.


In embodiments, the high molecular weight amorphous polyester resin may have a polydispersity (Mw/Mn) of from about 2 to about 8, in embodiments from about 3 to about 6. While a narrow distribution of the molecular weight is often conventionally utilized, in embodiments of the present disclosure, a wide distribution of molecular weight may be utilized. In some embodiments, the high molecular weight amorphous polyester resin has a large polydispersity, for example at least about 3, in embodiments at least about 5. The large polydispersity may be utilized to ensure a low glass transition temperature (Tg) but a high viscosity of the amorphous polyester resin at a temperature of about 5° C. higher than the Tg.


In embodiments, the high molecular weight resin utilized to form the shell may be a linear resin. For example, in embodiments, the high molecular weight resin utilized to form the shell may be a poly(propoxylated bisphenol A co-fumarate) of the following formula:




embedded image



wherein m may be from about 10 to about 5000.


In embodiments, the high molecular weight amorphous polyester resin utilized in the shell may have a glass transition temperature of from about 40° C. to about 100° C., in embodiments from about 50° C. to about 80° C. In further embodiments, the high molecular weight amorphous polyester resin may have a melt viscosity of from about 50 to about 1,000,000 Pa*S at about 130° C., in embodiments from about 100 to about 100,000 Pa*S at about 130° C.


The high molecular weight amorphous polyester resin utilized in the shell may have a softening point higher than about 100° C., in embodiments from about 100° C. to about 200° C., in other embodiments from about 110° C. to about 150° C. The softening point of the high molecular weight amorphous polyester resin utilized in the shell may, in embodiments, be greater than about 50° C. higher than the coalescence temperature utilized in forming the toner particles, in embodiments from about 50° C. to about 100° C. higher than the coalescence temperature utilized in forming the toner particles.


The difference in softening point for a toner having a low molecular weight resin in its shell, compared with a toner having a high molecular weight resin in its shell, may be from about 5° C. to about 100° C., in embodiments from about 10° C. to about 50° C., depending upon the resins utilized.


The high molecular weight amorphous polyester resin utilized to form the shell may be utilized by itself or, in embodiments, the high molecular weight amorphous polyester resin may be combined with other amorphous resins to form a shell. In embodiments, the high molecular weight amorphous polyester resin may be present in an amount of from about 20 percent by weight to about 100 percent by weight of the total shell resin, in embodiments from about 30 percent by weight to about 90 percent by weight of the total shell resin. Thus, in embodiments, a second resin may be present in the shell resin in an amount of from about 0 percent by weight to about 80 percent by weight of the total shell resin, in embodiments from about 10 percent by weight to about 70 percent by weight of the shell resin.


In embodiments, the molecular weight of the high molecular weight amorphous polyester resin in the shell of a toner of the present disclosure may be at least about 20% higher than the molecular weight of the amorphous resin in the core, in embodiments from about 20% higher to about 1000% higher than the molecular weight of the amorphous resin in the core, in embodiments from about 50% higher to about 500% higher than the molecular weight of the amorphous resin in the core.


The viscosity of the high molecular weight amorphous polyester resin in the shell of a toner of the present disclosure may be at least about 50% higher than the viscosity of the amorphous resin in the core at about 130° C., in embodiments from about 50% higher to about 500% higher than the viscosity of the amorphous resin in the core at about 130° C., in embodiments from about 80% higher to about 200% higher than the viscosity of the amorphous resin in the core at about 130° C.


The shell thus formed using a high molecular weight amorphous resin may have a thickness of from about 50 nm to about 2 μm, in embodiments from about 200 nm to about 1 μm.


The shell resin may be applied to the aggregated particles by any method within the purview of those skilled in the art. In embodiments, the shell resin may be in an emulsion including any surfactant described above. The aggregated particles described above may be combined with said emulsion so that the high molecular weight amorphous polyester resin forms a shell over the formed aggregates.


Toner particles having a shell of the present disclosure may thus have a size of from about 3 μm to about 15 μm, in embodiments from about 4 μm to about 12 μm, and a glass transition temperature of from about 30° C. to about 80° C., in embodiments from about 35° C. to about 65° C.


Once the desired final size of the toner particles is achieved, the pH of the mixture may be adjusted with a base to a value of from about 3 to about 10, and in embodiments from about 5 to about 9. The adjustment of the pH may be utilized to freeze, that is to stop, toner growth. The base utilized to stop toner growth may include any suitable base such as, for example, alkali metal hydroxides such as, for example, sodium hydroxide, potassium hydroxide, ammonium hydroxide, combinations thereof, and the like. In embodiments, ethylene diamine tetraacetic acid (EDTA) may be added to help adjust the pH to the desired values noted above.


The high molecular weight amorphous polyester resin utilized to form the shell may have a lower acid number compared with a lower molecular weight polyester resin. While a lower acid number usually corresponds to poor charging performance, it was surprisingly found that toners of the present disclosure with high molecular weight amorphous polyester resins in their shell and low acid numbers possessed excellent charging characteristics. The acid value of the resin utilized to form the core may be from about 5 to about 100 mL KOH/g polymer, in embodiments from about 10 to about 50 mL KOH/g polymer, while the acid value of the resin utilized to form the shell may be from about 5 to about 100 mL KOH/g polymer, in embodiments from about 10 to about 40 mL KOH/g polymer.


As the amorphous polyester resin utilized to form the shell has a higher molecular weight, which indicates a higher viscosity of the shell, the high molecular weight amorphous resin may be able to prevent any crystalline resin in the core from migrating to the toner surface. In addition, the high molecular weight amorphous polyester resin may be less compatible with the crystalline resin utilized in forming the core, which may result in a higher toner glass transition temperature (Tg), and thus improved blocking and charging characteristics may be obtained. Moreover, toners of the present disclosure having high molecular weight amorphous polyester resin in the shell may exhibit excellent document offset performance characteristics. While not wishing to be bound by any theory, it is believed the higher viscosity of the high molecular weight polyester resin in the shell may be responsible for imparting the above desired characteristics to the toner particles.


Additives


In embodiments, the toner particles may also contain other optional additives, as desired or required. For example, the toner may include positive or negative charge control agents, for example in an amount of from about 0.1 to about 10 percent by weight of the toner, in embodiments from about 1 to about 3 percent by weight of the toner. Examples of suitable charge control agents include quaternary ammonium compounds inclusive of alkyl pyridinium halides; bisulfates; alkyl pyridinium compounds, including those disclosed in U.S. Pat. No. 4,298,672, the disclosure of which is hereby incorporated by reference in its entirety; organic sulfate and sulfonate compositions, including those disclosed in U.S. Pat. No. 4,338,390, the disclosure of which is hereby incorporated by reference in its entirety; cetyl pyridinium tetrafluoroborates; distearyl dimethyl ammonium methyl sulfate; aluminum salts such as BONTRON E84™ or E88™ (Hodogaya Chemical); combinations thereof, and the like. Such charge control agents may be applied simultaneously with the shell resin described above or after application of the shell resin.


There can also be blended with the toner particles external additive particles including flow aid additives, which additives may be present on the surface of the toner particles. Examples of these additives include metal oxides such as titanium oxide, silicon oxide, tin oxide, mixtures thereof, and the like; colloidal and amorphous silicas, such as AEROSIL®, metal salts and metal salts of fatty acids inclusive of zinc stearate, aluminum oxides, cerium oxides, and mixtures thereof. Each of these external additives may be present in an amount of from about 0.1 percent by weight to about 5 percent by weight of the toner, in embodiments of from about 0.25 percent by weight to about 3 percent by weight of the toner. Suitable additives include those disclosed in U.S. Pat. Nos. 3,590,000, 3,800,588, and 6,214,507, the disclosures of each of which are hereby incorporated by reference in their entirety. Again, these additives may be applied simultaneously with the shell resin described above or after application of the shell resin.


In embodiments, toners of the present disclosure may be utilized as ultra low melt (ULM) toners. In embodiments, the dry toner particles, exclusive of external surface additives, may have the following characteristics:


(1) Volume average diameter (also referred to as “volume average particle diameter”) of from about 3 to about 25 μm, in embodiments from about 4 to about 15 μm, in other embodiments from about 5 to about 12 μm.


(2) Number Average Geometric Size Distribution (GSDn) and/or Volume Average Geometric Size Distribution (GSDv) of from about 1.05 to about 1.55, in embodiments from about 1.1 to about 1.4.


(3) Circularity of from about 0.9 to about 0.99 (measured with, for example, a Sysmex FPIA 2100 analyzer).


The characteristics of the toner particles may be determined by any suitable technique and apparatus. Volume average particle diameter D50v, GSDv, and GSn may be measured by means of a measuring instrument such as a Beckman Coulter Multisizer 3, operated in accordance with the manufacturer's instructions. Representative sampling may occur as follows: a small amount of toner sample, about 1 gram, may be obtained and filtered through a 25 micrometer screen, then put in isotonic solution to obtain a concentration of about 10%, with the sample then run in a Beckman Coulter Multisizer 3.


Toners produced in accordance with the present disclosure may possess excellent charging characteristics when exposed to extreme relative humidity (RH) conditions. The low-humidity zone (C zone) is about 10° C./15% RH, while the high humidity zone (A zone) is about 28° C./85% RH. Toners of the present disclosure may also possess a parent toner charge per mass ratio (Q/M) of from about −3 μC/g to about −35 μC/g, and a final toner charging after surface additive blending of from −5 μC/g to about −50 μC/g.


In accordance with the present disclosure, the charging of the toner particles may be enhanced, so less surface additives may be required, and the final toner charging may thus be higher to meet machine charging requirements.


Developers


The toner particles may be formulated into a developer composition. The toner particles may be mixed with carrier particles to achieve a two-component developer composition. The toner concentration in the developer may be from about 1% to about 25% by weight of the total weight of the developer, in embodiments from about 2% to about 15% by weight of the total weight of the developer.


Carriers


Examples of carrier particles that can be utilized for mixing with the toner include those particles that are capable of triboelectrically obtaining a charge of opposite polarity to that of the toner particles. Illustrative examples of suitable carrier particles include granular zircon, granular silicon, glass, steel, nickel, ferrites, iron ferrites, silicon dioxide, and the like. Other carriers include those disclosed in U.S. Pat. Nos. 3,847,604, 4,937,166, and 4,935,326.


The selected carrier particles can be used with or without a coating. In embodiments, the carrier particles may include a core with a coating thereover which may be formed from a mixture of polymers that are not in close proximity thereto in the triboelectric series. The coating may include fluoropolymers, such as polyvinylidene fluoride resins, terpolymers of styrene, methyl methacrylate, and/or silanes, such as triethoxy silane, tetrafluoroethylenes, other known coatings and the like. For example, coatings containing polyvinylidenefluoride, available, for example, as KYNAR 301F™, and/or polymethylmethacrylate, for example having a weight average molecular weight of about 300,000 to about 350,000, such as commercially available from Soken, may be used. In embodiments, polyvinylidenefluoride and polymethylmethacrylate (PMMA) may be mixed in proportions of from about 30 to about 70 weight % to about 70 to about 30 weight %, in embodiments from about 40 to about 60 weight % to about 60 to about 40 weight %. The coating may have a coating weight of, for example, from about 0.1 to about 5% by weight of the carrier, in embodiments from about 0.5 to about 2% by weight of the carrier.


In embodiments, PMMA may optionally be copolymerized with any desired comonomer, so long as the resulting copolymer retains a suitable particle size. Suitable comonomers can include monoalkyl, or dialkyl amines, such as a dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, diisopropylaminoethyl methacrylate, or t-butylaminoethyl methacrylate, and the like. The carrier particles may be prepared by mixing the carrier core with polymer in an amount from about 0.05 to about 10 percent by weight, in embodiments from about 0.01 percent to about 3 percent by weight, based on the weight of the coated carrier particles, until adherence thereof to the carrier core by mechanical impaction and/or electrostatic attraction.


Various effective suitable means can be used to apply the polymer to the surface of the carrier core particles, for example, cascade roll mixing, tumbling, milling, shaking, electrostatic powder cloud spraying, fluidized bed, electrostatic disc processing, electrostatic curtain, combinations thereof, and the like. The mixture of carrier core particles and polymer may then be heated to enable the polymer to melt and fuse to the carrier core particles. The coated carrier particles may then be cooled and thereafter classified to a desired particle size.


In embodiments, suitable carriers may include a steel core, for example of from about 25 to about 100 μm in size, in embodiments from about 50 to about 75 μm in size, coated with about 0.5% to about 10% by weight, in embodiments from about 0.7% to about 5% by weight, of a conductive polymer mixture including, for example, methylacrylate and carbon black using the process described in U.S. Pat. Nos. 5,236,629 and 5,330,874.


The carrier particles can be mixed with the toner particles in various suitable combinations. The concentrations are may be from about 1% to about 20% by weight of the toner composition. However, different toner and carrier percentages may be used to achieve a developer composition with desired characteristics.


Imaging


The toners can be utilized for electrophotographic or xerographic processes, including those disclosed in U.S. Pat. No. 4,295,990, the disclosure of which is hereby incorporated by reference in its entirety. In embodiments, any known type of image development system may be used in an image developing device, including, for example, magnetic brush development, jumping single-component development, hybrid scavengeless development (HSD), and the like. These and similar development systems are within the purview of those skilled in the art.


Imaging processes include, for example, preparing an image with a xerographic device including a charging component, an imaging component, a photoconductive component, a developing component, a transfer component, and a fusing component. In embodiments, the development component may include a developer prepared by mixing a carrier with a toner composition described herein. The xerographic device may include a high speed printer, a black and white high speed printer, a color printer, and the like.


Once the image is formed with toners/developers via a suitable image development method such as any one of the aforementioned methods, the image may then be transferred to an image receiving medium such as paper and the like. In embodiments, the toners may be used in developing an image in an image-developing device utilizing a fuser roll member. Fuser roll members are contact fusing devices that are within the purview of those skilled in the art, in which heat and pressure from the roll may be used to fuse the toner to the image-receiving medium. In embodiments, the fuser member may be heated to a temperature above the fusing temperature of the toner, for example to temperatures of from about 70° C. to about 160° C., in embodiments from about 80° C. to about 150° C., in other embodiments from about 90° C. to about 140° C., after or during melting onto the image receiving substrate.


In embodiments where the toner resin is crosslinkable, such crosslinking may be accomplished in any suitable manner. For example, the toner resin may be crosslinked during fusing of the toner to the substrate where the toner resin is crosslinkable at the fusing temperature. Crosslinking also may be effected by heating the fused image to a temperature at which the toner resin will be crosslinked, for example in a post-fusing operation. In embodiments, crosslinking may be effected at temperatures of from about 160° C. or less, in embodiments from about 70° C. to about 160° C., in other embodiments from about 80° C. to about 140° C.


The following Examples are being submitted to illustrate embodiments of the present disclosure. These Examples are intended to be illustrative only and are not intended to limit the scope of the present disclosure. Also, parts and percentages are by weight unless otherwise indicated. As used herein, “room temperature” refers to a temperature of from about 20° C. to about 25° C.


EXAMPLES
Comparative Example 1

About 397.99 grams of a linear amorphous resin in an emulsion (about 17.03 weight % resin) was added to a 2 liter beaker. The linear amorphous resin was of the following formula:




embedded image



wherein m was from about 5 to about 1000 synthesized following the procedures described in U.S. Pat. No. 6,063,827, the disclosure of which is incorporated by reference in its entirety. About 74.27 grams of an unsaturated crystalline polyester (“UCPE”) resin composed of ethylene glycol and a mixture of dodecanedioic acid and fumaric acid co-monomers with the following formula:




embedded image



wherein b is from 5 to 2000 and d is from 5 to 2000 in an emulsion (about 19.98 weight % resin), synthesized following the procedures described in U.S. Patent Application Publication No. 2006/0222991, the disclosure of which is incorporated by reference in its entirety, and about 29.24 grams of a cyan pigment, Pigment Blue 15:3, (about 17 weight %) was added to the beaker. About 36 grams of Al2(SO4)3 (about 1 weight %) was added as flocculent under homogenization by mixing the mixture at about 3000 to 4000 rpm.


The mixture was subsequently transferred to a 2 liter Buchi reactor, and heated to about 45.9° C. for aggregation and mixed at a speed of about 750 rpm. The particle size was monitored with a Coulter Counter until the size of the particles reached an average volume particle size of about 6.83 μm with a Geometric Size Distribution (“GSD”) of about 1.21. About 198.29 grams of the above emulsion with the resin of formula I was then added to the particles to form a shell thereover, resulting in particles possessing a core/shell structure with an average particle size of about 8.33 μm, and a GSD of about 1.21.


Thereafter, the pH of the reaction slurry was increased to about 6.7 by adding NaOH followed by the addition of about 0.45 pph EDTA (based on dry toner) to freeze, that is stop, the toner growth. After stopping the toner growth, the reaction mixture was heated to about 69° C. and kept at that temperature for about 1 hour for coalescence.


The resulting toner particles had a final average volume particle size of about 8.07, and a GSD of about 1.22.


The toner slurry was then cooled to room temperature, separated by sieving (utilizing a 25 μm sieve) and filtered, followed by washing and freeze drying.


Example I

About 397.99 grams of a linear amorphous resin in an emulsion (about 17.03 weight % resin) was added to a 2 liter beaker. The linear amorphous resin was of the following formula:




embedded image



wherein m was from about 5 to about 1000. About 74.27 grams of the unsaturated CPE resin emulsion (formula IV) from Comparative Example I above (about 19.98 weight % resin), and about 29.24 grams of cyan pigment, Pigment Blue 15:3, (about 17 weight %) were added to the beaker. About 36 grams Al2(SO4)3 (about 1 weight %) was added as a flocculent under homogenization by mixing the mixture at about 3000 to about 4000 rpm.


The mixture was subsequently transferred to a 2 liter Buchi reactor, and heated to about 45.5° C., for aggregation with mixing at about 750 rpm. The particle size was monitored with a Coulter Counter until the size of the particles reached an average volume particle size of about 6.97 μm with a GSD of about 1.25.


About 149.48 grams of a high molecular weight amorphous resin having the same formula as the resin utilized as the core (formula I) in an emulsion (about 22.59 weight % resin) was added as shell.


Summaries of the differences between the low molecular weight amorphous resin utilized in the shell of Comparative Example I and the high molecular weight amorphous resin utilized in the shell of Example 1 are summarized below in Table 1; differences in the rheological properties of toners produced with the low molecular weight amorphous resin utilized in the shell of Comparative Example 1 and the high molecular weight amorphous resin utilized in the shell of Example 1 are summarized in the FIGURE.














TABLE 1








Acid Value




Amorphous


(mL KOH/g
Softening
Tg onset


Resin in Shell
Mw
Mn
polymer)
Point ° C.
° C.




















Low Mw resin
12.5
4.4
16.7
107
56.7


(Comparative


Example 1)


High Mw resin
38.8
6.4
12
123
62


(Example 1)









The acid number was determined to verify the presence of acid moieties and was determined by titrating the acid groups. The acid number was the number of milligrams of potassium hydroxide necessary to neutralize the free acids in 1 gram of resin.


The high molecular weight amorphous resin formed a shell over the core particles produced above, resulting in particles possessing a core/shell structure with an average volume particle size of about 8.15 μm, and a GSD of about 1.23.


Thereafter, the pH of the reaction slurry was increased to about 6.1 by adding NaOH followed by the addition of about 0.45 pph EDTA (based on dry toner) to freeze, that is stop, the toner growth. After stopping the growth of the toner particles, the reaction mixture was heated to about 69° C. and kept at that temperature for about 7 hours for coalescence.


The resulting toner particles had a final average volume particle size of about 8.07 μm, and a GSD of about 1.25.


The toner slurry was then cooled to room temperature, separated by sieving (utilizing a 25 μm sieve) and filtered, followed by washing and freeze drying.


Compared to the toner having a lower molecular weight amorphous resin in the shell as produced in Comparative Example I, the toner with a high molecular weight amorphous resin in the shell as produced in Example I showed a significant improvement in both A-zone and C-zone charging, as measured by a total blow off apparatus also known as Barbetta box. Developers were conditioned overnight in A and C zones and then charged using a paint shaker for from about 5 to about 60 minutes to provide information about developer stability with time and between zones. The toner or Example I with the high molecular weight resin in the shell also showed improved relative humidity sensitivity, while maintaining the same morphology as the toner produced in Comparative Example I with the lower molecular weight resin in the shell. Summaries of the data obtained for the low molecular weight amorphous resin utilized in the shell of Comparative Example I and the high molecular weight amorphous resin utilized in the shell of Example I are summarized below in Table 2.











TABLE 2









Parent charging












Q/M AZ
Q/M AZ
Q/M CZ
Q/M CZ


Sample
5 M-PS
60 M-PS
5 M-PS
60 M-PS














Comparative
−3.7
−3.6
−16.6
−13.7


Example 1


Example 1
−6.02
−10.31
−24.5
−27.5





Q/M = charge per mass ratio


AZ = A-zone 28° C./85% RH


CZ = C-zone 10° C./15% RH


5 M-PS = Short developer charging time of 5 minutes


60 M-PS = Longer developer charging time of 60 minutes






Fusing characteristics of the toners produced in Comparative Example 1 and Example 1 were also determined by crease area, minimum fixing temperature, gloss, document offset, and vinyl offset testing.


Crease Area


The toner image displays mechanical properties such as crease, as determined by creasing a section of the substrate such as paper with a toned image thereon and quantifying the degree to which the toner in the crease separates from the paper. A good crease resistance may be considered a value of less than 1 mm, where the average width of the creased image is measured by printing an image on paper, followed by (a) folding inwards the printed area of the image, (b) passing over the folded image a standard TEFLON coated copper roll weighing about 860 grams, (c) unfolding the paper and wiping the loose ink from the creased imaged surface with a cotton swab, and (d) measuring the average width of the ink free creased area with an image analyzer. The crease value can also be reported in terms of area, especially when the image is sufficiently hard to break unevenly on creasing; measured in terms of area, crease values of 100 millimeters correspond to about 1 mm in width. Further, the images exhibit fracture coefficients, for example of greater than unity. From the image analysis of the creased area, it is possible to determine whether the image shows a small single crack line or is more brittle and easily cracked. A single crack line in the creased area provides a fracture coefficient of unity while a highly cracked crease exhibits a fracture coefficient of greater than unity. The greater the cracking, the greater the fracture coefficient. Toners exhibiting acceptable mechanical properties, which are suitable for office documents, may be obtained by utilizing the aforementioned thermoplastic resins. However, there is also a need for digital xerographic applications for flexible packaging on various substrates. For flexible packaging applications, the toner materials must meet very demanding requirements such as being able to withstand the high temperature conditions to which they are exposed in the packaging process and enabling hot pressure-resistance of the images. Other applications, such as books and manuals, require that the image does not document offset onto the adjacent image. These additional requirements require alternate resin systems, for example that provide thermoset properties such that a crosslinked resin results after fusing or post-fusing on the toner image.


Minimum Fixing Temperature


The Minimum Fixing Temperature (MFT) measurement involves folding an image on paper fused at a specific temperature, and rolling a standard weight across the fold. The print can also be folded using a commercially available folder such as the Duplo D-590 paper folder. The folded image is then unfolded and analyzed under the microscope and assessed a numerical grade based on the amount of crease showing in the fold. This procedure is repeated at various temperatures until the minimum fusing temperature (showing very little crease) is obtained.


Gloss


Print gloss (Gardner gloss units or “ggu”) was measured using a 75° BYK Gardner gloss meter for toner images that had been fused at a fuser roll temperature range of about 120° C. to about 210° C. (sample gloss was dependent on the toner, the toner mass per unit area, the paper substrate, the fuser roll, and fuser roll temperature).


Document Offset


A standard document offset mapping procedure was performed as follows. Five centimeter (cm) by live cm test samples were cut from the prints taking care that when the sheets are placed face to face, they provide both toner to toner and toner to paper contact. A sandwich of toner to toner and toner to paper was placed on a clean glass plate. A glass slide was placed on the top of the samples and then a weight comprising a 2000 gram mass was placed on top of the glass slide. The glass plate was then inserted into an environmental chamber at a temperature of 60° C. where the relative humidity was kept constant at 50%. After 7 days, the samples were removed from the chamber and allowed to cool to room temperature before the weight was removed. The removed samples were then carefully peeled apart. The peeled samples were mounted onto a sample sheet and then visually rated with a Document Offset Grade from 5.0 to 1.0, wherein a lower grade indicates progressively more toner offset, ranging from none (5.0) to severe (1.0). Grade 5.0 indicates no toner offset and no adhesion of one sheet to the other. Grade 4.5 indicates noticeable adhesion, but no toner offset. Grade 4 indicates that a very small amount of toner offsets to the other sheet. Grade 3 indicates that less than ⅓ of the toner image offsets to the other sheet, while Grade 1.0 indicates that more than ½ of the toner image offsets to the other sheet. In general, an evaluation of greater than or equal to 3.0 is considered the minimum acceptable offset, and an evaluation of greater than or equal to 4.0 is desirable.


Vinyl Offset


Vinyl offset was evaluated as follows. Toner images were covered with a piece of standard vinyl (32% dioctyl phthalate Plasticizer), placed between glass plates, loaded with a 250 gram weight, and placed in an environmental oven at a pressure of 10 g/cm2, 50° C. 50% relative humidity (RH). After about 24 hours, the samples were removed from the oven and allowed to cool to room temperature. The vinyl and toner image were carefully peeled apart, and evaluated with reference to a vinyl offset evaluation rating procedure as described above for document offset wherein Grades 5.0 to 1.0 indicate progressively higher amounts of toner offset onto the vinyl, from none (5.0) to severe (1.0). Grade 5.0 indicates no visible toner offset onto the vinyl and no disruption of the image gloss. Grade 4.5 indicates no toner offset, but some disruption of image gloss. An evaluation of greater than or equal to 4.0 is considered an acceptable grade.


The results obtained for the toners of Comparative Example 1 and Example 1 are summarized below in Table 3.













TABLE 3








Comparative




Goal
Example 1
Example 1
















DCX+ (90 gsm) paper










Cold Offset ° C.

113
130


Hot Offset ° C.

>210
>210


TG40
≦175° C.
142
159


Gloss @ MFT
40 ggu
38.0
28.6


Gloss @ 185° C.
≧40
72.5
63.3


Peak Gloss
≧50
72.6
66.6


MFTCA=85
≦169° C.
140
148


ΔMFTCA=85

−34
−22


MFT/ΔMFT
Gloss 40 & CA = 85
142/−34
159/−20


FCCA=85

4.34
4.29


Document Offset
≧ iGen3 Ideally 4
1.00 (15.1)
2.00 (0.23)


(Toner-Toner)


SIR (rmsLA)


Document Offset
≧ iGen3 Ideally 4
1.00 (12.5)
1.75 (0.92)


(Toner-Paper)


SIR (% toner)


Vinyl Offset SIR
≧4 FX vinyl
N/A
N/A


(% toner)







DCEG (120 gsm)


Paper










TG40
≦175° C.
141
155


Gloss @ MFT
40 ggu
31.5
33.6


Gloss @ 185° C.
≧40
80.2
80.0


Peak Gloss
≧50
94.1
92.5


MFTCA=85
≦169° C.
137
151


ΔMFTCA=85

−34
−23





MFT = Minimum fixing temperature (minimum temperature at which acceptable adhesion of the toner to the support medium occurs)


DCX = Uncoated Xerox paper


DCEG = Coated Xerox paper


gsm = grams per square meter


CA = crease area


TG40 = Fusing temperature to reach 40 gloss unit






As can be seen from Table 3, using a high molecular weight amorphous resin as the shell layer improved the 24-hour document offset properties of the toner. Severe toner to toner (15.1 grams) and toner to paper (12.5 grams) damage was visible for the toner of Comparative Example 1, SIR=1.00/1.25. To the contrary, the toner of Example I with the high molecular weigh amorphous resin in the shell was ranked SIR=2.00 (toner to toner, 0.23 grams) and SIR=1.75 (toner to paper, 0.92 grams).


Using a high molecular weight amorphous resin in the shell also shifted the Crease fix MFTCA=85 to a higher temperature: the temperature went from about 140° C. (Comparative Example 1) to about 148° C. (Example 1) on uncoated paper core, and a similar trend was observed on coated paper.


It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.

Claims
  • 1. A toner composition comprising toner particles comprising: a core comprising at least one crystalline resin and at least one amorphous resin, and one or more optional ingredients selected from the group consisting of colorants, optional waxes, and combinations thereof; anda shell comprising a high molecular weight amorphous linear polyester resin having a weight average molecular weight of from about 10,000 to about 5,000,000,wherein the molecular weight of the amorphous polyester resin in the shell is at least 20% higher than the molecular weight of the amorphous resin in the core, the viscosity of the amorphous polyester resin in the shell is at least 50% higher than viscosity of the amorphous resin in the core at 130° C., and wherein the shell has a thickness from about 50 nm to about 2 μm.
  • 2. A toner composition according to claim 1, wherein the crystalline resin is selected from the group consisting of polyesters, polyamides, polyimides, polyolefins, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, and combinations thereof.
  • 3. A toner composition according to claim 1, wherein the crystalline resin comprises a polyester selected from the group consisting of poly(ethylene-adipate), poly(propylene-adipate), poly(butylene-adipate), poly(pentylene-adipate), poly(hexylene-adipate), poly(octylene-adipate), poly(ethylene-succinate), poly(propylene-succinate), poly(butylene-succinate), poly(pentylene-succinate), poly(hexylene-succinate), poly(octylene-succinate), poly(ethylene-sebacate), poly(propylene-sebacate), polybutylene-sebacate), poly(pentylene-sebacate), poly(hexylene-sebacate), poly(octylene-sebacate), alkali copoly(5-sulfoisophthaloyl)-copoly(ethylene-adipate), alkali copoly(5-sulfoisophthaloyl)-copoly(propylene-adipate), alkali copoly(5-sulfoisophthaloyl)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(octylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(ethylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly (propylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(octylene-adipate), alkali copoly(5-sulfoisophthaloyl)-copoly(ethylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(propylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(butylenes-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(pentylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(hexylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(octylene-succinate), alkali copoly(5-sulfo-isophthaloyl)-copoly(ethylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(propylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(butylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(octylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(ethylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(propylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-adipate), and poly(octylene-adipate), wherein alkali comprises a metal selected from the group consisting of sodium, lithium and potassium.
  • 4. A toner composition according to claim 1, wherein the core further comprises an amorphous resin selected from the group consisting of polyesters, poly(styrene-acrylate) resins, crosslinked poly(styrene-acrylate) resins, poly(styrene-methacrylate) resins, crosslinked poly(styrene-methacrylate) resins, poly(styrene-butadiene) resins, crosslinked polystyrene-butadiene) resins, alkali sulfonated-polyester resins, alkali sulfonated-polyimide resins, alkali sulfonated-polyimide resins, alkali sulfonated poly(styrene-acrylate) resins, crosslinked alkali sulfonated poly(styrene-acrylate) resins, poly(styrene-methacrylate) resins, crosslinked alkali sulfonated-poly(styrene-methacrylate) resins, alkali sulfonated-poly(styrene-butadiene) resins, crosslinked alkali sulfonated polystyrene-butadiene) resins, and combinations thereof.
  • 5. A toner composition according to claim 1, wherein the core further comprises a poly(propoxylated bisphenol A co-fumarate) resin of the formula:
  • 6. A toner composition according to claim 1, wherein the high molecular weight amorphous polyester resin is selected from the group consisting of polyesters, poly(styrene-acrylate) resins, crosslinked poly(styrene-acrylate) resins, poly(styrene-methacrylate) resins, crosslinked poly(styrene-methacrylate) resins, poly(styrene-butadiene) resins, crosslinked polystyrene-butadiene) resins, alkali sulfonated-polyester resins, alkali sulfonated-polyimide resins, alkali sulfonated-polyimide resins, alkali sulfonated poly(styrene-acrylate) resins, crosslinked alkali sulfonated poly(styrene-acrylate) resins, poly(styrene-methacrylate) resins, crosslinked alkali sulfonated-poly(styrene-methacrylate) resins, alkali sulfonated-poly(styrene-butadiene) resins, crosslinked alkali sulfonated poly(styrene-butadiene) resins, and combinations thereof.
  • 7. A toner composition according to claim 1, wherein the high molecular weight amorphous polyester resin comprises a poly(propoxylated bisphenol A co-fumarate) of the following formula:
  • 8. A toner composition according to claim 1, wherein the high molecular weight amorphous polyester resin is present in an amount of from about 20 percent by weight to about 100 percent by weight of the shell resin, has a glass transition temperature from about 40° C. to about 100° C., a softening point of from about 100° C. to about 200° C., and a melt viscosity of from about 50 Pa*S to about 1,000,000 Pa*S at 130° C.
  • 9. A toner composition according to claim 1, wherein the toner particles have a size of from about 3 μm to about 15 μm, a higher A-zone charge compared with toners lacking a high molecular weight amorphous polyester resin in the shell, and wherein the toner particles possess a glass transition temperature of from about 35° C. to about 65° C.
  • 10. A toner composition comprising toner particles comprising: a core comprising at least one amorphous resin, at least one polyester crystalline resin, and one or more optional ingredients selected from the group consisting of colorants, optional waxes, and combinations thereof; anda shell comprising a high molecular weight amorphous linear polyester resin having a weight average molecular weight of from about 20,000 to about 1,000,000, wherein the toner particles are of a size of from about 3 μm to about 15 μm, have a higher A-zone charge compared with toners lacking a high molecular weight amorphous polyester resin in the shell, and possess a glass transition temperature of from about 35° C. to about 65° C.
  • 11. A toner composition according to claim 10, wherein the at least one amorphous resin in the core is selected from the group consisting of polyester resins, poly(styrene-acrylate) resins, crosslinked poly(styrene-acrylate) resins, poly(styrene-methacrylate) resins, crosslinked poly(styrene-methacrylate) resins, poly(styrene-butadiene) resins, crosslinked poly(styrene-butadiene) resins, alkali sulfonated-polyester resins, alkali sulfonated-polyimide resins, alkali sulfonated-polyimide resins, alkali sulfonated poly(styrene-acrylate) resins, crosslinked alkali sulfonated poly(styrene-acrylate) resins, poly(styrene-methacrylate) resins, crosslinked alkali sulfonated-poly(styrene-methacrylate) resins, alkali sulfonated-poly(styrene-butadiene) resins, crosslinked alkali sulfonated poly(styrene-butadiene) resins, and combinations thereof, and the at least one crystalline resin is selected from the group consisting of polyesters, polyamides, polyimides, polyolefins, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, and combinations thereof.
  • 12. A toner composition according to claim 10, wherein the high molecular weight amorphous polyester resin comprises a poly(propoxylated bisphenol A co-fumarate) of the following formula:
  • 13. A toner composition according to claim 10, wherein the polyester crystalline resin is selected from the group consisting of poly(ethylene-adipate), poly(propylene-adipate), poly(butylene-adipate), poly(pentylene-adipate), poly(hexylene-adipate), poly(octylene-adipate), polyethylene-succinate), poly(propylene-succinate), poly(butylene-succinate), poly(pentylene-succinate), poly(hexylene-succinate), poly(octylene-succinate), poly(ethylene-sebacate), poly(propylene-sebacate), poly(butylene-sebacate), poly(pentylene-sebacate), poly(hexylene-sebacate), poly(octylene-sebacate), alkali copoly(5-sulfoisophthaloyl)-copoly(ethylene-adipate), alkali copoly(5-sulfoisophthaloyl)-copoly(propylene-adipate), alkali copoly(5-sulfoisophthaloyl)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(octylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(ethylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly (propylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(octylene-adipate), alkali copoly(5-sulfoisophthaloyl)-copoly(ethylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(propylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(butylenes-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(pentylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(hexylene-succinate), alkali copoly(5-sulfoisophthaloyl)-copoly(octylene-succinate), alkali copoly(5-sulfo-isophthaloyl)-copoly(ethylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(propylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(butylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(octylene-sebacate), alkali copoly(5-sulfo-isophthaloyl)-copoly(ethylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(propylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(butylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(pentylene-adipate), alkali copoly(5-sulfo-isophthaloyl)-copoly(hexylene-adipate), and poly(octylene-adipate), wherein alkali comprises a metal selected from the group consisting of sodium, lithium and potassium.
  • 14. A toner composition according to claim 10, wherein the shell further comprises a second resin present in an amount of from about 10 percent by weight to about 70 percent by weight of the shell, and the high molecular weight resin is present in an amount of from about 30 percent by weight to about 90 percent by weight of the shell.
  • 15. A toner composition according to claim 10, wherein the shell has a thickness from about 50 nm to about 2 μm.
  • 16. A toner composition comprising toner particles comprising: a core comprising at least one amorphous resin, at least one crystalline resin, and one or more optional ingredients selected from the group consisting of colorants, optional waxes, and combinations thereof; anda shell resin comprising a high molecular weight amorphous linear polyester resin comprising a poly(propoxylated bisphenol A co-fumarate) having a weight average molecular weight of from about 10,000 to about 5,000,000 of the following formula:
  • 17. A toner composition according to claim 16, wherein the high molecular weight amorphous polyester resin has a glass transition temperature from about 40° C. to about 100° C., a softening point of from about 100° C. to about 200° C., and a melt viscosity of from about 50 Pa*S to about 1,000,000 Pa*S at 130° C., and wherein the toner particles are of a size of from about 3 μm to about 15 μm, have a higher A-zone charge compared with toners lacking a high molecular weight amorphous polyester resin in the shell, and possess a glass transition temperature of from about 35° C. to about 65° C.
US Referenced Citations (40)
Number Name Date Kind
3590000 Palermiti et al. Jun 1971 A
3800588 Larson et al. Apr 1974 A
3847604 Hagenbach et al. Nov 1974 A
4295990 Verbeek et al. Oct 1981 A
4298672 Lu Nov 1981 A
4338390 Lu Jul 1982 A
4935326 Creatura et al. Jun 1990 A
4937166 Creatura et al. Jun 1990 A
5035970 Hsieh et al. Jul 1991 A
5236629 Mahabadi et al. Aug 1993 A
5290654 Sacripante et al. Mar 1994 A
5302486 Patel et al. Apr 1994 A
5330874 Mahabadi et al. Jul 1994 A
5346797 Kmiecik-Lawrynowicz et al. Sep 1994 A
5364729 Kmiecik-Lawrynowicz et al. Nov 1994 A
5403693 Patel et al. Apr 1995 A
5418108 Kmiecik-Lawrynowicz et al. May 1995 A
5501935 Patel et al. Mar 1996 A
5527658 Hopper et al. Jun 1996 A
5571652 Asano et al. Nov 1996 A
5585215 Ong et al. Dec 1996 A
5650255 Ng et al. Jul 1997 A
5650256 Veregin et al. Jul 1997 A
5763130 Sasaki et al. Jun 1998 A
5853943 Cheng et al. Dec 1998 A
6020101 Sacripante et al. Feb 2000 A
6063827 Sacripante et al. May 2000 A
6214507 Sokol et al. Apr 2001 B1
6593049 Veregin et al. Jul 2003 B1
6756176 Stegamat et al. Jun 2004 B2
6830860 Sacripante et al. Dec 2004 B2
7745088 Yoshizaki et al. Jun 2010 B2
20060121383 Zwartz et al. Jun 2006 A1
20060216626 Sacripante et al. Sep 2006 A1
20060216628 Nakamura et al. Sep 2006 A1
20060222991 Sacripante et al. Oct 2006 A1
20060292477 Daimon et al. Dec 2006 A1
20070048647 Daimon et al. Mar 2007 A1
20070224532 Vanbesien et al. Sep 2007 A1
20090220882 Zhou et al. Sep 2009 A1
Foreign Referenced Citations (2)
Number Date Country
642059 Mar 1995 EP
2 096 500 Sep 2009 EP
Related Publications (1)
Number Date Country
20090305159 A1 Dec 2009 US