Toner containing pigment and surface modified pyrogenically produced aluminum oxide

Abstract
Disclosed is an electrophotographic toner comprising a resin, a pigment, and surface-modified, pyrogenically produced aluminum oxide which is has the following physico-chemical properties:______________________________________Surface (m.sup.2 /g) 50 to 100Stamping density (g/l) 50 to 90Drying loss (%) <5Annealing loss (%) 5.0 to 15C content (%) 0.5 to 12pH 4 to 8.______________________________________
Description

The present invention relates to a surface-modified, pyrogenically produced aluminum oxide.
BACKGROUND OF THE INVENTION
It is known to use powdery toners containing pyrogenically produced surface-modified silicon dioxide in electrostatic developing processes. Various silanes, especially dimethyldichlorosilane are used for surface modification (See U.S. Pat. No. 3,720,617).
It is also known that pyrogenically produced silicon dioxide waterproofed with compounds of the general formula ##STR1## can be added to positively chargeable resin powders in order to increase their flowability (See published European Patent Application EP-A 0,293,009).
Published German Patent Application DE-A 12 09 427 discloses aluminum oxide whose surface has been modified with halogen silanes can be added to electrographic developing powders.
A similarly treated aluminum oxide is described in Published Japanese Patent Application JP-OS 31442 (Nippon Aerosil Corporation).
The known method has the disadvantage that it must use an organic solvent system. Alcohols, hydrocarbons and halogenated hydrocarbons are used as solvents which cannot be completely removed from the reaction product.
SUMMARY OF THE INVENTION
The object of the present invention is to avoid these problems and produce a solvent-free, waterproofed aluminum oxide.
The present invention provides a surface-modified, pyrogenically produced aluminum oxide which is surface modified with a silane mixture consisting of silane A (trimethoxyoctylsilane) and silane B (3-aminopropyltriethoxysilane) having the chemical formulas: ##STR2## The surface-modified, pyrogenically produced aluminum oxide has the following physico-chemical properties:
______________________________________Surface (m.sup.2 /g) 50 to 100Stamping density (g/l) 50 to 90Drying loss (%) &lt;5Annealing loss (%) 5.0 to 15C content (%) 0.5 to 12pH 4 to 8.______________________________________
The present invention also provides a method of producing the surface-modified, pyrogenically produced aluminum oxide in which the pyrogenically produced aluminum oxide is placed in a mixer and sprayed, with the mixer running, with the mixture of silane A and silane B. The silane and aluminum oxide are mixed after the addition of the silane mixture and the resulting mixture is tempered at 100.degree. to 150.degree. C., preferably at 115.degree. to 125.degree. C.
The ratio of aluminum oxide to silane mixture can be 0.5 to 40 parts by weight silane mixture per 100 parts by weight aluminum oxide.
The silane mixture can consist of 1 to 99 parts by weight silane A and 99 to 1 parts by weight silane B.
A mixture can be used with preference consisting of 50.+-.20 parts by weight silane A and 50.+-.20 parts by weight silane B.
A particularly suitable aluminum oxide is Aluminum Oxide C which is produced pyrogenically from aluminum trichloride by flame hydrolysis in an oxyhydrogen flame and which has the following physico-chemical characteristics:
______________________________________Al.sub.2 O.sub.3 C______________________________________AppearanceSurface according to BET m.sup.2 /g 100 .+-. 15Average size of the primary particles nanometer 20Stamping density.sup.1) g/l --Drying loss.sup.2) % &lt;5(2 hours at 105.degree. C.)Annealing loss.sup.2)6) % &lt;3(2 hours at 1000.degree. C.)PH.sup.3) 4-5(in 4% aqueous dispersion)SiO.sub.2.sup.5) % &lt;0.1Al.sub.2 O.sub.3.sup.5) % &gt;99.6Fe.sub.2 O.sub.3.sup.5) % &lt;0.02TiO.sub.2.sup.5) % &lt;0.1HCl.sup.5)7) % &lt;0.5Sieve residue.sup.4) % &lt;0.05according toMocker (45 m)packing drum size (net) kg 5normal goodscompressed goods kg(additive "V)______________________________________ Technical data of the AEROSIL standard types .sup.1) according to DIN 53 194 .sup.2) according to DIN 55 921 .sup.3) according to DIN 53 200 .sup.4) according to DIN 53 580 .sup.5) relative to the substance annealed 2 hours at 1000.degree. C. .sup.6) relative to the substance dried 2 hours at 105.degree. C. .sup.7) HCl content is a component of the annealing loss
The waterproofed aluminum oxide of the invention has the advantage that it has no solvent components. It can be used in toners for copiers.





BRIEF DESCRIPTION OF THE DRAWING
The drawing is a graph plotting charge per unit mass as a function of activation time for raw and treated toner.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The following examples illustrate the invention.
Example 1
2 kg Al.sub.2 O.sub.3 C produced pyrogenically from aluminum trichloride in an oxyhydrogen flame and having the properties given above are placed in a 135 liter Lodige mixer and sprayed with 100 g of a silane mixture consisting of 50 g trimethoxyoctylsilane and 50 g 3-aminopropyltriethoxysilane with the mixer running. The mixture is mixed for 15 minutes more. The silanized oxide is tempered 2 hours at 120.degree. C.
Physico-chemical properties of the surface-modified aluminum oxide
______________________________________Carrier Al.sub.2 O.sub.3 CSurface (m.sup.2 /g) 92Stamping density (g/l) 70Drying loss (%) 0.9Annealing loss (%) 5.3C content (%) 2.9pH 5.7______________________________________
Example 2
The aluminum oxide waterproofed according to Example 1 is tested in a positive toner system. The toner system consists of the following components:
______________________________________Pigment black Printex 35 7%Copy-Blau PR (Hoechst AG) 3%Toner resin 90%______________________________________
The repeated activation was tested with this toner and a high charge stability in comparison to the raw toner was determined (see FIG. 1).
Copy-Blau PR is a charge regulating agent for positive toners. It is characterized as follows:
Area of application:
1. Charge regulating agents for positive toners (1- or 2-component toners for copiers or laser printers)
2. Clearing agents for black toners
______________________________________Chemical characterization: triphenylmethane derivativeThermal resistance: &gt;200.degree. C.Solubility: insoluble in water slightly soluble in organic solvents______________________________________
The toner resin used is characterized as follows:
______________________________________ Unit Theoretical value______________________________________Melt flow Index.sup.1) g/10 min 5-10(150.degree. C./2, 16 kp)Viscosity number.sup.2) cm.sup.3 /g 37-43Weight loss.sup.3) % by weight &lt;1Residual monomers.sup.4) % by weight &lt;0.35Styrene &lt;0.25n-BMA &lt;0.10Other product properties:Monomer composition 70% by weight styrene 30% by weight n-butyl- methacrylateGlass transition 60-65.degree. C.temperature Tg.sup.5)Average grain diameter.sup.6) 0.200-0.314 mm(d 50% RS)______________________________________ .sup.1) DIN 53 735, 2/88 edition Specimen pretreatment: Drying at 50.degree. C. oil pump vacuum, 1 hour or 4 hours drying oven, 50.degree. C. .sup.2) DIN 7745, 1/80 edition .sup.3) IR drier until weight constancy .sup.4) Gas chromatography .sup.5) DSC method, ASTM D 3418/75 .sup.6) DIN 53 734, 1/73 edition, evaluation according to DIN 66 141, 2/7 edition
__________________________________________________________________________The pigment black Printex 35 is characterized as follows:RCF (regular color furnace)Density: (g/cm.sup.3) 1.8-1.9Product specifications__________________________________________________________________________ DBP Adsorption Extract Depth of Color (mg/100 g) Volatile contents SievePrintex Color Strength powder beads Components toluene Residue35 RCF Class M.sub..gamma. -value IRB 3 = 100 Powder Beads (%) pH (%) (%)__________________________________________________________________________Furnace Blacks RCF 236 100 42 42 0.9 9.5 &lt;0.1 0.05Printex 35Further technical data Stamping Density Ashing Residue Powder Beads Particle Size (nm) BET Surface (m.sup.2 /g)__________________________________________________________________________Furnace Blacks 0.3 420 550 31 65Printex 35__________________________________________________________________________
The q/m measurement takes place under the following conditions:
______________________________________98% carrier (spherical ferrite (80-100 m))2% aluminum oxide according to Example 15 Activation: Rolling fixture, 360 rpms in 40 ml glass bottle, weighed portion 40 g, developer______________________________________
Claims
  • 1. An electrophotographic toner comprising a resin, a pigment and a surface-modified pyrogenically produced aluminum oxide which has been surface modified with a mixture of silane A and silane B corresponding to the formulas: ##STR3## said surface-modified pyrogenically produced aluminum oxide having the following physico-chemical properties:
  • ______________________________________Surface (m.sup.2 /g) 50 to 100Stamping density (g/l) 50 to 90Drying loss (%) &lt;5Annealing loss (%) 5.0 to 15C content (%) 0.5 to 12pH 4 to 8.______________________________________
  • 2. An electrophotographic toner as set forth in claim 1 in which the ratio of aluminum oxide to silane mixture is in the range 0.5 to 40 parts by weight of silane mixture per 100 parts by weight aluminum oxide.
  • 3. An electrophotographic toner as set forth in claim 1 in which there are 1 to 99 parts by weight of silane A to 1 to 99 parts by weight of silane B.
  • 4. An electrophotographic toner as set forth in claim 3 in which there are 50.+-.20 parts by weight of silane A and 50.+-.20 parts by weight of silane B.
Priority Claims (1)
Number Date Country Kind
42 02 694.6 Jan 1992 DEX
Parent Case Info

This is a division of application Ser. No. 08/141,083, filed Oct. 27, 1993 now U.S. Pat. No. 5,419,928 which is a Divisional application of Ser. No. 08/012,163 filed Jan. 28, 1993 now U.S. Pat. No. 5,384,194.

US Referenced Citations (6)
Number Name Date Kind
4640882 Mitsuhashi et al. Feb 1987
4652509 Shirose et al. Mar 1987
4702986 Imai et al. Oct 1987
5212037 Julien et al. May 1993
5334472 Aoki et al. Aug 1994
5372905 Deusser et al. Dec 1994
Foreign Referenced Citations (5)
Number Date Country
3516937 Nov 1985 DEX
58-185405 Oct 1983 JPX
59-52255 Aug 1984 JPX
2-108069 Apr 1990 JPX
5-119517 May 1993 JPX
Divisions (2)
Number Date Country
Parent 141083 Oct 1993
Parent 12163 Jan 1993