Toner image fixing apparatus capable of keeping constant fixing roller temperature

Information

  • Patent Grant
  • 6333490
  • Patent Number
    6,333,490
  • Date Filed
    Monday, September 11, 2000
    23 years ago
  • Date Issued
    Tuesday, December 25, 2001
    22 years ago
Abstract
A toner image fixing apparatus has a fixing roller, a pressing roller, and a heating roller. The pressing roller is normally urged toward the fixing roller for pressing a sheet with an unfixed toner image carried on a surface thereof against the fixing roller to fix the unfixed toner image to the sheet when the sheet passes in one direction through a rolling contact region between the fixing roller and the pressing roller. The heating roller is disposed on one side of the fixing roller opposite to the pressing roller. A first heat source is disposed in the heating roller for heating the heating roller, and a second heat source is disposed in the pressing roller for heating the pressing roller. An endless heat transfer belt is trained around the heating roller and the fixing roller for transferring heat from the first heat source to heat the unfixed toner image on the sheet when the sheet passes through the rolling contact region. When the apparatus is in a standby mode, a controller energizes the first heat source and the second heat source. When the apparatus is in the sheet feed mode, the controller energizes the first heat source, and also energizes the second heat source only if the sheet is of a size larger than a predetermined size.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an apparatus for and a method of fixing a toner image to a recording medium by fusing and pressing the toner image to the recording medium in an image forming system such as a copying machine, a printer, a facsimile machine, etc.




2. Description of the Related Art





FIG. 14

of the accompanying drawings shows a conventional recent toner image fixing apparatus for use in electrophotographic machines. As shown in

FIG. 14

, the toner image fixing apparatus has a belt fixing system comprising a fixing roller R


1


, a heating and tensioning roller R


3


, an endless fixing belt B trained around the rollers R


1


, R


3


, and a pressing roller R


2


disposed below and pressed against the fixing roller R


1


with the fixing belt B interposed therebetween. When a recording medium D in the form of a sheet with an unfixed toner image carried thereon is fed into the toner image fixing apparatus by a sheet feeder, the recording medium D is reheated by the heating and tensioning roller R


3


, and then the toner image is fixed to the recording medium D by the fixing belt B in a nipping region between the rollers R


1


, R


2


. Since the recording medium D is preheated, the nipping region may be set to a relatively low temperature. The fixing belt B is of such a small heat capacity that when the recording medium D passes through the nipping region, the temperature of the fixing belt B is quickly lowered to increase the coherent ability of the toner which is separated from the fixing belt B at the outlet of the nipping region, for thereby allowing the toner to be easily separated from the fixing belt B. Even if the fixing belt B is free of oil or coated with a small amount of oil, a clear fixed toner image can be produced on the recording medium D without offsets. The toner image fixing apparatus shown in

FIG. 14

is thus capable of solving the problems of toner separation and oil coating, which have not been eliminated by other toner image fixing apparatus using only a heating roller.




The conventional toner image fixing apparatus shown in

FIG. 14

will be described in greater detail. The pressing roller R


2


is positioned directly beneath the fixing roller R


1


, and the heating and tensioning roller R


3


is disposed upstream of the fixing roller R


1


with respect the direction in which the recording medium D is fed into the toner image fixing apparatus along the fixing belt B that is trained around the rollers R


1


, R


3


.




The toner image fixing apparatus also has an oil coating roller R


4


disposed above an upper run of the fixing belt B. A guide plate G for supporting the recording medium D is disposed below a lower run of the fixing belt B, and a gap between the guide plate G and the lower run of the fixing belt B serves as a preheating passage P for preheating the recording medium D when the recording medium D travels below the heating and tensioning roller R


3


toward the nipping region.




The fixing belt B is tensioned to a desired tension level when the heating and tensioning roller R


3


is pushed away from the fixing roller R


1


by a pressing lever U. The fixing belt B is actuated by the fixing roller R


1


which is coupled to an actuator. Since the fixing belt B is appropriately tensioned, it can stably rotate around the rollers R


1


, R


3


without undesirable slippage and sagging.




A heater H is housed in the heating and tensioning roller R


3


. The heating and tensioning roller R


3


is associated with a thermistor S for measuring the temperature of the surface of the heating and tensioning roller R


3


. The fixing belt B on the heating and tensioning roller R


3


has a sheet-contact area which is contacted by the recording medium D that is fed from the sheet feeder and a non-sheet-contact area which is not contacted by the recording medium D that is fed from the sheet feeder. The thermistor S is kept out of contact with the sheet-contact area of the fixing belt B on the heating and tensioning roller R


3


, but held in contact with the non-sheet-contact area of the fixing belt B on the heating and tensioning roller R


3


.




During the fixing process, based on a signal from the thermistor S, a controller (not shown) connected to the thermistor S controls the amount of heat generated by the heating and tensioning roller R


3


so that the temperature of the surface of the heating and tensioning roller R


3


will be kept at a preset level.




The temperature of the fixing belt B on the fixing roller R


1


varies depending on the period of time in which the fixing belt B has rotated, and is not constant when the recording medium D passes through the nipping region. If the period of time in which the fixing belt B has rotated is short, then the temperature of the fixing belt B on the fixing roller R


1


is low. In order to increase the temperature of the fixing belt B on the fixing roller R


1


, it is necessary to increase a temperature setting for the heating and tensioning roller R


3


for thereby bringing the temperature of the fixing belt B on the fixing roller R


1


into a toner image fixing temperature range at all times.




If the toner image fixing apparatus shown in

FIG. 14

is used to produce successive full-color copies, since the period of time in which the fixing belt B has rotated increases, the temperature of the fixing belt B on the fixing roller R


1


also increases, and so does the temperature of the outlet of the nipping region.

FIG. 15

of the accompanying drawings shows temperature characteristics of the toner image fixing apparatus shown in FIG.


14


.




In

FIG. 15

, the horizontal axis represents the period of time in which the fixing belt B has rotated, and the vertical axis represents the temperature of the fixing belt B on the rollers R


1


, R


3


. First, a temperature characteristic of the toner image fixing apparatus at the time the amount of heat radiated by the heater H is controlled in order to equalize the temperature of the fixing belt B on the heating and tensioning roller R


3


to a preset temperature T2 will be described below. A solid-line wavy curve W1 represents the temperature of the fixing belt B on the heating and tensioning roller R


3


, and a solid-line curve C1 represents the temperature of the fixing belt B on the fixing roller R


1


.




After a standby period, as the period of time in which the fixing belt B has rotated increases, the temperature of the fixing belt B on the fixing roller R


1


increases. When the temperature of the fixing belt B on the fixing roller R


1


exceeds an upper limit temperature T1 of a toner image fixing temperature range, the possibility of hot sheet offsets, i.e., sheet offsets at high temperatures, or sheet jams increases. When the temperature of the fixing belt B on the fixing roller R


1


becomes lower than a lower limit temperature T1′ of the toner image fixing temperature range, the possibility of cold sheet offsets, i.e., sheet offsets at low temperatures, or unfixed toner regions increases. Therefore, the temperature of the fixing belt B on the fixing roller R


1


should be kept in the toner image fixing temperature range which lies between the upper limit temperature T1 and the lower limit temperature T1′.




The above drawback, i.e., sheet offsets and sheet jams, can be avoided when the temperature of the fixing belt B on the heating and tensioning roller R


3


is set to a temperature T2′, lower than the preset temperature T2, such that the temperature of the fixing belt B on the fixing roller R


1


will be equal to or below the upper limit temperature T1 at its maximum, as indicated by broken-line characteristics curves W2, C2. However, it will take a longer period of time for the temperature of the fixing belt B on the fixing roller R


1


to reach the lower limit temperature T1′ of the toner image fixing temperature range, with the result that a fixation readiness time, i.e., a period of time required for the toner image fixing apparatus to become ready for fixing toner images, increases from TS to TS′.




After the toner image on the recording medium D is fixed, the sheet feeder for feeding the recording medium D into the toner image fixing apparatus is deactivated, the operation of the fixing belt B is stopped, and the heater H is de-energized, whereupon the toner image fixing apparatus enters a standby mode. Once the toner image fixing apparatus enters the standby mode, the surface temperatures of the fixing belt B and the fixing roller R


1


fall gradually. If the standby mode continues for a long period of time, then the fixing belt B and the fixing roller R


1


become so cold that when a fixing process is started again, it will take a long period of time before the fixing roller R


1


is heated to the toner image fixing temperature range. As a result, the operator has to wait a long period of time before the toner image fixing apparatus is operational again.




To alleviate the above deficiency, there has been proposed a priority control process which employs an auxiliary thermistor (not shown) for measuring the temperature of the surface of the fixing roller R


1


. According to the proposed priority control process, as shown in

FIG. 16

of the accompanying drawings, until the surface temperature of the fixing roller R


1


rises nearly to the toner image fixing temperature range, the amount of heat radiated by the heater H is controlled on the basis of the surface temperature of the heating and tensioning roller R


3


as measured by the thermistor S. When the surface temperature of the fixing roller R


1


increases beyond the toner image fixing temperature range, the amount of heat radiated by the heater H is controlled on the basis of the surface temperature of the fixing roller R


1


as measured by the auxiliary thermistor. The priority control process is effective to prevent sheet offsets and sheet jams from occurring, and also to shorten the period of time required to heat the fixing roller R


1


to the toner image fixing temperature range after the standby mode.




Image forming systems such as electronic copying machines, electronic printers, etc. which incorporate the above toner image fixing apparatus are required in recent years to operate at a higher speed to meet demands for a higher sheet feed speed, i.e., an increased number of sheets fed per unit time through the toner image fixing apparatus. To meet such requirements, the fixing belt B needs to run at a higher speed, which results in a reduction in the amount of heat that is transferred per unit time from the heating and tensioning roller R


3


to the fixing belt B.




As described above, the thermistor S is held in contact with the non-sheet-contact area of the fixing belt B on the heating and tensioning roller R


3


. When sheets, e.g., recording mediums D, are successively fed into the toner image fixing apparatus, since the non-sheet-contact area of the fixing belt B on the heating and tensioning roller R


3


is not contacted by the sheets, the heat in the non-sheet-contact area of the fixing belt B is not dissipated, but stored therein, so that the temperature as measured by the thermistor S increases to a level beyond a heater control switching point shown in FIG.


16


. When the heater control switching point is reached while successive sheets are being fed into the toner image fixing apparatus, the controlling of the amount of heat radiated by the heater H on the basis of the surface temperature of the fixing roller R


1


as measured by the auxiliary thermistor switches to the controlling of the amount of heat radiated by the heater H on the basis of the surface temperature of the heating and tensioning roller R


3


as measured by the thermistor S.




As a consequence, though the amount of heat radiated by the heater H is kept at a constant level based on the temperature measured by the thermistor S, the heat of the fixing roller R


1


is greatly absorbed by the sheets that are being fed successively at a high speed. Therefore, as shown in

FIG. 17

of the accompanying drawings, the surface temperature of the fixing roller R


1


gradually falls. According to the priority control process, since the surface temperature of the fixing roller R


1


gradually falls while sheets are being fed successively at a high speed, toner images may not be fixed to the sheets with good toner image fixability.




It has been proposed to incorporate another heater in the pressing roller R


2


to meet the requirements for the toner image fixing apparatus to operate at a higher speed.




When small-size sheets or recording mediums D are successively fed into the toner image fixing apparatus, those sheets are not brought into contact with a non-sheet-contact area of the heating and tensioning roller R


3


which is associated with the thermistor S. Therefore, the non-sheet-contact area of the heating and tensioning roller R


3


stores a large amount of heat, and hence its temperature rises excessively, as shown in FIG.


15


.




When the temperature non-sheet-contact area of the heating and tensioning roller R


3


increases excessively, the surface temperature of the fixing roller R


1


also increases excessively. The fixing roller R


1


thus tends to deteriorate soon, have a shortened service life, cause an increased energy loss, and pose safety problems.




SUMMARY OF THE INVENTION




It is therefore an object of the present invention to provide a toner image fixing apparatus which is capable of fixing an unfixed toner image carried on a recording medium to the recording medium with good toner image fixability even when the recording medium is fed at an increased speed.




Another object of the present invention is to provide a toner image fixing apparatus which is capable of holding the surface temperature of a fixing roller substantially in a toner image fixing temperature range even when a recording medium with an unfixed toner image carried thereon is fed at an increased speed.




Still another object of the present invention is to provide an apparatus for and a method of fixing a toner image to a recording medium while preventing the surface temperature of a fixing roller from increasing excessively even when the recording medium is fed at an increased speed.




Yet another object of the present invention is to provide an apparatus for and a method of fixing a toner image to a recording medium while holding the surface temperature of a fixing roller substantially in a toner image fixing temperature range even when the recording medium is fed at an increased speed.




The above and other objects, features, and advantages of the present invention will become apparent from the following description when taken in conjunction with the accompanying drawings which illustrate preferred embodiments of the present invention by way of example.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a sectional front elevational view of a toner image fixing apparatus according to an embodiment of the present invention;





FIG. 2

is a schematic view showing the manner in which a fixing roller and a pressing roller are held in rolling contact with each other;





FIG. 3

is a cross-sectional view of a heating roller with a first heat source disposed therein;





FIG. 4

is a schematic front elevational view of an actuating mechanism of the toner image fixing apparatus shown in

FIG. 1

;





FIG. 5

is a block diagram of a control system for controlling heat sources in the toner image fixing apparatus shown in

FIG. 1

;





FIG. 6

is a diagram showing angles employed in an experiment conducted to check an allowable range of positions of the heating roller with respect to the fixing roller;





FIG. 7

is a flowchart of the main routine of a control sequence carried out by a controller of the control system for controlling the heat sources;





FIG. 8

is a flowchart of the subroutine of a standby mode control process in the main routine shown in

FIG. 7

;





FIG. 9

is a flowchart of the subroutine of a sheet feed mode control process in the main routine shown in

FIG. 7

;





FIG. 10

is a diagram showing the manner in which the temperatures of a fixing belt on the rollers vary when the control sequence is carried out;





FIG. 11

is a flowchart of a standby mode control process according to a first modification;





FIG. 12

is a flowchart of a sheet feed mode control process according to the first modification;





FIG. 13

is a block diagram of a circuit arrangement for detecting a temperature failure according to a second modification for the toner image fixing apparatus;





FIG. 14

is a sectional front elevational view of a conventional toner image fixing apparatus;





FIG. 15

is a diagram showing the manner in which the temperatures of a fixing belt on rollers of the conventional toner image fixing apparatus shown in

FIG. 14

vary when a control process is carried out to keep the surface temperature of a heating roller at a constant level;





FIG. 16

is a diagram showing the manner in which the temperatures of the fixing belt on the rollers of the conventional toner image fixing apparatus shown in

FIG. 14

vary when a priority control process is carried out; and





FIG. 17

is a diagram showing the manner in which the temperatures of the rollers of the conventional toner image fixing apparatus shown in

FIG. 14

vary when the priority control process is carried out while successive sheets are fed into the toner image fixing apparatus.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




General Structure of Toner Image Fixing Apparatus 10




As shown in

FIG. 1

, a toner image fixing apparatus


10


according to an embodiment of the present invention has a housing


12


to be fixed to a frame of an electronic image forming system (not shown) such as an electronic printer, for example. The housing


12


comprises a base plate


14


to be fixed directly to the frame, a pair of vertical side plates


16


erected from respective side edges of the base plate


14


, an upper cover


18


mounted on the side plates


16


to cover upper right regions of the side plates


16


, and a left cover


20


mounted on the side plates


16


to cover left side regions of the side plates


16


.




The upper cover


18


is fixedly mounted on the side plates


16


. A swing lever


22


is swingably supported on right portions of the side plates


16


by a first pivot shaft


24


positioned on a right end of the swing lever


22


, for swinging movement about the first pivot shaft


24


to provide an open space at a left end of the swing lever


22


. The left cover


20


is swingably supported on the side plates


16


by a second pivot shaft


26


positioned on a lower end of the left cover


20


, for swinging movement about the second pivot shaft


24


to provide an open space at an upper end of the left cover


20


.




The toner image fixing apparatus


10


has a roller assembly including a fixing roller


28


rotatably supported on the side plates


16


for rotation about a. fixed axis, a pressing roller


30


positioned obliquely downwardly of the fixing roller


28


in rolling contact with the fixing roller


28


and rotatably supported on the side plates


16


for rotation about a fixed axis parallel to the fixed axis of the fixing roller


28


, and a heating roller


34


positioned obliquely upwardly of the fixing roller


28


and rotatably supported on the swing lever


22


for rotation about its own axis.




The toner image fixing apparatus


10


also has a first heat source


32


such as a halogen lamp or the like disposed in the heating roller


34


, a second heat source


33


such as a halogen lamp or the like disposed in the pressing roller


30


, and an endless fixing belt (heat transfer belt)


36


trained around the fixing roller


28


and the heating roller


34


.




The fixing roller


28


comprises a resilient roller, and the pressing roller


30


comprises a roller harder than the fixing roller


28


. As shown in

FIG. 2

, the fixing roller


28


and the pressing roller


30


have respective centers O


1


, O


2


spaced from each other by a distance D which is slightly smaller than the sum (R


1


+R


2


) of their radii R


1


, R


2


. In a rolling contact region (nipping region) between the fixing roller


28


and the pressing roller


30


, the fixing roller


28


and the pressing roller


30


are held in rolling contact with each other under a predetermined pressure P1, so that the fixing roller


28


has an outer circumferential surface made partly concave by the pressing roller


30


held in rolling contact therewith, thus providing a sufficient nipping width in a direction across the axes of the fixing roller


28


and the pressing roller


30


.




The toner image fixing apparatus


10


also has an oil applying roller


38


for applying silicone oil to an outer circumferential surface of the fixing belt


36


and cleaning the outer surface of the fixing belt


36


, a first helical spring


40


for normally pressing the oil applying roller


38


against the fixing belt


36


perpendicularly thereto to tension the fixing belt


36


, and a second helical spring


42


for normally urging the heating roller


34


in a direction away from the fixing roller


28


to tension the fixing belt


36


in coaction with the first helical spring


40


.




The upper cover


18


has a right lower portion bent inwardly into the housing


12


. A guide plate


44


is positioned below and largely spaced from the bent right lower portion of the upper cover


18


. The guide plate


44


and the bent right lower portion of the upper cover


18


jointly define an inlet port


46


therebetween for introducing therethrough a sheet S with an unfixed toner image carried thereon (hereinafter referred to as an “unfixed toner sheet”) into the housing


12


in the direction (feed direction) indicated by the arrow in

FIG. 1






The guide plate


44


is inclined obliquely upwardly to the left such that the height of the guide plate


44


progressively increases into the housing


12


. The guide plate


44


has an inlet end, i.e., a right end, positioned in confronting relation to an outlet end of a sheet feeding endless belt EB that is positioned in the electronic printer adjacent to the right end of the inlet port


46


. The guide plate


44


has an outlet end, i.e., a left end, positioned in confronting relation to the rolling contact region (nipping region) between the fixing roller


28


and the pressing roller


30


.




When the unfixed toner sheet S is fed in the feed direction indicated by the arrow toward the toner image fixing apparatus


10


by the endless belt EB, the leading end of the unfixed toner sheet S contacts the guide plate


44


, and is then guided thereby to travel obliquely upwardly into the rolling contact region between the fixing roller


28


and the pressing roller


30


.




A sheet discharge passage


48


is defined above the left cover


20


for discharging a sheet with a toner image fixed thereto with heat and pressure by the fixing roller


28


and the pressing roller


30


in the rolling contact region. Such a sheet will hereinafter be referred to as a “fixed toner sheet”). The sheet discharge passage


48


is oriented such that it discharges the fixed toner sheet substantially upwardly along a vertical plane.




A lower discharge roller


50


is rotatably mounted on the left cover


20


between the sheet discharge passage


48


and the rolling contact region. The lower discharge roller


50


is actuated by an actuating mechanism


52


(described later on) to rotate at a speed greater than the pressing roller


30


, i.e., at a speed which is 5% greater than the speed at which the pressing roller


30


rotates. An upper discharge roller


54


is positioned obliquely upwardly of the lower discharge roller


50


and held in rolling contact with the lower discharge roller


50


under resilient forces from a leaf spring


56


. The upper discharge roller


54


is positioned with respect to the lower discharge roller


50


such that a line interconnecting the centers of the upper and lower discharge rollers


54


,


50


extends substantially perpendicularly across a sheet discharge passage along which the fixed toner sheet is delivered from the rolling contact region to the sheet discharge passage


48


.




In the toner image fixing apparatus


10


thus constructed, the unfixed toner sheet S fed onto the guide plate


44


by the endless belt EB has its lower surface, opposite to the unfixed toner image, borne by the guide plate


44


, and is guided by the guide plate


44


toward the rolling contact region (nipping region) between the fixing roller


28


and the pressing roller


30


, with the fixing belt


36


being trained around the fixing roller


28


. When the unfixed toner sheet S passes under pressure between the fixing roller


28


and the pressing roller


30


, the unfixed toner image is fixed to the sheet S with heat and pressure.




Fixing Roller 28:




The fixing roller


28


comprises a core


28


A rotatably supported on the side plates


16


by bearings (not shown) and a roller sleeve


28


B fitted coaxially over the core


28


A. The fixing belt


36


is trained around the roller sleeve


28


B. The fixing roller


28


has an outside diameter of 38.0 mm in this embodiment. The core


28


A comprises a shaft of iron having a diameter of 25 mm, and the roller sleeve


28


B is made of a heat-resistant resilient material of silicone rubber having a wall thickness of 6.5 mm. Specifically, the roller sleeve


28


B is made of a heat-resistant resilient material of silicon rubber having a JIS Model A hardness of


15


.




As shown in

FIG. 4

, the core


28


A has an end combined with a shaft which is coaxially coupled to a first driven gear


58


through a one-way clutch


60


(described later on). The first driven gear


58


is held in mesh with a transmission gear


62


of the actuating mechanism


52


. Drive forces produced by the actuating mechanism


52


are transmitted through the transmission gear


62


to the first driven gear


58


which is rotated clockwise to rotate the fixing roller


28


through the one-way clutch


60


.




Pressing roller 30:




As shown in

FIG. 1

, the pressing roller


30


comprises a core


30


A rotatably supported on the side plates


16


by bearings (not shown) and a roller sleeve


30


B fitted coaxially over the core


30


A. The pressing roller


30


has an outside diameter of 35 mm in this embodiment. The core


30


A comprises a shaft of iron having a diameter of 32 mm, and the roller sleeve


30


B is made of a heat-resistant resilient material of silicone rubber having a wall thickness of 1.5 mm. Specifically, the roller sleeve


30


B is made of silicone rubber having a JIS Model A hardness of


20


, which is harder than the roller sleeve


28


B. The outer circumferential surface of the roller sleeve


30


B is covered with a tube of fluoroplastics having a wall thickness of 50 μm.




As shown in

FIG. 3

, the core


30


A has an end combined with a shaft which is coaxially coupled to a second driven gear


64


which is held in mesh with the first driven gear


58


. Drive forces are transmitted from the first driven gear


58


to the second driven gear


64


, which rotates the pressing roller


30


counterclockwise.




In this embodiment, the pressing roller


30


is used as a primary drive roller for feeding the unfixed toner sheet through the nipping region. The ratio of gear teeth of the first and second drive gears


58


,


64


is selected such that the peripheral speed of the fixing roller


28


as it is thermally expanded is not greater than the peripheral speed of the pressing roller


30


. Specifically, the speed at which the fixing roller


28


is rotated by the first driven gear


58


is slightly lower than the speed at which it is rotated in frictional engagement with the pressing roller


30


through the fixing belt


36


.




The pressing roller


30


is not positioned directly downwardly of the fixing roller


28


, but is displaced downstream in the feed direction of a position directly downward of the fixing roller


28


. Specifically, the pressing roller


30


is positioned with respect to the fixing roller


28


such that an acute angle is formed between a vertical line passing through the center of the fixing roller


28


and a line segment passing through the centers of the fixing roller


28


and the pressing roller


30


. The line segment passing through the centers of the fixing roller


28


and the pressing roller


30


extends perpendicularly to the feed direction across the rolling contact region.




One-Way Clutch 60:




The one-way clutch


60


allows the fixing roller


28


to rotate clockwise relatively to the first driven gear


58


, but prevents the fixing roller


28


from rotating counterclockwise relatively to the first driven gear


58


, i.e., rotates the fixing roller


28


and the first driven gear


58


in unison with each other. Specifically, when the fixing roller


28


is cold, i.e., when the fixing roller


28


and the fixing belt


36


are driven by the pressing roller


30


while the fixing belt


36


is held in frictional engagement with the pressing roller


30


and the fixing roller


28


is held in frictional engagement with the fixing belt


36


, the peripheral speed of the fixing roller


28


upon clockwise rotation thereof is the same as the peripheral speed of the pressing roller


30


, and hence is slightly higher than the peripheral speed of the first driven gear


58


. The difference between the peripheral speeds of the fixing roller


28


and the first driven gear


58


is absorbed by the one-way clutch


60


.




When the heating roller


34


is heated by the heater


32


and the fixing roller


28


is heated through the fixing belt


36


, the outside diameter of the fixing roller


28


is increased as it is thermally expanded, and the peripheral speed of the fixing roller


28


increases. Since the peripheral speed of the fixing roller


28


does not become higher than the peripheral speed of the pressing roller


30


, the increase in the peripheral speed of the fixing roller


28


is absorbed by the one-way clutch


60


.




The one-way clutch


60


offers the following advantages: If the one-way clutch


60


were not employed, when a sheet with a glossy and slippery surface, such as a coated sheet, is fed as an unfixed toner sheet into the rolling contact region, the fixing belt


36


would slip against the unfixed toner sheet, and drive forces would not be transmitted from the pressing roller


30


to the fixing belt


36


and the fixing roller


28


, which would not then be driven by the pressing roller


30


. Therefore, the unfixed toner sheet would be jammed in the rolling contact region, or even if the unfixed toner sheet passed through the rolling contact region, the unfixed toner image on the unfixed toner sheet would be abraded and disturbed by the fixing belt


36


kept at rest.




In this embodiment, however, since the one-way clutch


60


is connected between the fixing roller


28


and the first driven gear


58


, even if drive forces from the pressing roller


30


are not transmitted tQ the fixing belt


36


, the fixing roller


28


is rotated clockwise by the first driven gear


58


through the one-way clutch


60


when the peripheral speed of the fixing roller


28


starts being lower than the peripheral speed of the first driven gear


58


. Therefore, the unfixed toner sheet passes reliably through the rolling contact region for effective protection against a sheet jam in the nipping region and toner image disturbance on the sheet.




Heating Roller 34:




In this embodiment, the heating roller


34


comprises a core in the form of an aluminum pipe having a diameter of 30 mm and a wall thickness of 3.5 mm. The core is coated with a polytetrafluoroethylene (PTFE) layer having a thickness of 20 μm. A circular collar


66


made of heat-resistant polyetheretherketone (PEEK) and having a diameter of 34 mm is press-fitted over each of opposite bearing ends of the core for preventing the fixing belt


36


from being tortured or displaced out of position.




As shown in

FIG. 3

, the first heat source


32


disposed in the heating roller


34


comprises an axially longer first halogen lamp


32


A for heating larger-size sheets and an axially shorter second halogen lamp


32


B for heating smaller-size sheets, the first and second halogen lamps


32


A,


32


B extending axially parallel to each other. The larger-size sheets may be A4-size sheets fed in landscape orientation, A3-size sheets fed in portrait orientation, B5-size sheets fed in landscape orientation, B4-size sheets fed in fed in portrait orientation, etc., and the smaller-size sheets may be B5-size sheets fed in portrait orientation, A4-size sheets fed in portrait orientation, postcard-size sheets fed in either landscape or portrait orientation, etc.




In this embodiment, the longer first halogen lamp


32


A is of such a length as to be able to cover the distance of 297 mm which represents the dimension of a shorter side of A3-size sheets, and the shorter second halogen lamp


32


B is of such a length as to be able to cover the distance of 210 mm which represents the dimension of a shorter side of A4-size sheets. Each of the first and second halogen lamps


32


A,


32


B has such a luminous intensity distribution that the luminous intensity is 30-50% greater at its opposite ends than at its center.




Fixing Belt 36:




The fixing belt


36


preferably has a heat capacity of 0.002 cal/°C.-0.025 cal/°C. per cm


2


so as to be able to preheat the unfixed toner on the unfixed toner sheet S to a fixing temperature through heat radiation for thereby fixing the toner without applying excessive heat. In this embodiment, the fixing belt


36


comprises an endless belt base of polyimide having an inside diameter of 60 mm and a thickness of 100 μm and a heat-resistant resilient separating layer of silicone rubber that is coated to a thickness of 200 μm on an outer circumferential surface of the endless belt base of polyimide.




Alternatively, the fixing belt


36


may comprise an endless belt base of electroformed nickel having a thickness of 40 μm and a heat-resistant resilient separating layer of silicone rubber that is coated to a thickness of 200 μm on an outer circumferential surface of the endless belt base of electroformed nickel.




Oil Applying Roller 38:




The oil applying roller


38


serves to apply a small amount of silicone oil to the outer circumferential surface of the fixing belt


36


for separating the sheet S easily from the fixing belt


36


. The oil applying roller


38


comprises a support shaft


38


A rotatably supported in a casing


68


for rotation about a fixed axis and a heat-resistant layer


38


B of paper fitted over the support shaft


38


A and impregnated with silicone coil. In this embodiment, the support shaft


38


A comprises a shaft of iron having a diameter of 8 mm, and the heat-resistant layer


38


B of paper is covered with a film


38


C of porous fluoroplastics having a thickness of 100 μm. The oil applying roller


38


has a diameter of 22 mm. The oil applying roller


38


thus constructed is capable of stably applying a small amount of silicone oil to the outer circumferential surface of the fixing belt


36


.




The outer circumferential surface of the oil applying roller


38


is smeared with dirt such as of toner particles that is transferred from the outer circumferential surface of the fixing belt


36


. A cleaning brush


39


is held in sliding contact with the outer circumferential surface of the oil applying roller


38


for removing such dirt off the outer circumferential surface of the oil applying roller


38


thereby to clean the oil applying roller


38


.




Tensioning Mechanism for the Fixing Belt 36:




As described above, a mechanism for tensioning the fixing belt


36


has the first helical spring


40


for normally pressing the oil applying roller


38


against the fixing belt


36


perpendicularly thereto to tension the fixing belt


36


, and the second helical spring


42


for normally urging the heating roller


34


in a direction away from the fixing roller


28


to tension the fixing belt


36


in coaction with the first helical spring


40


.




The first helical spring


40


is attached to the left cover


20


for normally urging the casing


68


, on which the oil applying roller


38


is rotatably supported, toward the fixing belt


36


. The casing


68


is movably supported by a guide rib


70


on one of the side plates


16


for movement toward and away from the fixing belt


36


. When the left cover


20


is swung open to the left about the second pivot shaft


26


, the first helical spring


40


is disengaged from the casing


68


, releasing the oil applying roller


38


from the fixing belt


36


. When the left cover


20


is swung to the right about the second pivot shaft


26


, the first helical spring


40


pushes the casing


68


under a pressing force P2, causing the oil applying roller


38


to press the fixing belt


36


under a certain tension.




The second helical spring


42


is connected between the left end of the swing lever


22


and the side plate


16


for normally urging the swing lever


22


to turn clockwise about the first pivot shaft


24


, i.e., to push the heating roller


34


on the swing lever


22


under a pressing force P3 in a direction away from the fixing roller


28


. In this manner, the fixing belt


36


is given a desired tension.




Therefore, the heating roller


34


is displaced away from the fixing roller


28


by the swing lever


22


under the bias of the second helical spring


42


, tensioning the fixing belt


36


trained around the heating roller


34


and the fixing roller


28


.




The fixing belt


36


thus tensioned by the first and second helical springs


40


,


42


is held in frictional engagement with the pressing roller


30


and driven thereby. When the fixing belt


36


is driven by the pressing roller


30


. The fixing roller


28


is stably driven thereby without slipping or sagging with respect to the fixing belt


36


.




Actuating Mechanism 52:




As shown in

FIG. 4

, the transmission gear


62


is held in mesh with an output gear GE that is connected through a gear train (not shown) to an actuator in the electronic printer when the toner image fixing apparatus


10


is installed in the electronic printer. The transmission gear


62


can be driven to rotate by the output gear GE. The actuating mechanism


52


also has, in addition to the transmission gear


62


, the first driven gear


58


held in mesh with the transmission gear


62


and coupled to the fixing roller


28


through the one-way clutch


60


, and the second driven gear


64


held in mesh with the first driven gear


58


and fixed coaxially to the pressing roller


30


.




The actuating mechanism


52


also has an idler gear


72


held in mesh with the transmission gear


62


. The idler gear


72


is also held in mesh with a third driven gear


74


fixed coaxially to the lower discharge roller


50


for rotating the lower discharge roller


50


at a speed equal to or higher than the rotational speed of the pressing roller


30


.




Other Structural Details:




As shown in

FIG. 1

, the toner image fixing apparatus


10


has a peeler blade


76


for peeling the fixed toner sheet off the outer circumferential surface of the pressing roller


30


, and a sheet sensor


78


for detecting the leading end of the fixed toner sheet as it is fed to a rolling contact region between the upper and lower discharge rollers


54


,


50


.




Control System:




The toner image fixing apparatus


10


further comprises a control system (see

FIG. 5

) which includes a controller


86


for controlling the actuating mechanism


52


, the first heat source


32


disposed in the heating roller


34


, and the second head source


33


disposed in the pressing roller


30


. To the controller


86


, there are electrically connected a first thermistor


80


for detecting the temperature (heating roller temperature) Th of a non-sheet-contact area (which is not contacted by the unfixed toner sheet S) of the fixing belt


36


on the heating roller


34


, a second thermistor


82


for detecting the temperature (fixing roller temperature) Tf of a sheet-contact area (which is contacted by the unfixed toner sheet S) of the fixing belt


36


on the fixing roller


28


, and a third thermistor


84


for detecting the temperature (pressing roller temperature) Tp of the outer circumferential surface of the pressing roller


30


. Based on the temperatures Th, Tf, Tp detected by the first, second, and third thermistors


80


,


82


,


84


, the controller


86


controls the heat generated by the first and second heat sources


32


,


33


.




The controller


86


also controls the first halogen lamp


32


A of the first heat source


32


through a first heater driver


88


A, the second halogen lamp


32


B of the first heat source


32


through a second heater driver


88


B, and a halogen lamp of the second head source


33


through a third heater driver


88


C according to a control sequence described later on.




Position of the Heating Roller 34:




The heating roller


34


is positioned substantially upwardly of the fixing roller


28


. Therefore, the fixing belt


36


that is trained around the fixing roller


28


and the heating roller


34


is so spaced from the guide plate


44


that the unfixed toner sheet fed on the guide plate


44


will not be brought into contact with the fixing belt


36


. Stated otherwise, the fixing belt


36


is disposed in a position outside of a region where the unfixed toner sheet fed on the guide plate


44


possibly passes.




Because the heating roller


34


is positioned substantially upwardly of the fixing roller


28


, the unfixed toner sheet S carried on the upper surface of the guide plate


44


is reliably prevented from contacting the fixing belt


36


irrespective of how the unfixed toner sheet being fed may be curled. Consequently, the unfixed toner sheet S can be led to the rolling contact region between the fixing roller


28


and the pressing roller


30


without disturbing the unfixed toner image on the unfixed toner sheet S, so that the unfixed toner image on the unfixed toner sheet S can reliably be fixed to the unfixed toner sheet S in the rolling contact region.




Angle of the Heating Roller 34:




The fact that the heating roller


34


is positioned substantially upwardly of the fixing roller


28


offers advantages inherent in the toner image fixing apparatus


10


. An experiment to determine an optimum angular range in which the heating roller


34


can be positioned substantially upwardly of the fixing roller


28


by changing the angle of the heating roller


34


as shown in

FIG. 5

will be described below.




In the experiment, a straight line passing through the centers of the fixing roller


28


and the pressing roller


30


was defined as a reference line B, and an angle θ was defined between the reference line B and a line segment L interconnecting the centers of the fixing roller


28


and the heating roller


34


. The angular position of the heating roller


34


with respect to the fixing roller


28


was changed to change the angle θ between 90° and 180°, and the frequency of rubbed states of toner images at the inlet of the rolling contact region between the fixing roller


28


and the pressing roller


30


and also the frequency of defects of toner images at the outlet of the rolling contact region between the fixing roller


28


and the pressing roller


30


were measured when the toner images were copied on one side and both sides of sheets.




The angle θ was defined as a positive angle when measured counterclockwise from the reference line B, and as a negative angle when measured clockwise from the reference line B. Therefore, the heating roller


34


positioned at the angle θ=+180° and the heating roller


34


positioned at the angle θ=−180° were in the same angular position, and the heating roller


34


positioned at the angle θ=+105° and the heating roller


34


positioned at the angle θ=−255° were in the same angular position. Defects of toner images at the outlet of the rolling contact region represent sheet offsets or sheet jams.




The experiment was conducted under the following conditions:




The nipping width in the rolling contact region was set to 8 mm, and the pressing roller


30


applied a pressure P1 of 24 kgf to one side of the unfixed toner sheet S. The temperature of the fixing belt


36


trained around the fixing roller


28


was set to 160° C. The surface temperature of the pressing roller


30


was set to 140° C. The speed at which to feed the unfixed toner sheet S was set to 180 mm/sec. The pressing roller


30


was rotated in synchronism with the speed of 180 mm/sec. The toner used was an A color toner manufactured by Fuji Xerox. The sheet S used was plain paper having a weight of 64 g/m


2


.




The experiment was made for nine angles θ of 90°, 105°, 120°, 150°, 180°, −150°, −120°, −105°, −90°.




The results of the experiment are given in Table 1 shown below.
















TABLE 1













Copied on one




Copied on both








side




sides



















Angles




A




B




A




B




Evaluation






















90°




3/5




0/5




5/5




0/5




Not acceptable







105°




0/5




0/5




1/5




0/5




Partly












acceptable







120°




0/5




0/5




0/5




0/5




Acceptable







150°




0/5




0/5




0/5




0/5




Acceptable







±180°




0/5




0/5




0/5




0/5




Acceptable







−150°




0/5




0/5




0/5




0/5




Acceptable







−120°




0/5




0/5




0/5




0/5




Acceptable







−105°




0/5




2/5




0/5




3/5




Not acceptable







−90°




0/5




5/5




0/5




5/5




Not acceptable













A: The frequency of rubbed states of toner images at the inlet of the rolling contact region.











B: The frequency of defects of toner images at the outlet of the rolling contact region.













As can be seen from Table 1, when the angle θ is greater than 105° and smaller than −105°, i.e., when the angle θ is in a range from 105° to 255° as measured only counterclockwise, toner images were neither rubbed at the inlet of the rolling contact region and nor defective at the outlet of the rolling contact region, indicating a good toner image fixing process. However, when the angle θ is equal to or smaller than 105°, toner images were either rubbed at the inlet of the rolling contact region and or defective at the outlet of the rolling contact region, indicating a poor toner image fixing process.




Heating Control by the Controller 86:




A control process or sequence carried out by the controller


86


for controlling the heating of the first and second heat sources


32


,


33


will be described below with reference to the flowcharts of

FIGS. 7 through 9

.




The controller


86


comprises a CPU (Central Processing Unit) for controlling the control system shown in

FIG. 5

, a ROM (Read-Only Memory) for storing programs, a RAM (Random-Access Memory) for storing thresholds, settings, and other data, an interface for transmitting data between the controller


86


and a controller of the electronic printer which incorporates the toner image fixing apparatus


10


, and various I/O (Input/Output) ports. Unless a sheet feed command is supplied from the electronic printer, the controller


86


keeps the toner image fixing apparatus


10


in a standby mode, and executes a predetermined standby mode control sequence. When a sheet feed command is supplied from the electronic printer, the controller


86


operates the toner image fixing apparatus


10


in a sheet feed mode, and executes a predetermined sheet feed mode control sequence.




Specifically, in the standby mode, the controller


86


controls the first heat source


32


to heat the heating roller


34


to a first temperature setting T1 based on the heating roller temperature Th detected by the first thermistor


80


, and also controls the second heat source


33


to heat the pressing roller


30


to a second temperature setting T2 based on the pressing roller temperature Tp detected by the third thermistor


84


. In the sheet feed mode, the controller


86


controls the first heat source


32


to heat the fixing roller


28


to a third temperature setting T3 based on the fixing roller temperature Tf detected by the second thermistor


82


.




The controller


86


controls the amount of heat generated by the first halogen lamp


32


A of the first heat source


32


with the first heater driver


88


A, controls the amount of heat generated by the second halogen lamp


32


B of the first heat source


32


with the second heater driver


88


B, and controls the amount of heat generated by the halogen lamp of the second head source


33


with the third heater driver


88


C.




In the sheet feed mode, the controller


86


determines the size of a sheet being fed based on sheet information. If the controller


86


determines the size of a sheet being fed as a large size, then the controller


86


energizes only the first halogen lamp


32


A of the first heat source


32


with the first heater driver


88


A, and also energizes the halogen lamp of the second heat source


33


with the third heater driver


88


C in the same manner as with the standby mode. If the controller


86


determines the size of a sheet being fed as a small size, then the controller


86


energizes only the second halogen lamp


32


B of the first heat source


32


with the second heater driver


88


B.




The above control process or sequence carried out by the controller


86


will be described in more detail below with reference to

FIGS. 7 through 9

.




Main Routine of the Control Sequence of the Controller 86:




As shown in

FIG. 7

, when the toner image fixing apparatus


10


is turned on, the controller


86


carries out a predetermined initializing process, and then executes a standby mode control process for controlling the heating of the first and second heat sources


32


,


33


in step S


10


. The subroutine of the standby mode control process in step S


10


will be described in more detail later on with reference to FIG.


8


.




The controller


86


executes the standby mode control process in step S


10


until a sheet feed command is supplied from the electronic printer in step S


12


. When a sheet feed command is supplied from the electronic printer, the controller


86


starts to operate various actuators of the actuating mechanism


52


and controls the actuators according to a predetermined actuator control process in step S


14


. The controller


86


also carries out a sheet feed mode control process for controlling the heating of the first and second heat sources


32


,


33


in step S


16


. The actuator control process in step S


14


will not be described below as it has no direct bearing on the present invention. The subroutine of the sheet feed mode control process in step S


16


will be described in more detail later on with reference to FIG.


9


.




The controller


86


executes the sheet feed mode control process in step S


16


insofar as there is a sheet feed command supplied from the electronic printer. When there is no longer a sheet feed command from the electronic printer in step S


18


, the controller


86


stop operating the various actuators of the actuating mechanism


52


in step S


20


. Then, control returns to step S


10


to execute the standby mode control process.




In this manner, the controller


86


basically controls the heating of the first and second heat sources


32


,


33


.




Subroutine of the Standby Mode Control Process:




The subroutine of the standby mode control process in step S


10


shown in

FIG. 7

will be described below with reference to FIG.


8


.




When the standby mode control process begins, the controller


86


detects the heating roller temperature Th with the first thermistor


80


in step S


10


A, and decides whether the detected heating roller temperature Th is higher than the first temperature setting T1 or not in step S


10


B. If the detected heating roller temperature Th is not higher than the first temperature setting T1, then since the heating roller temperature Th has not yet reached the first temperature setting T1 as a target temperature, the controller


86


energizes only the first halogen lamp


32


A of the first heat source


32


in the heating roller


34


to generate heat therefrom in step S


10


C.




Conversely, if the detected heating roller temperature Th is higher than the first temperature setting T1 in step S


10


B, then since the heating roller temperature Th has already exceeded the first temperature setting T1, the controller


86


de-energizes the first halogen lamp


32


A of the first heat source


32


in the heating roller


34


to stop generating heat therefrom in step S


10


D.




After having thus controlled the heating of the first heat source


32


in the heating roller


34


based on the heating roller temperature Th, the controller


86


detects the pressing roller temperature Tp with the third thermistor


84


in step S


10


E, and decides whether the detected pressing roller temperature Tp is higher than the second temperature setting T2 or not in step S


10


F. If the detected pressing roller temperature Tp is not higher than the second temperature setting T2, then since the pressing roller temperature Tp has not yet reached the second temperature setting T2 as a target temperature, the controller


86


energizes the halogen lamp of the second heat source


33


in the pressing roller


30


to generate heat therefrom in step S


10


G.




If the detected pressing roller temperature Tp is higher than the second temperature setting T2, then since the pressing roller temperature Tp has already reached the second temperature setting T2, the controller


86


de-energizes the halogen lamp of the second heat source


33


in the pressing roller


30


to stop generating heat therefrom in step S


10


H.




After having thus controlled the heating of the second heat source


33


in the pressing roller


30


based on the heating roller temperature Tp, controls returns from the standby mode control process shown in

FIG. 8

to the main routine shown in FIG.


7


.




Subroutine of the Sheet Feed Mode Control Process:




The subroutine of the sheet feed mode control process in step S


16


shown in

FIG. 7

will be described below with reference to FIG.


9


.




When sheet feed mode control process begins, the controller


86


decides whether the size of an unfixed toner sheet fed from the electronic printer is a small size or not in step S


16


A. If the size of the unfixed toner sheet fed from the electronic printer is not a small size, i.e., if the size of the unfixed toner sheet fed from the electronic printer is a large size, then the controller


86


energizes only the first halogen lamp


32


A of the first heat source


32


in the heating roller


34


to generate heat therefrom in step S


16


B. Thereafter, the controller


86


controls the heating of the second heat source


32


in the pressing roller


30


in step S


16


C. Specifically, the controller


86


executes a subroutine for controlling the heating of the second heat source


32


, which is the same as the processing in steps S


10


E-S


10


H in the standby mode control process shown in

FIG. 8

, in step S


16


C.




If the size of the unfixed toner sheet fed from the electronic printer is a small size in step S


16


A, then the controller


86


energizes only the second halogen lamp


32


B of the first heat source


32


in the heating roller


34


to generate heat therefrom in step S


16


D. Thereafter, control goes to the subroutine in step S


16


C.




After having thus controlling the heating of the heating roller


34


and the pressing roller


30


depending on the size of the sheet being fed, the controller


86


detects the fixing roller temperature Tf with the second thermistor


82


in step S


16


F, and decides whether the detected fixing roller temperature Tf is higher than the third temperature setting T3 or not in step S


16


G. If the detected fixing roller temperature Tf is not higher than the third temperature setting T3, then since the detected fixing roller temperature Tf has not yet reached the third temperature setting T3 as a target temperature, the controller


36


energizes the first heat source


32


in the heating roller


34


to generate heat therefrom depending on the size of the sheet being fed in step S


16


H.




If the detected fixing roller temperature Tf is higher than the third temperature setting T3, then since the detected fixing roller temperature Tf has already exceeded the third temperature setting T3, the controller


36


de-energizes the first heat source


32


in the heating roller


34


to stop generating heat therefrom in step S


16


I.




After having thus controlling the heating of the first heat source


32


in the heating roller


34


based on the fixing roller temperature Tf, controls returns from the sheet feed mode control process shown in

FIG. 9

to the main routine shown in FIG.


7


.




As described above, according to the control sequence carried out by the controller


86


, when the actuating mechanism


52


starts operating, the standby mode control process in which the first heat source


32


disposed in the heating roller


34


is controlled to reach the first temperature setting T1 based on the surface temperature Th of the heating roller


34


as measured by the first thermistor


80


changes to the sheet feed mode control process in which the first heat source


32


is controlled to reach the third temperature setting T3 based on the surface temperature Tf of the fixing roller


28


as measured by the second thermistor


82


. The sheet feed mode control process continues insofar as a sheet feed command is supplied from the electronic printer.




According to the illustrated embodiment, while sheets are being fed into the toner image fixing apparatus


10


in the sheet feed mode, the rollers whose temperatures are to be measured do not change depending on the temperature measured by the first thermistor


80


, but the first heat source


32


is controlled always on the basis of the fixing roller temperature. As a result, even when sheets are fed at a high speed and pass through the nipping region highly frequently, depriving the fixing roller


38


of a large amount of heat, the first heat source


32


is controlled to transfer heat from the heating roller


34


through the fixing belt


36


to the fixing roller


28


to make up for the lost heat. Therefore, as shown in

FIG. 10

, the fixing roller


28


is kept substantially constant in the toner image fixing temperature range at all times. Consequently, even when sheets are fed at a high speed into the toner image fixing apparatus


10


, unfixed toner images on the sheets can well be fixed to the sheets with good toner image fixability.




In this embodiment, since the second heat source


33


is disposed in the pressing roller


30


which is one of the rollers positioned across the nipping region, it can supply a sufficient amount of heat to heat the unfixed toner sheet S. As a consequently, even if the speed at which the fixing belt


36


is increased, the nipping region is supplied with a sufficient amount of heat. The toner image fixing apparatus


10


is thus capable of meeting requirements for higher speeds at which to feed sheets into the toner image fixing apparatus


10


.




With the second heat source


33


disposed in the pressing roller


30


, the size of a sheet being fed into the toner image fixing apparatus


10


in the sheet feed mode is determined, and if the sheet is of a small size, then the second heat source


33


is de-energized to prevent the pressing roller


30


from being heated. Accordingly, the non-sheet-contact area of the fixing belt


36


on the heating roller


36


which is associated with the first thermistor


30


is effectively prevented from increasing its temperature. Even though the temperature of the first heat source


32


in the heating roller


34


is controlled on the basis of the surface temperature of the fixing roller


28


as detected by the second thermistor


82


throughout the sheet feed mode, the surface temperature of the heating roller


34


is prevented from increasing excessively, but the heating roller


34


is heated well with safety.




In the illustrated embodiment, as described above, the first heat source


32


disposed in the heating roller


34


comprises the first halogen lamp


32


A for heating larger-size sheets and the second halogen lamp


32


B for heating smaller-size sheets. In the standby mode and the sheet feed mode in which larger-size sheets are fed, only the first halogen lamp


32


A is energized to heat the heating roller


34


. In the sheet feed mode in which smaller-size sheets are fed, only the second halogen lamp


32


B is energized to heat the heating roller


34


. As a result, the surface temperature of the heating roller


34


is prevented more reliably from increasing excessively for allowing toner images to be fixed to the sheets more stably.




Since the controller


86


effects the standby mode control process, even when the standby mode continues for a long period of time, a fixation readiness time, i.e., the period of time required for the toner image fixing apparatus


10


to become ready for fixing toner images, subsequent to the standby mode can be shortened, so that the operator does not need to wait long before a fixing process begins.




In the above embodiment, the heating roller


34


is positioned substantially upwardly of the fixing roller


28


, i.e., the heating roller


34


is angularly positioned with respect to the fixing roller


28


such that the angle formed between the line segment L interconnecting the center of the heating roller


34


and the center of the fixing roller


28


and the reference line B interconnecting the center of the fixing roller


28


and the center of the pressing roller


30


lies in a range from about 105° to about 255°. Therefore, the fixing belt


36


that is trained around the fixing roller


28


and the heating roller


34


is so spaced from the guide plate


44


that the unfixed toner sheet fed on the guide plate


44


will not be brought into contact with the fixing belt


36


. Stated otherwise, the fixing belt


36


is disposed in a position outside of a region where the unfixed toner sheet fed on the guide plate


44


possibly passes.




Consequently, no matter how the unfixed toner sheet being fed is curled due to jumping or sagging on account of the speed difference between the toner image fixing apparatus


10


and a preceding toner image transferring apparatus, the unfixed toner image on the upper surface of the unfixed toner sheet is reliably prevented from touching the fixing belt


36


, and can be led, without being disturbed, into the rolling contact region between the fixing roller


28


and the pressing roller


30


, so that the toner image can reliably be fixed to the sheet by the fixing roller


28


.




The fixing roller


28


comprises a resilient roller, and the pressing roller


30


comprises a roller harder than the fixing roller


28


. Therefore, even if the fixing roller


28


and the pressing roller


30


are small in diameter, they provide a sufficiently large nipping width in a direction across their axes. As a consequence, the toner image fixing apparatus


10


may be relatively small in size, and sheets can be fed through the toner image fixing apparatus


10


at high speed. The toner image fixing apparatus


10


is thus suitable for use in color printers.




As described above, inasmuch as the fixing roller


28


positioned above the pressing roller


30


comprises a resilient roller and the pressing roller


30


comprises a roller harder than the fixing roller


28


, the fixing roller


28


provides an upwardly concave surface in the nipping region, unlike the conventional structure shown in FIG.


14


. The upwardly concave nipping region provided by the fixing roller


28


produces forces tending to separate a sheet carrying a fixed toner image from the fixing belt


36


. Even though the toner is carried on the surface of the sheet held in contact with the fixing belt


36


, because the sheet can easily be separated from the fixing belt


36


due to the upwardly concave nipping region, the amount of oil applied to the fixing belt


36


by the oil applying roller


38


for preventing sheet offsets and Jams may be relatively small. Actually, the upwardly concave nipping region provided by the fixing roller


28


is effective to avoid sheet offsets and jams between the fixing roller


28


and the pressing roller


30


even without the application of oil to the fixing belt


36


by the oil applying roller


38


.




Furthermore, the fixing belt


36


is made of a material having a small heat capacity, trained around the heating roller


34


at a large contact angle, and held in intimate contact with the heating roller


34


. As a result, even when sheets are passed at a high speed, i.e., even when a large number of sheets are passed in a unit time, through the nipping region, the temperature necessary to fix toner images to the sheets can reliably be maintained in the rolling contact region between the fixing roller


28


and the pressing roller


30


.




In the embodiment, the resilient fixing roller


28


does not house any heater, but the heating roller


34


spaced from the fixing roller


28


houses the heat source


32


therein. Thus, it is possible to sufficiently increase the thickness of the roller sleeve


28


B that is made of a heat-resistant resilient material of silicone rubber. Consequently, the nipping width in the rolling contract region can be sufficiently large while at the same time the fixing roller


28


may be relatively small in diameter.




In addition, the one-way clutch


60


disposed between the first driven gear


58


and the fixing roller


28


allows the pressing roller


30


, rather than the fixing roller


28


, as a primary drive roller for establishing a speed at which the unfixed toner sheet is fed through the nipping region. Therefore, even when the fixing roller


28


is heated in the fixing process and thermally expanded to increase its diameter, since the speed at which the unfixed toner sheet is fed through the nipping region is not established by the fixing roller


28


, it is not varied by the thermal expansion of the fixing roller


28


, but is maintained at a constant level. Consequently, the fixing belt


36


is maintained at a constant linear velocity to prevent toner images from being displaced or rubbed.




Modifications:




The toner image fixing apparatus


10


has been described as being used in an electronic printer. However, the principles of the present invention are not limited to such an application, but are also applicable to other electronic image forming systems including an electronic facsimile machine, an electrophotographic copying system, etc.




In the above embodiment, the unfixed toner sheet is introduced laterally into the toner image fixing apparatus


10


. However, the unfixed toner sheet may be introduced vertically, e.g., upwardly, into the toner image fixing apparatus


10


. In such a modification, the pressing roller


30


is disposed laterally of the fixing roller


28


, and the heating roller


34


is disposed on one side of the fixing roller


28


which is opposite to the pressing roller


30


.




In the above embodiment, the temperatures of the fixing belt


36


on the heating roller


34


and the fixing roller


28


are detected and used for the control of the heating of the heat sources


32


,


33


. However, the temperatures of the heating roller


34


and the fixing roller


28


may directly be detected and used for the control of the heating of the heat sources


32


,


33


.




In the above embodiment, the heating or energization of the second heat source


33


disposed in the pressing roller


30


is controlled on the basis of the surface temperature Tp of the pressing roller


30


which is detected by the third thermistor


84


, as shown in FIG.


8


. According to a first modification, the heating or energization of the second heat source


33


may be controlled on the basis of the surface temperature Th of the heating roller


34


which is detected by the first thermistor


80


or the surface temperature Tf of the fixing roller


28


which is detected by the second thermistor


82


, rather than the surface temperature Tp of the pressing roller


30


which is detected by the third thermistor


84


.




A standby mode control process and a sheet feed mode control process according to such a first modification will be described below with reference to

FIGS. 11 and 12

. Those steps shown in

FIGS. 11 and 12

which are identical to those shown in

FIGS. 8 and 9

will be denoted by identical reference characters, and will not be described in detail below.




In the standby mode control process according to the first modification, as shown in

FIG. 11

, if the heating roller temperature Th detected by the first thermistor


80


in step S


10


A is lower than the first temperature setting T1, then the controller


86


energizes the second heat source


33


disposed in the pressing roller


30


to generate heat therefrom in step S


10


G. If the heating roller temperature Th is higher than the first temperature setting T1, then the controller


86


stops energizing the second heat source


33


to prevent the second heat source


33


from generating heat.




In the standby mode control process according to the first modification, therefore, the processing in steps S


10


E, S


10


F shown in

FIG. 8

is dispensed with, and hence the third thermistor


84


for detecting the surface temperature of the pressing roller


30


is dispensed with. As a result, the standby mode control process is simplified, and the number of parts used is reduced and the cost of the toner image fixing apparatus is lowered because the third thermistor


84


is dispensed with. Since the third thermistor


84


which is held in contact with the outer circumferential surface of the pressing roller


30


is dispensed with, the outer circumferential surface of the pressing roller


30


is prevented from being damaged by a thermistor, and hence the pressing roller


30


will have a longer service life.




In the sheet feed mode control process according to the first modification, as shown in

FIG. 12

, if the fixing roller temperature Tf detected by the second thermistor


82


in step S


16


G is lower than the third temperatures setting T3, then the controller


86


energizes the first heat source


32


disposed in the heating roller


34


to generate heat therefrom in step S


16


H and then energizes the second heat source


33


disposed in the pressing roller


30


to generate heat therefrom in step S


16


J. If the fixing roller temperature Tf is higher than the third temperatures setting T3, then the controller


86


stops energizing the first heat source


32


disposed in the heating roller


34


to prevent the first heat source


32


from generating in step S


16


I and then stops energizing the second heat source


33


disposed in the pressing roller


30


to prevent the second heat source


33


from generating in step S


16


K.




In as much as the heating of the second heat source


33


is controlled on the basis of the surface temperature Tf of the fixing roller


28


, the temperature of the nipping region can be controlled more reliably for improved toner image fixability.




In the first modification, the first thermistor


80


for detecting the surface temperature Th of the heating roller


34


is used to control the heating of the first and second heat sources


32


,


33


in the standby mode control process, and the first thermistor


80


is not used, but the second thermistor


82


for detecting the surface temperature Tf of the fixing roller


28


is used, to control the heating of the first and second heat sources


32


,


33


in the sheet feed mode control process. Therefore, according to a second modification shown in

FIG. 13

, the first thermistor


80


is used as a sensor for detecting a temperature failure in the sheet feed mode control process.




More specifically,

FIG. 13

shows a circuit arrangement according to the second modification. Those parts shown in

FIG. 13

which are identical to those shown in

FIGS. 1

,


3


, and


5


are denoted by identical reference characters. As shown in

FIG. 13

, an emergency shutoff switch


90


is connected in series to the first heat source


32


. The second thermistor


82


for detecting the surface temperature Tf of the fixing roller


28


is connected to the controller


86


through a fixing roller rotation control unit


94


A. The first thermistor


80


for detecting the surface temperature Th of the heating roller


34


is connected to the controller


86


through a heating roller standby control unit


94


B. The fixing roller rotation control unit


94


A and the heating roller standby control unit


94


B are selectively connected to the controller


86


by a first selector switch


92


.




The first thermistor


80


is connected to a heating roller rotation failure control unit


94


C through a second selector switch


96


. The heating roller standby control unit


94


B and the heating roller rotation failure control unit


94


C are selectively connected to the first thermistor


80


by the second selector switch


96


. If the heating roller rotation failure control unit


94


C detects a rotation failure of the heating roller


34


while the heating roller


34


is rotating, then the heating roller rotation failure control unit


94


C causes a relay


98


to turn off the emergency shutoff switch


90


.




In the standby mode, the first and second selector switches


92


,


96


have their movable contacts shifted to the broken-line position. According to the standby mode control process, the controller


86


controls the heating of the first and second heat sources


32


,


33


based on the temperature detected by the first thermistor


80


. In the sheet feed mode, the movable contacts of the first and second selector switches


92


,


96


are shifted to the solid-line position. According to the sheet feed mode control process, the controller


86


controls the heating of the first and second heat sources


32


,


33


based on the temperature detected by the second thermistor


82


.




In the sheet feed mode, the first thermistor


80


is connected to the heating roller rotation failure control unit


94


C through the second selector switch


96


. Therefore, the heating roller rotation failure control unit


94


C can detect a temperature failure of the heating roller


34


based on the temperature detected by the first thermistor


80


. For example, if the surface temperature Th of the heating roller


34


exceeds an allowable safety range, then the heating roller rotation failure control unit


94


C applies a control signal to the relay


98


to cause the relay


98


to turn off the emergency shutoff switch


90


for thereby cutting off the supply of an electric current to the first heat source


33


in the heating roller


34


. The heating roller


34


is thus prevented from being overheated for safety.




A circuit arrangement of the second heat source


33


is omitted from illustration in FIG.


13


.




In the first modification, the first and second heat sources


32


,


33


are energized for the same period of time. However, the period of time for which the first heat source


33


is energized may be made longer than the period of time for which the first heat source


32


is energized, using a timer, a latch, etc. This is because in general the heating capacity of the second heat source


33


disposed in the pressing roller


30


is smaller than the heating capacity of the first heat source


32


disposed in the heating roller


34


.




According to the present invention as described above, the toner image fixing apparatus can fix toner images to unfixed toner sheets with good toner image fixability even when the unfixed toner sheets are fed at an increased speed into the toner image fixing apparatus.




Furthermore, the toner image fixing apparatus is capable of holding the surface temperature of the fixing roller substantially in a toner image fixing temperature range even when a sheet with an unfixed toner image carried thereon is fed at an increased speed.




The toner image fixing apparatus can fix a toner image to an unfixed toner sheet while preventing the surface temperature of the fixing roller from increasing excessively even when the unfixed toner sheet is fed at an increased speed.




The toner image fixing apparatus can fix a toner image to an unfixed toner sheet while holding the surface temperature of the fixing roller substantially in a toner image fixing temperature range even when the unfixed toner sheet is fed at an increased speed.




Although certain preferred embodiments of the present invention have been shown and described in detail, it should be understood that various changes and modifications may be made therein without departing from the scope of the appended claims.



Claims
  • 1. An apparatus for fixing a toner image to a sheet, comprising:a fixing roller; a pressing roller urged toward said fixing roller for pressing a sheet with an unfixed toner image carried on a surface thereof against said fixing roller to fix the unfixed toner image to said sheet when said sheet passes in one direction through a rolling contact region between said fixing roller and said pressing roller; a heating roller disposed on one side of said fixing roller opposite to said pressing roller; a first heating source disposed in said heating roller for heating said heating roller; an endless heat transfer belt trained around said heating roller and said fixing roller for transferring heat from said first heating source to heat the unfixed toner image on said sheet when said sheet passes through said rolling contact region; and a second heating source disposed in said pressing roller for heating said pressing roller; and a control device for energizing said first heating source and said second heating source when the apparatus is in a standby mode, and energizing said first heating source when the apparatus is in a sheet feed mode, and energizing said second heating source when the apparatus is in the sheet feed mode only if said sheet is of a size larger than a predetermined size, wherein said control device includes a first detecting device for detecting a surface temperature of said heating roller, a second detecting device for detecting a surface temperature of said fixing roller, and a third detecting device for detecting a surface temperature of said pressing roller; said control device further includes a controller for controlling said first heating source based on the surface temperature detected by said first detecting device and controlling said second heating source based on the surface temperature detected by said third detecting device when the apparatus is in said standby mode, and controlling said first heating source based on the surface temperature detecting by said second detecting device when the apparatus is in said sheet feed mode.
  • 2. The apparatus according to claim 1, further comprising a decision device for deciding whether the apparatus is in said standby mode or said sheet feed mode, said decision device including a determining device for determining that the apparatus is in said sheet feed mode when a sheet feed command is supplied, and that the apparatus is in said standby mode when a sheet feed command is not supplied.
  • 3. An apparatus for fixing a toner image to a sheet, comprising:a fixing roller; a pressing roller normally urged toward said fixing roller for pressing a sheet with an unfixed toner image carried on a surface thereof against said fixing roller to fix the unfixed toner image to said sheet when said sheet passes in one direction through a rolling contact region between said fixing roller and said pressing roller; a heating roller disposed on one side of said fixing roller opposite to said pressing roller; a first heating source disposed in said heating roller for heating said heating roller; an endless heat transfer belt trained around said heating roller and said fixing roller for transferring heat from said first heating source to heat the unfixed toner image on said sheet when said sheet passes through said rolling contact region; and a second heating source disposed in said pressing roller for heating said pressing roller; a decision device for determining the size of said sheet; and a control device for energizing said first heating source and said second heating source when the apparatus is in a standby mode, and energizing said first heating source when the apparatus is in a sheet feed mode, energizing said second heating source when the apparatus is in the sheet feed mode if said sheet is of a size larger than a predetermined size as determined by said decision device, and de-energizing said second heating source when the apparatus is in the sheet feed mode if said sheet is of a size smaller than said predetermined size as determined by said decision device, wherein said control device includes a first detecting device for detecting a surface temperature of said heating roller, a second detecting device for detecting a surface temperature of said fixing roller, and a third detecting device for detecting a surface temperature of said pressing roller; said control device further includes a controller for controlling said first heating source based on the surface temperature detected by said first detecting device and controlling said second heating source based on the surface temperature detected by said third detecting device when the apparatus is in said standby mode, and controlling said first heating source based on the surface temperature detecting by said second detecting device when the apparatus is in said sheet feed mode.
  • 4. The apparatus according to claim 3, further comprising a decision device for deciding whether the apparatus is in said standby mode or said sheet feed mode, said decision device including a determining device for determining that the apparatus is in said sheet feed mode when a sheet feed command is supplied, and that the apparatus is in said standby mode when a sheet feed command is not supplied.
  • 5. An apparatus according to claim 1, wherein said first heating source comprising a first heater for heating said heating roller when the sheet is of a size larger than a predetermined size and a second heater for heating said heating roller when the sheet is of a size smaller than said predetermined size.
  • 6. The apparatus according to claim 5, wherein said first heater and said second heater include halogen lamps, respectively.
  • 7. The apparatus according to claim 5, wherein said second heating source includes a halogen lamp.
  • 8. The apparatus according to claim 5, further comprising a control device for energizing said first heater and said second heating source when the apparatus is in a standby mode, and energizing said first heating source when the apparatus is in a sheet feed mode such that said first heater is energized if said sheet is of the size larger than said predetermined size, and said second header is energized if said sheet is of the size smaller than said predetermined size.
  • 9. The apparatus according to claim 8, wherein said control device includes a heater driver for energizing only said first heater if said sheet is of the size larger than said predetermined size and energizing only said second heater if said sheet is of the size smaller than said predetermined size.
  • 10. The apparatus according to claim 5, further comprising a decision device for determining the size of said sheet, said control device including a heater driver for energizing said first heater when the apparatus is in said sheet feed mode if said sheet is of the size larger than said predetermined size as determined by said decision device, and energizing said second heater when the apparatus is in said sheet feed mode if said sheet is of the size smaller than said predetermined size as determined by said decision device.
  • 11. A method of fixing a toner image to a sheet, comprising utilizing an apparatus havinga fixing roller having a resilient outer layer, a pressing roller having an outer layer with hardness higher than that of said outer layer of said fixing roller, said pressing roller normally urged toward said fixing roller for pressing a sheet with an unfixed toner image carried on a surface thereof against said fixing roller to fix the unfixed toner image to said sheet when said sheet passes in one direction through a rolling contact region between said fixing roller and said pressing roller, a heating roller disposed on one side of said fixing roller opposite to said pressing roller, a first heating source disposed in said heating roller for heating said heating roller, said first heating source including a first heater for heating said heating roller when the sheet is of a size larger than a predetermined size and a second heater for heating said heating roller when the sheet is of a size smaller than said predetermined size, an endless heat transfer belt trained around said heating roller and said fixing roller for transferring heat from said first heating source to heat the unfixed toner image on said sheet when said sheet passes through said rolling contact region, and a second heating source disposed in said pressing roller for heating said pressing roller; deciding whether said apparatus is in a sheet feed mode or not; determining the size of said sheet if said apparatus is in the sheet feed mode; energizing said first heater of the first heating source and energizing said second heating source when said first heater of the first heating source is energized, if the size of said sheet is larger than a predetermined size; and energizing said second heater of the first heating source if the size of said sheet is smaller than said predetermined size.
  • 12. The method according to claim 11, further comprising a step of de-energizing said second heating source when said second heater of the first heating source is energized.
  • 13. An apparatus according to claim 3, wherein said first heating source comprising a first heater for heating said heating roller when the sheet is of a size larger than a predetermined size and a second heater for heating said heating roller when the sheet is of a size smaller than said predetermined size.
  • 14. The apparatus according to claim 13, wherein said first heater and said second heater include halogen lamps, respectively.
  • 15. The apparatus according to claim 13, wherein said second heating source includes a halogen lamp.
  • 16. The apparatus according to claim 13, further comprising a control device for energizing said first heater and said second heating source when the apparatus is in a standby mode, and energizing said first heating source when the apparatus is in a sheet feed mode such that said first heater is energized if said sheet is of the size larger than said predetermined size, and said second heater is energized if said sheet is of the size smaller than said predetermined size.
  • 17. The apparatus according to claim 16, wherein said control device includes a heater driver for energizing only said first heater if said sheet is of the size larger than said predetermined size and energizing only said second heater if said sheet is of the size smaller than said predetermined size.
  • 18. The apparatus according to claim 13, further comprising a decision device for determining the size of said sheet, said control device including a heater driver for energizing said first heater when the apparatus is in said sheet feed mode if said sheet is of the size larger than said predetermined size as determined by said decision device, and energizing said second heater when the apparatus is in said sheet feed mode if said sheet is the size smaller than said predetermined size as determined by said decision device.
Priority Claims (3)
Number Date Country Kind
10-165849 Jun 1998 JP
10-165850 Jun 1998 JP
10-165851 Jun 1998 JP
Parent Case Info

This application is a Continuation of application Ser. No. 09/266,017, filed Mar. 11, 1999 which is now U.S. Pat. No. 6,181,891, issued Jan. 30, 2001.

US Referenced Citations (8)
Number Name Date Kind
5041718 d'Hondt et al. Aug 1991
5047809 Owada et al. Sep 1991
5075732 Menjo Dec 1991
5465146 Higashi et al. Nov 1995
5512993 Endo et al. Apr 1996
5671462 Toyohara et al. Sep 1997
5819134 Sato et al. Oct 1998
5822670 Morigami Oct 1998
Foreign Referenced Citations (3)
Number Date Country
5-27620 Feb 1993 JP
5-80666 Apr 1993 JP
7-319321 Dec 1995 JP
Continuations (1)
Number Date Country
Parent 09/266017 Mar 1999 US
Child 09/660075 US