This application is the US national phase of PCT application PCT/DE2004/000845 filed 23 Apr. 2004 with a claim to the priority of German patent application 10320652.3 itself filed 7 May 2003 and German patent application 102004010594.4 itself filed 2 Mar. 2004.
The invention relates to a tool, especially a cutting tool, comprised of a substrate body upon which a layer is deposited by CVD. The invention also relates to a method of CVD deposition of a two phase-layer on a substrate body.
Coated substrate bodies for use as cutting elements are basically known.
Thus, for example in German Patent Document 100 17 909 A1, substrate bodies on a tungsten carbide basis and provided with a hard coating are known which have a titanum composite layer with at least one coating of TiC, TiN, TiCN, TiCO and TiCNO and an Al2O3 and/or Al2O3—ZrO2 composite layer. In the last mentioned case, ZrO2 particles are dispersed in an Al2O3 phase.
Furthermore, it is also known to provide layer sequences in the form of TiN—TiCN—TiN layers, optionally with an additional outer Al2O3 layer. Al2O3 layers which are deposited by means of a CVD process can, depending upon the process conditions, be in the form of α-Al2O3, κ-N2O3 or amorphous Al2O3. The German Patent Document DE 100 17 909 A1 discloses for the production of a TiCN layer, a CVD process in which at an average temperature range between 700° C. and 950° C., a reaction gas mixture is used which contains CH3CN.
It is the object of the present invention to provide an improved tool and especially a cutting tool of the aforedescribed type that because of its coating has an improved life in dry machining as well as wet machining and especially in the turning of cast workpieces or heat treatable steels (CK45).
This object is achieved with the tool according to claim 1 which is characterized in accordance with the invention that the single deposited layer or at least one of the first layers, apart from a TiCN phase or a TiOCN phase or a TiC phase or a TiOC phase has a further comprised of ZrO2 and HfO2. This multiphase layer can be the single layer, an intermediate layer (a layer between two other layers) or an outer layer or coating, whereby, depending upon the use, the procedures can be varied based upon the consideration that with increasing ZrO2 and/or HfO2 proportions, the hardness of the respective layer drops.
Further features of the tool are described in the dependent claims.
Thus the mentioned further phase of ZrO2 and HfO2 can be present in a monoclinic and/or tetragonal form.
Upon the layer defined herein above, according to a further feature, an Al2O3 layer can also be deposited, preferably as an outer layer or coating and preferably also as an α-Al2O3 layer. The substrate body can be comprised of a hard metal, a is cermet or a ceramic.
Preferably the ratio of the TiCN— phase, the TiOCN phase, TiC phase or TiOC phase to the further phase of ZrO2 and/or HfO2, should lie between 4:1 and 1:4 preferably between 2:1 and 1:1.
As has already been indicated, for example the first phase of TiCN or TiOCN also can be replaced by TiC or TiOC so that the ratio of C:N of 0.5:0.5 can be replaced by 1.0:0.
The present invention encompasses also such tools in which in the TiCN-phase or TiOCN phase or TiOC phase or TiC phase, the titanium is replaced to a small proportion by Hf in the compound TiCxNyOz with 0≦x, y, z≦1 so that less than half the titanium can be replaced by Zr or Hf. Preferably a maximum of 20%, and even more preferably a maximum of 10% of the titanium is so replaced. Such compounds can be produced for example when the gas atmosphere from which the respective phase is deposited, contains a substoichiometric amount of oxygen.
According to a further feature or variant of the invention, the two-phase layer can be provided as an intermediate layer which is disposed between TiCN and Al2O3 and on which a ZrCN coating is externally deposited.
To produce the tool according to the invention it is proposed that upon the sintered substrate body for the CVD deposition of the aforementioned multiphase layer, a method can be used and which is characterized in that, in the gas atmosphere, apart from TiCl4, HfCl4 and/or ZrCl4 and CO2, additionally CH3CN (acetonitrile) or C5H5N (pyridine) or C6H6 (benzene) is provided, the balance being H2 and/or Ar. When acetonitrile is used the following simultaneous reactions run in the gas phase:
2TiCl4+CH3CN+4.5H2→2TiC0.5N0.5+CH4+8HCl
ZrCl4+2CO2+2H2→ZrO2+2CO+4HCl
or
2TiCl4+CH3CN+4.5H2→2TiCO5N0.5+CH4+8HCl
HfCl4+2CO2+2H2→HfO2+2CO+4HCl
Corresponding reactions occur when instead of acetone, pyridine is used, whereby as a reaction product a TiCxNy-phase will also arise. However, in the case of use of pyridine in the gas phase the C:N proportion changes from 0.5:0.5 to 0.7:0.3 and when benzene is used the proportion becomes 1.0:0, that is in the first phase less or no nitrogen is contained.
Preferably the following gas proportions are used: TiCl4:1:4 vol. %, preferably 1:2 vol. %
ZrCl4 and/or HfCl4:0.3 to 4 Vol. % preferably 0.5 to 2 vol. % C5H5N or CH3CN or C6H6: 0.2 to 2 vol. % preferably 0.5 to 1 vol %.
CO2:0.1 to 3 Vol. %, preferably 0.3 to 2 Vol. %.
Balance Ar and/or H2.
The deposition temperature in a preferred application of the invention lies between 800° and 1000° C. and the gas atmosphere pressure is 5×103 Pa to 6×104 Pa.
In a concrete example, a hard metal substrate body has a hard material phase of WC and a binder phase of 6% by weight Co upon which a layer sequence of TiN—TiCN/HfO2—TiN is deposited and for the deposition of the intermediate layer, the following gas phase composition is chosen:
1.4 vol. % TicCl4, 1.4 vol. % HfCl4, 0.8 vol. % CH3CN, 0.5 Vol. % CO2, balance H2.
The other TiN layers are respectively produced using a convention CVD coating process.
In a corresponding way on a hard metal substrate body, layer sequences of TiN—TiCN—TiCN/HfO2-αAl2O3 can be deposited. It has been found surprisingly that using the multiphase intermediate layer TiCN/HfO2 in accordance with the invention with a CVD process, stable α-Al2O3 can be generated.
The advantages of the invention which are described in greater detail hereinafter will be apparent from the drawings:
As previously described, on a hard metal substrate body which has the form of a cutting insert of the type SNUN 120408, in the first case, a layer sequence according to the invention of TiN/TiCN/HfO2—TiN is applied. The intermediate layer thus is comprised of two phases namely, TiCN on the one hand and HfO2 on the other.
By comparison therewith, a substrate body of the same composition and the same type is provided with a three layer coating of TiN—TiCN—TiN. In a dry turning of a steel of the type CK45N with the parameters vc=200 m/min, aρ=2.0 mm and f=0.4 mm/revolution, the life of the coating according to the invention was about 15 min whereas the life of the comparative body in accordance with the state of the art was less than 12 min.
Also by comparison with a cutting body in accordance with the coating techniques of the state of the art, with a layer sequence of TiN—TiCN—K —Al2O3, the coating sequence according to the invention of TiN—TiCN—TiCN/HfO2-α-Al2O3 can provide a continuous cut in turn of the workpiece using a coolant/lubricant, that is a wet cut, and with a significant improvement in the life of the tool.
While with the layer sequence in accordance with the state of the art in which the intermediate TiCN layer is deposited with a deposition temperature between 800° C. and 1000° C. and the gas phase only deposits K Al2O3, the tool has a useful life of only six minutes, whereas the life with the layer sequence in which between the TiCN layer and the Al2O3 layer a two phase intermediate layer of TriCN and HfO2 has been interposed, the life is substantially greater. This intermediate layer allows, at the same process conditions, the deposition of α-Al2O3. The life of the tool is 9 minutes which is a 50% improvement. In the composition tests the workpiece was a cast body of GG25 and the cutting insert was of the type CNMG120412-5 and the following turning parameters were used: vc=450 m/min, aρ=2.5 mm and f=0.315 mm/revolution.
As can be seen from
Both cutting inserts were used for the turning of a cast iron body of the type GG25 with the following machining parameters vc=400 m/min, aρ=2.5 mm, f=0.315 mm/revolution.
The life of the insert which was made with the layer composition according to the invention in which a two-phase intermediate layer TiCN/HfO2 was introduced, was 12.5 min whereas the cutting insert according to the state of the art had a life of 10.2 min.
The aforedescribed test results show clearly that both is with dry turning and also with turning in a wet state, significant improvements in the life of the tool can be achieved.
Number | Date | Country | Kind |
---|---|---|---|
103 20 652 | May 2003 | DE | national |
10 2004 010 594 | Mar 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2004/000845 | 4/23/2004 | WO | 00 | 10/26/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/099463 | 11/18/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4714660 | Gates, Jr. | Dec 1987 | A |
5871850 | Moriguchi et al. | Feb 1999 | A |
6235416 | Konig et al. | May 2001 | B1 |
6284356 | Kiriyama | Sep 2001 | B1 |
6426137 | Oshika et al. | Jul 2002 | B1 |
6660371 | Westphal et al. | Dec 2003 | B1 |
Number | Date | Country |
---|---|---|
149449 | Dec 1984 | EP |
302984 | Aug 1987 | EP |
2002224903 | Aug 2002 | JP |
2003001502 | Jan 2003 | JP |
WO 0017416 | Mar 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060257689 A1 | Nov 2006 | US |