1. Technical Field
The invention relates to a tool for galvanically coating sliding bearings.
2. Related Art
The typical construction of a sliding bearing from the group of materials of the sliding bearings to be galvanically coated consists of a steel backing with a lead-containing or lead-free layer composite. The galvanic sliding layer applied to the running surface of the sliding bearing is a multifunctional material and performs various functions. Coating takes place in a box-shaped tool, which is also referred to as a receiver. In the coating, it is further to be ensured that the faces at which the bearing shells are divided (dividing face) are preferably not coated. Furthermore, a coating is not desired for the bearing backing, that is to say the cylindrical outer surface of the bearing shells. For that purpose, there are provided in the region of the bearing backing so-called thief cathodes or elements, which are suitably connected in such a manner that the bearing backing remains largely free of a coating.
Hitherto, one or more “towers” or columns of bearing shells have been erected one above the other in such a manner that the axial directions of the individual bearing shells coincide. The bearing shells are braced in this axial direction by means of a spring pressure. However, this structure is comparatively unstable, so that the columns of bearing shells frequently cave in, are highly coated on the dividing faces, and a considerable proportion of rejects is obtained. At the beginning and end of the column, so-called dummy shells of steel are used. The dummy shell at the beginning of the column of bearing shells to be coated covers the transition region between the air and the electrolyte. The lower dummy shell serves to stabilise the column and to maintain the tolerances of the deposited layer within the column of bearing shells. The above-mentioned thief cathode is fixed in the tool.
The object underlying the invention is to provide a tool by means of which sliding bearing shells can be galvanically coated in an efficient manner.
Consequently, the tool according to the invention has at least one cover, to which a thief cathode is attached. In other words, the thief cathode is integrated into the cover, which leads to the particular advantages that the thief cathode can be removed during the process. This is different from the cathodes used hitherto, which are fixed in the tool. The possibility of removing the thief cathode during the coating process offers the following advantage. After the “main” coating, the running surface is conventionally provided with a binary or ternary lead-free sliding layer. The steel backing must subsequently be provided with a so-called flash. This flash, which is based, for example, on tin, serves as corrosion protection and is to be applied primarily to the steel bearing backing in order to protect the highly reactive steel from oxidation in the air (rust). This corrosion protection is accordingly to be applied primarily to the bearing backing. However, that region is not coated in the presence of the thief cathode. Consequently, while the current, in the context of the main coating, is passed over a resistor of, for example, from 0.001 ohm to 0.02 ohm, in particular from 0.003 ohm to 0.0095 ohm, before being passed to the bearing shells to be coated, in order to produce a potential difference between the thief cathode and the bearing shells, in order to prevent coating on the backing, that potential difference is eliminated by the removal of the thief cathode and the bearing backings can advantageously be provided with the desired corrosion protection.
Preferably, the tool according to the invention further has at least one holder, which is characterised in that it has at least one bar suitable for mechanically fixing and/or electrically contacting a plurality of bearing shells. By means of the mechanical fixing, optionally in conjunction with a section, for example a wall of the tool, the column of bearing shells is prevented from caving in. The holder presses the column of bearing shells against a wall of the tool, for example, by means of the at least one bar, so that there is a substantially lower risk of the column of bearing shells caving in, collapsing of the column of bearing shells is eliminated, and coating of the dividing face is avoided. The proportion of rejects is markedly reduced as a result. In particular, it has been possible to establish in initial tests that the rejects resulting from collapsed bearing shells can be reduced to zero. Furthermore, undesirable coating of the dividing faces can be prevented by the pressing against the tool wall.
By the contacting of a plurality of bearing shells on their respective backings, a plurality, preferably all, of the bearing shells to be coated are contacted by the holder according to the invention. The resistance within the column of bearing shells is thereby reduced, and the sliding surface of the bearing shell can be coated with a markedly reduced variation in the coating thickness. In particular, it has been found that the variation within a column of bearing shells with the holder according to the invention is only approximately from 2 μm to 3 μm and coating of the dividing face is avoided, while in the procedure used hitherto, in which only the end faces of the column of bearing shells were contacted, a variation of from 6 μm to 7 μm occurred and the dividing face was coated with up to 20 μm. Accordingly, it was possible to reduce markedly the rejects due to significant variation. On account of its function, the described holder can also be referred to as backing contacting. This constitutes an independent aspect of the present application, which develops its advantages independently of the features described hereinabove or hereinbelow but can be combined therewith.
In particular for stability with regard to the mechanical fixing, a plurality, in particular an even number, of largely parallel bars has been found to be advantageous. Together with the pressing against a wall of the tool, it is possible, for example, with two parallel bars to create a statically determinate fixing. Furthermore, it is advantageous for the efficiency of the coating of a plurality of in particular comparatively small bearing shells for two or more bearing shell columns to be erected side by side, which means an even number of largely parallel bars for a mechanically advantageous fixing. It will be appreciated that it is possible for only two or three such bars to be present in order to electrically contact and mechanically fix a single column of bearing shells. This can be provided, for example, in the case of comparatively large bearing shells. Furthermore, it is conceivable in principle to provide such a holder for more than two columns of bearing shells. A holder for two columns of bearing shells has been found to be successful, for example, for bearing shells having a diameter of from 28 mm to 70 mm, while for larger bearing shells a holder for a single bearing shell can be provided.
The specific requirements that are made of the respective components can be satisfied particularly successfully if the holder, as preferred, itself is made of plastics material and the contact bars or rails are made of metal.
For the performance of the tasks required of the holder, it is advantageous if the holder can be fixed and preferably braced in the tool. In particular, bracing can be carried out in such a manner that the bearing backings are particularly well contacted and/or the dividing faces of the bearing shells are pressed particularly firmly against a wall of the tool, so that coating here is advantageously prevented.
The tool according to the invention preferably further has at least one plastics block, which is arranged above the columns of bearing shells in order to ensure, in particular at the upper end of the column of bearing shells, that all the bearing shells are located beneath the surface of the electrolyte bath and are reliably coated. The dummy shell at the bottom is not necessary, which results in an increase in productivity.
An exemplary embodiment shown in the drawings is explained in detail below. In the drawings:
The holder 10 shown in
The holder shown is used in such a manner that the bearing shells that are to be coated are erected thereon in a column. In the embodiment shown, two columns are erected in parallel and are each contacted by the two metal bars 12 located on one side or the other of the central bar 16. This contacting takes place, including a mechanical fixing to the tool, particularly reliably and securely when the three pins 18 have been inserted through a wall of the tool and bars or pegs, which are preferably wedge-shaped, have been introduced into the described slots in the pins and braced, so that the holder 10 is pressed against the tool wall so that the bearing shells arranged therebetween are both fixed mechanically and contacted electrically by the metal bars 12.
This bracing of the holder 10 in a tool 11 is shown in
In
Finally,
Number | Date | Country | Kind |
---|---|---|---|
10 2001 000 853 | Jan 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/050327 | 1/12/2011 | WO | 00 | 10/15/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/086089 | 7/21/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2500206 | Schaefer et al. | Mar 1950 | A |
2727858 | Klein | Dec 1955 | A |
7442285 | Brondum | Oct 2008 | B2 |
20080179180 | McHugh et al. | Jul 2008 | A1 |
20080277286 | Richardson et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
1239222 | May 1967 | GB |
1 239 222 | Jul 1971 | GB |
1 288 980 | Sep 1972 | GB |
57158395 | Sep 1982 | JP |
03170696 | Jul 1991 | JP |
03267394 | Nov 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20130032475 A1 | Feb 2013 | US |