The present disclosure relates to cutting, welding, and heating devices and, more particularly, to cutting torches with flashback arrestors.
Oxygen-fuel cutting, welding, or heating devices discharge fuel gas and oxygen from a nozzle for cutting, welding, or heating purposes. A typical torch includes a control body for connecting to separate fuel gas and oxygen supplies, tubes for supplying the oxygen and fuel gas from the control body to a head, and a cutting tip mounted to the head. The cutting tip receives the fuel gas and oxygen from the head and discharges these gases from its nozzle. More specifically, the head includes an interior surface extending around and defining a head cavity, an oxygen port that is open to the head cavity for supplying oxygen to the head cavity, and a fuel gas port that is open to the head cavity for supplying fuel gas to the head cavity. The cutting tip includes multiple passageways for directing the gases from the head to the nozzle.
In one previous approach, a conventional cutting torch first generates a preheat flame with gases discharged from the nozzle, and the preheat flame is used to heat a metal workpiece. After the preheat flame has heated the workpiece sufficiently, a high velocity cutting oxygen stream is activated and delivered through the nozzle. The high velocity cutting oxygen stream physically removes molten material of the workpiece by oxidation, to cut the workpiece. Typically, a number of valves and related components are provided upstream of the nozzle, such as in the control body, to control the operations of the cutting torch.
Flashback is regression of the flame through the torch toward the gas supply, and can propagate through the torch and welding hose. Flashback may be caused by mixed gases (e.g., fuel/oxygen) that are allowed to develop within the welding hose due operator error, improper gas pressure, and/or defective equipment. More specifically, in some cases, improper procedure/operation can result in reverse flow of oxygen into the fuel hose or reverse flow of fuel into the oxygen hose leading to mixed gas (e.g., flammable gas) within either hose. Due to the rapid and explosive nature of flashback, it poses a major safety hazard to the operator of the gas torch and can damage the gas torch and associated equipment.
Previous approaches for addressing flashback include the use of a sintered material within the torch to be used at the entry point of the gases into the torch. Although this stops the flashback from traveling upstream from the components that supply the gas to the torch, it disadvantageously does not eliminate the effects of flashback within the torch itself. As a result, the torch can still be damaged or the operator can be injured by flashback within the torch.
In another previous approach, packing material may be installed into the head of a torch or in a tube that is immediately upstream from the head for arresting flashback. However, this packing material may become damaged, such as by becoming clogged with carbon deposits resulting from flashback. As a result, the packing material must be periodically replaced. Disadvantageously, the removal and replacement of packing material in cutting torches is labor intensive. Additionally, and of significant safety importance, if the packing material is not properly packed it may not perform its intended function, which can result in damage to the torch or injury to its operator.
In yet another previous approach, a check valve may be installed in each of the oxygen and fuel passageways to allow the oxygen and the fuel to flow in one direction, while preventing the reverse flow. Check valves, however, are mechanical devices that may become unreliable when contaminated with dirt or debris, which can cause the check valve to leak. Moreover, the check valves cannot prevent flashback flame from propagating upstream once flashback occurs.
In an exemplary approach according to the disclosure, a torch body may include a passageway, and a cartridge assembly disposed within the passageway. The cartridge assembly may include at least one of: a resettable pressure-sensitive device, and a thermal shut-off device, wherein the pressure-sensitive device and the thermal shut-off device are modifiable from a first configuration to a second configuration in response to a pressure or temperature gradient in the torch body, and wherein the second configuration restricts flow of a gas through the passageway. The cartridge assembly may further include a bushing operable with at least one of: the pressure-sensitive device and the thermal shut-off device, and a check valve positioned along the passageway of the torch body, the check valve operable with at least one of: the resettable pressure-sensitive device or the thermal shut-off device.
In another exemplary approach of the disclosure, a flashback arrestor may include a passageway of a torch body and a resettable pressure-sensitive device operable with the bushing, wherein the resettable pressure-sensitive device is modifiable from a first configuration to a second configuration in response to a pressure change in the torch body, and wherein the second configuration causes actuation of a piston within the passageway to prevent back-flow through the passageway. The flashback arrestor may further include a check valve disposed within the passageway.
In another exemplary approach of the disclosure, a torch may include a torch body and a flashback arrestor disposed within a passageway of the torch body. The flashback arrestor may include a thermal shut-off device modifiable from a first configuration to a second configuration in response to a temperature gradient in the torch body, wherein the second configuration restricts flow of a gas through the passageway. The flashback arrestor may further include a retainer coupled to the torch body at an inlet of the passageway, a bushing coupled to the retainer, and a check valve disposed within the retainer.
The accompanying drawings illustrate exemplary approaches of the disclosed torch handle including a torch and flashback arrestor so far devised for the practical application of the principles thereof, and in which:
The drawings are not necessarily to scale. The drawings are merely representations, not intended to portray specific parameters of the disclosure. Furthermore, the drawings are intended to depict exemplary embodiments of the disclosure, and therefore is not considered as limiting in scope.
Furthermore, certain elements in some of the figures may be omitted, or illustrated not-to-scale, for illustrative clarity. The cross-sectional views may be in the form of “slices”, or “near-sighted” cross-sectional views, omitting certain background lines otherwise visible in a “true” cross-sectional view, for illustrative clarity. Furthermore, for clarity, some reference numbers may be omitted in certain drawings.
The present disclosure will now proceed with reference to the accompanying drawings, in which various approaches are shown. It will be appreciated, however, that the disclosed torch and flashback arrestor may be embodied in many different forms and should not be construed as limited to the approaches set forth herein. Rather, these approaches are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. In the drawings, like numbers refer to like elements throughout.
As used herein, an element or operation recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or operations, unless such exclusion is explicitly recited. Furthermore, references to “one approach” or “one embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional approaches and embodiments that also incorporate the recited features.
Furthermore, spatially relative terms, such as “beneath,” “below,” “lower,” “central,” “above,” “upper,” “proximal,” “distal,” and the like, may be used herein for ease of describing one element's relationship to another element(s) as illustrated in the figures. It will be understood that the spatially relative terms may encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
As disclosed herein, embodiments of the disclosure provide a torch with integral flashback arrestor and thermal shut-off device. In some approaches, a torch body includes a passageway of the torch body, and a cartridge assembly disposed within the passageway. The cartridge assembly may include a number of different arrangements. For example, in one arrangement, the cartridge assembly may include a thermal shut-off combined with a flashback arrestor (e.g., a sintered filter/bushing) and, optionally, a check valve. In a second arrangement, the cartridge assembly may include a pressure sensitive switch combined with a check valve and, optionally, a flashback arrestor. In a third arrangement, the cartridge assembly may include a thermal shut off combined with a flashback arrestor, a pressure sensitive switch, and a check valve.
As a result, embodiments of the disclosure provide a built-in design that makes the torch inoperable without the thermal shut-off device and filter element/bushing or, alternatively, without the resettable pressure-sensitive device and the check valve. The torch utilizes a parts-in-place principle in which, unlike prior approaches, a user may be unable to operate the torch without the safety features in place. Thus, the built-in design offers additional security and safety.
Referring now to
Shown within the oxygen passageway 102 is a flashback arrestor (FBA) 110 provided to stop a flashback within the torch body 100, as will be described in greater detail herein. The FBA 110 may include a cartridge assembly 112 disposed within the oxygen passageway 102 of the torch body 100 via a retainer 116, which is coupled to the torch body 100, e.g., by a distal threaded portion 118. In some embodiments, the retainer 116 may be held in place by a retaining plate (not shown), which may be secured to the torch body 100 by a screw and lock washer, for example. The retainer 116 may house therein a check valve 120 at an inlet of the oxygen passageway 102.
With reference now to
As shown, the distal threaded portion 118 of the retainer 116 engages an inner surface of the torch body 100, for example, a threaded surface 119, to secure the flashback arrestor 110 to the torch body 100. In some embodiments, the distal threaded portion 118 has an outside diameter greater than the outside diameter of the proximal threaded portion 130. Furthermore, in some embodiments, an O-ring 132 is disposed in an annular groove 134 of the retainer 116 to prevent leakage of gas from the oxygen passageway to outside the flashback arrestor 110 when the retainer 116 is installed in the torch body 100.
In exemplary embodiments, the sintered filter 124 of the flashback arrestor 110 is, in one form, a porous cylindrical body or bushing, and is formed by a sintering process. The sintered filter 124 defines a proximal end portion 135, a distal end portion 136, and a bore 138 extending therebetween. The bore 138 of the sintered filter 124 is in fluid communication with the bore 126 of the retainer 116. The sintered filter 124 may be press-fitted into the retainer 116 proximate the distal threaded portion 118 at the distal end of the retainer 116. In exemplary embodiments, the sintered filter 124 defines a plurality of pores, wherein the bore 138 of the sintered filter 124 is in fluid communication with the oxygen passageway 102 through the pores of the sintered filter 124. The pores may have irregular shapes and define passageways through the porous sintered filter 124 for extinguishing a flashback through the torch body 100.
Referring now to
As shown, the thermal shut-off device 140 may include an adaptor 148 having a plurality of openings 142 and a central opening 144 formed through an end wall 146 thereof, the plurality of openings 142 permitting oxygen to flow from the adaptor 148 during normal operation. The adaptor 148 is configured to engage a guide 152 of the thermal shut-off device 140 such that a first section 154 of the adaptor 148 abuts a rim 156 of the guide 152, and a second section 158 of the adaptor 148 extends into an internal area 160 of the guide 152. The guide 152 may have a generally frusto-conical shaped first section 161 and a generally cylindrical shaped second section 163, wherein the second section 163 is configured to extend within the bore 138 of the sintered filter 124. The first section 161 of the guide 152 further includes a flange 151 having an O-ring 153 extending around a circumference thereof.
The thermal shut-off device 140 may further include a stem 162 and a spring 157 positionable within the internal area 160 of the guide 152. In some embodiments, the stem 162 includes a sealing device 164, such as a flange 165 with groove/O-ring 166, separating first and second elongate members 167, 168. As shown, the first elongate member 167 may be a cylindrical element extending from a first side of the sealing device 164 and into the internal area 160 of the guide 152, and the second elongate member 168 may be a cylindrical element extending from an opposite side of the sealing device 164 towards the central opening 144 of the adaptor 148. A thermal component 170 may be formed around the second elongate member 168 for separating the adaptor 148 from the stem 162 under normal operating conditions. In some non-limiting embodiments, a diameter of the first elongate member 167 is greater than a diameter of the second elongate member 168.
During normal operating conditions, the adaptor 148 is separated from the stem 162 by the thermal component 170, which is present around the second elongate member 168 of the stem 162 in the first configuration of the thermal shut-off device 140. In some embodiments, the thermal component 170 is a polymer (e.g., plastic) or a lead plug having a pre-specified melting point to allow the thermal component 170 to melt in response to a high temperature event within the torch head 100, such as sustained backfire. Once melted, the thermal shut-off device 140 enters the second configuration in which the stem 162 is permitted to engage the adaptor 148 in response to a force from the spring 157, thereby preventing flow of a gas through the plurality of openings 142 of the adaptor 148.
In other embodiments, the thermal component 170 is an elastic or resettable bi-metallic strip designed in such a way that in a normal position it keeps the flow passages open, but when actuated allows the spring force of the sealing mechanism to close the flow passage. In some embodiments, the bi-metallic strip expands in response to a higher temperatures, thus separating itself from the first elongate member 167 and allowing the stem 162 to engage the adaptor 148 in response to a force from the spring 157. The second elongate member 168 then moves into the central opening 144, which prevents flow of a fluid through the plurality of openings 142 of the adaptor 148. As the bi-metallic strip cools down and contracts, it forces the stem 162 away from the adaptor 148, thus allowing gas to again flow through the plurality of openings 142 of the adaptor 148.
Turning now to
In exemplary embodiments, the O-ring 153 of the first section 161 of the guide 152 forms a seal with an inner sidewall 175 of the cavity 172. The guide 152 includes the plurality of openings 150 formed through a sidewall of the first section 161, thereby allowing flow between the internal area 160 of the guide 152 and a fluid channel 177, which is defined by the O-ring 153, the sintered filter 124, and the retainer 116, shown threaded into the torch body 100. A shoulder 178 defining the intersection of the first and second sections 161, 163 of the guide 152, may be in abutment with a distal end surface 179 of the sintered filter 124, as shown.
The second section 163 of the guide 152 extends within the bore 138 of the sintered filter 124, and includes a proximal end wall 180, a first sidewall section 181, and a second sidewall section 182. A sloped wall 183 extending between the first sidewall section 181 and the second sidewall section 182 is configured to engage the flange 165 of the stem 162 to limit movement of the stem 162 in a proximal direction towards the retainer 116. The O-ring 166 of the stem 162 engages an inner surface of the first sidewall section 181 to form a seal therebetween.
In some embodiments, the spring 157 is provided within an interior 184 of the stem 162, and engages the proximal end wall 180. During use, the spring 157 presses against the flange 165 of the stem 162, which in turn presses against the adaptor 148 via the thermal component 170. Specifically, the thermal component 170 and the second elongate member 168 are biased towards the central opening 144 of the adaptor 148. When present, the thermal component 170 separates the stem 162 from the adaptor 148, thereby preventing the second elongate member 168 from extending fully into the central opening 144 of the adaptor 148. In the event of an increased temperature occurs within the torch body 100, the thermal component 170 is designed to melt, thus causing the thermal shut-off device 140 to transform to the second configuration (not shown) in which the second elongate member 168 is permitted to enter the central opening 144 and extend into a cavity 186 beyond the distal end of the adaptor 148. This causes a distal end surface 190 of the flange 165 of the stem 162 to cover the plurality of openings 142 through the adaptor 148, and the O-ring 166 of the stem 162 to move from a first position against the inner surface of the first sidewall section 181, as shown, to a second position against an inner sidewall surface 191 of the second section 158 of the adaptor 148. The O-ring 166 creates a seal with the inner sidewall surface 191, thereby preventing flow of gas through the plurality of openings 142 of the adaptor 148, and disabling the torch 101.
Although not shown, it will be appreciated that in another embodiment, the thermal shut-off device 140 is a solenoid valve in communication with an electronic switch. The solenoid valve may be disposed within the torch body 100, and the electronic switch is configured to send a signal to close the solenoid valve in the case a sensor operable with the electronic switch detects a flow of electrons above a predetermined temperature. The electronic switch may function in a similar fashion to the adaptor and stem described herein, but instead of a mechanical interface for preventing flow, the electronic switch senses the flow of electrons using, e.g., a thermocouple or thermopile, and sends a signal to shut down the solenoid valve provided in the torch flow path. Once the temperature has decreased, the electronic switch senses a reduced flow of electrons, causing the valve to reopen.
Referring now to
As shown, the PSD 241 includes a main body 243, which may be a piston, having a first O-ring 245 and a second O-ring 247 extending around a circumference thereof and engaging an inner sleeve 249. The main body 243 and an outer sleeve 285 are biased towards a distal end 239 by an inner spring 287 and an outer spring 289, respectively. In some embodiments, a distal end 244 of the main body 243 extends into the proximal end portion 235 of the sintered filter 224. A proximal end 237 of the PSD 241 may include external threading 255 (
In a first configuration, i.e., during normal operation, one or more locking balls 293 are maintained along an outer surface 294 of the main body 243 within an opening 295 of the inner sleeve 249, for example, as best shown in
In some embodiments, a check valve 220, which is designed to allow flow in only one direction, is provided along the oxygen passageway 202 of the torch body 200, for example, within the bore 238 of the sintered filter 224. The check valve 220 is typically open during normal operation of the torch 101, allowing oxygen to flow from the hose through the check valve 220, through the torch 201, and to the cutting tip. If a reverse flow situation develops, the check valve 220 is designed to close, for example, by engaging the distal end 244 of the main body 243, thus reducing the possibility of reverse flow of gas. In exemplary embodiments, the check valve 220 is positioned between the thermal shut-off device 240 and the PSD 141. As shown, the check valve may 220 abut the proximal end wall 280 of the second section 263 of the guide 252, which extends within the bore 238 of the sintered filter 224.
While the present disclosure has been described with reference to certain approaches, numerous modifications, alterations and changes to the described approaches are possible without departing from the sphere and scope of the present disclosure, as defined in the appended claims. Accordingly, it is intended that the present disclosure not be limited to the described approaches, but that it has the full scope defined by the language of the following claims, and equivalents thereof. While the disclosure has been described with reference to certain approaches, numerous modifications, alterations and changes to the described approaches are possible without departing from the spirit and scope of the disclosure, as defined in the appended claims. Accordingly, it is intended that the present disclosure not be limited to the described approaches, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
This application is a continuation of International Application No. PCT/US2016/069392, filed on Dec. 30, 2016, the entire contents of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2016/069392 | Dec 2016 | US |
Child | 16431936 | US |