Embodiments of the present disclosure relate to a touch display module, a manufacturing method thereof and a display device.
For most touch display products, after a touch module and a display panel of each touch display product are bonded together, obvious color difference appears between a touch region and a border region of the touch display product. In order to improve a visual effect, the color difference between the touch region and the border region needs to be reduced as much as possible, to achieve an integral black effect. A solution for OGS (One Glass Solution) touch modules is to change a black matrix material in the border region, but the effect of this solution is not satisfactory.
Embodiments of the present disclosure provide a touch display module, a manufacturing method thereof and a display device. The embodiments of the present disclosure reduce a color difference between a touch region and a border region.
At least one embodiment of the present disclosure provides a touch display module, which includes a display panel and a touch module attached to the display panel; the touch module includes a touch region provided with a touch electrode and a border region provided with a black matrix, and the touch module includes a base substrate and includes a first anti-shadow layer and a second anti-shadow layer which are at a side, close to the display panel, of the base substrate; the first anti-shadow layer is between the touch electrode and the base substrate; the second anti-shadow layer is at a side, away from the base substrate, of the touch electrode; and in a dark state display mode, a color difference between the touch region and the border region is smaller than a preset value.
For example, a color difference ΔE between the touch region and the border region in CIELab color model is smaller than 1 in the dark state display mode.
For example, in the dark state display mode, a color difference between the black matrix and a stack structure of the first anti-shadow layer, the touch electrode and the second anti-shadow layer is smaller than the preset value.
For example, the first anti-shadow layer is a layer closest to the base substrate.
For example, the touch electrode includes a first touch electrode and a second touch electrode which is insulated from the first touch electrode and includes a plurality of sub-electrodes; and the touch module further includes: a conductive layer includes a bridge pattern, the bridge pattern in the conductive layer connecting together the sub-electrodes of the second touch electrode; and a first insulation layer which is between the conductive layer and the first touch electrode and exposes two ends of the bridge pattern.
For example, the touch module further includes a flexible printed circuit connection part, which is electrically connected with the touch electrode and is provided in the border region; and the second anti-shadow layer exposes a region provided with the connection part.
For example, the touch module further includes a second insulation layer, and the second insulation layer is between the second anti-shadow layer and each of the touch electrode, the first insulation layer and the black matrix.
For example, a material of the second insulation layer is an optical adhesive.
For example, at least one of the first anti-shadow layer and the second anti-shadow layer is in direct contact with the touch electrode.
For example, the first anti-shadow layer is a composite film includes a niobium pentoxide film and a silicon dioxide film.
For example, the second anti-shadow layer is a composite film includes a niobium pentoxide film and a silicon dioxide film; or the second anti-shadow layer is a silicon oxynitride film.
For example, a material of the touch electrode and a material of the conductive layer are indium tin oxide.
For example, a thickness of the touch electrode is about 900 Å, a thickness of the niobium pentoxide film in the first anti-shadow layer is about 80 Ř100 Å, a thickness of the silicon dioxide film in the first anti-shadow layer is about 300 Ř500 Å, a thickness of the niobium pentoxide film in the second anti-shadow layer is about 80 Ř100 Å, a thickness of the silicon dioxide film in the second anti-shadow layer is about 300 Ř500 Å, and a thickness of the silicon oxynitride layer in the second anti-shadow layer is in a range of about 500˜900 Å.
For example, the thickness of the niobium pentoxide film in the first anti-shadow layer is about 100 Å, the thickness of the silicon dioxide film in the first anti-shadow layer is about 300 Å, and the thickness of the silicon oxynitride film in the second anti-shadow layer is about 900 Å.
For example, the thickness of the niobium pentoxide film in the first anti-shadow layer is about 100 Å, the thickness of the silicon dioxide film in the first anti-shadow layer is about 300 Å, the thickness of the niobium pentoxide film in the second anti-shadow layer is about 90 Å, and the thickness of the silicon dioxide film in the second anti-shadow layer is about 200 Å.
For example, the touch display module further includes an optical adhesive layer, and the optical adhesive layer connects together the display panel and the second anti-shadow layer.
At least one embodiment of the present disclosure provides a manufacturing method of the touch display module according to any one of the above embodiments, and the method includes: forming the first anti-shadow layer on the base substrate; forming the touch electrode at a side of the base substrate, at which side the first anti-shadow layer is formed; forming the second anti-shadow layer at the side of the base substrate, at which side the touch electrode is formed, to form the touch module; and attaching the side of the base substrate to the display panel, at which side the first anti-shadow layer and the second anti-shadow layer are formed.
For example, the manufacturing method further includes: after forming the touch electrode and before forming the second anti-shadow layer, forming a flexible printed circuit connection part, which is electrically connected with the touch electrode and is provided in the border region. In the method, the forming the second anti-shadow layer includes: shielding a region provided with the connection part by using a mask to form the second anti-shadow layer at the side of the base substrate, at which side the touch electrode is formed; or forming a second anti-shadow film, and removing a portion of the second anti-shadow film covering the region provided with the connection part by using a photoresist, to form the second anti-shadow layer.
At least one embodiment of the present disclosure further provides a touch display module, which includes a display panel and a touch module; the display panel includes an array substrate and an opposite substrate which are opposite to each other, and the opposite substrate is between the array substrate and the touch module; and the touch module includes a touch electrode, a first anti-shadow layer and a second anti-shadow layer, and the touch electrode is between the first anti-shadow layer and the second anti-shadow layer in an arrangement direction of the display panel and the touch module.
For example, the touch module includes a touch region provided with the touch electrode and a border region provided with a black light-blocking material; and in a dark state display mode, a color difference between the black light-blocking material and a stack structure of the first anti-shadow layer, the touch electrode and the second anti-shadow layer is smaller than a preset value.
At least one embodiment of the present disclosure provides a display device includes the touch display module according to any one of the above embodiments.
In order to clearly illustrate the technical solution of the embodiments of the disclosure, the drawings of the embodiments will be briefly described in the following; it is obvious that the described drawings are only related to some embodiments of the disclosure and thus are not limitative of the disclosure.
In order to make objects, technical details and advantages of the embodiments of the disclosure apparent, the technical solutions of the embodiments will be described in a clearly and fully understandable way in connection with the drawings related to the embodiments of the disclosure. Apparently, the described embodiments are just a part but not all of the embodiments of the disclosure. Based on the described embodiments herein, those skilled in the art can obtain other embodiment(s), without any inventive work, which should be within the scope of the disclosure.
Unless otherwise defined, all the technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which the present disclosure belongs. The terms “first,” “second,” etc., which are used in the description and the claims of the present application for disclosure, are not intended to indicate any sequence, amount or importance, but distinguish various components. The terms “include,” “including,” “include,” “including,” etc., are intended to specify that the elements or the objects stated before these terms encompass the elements or the objects and equivalents thereof listed after these terms, but do not preclude the other elements or objects. The phrases “connect”, “connected”, etc., are not intended to define a physical connection or mechanical connection, but may include an electrical connection, directly or indirectly. “On,” “under,” “right,” “left” and the like are only used to indicate relative position relationship, and when the position of the object which is described is changed, the relative position relationship may be changed accordingly.
Embodiments of the present disclosure provide a touch display module, a manufacturing method of the touch display module and a display device. The touch display module includes a display panel and a touch module attached to the display panel; the touch module includes a touch region provided with a touch electrode and a border region provided with a black matrix, and the touch module includes a base substrate and includes a first anti-shadow layer and a second anti-shadow layer which are at a side, close to the display panel, of the base substrate; the first anti-shadow layer is between the touch electrode and the base substrate; the second anti-shadow layer is at a side, away from the base substrate, of the touch electrode; and in a dark state display mode, a color difference between the touch region and the border region is smaller than a preset value. For example, the preset value is greater than 0 and smaller than or equal to 1. For example, in the dark state display mode, a color difference between the black matrix and a stack structure of the first anti-shadow layer, the touch electrode and the second anti-shadow layer (namely the combination of the first anti-shadow layer, the touch electrode and the second anti-shadow layer) is smaller than the preset value.
For example, a thickness of the second anti-shadow layer is greater than a thickness of the first anti-shadow layer, so that a better integral black effect is obtained. Alternatively, the thickness of the second anti-shadow layer is equal to or smaller than the thickness of the first anti-shadow layer.
For example, the second anti-shadow layer is configured to make an optical refractive index of a region (the touch region) provided with the touch electrode equal to an optical refractive index of other region (such as the border region). Generally, in a manufacturing process of the touch display module, in a situation that the optical refractive index of the region provided with the touch electrode is close to the optical refractive index of the other region, that is, the error therebetween is within a preset range, it is considered that the optical refractive index of the region provided with the touch electrodes is equal to the optical refractive index of the other region. In this way, a shadow of the touch electrode is eliminated.
For example, the thickness of the second anti-shadow layer is greater than the thickness of the first anti-shadow layer because the second anti-shadow layer further needs to eliminate the shadow of the touch electrode. In the embodiments of the present disclosure, the first anti-shadow layer and the second anti-shadow layer have predetermined thicknesses so that the color difference between the touch region and the border region in the dark display mode is smaller than the preset value, and the preset value is a maximum color difference required for the integral black effect. For example, in the dark state display mode, the color difference ΔE between the touch region and the border region in CIELab color model is smaller than 1, and the CIELab color model is a kind of color model which is determined by the CIE (Commission Internationale Eclairage) organization and theoretically includes all colors visible for human eyes. In the case that the color difference ΔE between the touch region and the border region in the CIELab color model is smaller than 1, the colors of the two regions are the same for viewers. In the CIELab color model, L represents a luminance value, a represents a red-green value, b represents a yellow-blue value, the color difference between two colors ΔE=√{square root over (ΔL2+Δa2+Δb2)}, wherein ΔL represents a difference between the luminance values of the two colors, Δa represents a difference between the red-green values of the two colors, Δb represents a difference between the yellow-blue values of the two colors.
In the embodiments of the present disclosure, the first anti-shadow layer and the second anti-shadow layer are disposed at a display side of the display panel in the touch display module, and the second anti-shadow layer not only eliminates the shadow of the touch electrode, but also makes the color difference between the touch region and the border region very small in the dark state display mode in the cooperation of the first anti-shadow layer, which improves the integral black effect. In addition, the second anti-shadow layer also has a function of protecting the touch module so as to reduce the scratching defect rate in a manufacturing process.
Solutions of the present disclosure are described in more detail below with reference to the accompanying drawings and embodiments.
In at least one embodiment of the present disclosure, as illustrated in
For example, the first anti-shadow layer 004 is a transparent insulation film covering the entire touch region and the entire border region. For example, both an entire upper surface and an entire lower surface of the first anti-shadow layer 004 are planar.
For example, the second anti-shadow layer 005 is a transparent insulation film that covers at least the entire touch region. For example, both an upper surface and a lower surface of the second anti-shadow layer 005, which are corresponding to the entire touch region, are planar.
The position of the first anti-shadow layer 004 has a certain impact on the integral black effect, and in order to further improve the integral black effect, for example, as shown in
For example, the optical adhesive layer 30 connects together the display panel 10 and the second anti-shadow layer 005, and has a planar structure and covers the entire touch region and the entire border region.
For example, the display panel 10 includes an array substrate and an opposite substrate which are opposite to each other, and a connecting portion which connects together the array substrate and the opposite substrate. For example, the display panel 10 is a liquid crystal panel or an active light-emitting display panel such as an OLED (Organic Light Emitting Diode) display panel.
For example, the touch display module includes a touch electrode disposed along a row direction and a touch electrode disposed along a column direction, one of which serves as a driving electrode and the other one of which serves as a sensing electrode. In a possible embodiment, each of the touch electrode disposed along the row direction and the touch electrode disposed along the column direction is an integrated electrode. In another possible embodiment, one of the touch electrode disposed along the row direction and the touch electrode disposed along the column direction is an integrated electrode, and the other of the touch electrode disposed along the row direction and the touch electrode disposed along the column direction includes a plurality of sub-electrodes. It should be noted that the integrated electrode refers to that the whole electrode is formed by the same layer.
As illustrated in
The touch electrode is connected with a flexible printed circuit (FPC), for example, as illustrated in
For example, the first anti-shadow layer 004 is a composite film including a niobium pentoxide film and a silicon dioxide film. For example, the niobium pentoxide film is between the silicon dioxide film and the base substrate 003, namely the distance from the niobium pentoxide film to the display panel 10 is greater than the distance from the silicon dioxide film to the display panel 10.
For example, the second anti-shadow layer 005 is a composite film including a niobium pentoxide film and a silicon dioxide film, for example, the distance from the niobium pentoxide film to the display panel 10 is greater than the distance from the silicon dioxide film to the display panel 10; or the second anti-shadow layer 005 is a silicon oxynitride film.
For example, for the above-described materials of the first anti-shadow layer and the second anti-shadow layer, a refractive index of the silicon dioxide film for a light having a wavelength of 550 nm is about 1.4-1.5, for example about 1.47; a refractive index of the niobium pentoxide film for the light having the wavelength of 550 nm is about 2.2-2.5, for example about 2.34; and a refractive index of the silicon oxynitride film for the light having the wavelength of 550 nm is about 1.6-1.7, for example about 1.67.
For example, a material of the touch electrode 001 and a material of the conductive layer 006 are indium tin oxide. In this case, in order to obtain a better integral black effect, a thickness of the touch electrode (namely a thickness of the sub-electrodes of the second touch electrode 001b in a direction perpendicular to a support surface of the base substrate 003) is about 900 Å, a thickness of the niobium pentoxide film in the first anti-shadow layer is about 80 Ř100 Å, a thickness of the silicon dioxide film in the first anti-shadow layer is about 300 Ř500 Å, a thickness of the niobium pentoxide film in the second anti-shadow layer is about 80 Ř100 Å, a thickness of the silicon dioxide film in the second anti-shadow layer is about 300 Ř500 Å, and a thickness of the silicon oxynitride layer in the second anti-shadow layer is in a range of about 500˜900 Å.
In order to further obtain a better integral black effect, for example, the thickness of the niobium pentoxide film in the first anti-shadow layer is about 100 Å, the thickness of the silicon dioxide film in the first anti-shadow layer is about 300 Å, and a thickness of the silicon oxynitride film in the second anti-shadow layer is about 900 Å.
In order to further obtain a better integral black effect, for example, the thickness of the niobium pentoxide film in the first anti-shadow layer is about 100 Å, the thickness of the silicon dioxide film in the first anti-shadow layer is about 300 Å, the thickness of the niobium pentoxide film in the second anti-shadow layer is about 90 Å, and the thickness of the silicon dioxide film in the second anti-shadow layer is about 200 Å.
What are described above only takes the case that the thickness of the ITO touch electrode is about 900 Å as an example and lists the thicknesses which bring a relatively good integral black effect. In specific implementations, if the ITO touch electrode has other thickness, the thickness of the second anti-shadow layer is determined according to the thickness of the touch electrode, and then the thickness of the first anti-shadow layer is determined so that the thickness of the first anti-shadow layer and the thickness of the second anti-shadow layer satisfy the requirement that the color difference ΔE between the touch region and the border region in the CIELab color model is smaller than 1.
For example, the thickness of the ITO touch electrode is about 450 Å, the thickness of the silicon dioxide film in the first anti-shadow layer is about 300 Å, the thickness of the niobium pentoxide film in the first anti-shadow layer is about 100 Å, and the thickness of the silicon oxynitride film in the second anti-shadow layer is about 700 Å; the thickness of the ITO touch electrode is about 900 Å, the thickness of the silicon dioxide film in the first anti-shadow layer is about 300 Å, the thickness of the niobium pentoxide film in the first anti-shadow layer is about 80 Å, and the thickness of the silicon oxynitride film in the second anti-shadow layer is about 500 Å; and the thickness of the ITO touch electrode is about 1200 Å, the thickness of the silicon dioxide film in the first anti-shadow layer is about 300 Å, the thickness of the niobium pentoxide film in the first anti-shadow layer is about 90 Å, and the thickness of the silicon oxynitride film in the second anti-shadow layer is about 800 Å.
For example, the touch module as illustrated in
For example, the second insulation layer 009 adopts materials except the material having an anti-shadow effect on the touch electrode. For example, the material of the second insulation layer 009 does not include any of niobium pentoxide, silicon dioxide, and silicon oxynitride. For example, the material of the second insulation layer 009 is a transparent optical adhesive, so as to prevent the second insulation layer 009 from increasing the color difference between the black matrix and the stack structure of the first anti-shadow layer, the second anti-shadow layer and the touch electrode.
For example, at least one of the first anti-shadow layer 004 and the second anti-shadow layer 005 is in direct contact with the touch electrode 001. In this way, it is avoided that the color difference between the black matrix and the laminated structure of the first anti-shadow layer, the second anti-shadow layer and the touch electrode is increased caused by an insulation between the anti-shadow layer and the touch electrode.
Based on the same inventive concept, the embodiments of the present disclosure further provide a manufacturing method of the touch display module according to any one of the above embodiments. As shown in
In the embodiments of the present disclosure, the second anti-shadow layer is configured to make the optical refractive index of the region provided with the touch electrode equal to the optical refractive index of other region. In the manufacturing process of the touch display module, in a situation that the optical refractive index of the region provided with the touch electrode is close to the optical refractive index of the other region, that is, the error therebetween is within a preset range, it is considered that the optical refractive index of the region provided with the touch electrode is equal to the optical refractive index of the other region. In this way, the shadow of the touch electrode is eliminated.
In at least one embodiment, the thickness of the second anti-shadow layer is greater than the thickness of the first anti-shadow layer because the second anti-shadow layer further needs to eliminate the shadow of the touch electrode. In the embodiments of the present disclosure, the first anti-shadow layer and the second anti-shadow layer with predetermined thicknesses make the color difference between the touch region and the border region in the dark display mode smaller than the preset value, and the preset value is the maximum color difference required for the integral black effect. For example, in the case that the color difference ΔE between the touch region and the border region in the CIELab color model is smaller than 1, the colors of the two regions are the same for viewers. In the CIELab color model, L represents the luminance value, a represents the red-green value, b represents the yellow-blue value, the color difference between two colors ΔE=√{square root over (ΔL+Δa2+Δb2)}, wherein ΔL represents the difference between the luminance values of the two colors, Δa represents the difference between the red-green values of the two colors, Δb represents the difference between the yellow-blue values of the two colors.
In the embodiments of the present disclosure, the first anti-shadow layer and the second anti-shadow layer are disposed in the touch display module, and the second anti-shadow layer not only eliminates the shadow of the touch electrode, but also makes the color difference between the touch region and the border region very small in the dark state display mode in the cooperation of the first anti-shadow layer, which improves the integral black effect. In addition, the second anti-shadow layer also has the function of protecting the touch module so as to reduce the scratching defect rate in the manufacturing process.
For example, after forming the touch electrode at the side, formed with the first anti-shadow layer, of the base substrate and before forming the second anti-shadow layer at the side, formed with the touch electrode, of the base substrate, as illustrated in
In the embodiments, the FPC connection part is not covered by the second anti-shadow layer, and thus the second anti-shadow layer does not affect the conductivity of the FPC connection part.
In the following, taking the example that the touch electrode is ITO electrode of about 900 Å, detailed descriptions are given to the manufacturing method of the touch display module according to the embodiments of the present disclosure.
The touch module in at least one embodiment is an OGS touch module, and the specific steps for making the touch module include the following steps 1 to 8.
Step 1: as shown in
For example, the base substrate 003 is a glass substrate, a quartz substrate, or a plastic substrate.
For example, the first anti-shadow layer 004 in this step includes the niobium pentoxide film and the silicon dioxide film stacked sequentially, and the thicknesses of the niobium pentoxide film and the silicon dioxide film are about 100 Å and about 300 Å, respectively.
For example, in this step, the first anti-shadow layer is formed by a sputtering process, so that the stability of the first anti-shadow layer is better.
Step 2: as shown in
In this step, for example, a black matrix film is formed to cover the first anti-shadow layer 004, and then a photolithography process is performed to form the black matrix in the border region.
Step 3: as shown in
Step 4: as shown in
Step 5: as shown in
Step 6: as shown in
Step 7: as shown in
It can be seen from
Step 8: a mask is used to shield the region where the FPC connection part 008 is located; alternatively, a film for forming the second anti-shadow layer is formed by sputtering and then is etched by using a photoresist, so as to form the second anti-shadow layer 005 at the side, formed with the second insulation layer 009, of the base substrate 003. The structure obtained in this step can be seen in
In this step, for example, the second anti-shadow layer is the silicon oxynitride film and has the thickness of about 900 Å; alternatively, the second anti-shadow layer includes the niobium pentoxide film and the silicon dioxide film which are sequentially stacked and have thicknesses of about 90 Å and about 200 Å, respectively.
In this step, for example, the second anti-shadow layer is formed by sputtering, so that the stability of the second anti-shadow layer is better.
After the touch module is fabricated according to the above steps, the side, formed with the first anti-shadow layer and the second anti-shadow layer, of the base substrate 003 is completely adhered to the display panel to fabricate the touch display module. The touch display module obtained by the manufacturing method of the embodiments achieves that the color difference ΔE between the touch region and the border region is smaller than 1 in the CIELab color model in the dark state display mode, thereby greatly improving the integral black effect.
At least one embodiment of the present disclosure further provides a touch display module, and as illustrated in
In the embodiments of the present disclosure, by forming anti-shadow layers respectively on both sides of the touch electrode 001, the anti-shadow effect is effectively improved.
For example, the touch module includes a touch region provided with the touch electrode 001 and a border region provided with a black light-blocking material (for example, a black matrix) 002′; and in a dark state display mode, a color difference between the black light-blocking material and a stack structure of the first anti-shadow layer 004, the touch electrode 001 and the second anti-shadow layer 005 is smaller than a preset value, for example, the preset value is greater than 0 and smaller than or equal to 1. In this way, the color difference between the touch region and the border region is reduced, so as to improve the integral black effect.
For example, the first anti-shadow layer 004 is located at a side, away from the opposite substrate 12, of the touch electrode 001, the second anti-shadow layer 005 is located between the touch electrode 001 and the opposite substrate 12, and the thickness of the second anti-shadow layer 005 is greater than the thickness of the first anti-shadow layer 004. This can get a better integral black effect.
For example, the touch display module adopts an OGS mode, that is, the touch module 20 is attached to the display panel through an optical adhesive layer as shown in
The arrangement of each structure shown in
Based on the same inventive concept, the embodiments of the present disclosure further provide a display device, which includes the touch display module according to any one of the above embodiments.
In the touch display module, the manufacturing method of the touch display module and the display device provided by the embodiments of the present disclosure, the first anti-shadow layer and the second anti-shadow layer are disposed in the touch display module, and the second anti-shadow layer not only eliminates the shadow of the touch electrode, but also makes the color difference between the touch region and the border region very small in the dark state display mode in the cooperation of the first anti-shadow layer, which improves the integral black effect. In addition, the second anti-shadow layer also has the function of protecting the touch module so as to reduce the scratching defect rate in the manufacturing process.
What are described above is related to the illustrative embodiments of the disclosure only and not limitative to the scope of the disclosure; the scopes of the disclosure are defined by the accompanying claims.
This application claims the benefit of Chinese Patent Application No. 201610726278.6, filed on Aug. 25, 2016, which is hereby entirely incorporated by reference as a part of the present application.
Number | Date | Country | Kind |
---|---|---|---|
201610726278.6 | Aug 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/095234 | 7/31/2017 | WO | 00 |