The present invention relates, in general, to devices for dispensing viscous fluids, and, more particularly, to a touch free adjustable dispenser for dispensing a variety of products from containers of varying sizes.
Touch free dispensers have become common for hand soap, dish soap, hand lotion and the like and are individually designed for only one such fluid. Typically, these touch free dispensers have a motion sensor that detects the presence of a hand and then dispenses a set amount of soap or lotion. One variation of this type of dispenser has a container which is refillable with a liquid designated for use in that particular dispenser whether soap or lotion. Even if the dispenser is capable of dispensing either soap or lotion, one can imagine it would be imperative to remove all soap from the dispensing nozzle prior to filling with lotion and vice versa. This can be extremely messy, wasteful, and time consuming.
Another variation of a touch free dispenser currently on the market has replaceable containers that are simply disconnected from the main dispenser and thrown away when empty. Unfortunately, this requires the user to purchase only the product that fits the size and dispensing capabilities of the original dispensing unit, otherwise the unit will likely plug, over dispense, or drool. Even if the dispenser is capable of dispensing soap or lotion, it also becomes a cleaning issue with regard to the dispensing nozzle to alternate between soap, lotion, or other such household fluids. The containers also do not allow the user to easily dispense the remaining contents within the container if the dispenser fails and is no longer operational.
One liquid soap dispenser is disclosed in U.S. Pat. No. 6,467,651 issued to Muderlak et al which discloses an automatic liquid soap dispenser that has a housing adapted to removably receive and hold a fluid soap container. In Muderlak, the soap dispenser dispenses a measured amount of soap each time. The Muderlak dispenser is designed to be above the sink while the container is attached below the sink, which requires a hole to be cut within the sink surface or the countertop. The main issues with the Muderlak design are that it is designed specifically for liquid hand soap, has one set dispense quantity, and is not adaptable to accommodate other types of fluids such as lotions, shampoo, conditioners, or condiments such as ketchup, mayonnaise, mustard, cosmetics and the like. Furthermore, it is a design that is fixed to the countertop or sink lacking portability.
U.S. Pat. No. 7,766,194 issued to Boll et al discloses a touch free household liquid dispenser that in one embodiment utilizes a conventional retail hand soap pump bottle. Although Boll eliminates the need to use a specific type of household liquid, i.e. hand soap, dish soap, lotion, etc., it does require a specific shape and height of pump bottle to function properly within the housing of the dispenser. In touch free mode, the Boll dispenser continues to dispense as long as a hand or object is present before the sensor which can create waste.
There is a need for a household or commercial use liquid dispenser that is touch free, is adjustable to accommodate almost any size or shape of pump bottle, has the ability to readily adjust the quantity of liquid to be dispensed, does not require cleaning of a dispensing nozzle, and can switch between dispensing hand soap, dish soap, lotion, shampoos, suntan lotion, condiments (such as ketchup, mayonnaise, mustard), cosmetics, medicines, or any viscous material within a container that has its own built-in pump that is actuated by a downward motion. There is also a need for a liquid dispenser that allows the user to have the most flexibility possible, such as when the container is removed from the touch free dispenser product can still be pumped out of the container by hand.
It is the object of the present invention to provide a touch free dispenser for dispensing a variety of household and commercial products such as hand soap, dish soap, lotion, shampoo, suntan lotion, condiments (such as ketchup, mayonnaise, mustard), cosmetics, medicines, or any viscous material within a container that has its own built in pump that is actuated by a downward motion. Switching between the aforementioned liquids should require minimal or no adjustment by the user.
It is another object of the present invention to provide a touch free dispenser that is easily adjustable in height to accommodate almost any size of currently available hand pumped products thereby allowing the user to select from small containers to value-sized containers with minimal effort and adjustment of the touch free dispenser by the user.
It is yet another object of the present invention to provide a touch free dispenser that utilizes the nozzle and pumping mechanism of a purchased product container eliminating the mess associated with refilling the container and cleaning the dispensing nozzle.
The present invention is a universal touch free dispenser for dispensing selective amounts of product from varying sized hand pump product containers. There is a touch free sensor on the front of the dispenser and in electrical communication with the drive assembly of the dispenser. An extendable ram pad extends from the drive assembly that is adjustable according to the amount of product a user wishes to be dispensed. With the product container placed within the dispenser, the unit is adjusted such that the pump on the container is positioned under the ram. When an object is placed within the viewing range of the touch free sensor, a signal is sent to the drive assembly and the ram pad is extended thereby depressing the pump head and dispensing the product onto the object.
The above description and other objects, advantages, and features of the present invention will be more fully understood and appreciated by reference to the specification and accompanying drawings, wherein:
a-b is a perspective view of the touch free dispenser of the present invention with a product container in position with the pump head in the fully extended or non-dispense mode (
a-b are side plan views of the touch free dispenser of the present invention depicting the touch free dispenser adjusted for a first size of product container (
Referring to the figures, like elements retain their indicators throughout the several views.
Ram Guide 122 extends from the bottom surface of Dispenser Head Assembly 102 and guides Dispenser Ram 406 (not shown) downward to contact the pump head of a product container (not shown). Dispenser Head Assembly 102 is slideably attached to Lower Vertical Member 117 by Unit Height Slide Rail 110 that is fixedly attached to and extending perpendicularly downward from the base of Dispenser Head Assembly 102 and slides within and parallel to Lower Vertical Member 117. Lower Vertical Member 117 extends upward and perpendicularly from Base Top Surface 118 of Dispenser Base 116. Base Non Slip Pad 126 is affixed to Base Top Surface 118. Base Non Slip Pad 126 can be a type of elastomeric material such as polyurethane, neoprene, rubber or the like. Although Base Non Slip Pad 126 is an option, it helps to stabilize the product container on Base Top Surface 126 minimizing slippage when in use.
In
As shown, Dispenser Base 116 has Base Feet 120 placed in the four corners of the bottom surface of Dispenser Base 116. Base Feet 120 in the preferred embodiment are a soft rubber material to avoid sliding of Touch Free Dispenser avoiding scratching or galling of the surface it is placed upon. It has also been contemplated to have one large rubber pad attached to the bottom of Dispenser Base 116 rather than four individual Base Feet 120.
In the preferred embodiment, Touch Free Dispenser 100 is operated by either AC power or DC batteries. Alternately, if rechargeable batteries are used, an AC Adapter recharges the batteries as well as powers the Touch Free Dispense 100 unit. AC Adapter Plug 114 is located along an outer side of Dispenser Base 116 for plugging into a power cord that is plugged into a standard AC wall outlet.
a is perspective view of Touch Free Dispenser 100 of the present invention with Product Container 402 in position with Pump Head 404 in the fully extended or non-dispense mode.
To reach the optimum height of Touch Free Dispenser 100, Unit Height Adjustment Knob 112 is loosened to freely slide Dispenser Head Assembly 102 upward or downward with Product Container 402 placed on Base Top Surface 118 and Pump Head 404 positioned below Ram Guide 122. With Dispenser Head Assembly 102 contacting Pump Head 404, Unit Height Adjustment Knob 112 is tightened to eliminate any movement of Product Container 402 during use.
b illustrates Dispenser Ram 406 extended downward through Ram Guide 122 compressing Pump Head 404 of Product Container 402 thereby dispensing product into the user's hand or onto an object receiving an amount of the product from Product Container 402. In the preferred embodiment, Dispenser Ram 406 has a Ram Pad 407 attached to the surface that contacts Pump Head 404 minimizing slippage with a variety of Pump Head 404 configurations.
Touch Free Dispenser 100 is designed to accommodate most soap, lotion, shampoo, condiments, and other pump-dispensed products. As one can appreciate, each type of product will likely have a different amount of product desired to be dispensed. By adjusting Throw Adjustment Knob 106 (discussed in detail in
a and 5b further illustrate the ability of Touch Free Dispenser 100 to accommodate varying sizes and shapes of product containers.
b is a side plan view of Touch Free Dispenser 100 adjusted to accept a larger or taller Alternate Container 502.
When the user turns the On/Off Switch 108 to the on position, power is supplied to Control Board 604 of Drive Assembly 616 so that operation of Drive Motor 600 of Touch Free Dispenser 100 can be initiated by the user.
Control Board 604 is powered by Batteries 602 or transformed AC power. An example of the driver circuitry on Control Board 604 consists of a motor drive circuit using a PLC microcontroller and motor H-bridge driver circuitry. As one skilled in the art can appreciate, a variety of low voltage DC circuits that accepts inputs and triggers outputs is acceptable.
In the event of AC power, similar to other power cords, the AC to DC conversion is done within an AC transformer that plugs into a 110V wall sock then into AC Adapter Plug 114. One example of such an AC transformer is the Radio Shack® Enercell AC adapter, model #273-318. The selected transformer simply needs to supply Control Board 604 with the DC power prescribed by the selected control circuitry.
When a hand or object is placed in front of Touch Free Sensor 202 a signal is sent to Control Board 604. The signal initiates an output from Control Board 604 turning on Drive Motor 600. In
It has been contemplated to use a belt drive, chain drive, or a friction drive in conjunction with the motor as an alternative to the gear drive shown in
Throw Adjustment Knob 106 is attached to Throw Adjustment Lead Screw 618 which is threaded into Sensor Mount 620. Turning Throw Adjustment Knob 106 clockwise or counterclockwise raises or lowers, respectively, Ram Height Adjustment Sensor 606. As shown in
The distance Pump Head 404 is compressed determines the amount of product that is dispensed from Product Container 402. To reduce or increase the amount of product dispensed from Product Container 402, the user turns Throw Adjustment Knob 106. When the user turns Throw Adjustment Knob 106, which is attached to the Throw Adjustment Lead Screw 618, it rotates Throw Adjustment Lead Screw 618 which is threaded into Sensor Mount 620. As Throw Adjustment Lead Screw 618 is turned, it raises or lowers the Ram Height Adjustment Sensor 606, depending on whether it is rotated clockwise or counter-clockwise. The higher Ram Height Adjustment Sensor 606 is, the less distance Pump Head 404 will be compressed thereby dispensing minimal product. Similarly, the lower Dispenser Height Adjustment Sensor 606 is, the further Pump Head 404 will be compressed thereby dispensing more product. In the preferred embodiment, Ram Height Adjustment Sensor 620 is a thru-beam sensor, however any triggering switch that will detect the position of Dispenser Ram 406 can be used, such as a mechanical limit switch similar to Up Switch 614 previously discussed.
Touch Free Dispenser 100 is powered by Batteries 602 or if the user desires an AC/DC Adapter (as previously discussed) can be plugged into AC Adapter Plug 114 bypassing the power provided by Batteries 602. With the AC/DC Adapter plugged into the wall and into AC Adapter Plug 114 of Dispenser Base 116, the resulting AC power provides the power to Control Board 604 of Drive Assembly 616 for the operation of Touch Free Dispense 100.
It has also been contemplated by the inventor to use rechargeable batteries with recharging provided by the AC/DC Adapter.
In this alternate embodiment, the user turns On/Off Switch 108 to the on position and power is supplied to Control Board 604 of Alternate Drive Assembly 716 such that operation of Touch Free Dispenser 100 can be initiated.
Similar to the previously discussed operation, when a hand or object to receive product is placed in front of Touch Free Sensor 202, Touch Free Sensor 202 sends a signal to Control Board 604 of Alternate Drive Assembly 716. This signal initiates an output from Control Board 604 energizing Solenoid 702 which drives Dispenser Ram 406 downward through Ram Guide 112. When Solenoid 702 reaches a distance preset by Throw Adjustment Knob 106, Solenoid 702 returns to the up position after a short delay which varies depending on how far Dispenser Ram 406 was driven downward. It has been contemplated to include a down sensor similar to Ram Height Adjustment Sensor 606 to end the down cycle, but in this embodiment a constant down time cycle is set by Control Board 604. A spring (not shown) located within Pump Head 404 spring returns Pump Head 404 to the up position.
As discussed previously, the distance Pump Head 404 is compressed determines the amount of product dispensed from within Product Container 402. To reduce or increase the amount of product from Product Container 402, the user adjusts Throw Adjustment Knob 106. When the user rotates Throw Adjustment Knob 106 it rotates the lead screw (not shown) located within Adjustment Dispenser Stop 704 which raises or lowers Dispense Height stop 718 affixed to the end of the Top Solenoid Shaft 720. Turning Throw Adjustment Knob 106 clockwise or counter clockwise moves Adjustment Dispense Stop 704 and determines how far Dispenser Ram 406 compresses Pump Head 404.
Touch Free Dispenser 100 of
Wherein the terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
916998 | Chambers | Apr 1909 | A |
2967643 | Edelstein et al. | Jan 1961 | A |
3032081 | La Cotta | May 1962 | A |
4184612 | Freyre | Jan 1980 | A |
4625342 | Gangnath et al. | Dec 1986 | A |
4722372 | Hoffman et al. | Feb 1988 | A |
5255822 | Mease et al. | Oct 1993 | A |
5829642 | Momboisse | Nov 1998 | A |
5853166 | Koza | Dec 1998 | A |
5988440 | Saunders et al. | Nov 1999 | A |
6318600 | Winnett et al. | Nov 2001 | B1 |
6467651 | Muderlak et al. | Oct 2002 | B1 |
6722529 | Ceppaluni et al. | Apr 2004 | B2 |
6820770 | Makino et al. | Nov 2004 | B2 |
7766194 | Boll et al. | Aug 2010 | B2 |
7785541 | Fiorello | Aug 2010 | B1 |
7909209 | Reynolds et al. | Mar 2011 | B2 |
8342369 | Hsu | Jan 2013 | B2 |
20030160073 | Gispert Casino et al. | Aug 2003 | A1 |
20040149779 | Boll et al. | Aug 2004 | A1 |
20060096349 | Czernecki et al. | May 2006 | A1 |
20070000941 | Hadden et al. | Jan 2007 | A1 |
20080011782 | Sidman | Jan 2008 | A1 |
20080056691 | Wingo et al. | Mar 2008 | A1 |
20090261124 | Boll et al. | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120223098 A1 | Sep 2012 | US |