The present invention relates generally to a toy water gun and, more particularly, to a pressurized toy water gun having expandable bladders for achieving a constant pressure water discharge and selectable nozzles for discharging either a continuous stream or several short pulsating bursts of liquid.
Pressurized squirt guns that eject water and other liquids and other toys for discharging liquids from a pressurized reservoir are generally known in the art. For example, U.S. Pat. No. 6,929,151 to Clayton discloses a water squirting toy including a freestanding base upon which a water gun is supported. The toy includes a garden hose connector to facilitate connection of the toy to a household water supply. The gun can be operated to discharge water directly from the household supply while supported on the base. The toy may be provided with couplers for releasably joining the gun to the base, and the gun may include a water storage reservoir so that the gun can be separated from the base and independently operated to discharge water. The gun may also include an expandable bladder in fluid communication with the garden hose connector to receive and store water prior to pulling the trigger to discharge the stored water.
U.S. Pat. No. 5,799,827 to D'Andrade discloses an expandable bladder toy water gun. The toy water gun includes a main housing having a barrel and water ejection nozzle, a handle and a trigger, as well as an inflatable bladder connected to the main housing, with the bladder having an inlet and an outlet. The toy water gun also includes a storage tank for supplying water thereto, as well as a hand pump connected to both the storage tank and the bladder. The pump is physically connected to the housing and functionally connected to the storage tank and the bladder inlet. A bladder release valve having an upstream side and a downstream side is connected to the bladder outlet at the valve's upstream side, is connected to the trigger for opening and closing thereof, and is connected to the nozzle at the valve's downstream side for subsequent water ejection when the trigger is pulled.
U.S. Pat. No. 5,366,108 to Darling discloses a toy water gun that can release a directed stream of water from a pressurized receptacle. The toy water gun is connected to the pressurized receptacle by a flexible hose and a pull on the trigger releases a directed stream of water. In one embodiment, the receptacle has a one way valve attached thereto that allows pressurized water to only enter the receptacle. A flexible tube is attached to the one-way valve on one end with the flexible tubing terminating with a hose fitting on the other end attachable to a hose bib. The pressurized water is supplied by a water system such as a municipal water supply. Another embodiment uses a bladder inside a receptacle containing trapped air that is connected directly by flexible tubing to a shut off valve which is further connected by flexible tubing to a hose bib that supplies pressurized water. When the receptacle is fully charged and the pressure in the receptacle is equal to the pressure of the municipal water supply, the shut off valve is turned off and the flexible tubing to the hose bib is disconnected at the shut off valve. A flexible tube is then connected from the shut off valve to the toy water gun. The shut off valve is then turned on and the toy water gun is ready for use.
Sprinkler toys discharging bursts of liquid are also known in the art. U.S. Patent Publ. No. 2005-0211805 to Eddins et al. discloses a sprinkler toy and a method for producing a geyser-like burst of liquid supplied by a source of pressurized liquid. The sprinkler toy may include a reservoir in fluid communication with the pressurized liquid source, wherein the volume of the reservoir may increase as the liquid is supplied to the reservoir by the pressurized liquid source, and wherein the pressure within the reservoir may increase as the amount of liquid within the reservoir and the volume of the reservoir increase. The sprinkler toy may further include a valve in fluid communication with the reservoir and operatively coupled to the reservoir, wherein the valve may be moveable between a closed position and an open position, wherein the increase of the volume of the reservoir from a first volume to a second volume may cause the valve to move from the closed position to the open position, and wherein the pressure within the reservoir when the valve moves to the open position may cause a geyser-like burst of liquid stored in the reservoir to discharge through the valve. In alternate embodiments, the sprinkler toy may further include nozzles in fluid communication with the pressurized water source and providing a constant discharge of liquid, and a housing having moving components that move in response to the increase in volume of the reservoir.
In one aspect, the invention is directed to a toy gun for discharging pressurized liquid. The toy gun may include a pressurization mechanism providing a supply of pressurized liquid, a first elastomeric bladder in fluid communication with the pressurization mechanism and receiving pressurized liquid from the pressurization mechanism, wherein the first bladder expands and the pressure within the first bladder increases as the pressurized liquid is received by the first bladder. The toy gun may further include a first valve having an inlet in fluid communication with the first bladder and being moveable between a closed position and an open position, a second elastomeric bladder in fluid communication with an outlet of the first valve, and a second valve having an inlet in fluid communication with the second bladder and being moveable between a closed position and an open position. The second valve may be operatively coupled to the second bladder such that expansion of the second bladder causes the second valve to move from the closed position to the open position. When the first bladder is filled with pressurized liquid and the first valve is moved to the open position, pressurized liquid from the first bladder may be forced into the second bladder, the second bladder may expand as the pressurized liquid from the first bladder is received, and the expansion of the second bladder may cause the second valve to move to the open position such that the pressure within the second bladder causes a burst of liquid stored in the second bladder to discharge through the second valve.
In another aspect, the invention is directed to a toy gun for discharging pressurized liquid that may include a pressurization mechanism providing a supply of pressurized liquid, and an elastomeric supply bladder in fluid communication with the pressurization mechanism and receiving pressurized liquid from the pressurization mechanism, wherein the supply bladder expands and the pressure within the supply bladder increases as the pressurized liquid is received by the supply bladder. The toy gun may further include a trigger valve having an inlet in fluid communication with the supply bladder and being moveable between a closed position and an open position, and a mode selection valve having an inlet in fluid communication with the outlet of the trigger valve, a first outlet and a second outlet. The mode selection valve may have a stream position placing the inlet of the mode selection valve in fluid communication with the first outlet and a pulse position placing the inlet of the mode selection valve in fluid communication with the second outlet. The toy gun may also include an elastomeric pulse bladder in fluid communication with the second outlet of the mode selection valve, and a pulse valve having an inlet in fluid communication with the pulse bladder and an outlet, wherein the pulse valve is moveable between a closed position and an open position, and the pulse valve is operatively coupled to the pulse bladder such that expansion of the pulse bladder causes the pulse valve to move from the closed position to the open position. When the supply bladder is filled with pressurized liquid, the trigger valve is moved to the open position and the mode selection valve is in the stream position, pressurized liquid from the supply bladder is forced through the second outlet of the mode selection valve to discharge a continuous stream of liquid. Further, when the supply bladder is filled with pressurized liquid, the trigger valve is moved to the open position and the mode selection valve is in the pulse position, pressurized liquid from the supply bladder is forced into the pulse bladder, the pulse bladder expands as the pressurized liquid from the supply bladder is received, and the expansion of the pulse bladder causes the pulse valve to move to the open position such that the pressure within the pulse bladder causes a burst of liquid stored in the pulse bladder to discharge through the pulse valve.
In a further aspect, the invention is directed to a toy gun for discharging pressurized liquid that may have an inlet port having a coupling configured to connect to an external source of pressurized liquid to the toy gun, a trigger valve having an inlet in fluid communication with the inlet port and being moveable between a closed position and an open position, an elastomeric pulse bladder in fluid communication with an outlet of the trigger valve, and a pulse valve having an inlet in fluid communication with the pulse bladder and being moveable between a closed position and an open position, The pulse valve may be operatively coupled to the pulse bladder such that expansion of the pulse bladder causes the pulse valve to move from the closed position to the open position. When an external source is connected to the coupling and providing pressurized liquid and the trigger valve is moved to the open position, pressurized liquid from the external source is forced into the pulse bladder, the pulse bladder expands as the pressurized liquid from the external source is received, and the expansion of the pulse bladder causes the pulse valve to move to the open position such that the pressure within the pulse bladder causes a burst of liquid stored in the pulse bladder to discharge through the pulse valve.
Additional aspects of the invention are defined by the claims of this patent.
Although the following text sets forth a detailed description of numerous different embodiments of the invention, it should be understood that the legal scope of the invention is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment of the invention since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the invention.
It should also be understood that, unless a term is expressly defined in this patent using the sentence “As used herein, the term ‘——————’ is hereby defined to mean . . . ” or a similar sentence, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to in this patent in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term be limited, by implication or otherwise, to that single meaning. Finally, unless a claim element is defined by reciting the word “means” and a function without the recital of any structure, it is not intended that the scope of any claim element be interpreted based on the application of 35 U.S.C. §112, sixth paragraph.
A second lower inlet 26 may be disposed on the bottom of the housing 12 and may include a coupler 28 for connecting a garden hose or other pressurized liquid source. The coupler 28 may be any appropriate coupling for connecting the liquid source to the lower inlet 26, such as a standard female threaded garden hose coupler, a quick-connect coupling and the like. When liquid is added via the lower inlet 26, the toy gun 10 will be pressurized and ready to discharge fluid from one of the nozzles 18, 20. Conversely, liquid added at the upper inlet 22 is not pressurized, and the toy gun 10 is prepared for discharge by the user manipulating a pump handle 30 connected via pump arms 32 to a pump within the housing 12 in a manner described more fully below. To allow selection between the nozzles 18, 20, the toy gun 10 further includes a mode selection knob 34 connected to a mode selection valve within the housing 12 that moves between a stream discharge position and a pulse discharge position as discussed further below.
The supply bladder 42 may be fabricated from a resilient material, such as rubber, and is disposed within a supply bladder housing 46. The housing 46 allows the supply bladder 42 to expand as the bladder 42 fills with liquid, but limits the expansion and, consequently, the volume of liquid in the bladder 42. An end cap 48 may be attached to an end of the bladder 42 and slidable within the housing 46 to limit the expansion of the bladder 42. In addition to limiting the volume of the bladder 42, the pressure within the bladder 42 is limited by a safety valve 52 connected to the conduit 44 and configured to open and vent to the atmosphere when a predetermined maximum pressure is exceeded. If desired, the safety valve 52 may be adjustable via a set screw or other mechanism to regulate the maximum pressure.
The supply bladder 42 is operatively connected to the discharge mechanisms of the toy gun 10 by a conduit 54 placing the supply bladder 42 in fluid communication with an inlet of a trigger snap-action ball valve 56. The trigger ball valve 56 is normally disposed in a closed position to prevent the discharge of liquid until the trigger 16 is pulled rearward by the user. The trigger ball valve 56 is operatively connected to the trigger 16 by links 58, 60 and a rocker 62 so that the trigger ball valve 56 is tripped when the trigger 16 is pulled as will be described more fully below. The outlet of the trigger ball valve 56 is connected to an inlet of a three-way mode selection valve 64 that is coupled to and operated by the mode selection knob 34 on the exterior of the housing 12. The mode selection valve 64 includes a first outlet 66 connected to the stream nozzle 18, and a second outlet 68 connected to a discharge mechanism for the pulse nozzle 20. The second outlet 68 leads to a T-connector 70 having one branch connecting the second outlet 68 to a pulse bladder 72 and the other branch connected to a pulse nozzle snap-action ball valve 74. As with the supply bladder 42, the pulse bladder 72 is fabricated from an elastomeric material, and is disposed within a pulse bladder housing 76. A slidable carriage 78 is disposed on the exterior of the pulse bladder housing 76 and includes a shoulder 80 extending inwardly through the rear wall of the pulse bladder housing 76 and into the interior of the housing 76. As discussed more fully below, the pulse bladder 72 engages shoulder 80 to slide the carriage 78 rearward on the pulse bladder housing 76 and trip the pulse nozzle ball valve 74 via the connection of a link 82 to discharge a pulse of liquid through the pulse nozzle 20.
As discussed above, the dual-action pump 40 pumps liquid from the non-pressurized reservoir 36 to the supply bladder 42. The dual-action pump 40 is actuated when the user moves the piston handle 30 back and forth. The piston arms 32 are connected to a pump gear 84 having teeth meshing with a pump rack 86 to drive a piston within the dual-action pump 40. As the handle 30 is cycled, liquid from the reservoir 36 is pumped into the conduit 44 and supply bladder 42 alternately through a forward conduit 88 as the pump handle 30 moves from the position shown in
The illustrated configuration of the dual-action pump 40 and check valves 96, 98, 100, 102 facilitates pumping liquid from the reservoir 36 to the supply bladder 42 when the pump handle 30 moves in either direction. When the pump handle 30 is pulled rearward from the position shown in
Referring now to
Referring now to
Releasing the trigger 12, or disengagement of the shoulder 80 as liquid is discharged and the pulse bladder 72 contracts as describe more fully below, will permit the trip assembly 160 to return to the position of
Consequently, in accordance with the disclosed example, the trip assembly 60 serves to define a first normal position shown in
As discussed above, the user may select the discharge mode of the toy gun 10 between a stream of liquid discharged from the lower nozzle 18 and several short bursts of liquid from the upper nozzle 20. The user selects between the discharge modes by turning the mode selection knob 34 and, correspondingly, altering the flow path of the mode selection valve 64.
Once the supply bladder 42 is filled, either with liquid pumped from the reservoir 36 by the dual-action pump 40, or with liquid supplied by a pressurized source connected at the connector 28, the toy gun 10 is ready to discharge liquid through either the stream nozzle 18 or the pulse nozzle 20.
Once the pulse ball valve 74 closes, the pulse bladder 72 begins to refill with liquid provided through the trigger ball valve 56. As long as the trigger 16 is pulled and the ball valve 56 remains open, the toy gun 10 will repeat the cycle described above and discharge a series of bursts of liquid from the pulse nozzle 20 as long as pressurized liquid is supplied to the pulse discharge mechanism. The bladders 42, 72 and bladder housings 46, 76, respectively, may be dimensioned so that multiple pulsating bursts of liquid may be discharged when the supply bladder 42 is filled to capacity and the user holds the trigger 16. For example, the supply bladder 42 and housing 46 may be configured to hold approximately 30 ounces of liquid, and the pulse bladder 72 and housing 76 may be configured to hold approximately 6.5 ounces of liquid. When the supply bladder 42 is filled to capacity, the toy gun 10 may discharge four bursts in succession with approximately 6.5 ounces of liquid in each burst. Alternatively, when a source of pressurized liquid is attached at the coupler 28, the toy gun 10 may be able to continuously discharge bursts of liquid as long as the trigger ball valve 56 remains open.
While one embodiment of the toy gun is illustrated and described herein, those skilled in the art will understand that other configurations of the toy gun 10 in accordance with the present disclosure are possible and are contemplated by the inventors. For example, the volume and elasticity of the bladders 42, 72, and the volumes of the housings 46, 76 may be varied to provide a desired number of continuous bursts and a desired volume of liquid to be discharged in each burst when liquid is discharged through the pulse nozzle 20. Moreover, the dual-action pump 40 may be replaced with other types of pumps or pressurization mechanisms capable of transferring liquid from the reservoir 36 to the supply bladder 42 and supplying pressure to fill the pulse bladder 42 to capacity. Additionally, the trigger ball valve 56 may be replaced with other types of valves that may be coupled to the trigger 16 so that the valve opens and closes when the trigger 16 is pulled and released, respectively. Still further, both the stream discharge mechanism and the pulse discharge mechanism may be implemented in toy guns offering only a single mode for discharging liquid. Other configurations and modifications to the toy gun 10 in accordance with the present disclosure and the components thereof will be apparent to those skilled in the art.
While the preceding text sets forth a detailed description of numerous different embodiments of the invention, it should be understood that the legal scope of the invention is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment of the invention since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the invention.
Number | Name | Date | Kind |
---|---|---|---|
3403472 | De Rauchourt | Oct 1968 | A |
4204462 | Richards et al. | May 1980 | A |
4205785 | Stanley | Jun 1980 | A |
4214674 | Jones et al. | Jul 1980 | A |
4217931 | Jaekel | Aug 1980 | A |
4265404 | Hunter | May 1981 | A |
4301967 | Hunter | Nov 1981 | A |
4550876 | Kulesza et al. | Nov 1985 | A |
4757946 | Johnson | Jul 1988 | A |
4781217 | Rosenberg | Nov 1988 | A |
5111993 | Baker | May 1992 | A |
5141132 | Whelan | Aug 1992 | A |
5366108 | Darling | Nov 1994 | A |
5722566 | Glynn | Mar 1998 | A |
5730325 | Cheung | Mar 1998 | A |
5799827 | D'Andrade | Sep 1998 | A |
5850941 | Johnson et al. | Dec 1998 | A |
6026851 | Rosenberg | Feb 2000 | A |
6082633 | Kephart et al. | Jul 2000 | A |
6123229 | Barish | Sep 2000 | A |
6158619 | D'Andrade et al. | Dec 2000 | A |
6167925 | D'Andrade | Jan 2001 | B1 |
6250565 | Ogie et al. | Jun 2001 | B1 |
6364162 | Johnson et al. | Apr 2002 | B1 |
6592055 | Marino | Jul 2003 | B1 |
6631830 | Ma et al. | Oct 2003 | B2 |
6691739 | Rosenberg | Feb 2004 | B2 |
6892902 | Hornsby et al. | May 2005 | B2 |
6929151 | Clayton | Aug 2005 | B1 |
6935531 | Clayton | Aug 2005 | B1 |
7185787 | Brown et al. | Mar 2007 | B2 |
7458485 | Amron | Dec 2008 | B2 |
20050173452 | Brown et al. | Aug 2005 | A1 |
20050211805 | Eddins et al. | Sep 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080277413 A1 | Nov 2008 | US |