Bioabsorbable implantable medical devices for the treatment of lesions caused by cancer of the tracheobronchial tree or cancer of the head, neck or chest.
This invention relates generally to radially expandable endoprostheses which are adapted to be implanted in a physiological lumen. An “endoprosthesis” corresponds to an artificial device that is placed inside of a physiological lumen. A “lumen” refers to a cavity of a tubular organ such as a blood vessel or other physiological passageway. A stent, or implantable medical device, is an example of an endoprosthesis. Stents are generally cylindrically shaped devices which function to hold open or expand a physiological lumen, or to compress a lesion. A stent must be able to satisfy a number of mechanical requirements. For example, the stent must be capable of withstanding the structural loads, namely radial compressive forces, imposed on the stent as it supports the walls of the tubular organ. Accordingly, a stent must possess adequate radial strength.
In adults, primary cancer of the tracheobronchial tree or cancer of the head, neck or chest that extends into the tracheobronchial tree frequently causes lumen compromise and airway obstruction. “Tracheobronchial” refers to the physiological passageway from the throat to the lungs. In some methods of treatment, a compromised component of the tracheobronchial tree can be removed by laser treatment, mechanical debulking, electrocautery, brachytherapy, photodynamic therapy or cryotherapy. A stent can then be placed at the treatment site following removal of a comprised component to maintain the airway lumen to counteract collapse or edema.
Alternatively, a stent can be placed to help compress any lesion extending into the tracheo or bronchi without the need for removal of the compromised component. In some methods of treatment, a stent has been used to palliate patients with inoperable bronchogenic cancer, primary tracheal tumors and metastatic malignancies.
Stents which have been used in the tracheobronchial tree include metal, silicone and bioabsorbable stents. Metallic stents are generally made from an inert metal such as stainless steel, cobalt chromium and Nitinol. Some problems associated with known stent types delivered to the tracheobronchial region include inflammation, stent migration, epithelial damage, granulation tissue formation and mucous plugging. In addition, it is believed that known bioabsorbable stents designed for placement in the tracheobronchial region are not able to adequately combat inflammation caused by stent placement.
“Stent migration” refers to the gradual movement of the stent down the tracheobronchial tree after placement thereof. Stent migration of silicone stents in the tracheobronchial tree is common. “Mucous plugging” is an excessive production of mucous produced in response to the stent. Mucous plugging can cause interference with breathing. “Granulation tissue formation” is the formation of new tissue in response to a wound or other disruption of tissue. Excessive granulation tissue formation can cause a stent to be permanently lodged within a passageway complicating removal if required. Metal stents are especially susceptible to granulation tissue formation. Accordingly, a tracheobronchial stent which addresses these problems is desirable.
Devices and methods for treating a diseased tracheobronchial region in a mammal are herein disclosed. The device can be a stent which can include a sustained-release material such as a polymer matrix with a treatment agent. The stent can be a bioabsorbable stent and a treatment agent can be incorporated therewith. A treatment method can be delivery of a stent to a tracheobronchial region by a delivery device such as a catheter assembly.
Embodiments of devices and methods for treating a diseased tracheobronchial region in a mammal, including, but not limited to, humans, are herein disclosed. In some embodiments, the device can be an implantable medical device such as a stent. Representative examples of implantable medical devices include, but are not limited to, self-expandable stents, balloon-expandable stents, micro-depot or micro-channel stents and grafts. In some embodiments, a treatment method can be delivery of a stent to a tracheobronchial region by a delivery device such as a catheter assembly.
In some treatment applications, a stent may only be required to be present in the tracheobronchial region for a limited period of time. To accommodate this, a stent can be made of a biodegradable, bioerodable or bioabsorbable polymer, hereinafter used interchangeably. A stent can also be made of a biostable or biodurable (hereinafter used interchangeably) or a combination of a biostable and biodegradable polymer. A stent made from a biodegradable polymer is intended to remain in the body for a duration of time until its intended function of, for example, maintaining luminal patency and/or drug delivery, is accomplished. After the process of degradation, erosion, absorption and/or resorption has been completed, none or substantially none of the biodegradable portion of the stent will remain in the tracheobronchial region.
In some embodiments, the stent may include a treatment agent. As used herein, treatment agents are intended to include, but are not intended to be limited to, drugs, biologically active agents, chemically active agents, therapeutic agents, and the like, and pharmaceutical compositions thereof, which can be used to deliver a treatment agent to a treatment site as described herein. Representative treatment agents include, but are not limited to, an anti-inflammatory, an anti-platelet, an anti-coagulant, a fibrinolytic, an anti-thrombonic, an anti-mitotic, an anti-biotic, an anti-allergic, an anti-oxidant, an anti-proliferative and an anti-migratory. The treatment agent may be incorporated within the body of the stent or within a polymer-based coating applied on or within the stent.
Tracheobronchial Stents
In some embodiments, a stent according to the present invention can have variable radial strength along the stent length. For example, the stent can have higher radial strength at the proximal and distal ends relative to the central portions. In this aspect, the higher radial strength proximal and distal ends can serve as “anchors” after placement in the tracheobronchial tree. It is anticipated that higher radial strength proximal and distal ends can substantially minimize, or even prevent, stent migration.
In general, a stent is designed so that the stent can be radially compressed (crimped) and radially expanded (to allow deployment). The stresses involved during compression and expansion are generally distributed throughout various structural elements of the stent. As a stent deforms, various portions of the stent can deform to accomplish radial expansion. In this aspect, the stent must be sufficiently malleable to withstand compression and expansion.
On the other hand, the stent must exhibit a certain degree of rigidity to maintain lumen patency during its lifetime. For a bioabsorbable stent, a lifetime can be from about 2 months to about 24 months depending on the intended application. Thus, a biodegradable stent is preferably fabricated from a polymer which allows for sufficient malleability during compression and expansion, and sufficient rigidity after deployment thereof.
Representative examples of polymers that may be used to manufacture or coat a stent, include but are not limited to, poly(N-acetylglucosamine) (Chitin), Chitosan, poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic), poly(caprolactone), poly(trimethylene carbonate), polyester amide, poly(glycolic acid-co-trimethylene carbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers other than polyacrylates, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides, polyethers, polyurethanes, rayon, rayon-tracetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose. Another type of polymer based on poly(lactic acid) that can be used includes graft copolymers, and block copolymers, such as AB block-copolymers (“diblock-copolymers”) or ABA block-copolymers (“triblock-copolymers”), or mixtures thereof.
Additional representative examples of polymers that may be especially well suited for use in manufacturing or coating stents include ethylene vinyl alcohol copolymer (e.g., EVOH or EVAL), poly(butyl methacrylate), poly(vinylidene fluoride-co-hexfluorapropene (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, N.J.), polyvinylidene fluoride (e.g., KYNAR, available from ATOFINA Chemicals, Philadelphia, Pa.), ethylene-vinyl acetate copolymers and polyethylene glycol.
Manufacturing processes for forming a bioabsorbable stent include, but are not limited to, casting, molding, extrusion, drawing or combinations thereof. Casting involves pouring a liquid polymeric composition into a mold. Molding processes include, but are not limited to, compression molding, extrusion molding, injection molding and foam molding. In compressing molding, solid polymeric materials are added to a mold and pressure and heat are applied until the polymeric material conforms to the mold. In extrusion molding, solid polymeric materials are added to a continuous melt that is forced through a die and cooled to a solid form. In injection molding, solid polymeric materials are added to a heated cylinder, softened and forced into a mold under pressure to create a solid form. In foam molding, blowing agents are used to expand and mold solid polymeric materials into a desired form, and the solid polymeric materials can be expanded to a volume in a range from about 2 to about 50 times their original volume. In the above-described molding embodiments, the solid form may require additional processing to obtain the final product in a desired form. Additional processing may include fiber processing methods such as hot drawing to induce orientation and higher crystallinity for increased mechanical strength.
The material for the stent can also be produced from known man-made fiber processing methods such as dry spinning, wet spinning, and melt spinning. In dry spinning, a polymer solution in warm solvent is forced through a tiny hole into warm air. The solvent evaporates into the air and the liquid stream solidifies into a continuous filament. Wet spinning method involves a polymer solution forced through tiny holes into another solution where it is coagulated into a continuous filament. Melt spinning method is a method in which a solid polymer is melted and forced through a tiny hole into cool air which solidifies the fiber into a continuous filament.
In some embodiments, a stent may be fabricated from a biocompatible metal or metal alloy. Representative examples include, but are not limited to, stainless steel (316L or 300), MP35N, MP2ON, Nitinol, Egiloy, tantalum, tantalum alloy, cobalt-chromium alloy, nickel-titanium alloy, platinum, iridium, platinum-iridium alloy, gold, magnesium or combinations thereof. MP35N and MP2ON are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. MP35N consists of 35 percent (%), cobalt, 35% nickel, 20% chromium and 10% molybdenum. MP2ON consists of 50% cobalt, 20% nickel, 20% chromium and 10% molybdenum.
In some embodiments, a treatment agent may be directly incorporated into the body of a bioabsorbable stent during the manufacturing process. For example, a treatment agent may be combined with a polymer matrix and subsequently subjected to any of the above-described manufacturing process for formation thereof. In this aspect, the treatment agent may be released in a controlled manner as the bioabsorbable stent naturally degrades in the tracheobronchial region.
In some applications, a polymer coating comprising at least one layer including a treatment agent can be applied to a surface of a stent for controlled release of the treatment agent. The polymer can be a polymer which exhibits a sustained-release characteristic of the treatment agent. For example, the polymer can be polyglycolide (PGA) which has a degradation rate of about 9 months to about 12 months. In another example, the polymer can be polylactide (PLA) which has a degradation rate of about 14 and about 18 months. Copolymers of PLA and PGA can also be used to tailor degradation rates. It should be appreciated that more than one coating may be applied to treat a variety of symptoms typically experienced with tracheobronchial stent placement.
For example, a coating can include one or a combination of the following types of layers: (a) a treatment agent layer, which may include a polymer and a treatment agent, or alternatively, a polymer-free treatment agent; (b) an optional primer layer, which may improve adhesion of subsequent layers on the stent or on a previously formed layer; (c) an optional topcoat layer, which may serve to control the rate of release of the treatment agent; and (d) an optional biocompatible finishing layer, which may improve the biocompatibility of the coating.
In some embodiments, the coating can be partially or completely applied to an abluminal surface or a luminal surface of the stent. The coating can be applied by methods known by those skilled in the art, including, but not limited to, dipping, spraying, pouring, brushing, spin-coating, roller coating, meniscus coating, powder coating, drop-on-demand coating, sputtering, gas-phase polymerization, solvent inversion or any combination thereof. Coating techniques are known by those skilled in the art.
The coating which includes a treatment agent can include, but is not limited to, an anti-inflammatory, an anti-platelet, an anti-coagulant, a fibrinolytic, an anti-thrombonic, an anti-mitotic, an anti-biotic, an anti-allergic, an anti-oxidant, an anti-proliferative and an anti-migratory. In some embodiments, the treatment agent can be an anti-inflammatory steroid or non-steroid. Examples of anti-inflammatory steroids include, but are not limited to, prednisone, oxymetholone, oxandrolone and methanodrostenolone. Examples of anti-inflammatory non-steroids (NSAID) include, but are not limited to, ibuprofen, diclofenac, diflunisal, fenoprofen, aspirin, sulindac, naproxen, indomethacin, piroxicam, ketoprofen, tolmetin and azapropazonelast.
The treatment agent can treat symptoms typically associated with tracheobronchial stent deployment, such as, inflammation, epithelial damage, granulation tissue formation and mucous plugging.
Methods of Delivery
It should be appreciated that, in some embodiments, a self-expanding stent may be delivered by a stent delivery catheter without (or with) a balloon. Various methods are employed for delivery and implantation of a self-expanding stent. For instance, a self-expanding stent may be positioned at the distal end of a catheter around a core lumen. Self-expanding stents are typically held in an unexpanded state during delivery using a variety of methods including sheaths or sleeves which cover all or a portion of the stent. When the stent is in its desired location of the targeted vessel the sheath or sleeve is retracted to expose the stent which then self-expands upon retraction.
In some methods, a stent according to the present invention may be delivered to a tracheobronchial region by a stent delivery catheter (with or without a balloon) for treatment thereof.
From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention which come within the province of those skilled in the part. The scope of the invention includes any combination of the elements from the different species and embodiments disclosed herein, as well as subassemblies, assemblies and methods thereof. However, it is intended that all such variations not departing from the spirit of the invention be considered as within the scope thereof.
This application is a divisional application of U.S. patent application Ser. No. 11/507,913, filed Aug. 21, 2006, now U.S. Pat. No. 9,173,733, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3687135 | Stroganov et al. | Aug 1972 | A |
3839743 | Schwarcz | Oct 1974 | A |
3900632 | Robinson | Aug 1975 | A |
4104410 | Malecki | Aug 1978 | A |
4110497 | Hoel | Aug 1978 | A |
4321711 | Mano | Mar 1982 | A |
4346028 | Griffith | Aug 1982 | A |
4596574 | Urist | Jun 1986 | A |
4599085 | Riess et al. | Jul 1986 | A |
4612009 | Drobnik et al. | Sep 1986 | A |
4633873 | Dumican et al. | Jan 1987 | A |
4656083 | Hoffman et al. | Apr 1987 | A |
4718907 | Karwoski et al. | Jan 1988 | A |
4722335 | Vilasi | Feb 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4732152 | Wallsten et al. | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4740207 | Kreamer | Apr 1988 | A |
4743252 | Martin, Jr. et al. | May 1988 | A |
4760849 | Kropf | Aug 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4816339 | Tu et al. | Mar 1989 | A |
4818559 | Hama et al. | Apr 1989 | A |
4850999 | Planck | Jul 1989 | A |
4877030 | Beck et al. | Oct 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4879135 | Greco et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4902289 | Yannas | Feb 1990 | A |
4977901 | Ofstead | Dec 1990 | A |
4994298 | Yasuda | Feb 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5028597 | Kodama et al. | Jul 1991 | A |
5059211 | Stack et al. | Oct 1991 | A |
5062829 | Pryor et al. | Nov 1991 | A |
5084065 | Weldon et al. | Jan 1992 | A |
5085629 | Goldberg et al. | Feb 1992 | A |
5100429 | Sinofsky et al. | Mar 1992 | A |
5104410 | Chowdhary | Apr 1992 | A |
5108417 | Sawyer | Apr 1992 | A |
5112457 | Marchant | May 1992 | A |
5123917 | Lee | Jun 1992 | A |
5156623 | Hakamatsuka et al. | Oct 1992 | A |
5163951 | Pinchuk et al. | Nov 1992 | A |
5163952 | Froix | Nov 1992 | A |
5163958 | Pinchuk | Nov 1992 | A |
5167614 | Tessmann et al. | Dec 1992 | A |
5192311 | King et al. | Mar 1993 | A |
5197977 | Hoffman, Jr. et al. | Mar 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5234457 | Andersen | Aug 1993 | A |
5236447 | Kubo et al. | Aug 1993 | A |
5279594 | Jackson | Jan 1994 | A |
5282860 | Matsuno et al. | Feb 1994 | A |
5289831 | Bosley | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5306294 | Winston et al. | Apr 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5330500 | Song | Jul 1994 | A |
5342348 | Kaplan | Aug 1994 | A |
5342395 | Jarett et al. | Aug 1994 | A |
5342621 | Eurt | Aug 1994 | A |
5356433 | Rowland et al. | Oct 1994 | A |
5383925 | Schmitt | Jan 1995 | A |
5385580 | Schmitt | Jan 1995 | A |
5389106 | Tower | Feb 1995 | A |
5399666 | Ford | Mar 1995 | A |
5423885 | Williams | Jun 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5443458 | Eury et al. | Aug 1995 | A |
5443500 | Sigwart | Aug 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5502158 | Sinclair et al. | Mar 1996 | A |
5514379 | Weissleder et al. | May 1996 | A |
5527337 | Stack et al. | Jun 1996 | A |
5545408 | Trigg et al. | Aug 1996 | A |
5554120 | Chen et al. | Sep 1996 | A |
5556413 | Lam | Sep 1996 | A |
5575818 | Pinchuk | Nov 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5591199 | Porter et al. | Jan 1997 | A |
5591607 | Gryaznov et al. | Jan 1997 | A |
5593403 | Buscemi | Jan 1997 | A |
5593434 | Williams | Jan 1997 | A |
5599301 | Jacobs et al. | Feb 1997 | A |
5599922 | Gryaznov et al. | Feb 1997 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5607467 | Froix | Mar 1997 | A |
5618299 | Khosravi et al. | Apr 1997 | A |
5629077 | Turnlund et al. | May 1997 | A |
5631135 | Gryaznov et al. | May 1997 | A |
5632771 | Boatman et al. | May 1997 | A |
5632840 | Campbell | May 1997 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5667796 | Otten | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5707385 | Williams | Jan 1998 | A |
5711763 | Nonami et al. | Jan 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5725547 | Chuter | Mar 1998 | A |
5725549 | Lam | Mar 1998 | A |
5726297 | Gryaznov et al. | Mar 1998 | A |
5728751 | Patnaik | Mar 1998 | A |
5733326 | Tomonto et al. | Mar 1998 | A |
5733330 | Cox | Mar 1998 | A |
5733564 | Lehtinen et al. | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5741881 | Patnaik | Apr 1998 | A |
5756457 | Wang et al. | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5765682 | Bley et al. | Jun 1998 | A |
5766204 | Porter et al. | Jun 1998 | A |
5766239 | Cox | Jun 1998 | A |
5766710 | Turnlund et al. | Jun 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5780807 | Saunders | Jul 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5811447 | Kunz et al. | Sep 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5830461 | Billiar | Nov 1998 | A |
5830879 | Isner | Nov 1998 | A |
5833651 | Donovan et al. | Nov 1998 | A |
5834582 | Sinclair et al. | Nov 1998 | A |
5836962 | Gianotti | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5837835 | Gryaznov et al. | Nov 1998 | A |
5840083 | Braach-Maksvytis | Nov 1998 | A |
5851508 | Gregg et al. | Dec 1998 | A |
5853408 | Muni | Dec 1998 | A |
5854207 | Lee et al. | Dec 1998 | A |
5855612 | Ohthuki et al. | Jan 1999 | A |
5855618 | Patnaik et al. | Jan 1999 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5868781 | Killion | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5874101 | Zhong et al. | Feb 1999 | A |
5874109 | Ducheyne et al. | Feb 1999 | A |
5874165 | Drumheller | Feb 1999 | A |
5876743 | Ibsen et al. | Mar 1999 | A |
5877263 | Patnaik et al. | Mar 1999 | A |
5879713 | Roth et al. | Mar 1999 | A |
5888533 | Dunn | Mar 1999 | A |
5891192 | Murayama et al. | Apr 1999 | A |
5897955 | Drumheller | Apr 1999 | A |
5906759 | Richter | May 1999 | A |
5914182 | Drumheller | Jun 1999 | A |
5916870 | Lee et al. | Jun 1999 | A |
5922005 | Richter et al. | Jul 1999 | A |
5942209 | Leavitt et al. | Aug 1999 | A |
5948428 | Lee et al. | Sep 1999 | A |
5954744 | Phan et al. | Sep 1999 | A |
5957975 | Lafont et al. | Sep 1999 | A |
5965720 | Gryaznov et al. | Oct 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5976182 | Cox | Nov 1999 | A |
5980564 | Stinson | Nov 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5981568 | Kunz et al. | Nov 1999 | A |
5986169 | Gjunter | Nov 1999 | A |
5997468 | Wolff et al. | Dec 1999 | A |
6010455 | Barnett et al. | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6048964 | Lee et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6066156 | Yan | May 2000 | A |
6071266 | Kelley | Jun 2000 | A |
6074659 | Kunz et al. | Jun 2000 | A |
6080177 | Igaki et al. | Jun 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6083258 | Yadav | Jul 2000 | A |
6093463 | Thakrar | Jul 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6096525 | Patnaik | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6103230 | Billiar et al. | Aug 2000 | A |
6107416 | Patnaik et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6117979 | Hendriks et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6125523 | Brown et al. | Oct 2000 | A |
6127173 | Eckstein et al. | Oct 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6129928 | Sarangapani et al. | Oct 2000 | A |
6150630 | Perry et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6159951 | Karpeisky et al. | Dec 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6166130 | Rhee et al. | Dec 2000 | A |
6169170 | Gryaznov et al. | Jan 2001 | B1 |
6171609 | Kunz | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6177523 | Reich et al. | Jan 2001 | B1 |
6183505 | Mohn, Jr. et al. | Feb 2001 | B1 |
6187045 | Fehring et al. | Feb 2001 | B1 |
6210715 | Starling et al. | Apr 2001 | B1 |
6224626 | Steinke | May 2001 | B1 |
6228845 | Donovan et al. | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6245076 | Yan | Jun 2001 | B1 |
6245103 | Stinson | Jun 2001 | B1 |
6248344 | Ylanen et al. | Jun 2001 | B1 |
6251135 | Stinson et al. | Jun 2001 | B1 |
6251142 | Bernacca et al. | Jun 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6281262 | Shikinami | Aug 2001 | B1 |
6284333 | Wang et al. | Sep 2001 | B1 |
6287332 | Bolz et al. | Sep 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6293966 | Frantzen | Sep 2001 | B1 |
6303901 | Perry et al. | Oct 2001 | B1 |
6312459 | Huang et al. | Nov 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
6375826 | Wang et al. | Apr 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387121 | Alt | May 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6409761 | Jang | Jun 2002 | B1 |
6423092 | Datta et al. | Jul 2002 | B2 |
6461632 | Gogolewski | Oct 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6479565 | Stanley | Nov 2002 | B1 |
6485512 | Cheng | Nov 2002 | B1 |
6492615 | Flanagan | Dec 2002 | B1 |
6494908 | Huxel et al. | Dec 2002 | B1 |
6495156 | Wenz et al. | Dec 2002 | B2 |
6511748 | Barrows | Jan 2003 | B1 |
6517888 | Weber | Feb 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6537589 | Chae et al. | Mar 2003 | B1 |
6539607 | Fehring et al. | Apr 2003 | B1 |
6540777 | Stenzel | Apr 2003 | B2 |
6554854 | Flanagan | Apr 2003 | B1 |
6565599 | Hong et al. | May 2003 | B1 |
6569191 | Hogan | May 2003 | B1 |
6569193 | Cox et al. | May 2003 | B1 |
6572672 | Yadav et al. | Jun 2003 | B2 |
6574851 | Mirizzi | Jun 2003 | B1 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6592614 | Lenker et al. | Jul 2003 | B2 |
6592617 | Thompson | Jul 2003 | B2 |
6613072 | Lau et al. | Sep 2003 | B2 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6635269 | Jennissen | Oct 2003 | B1 |
6645243 | Vallana et al. | Nov 2003 | B2 |
6656162 | Santini, Jr. et al. | Dec 2003 | B2 |
6664335 | Krishnan | Dec 2003 | B2 |
6666214 | Canham | Dec 2003 | B2 |
6667049 | Janas et al. | Dec 2003 | B2 |
6669723 | Killion et al. | Dec 2003 | B2 |
6676697 | Richter | Jan 2004 | B1 |
6679980 | Andreacchi | Jan 2004 | B1 |
6689375 | Wahlig et al. | Feb 2004 | B1 |
6695920 | Pacetti et al. | Feb 2004 | B1 |
6706273 | Roessler | Mar 2004 | B1 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6719934 | Stinson | Apr 2004 | B2 |
6719989 | Matsushima et al. | Apr 2004 | B1 |
6720402 | Langer et al. | Apr 2004 | B2 |
6746773 | Llanos et al. | Jun 2004 | B2 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6753007 | Haggard et al. | Jun 2004 | B2 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6814754 | Greenhalgh | Nov 2004 | B2 |
6818063 | Kerrigan | Nov 2004 | B1 |
6846323 | Yip et al. | Jan 2005 | B2 |
6997946 | Girton et al. | Feb 2006 | B2 |
7582108 | Hierlemann et al. | Sep 2009 | B2 |
20010029398 | Jadhav | Oct 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20020002399 | Huxel et al. | Jan 2002 | A1 |
20020004060 | Heublein et al. | Jan 2002 | A1 |
20020004101 | Ding et al. | Jan 2002 | A1 |
20020062148 | Hart | May 2002 | A1 |
20020065553 | Weber | May 2002 | A1 |
20020082682 | Barclay et al. | Jun 2002 | A1 |
20020111590 | Davila et al. | Aug 2002 | A1 |
20020116050 | Kocur | Aug 2002 | A1 |
20020138133 | Lenz et al. | Sep 2002 | A1 |
20020161114 | Gunatillake et al. | Oct 2002 | A1 |
20030004563 | Jackson et al. | Jan 2003 | A1 |
20030033001 | Igaki | Feb 2003 | A1 |
20030069629 | Jadhav et al. | Apr 2003 | A1 |
20030093107 | Parsonage et al. | May 2003 | A1 |
20030100865 | Santini, Jr. et al. | May 2003 | A1 |
20030105518 | Dutta | Jun 2003 | A1 |
20030105530 | Pirhonen | Jun 2003 | A1 |
20030170287 | Prescott | Sep 2003 | A1 |
20030171053 | Sanders | Sep 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030208256 | DiMatteo et al. | Nov 2003 | A1 |
20030208259 | Penhasi | Nov 2003 | A1 |
20030209835 | Chun et al. | Nov 2003 | A1 |
20030226833 | Shapovalov et al. | Dec 2003 | A1 |
20030236565 | DiMatteo et al. | Dec 2003 | A1 |
20040093077 | White et al. | May 2004 | A1 |
20040098095 | Burnside et al. | May 2004 | A1 |
20040111149 | Stinson | Jun 2004 | A1 |
20040116958 | Gopferich et al. | Jun 2004 | A1 |
20040127970 | Saunders et al. | Jul 2004 | A1 |
20040143317 | Stinson et al. | Jul 2004 | A1 |
20040167610 | Fleming, III | Aug 2004 | A1 |
20050021131 | Venkatraman et al. | Jan 2005 | A1 |
20050049694 | Neary | Mar 2005 | A1 |
20050137678 | Varma | Jun 2005 | A1 |
20050143805 | Hierlemann | Jun 2005 | A1 |
20050149172 | Varma | Jul 2005 | A1 |
20050177246 | Datta et al. | Aug 2005 | A1 |
20050240147 | Makower | Oct 2005 | A1 |
20050245906 | Makower et al. | Nov 2005 | A1 |
20060018948 | Guire et al. | Jan 2006 | A1 |
20060041102 | Hossainy et al. | Feb 2006 | A1 |
20060070626 | Frazier et al. | Apr 2006 | A1 |
20060116752 | Norton | Jun 2006 | A1 |
20060135947 | Soltesz | Jun 2006 | A1 |
20070014830 | Tijsma | Jan 2007 | A1 |
20070288085 | Furst | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
4407079 | Sep 1994 | DE |
19731021 | Jan 1999 | DE |
19856983 | Dec 1999 | DE |
0108171 | May 1984 | EP |
0144534 | Jun 1985 | EP |
0364787 | Apr 1990 | EP |
0397500 | Nov 1990 | EP |
0464755 | Jan 1992 | EP |
0493788 | Jul 1992 | EP |
0554082 | Aug 1993 | EP |
0578998 | Jan 1994 | EP |
0604022 | Jun 1994 | EP |
0621017 | Oct 1994 | EP |
0623354 | Nov 1994 | EP |
0665023 | Aug 1995 | EP |
0709068 | May 1996 | EP |
0970711 | Jan 2000 | EP |
2247696 | Mar 1992 | GB |
WO-8903232 | Apr 1989 | WO |
WO-9001969 | Mar 1990 | WO |
WO-9004982 | May 1990 | WO |
WO-9006094 | Jun 1990 | WO |
WO-9117744 | Nov 1991 | WO |
WO-9117789 | Nov 1991 | WO |
WO-9210218 | Jun 1992 | WO |
WO-9306792 | Apr 1993 | WO |
WO-9421196 | Sep 1994 | WO |
WO-9529647 | Nov 1995 | WO |
WO-9804415 | Feb 1998 | WO |
WO-9903515 | Jan 1999 | WO |
WO-9916386 | Apr 1999 | WO |
WO-9942147 | Aug 1999 | WO |
WO-0012147 | Mar 2000 | WO |
WO-0064506 | Nov 2000 | WO |
WO-0101890 | Jan 2001 | WO |
WO-2004023985 | Mar 2004 | WO |
Entry |
---|
Abbot Cardiovascular Systems, Non-final Office Action dated Dec. 18, 2013 for U.S. Appl. No. 11/507,903. |
Abbott Cardiovascular Systems, Non-Final Office Action dated Jun. 18, 2014 for U.S. Appl. No. 11/507,913. |
Abbott Cardiovascular Systems, Final Office Action dated Mar. 25, 2015, U.S. Appl. No. 11/507,913. |
Abbott Cardiovascular Systems, Final office action dated Mar. 30, 2010 for U.S. Appl. No. 11/507,913. |
Abbott Cardiovascular Systems, Non final office action dated Oct. 24, 2008 for U.S. Appl. No. 11/507,913. |
Abbott Cardiovascular Systems, Non final office action dated Apr. 28, 2009 for U.S. Appl. No. 11/507,913. |
Abbott Cardiovascular Systems, Final office action dated May 22, 2012 for U.S. Appl. No. 11/507,913. |
Abbott Cardiovascular Systems, Non-final Office Action mailed Jul. 21, 2011 for U.S. Appl. No. 11/507,913. |
Anonymous, “Bioabsorbable stent mounted on a catheter having optical coherence tomography capabilities”, Research Disclosure, (Sep. 2004), pp. 1159-1162. |
Ansari, “End-to-end tubal anastomosis using an absorbable stent”, Fertility and Sterility, vol. 32(2), (Aug. 1979), 197-201. |
Ansari, “Tubal Reanastomosis Using Absorbable Stent”, International Journal of Fertility, vol. 23, No. 3, (1998), 242-243. |
Casper, et al., “Fiber-Reinforced Absorbable Composite for Orthopedic Surgery”, Polymeric Materials Science and Engineering, vol. 53, (1985), 497-501. |
Detweiler, et al., “Gastrointestinal Sutureless Anastomosis Using Fibrin Glue: Reinforcement of the Sliding Absorbable Inraluminal Nontoxic Stent and Development of a Stent Placement Device”, Journal of Investigative Surgery, vol. 9(2), (Mar./Apr. 1996), 111-130. |
Detweiler, et al., “Sliding, Absorbable, Reinforced Ring and an Axially Driven Stent Placement Device for Sutureless Fibrin Glue Gastrointestinal Anastomisis”, Journal of Investigative Surgery, vol. 9(2), (Nov./Dec. 1996), 495-504. |
Detweiler, et al., “Sutureless Anastomosis of the Small Intestine and the Colon in Pig Using an Absorbable Intraluminal Stent and Fibrin Glue”, Journal of Investigative Surgery, vol. 8(2), (Mar. 1995), 129-140. |
Detweiler, et al., “Sutureless Cholecystojejunostomy in Pigs Using an Absorbable Intraluminal Stent and Fibrin Flue”, Journal of Investigative Surgery, vol. 9(1), (Jan./Feb. 1996), 13-26. |
Devanathan, et al., “Polymeriic Conformal Coatings for Implantable Electronic Devices”, IEEE Transactions on Biomedical Engineering, vol. BME-27(11), (1980), 671-675. |
Elbert, et al., “Conjugate Addition Reactions Combined with Free-Radical Cross-Linking for the Design of Materials for Tissue Engineering”, Biomacromolecules 2, (2001), 430-441. |
Feng-Chun, et al., “Assessment of Tissue Blood Flow Following Small Artery Welding with an Intraluminal Dissolvable Stent”, Microsurgery, vol. 19(3), (1999), 148-152. |
Hahn, et al., “Biocompatibility of Glow-Discharge-Polymerized Films and Vacuum-Deposited Parylene”, J Applied Polymer Sci, vol. 38, (1984), 55-64. |
Hahn, et al., “Glow Discharge Polymers as Coatings for Implanted Devices”, ISA, (1981), 109-111. |
Hossainy, et al., “Biocompatible coating for implantable medical devices”, U.S. Appl. No. 10/317,435, filed Dec. 11, 2002. |
Kelley, et al., “Totally Resorbable High-Strength Composite Material”, Advances in Biomedical Polymers, vol. 35, (1987), 75-85. |
Kubies, et al., “Microdomain Structure in polyactide-block-poly(ethylene oxide) copolymer films”, Biomaterials, vol. 21, (2000), 529-536. |
Kutryk, et al., “Coronary Stenting: Current Perspectives”, a companion to the Handbook of Coronary Stents, (1999), i-16. |
Martin, et al., “Enhancing the biological activity of immobilized osteopontin using a type-1 collagen affinity coating”, J. Biomed. Mater. Res., vol. 70A, 2004 , 10-19. |
Mauduit, et al., “Hydrolytic degradation of films prepared from blends of high and low molecular weight poly(DL-lactic acid)s”, J. Biomed. Mater. Res., vol. 30, (1996), 201-207. |
McClay, “Laryngeal and Tracheal Stents”, Emedicine, (Aug. 18, 2004), Mar. 21, 2006: <http://www.emedicine.com/ent/topic593htm>. |
Middleton, et al., “Synthetic biodegradable polymers as orthopedic devices”, Biomaterials, vol. 21, (2000), 2335-2346. |
Muller, et al., “Advances in Coronary Angioplasty: Endovascular Stents”, Coron. Arter. Dis., vol. 1(4), (Jul./Aug. 1990), 438-448. |
Nichols, et al., “Electrical Insulation of Implantable Devices by Composite Polymer Coatings”, ISA Transcations, vol. 26(4), (1987), 15-18. |
Peuster, et al., “A novel approach to temporary stenting: degradeable cardiovascular stents produced from corrodible metal0results 6-18 months after implantation into New Zealand white rabbits”, Heart, vol. 86, (2001), 563-569. |
Pietrzak, et al., “Bioabsorbable Fixation Devices: Status for the Craniomaxillofacial Surgeon”, J. Craniofaxial Surg., vol. 2, (1997), 92-96. |
Pietrzak, et al., “Bioresorbable implants—practical considerations”, Bone, vol. 19, No. 1, suppl., (Jul. 1996), 109S-119S. |
Redman, “Clinical Experience with Vasovasostomy Utilizing Absorbable Intravasal Stent”, Urology, vol. 20(1), (Jul. 1982), 59-61. |
Rust, et al., “The Effect of Absorbable Stenting on Postoperative Stenosis of the Surgically Enlarged Maxillary Sinus Ostia in a Rabbit Animal Model”, Archives of Otolaryngology, vol. 122(12), (Dec. 1996), 1395-1397. |
Schatz, “A View of Vascular Stents”, Circulation, vol. 79(2), (Feb. 1989), 445-457. |
Schmidt, et al., “Long-Term Implants of Parylene-C Coated Microelectrodes”, Med & Biol Eng & Comp, vol. 26(1), (Jan. 1988), 96-101. |
Spagnuolo, et al., “Gas 1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis”, Blood, vol. 103, (2004), 3005-3012. |
Tamai, et al., “Initial and 6-Month Results of Biodegradable Poly-l-Lacic Acid Coronary Stents in Humans”, Circulation, (2000), 399-404. |
Tsuji, et al., “Biodegradable Polymeric Stents”, Current Interventional Cardiology Reports, vol. 3, (2001), 10-17. |
Volkel, et al., “Targeting of immunoliposomes to endothelial cells using a single-chain FV fragment directed against human endoglin (CD105)”, Biochemica et. Biophysica Acta, 1663, (2004), 158-166. |
Von Recum, et al., “Degradation of polydispersed poly(L-lactic acid) to modulate lactic acid release”, Biomaterials, vol. 16, (1995), 441-445. |
Number | Date | Country | |
---|---|---|---|
20160022449 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11507913 | Aug 2006 | US |
Child | 14876661 | US |